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Abstract 

This report argues that the overall structure of software systems ("software architecture") is usefully studied by 
constructing design spaces. A design space identifies the key functional and structural choices made in creating a 
system design, and it classifies the alternatives available for each choice. Rules can be formulated to relate choices 
within a design space. Sets of such rules are a valuable design aid and offer a promising route to automatic 
structural design. By codifying design practice, design spaces can also aid software maintenance and training. To 
support this argument, the report describes a design space and associated rules for user interface software, and it 
discusses an experiment that validated these design rules by comparing their predictions to real system designs. 
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1. Introduction 

Software architecture is the study of the large-scale structure and performance of software systems [Shaw 89]. 
Important aspects of a system's architecture include the division of functions among system modules, the means of 
communication between modules, and the representation of shared information. 

The architectural alternatives available to a system designer can be described and classified by constructing a 
design space. Within a design space, we can formulate design rules that indicate good and bad combinations of 
choices. Such rules can be used to select an appropriate system design based on functional requirements. The 
design space is useful in its own right as a shared vocabulary for describing and understanding systems. 

This work should be viewed as a means of codifying software design knowledge for use in day-to-day practice 
and in the training of new software engineers. For this purpose, a set of design rules need not produce a "perfect" or 
"best possible" design. A valuable contribution will be made if the rules can help a journeyman designer to make 
choices comparable to those that a master designer would make—or even just help the journeyman to choose a 
reasonable design with no major errors. With sufficient experience, a set of such rules may become complete and 
reliable enough to serve as the basis for automated system design, but the rules can be of practical use long before 
that stage is reached. 

The work described in this report tested these notions by constructing a design space and rules for the architecture 
of user interface software systems. These rules were experimentally tested by comparing their recommendations to 
actual system designs. The results showed that a rather simple set of rules could achieve a promising degree of 
agreement with the choices of expert designers. These exploratory results suggest that the approach sketched here is 
a viable means of creating an organized body of knowledge for software engineering. 

This report is a summary of results from the author's thesis [Lane 90a]. A companion report presents the user 
interface design space and rules in greater detail [Lane 90b]. 

LI The Utility of Codified Knowledge 

The underlying goal of this work is to organize and express software design knowledge in a useful form. One 
way of doing this is to build up a vocabulary of well-understood, reusable design concepts and patterns. If widely 
adopted, a design vocabulary has three major benefits. First, it aids in creating a system design by providing mental 
building blocks. Second, it helps in understanding or predicting the properties of a design by offering a context for 
the creation and application of knowledge. Third, it reduces the effort needed to understand another person's design 
by reducing the number of new concepts to be learned. 

An example of such a vocabulary is the codification of control structures that took place about two decades ago. 
Programmers learned to perceive control flow in terms of a few standard concepts (conditionals, iteration, selection, 
subroutine calls, etc.) rather than as a complex pattern of low-level tests and branches. By reducing apparent 
complexity and providing a shared understanding of control flow patterns, use of these building blocks made 
programs both easier to write and easier to read. Researchers discovered key properties of these structures, for 
example, the invariant and termination conditions of loops. Use of the standard structures helped practitioners to 
focus on these properties, leading to better-understood, more reliable programs. Finally, codification made it 
possible to build tools (programming languages) that supported the structural concepts directly, providing further 
productivity gains. 
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As software engineering matures and research attention shifts to ever-larger problems, we can expect to see 
similar codification occurring for larger software entities. The time now seems ripe to begin codifying structural 
patterns in medium-size software systems, to wit. characteristics of modules and the interconnections between them. 
(We can already anticipate that even higher levels of design abstraction will be needed to design very large systems, 
but we are far from having enough experience to be able to discern patterns at that scale.) 

A different analogy for this wok is the compilation of engineering design handbooks, such as [Perry 84]. The 
established fields of engineering have long distinguished between innovative and routine design. Innovative design 
relies upon raw invention or derivation from abstract principles, while routine design uses standardized methods to 
solve problems similar to those that have been solved before. When applicable, routine design methods are cheaper 
and more likely to yield an acceptable (though not necessarily optimum) design than are innovative methods. The 
primary purpose of such handbooks is to support routine design. 

A good handbook arms its user with a number of standard design approaches and with knowledge of their 
strengths and limitations. Thus, software engineering handbooks could combat two opposite evils now widely seen 
in practice: both the tendency to invent every new system from scratch and the tendency to reuse a single design for 
every problem regardless of its suitability. Handbook-style texts are now widely available for selection of 
algorithms and data structures (e.g., [Knuth 73, Sedgewick 88]) but do not yet exist for higher levels of software 
design. 

The work reported here offers an organizational scheme (namely, design spaces and mles) for handbooks of 
software system structure, as well as the beginnings of specific knowledge for one such handbook (covering user 
interface systems). 

12 The Notion of a Design Space 
The central concept in this report is that of a multi-dimensional design space that classifies system architectures. 

Each dimension of a design space describes variation in one system characteristic or design choice. Values along a 
dimension correspond to alternative requirements or design choices. For example, required response time could be a 
dimension; so could the means of interprocess synchronization (e.g., messages or semaphores). A specific system 
design corresponds to a point in the design space, identified by the dimensional values that correspond to its 
characteristics and structure. Figure 1-1 illustrates a tiny design space. 
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Figure 1-1: A Simple Design Space 
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The different dimensions are not necessarily independent; in fact, it is important to discover correlations between 
dimensions, in order to create design rules describing appropriate and inappropriate combinations of choices. One 
empirical way of discovering such correlations is to see whether successful system designs cluster in some parts of 
the space and are absent from others. 

A key part of die design фасе approach is to choose some dimensions that reflect requirements or evaluation 
criteria (function and/or performance), while other dimensions reflect structure (or other available design choices). 
Then, any correlations found between these dimensions can provide direct design guidance: they show which design 
choices are most likely to meet the functional requirements for a new system. For example, the hypothetical data in 
Figure 1-1 suggest that a message mechanism is more likely to provide fast response time than a rendezvous 
mechanism. (Of course, one would want more than just two data points before drawing this conclusion.) 

The dimensions that describe functional and performance requirements make up the functional design space, 
while those that describe structural choices make up the structural design space. These groupings can be regarded 
either as independent spaces or as subspaces of a single large design space. In the context of a stepwise ("waterfall") 
model of the software design process, the functional design space represents the results of the requirements analysis 
and gross functional design steps, while the structural design space represents the results of initial system 
decomposition. 

The dimensions of a design space are usually not continuous and need not possess any useful metric (distance 
measure). A dimension that represents a structural choice is likely to have a discrete set of possible values, which 
may or may not have any meaningful ordering. For example, methods for specifying user interface behavior include 
state transition diagrams, context-free grammars, menu trees, and many others. Each of these techniques has many 
small variations, so one of the key problems in constructing a design space is finding the most useful granularity of 
classification. Even when a dimension is in principle continuous (e.g., a performance number), one may choose to 
aggregate it into a few discrete values (e.g., "low," "medium," "high"). This is appropriate when such gross 
estimates provide as much information as one needs or can get, as is often true in the early stages of design. 

13 Related Work 

A seminal use of the design space concept is Bell and NewelTs taxonomy of computer hardware structures [Bell 
71]. They describe computers using dimensions such as function (e.g., numeric calculation or communication), 
instructions per second, memory size, and hardware-supported data types. A software-oriented example is Wegner's 
design space for object-oriented languages [Wegner 87]. Design-space-like schemes have also been proposed by 
workers in software reuse; for example, Prieto-Diaz and Freeman index a software library using sets of "terms" 
(keywords) grouped into "facets" [Prieto 87]. 

The domain covered by this report's design space is user interface software. Various researchers have 
investigated individual aspects of user interface software structures. Most prior work deals with control flow 
patterns [Hayes 85, Tanner 83] or classification of notations for user interface appearance and behavior [Green 
86, Myers 89]. Other workers have made proposals for standard module structures [Dance 87, Lantz 87]. Hartson 
and Hix survey much of the existing work [Hartson 89]. For the most part, however, the user interface research 
community has neglected internal structural issues in favor of work on selection and description of the external 
behavior of a user interface. Hence, the work reported here provides a more complete view of the space of user 
interface structural alternatives than any prior work, and for several of the previously investigated dimensions it 
offers new classifications that are more useful for making structural decisions. 
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2. A Design Space for User Interface Architectures 

The design space reported here, together with its associated rules, describes architectural alternatives for user 
interface software: systems whose main focus is on providing an interactive user interface for some software 
functions). The system studied need not provide the whole user interface. Thus the scope of the study included not 
only complete user interface management systems (UIMSs), but also graphics packages, user interface toolkits, 
window managers, and even standalone applications that have a large user interface component This scope is large 
enough to include a wide range of useful system structures, yet not so large as to be intractable. While another 
domain could have been chosen, user interfaces are a good choice because the field is in ferment, with little 
agreement on the best possible structures. Hence the results may be useful immediately, in addition to serving to 
illustrate the larger argument made above. 

The design space is too large to cover completely in this report Therefore only some representative dimensions 
and rules will be described. (For a more complete presentation of the space, see [Lane 90b].) The complete design 
space contains 25 functional dimensions, 6 of which are described here. Three to five alternatives are recognized in 
each of these dimensions. There are 19 structural dimensions (5 of which are described here), each offering two to 
seven alternatives. Figure 2-2 presents the dimensions discussed in this report 

2.1 A Basic Structural Model 
To describe structural alternatives, it is necessary to have some terminology that identifies components of a 

system. The terminology must be quite general, or it will be inapplicable to some structures. A useful scheme for 
user interface systems divides any complete system into three components, or groups of modules: 

1. An application-specific component This consists of code that is specific to one particular application 
program and is not intended to be reused in other applications. In particular, this component includes 
the functional core of the application. It may also include application-specific user interface code. 
(The term "code" should be read as including tables, grammars, and other non-procedural 
specifications, as well as conventional programming methods.) 

2. A shared user interface component This consists of code that is intended to support the user 
interface of multiple application programs. If the software system can accommodate different types of 
I/O devices, only code that is applicable to all device types is included here. 

3. A device-dependent component This consists of code that is specific to a particular I/O device class 
(and is not application-specific). 

In a simple system the second or third component might be empty: there might be no shared code other than 
device drivers, or the system might have no provision for supporting multiple device types (and hence no clear 
demarcation of device-specific code). 

The intermodule divisions that the design space considers are the division between application-specific code and 
shared user interface code on the one hand, and between device-specific code and shared user interface code on the 
other. These divisions are called the application interface and device interface respectively. Figure 2-1 illustrates 
the structural model 

There is some flexibility in dividing a real system into these three components. This apparent ambiguity is very 
useful, for one can analyze different levels of the system by adopting different labelings. For example, in the 
X Window System [Scheifler 86] one may analyze the window server's design by regarding everything outside the 
server as application specific, then dividing the server into shared user interface and device-dependent levels. To 
analyze an X toolkit package, it is more useful to label the toolkit as the shared code, regarding the server as a 
device-specific black box. 
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Figure 2-1: A Basic Structural Model for User Interface Software 

22 Sample Functional Dimensions 

The functional dimensions identify the requirements for a user interface system that most affect its structure. 
These dimensions fall into three groups: 

• External requirements* This group includes requirements of the particular applications, users, and I/O 
devices to be supported, as well as constraints imposed by the surrounding computer system. 

• Basic interactive behavior. This group includes the key decisions about user interface behavior that 
fundamentally influence internal structure. 

• Practical considerations. This group covers development cost considerations; primarily, the required 
degree of adaptability of the system. 

These dimensions are not intended to correspond to the earliest requirements that one might write for a system, but 
rather to identify the specifications that immediately precede the gross structural design phase. Thus, some design 
decisions have already been made in arriving at these choices. 

2.2.1 External Requirements 

External event handling is an example of a dimension reflecting an application-imposed external requirement. 
This dimension indicates whether the application program needs to respond to external events (defined as events not 
originating in the user interface), and if so, on what time scale. The design space recognizes three alternative 
choices: 

• No external events: the application is not influenced by external events, or checks for them only as 
part of executing specific user commands. For example, a mail program might check for new mail, but 
only when an explicit command to do so is given. In this case no support for external events is needed 
in the user interlace. 

• Process events while waiting for input: the application must handle external events, but response 
time requirements are not so stringent that it must interrupt processing of user commands. It is 
sufficient for the user interface to allow response to external events while waiting for input. Automatic 
reporting of mail arrival might be handled this way. 

• External events preempt user commands: external event servicing has sufficiently high priority that 
user command execution must be interrupted when an external event occurs. This requirement is 
common in real-time control systems. 

User customizability is an example of a user-imposed external requirement. The design space recognizes three 
levels of end user customizability of a user interface: 
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Functional Dimensions 

External event handling 
• No external events 
• Process events while waiting for input 
• External events preempt user commands 

User customizability 
• High 
• Medium 
• Low 

User interface adaptability across devices 
• None 
• Local behavior changes 
• Global behavior changes 
• Application semantics changes 

Computer system organization 
• Uniprocessing 
• Multiprocessing 
• Distributed processing 

Basic interface class 
• Menu selection 
• Form filling 
• Command language 
• Natural language 
• Direct manipulation 

Application portability across user interface styles 
• High 
• Medium 
• Low 

Structural Dimensions 

Application interface abstraction level 
• Monolithic program 
• Abstract device 
• Toolkit 
• Interaction manager with fixed data types 
• Interaction manager with extensible data types 
• Extensible interaction manager 

Abstract device variability 
• Ideal device 
• Parameterized device 
• Device with variable operations 
• Ad-hoc device 

Notation for user interface definition 
• Implicit in shared user interface code 
• Implicit in application code 
• External declarative notation 
• External procedural notation 
• Internal declarative notation 
• Internal procedural notation 

Basis of communication 
• Events 
• Pure state 
• State with hints 
• State plus events 

Control thread mechanism 
• None 
• Standard processes 
• Lightweight processes 
• Non-preemptive processes 
• Event handlers 
• Interrupt service routines 

Figure 2-2: The Sample Design Space Dimensions 
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• High: user can add new commands and redefine commands (e.g., via a macro language), as well as 
modify user interface details. 

• Medium: user can modify details of the user interface that do not affect semantics, for instance, change 
menu entry wording, window sizes, colors, etc. 

• Low: little or no user customizability is required. 

User interface adaptability across devices depends on the expected range of I/O devices that the user interlace 
system must support This dimension indicates the extent of change in user interface behavior that may be required 
when changing to a different set of I/O devices. 

• None: all aspects of behavior are the same across all supported devices. 

• Local behavior changes: only changes in small details of behavior occur across devices, for example, 
in the appearance of menus. 

• Global behavior changes: there are major changes in surface user interface behavior across devices, 
for example, a change in basic interface class (see below). 

• Application semantics changes: there are changes in underlying semantics of commands (e.g., 
continuous display of state versus display on command). 

Computer system organization is an example of a dimension describing the surrounding computer system. This 
dimension classifies the basic nature of the environment as follows: 

• Uniprocessing: only one application executes at a time. 
• Multiprocessing: multiple applications execute concurrently. 

• Distributed processing: environment is a computer network, with multiple CPUs and non-negligible 
communication costs. 

2.2 J Basic Interactive Behavior 

Bask interface class identifies the basic kind of interaction supported by the user interface system. (A general-
purpose system might support more than one of these classes.) Hie design space uses a classification proposed by 
Shneiderman [Shneiderman 86]: 

• Menu selection: based on repeated selection from groups of alternatives; at each step the alternatives 
are (or can be) displayed. 

• Form filling: based on entry (usually text entry) of values for a given set of variables. 

• Command language: based on an artificial, symbolic language; often allows extension through 
programming-language-like procedure definitions. 

• Natural language: based on (a subset of) a human language such as English. Resolution of ambiguous 
input is a key problem. 

• Direct manipulation: based on direct graphical representation and incremental manipulation of the 
program's data. 

It turns out that menu selection and form filling can be supported by similar system structures, but each of the other 
classes has unique requirements. 
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223 Practical Considerations 
Application portability across user interface styles is an example of a dimension defining the required degree 

of adaptability of a user interface system. This dimension specifies the degree to which application-specific code is 
insulated from user interface style changes. 

• High: applications should be portable across significantly different styles (e.g., command language 
versus menu-driven). 

• Medium: applications should be independent of minor stylistic variations (e.g., menu appearance). 
• Low: user interface variability is not a concern, or application changes are acceptable when modifying 

the user interface. 

2.3 Sample Structural Dimensions 
The structural dimensions represent the decisions determining the overall structure of a user interface system. 

These dimensions also fall into three major groups: 
• Division of functions and knowledge between modules. This group considers how system functions 

are divided into modules, the interfaces between modules, and the information contained within each 
module. 

• Representation issues. This group considers the data representations used within the system. We must 
consider both actual data, in the sense of values passing through the user interface, and meta-data that 
specifies the appearance and behavior of the user interface. Meta-data may exist explicitly in the 
system (for example, as a data structure describing the layout of a dialogue window), or only implicitly. 

• Control flow, communication, and synchronization issues. This group considers the dynamic 
behavior of the user interface code. 

23.1 Division of Functions and Knowledge Between Modules 
Application interface abstraction level is in many ways the key structural dimension. The design space 

identifies six general classes of application interface, which are most easily distinguished by the level of abstraction 
in communication:1 

• Monolithic program: there is no separation between application-specific and shared code, hence no 
such interface (and no device interface, either). This can be an appropriate solution in small, specialized 
systems where the application needs considerable control over user interface details and/or little 
processing power is available. (Video games are a typical example.) 

• Abstract device: the shared code is simply a device driver, presenting an abstract device for 
manipulation by the application. The operations provided have specific physical interpretations (e.g., 
"draw line," but not "present menu"). Most aspects of interactive behavior are under the control of the 
application, although some local interactions may be handled by the shared code (e.g., character 
echoing and backspace handling in a keyboard/display driver). In this category the application interface 
and device interface are the same. 

• Toolkit: the shared code provides a library of interaction techniques (e.g., menu or scroll bar handlers). 
The application is responsible for selecting appropriate toolkit elements and composing them into a 
complete interface; hence, the shared code can control only local aspects of user interface style, with 
global behavior remaining under application control. The interaction between application and shared 
code is in terms of specific interactive techniques (e.g., "obtain menu selection"). The application can 
bypass the toolkit, reaching down to an underlying abstract device level, if it requires an interaction 

1 Recognition of abstraction level as a key property in user interfaces goes back at least to Hayes et al [Hayes 85]. The classification 
is a practical one, but is based on the theoretical distinctions made by Hayes. 
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technique not provided by the toolkit In particular, conversions between specialized application data 
types and their device-oriented representations are done by the application, accessing the underlying 
abstract device directly 2 

• Interaction manager with fixed data types: the shared code controls both local and global interaction 
sequences and stylistic decisions. Its interaction with the application is expressed in terms of abstract 
information transfers, such as "get command" or "present result" (notice that no particular external 
representation is implied). These abstract transfers use a fixed set of standard data types (e.g., integers, 
strings); the application must express its input and output in terms of the standard data types. Hence 
some aspects of the conversion between application internal data formats and user-visible 
representations remain in the application code. 

• Interaction manager with extensible data types: similar to the previous category, except that the set 
of data types used for abstract communication can be extended. The application does so by specifying 
(in some notation) the input and output conversions required for the new data types. If properly used, 
this approach allows knowledge of the external representation to be separated from the main body of the 
application. 

• Extensible interaction manager: again, communication between the application and shared code is in 
terms of abstract information transfers. The interaction manager provides extensive opportunities for 
application-specific customization. This is accomplished by supplying code that augments or overrides 
selected internal operations of the interaction manager. (Most existing systems of this class are coded in 
an object-oriented language, and the language's inheritance mechanism is used to control 
customization.) Usually there is a significant body of application-specific code that customizes the 
interaction manager, this code is much more tightly coupled to the internal details of the interaction 
manager than is the case for clients of nonextensibie interaction managers. 

This classification turns out to be sufficient to predict most aspects of the application interface, including the 
division of user interface functions, the type and extent of application knowledge made available to the shared user 
interface code, and the kinds of data types used in communication. For instance, we have already suggested the 
division of local versus global control of interactive behavior that is typically found in each category. 

Abstract device variability is the key dimension describing the device interface. We view the device interface 
as defining an abstract device for the device-independent code to manipulate. The design space classifies abstract 
devices according to the degree of variability perceived by the device-independent code. 

• Ideal device: the provided operations and their results are well specified in terms of an "ideal" device; 
the real device is expected to approximate the ideal behavior fairly closely. An example is the 
PostScript imaging model, which ignores the limited resolution of real printers and displays [Adobe 85]. 
In this approach, all questions of device variability are hidden from software above the device driver 
level, so application portability is high. This approach is most useful where the real devices deviate 
only slightly from the ideal model, or at least not in ways that require rethinking of user interface 
behavior. 

• Parameterized device: a class of devices are covered, differing in specified parameters such as screen 
size, number of colors, number of mouse buttons, etc. The device-independent code can inquire about 
the parameter values for the particular device at hand, and adapt its behavior as necessary. Operations 
and their results are well specified, but depend on parameter values. An example is the X Windows 
graphics model, which exposes display resolution and color handling [Scheifler 86]. The advantage of 
this approach is that higher level code has both more knowledge of acceptable tradeoffs and more 
flexibility in changing its behavior than is possible for a device driver. The drawback is that device-
independent code may have to perform complex case analysis in order to handle the full range of 
supported devices. If this must be done in each application, the cost is high and there is a great risk that 
programmers will omit support for some devices. To reduce this temptation, it is best to design a 
parameterized model to have just a few well-defined levels of capability, so as to reduce the number of 
cases to be considered. 

86], notion that conversion between internal and external m e n t a t i o n s of data types is a key activity in user interfaces is due to Shaw [Shaw 
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• Device with variable operations: a well-defined set of device operations exists, but the device-
dependent code has considerable leeway in choosing how to implement the operations; device-
independent code is discouraged from being closely concerned with the exact external behavior. 
Results of operations are thus not well specified. Examples are GKS logical input devices [Rosenthal 
82] and the Scribe formatting model [Reid 80]. This approach works best when the device operations 
are chosen at a level of abstraction high enough to give the device driver considerable freedom of 
choice. Hence the device-independent code must be willing to give up much control of user interface 
details. This restriction means that direct manipulation (with its heavy dependence on semantically-
controlled feedback) is not well supported. 

• Ad-hoc device: in many real systems, the abstract device definition has developed in an ad-hoc 
fashion, and so it is not tightly specified; behavior varies from device to device. Applications therefore 
must confine themselves to a rather small set of device semantics if they wish to achieve portability, 
even though any particular implementation of the abstract device may provide many additional features. 
Alphanumeric terminals are an excellent example. While aesthetically displeasing, this approach has 
one redeeming benefit applications that do not care about portability are not hindered from exploiting 
the full capabilities of a particular real device. 

These categories lend themselves to different situations. For example, an abstract device with variable operations is 
useful when much of the system's "intelligence" is to be put into the device-specific layer but it is only appropriate 
for handling local changes in user interface behavior across devices. 

232 Representation Issues 
Notation for user interface definition is a representation dimension. It classifies the techniques used for 

defining user interface appearance and behavior. 
• Implicit in shared user interface code: information "wired into" shared code. For example, the visual 

appearance of a menu might be implicit in the menu routines supplied by a toolkit In systems where 
strong user interface conventions exist, this is a perfectly acceptable approach. 

• Implicit in application code: information buried in the application and not readily available to shared 
user interface code. This is most appropriate where the application is already tightly involved in the 
user interface, for example, in handling semantic feedback in direct manipulation systems. 

• External declarative notation: a non-procedural specification separate from the body of the 
application program, for example, a grammar or tabular specification. External declarative notations 
are particularly well suited for supporting user customization and for use by non-programming user 
interface experts. Graphical specification methods are an important special case. 

• External procedural notation: a procedural specification separate from the body of the application 
program; often cast in a specialized programming language. Procedural notations are more flexible than 
declarative ones, but are harder to use. User-accessible procedural mechanisms, such as macro 
definition capability or the programming language of EMACS-like editors [Borenstein 88], provide 
very powerful customization possibilities for sophisticated users. However, an external notation by 
definition has limited access to the state of the application program, which may restrict its capability. 

• Internal declarative notation: a non-procedural specification within the application program. This 
differs from an implicit representation in that it is available for use by the shared user interface code. 
Parameters supplied to shared user interface routines often amount to an internal declarative notation. 
An example is a list of menu entries provided to a toolkit menu routine. 

• Internal procedural notation: a procedural specification within the application program. This differs 
from an implicit representation in that it is available for use by the shared user interface code. A typical 
example is a status-inquiry or data transformation function that is provided for the user interface code to 
call. This is the most commonly used notation for customization of extensible interaction managers. It 
provides an efficient and flexible notation, but is not accessible to the end user, and so is useless for user 
customization. It is particularly useful for handling application-specific feedback in direct manipulation 
interfaces, since it has both adequate flexibility and efficient access to application semantics. 

Each of these categories offers a different tradeoff between power, runtime cost, ease of use, and ease of 
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modification. For example, declarative notation is the easiest to use (especially for non-programming user interface 
designers) but it has the least power, since it can only represent a predetermined range of possibilities. Typically, 
several notational techniques are used in a system, with different aspects of the user interface being controlled by 
different techniques. For example, the position and size of a screen button might be specified graphically, while its 
highlighting behavior is specified implicitly by the code of a toolkit routine. 

2-3.3 Control Flow, Communication, and Synchronization Issues 

Basis of communication is a communication dimension. This dimension classifies systems according to whether 
communication between modules depends upon shared state, events, or both. An event is a transfer of information 
occurring at a discrete time, for example via a procedure call or message. Communication through shared state 
variables is significantly different, because the recipient always has access to the current values and need not use 
information in the same order in which it is sent The classification is: 

• Events: there is no shared state; all communication relies on events. 

• Pure state: communication is strictly via shared state; the recipient must repeatedly inspect the state 
variables to detect changes. 

• State with hints: communication is via shared state, but the recipient is actively informed of changes 
via an event mechanism; hence polling of the state is not required. However, the recipient could ignore 
the events and reconstruct all necessary information from the shared state, so the events are efficiency 
hints rather than essential information. 

• State plus events: both shared state and events are used; the events are crucial because they provide 
information not available from state monitoring. 

State-based mechanisms are popular for dealing with incrementally updated displays. The hybrid state/event 
categories provide possibilities for performance optimization in return for their extra complexity. State-based 
communication requires access to shared storage, which may be impossible or unreasonably expensive in some 
system architectures. 

It is possible for different bases of communication to be used at the application and device interfaces, but this is 
rare. It is fairly common to have different bases of communication for input and output; hence the design space 
provides separate dimensions for input and output communication basis. 

Control thread mechanism describes the method, if any, used to support multiple logical threads of control. 
Multiple threads are extremely useful in user interlace systems, for example in handling multiple input devices or 
for decoupling application processing from user interface logic. Often, full-fledged processes are too difficult to 
implement or impose too much overhead, so many partial implementations are used. This dimension classifies the 
possibilities as follows: 

• None: only a single control thread is used. 

• Standard processes: independently scheduled entities with interprocess protection (typically, separate 
address spaces). These provide security against other processes, but interprocess communication is 
relatively expensive. For a user interface system, security may or may not be a concern, while 
communication costs are almost always a major concern. In network environments, standard processes 
are usually the only kind that can be executed on different machines. 

• Lightweight processes: independently scheduled entities within a shared address space. These are only 
suitable for mutually trusting processes due to lack of security, but that is often a nonissue for user 
interlace systems. The benefit is substantially reduced cost of communication, especially for use of 
shared variables. Few operating systems provide lightweight processes, and building one's own 
lightweight process mechanism can be difficult 

• Non-preemptive processes: processes without preemptive scheduling (must explicitly yield control), 
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usually in a shared address space. These are relatively simple to implement Guaranteeing short 
response time is difficult and impacts the entire system: long computations must be broken up 
explicitly. 

• Event handlers: pseudo-processes which are invoked via a series of subroutine calls; each such call 
must return before another event handler process can be executed. Hence control flow is restricted, for 
example, waiting for another process cannot occur inside a subroutine called by an event handler. 
Again, response time constraints require system-wide attention. The main advantage of this method is 
that it requires virtually no support mechanism. 

• Interrupt service routines: hardware-level event handling. A series of interrupt service routine 
executions form a control thread, but one with restricted control flow and communication abilities. The 
control flow restrictions are comparable to event handlers; but unlike event handlers, preemptive 
scheduling is available. 

Event handlers are easily implemented within a user interface system; non-preemptive processes are harder but can 
still be implemented without operating system support The other mechanisms usually must be provided by the 
operating system. Some form of preemptive scheduling is often desirable to reduce timing dependencies between 
threads. 
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3- Design Rules for User Interface Architecture 

There are very few hard-and-fast rules at this level of design. Most connections between design dimensions are 
better described by saying that a given choice along one dimension favors or disfavors particular choices along 
another dimension; the strength of this correlation varies from case to case. The designer's task is to consider all 
such correlations and to select the alternative favored by the preponderance of the evidence. 

Therefore, a natural notation for a design rule is a positive or negative weight associated with particular 
combinations of alternatives from two (or more) dimensions. A given design can be evaluated by summing the 
weights of all applicable rules. The "best" design is then the one with the highest score. The author prepared a 
mechanically evaluatable set of design rules of this form and an evaluation program that would rank the structural 
alternatives when given a set of values for the functional dimensions. (Section 5 describes an experimental test of 
this rule set) The rules can also be viewed less formally as guidelines for human designers. 

It is useful to distinguish two categories of rules: those linking functional to structural dimensions, and those 
interconnecting structural dimensions. The first group allows system requirements to drive a structural design, while 
the second group ensures the internal consistency of the design.3 This second group complicates the task of finding 
the design with the highest scene, since choices in different dimensions affect each other. The author resorted to 
combinatorial searching to locate the best designs; better algorithms may be found in the future. A possible source 
of better methods is "neural network" techniques, which seem to have some similarity to this problem. 

The mechanical design rule set contains 622 rules; these rules are written in a very primitive notation and can be 
reduced to about 170 rules at a more reasonable level of abstraction. The very abbreviated descriptions below 
account for about ten percent of the formal rules. 
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3.1 Sample Rules 
The earlier descriptions of structural alternatives already mentioned some of the conditions under which one 

alternative may be preferred to another. This section presents more formally some of the specific design rules that 
connect the sample dimensions. Each of the sample rules is given in prose form, together with a brief justification. 

• If external event handling requires preemption of user commands, then a preemptive control thread 
mechanism (standard processes, lightweight processes, or interrupt service routines) is strongly favored. 
Without such a mechanism, very severe constraints must be placed on all user interface and application 
processing in order to guarantee adequate response time. 

• High user customizability requirements favor external notations for user interface behavior. Implicit 
and internal notations are usually more difficult to access and more closely coupled to application logic 
than external notations. 

• Stronger requirements for user interface adaptability across devices favor higher levels of application 
interface abstraction, so as to decouple the application from user interface details that may change 
across devices. If the requirement is for global behavior or application semantics changes, then 
parameterized abstract devices are also favored. Such changes generally have to be implemented in 
shared user interface code or application code, rather than in the device driver, so information about the 
device at hand cannot be hidden from the higher levels, as the other classes of abstract device try to do. 

• A distributed system organization favors event-based communication. State-based communication 
requires shared memory or some equivalent, which is often expensive to access in such an environment 

• The basic user interface class affects the best choice of application interface abstraction level. For 
example, menu selection and form filling user interfaces are well served by toolkits and nonextensible 
interaction managers. But experience has shown that nonextensible interaction managers are not 
adequate for direct manipulation, because they don't handle semantic feedback well. Extensible 
interaction managers and toolkits are the favored alternatives for direct manipulation. 

• A high requirement for application portability across user interface styles favors the higher levels of 
application interface abstraction. Less obviously, it favors event-based or pure state-based 
communication over the hybrid forms (state with hints or state plus events). A hybrid communication 
protocol is normally tuned to particular communication patterns, which may change when user interface 
style changes. 

The preceding rules all relate functional to structural dimensions. Following is an example of the rules 
interconnecting structural dimensions. 

• The choice of application interface abstraction level influences the choice of notation for user interface 
behavior. In monolithic programs and abstract-device application interfaces, implicit representation is 
usually sufficient In toolkit systems, implicit and internal declarative notations are found (parameters 
to toolkit routines being of the latter class). Interaction managers of all types use external and/or 
internal declarative notations. Extensible interaction managers rely heavily on procedural notations, 
particularly internal procedural notation, since customization is often done by supplying procedures. 
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4« Applying the Design Space: An Example 

To illustrate these ideas, this section presents a concrete example. The sample system is the cT programming 
language and environment [Sherwood 88]. cT is designed for the creation of high-quality, interactive educational 
applications, for example, physics simulations or instruction in musical notation. It must be usable by authors who 
are experts in their particular subject matter, but who have only limited programming experience. cT 
implementations exist on a variety of personal computers and workstations, and portability of application programs 
across these platforms is an important goal. 

cT*s functional requirements can be described in the terms of the design space. For the sample dimensions 
previously cited: 

• There is no requirement for external event handling; it's not needed in the target class of applications. 
• Little or no end user customizability is needed. 

• User interface adaptability across devices may require local behavior changes, for instance to fill areas 
with different patterns when color is not available. The range of supported platforms is not so wide that 
global behavior changes might be necessary. 

• Computer system organization may be uniprocessing or multiprocessing. cT does not make special 
provisions for distributed systems. 

• Basic interface class is usually direct manipulation, but menu selection is also used. Each application 
determines its basic interactive behavior. 

• Medium portability of applications across user interface styles is required. In such things as menu 
appearance, cT follows the conventions of the host platform, and the application should be independent 
of such details. 

To describe cT structurally, we classify the cT programming system itself as the shared user interface code, 
instructional programs written in cT as application-specific code, and the underlying platform (including graphics 
packages, etc.) as device-specific code. (Notice that this division is already implicit in the functional classification 
above.) 

The architecture of cT can then be classified in the sample structural dimensions as follows: 
• The application interface abstraction level falls in the toolkit class. Toolkit elements are provided for 

common constructs such as menus or scrolling text boxes. cTs toolbox is particularly strong in the 
analysis of text input (recognition of misspelled words, equivalent forms of algebraic expressions, etc). 
For other interactive behavior the application resorts to manipulation of the underlying abstract device. 

• The device interface uses a parameterized abstract device. Decisions such as how to scale displays to fit 
the available hardware are handled largely by the shared user interface code (but the application can set 
policy, such as whether to preserve aspect ratio). 

• User interface notation is mostly implicit; some aspects are implicit in the shared code while others are 
implicit in the application. Limited use is made of internal procedural notation, and there are some 
toolbox parameters that qualify as internal declarative notation. 

• Communication is based on events; no shared state variables are used. 

• cT uses basically a single thread of execution. An exception occurs in the development environment: 
while editing a cT program, incremental recompilation is done while waiting for user input The 
"background" control thread used for this purpose is implemented with an event handler mechanism. 
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The mechanical rule set is largely able to replicate these design decisions. For example, the rules recommend 
implicit and internal-procedural user interface notations, because the requirements for user customizability and 
application portability are not high enough to justify the extra cost of external or declarative notations.4 The rules 
recommend strict single-thread control flow, so they disagree on the last of the sample dimensions. This is 
unsurprising since the decision to provide background recompilation is outside the scope of the present design space. 

4 0ther functional dimension!, not discussed in this report, also enter into this conclusion. 
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5. A Validation Experiment 

To test the validity of the design space and rules, the rules' recommendations were compared to the actual designs 
of some user interface systems. This experiment used six systems that had not been studied in the course of 
preparing the design space and rules. The test was carried out as follows: 

• A designer of each system was asked to describe his system in the terms of the design space; that is, to 
choose the most descriptive category in each functional and structural dimension. 

• Each system's functional description was fed into a program that searched for the structural alternatives 
that were most highly rated by the rule set 

• The resulting structural recommendations were compared to the actual system descriptions. 
The six systems covered a fairly wide range of user interface requirements. Among them were two radically 
different UIMSs, an integrated programming environment for teaching novice programmers, the cT system 
described above, a system for automatic creation of graphical database displays, and a flight simulator control 
program. Most of the systems have seen extensive use, so the designers' functional descriptions generally reflect 
actual experience rather than goals or guesses. 

The test showed a moderate to substantial degree of agreement between the rules' predictions and the actual 
system designs, according to the standard interpretation of the kappa statistic [Landis 77]. Most of the discrepancies 
could be classified either as legitimate differences of design opinion, or as small errors or oversights in the rules that 
had not come to light in prior test cases. (An example of such an error is that the rules treat all varieties of 
state-based communication as about equally expensive in processing power, whereas actually the forms providing 
hints are more efficient than pure-state communication. To maintain experimental rigor, the rules were not modified 
to correct such errors after the formal experiment began.) 

The only area in which the rules showed little correlation to the actual designs was that of representational 
choices: the notation for user interface definition dimension described previously, and one other dimension that 
provides a similar classification for representation of application-specific semantic information. It may be that 
corrections and additions to the rules would improve this result However, both of these design choices are heavily 
influenced by considerations of design-time methods and procedure. Since the present design space deals mainly 
with issues of run-time structure, it may well be that the space provides insufficient information to make correct 
choices in these two dimensions. In that case, the space would need to be extended to cover questions of design 
procedure before these dimensions could be handled reliably. 

These are remarkably good results when one considers the limited amount of information in the rules (Section 3.1 
alone contains about ten percent of the full set). This suggests that the design space provides considerable leverage 
for the rules; that is, that the classifications made by the design space make it easier to select the right type of design. 

Furthermore, these rules were developed and tuned to follow the author's own judgments and those of the 
designers whose systems he studied while preparing the design space. This experiment compared the rules to the 
judgments of a completely separate group of designers. The extent of correlation is therefore especially striking: it 
depends not only on the rules successfully representing the knowledge on which they were based, but on agreement 
between two unrelated groups of designers. Therefore, this experiment shows that: 

• There is a significant body of agreement among expert user interface system designers about structural choices. 

• The design space and rules capture (at least part of) that agreement 

Though the particular set of rules tested in this experiment possess numerous faults, these results strongly suggest 
that the overall approach is valid and powerful. 

This experiment is described in more detail in [Lane 90a]. 
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6. How the Design Space Was Prepared 

The design space and rules described here were based on an extensive survey of existing user interface systems. 
The фасе was formed by searching for classifications that brought systems with similar properties together. The 
rules were then prepared on the basis of observed correlations. This process can be compared to development of 
biological taxonomies through natural history: the biologist also surveys and classifies existing forms, then lodes for 
explanatory theories. 

An obvious limitation of this approach is that it may not result in much insight about new, never-before-seen 
structures (although the design space can call attention to untried combinations of known alternatives). However, 
for the purpose of codifying known practice this is not a major problem. 

A more serious objection is that important dimensions may be overlooked. It seems very difficult to demonstrate 
that a given design space covers everything that may be of interest at a particular level of abstraction. (Obviously a 
practical design фасе cannot cover all possible ways of looking at a software system, so some such restriction is 
necessary.) The experimental results suggest that functional (and perhaps also structural) dimensions associated 
with design methods may need to be added to the present фасе, so it is clear that the risk is real. 

In the other direction, experience with this space suggests that getting rid of extraneous dimensions is just as 
important and difficult For example, of the twenty-five functional dimensions originally defined for the space, it 
turns out that only about ten or twelve have significant impact; the other dozen seem to have considerably less 
influence, and perhaps should have been omitted entirely. In the structural dimensions, it proved possible to omit 
many design choices because they turned out to be closely correlated with choices that were retained. For example, 
the classification of application interface abstraction level was sufficient to predict many properties of that interface, 
such as the nature of data types exchanged across it Hence, those properties did not need to be represented by 
separate dimensions. 

At present refinement through practical use seems the only way to remove such bugs from a design space. It may 
be that when more experience has been gained with software design spaces, patterns will emerge that will lead to a 
more theoretical, rigorous way of creating spaces. A thought-provoking observation about the present space is that 
the "top ten" functional dimensions just alluded to show a strong bias towards measures of system flexibility. Of the 
example dimensions in Section 22 (all drawn from the top ten), user customizability, user interface adaptability 
across devices, and application portability across user interface styles each measure a different aspect of flexibility. 
Requirements of this kind turn out to substantially outweigh any specific system properties (such as the nature or 
speed of I/O devices). Perhaps this is an artifact of the methodology, or a unique characteristic of user interfaces; 
but perhaps flexibility will some day be recognized as a fundamental determinant of many kinds of software 
structures. 
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7. Summary 

This work attacks the problem of organizing software design knowledge to create routine design methods. 
Advances in this area promise not only to improve the basic process of software design, but to simplify a key task of 
software maintenance (namely understanding another person's design) and to provide a way of organizing the 
training of software engineers. 

The underlying model of the design process is that one works from system requirements towards a completed 
design in several steps, or levels of abstraction. The particular design step considered here is the transition from 
high-level functional specifications to a gross system organization or architecture. We create a design space that 
describes the key functional specifications and the key structural choices to be made. Within this space, we 
formulate design rules that capture practical or theoretical knowledge about suitable choices for given requirements. 

Since we view this technique as an engineering aid, the design rules need not be perfect to be useful. An informal 
set of rules (perhaps better called guidelines) can be useful simply by helping the designer to reject inferior choices 
quickly; this leaves more time available to consider and choose among the reasonable alternatives. In fact, even 
without rules the design space can be useful: it serves as a compact summary of different design approaches, and so 
can help the designer to avoid overlooking a good solution. Similarly, the functional side of the space reminds the 
designer of crucial considerations. 

In the longer run, a reliable set of such design rules could serve as the basis for an automatic design assistant, or 
even for fully automatic system construction. The rule set experimented with here is a long way from that point, but 
seems already usable as informal guidelines of the kind just described. 

The present work has investigated only one domain of software design, namely the architecture of user interface 
systems. This was an essential limitation in order to create a design space of manageable size. The author hopes 
that other researchers will undertake the task of building design spaces and rules for other domains—both other 
kinds of systems, and other levels of abstraction in the design process. Aside from being useful in their own right, 
such studies will show whether or not this approach really is a general-purpose method for organizing software 
engineering knowledge. Eventually, the combination of such studies may lead to the discovery of general principles 
about software design; for example, some kinds of design dimensions may be found to be universal. 
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