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Abstract

One of the interesting characteristics of multi-agent problem solving in distributed artificial
intelligence(DAI) systems is that the agents are able to learn from each other, thereby facilitating
the problem-solving process and enhancing the quality of the solution generated. This paper aims
at studying the multi-agent learning mechanism involved in a specific group learning situation:
the induction of concepts from training examples. Based on the mechanism, a distributed
problem-solving approach to inductive learning, referred to as DLS, is developed and analyzed.
This approach not only provides a method for solving the inductive learning problem in a
distributed fashion, it also helps shed light on the essential elements contributing to multi-agent
learning in DAI systems. An empirical study is used to evaluate the efficacy of DLS for rule
induction as well as its performance pattems in relation to various group parameters. The ensuing
analysis helps form a model for characterizing multi-agent learning.
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1. Introduction

One of the interesting characteristics of multi-agent problem solving in a DAI system is that
the agents are able to learn from each other, thereby facilitating the problem-solving process and
enhancing the quality of the solution generated By learning we mean an agent can improve its
problem-solving performance through acquiring new knowledge, refining existing knowledge,
using better strategies, or applying cases previously proven to be successful. In addition, the
agents in a DAI system can learn from each other through interactions among the group
members. These interactions may play a crucial role in guiding the multi-agent problem-solving
process. Understanding how multi-agent problem solving is affected by the learning behaviors of
the agents can lead to more effective design of DAI systems.

This paper aims at studying the multi-agent learning mechanisms involved in a specific group
learning situation: the induction of concepts from training examples. It is an extension of the
inductive learning process for rule generation, which is one of the most developed areas in
machine leaming(Michalski[1983], Rendell[1990]). By extending this rule-induction procedure
to multi-agent environments, our objective is to gain more insights with respect to the group
learning strategies and mechanisms that can be used in DAI systems.

The multi-agent version of the inductive learning procedure can be viewed as a distributed
problem-solving approach(Decker[ 1987], Durfee et al.[1989]) to learning from examples. This
approach not only provides a method for solving the inductive learning problem in a distributed
fashion, it also help shed light on the essential elements contributing to multi-agent learning in a
group problem-solving situation.

Understanding how the agents leam in group problem-solving situations can lead to valuable
insight into how the nodes in a DAI system can continuously learn and refine its problem-solving
capabilities. For example, we can use such knowledge to develop a network of cooperating
expert systems(Shaw et al.[1990, 1991]) in which the nodes are capable of adaptively learning
from each other, or a group of robot controllers that can leam to perform assembly operations in
a conceited fashion. Moreover, the methodology also can be used for knowledge acquisition
among a group of human experts, from whom the disparate sets of knowledge acquired can be
systematically synthesized into a more coherent body of knowledge that integrates the individual
experts* views.

The contributions of the resulting methodology are thus two-fold: it provides a new learning
method for rule induction based on distributed problem solving; and it also provides a model for
analyzing multi-agent learning. Such a methodology exemplifies the efficacy of DAI, as it
manifests two of the reasons for applying DAI: to understand the interactions between multiple
agents necessary for group problem solving, and to solve problems too large for centralized
systems( Huhns[I987], pp.v - vi)



The distributed problem-solving approach consists of four steps: problem decomposition,
task assignment, local problem solving, and, finally, solution synthesis. When applying it to
inductive learning, the four steps correspond to: 1. decomposing the set of training examples into
several subsets, 2. assigning each subset of training examples to an agent, 3. letting each agent
solve the learning problem assigned, and 4. synthesizing the solutions from the agents into the
group solution. The group solution is the concept descriptions, represented in disjunctive normal
form, underlying all the training examples. An example of such a concept-learning problem is to
learn the rales for predicting whether a company would go bankrupt; the training set in this case
consists of historical financial data corresponding to both financially healthy companies and
bankrupt companies.

The methodology incorporates various mechanisms in the four steps for developing the
collective learning methodology. In the decomposition phase in step 1, the subsets of training
data must be as representative as possible of
sampling technique called "jackknliV* is used to extract each subset In die local problem-solving
phase, the probabilistic learning system, PL5> Is used to derive concept descriptions for each
subset of training examples. Lastly, in the final synthesis step, the group solution is synthesized
through another step of induction; in our methodology, this synthesis of partial solutions
submitted by individual agents into group solution is achieved by applying the genetic
algodtboi(GA}, which gives interesting insight Into the necessary operations for group synthesis.

An empirical study based en two rate-leaning applications is used to analyze the learning
characteristics of tie distributed prcbbm-solving approach, in comparison with the conventional
single-agent approach to inductive learning. This analysis also helps us Identify the factors
contributing to the improved performance resulting from the distributed problem-solving
approach to inductive learning. Specifically, the following characteristics of the system are
shown to affect die learning performance:

- the dlvesity of the agcate* views ami knowledge,

- the ability to geoente hypotheses1 by the agents,
- the quality of the solutions submitted by the agents,
- tic dKompotitioit method used,
- the parallel puisuit of multiple search paths for teaming* and
* the ability of pcrfoming qrnthests to integme the solutions submitted by the Individual agents.

JA dariffcatimi c f t i m . la m inducciv* laming precast, aa agent would keq» genoating hypotheses

staff tbt eonwt com^ dmcripikM fmthm inductive nita*. Thaw hypodiasecan be viewed as various

ideas about the fobtftanu la group problem solving, aad Starninf, the agents would share these hypoth

and tfitai ihtsn as Urn partial solutions for a group solution.



The remainder of the paper is organized as follows: Section 2 reviews group problem
solving, the taxonomy, and the possible learning processes in DAI systems. Section 3 describes
rules induction in multi-agent systems in general. In Section 4, the distributed problem-solving
approach to inductive learning is described. Section 5 elaborates on the importance of the
synthesis step on distributed learning. Incorporating decomposition and diversity as problem-
solving strategies is discussed in Section 6. In Section 7, an empirical study for analyzing the
collective leaning scheme is described, its findings discussed. Finally, Section 8 concludes the
paper.

2. Distributed Problem Solving and Learning in DAI Systems

A DAI system consists of a group of intelligent problem-solving nodes, which will be
referred to as agents in this paper. An example of such a system is a network of rule-based
expert systems, or a group of intelligent controllers(Gasser and Huhns(1989]). There are two
different types of DAI systems that have been developed:

(1) Collaborative reasoning systems. The agents in this type of systems would be solving
the same problem collaboratively. The main issue here is not the decomposition into sub-
problems assigned to the agents; rather, the focus is usually put on guiding and coordinating the
interactions among the participating agents, so that the problem can be solved jointly by the
group simultaneously. The PLEXYS system(Nunamaker et aL[1988]), COLAB(Stefik et
al,[1987]), and the concurrent design system described in Bond[1989] all fall into this category.

(2) Distributed problem-solving systems. In these systems, the overall problem to be solved
is decomposed into sub-problems assigned to the agents, each agent, asynchronously would
plan its own actions and turn in its solutions to be synthesized with the solutions of other agents.
The agents in these systems use either task sAann^(e.g.,Smith[198Ol) or data sharingie.g.,
Lesser&Corkill[ 1981 ]) to cooperate with other agents. The office information system described
in Woo&Lachovsky[ 19861 and the scheduling system describe in Shaw&Whinston[1988, 1989]
are examples of these systems.

The distributed problem-solving approach described in this paper is based on the task sharing
method for distributed problem-solving systems, as articulated in Davis and Smith[1983]. In a
DAI system, the agents, the way problems are solved, and the strategies used for getting the
solutions all can be designed in different ways. Shaw[199Qa,b] identifies the following
dimensions of DAI systems that must be considered to make the group problem-solving activities
effective.

(1) Goal Identification and task assignment;
(2) Distribution of knowledge;
(3) Organization of the agents;
(4) Coordination mechanisms; and
(5) Learning schemes.



There are two different types of problem-solving processes that can be used by the group of
agents: the first type of processes are used in collaborative reasoning systems where a problem is
presented to the whole group and the agents would collectively cany out the deliberation process
• usually consisting of issues identification, proposing solutions, discussion, prioritizing, and
finalizing the group solutions. The second type of processes are used in distributed problem
solving systems where the common strategy used consists of four steps: problem
decomposition, task assignment, local problem solving, and solution synthesis. In the latter type
of DAI systems, negotiation is widely used for task assignment (Durfee&Lesser[ 1989], Laasri et
aL[1990], Sathi&Fox(1989]> Sycara[1989]).

The knowledge possessed by the group of agents can be distributed in different fashions.
There may be different degree of redundancy in the agents* knowledge bases. In one extreme,
the group of agents have exactly the same knowledge; in the other extreme, each agent in the
group possesses completely different areas of knowledge(Weihmayer[1990]). As will be
discussed in detail, we found that for a multi-agent learning system to perform rule induction
efficiently, it is best to maintain the greatest degree of d^ms/Vy possible*

The organizational structure of the agents would determine the amount of information
processed and the coordination necessary for the agents to operate efficiently. Malone[1987]
evaluated a variety of organizational structures and compared than on three dimensions: amount
of processing needed, amount of coordination required, aad degree of vulnerability, A widely
used structure in DAI systems is the market structure, such as contract-net system(Smith and
Davis[I981], Paranak(1987J). Fox[1981] articulated the two opposing forces of task complexity
and uncertainty, and related than to the issue of bounded rationality of the agents in an
organization( or a computer system). Cohen[1986J, on the other hand, underscored the
importance of considering the transitory nature of organizational decision making; he argued for
Incorporating flexibility and the dynamic performance of the agents in an organization. This
school of thought has led to the recent emphasis on learning in organizational decision
making(Ching et al.[ 1990|).

Coordination is necessary in DAI systems for resolving conflicts, allocating limited
resources, reconciling different preferences, and searching in a global space for solutions based
on local informatioi^Ekirfee&Moiigomeryf 19901). Coordination mechanisms can be based on a
variety of information passed among the agents, such as data, new facts just generated, partial
solutions^plaas, preferences* and constraints. A number of coordination mechanisms have been
developed for DAI systems, each of which with its unique protocol for determining the timing of
activities, triggering of events, action sequemcesf and message content in the coordination
process* The role of coordination in DAI systems is discussed in Shawl 199ObJ.

The focus of this paper, the learning mechanism in a DAI system should be an integral part of
the problem-solving activities for improving the task allocation, knowledge, coordination and
organisation Involved. There are several learning processes that can be incorporated in DAI



systems. It can be in the form of data exchange, knowledge transfer, or heuristics migration,
where the learning mechanisms involved are relatively simple. It can also be done by extending
machine learning techniques developed for single-agent systems, such as explanation-based
learning, case-based reasoning, or inductive learning, to the multi-agent systems, where one
agent can learn by observing and interacting with other agents. In the organization context, the
learning processes interact with the dynamic performance of the agents. Lounamaa and
March[ 1987] showed how the learning effects can be affected by coordination among the agents.
Of particular interests are the use of various forms o f group-interaction processes, such as group
induction, nominal group techniques, or brain storming, for achieving the learning effects among
the whole group(Kiaemer and King[1988]). These group processes use structured sessions of
information exchange to develop new concepts, which would lead to solutions not attainable by
any of the agents alone. They are also good examples for illustrating the complementary role
played by the problem-solving and learning activities.

In a DAI system, learning may occur in two ways: the agents can learn as a group, while at
the same time, each agent can also leam on its own by adjusting its views and actions(
Shaw&Whinston[1989]). Among the group problem-solving activities in a DAI system, learning
takes effect in the form of (1) better coordination, (2) more efficient task and resource allocation,
and (3) more effective organization. The improved coordination can be achieved by information
sharing, knowledge sharing, or more efficient communications among the agents. Whereas the
task and resource allocation process can be improved by learning the specialization i.e.,
knowledge distribution) of the agents(e.g., agent x i s good at performing task A), by learning the
group characteristics(e.g., agents y and z work well as a team), by learning the patterns of
tasks(e.g., for a given type of problem, the past experience indicated that it is easier to break the
problem into two tasks, C and D, and do D first), and finally, by learning such environmental
characteristics as user preferences, processor reliability, or future jobs. In his society-of-mind
model, Minsky[1985] articulated the learning o f "administrative ways" in group problem
solving, which essentially includes the learning of coordination, task allocation, and
organizational structures among the agents.

The machine learning literature to date has primarily focused on learning processes of a
single agent. How a problem-solving agent can learn and adapt by interacting with other agents
in a DAI system posts an important research question. This paper attempts to address this by
investigating the rule induction mechanisms in multi-agent problem solving.

3. Rule Induction and Its Extension to Multi-Agent Systems

Concept learning is one of the most developed areas in machine learning, where the objective
is to derive concept descriptions, thrmigh rule induction, to satisfactorily describe and explain a
set of training examples given(Quinlan[ 1986]). Starting with the given set of training examples,
the learning process employs a series of generalisation and specialization steps to search through



the space of all possible concept descriptions; this process continues until the concept
descriptions that satisfy all the descriptions of the training examples are found(Michalski[ 1983]),
Shawl 19871). The whole process consists of the following main steps:

Algorithm 3.1: Concept-Learning;

Limit a set of training examples ¥ » (E(t) 11 - 1,—,T};

Output learned hypothesis H satisfying all the training examples;

(0) initialization: P - <t>, Q - V;
(1) read in the next uncovered training example from Q, add it to the set P;
(2) generating a new hypothesis H about the possible concept descriptions based on P;
(3) evaluatingHby matching it with the examples in Q ;

(4) remove all the examples in Q satisfied by H and put them in P;

(4) if Q * <I>, then n - H and stop; otherwise, go to (1);

In any machine learning program, there are two major components of the program that are
audal to the success of the learning performance. Fkst, the proper mechanism for evaluating the
hypotheses. This is called the credit assignment function. Second, the proper mechanism for
generating new hypotheses based on existing ones. This is called the hypotheses transformation
function. These two functions are the key to all the machine learning programs developed. In die
Concept-Learning Algorithm described above, step (2) is for hypotheses transformation and
step(3) is for credit assignment Since this type of programs attempt to derive descriptions that
can explain die given set of observations, or examples, the method is referred to as inductive
learning.

To extend such a learning procedure to the multi-agent environment of a DAI system,
additional coordination would be needed so that both credit-assignment and hypotheses-
tiHnsformation functions can be performed in a globally conherent fashion.

A direct extension of the concept-learning algorithm for single agent is the group induction
process. In group induction, the agents of the system engage in collecting evidence, generating
hypotheses, and evaluating hypotheses in order to discover new concepts collectively. Each
agent makes its individual observations, forms hypotheses based on the observations, and keeps
searching for new evidence for modifying the hypotheses* As more observations are made,
evidence may confirm or disoonfirnt hypotheses, thus strengthening or weakening the agents*
beliefs about the hypotheses. This process continues until new concepts are derived that are
supported by the observations and the agents* beliefs. The cmcial design in such a group
induction process is the coordination medmnhm incorporated for the agents to interact with each
other. Proper coordination can greatly acceleiate the learning process by having the agents share
their beliefs as well as the newly gefierated hypotheses that appear to be successful.



Since there have been little work done on developing group induction algorithms in the
machine learning literature, a possible source of inspiration comes from the psychology literature
where researchers have been conducting behavioral experiments to study group induction. For
example, Laughlin&Shippy[1983] described an experiment on group induction to address the
issue whether n a cooperative group is able to induce a general principle that none of the group
members could have induced alone, or the group merely adopt an induction proposed by one or
more of the group members,"

The experiment conducted was to ask a group of human subjects to identify the rule used in
partitioning decks of bridge playing cards. The group induction procedure begin with a known
positive example of the rule. The objective is to ask the group to induce the rule in as few trials as
possible. A trial consists of the following five stages: First, each individual group member wrote
down an hypothesis ( proposed induction). Second, the group members discussed until they
reach a consensus on a group hypothesis. Third, the group members discussed until they reached
a consensus on a play of any of the cards, which was shown to the experimenter. Fourth, the
experimenter classified this card as either a positive or a negative example. Fifth, the
experimenter checked the group hypothesis, if the group hypothesis was correct, the problem
was solved; if the group hypothesis was incorrect, a new cycle of the five stages followed,
consisting of a second cycle of individual hypothesis, group hypothesis, experiment with a play
of a card, feedback on the status of the card, and check of the group hypothesis as correct or
incorrect. The process terminated when a correct group hypothesis was found.

Laughlin&Shippy[ 1983] concluded that the group were remarkably successful in recognizing
and adopting a correct hypothesis if the hypothesis was proposed by one or more members. In
contrast, group induction in the strong sense that a correct group hypothesis was derived that
none of the group members had proposed individually was extremely rare. Their findings can be
summarized by the following propositions. (1) Group induction is advantageous over single-
agent induction primarily due to the agents* sharing of the larger set of hypothesis and other
information, not necessary because of that the group together can generate new hypothesis not
derivable by the individual members; and (2) In the group induction process, the sharing of
hypothesis and other information among the agents would result in the identification of correct
group hypothesis in fewer iterations.

The first proposition attempts to identify the key element of group induction; the second
proposition attempts to explain the underlying reason for the phenomenon. Together, based on
the evidence presented by the experiment, these two propositions point out the importance of
hypotheses generation and information sharing in a group induction process. Designing
algorithms for achieving the same learning effects, therefore, requires the incorporation of
effective mechanisms that would facilitate information sharing. The basic group induction
process can be represented algorithmically as follows:

Algorithm 3.2: Group-Induction

Input: a set of training examples Hf - f E(t) 11 • 1,...,T}
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a group of N problem-solving agents;

Output: learned concept description fl generated by the group;

(0)LetP*<D,Q»¥;
(1) The first training example E(i) in Q is presented to the group;
(2) P - P + {E(i)} and Q - Q . {E(i)};
(3) For each agent j , j - 1... N, a new hypothesis H(|)

is generated to satisfy all the examples in P;
(4) For each agent j , j » 1...N, the agenfs hypothesis is broadcast to the whole group;

(5) The whole set of hypotheses Q * H(l) v H(2) v...v H(N) are evaluated against training
examples in Q;

(6) Those examples in Q satisfied by D are remoyed from Q and put in P;

(7) If Q • <Pf stop; otherwise go to step (1).
EM

Note that in this group induction algorithm, the learning process is carried out by the set of
agents collectively. This algorithm has the flavor of a parallel algorithm in steps (3) and (4) when
the operations are performed on the set of agents concurrently. The major benefit of having the
group of agents is their sharing of the newly generated hypothesis in each iteration, which
increases the probability that a correct hypothesis can be identified sooner. In this particular
algorithm, information sharing is achieved by a simple broadcasting mechanism. In a DAI
system, since each AI nodes, a problem-solving agent, has a different knowledge base, the rules
they use in generating new hypothesis would be different Information sharing thus would
provide greater probability to identify the correct hypothesis for concept descriptions sooner.

This group induction algorithm is primarily designed to capture the characteristics of group
problem solving in the process of inductive learning. By incorporating the collective induction
process used in the experiment described in Laughlin&SMppyf 1983L this algorithm models the
learning behavior of a group of human decision makers, each of whom has different domain
knowledge, and would generate different H(j). It is this variation in the H(j)*s - i.e., the diversity
- that provides the major advantage for group induction.

We can extend these views and make the coiyecture that group problem solving can find
solution quicker because of information sharing. New facts, hypothesis, and partial solutions
generated by one agent in its problem-solving am shared by other agents* These additional pieces
of information shared among the agents would trigger the set of agent to new problem-solving
and evidence-gathering activities which would not have been performed without the agents'1

interactions. In tums these triggered activities would generate new facts, hypothesis, and
evidence that are shared among the agents. Thus, the amount of Information shaned in the agents*
problem-solving efforts grows exponentially. And this gives the group an advantage to reach a



solution much sooner. On the other hand, the exponentially growing information would mean
substantially more searching efforts in screening through all the information generated. A
properly designed coordination mechanism can lead the group to evaluate all the relevant facts,
hypothesis, new evidence, and partial solutions more systematically.

The primary objective of coordination, therefore, is for focusing the agents* attention on the
relevant information. It also can be used to constrain the search space engaged by the group. The
Delphi method is an example for such a group problem-solving method incorporating a
structured coordination mechanism. Linston&TuroffI1975] define the Delphi technique as * a
method for structuring a group communication process so that the process is effective in allowing
a group of individuals, as a whole, to deal with a complex problem.** In the Delphi method there
are four phases to the group's interaction process: 1. Exploration of the subject to be discussed
by the group; 2. reach understanding of how the group views the issues; 3. if disagreements
exist, explore reasons and evaluate; 4. when all information has been analyzed and evaluations
have been fed back for consideration, make a final evaluation. To accomplish structured
communication, the coordination mechanism underlying the Delphi technique needs to provide:
some exchange of individual contributions of information and knowledge; some assessment of
the group judgement and view; and some opportunity for individuals to revise
views(Linston&Turoff[1975]). This four-stage Delphi procedure is very similar to the
aforementioned group-induction process in that the emphasis of group interactions is placed on
collecting ideas and sharing information. This similarity also underscores the tight relationship
between group problem solving and group learning. Instead of using collaborative reasoning
such as the Delphi procedure, we can also use distributed problem-solving mechanisms - such as
task sharing - for achieving multi-agent learning. This will be discussed next.

4. A Distributed Problem-Solving Approach to Inductive Learning

As mentioned earlier, the Group-Induction algorithm is suitable for the learning situations
where a group of heterogeneous agents are participating in the induction process. Alternatively,
the learning process can further be facilitated by properly decomposingthe problem and letting
each agent handle a subset of the training examples. In this case, the group learning process
would achieve greater speed-up than the afore-mentioned Group-Induction Algorithm because
each agent is solving a learning problem with smaller size and reduced complexity. The algorithm

be described as follows:

Algorithm 4.1 Cooperative-Induction

Input: a set of training examples *F * (E(t) \tm\ ,,.MTJ;

a group of N problem-solving agents, n;

Oufpfideamed hypothesis O generated by the group;
Begin:



(0) Decompose ¥ into N subsets, ¥(1), ¥<2), ...¥(N), where ¥ - ¥(1) v ¥(2) v ...v

(1) Initiation The set of actively learning agents A - Jt, the set of finished agent F = <t>, P(j)

(2) For each agent j in**, P0) - P0) + {E(0} and Q(j) * Q0) - (E(i)}, where E(i) is the first

example in QQ);
(3) For each agent j in A, a new hypothesis H(j) is generated to satisfy all the examples

(4) For each agent j in A, HO) is evaluated against the training examples in Q(j), and those
examples in Q(j) satisfied by H(j) are removed from QQ) and put in PC);

(5) For each agent j in A, if Q0) " Q* remove j from A and put it in the set T;

(6) If A - <t>, go to (7); otherwise, go to (2);

(7)O-H(l)vH(2)v. . .vHCN)

End:

This algorithm applies distributed problem solving to (he induction process. The cooperation
strategy incorporated is rather like the one used in the Contract-net approach developed by
Smith[ 1980] - that is, it uses the task-sharing approach to achieve cooperative problem solving.
Smith[ 1980] characterized the task-sharing strategy as consisting of the following four steps:

(1) problem decomposition;
(2) task assignment;
(3) local problem solving by the agents involved; and
(4) solution synthesis.

Cooperative-Induction Algorithm achieves these steps by (1) decomposing the training examples
into N subsets; (2) assigning a subset of training examples to each agent; (3) letting each agent
perform inductive learning on the subset of training data assigned to it; and (4) synthesizing the
concept descriptions generated by the agents to be the group concept description(by taking the
union).

Although the Cooperative-Induction Algorithm achieves greater speed-up than the Group-
Induction Algorithm due to the use of task sharing, there are, however, two major problems.
First, the agents do not take advantage of the information learned by other agents. Each of them
just goes about solving its assigned sub-problem and then synthesize its results with those of the
others to obtain the group solution. Second, the final synthesis step for combining all the
learning results is father primitive in that It just takes the disjunction of the concept descriptions
geneiated by all the agents. It is quite likely that the synthesized concept description n would still
be too long a description to be the Induction result.

An improved algorithm will be described shortly that will let the agents share their partial
tenting results. Moreover, an additional step would be used to synthesize the hypotheses(Le.,
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concept descriptions) generated by the agents. The critical step there, as will be explained, is to
use a procedure for synthesizing the learning results of the individual agents.

This synthesis step can be incorporated by the genetic algorithms(Holland[1975], Holland et
al.[ 1986], Goldberg! 1989]). The genetic adaptation plan is performed on the group of agents to
refine the knowledge (that is, knowledge about solving the problem as well as group meta-
knowledge) and its distribution/The transformation of agents' knowledge is achieved by such
genetic operators as reproduction, crossover, and mutation. The Appendix describes the basic
genetic adaptation procedure using GA. Section 5 provides a detailed analysis on the synthesis
step and its incorporation of GA.

To incorporate a group-synthesis mechanism in the Cooperative-Induction Algorithm(4.1),
we algorithmically combine the Cooperative-Inductive process and GA. To begin with, we can
have a group of agents sharing the tasks involved in solving the rule-learning problem by
decomposing the learning problem into sub-problems. Each agent would solve the sub-problem,
generating the concept descriptions based on the subset of training examples, and then apply the
genetic adaption plan. There arc many merits in combining the two approaches, among them are
the speed-up due to the use of multiple agents, reduced complexity of the learning processes
because of the use of decomposition, the abilities of the genetic adaptation scheme to transform
concept-descriptions in forming more concise descriptions, and the more globally oriented search
achieved by genetic adaptation( Sikora&Shaw[ 1990a,b]). The procedure can be described by the
following DLS (Distributed Learning System) Algorithm:

A teorithm 4.2: DLS
Tnvut: a set of training examples *F * {E(t) 11 - 1,...,T};

a group of N problem-solving agents,Jt;

Output: concept-description O learned by the group;

(0) Decompose Y into N subsets, ¥(1), ¥(2), . .^(N), where ¥ - ¥(1) v ¥(2) v ».v

(1) For each agent j inn, execute the Concept-Learning Algorithm(Algorithm 5.1) on Y(j) and

obtain the concept description £(j);

(2) Execute the Genetic Adaptation algorithm(Appendix) by using { (̂j) 1 j * !,..., N} as the
initial population;

(3) Q = the concept description generated by the Genetic Adaptation algorithms;

This multi-agent induction process is depicted in Figure 4.1. Sikora and Shaw[1990]
describes the implementation of the DLS Algorithm, The decomposition in step(0) is achieved by
incorporating a statistical sampling technique called the jackknife technique2, which randomly



select a fraction of the training examples ¥(j) for each agent j . For step(l), the probabilistic

learning system(PLS) developed by Rendell[1983, 1990] is used for concept induction. By
applying the genetic adaptation algorithm in step(2), Sikora and Shaw show that the learning
performance of DLS is much improved over any of the single-agent learning algorithm.

The success of the DLS Algorithm highlights the efficacy of the distributed problem-solving
approach to rule induction. The approach in its essence can be described in a more generic
fashion, in which the procedure consists of four phases: I. problem decomposition, II. task
assignment, IH rule induction from the subset of examples allocated to each agent, and IV.
concept synthesis. This procedure is illustrated in Figure 4.1.

(subproblems) (learning agents)

(training
data set)

! PROBLEM TASK
tASSIGNMENT

INDUCTIVE
LEARNING

INDUCTIVE
LEARNING

INDUCTIVE
LEARNING

LOCAL
PROBLEM
SOLVING

(group adaptation)

CONCEPT
SYNTHESIS

(learned
concept)

SOLUTION SYNTHESIS

III

Figure 4.1 DLS: The Distributed Problem-Solving Approach to Inductive Learning

5. Synthesizing the Learning Results

of *j* data m t ta will be left out, 0 * r < I.



Algorithms 3.2, 4.1, and 4.2 represent three different types of group learning processes in
multi-agent problem-solving situations. They differ in the ways decomposition and synthesis are
incorporated. Lefs call them types A, B, and C of group learning for ease of reference.

Type A process models after the collective induction process described in Laughlin&Shippy
[1983], as discussed in Section 3. The group of agents are presented with the same examples,
simultaneously, and the group solution to the learning problem is produced through an iterative
process of refining the hypotheses generated by the group members. This type A process for
group learning is often used in collaborative reasoning systems described in Section 2.

Type B process applies distributed problem solving by assigning a subset of the training
examples to each agents. The learning results from the agents are collected and together they
form the group solution( mathematically, in disjunctive form) without any additional efforts to
summarize- i.e., synthesize- them into more concise form. This group learning process is not a
complete one.

Type C process, which is used in our methodology, applies the same problem
decomposition, task assignment, and local problem-solving procedures as Type B, except that it
incorporates a more elaborate step in synthesizing the partial solutions submitted by the
individual agents. This synthesis step involves collecting the partial solutions, evaluating their
pros and cons, and coming out with a group solution that keeps the desirable components(i.e.,
good ideas), perhaps adding in some variations for possible improvements, and taking out the
unfavorable components. This synthesis step is highlighted by Figure 5. L

Partial Solutions From Agents

(Hypotheses for Concept Descriptions)

c
c

evaluation
selection
combination
modification
elimination

Final Group
Solution
( Concept-
Description
Rules)

Figure 5.1 The Synthesis Step in Distributed Problem Solving and Multi-Agent Learning

The group synthesis itself can be viewed both as an induction operation and as a collective
cvmluMiion process conducted by the group. This step can be summarized as follows: Group
synthesis is the step that collects the partial solutions from the individual agents, evaluating these
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partial solutions, and deriving the final group solution based on these partial solutions. In other
words, the partial solutions represent hypotheses proposed by the individual agents The
synthesis step evaluates these hypotheses and search the hypothesis space to derive the final

solution. . .
In the context of mathematical logic, each partial solution given by agent i - which can be

viewed as a hypothesis l \ is in the following disjunctive normal fonn(DNF):

r'-r1
1vri

2v...vri
p

• (&l 1 & ... & £t i) v (Iji 2 &••• <& %fc\ 2^v—v^l,p *̂  "* ^

H e synthesis step is to derive the final solution out of the set off1 , F 2 , . . . up to TN , N is total

number of agents.
Let's use an example to illustrate what the DLS algorithm achieves in this synthesis step. Say

a nuwager wants to apply distributed problem solving and uses a group of agents to perform the
task of developing a proposal He asks 10 different people to submit several preliminary
proposals, each with k sections. Using the above formulation, each proposal prepared by an
agent corresponds to a Th - Each person i can submit p different versions of the proposals. Out
of these Mxp proposals, the manager then needs to synthesize them into the final proposal. The
way this can be done is to have several iterations of evaluation, modification, and combination.
la each iteiatioa, the manager evaluates the proposals, giving a score to each. Based on the
scorn, lie then combines the features of the better ones and sometime switches sections between
two good proposals. He would stop this process until a satisfactory proposal emerges.

Likewise, the synthesis operations in multi-agent learning should be an iterative process that
includes evaluation, selection, combination, modification, and merging. This iterative process of
symihmMmg m essentially what the genetic algorithm in our DLS algorithm would help achieve.
Taktag the partial solutions from the agents as hypotheses, it evaluates each individual
-ypcthtsis,-, zss:g?i$ a fitness score to each, and generates a new set of hypotheses based on such
tiaufonnation operators as reproduction, crossover, and mutation. The process stops when a
satfofiKtoiy concept description emerges from the hypotheses,

TTie fitness fuactioa is used to evaluate the hypothesis. The reproduction, crossover, and
mtitatioa operators can achieve transformational effects similar to selection, combination,
modification, and merging. The fact that we can apply the genetic algorithm for this synthesis
Step is fatteiesttag and merits ftuther elaboration. At first glance, genetic algorithms seem to imply
veiy specific fqpresentation(i.e.t genes) and transfonnation(i.e., the genetic operators). But if we
Hi t a timer look, the fractional mpifemeets of this synthesis step consist of "...collecting the
partial mimimmt cwalyatiqg their pros and cons, and coming out with a group solution that keeps
l i t desimMt compcMienia(i.e.f good ideas), perhaps adding in some variations for possible
impfovenients, tail taking out the unfavorable components**. These operations are quite
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consistent with the activities performed by a genetic algorithm, namely, to evaluate the fitness of
the individual components, and transform them into new forms which have more desirable
features.

In terms of knowledge representation, solution synthesis using the genetic algorithm fits

perfectly into the mathematical representation used by single-agent inductive learning as well.

Using PLS, each agenf s partial learning results can be represented by a DNF, which is a

disjunction of terms r*j representing the jth hypotheses generated by agent i, i - 1, _,NS and j -

1,..M p . Each r*j is a conjunct represented as ( ^ j & _ & £ - . ) . The genetic algorithm takes

the pool of all the terms in these DNFs and treats them as the initial population for further
induction- As a result, the initial population of hypotheses serving as input to the synthesis step
has Nxp members. These hypotheses will then be used as the basis for getting the group solution
through evaluation, selection, combination, merging, and modification, as performed by the
genetic algorithm-

6. Distributed Problem Solving Strategies: Decomposition &
Diversification

There are a number of reasons for taking the distributed approach to problem solving* among
them are two fundamental ones: first, the problem at hand may be too large and complex for a
single agent to solve the whole thing at once; second, the chance of successfully getting the
solution can be improved by searching through multiple paths for the solution. These two
strategies - identified as decomposition and diversification - have beco used previously for
problem solving. A closer look at them would help identify the general issues involved in the
distributed problem-solving approach-

The decomposition used in distributed problem solving basically is a dividc-and~conquer
method to break the problem up into simpler sub-problems to tackle. In a similar vdnf it has been
used quite intensively in solving large-scale optimization problems. Interestingly, just as tic way
we aim at gaining insight into multi-agent problem-solving systems through the distributed
approach, the decomposition approaches to solving optimization problems act, besides being
used as a solution strategy for solving laige-scale mathematical programming prableins(Dai!tzig&
Wolfc[1961], Lasdon[1968]), also used to model decision making within decentcalized
organizations.. On one hand it helps solve difficult problems by transforming them into several
sub-problems which have simpler structures and are easier to mlwc; m the other hand, the
decomposition process and the way partial solutions are tiansfened correspond nicely to the inray
problems are solved in a decentralized organization, is which the individual deputmeatt would
be assigned with tasks^resources and coordifiated by a pricing mechanism called transfer
prices(Burton et al.[1974j). The optimization problems based on mMhcnmiial piogramming can
search through variables represented in the primal or the dual problems, la a similar fashion, the
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rule-learning problems can be represented in the instance-space(I-space) or the hypothesis-
space(H-space). In DLS, the agents perfonn learning in the I-space and the group synthesis step
is performed in the H-space. The symmetrical relationships between the decompositional
approach to optimization and the distributed approach to rule induction are summarized in Table
6. L By looking at the similarities of the two methodologies, we hope to take advantages of the
experiences gained in the research on distributed decision making and coordination in
decentralized organizations. It also helps highlight the dual purposes of DLS serving both as a
solution method and as a model for multi-agent learning.

Problem

Function of the Model

Master Prob jSeaich Space

Sub-Prob/ Search Space

Constraints for Allocation

Coordination

Objective

Math Programming

Organization Optimization

Organization-Level/Dual

Department-Lcvei/ Primal

Resources

Dual Prices

Max Organizational Profit

Rule Induction

Group Learning

Group -Level/H-Space

Agent-level/ I-Space

Training Examples

Fitness Measures

Max. Concept Accuracy

Table 6.1 The Structural Correspondence Between the Decompositional Approach to
Optimization and the Distributed Problem-Solving Approach to Rule Induction

One of the advantages of talcing the distributed problem-solving approach, as in a human
group situation, is that more diverse viewpoints and sources of ideas are present in guiding the
problem-solving activities, thereby increasing the chance of success. An interesting source of
literature related to the analysis on the diversity among a group of individuals and its impacts on
group performance comes from the study mi strategies for biological evolution. Brady[ 1985], for
instance, showed that strategies used in biological evolution * such as spedafion, having a large
population and helping weaker individuals to survive * can also be used as strategies for solving
optimization problems. Brady also articulated the importance of diversification in solving
optimization problems sudt as the traveling salesman problem. He showed that the performance
can be improved simply by dividing compiler time equally between two independent trial
sohitioas(Le., two agents) and select tic best solution. This strategy can be generalized into the
N-agcnt case - according to Brady*$ analysis, wen though these agents have to share the
compulation time and resources, they still result In better performance on balance. This finding is
quite consistent with our empirical results reported in Section 7. Kuhof 1970] noted the
correlation between the diversify of theories existing in a society and the speed of its scientific
progress; this finding is somewhat similar to' the remit of our analysis on multi-agent learning in
DAI systems, which Is not surprising since Korafeld&Hewitt(1981] already pointed out the
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scientific community as a metaphor for DAI systems.
Several parameters need to be taken into account to make DLS effective, such as the

decomposition ratio, diversity of the learning agents, number of learning agents used, and the
pool of hypotheses generated. These issues will be addressed by the following empirical
analysis.

7. Empirical Study and Analysis With Learning Applications

This section will evaluate DLS as a rule-learning method, the performance patterns of the
distributed problem-solving approach, and the use of DLS to characterize multi-agent learning.
Two concept leaning problems were used to evaluate the DLS algorithm. One is bankruptcy
prediction based on financial data; the other is a process control problem. Both can be stated as
the problem of generating classification rules from a set of training examples. The group
performance in each case is evaluated by the prediction accuracy of the rules it generates on the
companion set of training examples. To average out the random errors, in each case five different
pairs of training sets and testing sets were used and the results are reported using the averages of
the 5 trials.

The DLS algorithm based on multi-agent learning is implemented on a Texas Instruments
Explorer, in Common lisp. The bankruptcy-prediction application has a data set consisting of 58
training examples with two classes. This data set, described in detail in Shaw and Gentry[ 1989],
corresponds to a set of finandal data profiling companies that went bankrupt and companies that
have been financial healthy. The task of learning from this data set is to derive concept-
descriptions - i.e., rules - characterizing the financial profiles of bankrupt companies. The
classifications involved, therefore, consists of bankrupt (i.e., positive examples) and healthy
(i.e., negative examples) companies.

The data set is divided into 10 sub-sets by the jackknife sampling technique, to be assigned to
10 learning agents. Each agent learns the classification concept based on the training examples
assigned to it by applying the PLS procedure. The PLS procedure generates concept descriptions
in disjunctive normal form. Each of the individual disjuncts is treated as a single member in
forming the initial population for synthesis applying the genetic algorithm. Among the 10 agents,
a total of 42 disjuncts are generated, which are then treated as the initial population for genetic
adaptation. The probability of crossover is set at 0*7 and the probability of mutation is set at
0.01. Figure 7.1 shows the learning curve - the convergence of the maximum level of fitness of
the population - of the DLS procedure vs. when GA is applied alone.
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Hguie 7.1 Perfonnance Comparison Between the Distributed Learning Approach and GA

Figure 7.1 also shows the improvement in ternis of solution qualities. The improvement in
the fitness measure(I.e., the learning perfonnance in terms of the prediction accuracy) in this case
is about 27.7% over the original version of the <5A algorithm. The multi-agent version using
DLS also converges much faster. This improvement in the quality of learning caa be attributed to
two factors: (1) Each learning agent starts out with hypotheses generated by PLS performed by
the agent, providing a more accurate pool of hypotheses than the randomized initial descriptions
used by the basic GA. (2) The multi-agent approach offers a more diverse set of population for
executing the genetic adaptation procedure, comparing to the initial population of the basic GA
algorithm. In genetic adaptation, a more diverse population usually results in better learning
results. This aspect will be further discussed again.

Figure 7.2 shows the improvement of the multi-agent approach based on the DLS procedure
over the single-agent version of die concept-learning pcocedureOLe., PLS). Again, DLS achieves
better learning accuracy as well as more concise concept descriptions. These results can be
explained by several reasons; (1) the genetic algorithm component can apply more globally
oriented search, thus enabling DLS to achieve better learning quality than single-agent teaming;
(2) the genetic adaptation component conducts searches with finer gianularity9 thus reducing the
length of the final concept description; and (3) the multi-agent learning process using the DLS
Algorithm synthesizes the results of N learning agcatsf thus is more likely to reach better
perfonnaooe. These performance results are further confirmed by a more detailed empirical study
described in Sikoia and Shawf 1990ai
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Figure 7.2 Performance Comparison Between The Distributed Learning Approach and Single-
Agent Learning

As a rule learning algorithm, the multi-agent learning process using the DLS Algorithm
exemplifies the efficacy of the DAI approach to problem solving. In this case, the problem - the
task of inductive learning - is possible to be handled by one agent alone. But the DAI approach
can be used to reduce the complexity by decomposing it to N sub-problems, each of which is
assigned to a learning agent After the concept learning is completed by all agents, their results
are synthesized by another induction step, which would serve to further refine the multi-agent
learning results. Such a DAI approach enables multiple searches to be conducted
simultaneously, and doing that in both the instance space and the hypothesis
space(Rendell[1990]). The performance results therefore is predictably good.

Moreover, DLS also emulates a multi-agent environment for rule induction. It can be used as
a model to characterize the essential features of multi-agent learning. To verify the contributing
factors accounted for the performance improvements of the distributed problem-solving
approach, the second rule-induction application related to the learning of process-control
rules(Sikota&Shaw[ 1990c]) is used for evaluating DLS.

The problem involved learning rules for formulating the relationships between the amount of
a chemical ingredient used in a complex industrial process and the other process variables. The
process requires the use of an expensive chemical, X, to eliminate a undesirable by-product of
the process. The objective is to find out the dependence relationship between X and the set of
controllable variables, y\t y2»—, y9, of the process so that the amount of X used is as minimal
as possible. Since it is impossible to derive any mathematical equations between X and yj
inductive learning is used to generate decision rules describing in DNFs the relationships
between the amount of X and yj to y<). A threshold value e is used to dichotomize the decisions.
The tmining examples then consist of a set of data cases, each with an array of values assigned to
y I to y9 as well as a class variable indicating whether the corresponding X is over or below e.
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The objective is to leam the various conditions, described by the value-ranges of yi to yg,

that can ensure that the amount of X used is below e. There are a total of 574 data cases

available, among which we used 459 for training and 115 for testing- 5 trials were used for each

test case.' We designed experiments using DLS to evaluate in particular two aspects o f the

distributed problem-solving approach: the degree of diversity and the degree of decomposition.

N - 5; Decomposition Ratio - 0.20
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Flptie 73 Performances Result of Group Learning with Varying Degrees of Diversity

FffSft 73 presents learning performances whea the partial learning solutions generated b y

the agents laving varying degrees of diversity, indirectly reflecting the diversity of the agents*

bacifnwnd toowledge for performing the learning processes. The purpose is to isolate the

effect of diversity from the effects of using parallel searches. We evaluated DLS on different

degHMf of dfrmity In the composition of the agents- In each composition, there may be some

agents, wWl s in tanging fiom 0 to 5, that stare the same partial solutions. The numbers in the

fifgm itpramt mimbeis of agents sharing the same results, so (1+1+3) means that there are

thm iifFtfett sets of partial solutions generated among the 5 agents- two agents have two

ditktmt mm of partial solutions and the other three agents share the same partial solution.

A§ ibewn la Figure 73 , the group's learning performance is closely correlated to the degree

• • ''iffity it the composition of agents. When the group result is synthesized from 5

- : ftttly different partial solutions, the learning performance is better than that of the cases

-* • "• tome the agents' solution arc the same. This further confirms the assertion that diversity

' 4 t it agents" hypotheses is a key factor to the performance of the distributed problem-
IJWKMCh

j * * * ^ ** "»hta| examples are decomposed into sub-sets also affects the group

« • * • « . « * ^eitt c»0 sojvc the same original problem<i.e., collective reasoning); on the
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other hand, the problem can be decomposed into n sub-problems distributed to the n agents- so
the total size of training examples used is equal to that in the single-agent case. If the latter case
can be achieved with comparable, or better, learning results, then such a distributed approach
becomes computationally more efficient
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Figure 7,4 The Learning Results for Different Decomposition Ratios

As shown in Figure 7.4, we ran DLS with different number of agents; for each case, we try
breaking the problem into sub-problems of different sizes. For instance, when the decomposition
ratio is equal to 0.20, this means that each agent is assigned with 20% of the original set of
training examples; if N is further specified to be 5, then the five agents together need the same
number of training examples as the original set. The results in Figure 7.4 indicate that, although
there is no consistent patterns pointing to the best decomposition ratio, it usually results in good
results to use a decomposition ratio of L/N, where N is the total number of agents. When N * 2,
5, 7, and 10, this produces 85.1%, 86.9%, 80.7%, and 78.4% of prediction accuracy,
respectively.

Within the distributed problem-solving framework, there are two opposing factors to
consider when deciding on the number of agents to use. On one hand, one would like to have
more agents to increase diversity; on the other hand, one would like to have fewer agents so as to
assign as many training examples as possible to each agent. In our case, letting N to be 5 and
assigning 20% of the training examples to each agent result in the best overall learning
performance in terms of prediction accuracy. This points to the plausibility of applying the
distributed approach without using redundant resources.

It is still unresolved as to what is the optimal number of agents for a given learning problem.
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For this particular problem, the best value for N is empirically shown to be 5. But whether 20%
of the training set would be sufficient for the local problem-solving phase is really a problem-
dependent issue. This issue of decomposition is also closely related to the issue of the global
coherence issue in distributed problem solving in a DAI system: that is, how much should each
agent know, in its local view, so that its partial solution can be as globally coherent as possible.
In the DLS implementation, we used a statistical sampling technique, the jackknife technique,
for decomposing the tiaimng set The jackknife technique is known to give unbiased estimates of
the sample means, which is one interesting way to ensure global coherence.

To ensure that the performance improvements of DLS over single-agent oriented methods,
such as PLS and the pure GA, are due to the distributed, multi-agent nature of the methodology,
not to the particular way we combined two types of rule-induction algorithms- PLS and GA -
together, we also tested a single-agent version of DLS which basically runs PLS through the
whole set of training examples, and then the GA is executed with the learning results from PLS
as the input The prediction accuracy is 82.1%, worse than the 2-agent and the 5-agent cases
when distributed problem solving is used. But why would the learning performances deteriorate
whenN-7or l0?

No. of Agents

Learning Peifonnance
of the Group
No. of Hypotheses
Generated By the
Group
Avg. No. of
Hypothese Generated
Bv Each Agent

N - l

82.1%

15

15

N-2

85.1%

21.4

10.7

N-5

86.9%

25.8

5.2

N-7

80.5%

29.8

4.2

N - 10

78.4%

31.6

3.2

Figure 7.5 Comparison of Learning Performances in Relation To The No. of Agents and The
Size of the Hypotheses Generated

As shown in Figure 7*5, there h a difference in the size of the pool of hypotheses generated
by the agents. When a single agent is used to team the concept <fescriptfon(i.eM the rules) from
the whole set of training examples, the pool of hypotheses generated, in DNFf has 15 different
conjuncts. Each conjunct is a hypothesis for the final concept description. On the other hand,
when the 5-agenf version of DLS is cunf with each agent assigned with 20% of the training
examples, the pool of hypotheses geoeated has an avenge of 25*8 different concept hypotheses*

A trend emeigiiig from the Figure7.5 Is that the marginal contribution of additional
hypotheses from each agcat decreases giadually t s N increases* Moreover, the group learning



performance starts to decline after its peak, at around 5 in this case. The same type of trade-offs
exist in both multi-agent learning and distributed problem solving. When there are more agents
participating, more ideas(that is, hypotheses or partial solutions) can be generated by the group.
Such an increasing pool of ideas contributed by agents help finalize the group solution faster. At
the same time, Since a fixed amount, R, of resources are allocated to the group, the resources
available to each agent is R/N. With the amount of resources for getting its solution getting
smaller, the quality of the contributions by each agent would decrease as N increases. In the case
of rule learning, the resources are the training examples given to the group. Because of these two
opposing forces, both affected by N, that influence group performance, the group performance
would peak at a certain N and then decline, which is exactly what happens in Figure 7.5,

L-f(H,Q)

Legmd

L - Group Learning
Performajaee

H - Number offfypotheses
Generated By the Gmup

Q~ Quality of the Inputs
N Fmm Em± Agent

No. of Agents

Figure 7.6 The Relations Between The Group Learning Performance and the Number of Agents

The findings and the ensuing analysis above point to the Importance of die contributions from
the agents in terms of the number of hypotheses generated. This explains why the distributed
problem-solving approach performs better than the single-agent version. It also explains the
previous observation, as shown in Figure 7.3, thai greater diversity results in better group
performance. Let the number of hypotheses generated1 by the whole group be H» then H can be
represented by the quadratic functional form in relation to N as shown in Figure 7.6, with a
decreasing gradient since the marginal contribution from each agent dcciemses as N increases..
The otter factor affecting the group performance is the quality of the hyi»tk*» submitted by the
agents. In rule learning, the quality of the hypotheses arc directly detetmiaed by the number of
training examples allocated to each agent, which can be viewed as the resources allocated. More
agents deplored means less resources allocated to, therefore poorcr quality from, each agent in
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forming the group solution. In the rule learning case, when each agent is assigned with smaller
set of training examples, the individual agents* learning results become less accurate. Let E be the
total number of training examples, then the resources available to each agent is represented by the
number of training examples assigned to each agent, E/N. Since the quality, denoted by Q, of the
hypotheses generated by an agent's learning process is positively proportionate to the number of
training examples allocated, Q would follow the functional form of Y = E/N, as shown in Figure
7*6. The group learning performance L will be a function of these two factors, i.e.,

L«f(H,Q),

and can be represented in the functional form shown in Figure 7,6.
The dynamic of the group learning performance with respect to the number of agents as

captured by the model, shown in Figure 7,6, explains quite nicely the empirical observation in
Figure 7.4. The model underscores the key role played by the pool of hypotheses generated by
the agents for reaching a group solution, as has been observed by Laughlin and Shippy[1983]
and by our empirical results reported in Figure 7.5. This aspect of the model also explains the
importance of diversity among the learning agents, as observed from Figure 7.3, to the group
performance, since the more diversity among the agents, the more varieties of hypotheses can be
generated, resulting in larger H. The dependence of L on the quality of the hypotheses submitted
by the agents confirms the view that the sub-problems assigned to each agent should be as
representative of the global view as possible.

7. Conclusion

This paper has shown that the distributed problem-solving approach to rule induction, as
implemented in DLS, is useful in two ways: (1) it can be used as a new rule learning algorithm,
with better performances than existing algorithms based on single-agent learning models; and (2)
it provides a rich model for multi-agent learning, enabling us to analyze the important parameters
and mechanisms in multi-agent learning.

As a new learning method, the distributed learning approach performs well computationally
because1 of (1) its ability to pursue multiple search paths in parallel, and (2) the combination of
inductive teaming mechanisms searching through the instance space in the agent level and the
hypothesis space in the group level, resulting in more likelihood to reach a good concept
description* Besides producing better learning results as measured by prediction accuracy, the
DLS method also gives, more concise descriptions than PLS in the rales it generates, and quicker
a»vetjjenee than G A.

The empirical results of DLS also reveal interesting characteristics of multi-agent learning.
The contrasts between existing inductive learning metftoci and DLS is analogous to those between
Inductively learn concept-description rules from E examples by a single agent vs» letting N
learning agents Inductively generate rules from the same E examples together, but each agent is
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assigned with E/N examples to produce its partial solutions. We showed that the distributed
version has more favorable learning performances than the single-agent learning method.
However, the group performances vary with different values for N. The group learning
performance peaks at a certain value of N, N*, the optimal number of agents for the learning
task, and then starts to deteriorate.

In view of the importance of generating and sharing the hypotheses in the multi-agent
learning system, a group mechanism must be used to help the group sort through the pool of
hypotheses generated, evaluating them, and making decision on what the correct concept
description should be in the group solution. In DLS we incorporated a solution-synthesis
procedure using the genetic algorithm, which plays an important role in generating the group
solutions based in the individual agents' results. This synthesis step should be generalizable to
other distributed problem-solving domains.

Based on the observations, we have constructed a model relating the group learning
performance to two factors: (1) the amount of hypotheses generated by the group of learning
agents, and (2) the quality of hypotheses generated. The model confirms the empirical findings
that the diversity among the group is important since it affects the number of hypotheses that can
be generated. It also explains why the group learning performance would decline when N goes
over N*. Since the sub-sets of examples allocated to each agent would become smaller, thus
affecting the accuracy of the rules generated, while at the same time the marginal contributions of
new hypotheses by an additional agents is declining. This model shows in a formal manner the
performance characteristics of the distributed approach to rule induction.

Appendix

The basic Genetic Algorithm (GA) can be described by the following procedure:

PROCEDURE GA (initial population of n members { gi, i - 1,..., n ))
begin;
no-of-generations * 0;
repeat;

for each member gi of the population;
compute f( gi), the fitness measure for each member; /* evaluation V

repeat;
stochastically select a pair of members g 1, g2

with probability increasing with their fitness f; /* reproduction */
using the genotype representation of gl and g2f

mutate a random bit with probability pu; /* mutation */
randomly select a crossover point and



perform uniform crossover on gl and gl to
give new genotypes g*l and g*2; /* crossover */

until the new population is filled with n individuals gl;
no-of-generations * no-of-geneiation + 1;

until the number-of-generations has reached Ng; /* tennination */
end;
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