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Abstract 

The architecture of a user interface software system can be described in terms of a fairly small number of key 
functional and structural choices. This report presents a "design space" that identifies these key choices and 
classifies the alternatives available for each choice. The design space is a useful framework for organizing and 
applying design knowledge. The report presents a set of design rules expressed in the terms of the design space. 
These rules can help a software designer to make good structural choices based on the functional requirements for a 
user interface system. Extension of this work might eventually provide automated assistance for structural design. 
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1. Introduction 

Software architecture is the study of the large-scale structure and performance of software systems [Shaw 89]. 
Important aspects of a system's architecture include the division of functions among system modules, the means of 
communication between modules, and the representation of shared information. This report describes the 
architecture of user interface systems, using a design space that identifies the key architectural choices and classifies 
the available alternatives. The space provides a framework for design rules that can assist a designer in choosing an 
architecture that is appropriate for the functional requirements of a new system. The design space is useful in its 
own right as a shared vocabulary for describing and understanding systems. 

This report is a summary of results from the author's thesis [Lane 90a]. It concentrates on presenting those results 
that are of interest to user interface system builders. A companion report argues that design spaces and rules may be 
a widely applicable means of expressing software engineering knowledge [Lane 90b]. 

1.1 Rationale 

The established fields of engineering have long distinguished between routine and innovative design methods. 
Routine design uses standardized methods to solve problems similar to those that have been solved before. This 
process is not expected to yield the best possible design, but rather to yield a design that meets all the stated 
requirements with minimum design effort In contrast, innovative design methods rely less on prior practice than on 
raw invention or derivation from abstract principles. Innovative designs can solve new types of problems or 
produce solutions especially well-tuned to specific requirements, but at a high design cost Moreover, innovative 
design is more likely to fail to produce a solution than routine design (where a routine method is applicable). 
Engineering handbooks (e.g., [Perry 84]) exist primarily to support routine design. A good handbook arms its user 
with a number of standard design approaches and with knowledge of their strengths and limitations. 

Routine design methods have benefits beyond reducing initial design cost A standardized, commonly known 
design method reduces the effort needed to understand another person's design; hence, maintenance costs are also 
reduced. More fundamentally, standardized methods provide a context for the creation and application of 
knowledge; this is why a standardized method is usually better understood and more reliable than an ad hoc one. 
For example, the recognition and use of standard control flow patterns (conditionals, iteration, and so forth) made it 
possible for researchers to discover the key properties of those patterns (e.g., invariant and termination conditions of 
loops). Programmers now routinely use this knowledge to produce better-quality code than was possible without it. 

At present, routine design is not well practiced by software engineers. Some designers tend to invent every 
system from scratch, while others tend to reuse a familiar design regardless of its suitability. Both errors arise from 
lack of a set of standardized methods. Handbook-like texts are now widely available for selection of algorithms and 
data structures (e.g., [Knuth 73, Sedgewick 88]), but such handbooks do not yet exist for higher levels of software 
design. The work reported here is a start toward developing a routine practice of software system architecture, 
within the limited domain of user interface systems. 

The systems covered by this study are those whose main focus is on providing an interactive user interface for 
some software function(s). This includes user interface management systems (UIMSs), graphics packages, user 
interface toolkits, window managers, and even stand-alone applications that have a large user interface component. 
This range is large enough that no single design can cover all cases; hence, we must consider how to choose among 
alternatives. At the same time, the range is not too large to allow recognition of common patterns. Future work may 
make it possible to construct useful design spaces for larger classes of software systems. 
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1.2 The Notion of a Design Space 
The central concept in this report is that of a multi-dimensional design space that classifies system architectures. 

Each dimension of a design space describes variation in one system characteristic or design choice. Values along a 
dimension correspond to alternative requirements or design choices. For example, required response time could be a 
dimension; so could the means of interprocess synchronization (e.g., messages or semaphores). A specific system 
design corresponds to a point in the design space, identified by the dimensional values that correspond to its 
characteristics and structure. Figure 1-1 illustrates a tiny design space. 

• System A 

• System B 

Messages Semaphores Monitors Rendezvous Other None 

Interprocess synchronization mechanism 

Figure 1-1: A Simple Design Space 

A design dimension is not necessarily a continuous scale; in most cases the space considers only a few discrete 
alternatives. For example, methods for specifying user interface behavior include state transition diagrams, context-
free grammars, menu trees, and many others. Each of these techniques has many small variations, so one of the key 
problems in constructing a design space is finding the most useful granularity of classification. Even when a 
dimension is in principle continuous, one may choose to aggregate it into a few discrete values (e.g., ttlow,n 

"medium," "high"). This is appropriate when such gross estimates provide as much information as one needs (or can 
get) in the early stages of design. 

Another way in which a design space differs from geometric intuition is that the dimensions may not be 
independent In fact it is important to discover correlations between the dimensions in order to create design rules 
describing appropriate and inappropriate combinations of choices. One empirical way of discovering such 
correlations is to see whether successful system designs cluster in some parts of the space and are absent from 
others. 

A crucial part of this approach is to choose some dimensions that reflect requirements or evaluation criteria 
(function and/or performance), as well as other dimensions that reflect structure (or other available design choices). 
Then, the observed correlations and resulting design rules can provide direct design guidance: they show which 
design choices are most likely to meet the functional requirements for a new system. 
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13 Related Work 

The concept of a design space is far from new. A seminal use is Bell and NewelTs taxonomy of computer 
hardware structures [Bell 711. They describe computers using dimensions such as function (e.g., numeric 
calculation or communication), instructions per second, memory size, and hardware-supported data types. A 
software-oriented example is Wegner's design space for object-oriented languages [Wegner 87]. 

The domain covered by this report's design space is user interface software. Various researchers have 
investigated individual aspects of user interface software structures. Most prior work deals with control flow 
patterns [Hayes 85, Tanner 83] or classification of notations for user interface appearance and behavior [Green 
86, Myers 89]. Other workers have made proposals for standard module structures [Dance 87, Lantz 87]. Hartson 
and Hix survey much of the existing work [Hartson 89]. For the most part, however, the user interface research 
community has neglected internal structural issues in favor of work on selection and description of the external 
behavior of a user interface. Hence the work reported here provides a more complete view of the space of user 
interface structural alternatives than any prior work and, for several of the previously investigated dimensions, it 
offers new classifications that are more useful for making structural decisions. 
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2. An Overview of the Design Space 

This section introduces the design space by describing a dozen of its dimensions. The complete space includes 
nearly fifty dimensions, many of which are fairly obvious to anyone familiar with user interface software. To avoid 
bogging down in details, we will consider only the more interesting dimensions. For a complete description of the 
space, see Appendix I. 

2.1 A Bade Structural Model 

To describe structural alternatives, it is necessary to have some terminology that identifies components of a 
system. The terminology must be quite general, or it will be inapplicable to some structures. A useful scheme for 
user interface systems divides any complete system into three components, or groups of modules: 

1. An application-specific component: Code that is specific to one particular application program and is 
not intended to be reused in other applications. In particular, this component includes the functional 
core of the application. It may also include application-specific user interface code. (The term "code" 
should be read as including tables, grammars, and other non-procedural specifications, as well as 
conventional programming methods.) 

2. A shared user interface component Code that is intended to support the user interface of multiple 
application programs. If the software system can accommodate different types of I/O devices, only 
code that is applicable to all device types is included here. 

3. A device-dependent component: Code that is specific to a particular I/O device class (and is not 
application-specific). 

In a simple system, the second or third component might be empty: there might be no shared code other than 
device drivers, or the system might have no provision for supporting multiple device types (and hence no clear 
demarcation of device-specific code). 
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Device interface Application interface 
Figure 2-1: A Basic Structural Model for User Interface Software 

The intermodule divisions that the design space considers are the division between application-specific code and 
shared user interface code on the one hand, and between device-specific code and shared user interface code on the 
other. These divisions are called the application interface and device interface respectively. Figure 2-1 illustrates 
the structural model. 

There is some flexibility in dividing a real system into these three components. This apparent ambiguity is very 
useful, for one can analyze different levels of the system by adopting different labelings. For example, in the 
X Window System [Scheifler 86], one may analyze the window server's design by regarding everything outside the 
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server as application specific, then dividing the server into shared user interface and device-dependent levels. To 
analyze an X toolkit package, it is more useful to label the toolkit as the shared code, while regarding the server as a 
device-specific black box. 

22 Functional Design Dimensions 

The functional dimensions identify the user interface system requirements that most affect the system's structure. 
These dimensions are not intended to correspond to the earliest requirements that one might write for a system, but 
rather to identify the specifications that immediately precede the gross structural design phase. Thus, some design 
decisions have already been made in arriving at these choices. 

The first example of a functional dimension is command execution time. This dimension indicates how long the 
application program may take to process a command, compared with the reaction time of a human user. Useful 
classifications are: 

• Short maximum time: All commands can be executed in a short time, say a few tenths of a second. 

• Intermediate maximum, short average: Most commands are executed in a short time, but some may 
take a bit longer, up to a couple of seconds. 

• Long maximum time: Some or all commands may take a long time to execute so that the user will 
have a strong perception of waiting. 

As an example of the importance of command execution time, a system in the first category can probably dispense 
with handling asynchronous input (i.e., no type-ahead or command cancellation features). This is less likely to be 
appropriate when long-running commands are present 

The second example functional dimension is external event handling: does the application program need to 
respond to external events, that is, events not originating in the user interface? If so, on what time scale? 

• No external events: The application is uninfluenced by external events, or checks for them only as part 
of executing specific user commands. For example, a mail program might check for new mail, but only 
when an explicit command to do so is given. In this case, no support for external events is needed in the 
user interface. 

• Process events while waiting for input: The application must handle external events, but response 
time requirements are not so stringent that it must interrupt processing of user commands. It is 
sufficient for the user interface to allow response to external events while waiting for input. 

• External events preempt user commands: External event servicing has sufficiently high priority that 
user command execution must be interrupted when an external event occurs. 

Like the previous dimension, external event handling has obvious implications for control flow within the user 
interface and application. 

The third example of a functional dimension is user interface adaptability across devices. This dimension 
measures how much change in user interface behavior may be required when changing to a different set of I/O 
devices: 

• None: All aspects of behavior are the same across all supported devices. (This includes the case that 
only one set of I/O devices is supported.) 

• Local behavior changes: Only changes in small details of behavior across devices; for example, the 
appearance of menus. 

• Global behavior changes: Major changes in surface user interface behavior; for example, a change 
between menu-driven and command-language interface types. 

• Application semantics changes: Changes in underlying semantics of commands (e.g., continuous 
display of state versus display on command). 
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The final examples are a complementary pair of dimensions. Application portability across interaction styles 
specifies the degree of portability across interaction styles required for applications that will use the user interface 
software: 

• High: Applications should be portable across significantly different styles (e.g., command language 
versus menu-driven). 

• Medium: Applications should be independent of minor stylistic variations (e.g., menu appearance). 

• Low: User interface variability is not a concern, or application changes are acceptable when modifying 
the user interface. 

User interface system adaptability across interaction styles specifies how adaptable to different interaction styles 
the shared user interface software should be: 

• High: Adaptable to a wide range of interface styles. 

• Medium: Limited adaptability. 

• Low: Imposes a specific interface style. 
Since interface behavior must be specified somewhere, there is a tradeoff between application and shared user 
interface flexibility: either the shared software imposes a stylistic decision, or the application makes the decision and 
hence becomes less portable. This dilemma can be alleviated by wise use of default choices, but in general, high 
requirements for both of these dimensions should be viewed with suspicion. In the other direction, low requirements 
for both dimensions indicate little flexibility in user interface behavior, which is perfectly appropriate for some 
systems (for example, if strong user interface conventions exist). 
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2.2.1 The Most Important Functional Dimensions 

It is reasonable to expect that some functional dimensions have more influence on structure than others, but it is 
difficult to guess which ones have the greatest impact Some insight can be gained from the author's experiments 
with automated design rules (see Section 4): we can rank the functional dimensions according to the total weight 
given to each in the automated rale set (Those rules did not fully reproduce the decisions of human experts, so this 
ranking may need to be modified when better data is available.) On this basis, the five functional dimensions with 
most influence on the structural dimensions are: 

• User interface system adaptability across devices 

• Application portability across devices 

• Application portability across interaction styles 

• Basic interface class 

• System organization 

The next five dimensions are: 

• Available processing power 

• I/O device class breadth 

• User interface system adaptability across interaction styles 

• User customizability 

• External event handling 

The remaining fifteen functional dimensions (listed in Appendix I) have less influence on structure. 

The most striking feature of this ranking is the importance of dimensions having to do with flexibility. Evidently 
the nature and degree of adaptability required of the system are by far the most important determinants of an 
appropriate structure. It is an open question whether this property is unique to user interface system structures, or is 
true for other kinds of software as well. 
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23 Structural Design Dimensions 

This section presents some important structural dimensions: the fundamental decisions about system structure. 

Application interface abstraction level is in many ways the key structural dimension. The design space 
identifies six general classes of application interface, which are most easily distinguished by the level of abstraction 
in communication:1 

• Monolithic program: There is no separation between application-specific and shared code, hence no 
application interface (and no device interface, either). This can be an appropriate solution in small, 
specialized systems where the application needs considerable control over user interface details and/or 
little processing power is available. (Video games are a typical example.) 

• Abstract device: The shared code is simply a device driver, presenting an abstract device for 
manipulation by the application. The operations provided have specific physical interpretations (e.g.. 
"draw line," but not "present menu"). Most aspects of interactive behavior are under the control of the 
application, although some local interactions may be handled by the shared code (e.g., character 
echoing and backspace handling in a keyboard/display driver). In this category, the application 
interface and device interface are the same. 

• Toolkit: The shared code provides a library of interaction techniques (e.g., menu or scroll bar 
handlers). The application is responsible for selecting appropriate toolkit elements and composing them 
into a complete interface; hence the shared code can control only local aspects of user interface style, 
with global behavior remaining under application control. The interaction between application and 
shared code is in terms of specific interactive techniques (e.g., "obtain menu selection"). The 
application can bypass the toolkit, reaching down to an underlying abstract device level, if it requires an 
interaction technique not provided by the toolkit In particular, conversions between specialized 
application data types and their device-oriented representations are done by the application, accessing 
the underlying abstract device directly.2 

• Interaction manager with fixed data types: The shared code controls both local and global 
interaction sequences and stylistic decisions. Its interaction with the application is expressed in terms of 
abstract information transfers, such as "get command" or "present result" (notice that no particular 
external representation is implied). These abstract transfers use a fixed set of standard data types (e.g., 
integers, strings); the application must express its input and output in terms of the standard data types. 
Hence some aspects of the conversion between application internal data formats and user-visible 
representations remain in the application code. 

• Interaction manager with extensible data types: As above, but the set of data types used for abstract 
communication can be extended. The application does so by specifying (in some notation) the input 
and output conversions required for the new data types. If properly used, this approach allows 
knowledge of the external representation to be separated from the main body of the application. 

• Extensible interaction manager Communication between the application and shared code is again in 
terms of abstract information transfers. The interaction manager provides extensive opportunities for 
application-specific customization. This is accomplished by supplying code that augments or overrides 
selected internal operations of the interaction manager. (Most existing systems of this class are coded in 
an object-oriental language, and the language's inheritance mechanism is used to control 
customization.) Usually a significant body of application-specific code customizes the interaction 
manager; this code is much more tightly coupled to the internal details of the interaction manager than 
is the case with clients of nonextensible interaction managers. 

This classification turns out to be sufficient to predict most aspects of the application interface, including the 
division of user interface functions, the type and extent of application knowledge made available to the shared user 

1 Recognition of abstraction level as a key property in user interfaces goes back at least to Hayes et al [Hayes 85]. The classification used here 
is a practical one, but it is based on the theoretical distinctions made by Hayes. 

^ e notion that conversion between internal and external representations of data types is a key activity in user interfaces is due to Shaw [Shaw 
86]. 
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interface code, and the kinds of data types used in communication. For instance, we have already suggested the 
division of local versus global control of interactive behavior that is typically found in each category. 

Abstract device variability is the key dimension describing the device interface. We view the device interface 
as defining an abstract device for the device-independent code to manipulate. The design space classifies abstract 
devices according to the degree of variability perceived by the device-independent code: 

• Ideal device: The provided operations and their results are well specified in terms of an "ideal" device; 
the real device is expected to approximate the ideal behavior fairly closely. (An example is the 
PostScript imaging model, which ignores the limited resolution of real printers and displays [Adobe 
85].) In this approach, all questions of device variability are hidden from software above the device 
driver level, so application portability is high. This approach is most useful where the real devices 
deviate only slightly from the ideal model, or at least not in ways that require rethinking of user 
interface behavior. 

• Parameterized device: A class of devices is covered, differing in specified parameters such as screen 
size, number of colors, number of mouse buttons, etc. The device-independent code can inquire about 
the parameter values for the particular device at hand, and adapt its behavior as necessary. Operations 
and their results are well specified, but depend on parameter values. (An example is the X Windows 
graphics model, which exposes display resolution and color handling [Scheifler 86].) The advantage of 
this approach is that higher level code has both more knowledge of acceptable tradeoffs and more 
flexibility in changing its behavior than is possible for a device driver. The drawback is that device-
independent code may have to perform complex case analysis in order to handle the full range of 
supported devices. If this must be done in each application, the cost is high and there is a great risk that 
programmers will omit support for some devices. To reduce this temptation, it is best to design a 
parameterized model to have just a few well-defined levels of capability, so as to reduce the number of 
cases to be considered. 

• Device with variable operations: A well-defined set of device operations exists, but the device-
dependent code has considerable leeway in choosing how to implement the operations; device-
independent code is discouraged from being closely concerned with the exact external behavior. 
Results of operations are thus not well specified. (For example, GKS logical input devices [Rosenthal 
82] and the Scribe formatting model [Reid 80].) This approach works best when the device operations 
are chosen at a level of abstraction high enough to give the device driver considerable freedom of 
choice. Hence the device-independent code must be willing to give up much control of user interface 
details. This restriction means that direct manipulation (with its heavy dependence on semantically-
controlled feedback) is not well supported. 

• Ad-hoc device: In many real systems, the abstract device definition has developed in an ad-hoc 
fashion, and so it is not tightly specified; behavior varies from device to device. Applications therefore 
must confine themselves to a rather small set of device semantics if they wish to achieve portability, 
even though any particular implementation of the abstract device may provide many additional features. 
(Alphanumeric terminals are an excellent example.) While aesthetically displeasing, this approach has 
one redeeming benefit applications that do not care about portability are not hindered from exploiting 
the full capabilities of a particular real device. 

These categories lend themselves to different situations. For example, abstract devices with variable operations are 
useful when much of the system's "intelligence" is to be put into the device-specific layer, but they are only 
appropriate for handling local changes in user interface behavior across devices. 

Notation for user interface definition classifies the techniques used for defining user interface appearance and 
behavior 

• Implicit in shared user interface code: Information "wired into" shared code. For example, the 
visual appearance of a menu might be implicit in the menu routines supplied by a toolkit In systems 
where strong user interface conventions exist this is a perfectly acceptable approach. 

• Implicit in application code: Information buried in the application and not readily available to shared 
user interface code. This is most appropriate where the application is already tightly involved in the 
user interface, for example, in handling semantic feedback in direct manipulation systems. 
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• External declarative notation: A nonprocedural specification separate from the body of the 
application program, for example, a grammar or tabular specification. External declarative notations 
are particularly well suited to supporting user customization and to use by nonprogramming user 
interface experts. Graphical specification methods are an important special case. 

• External procedural notation: A procedural specification separate from the body of the application 
program; often cast in a specialized programming language. Procedural notations are more flexible than 
declarative ones, but are harder to use. User-accessible procedural mechanisms, such as macro 
definition capability or the programming language of EMACS-like editors [Borenstein 88], provide 
very powerful customization possibilities for sophisticated users. However, an external notation by 
definition has limited access to the state of the application program, which may restrict its capability. 

• Internal declarative notation: A nonprocedural specification within the application program. This 
differs from an implicit representation in that it is available for use by the shared user interface code. 
Parameters supplied to shared user interface routines often amount to an internal declarative notation. 
An example is a list of menu entries provided to a toolkit menu routine. 

• Internal procedural notation: A procedural specification within the application program. This differs 
from an implicit representation in that it is available for use by the shared user interface code. A typical 
example is a status-inquiry or data transformation function that is provided for the user interface code to 
call. This is the most commonly used notation for customization of extensible interaction managers. It 
provides an efficient and flexible notation, but is not accessible to the end user, and so is useless for user 
customization. It is particularly useful for handling application-specific feedback in direct manipulation 
interfaces, since it has both adequate flexibility and efficient access to application semantics. 

Each of these categories offers a different tradeoff between power, runtime cost, ease of use, and ease of 
modification. For example, declarative notations are the easiest to use (especially for nonprogramming user 
interface designers) but have the least power, since they can only represent a predetermined range of possibilities. 
Typically, several notational techniques are used in a system, with different aspects of the user interface controlled 
by different techniques. For example, the position and size of a screen button might be specified graphically, while 
its highlighting behavior is specified implicitly by the code of a toolkit routine. 

Application control flow indicates where input processing occurs in the application's flow of control: 

• Single input point: The system contains an event loop that is the sole point at which user input is 
accepted; when an input event is received, it is processed; then control returns to the event loop to await 
the next input Note that the event loop may be in either application or shared code. 

• Multiple input point: Input is accepted at multiple points in the application's flow of control. 
(Usually, each such point can handle only a subset of the possible inputs, leading to modal interface 
behavior.) 

This classification is a variation of the standard distinction between "internal control" (application calls user 
interface) and "external control" (user interface calls application) [Hayes 85, Tanner 83]. The standard terminology 
is unsatisfactory because the properties usually associated with external control actually apply to any system using 
an event loop, regardless of the direction of subroutine calls. 

Number of control threads indicates how many logical threads of control exist in the application and user 
interface: 

• Single thread of control. 

• One user interface thread and one application thread* 

• Multiple user interface threads and one application thread. 

• One user interface thread and multiple application threads. 

• Multiple user interface threads and multiple application threads. 
Multiple threads are useful for dealing with external events or logically independent concurrent dialogues (e.g., 
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multiple input devices). The one-plus-one-thread choice is particularly simple and helpful for decoupling 
application processing (including external event handling) from user interface logic. 

Control thread mechanism describes the method, if any, used to support multiple logical threads of control. 
Often, full-fledged processes are too difficult to implement or impose too much overhead, so many partial 
implementations are used. This dimension classifies the possibilities as follows: 

• None: Only a single logical control thread is used. 

• Standard processes: Independently scheduled entities with interprocess protection (typically, separate 
address spaces). These provide security against other processes, but interprocess communication is 
relatively expensive. For a user interface system, security may or may not be a concern, while 
communication costs are almost always a major concern. In network environments, standard processes 
are usually the only kind that can be executed on different machines. 

• Lightweight processes: Independently scheduled entities within a shared address space. These are 
only suitable for mutually trusting processes due to lack of security; but often that is not a problem for 
user interface systems. The benefit is substantially reduced cost of communication, especially for use of 
shared variables. Few operating systems provide lightweight processes, and building one's own 
lightweight process mechanism can be difficult 

• Non-preemptive processes: Processes without preemptive scheduling (must explicitly yield control), 
usually in a shared address space. These are relatively simple to implement Guaranteeing short 
response time is difficult and impacts the entire system: long computations must be broken up 
explicitly. 

• Event handlers: Pseudo-processes which are invoked via a series of subroutine calls; each such call 
must return before another event handler process can be executed. Hence control flow is restricted; in 
particular, waiting for another process cannot occur inside a subroutine called by an event handler. 
Again, response time constraints require system-wide attention. The main advantage of this method is 
that it requires virtually no support mechanism. 

• Interrupt service routines: Hardware-level event handling; a series of interrupt service routine 
executions form a control thread, but one with restricted control flow and communication abilities. The 
control flow restrictions are comparable to event handlers; but unlike event handlers, preemptive 
scheduling is available. 

Event handlers are easily implemented within a user interface system; non-preemptive processes are harder but can 
still be implemented without operating system support The other mechanisms usually must be provided by the 
operating system. Some form of preemptive scheduling is often desirable to reduce timing dependencies between 
threads. 

Basis of communication classifies systems according to whether communication between modules depends upon 
shared state, upon events, or both. An event is a transfer of information occurring at a discrete time, for example, 
via a procedure call or message. Communication through shared state variables is significantly different, because 
the recipient always has access to the current values and need not use information in the same order in which it is 
sent The design space recognizes four categories: 

• Events: There is no shared state; all communication relies on events. 

• Pure state: Communication is strictly via shared state; the recipient must repeatedly inspect the state 
variables to detect changes. 

• State with hints: Communication is via shared state, but the recipient is actively informed of changes 
via an event mechanism; hence polling of the state is not required. However, the recipient could ignore 
the events and reconstruct all necessary information from the shared state; so the events are efficiency 
hints rather than essential information. 

• State plus events: Both shared state and events are used; the events are crucial because they provide 
information not available from state monitoring. 
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State-based mechanisms are popular for dealing with incrementally updated displays. The hybrid state/event 
categories provide possibilities for performance optimization in return for their extra complexity. State-based 
communication requires access to shared storage, which may be impossible or unreasonably expensive in some 
system architectures. 

It is possible for different bases of communication to be used at the application and device interfaces, but this is 
rare. It is fairly common to have different bases of communication for input and output; hence the design space 
provides separate dimensions for input and output communication basis. 
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3. Design Rules for User Interface Systems 

This section presents some design rules that relate the functional and structural dimensions of the design space. 
Again, we will consider only a few sample rules to illustrate the flavor of the approach. For a more thorough 
presentation of the rales, see Appendix DL 

Both here and in Appendix II, we present the rules in an informal fashion. In this form, the rales are directly 
useful as guidelines or rales of thumb for a human designer. Section 4 describes how the rules can be made more 
formal and suitable for use in automated design. 

• Stronger requirements for user interface adaptability across devices favor higher levels of application 
interface abstraction, so as to decouple the application from user interface details that may change 
across devices. If the requirement is for global behavior or application semantics changes, then 
parameterized abstract devices are also favored. Such changes generally have to be implemented in 
shared user interface code or application code, rather than in the device driven so information about the 
device at hand cannot be hidden from the higher levels, as the other classes of abstract device try to do. 
However, a requirement for local behavior changes can favor abstract devices with variable operations, 
since this method can allow all of the required adaptation to be hidden within the device driver. 

• High user customizability requirements favor external notations for user interface behavior. Implicit 
and internal notations are usually more difficult to access and more closely coupled to application logic 
than are external notations. 

• A high requirement for application portability across user interface styles favors the higher levels of 
application interface abstraction. Less obviously, it favors event-based or pure state-based 
communication over the hybrid forms (state with hints or state plus events). A hybrid communication 
protocol is normally tuned to particular communication patterns, which may change when user interface 
style changes. 

• If the maximum command execution time is short, a single thread of control is practical and is favored 
as the simplest solution. With longer commands, multiple threads are favored to permit user input 
processing to continue; this is necessary to support command cancellation, for example. 

• If external events must be handled, it is often worthwhile to provide separate control thread(s) for this 
purpose. Separate threads serve to decouple event handling logic from user interface logic. When 
external event handling requires preemption of user commands, a preemptive control thread mechanism 
(standard processes, lightweight processes, or interrupt service routines) is strongly favored. Without 
such a mechanism, very severe constraints must be placed on all user interface and application 
processing in order to guarantee adequate response time. 

• The most commonly useful control thread mechanisms are standard processes, lightweight processes, 
and event handlers; the others are appropriate only in special cases. For most user interface work, 
lightweight processes are very appropriate if available. Standard processes should be used when 
protection considerations warrant, and in network environments where it may be useful to put the 
processes on separate machines. If these conditions do not apply, event handlers are the best choice 
when their response time limitations are acceptable; otherwise it is probably best to invest in building a 
lightweight process mechanism. 

The preceding rules all relate functional to structural dimensions. Following is an example of the rules 
interconnecting structural dimensions. 

• The choice of application interface abstraction level influences the choice of notation for user interface 
behavior. In monolithic programs and abstract-device application interfaces, implicit representation is 
usually sufficient In toolkit systems, implicit and internal declarative notations are found (parameters 
to toolkit routines being of the latter class). Interaction managers of all types use external and/or 
internal declarative notations. Extensible interaction managers rely heavily on procedural notations, 
particularly internal procedural notation, since customization is often done by supplying procedures. 

The reader may well have found these rules to be fairly obvious and a bit boring. This is an indication of the 
conceptual power of the design space: many useful rales are immediate consequences of the properties of the 
chosen dimensions. Though straightforward, these rales are sufficiently powerful to be a useful aid to design. 
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4. Automating the Design Rules 

The design rules are presented in this report in an informal fashion suitable for use as guidelines by human 
software designers. It is also possible to express the rules in a more detailed, rigorous formulation. In such a form 
the rules could be used as the basis for an automatic design aid. The author has experimented with such automated 
rules, with promising results. 

The rules were expressed in the form of numerical weights associated with particular combinations of values 
along different dimensions. For example, the combination of no external events and single thread of control 
received a positive weight, indicating that a single thread of control may be a good choice given that requirement; 
while the combination of preemptive external events and single thread of control received a negative weight Given 
a set of functional requirements and a proposed structural design, the weights of the applicable rules can be 
combined to give a score for that design. A straightforward search algorithm was used to find the highest-scoring 
design for a given set of requirements. 

These automated rules were tested by comparing their recommendations to the actual design choices of expert 
human software designers, as expressed in a set of test cases. A moderate to substantial degree of agreement was 
observed. This preliminary result suggests that this approach has considerable potential for creating practical design 
aids. More immediately, it gives some confidence that the design space described here captures useful knowledge 
about user interface software design. 

Additional information about this experiment is given in the companion report [Lane 90b]. For full details, see 
[Lane 90a]. 
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5. Summary 

This design space is directly usable as a notation for describing and comparing user interface system architectures. 
It should be useful for both the design and understanding of systems. The design rules provide a good starting point 
for the process of user interface structural design. As presented, the rules have been simplified too much to be 
capable of making subtle tradeoffs, but they can still help a designer to identify the better alternatives and to reject 
inappropriate structures. By reducing the mental effort needed to make the straightforward choices, these rules 
should free the designer to concentrate on the hard choices. 

An automated form of the design rules has shown a substantial degree of agreement with the choices of human 
designers. One important implication of this result is that the design space provides considerable conceptual 
leverage: the space is "right" in the sense that using it makes choosing an appropriate design easier. 

The design space and rules described here were based on an extensive survey of existing user interface systems 
[Lane 90a]. The space was formed by searching for classifications that brought systems with similar properties 

together. The rules were then prepared on the basis of observed correlations. This process can be compared to 
development of biological taxonomies through natural history: the biologist also surveys and classifies existing 
forms, then looks for explanatory theories. 

At present there is no theoretical basis on which to argue that this design space is better or worse than a different 
set of dimensions that might be constructed to describe the same systems. The design space can be defended only 
on the grounds of practical utility: it seems to capture some useful design ideas and correlations. Further experience 
and research will no doubt improve this space, and someday a more theoretical, rigorous basis for creating design 
spaces may emerge. 

Future work includes refining the design space and rules to cover lower-level choices, thus providing more 
detailed design advice. A full-scale attempt to automate the rules might produce a practical design aid. In the long 
term, we hope that this work can be generalized to yield principles of software architecture that hold beyond the 
domain of user interfaces. 
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L The Design Space 

This appendix provides a full description of the design space used in the experiment with automated rules. This 
space is probably somewhat different from what one would use in hand design work. 

The design space contains twenty-five functional dimensions. Three to five alternatives are recognized in each of 
these dimensions. There are nineteen structural dimensions, each offering two to seven alternatives. 

LI Functional Design Dimensions 
We turn first to the functional design dimensions, which identify the requirements for a user interface system that 

most affect its structure. These dimensions fall into three groups: 
• External requirements: Includes requirements of the particular applications, users, and IAD devices to 

be supported, as well as constraints imposed by the surrounding computer system. 

• Bade interactive behavior: Includes the key decisions about user interface behavior that 
fundamentally influence internal structure. 

• Practical considerations: Cover development cost considerations; primarily, the required degree of 
adaptability of the system. 

1.1.1 External Requirements 

I.L1.1 Application Characteristics 
The characteristics of the problem domain determine the features needed to provide an adequate user interface for 

a particular application or set of applications. A general-purpose user interface system may support more than one 
of the alternatives listed for any of these dimensions. 

Primary output capability. What will be the system's main means of communicating information to its user? 
We classify the alternatives according to the type of data presented: 

• Text: Displayed character strings. 
• Geometric graphics: Images describable by geometric elements (lines, circles, etc). For example, 

engineering drawings. 
• General images: Images not readily described by geometric elements, such as scanned photographs or 

bitmap artwork. 

• Voice: Audible speech. 

• Audio: Non-speech audible output, such as music or tonal signals. 

Primary input capability. What is the system's main method of receiving information from its user? 
• Discrete selection: Selection of one of a small set of alternatives; for example, selection from a menu, 

or a "yes/no" response. 
• Continuous selection: Selection of a point in some continuum; for instance "pointing" to a point on a 

display surface, or manipulating a slider or control dial. 
• Text: Textual data, usually typed on a keyboard; this is distinguished from discrete selection by a wider 

set of permissible inputs. (For instance, if the user is required to press Y or N to answer "yes" or "no," 
that is discrete selection via a keyboard; but entry of prose into a word processor, or names and 
addresses into a mailing list database, is textual input.) 
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• Voice, discrete words: Words are recognized individually, without use of grammar or context 
information. 

• Voice, connected speech: Full-fledged speech recognition, using semantic context information to 
distinguish ambiguous words. 

Command execution time. How long may the application program take to process a command, compared with 
the reaction time of a human user? 

• Short maximum time: All commands can be executed in a short time, say a few tenths of a second. 

• Intermediate maximum, short average: Most commands are executed in a short time, but some may 
take a bit longer, up to a couple of seconds. 

• Long maximum time: Some or all commands may take a long time to execute so that the user will 
have a strong perception of waiting. 

External event handling. Does the application program need to respond to external events, that is, events not 
originating in the user interface? If so, on what time scale? 

• No external events: The application is uninfluenced by external events, or checks for them only as part 
of executing specific user commands. For example, a mail program might check for new mail, but only 
when an explicit command to do so is given. In this case, no support for external events is needed in the 
user interface. 

• Process events while waiting for input: The application must handle external events, but response 
time requirements are not so stringent that it must interrupt processing of user commands. It is 
sufficient for the user interface to allow response to external events while waiting for input 

• External events preempt user commands: External event servicing has sufficiently high priority that 
user command execution must be interrupted when an external event occurs. 

Error prevention importance. How important is prevention of user error, relative to other goals (such as speed 
of operation)? 

• High: Error prevention is critical to the task (e.g., automated banking). 

• Medium: Error prevention is of intermediate importance. 

• Low: Error prevention is a minor issue. 

1.1.1.2 User Needs 
What features are needed for the intended user community? The dimensions affecting system structure are: 

User help needs. How much user assistance is provided? 

• High: Extensive assistance for novices is provided. 

• Medium: Some guidance for novices is provided. 

• Low: User interface is oriented towards expert users. 

User experience variability. How much variability in experience is catered for? 

• High: Different user interfaces are provided for novice and expert users. 

• Medium: Minor changes in behavior are available for expert users. 

• Low: No adaptation to different experience levels is provided. 

User customizability. How much can a user modify the system's behavior? (We have in mind end users, not 
application developers.) 
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• High: User can add new commands and redefine commands (e.g.. via a macro language), as well as 
modify user interface details. 

• Medium: User can modify details of the user interface that do not affect semantics; for instance, 
change menu entry wording, default window sizes, colors, etc. 

• Low: Little or no user customizability. 

1.1.13 I/O Devices 

What types of I/O devices will be used for communication with the user? The crucial aspects for system structure 
are: 

Device class breadth. What range of VO devices is supported by the user interface software? (We are interested 
here in the range of devices that are considered equivalent at some level erf the software; for example, if two 
different displays are supported, they are probably equivalent at some level, but a display and a speaker would 
probably not be considered equivalent) 

• Single device type: Only a specific hardware type is permitted. 

• Semanticaliy equivalent devices: Devices with a fixed set of features are permitted; for example, 
24x80 character terminals with cursor positioning and underlining capability. Any additional features 
possessed by a particular device are ignored. The means of invoking the required features may vary 
between devices. 

• Generic device definition: A wide range of devices is permitted; for example, alphanumeric terminals 
of varying size with optional color and highlighting capabilities. 

User interface adaptability across devices. How much change in user interface behavior may be required when 
changing to a different set of I/O devices? 

• None: All aspects of behavior are the same across all supported devices. 

• Local behavior changes: Only changes in small details of behavior across devices; for example, the 
appearance of menus. 

• Global behavior changes: Major changes in surface user interface behavior; for example, a change in 
basic interface class (see below). 

• Application semantics changes: Changes in underlying semantics of commands (e.g., continuous 
display of state versus display on command). 

I/O device bandwidth. What data rate is needed to support the user interface I/O devices? (For devices with 
persistent state such as displays, use the burst rate needed for updates.) 

• High: Kilobytes per second (e.g., high-resolution bitmap displays). 

• Medium: Hundreds of bytes per second (e.g., alphanumeric terminals). 

• Low: Tens of bytes per second (e.g., teletypes or small LED displays). 

1.1.1.4 Computer System Environment 
The surrounding computer system affects a user interface in several ways. The key issues are: 

Strength of user interface conventions. How strong are the user interface conventions of the computer system? 

• High: Extensive, well-defined standards which are generally followed (e.g., the Macintosh user 
interface guidelines [Apple 85]). 

• Medium: Conventions exist but are incomplete and/or often violated (e.g., Unix conventions for 
command line syntax). 
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• Low: Little or no recognized common user interface behavior. (This is the situation for many 
stand-alone systems, such as automated store directories.) 

Inter-application communication requirements. What kind of inter-application communication is supported by 
the user interface! ("Back door" communication such as data file exchange is not counted.) 

• None: No communication at the user interface level 

• Data exchange: Via cut-and-paste or standardized I/O formats. 

• Program invokes program: One program drives another, issuing commands and interpreting 
responses. (Examples include Unix shell scripts and various macro languages.) 

Inter-application protection requirements. To what extent does shared user interface software provide 
protection boundaries between different applications? 

• High: User interface deals with multiple applications and must prevent undesirable interactions. 

• Medium: User interface deals with multiple applications, but only weak protection is needed (e.g., 
applications are expected to cooperate). 

• Low: No protection is needed (typically because user interface deals with only one application at a 
time). 

Computer system organization. What is the overall organization of the computer system? 
• Uniprocessing: A single application executes at a time. 

• Multiprocessing: Multiple applications execute concurrently. 

• Distributed processing: Network environment, with multiple CPUs and nonnegligible communication 
costs. 

Existing mechanisms for multiple threads of control. Does the operating system provide any mechanism(s) for 
multiple control threads? 

• Standard processes: Independently scheduled entities with interprocess protection (typically, separate 
address spaces). 

• Lightweight processes: Independently scheduled entities with no interprocess protection (shared 
address space). 

• Non-preemptive processes: Processes without preemptive scheduling (must explicidy yield control); 
usually no interprocess protection. 

• Interrupt service routines: Hardware-level event handling (a series of interrupt service routine 
executions can be viewed as a control thread). 

• None: No system support for multiple control threads. 

Processing power available for user interface. Is adequate processing power available for the user interface, or 
is it necessary to "cut corners" in the system design to achieve adequate response time? 

• High: Plenty of processing power is available. 

• Medium: Some care is needed to achieve adequate performance. 
• Low: Must minimize resources used by user interface. 

Designers usually make a rough judgment about available power at a fairly early stage in the design process, and 
this judgment colors many subsequent decisions. We include this dimension in the design space to make this 
judgment explicit 
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1.1 JL Basic Interactive Behavior 
This group of dimensions includes the key decisions about user interface behavior that fundamentally influence 

internal structure. Fortunately these are few; otherwise a single structure could not support a range of interaction 
styles. 

Bask interface class. This dimension identifies the basic kind of interaction supported by the user interface 
system. (A general-purpose system might support more than one of these classes.) The design space uses a 
classification proposed by Shneiderman [Shneiderman 86]: 

• Menu selection: Based on repeated selection from groups of alternatives; at each step, the alternatives 
are (or can be) displayed. 

• Form filling: Based on entry (usually text entry) of values for a given set of variables. 

• Command language: Based on an artificial, symbolic language; often allows extension through 
programming-language-like procedure definitions. 

• Natural language: Based on (a subset of) a human language such as English. 

• Direct manipulation: Based on direct graphical representation and incremental manipulation of the 
program's data. 

It turns out that menu selection and form filling can be supported by similar system structures, but each of the other 
classes has unique requirements. 

Degree of user control over dialog sequence. How much control does the user have over the sequence of 
interactions with the system? 

• High: User controls dialog sequence (e.g., "modeless" dialog). 

• Medium: User has some control over dialog. 

• Low: Machine controls dialog sequence. 

1.1 J Practical Considerations 
The remaining functional dimensions specify the required degree of adaptability of the system. In most cases a 

less adaptable system is cheaper to build. Yet a more adaptable system may repay its higher cost by supporting a 
wider class of applications. Another important consideration is that a system's adaptability affects its 
maintainability, and hence its lifespan. 

It is useful to consider adaptability separately for application code and user interface code. The distinction 
disappears in single-purpose user interfaces, but is crucial for user interface systems that support multiple 
applications. We use the term portability for application code and adaptability for user interface code. This 
terminology is intended to connote the idea that we usually desire application code not to change when moving from 
one environment to another, while user interface support systems may well be modified to better adapt them to new 
environments. (Of course there are exceptions to this general rule.) Portability implies that the application is 
unaware of a change in environment, or at least can handle the change without being rewritten. 

Application portability across I/O devices. What degree of portability across I/O devices is required for 
applications that will use the user interface software? 

• High: Applications should be portable across devices of radically different types; for example, display 
versus speech output 

• Medium: Applications should be portable across devices of the same general class, but differing in 
detail; for example, bitmap displays of differing color capabilities. 
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• Low: Device independence is not a concern, or application changes are acceptable to support new 
devices. 

Application portability across interaction styles. What degree of portability across user interface styles is 
required for applications that will use the user interface software? 

• High: Applications should be portable across significantly different styles (e.g., command language 
versus menu-driven). 

• Medium: Applications should be independent of minor stylistic variations (e.g., menu appearance). 

• Low: User interface variability is not a concern, or application changes are acceptable when modifying 
the user interface. 

Application portability across operating systems. What degree of portability across underlying computer 
systems is required for applications that will use the user interface software? (Primarily we are interested in 
operating system differences, though hardware differences may also be of interest) 

• High: Applications should be portable across significantly different machines and operating systems. 

• Medium: Applications should be portable across related operating systems (e.g., portable to different 
versions of Unix). 

• Low: System independence is not a concern. 

User interface system adaptability across applications. How adaptable to different applications should the user 
interface software be? 

• High: Useful across a wide range of applications. 

• Medium: Useful for a group of closely related applications with similar interface needs. 
• Low: Supports only a single application. 

User interface system adaptability across interaction styles. How adaptable to different interaction styles 
should the user interface software be? 

• High: Adaptable to a wide range of interface styles. 

• Medium: Limited adaptability. 

• Low: Imposes a specific interface style. 

A user interface system may well be built to impose some stylistic decisions on applications; it is by no means the 
case that more flexibility is always better. 

User interface system adaptability across operating systems. How adaptable to different computer systems 
should the user interface software be? 

• High: Portable across significantly different machines and operating systems. 
• Medium: Portable across related operating systems. 

• Low: System independence is not a concern. 
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L2 Structural Design Dimensions 
We now turn to the structural dimensions, which represent the major decisions determining the overall structure 

of a user interface system. These dimensions fall into three major groups: 
• Division of functions and knowledge between modules: How system functions are divided into 

modules, the interfaces between modules, and the information contained within each module. 

• Representation issues: The data representations used within the system. We must consider both 
actual data, in the sense of values passing through the user interface, and meta-data that specifies the 
appearance and behavior of the user interface. Meta-data may exist explicitly in the system (for 
example, as a data structure describing the layout of a dialog window), or only implicitly. 

• Control flow, communication, and synchronization issues: The dynamic behavior of the user 
interface code. 

The structural design space presented here is a simplification of the complete design space discussed in [Lane 
90a]. The simplification arises primarily from merging together decisions that proved to be closely correlated in 
practice. We will mention some of the omitted dimensions under the headings of the key dimensions with which 
they are associated. 

L2.1 Division of Functions and Knowledge 
Under this heading, we consider how system functions are divided into modules, the interfaces between modules, 

and the information contained within each module. 

The divisions of greatest interest are the divisions between application-specific code and shared user interface 
code on the one hand, and between device-specific code and shared user interface code on the other. We refer to 
these divisions as the application interface and device interface, respectively. (See Figure 2-1.) 

Application interface abstraction level. The design space identifies six general classes of application interface. 
These classes can be most easily distinguished by their level of abstraction: 

• Monolithic program: There is no separation between application-specific and shared code, hence no 
application interface (and no device interface, either). 

• Abstract device: The shared code is simply a device driver, presenting an abstract device for 
manipulation by the application. The operations provided have specific physical interpretations (e.g., 
"draw line," but not "present menu"). Most aspects of interactive behavior are under the control of the 
application, although some local interactions may be handled by the shared code (e.g., character 
echoing and backspace handling in a keyboard/display driver). In this category, the application 
interface and device interface are the same. 

• Toolkit: The shared code provides a library of interaction techniques (e.g., menu or scroll bar 
handlers). The application is responsible for selecting appropriate toolkit elements and composing them 
into a complete interface; hence the shared code can control only local aspects of user interface style, 
with global behavior remaining under application control. The interaction between application and 
shared code is in terms of specific interactive techniques (e.g., "obtain menu selection"). The 
application can bypass the toolkit, reaching down to an underlying abstract device level, if it requires an 
interaction technique not provided by the toolkit In particular, conversions between specialized 
application data types and their device-oriented representations are done by the application, accessing 
the underlying abstract device directly. 

• Interaction manager with fixed data types: The shared code controls both local and global 
interaction sequences and stylistic decisions. Its interaction with the application is expressed in terms of 
abstract information transfers, such as "get command" or "present result" (notice that no particular 
external representation is implied). These abstract transfers use a fixed set of standard data types (e.g., 
integers, strings); the application must express its input and output in terms of the standard data types. 
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Hence some aspects of the conversion between application internal data formats and user-visible 
representations remain in the application code. 

• Interaction manager with extensible data types: As above, but the set of data types used for abstract 
communication can be extended. The application does so by specifying (in some notation) the input 
and output conversions required for the new data types. If properly used, this approach allows 
knowledge of the external representation to be separated from the main body of the application. 

• Extensible interaction manager: Communication between the application and shared code is again in 
terms of abstract information transfers. The interaction manager provides extensive opportunities for 
application-specific customization. This is accomplished by supplying code that augments or overrides 
selected internal operations of the interaction manager. (Most existing systems of this class are coded in 
an object-oriented language, and the language's inheritance mechanism is used to control 
customization.) Usually a significant body of application-specific code customizes the interaction 
manager, this code is much more tightly coupled to the internal details of the interaction manager than 
is the case with clients of nonextensible interaction managers. 

This classification turns out to be sufficient to predict most aspects of the application interface, including the 
division of user interface functions, the type and extent of application knowledge made available to the shared user 
interface code, and the kinds of data types used in communication. For instance, we have already suggested the 
division of local versus global control of interactive behavior that is typically found in each category. 

Variability in device-dependent interface. The interface between device-dependent and device-independent 
code can be regarded as defining an abstract device for the device-independent code to manipulate. This dimension 
classifies abstract devices according to the degree of variability perceived by the device-independent code. 

• Ideal device: The provided operations and their results are well specified in terms of an "ideal" device; 
the real device is expected to approximate the ideal behavior fairly closely. 

• Parameterized device: A class of devices is covered, differing in specified parameters such as screen 
size, number of colors, number of mouse buttons, etc. The device-independent code can inquire about 
the parameter values for the particular device at hand, and adapt its behavior as necessary. Operations 
and their results are well specified, but depend on parameter values. 

• Device with variable operations: A well-defined set of device operations exists, but the device-
dependent code has considerable leeway in choosing how to implement the operations; device-
independent code is discouraged from being closely concerned with the exact external behavior. 
Results of operations are thus not well specified. 

• Ad-hoc device: In many real systems, the abstract device definition has developed in an ad-hoc 
fashion, and so it is not tightly specified; behavior varies from device to device. Applications therefore 
must confine themselves to a rather small set of device semantics if they wish to achieve portability, 
even though any particular implementation of the abstract device may provide many additional features. 

The reader may wonder why there is no dimension that classifies abstract devices according to their basic 
functionality. Such a dimension might use categories like "bitmap display," "vector display," "alphanumeric 
display," "keyboard," "two-dimensional locator," etc. But there are a large number of such categories, with no 
obvious pattern. Moreover, much of the useful information has already been captured in other dimensions (device 
bandwidth, primary input and output capability). The simplified design space therefore provides no such dimension. 

12 J. Representation of Information 

Here we consider the representations used for user interface data. Since we are studying overall system structure, 
we are more interested in representations that are shared among modules than in those that are hidden within a single 
module. 

Notation for user interface definition. This dimension classifies the techniques used for defining user interface 
appearance and behavior. 
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• Implicil in shared user interface code: Information buried within shared code. For example, the 
visual appearance of a menu might be implicit in the menu routines supplied by a toolkit 

• Implicit in application code: Information buried in the application and not readily available to shared 
user interface code. 

• External declarative notation: A nonprocedural specification separate from the body of the 
application program, for example, a grammar or tabular specification. Graphical specification is an 
important special case, particularly useful for specification of visual appearance. 

• External procedural notation: A procedural specification separate from the body of the application 
program; often cast in a specialized programming language. 

• Internal declarative notation: A nonprocedural specification within the application program. This 
differs from an implicit representation in that it is available for use by the shared user interface code. 
Parameters supplied to user interface library routines often amount to an internal declarative notation. 
An example isalistof menu entries provided to a toolkit menu routine. 

• Internal procedural notation: A procedural specification within the application program. This differs 
from an implicit representation in that it is available for use by the shared user interface code. A typical 
example is a status-inquiry or data transformation function that is provided for the user interface code to 
call. 

Representation of semantic information. This dimension classifies the techniques used for defining 
application-specific semantic (as opposed to external appearance) information that is needed by the user interface. 
An example of such information is a range restriction on an input value. 

• Implicit: Buried in the application, and not readily available to shared user interface code. For 
example, a range check carried out as part of command execution. 

• Declarative: Expressed in a nonprocedural notation; for example, a form-filling package might allow 
range limits to be given in a table entry describing a numeric input field. 

• Procedural: A procedural specification within the application program. This differs from an implicit 
representation in that it is available for use by the shared user interface code. For example, a validity 
checking subroutine might be provided for each input value. 

The limited range of possibilities allowed by a declarative notation is more of a drawback here than it is for user 
interface definition. (Semantic information is inherently more variable across applications than surface user 
interface choices; were this not so, shared user interface behavior would be of no interest) Procedural 
representations are therefore commonly used where shared code must have access to semantic information, while 
implicit representations are used where this can be avoided. 

123 Control Flow, Communication, and Synchronization 
Here we consider the dynamic behavior of the user interface code. As with the previous group of dimensions, we 

are mainly interested in inter-module communication. 

Application control flow. Where does input processing occur in the application's flow of control? 

• Single input point: The system contains an event loop that is the sole point at which user input is 
accepted; when an input event is received, it is processed; then control returns to the event loop to await 
the next input Note that the event loop may be in either application or shared code. 

• Multiple input point: Input is accepted at multiple points in the application's flow of control. 
(Usually, each such point can handle only a subset of the possible inputs, leading to modal interface 
behavior.) 

This classification is a variation of the standard distinction between "internal control" (application calls user 
interface) and "external control" (user interface calls application) [Hayes 85, Tanner 83]. The standard terminology 
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is unsatisfactory because the properties usually associated with external control actually apply to any system using 
an event loop, regardless of the direction of subroutine calls. 

Treatment of asynchronous input What happens to user input actions that occur while the application is busy? 
• Ignored: Asynchronous input is ignored. 

• Queue before all processing: Input events are queued, but no processing is done (and hence no 
feedback occurs) until the application is ready for input 

• Partial processing, simple queue: Some fast processing is done to provide feedback; then events are 
queued for the application in a first-in-first-out queue. 

• Partial processing, complex queue: As above, but the queue may not be strictly FIFO; for instance, 
"abort" commands may be delivered first, or may flush the queue. 

Note that the first two of these alternatives correspond to no fast input processing, while the second two describe 
systems which have some type of fast input processing. 

Fast input processing. Is user input processed before the application is ready to receive it? If so, how flexible is 
this processing? 

• No fast processing: Everything is synchronous with the application. 

• Fixed behavior: Some processing and feedback is done asynchronously; the nature of the 
asynchronous processing is not alterable by the application. (Example: input echoing and editing in 
older time-sharing systems.) 

• Parameterized behavior: Application-specific code can set limited parameters for the behavior of the 
asynchronous processing. For example, in some window systems, different cursor shapes can be 
established for different parts of an application's window. Shape changes are then handled 
automatically by the cursor tracking code. 

• Application-dependent behavior: Application-specific code can be executed during fast processing. 
For example, an application-specific routine might be used to draw rubber-band feedback images during 
dragging. 

The more flexible alternatives in this dimension carry increasing risk of synchronization problems. (A simple 
example is that typed-ahead characters may be echoed twice or not at all when switching between asynchronous 
echoing and application-driven echoing.) Communication costs can also be a problem for the last alternative. 

Number of control threads. How many control threads exist in the application and user interface? 
• Single thread of control. 

• One user interface thread and one application thread. 

• Multiple user interface threads and one application thread. 

• One user interface thread and multiple application threads. 

• Multiple user interface threads and multiple application threads. 

Multiple threads are useful for dealing with external events or logically independent concurrent dialogues (e.g., 
multiple input devices). The one-plus-one-thread choice is particularly simple and helpful for decoupling 
application processing (including external event handling) from user interface logic. 

Control thread mechanism. What mechanism, if any, is used to support multiple control threads? 
• None: Only a single logical control thread is used. 

• Standard processes: Independently scheduled entities with interprocess protection (typically, separate 
address spaces). 
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• Lightweight processes: Independently scheduled entities within a shared address space. 

• Non-preemptive processes: Processes without preemptive scheduling (must explicitly yield control), 
usually in a shared address space. 

• Event handlers: Pseudo-processes which are invoked via a series of subroutine calls; each such call 
must return before another event handler process can be executed. 

• Interrupt service routines: Hardware-level event handling; a series of interrupt service routine 
executions form a control thread, but one with restricted control flow and communication abilities. 
Unlike simple event handlers, preemptive scheduling is available. 

Application communication grain size. How frequently does communication occur between application and 
shared user interface code? 

• Fine grain: Roughly once per user input event; the application is closely coupled to user actions, and 
typically participates in feedback generation. 

• Coarse grain: Roughly once per complete command; the application is decoupled from user actions 
and feedback generation. 

Either of these approaches may be preferable, depending on the desired extent of application involvement in user 
interface details. 

Device communication grain size. How frequently does communication occur between device-independent and 
device-dependent code? 

• Fine grain: Roughly once par physical input event; the device-independent code is involved in 
generating short-term feedback displays. 

• Coarse grain: Roughly once per logical interaction; the device-independent code is not involved in 
short-term feedback generation. 

Basis of communication. Does communication between modules depend on shared state or on events, or both? 
(An event is a transfer of information occuring at a discrete time, for example, via a procedure call or message.) 

• Events: There is no shared state; all communication relies on events. 

• Pure state: Communication is strictly via shared state; the recipient must repeatedly inspect the state 
variables to detect changes. 

• State with hints: Communication is via shared state, but the recipient is actively informed of changes 
via an event mechanism; hence polling of the state is not required. However, the recipient could ignore 
the events and reconstruct all necessary information from the shared state; so the events are efficiency 
hints rather than essential information. 

• State plus events: Both shared state and events are used; the events are crucial because they provide 
information not available from state monitoring. 

It is possible for different bases of communication to be used at the application and device interfaces, but this is rare. 
It is fairly common to have different bases of communication for input and output; hence the design space provides 
separate dimensions for input and output communication basis. 

Event mechanisms. Unless pure-state communication is used, a mechanism must be provided to pass events 
between modules. We classify event mechanisms thus: 

• None: No events are used (pure state communication). 
• Direct procedure call: Standard procedure-call mechanism. (We include "remote procedure call" 

mechanisms, so long as the recipient code is directly named.) 
• Indirect procedure call: Procedure call in which the recipient code is not completely specified by the 
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calling code, but is dynamically determined; procedure pointers and object-oriented method calls are 
typical examples. 

• Asynchronous message: The event is passed from one control thread to another, with the sender not 
waiting for receipt 

• Synchronous message: The event is passed from one control thread to another, with the sender blocked 
until the receiver accepts the message (and computes a reply, usually). This differs from a remote 
procedure call in that the receiver is a separate control thread that exists before and after the rendezvous. 

The procedure call mechanisms are used for communication within a control thread, the message mechanisms for 
communication across threads. Indirect procedure calls provide extra separation at slightly higher cost. 
Synchronous message mechanisms are somewhat cheaper to implement than asynchronous ones (for instance, 
message buffering can be avoided), but they may create synchronization problems by increasing timing 
dependencies between control threads. 

It is common to have different event mechanisms for input and output and also to have different mechanisms at 
the application and device interfaces. Hence the design space provides four event-mechanism dimensions, one each 
for application input application output device input and device output 

Application separation mechanism. How strongly are the application and shared user interface code separated? 
• Programming convention: No mechanism exists to enforce separation. 

• Visibility rules: A programming language mechanism such as separate name spaces. Protection 
strength depends on whether the language is secure against errors (such as dangling pointers). 

• Hardware separation: A hardware mechanism, typically separate address spaces. The shared user 
interface code is reliably protected against programming errors in the application (and vice versa). 

• Network link: In addition to providing hardware separation, the communication protocol allows for 
cross-machine communication; data representation differences between application and user interface 
code are supported. An example is the support for varying byte order in the X Window protocol. 

These choices provide a tradeoff of security against cost of communication. The availability of suitable mechanisms 
is also a consideration; many small machines do not provide hardware protection mechanisms. 

Device separation mechanism. How strongly are the device-dependent and device-independent layers 
separated? 

The classification is the same as for the previous dimension. 

The data volume and frequency of communication are usually higher here than at the application interface, so the 
cost of communication is a greater concern. Thus a different choice is often appropriate. 
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n. The Design Rules 

This appendix presents some simple "rules of thumb" that help a designer of user interface software to select a 
system architecture. These rules are not meant to replace good design judgment, but rather to codify and speed up 
the routine parts of system design. The rules let the designer make quick decisions about aspects of system structure 
for which there is a clearly superior alternative, and they focus attention on the most likely choices in cases where 
more subtle judgment is necessary. 

We discuss the design dimensions in the order in which a designer might consider them while creating a design. 
For each dimension, we present a listing of the considerations that may favor or disfavor each alternative, and some 
summary rules-of-thumb for selecting one alternative. Again we emphasize that these rules must be augmented by 
the designer's judgment: typically, the designer must resolve conflicting suggestions by judging the relative 
importance of different functional requirements. 

Space limitations prohibit any attempt to provide justifications of these observations and rules. Supporting 
arguments can be found in [Lane 90a]. 

n.l Basic Division of Functions 
The designer's first order of business should be to define the overall division of a system into device-specific, 

shared user interface, and application-specific parts. We view this as a problem of specifying two interfaces: the 
application interface between application-specific and shared code, and the device interface between device-specific 
and shared code. 

n.1.1 Application Interface 
Application interface abstraction level The design space identifies six general classes of application interface. 

In order of increasing level of abstraction in communications, they are: 
• Monolithic program: This is an appropriate solution in small, specialized systems where the 

application needs considerable control over UI details and/or little processing power is available. 
(Video games are a typical example.) This approach should not be chosen if there are any strong 
flexibility requirements (user customizability, I/O device variability, or UI style flexibility). The 
approach handles direct manipulation interfaces well, but application development effort will be high. 

• Abstract device: This approach is recommended when application portability is wanted across a 
limited set of devices, but most control of the user interface is to remain in the hands of the application 
program. Thus it is not a good choice when application portability across UI styles is a strong 
requirement It is best not to attempt to support a very wide range of I/O devices with this approach; the 
result will be either excess development effort for applications (too many cases to handle) or loss of 
control over UI details (if the driver hides too many details). The characteristics of this approach are 
heavily influenced by the handling of abstract device variability, which is discussed in Section EL 1.2. 

• Toolkit: Toolkits provide a significant savings of application development effort and yet retain UI 
system flexibility since the application remains "in charge" and can bypass the toolkit when necessary. 
By the same token, the application remains coupled to the user interface. Therefore, this approach is 
recommended when a moderate degree of flexibility is wanted. This approach is the minimum level of 
abstraction to use when a standardized UI style is to be implemented, because standard components 
(e.g., menus) can be handled by toolkit routines rather than reimplemented by each application. 

• Interaction manager (IM): An EM is a good choice when application portability (across devices or 
styles) is a strong requirement because it provides a strong separation between UI behavior and the 
application program. A high degree of user customizability can also be supported. However, 
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supporting direct manipulation interfaces is difficult because the application cannot supply semantic 
feedback. An IM is useful for enforcing standardized UI behavior, since it gives the application 
program the least control over UI details of any alternative. An IM is especially appropriate in network 
environments, because the IM can be physically separated from the application with low 
communication costs. 

• Interaction manager with extensible data types: Some IMs provide the capability to extend the set 
of data types used for application/IM communication. This option allows representation conversion to 
be fully separated from the main body of the application, but it does not do much to solve the semantic 
feedback problem. Hence it provides only a small increment in flexibility. 

• Extensible interaction manager: This is accomplished by supplying code that augments or overrides 
selected internal operations of the IM. An extensible IM can provide as much support as a regular IM 
for standardized styles of user interface. But it can be used for a wider class of interfaces—including 
direct manipulation—by taking advantage of its customization capability. This approach provides the 
most flexibility for meeting user customizability, I/O device variability, and UI style requirements. But 
it requires substantial processing power, and the level of initial investment (for both UI system 
development and application developer training) is higher than for any other alternative. Moreover, 
care is needed to realize the potential flexibility benefits; since application-specific customization code 
sees a relatively low level of abstraction, it is easy to destroy the logical separation between application 
and user interface system. 

The benefit to be gained from building anything more complex than an abstract device system depends heavily on 
the degree of standardization of UI behavior—that is, the strength of the UI conventions in the system environment. 
The more that such conventions limit the range of UI behavior, the more functionality can be put into a toolkit or 
IM, and the less need there is for an application to override standard behavior. Thus increasing strength of 
conventions tilts the balance first towards toolkits and extensible IMs, then towards nonextensible IMs. 

A nonextensible IM may be the best choice when application portability and development cost are paramount, as 
it provides the most insulation of the application from UI details. Its limited range of UI styles is a necessary price; 
at least with present technology, direct manipulation systems cannot be built without significant application 
involvement in the user interface, which compromises both portability and cost 

U.12 Device Interface 

The interface between device-independent and device-specific code can be regarded as defining an abstract 
device for the device-independent code to manipulate. The details of an abstract device vary greatly across I/O 
media, but some general statements can be made about the precision with which the abstract device is specified. 

Abstract device variability. This dimension classifies abstract devices according to the degree of variability 
perceived by the device-independent code. 

• Ideal device: In this approach, all questions of device variability are hidden from software above the 
device driver level, so application portability is high. This approach is most useful where the real 
devices deviate only slightly from the ideal model, or at least not in ways that require rethinking of UI 
behavior. The ideal-device approach is not appropriate if any major changes in UI behavior may be 
needed to cope with differences between devices; therefore it cannot cover as wide a range of actual 
devices as the other two approaches. 

• Parameterized device: This approach allows a wide range of I/O devices to be accommodated, and it 
permits substantial changes in UI behavior across devices. The advantage is that application-specific 
code has both more knowledge of acceptable tradeoffs and more flexibility in changing its behavior 
than is possible for a device driver. The drawback is that device-independent code may have to perform 
complex case analysis in order to handle the full range of supported devices. If this must be done in 
each application, the cost is high and there is a great risk that programmers will omit support for some 
devices. (To reduce this temptation, it is best to design a parameterized model to have just a few 
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well-defined levels of capability, so as to reduce the number of cases to be considered.) This approach 
should not be used if it is not necessary to support a wide range of I/O devices, as then its high cost is 
not repaid. Less obviously, it should not be used when high application portability across I/O devices is 
crucial (unless the application is insulated from the abstract device by an IM layer); the risk of 
applications failing to cover the full range of parameter variation is too great A final drawback is that 
substantial processing power is likely to be needed to handle extensive runtime case analysis. 

• Device with variable operations: This approach works best when the device operations are chosen at 
a level of abstraction high enough to give the device driver considerable freedom of choice. Hence the 
device-independent code must be willing to give up much control of UI details. This restriction means 
that direct manipulation (with its heavy dependence on semantically-controlled feedback) is not well 
supported. Furthermore, only local changes in interface behavior can be handled at the device driver 
level; changes in basic interface class or application semantics cannot be supported. When these 
restrictions are acceptable, this approach can support a very wide range of devices with little impact on 
device-independent code. Its costs in processing power are low, since runtime case analysis need not be 
performed. 

• Ad-hoc device: This approach is hardly ever appropriate for new designs. It is found principally in 
systems that have evolved from simpler beginnings. 

In systems where little or no variation in I/O devices is expected, one may as well specify an ideal device model 
(tailoring it closely to the real devices); this incurs no runtime cost and provides a well-defined picture of what is 
required if more devices need to be supported later. When a moderate or wide range of I/O devices must be 
supported, the key question is what types of UI behavior changes are needed across devices. Parameterization is 
essential if global changes are needed, as the device driver cannot handle such changes alone. Moderate local 
changes are well served by the variable-operations method, if its drawbacks are tolerable; otherwise 
parameterization is preferred. An ideal device approach may still be usable if only small, local changes in behavior 
are needed. 

It is possible to support multiple tradeoffs between handling device adaptation in the device driver and handling it 
in the application: simple applications can rely on device-specific UI decisions made in the driver, while more 
complex ones can make their own choices. This amounts to a combination of the variable-operations and 
parameterized-device approaches. Obviously, to make this work well, great care is needed in defining the device 
operations and parameters. 

Selecting the functions to be provided in an abstract device model is a complex task. A poorly chosen model may 
limit portability and/or cause performance problems due to mismatches between its properties and specific real 
devices. Unfortunately, good designs seem very dependent on properties of the particular I/O medium; few general 
design principles have emerged. We can suggest some rules of thumb based on the chosen degree of variability. 
When using an ideal or parameterized-device approach, it is probably best to minimize the amount of user interface 
functionality (i.e., representation conversion, sequence control, user assistance, and state maintenance) placed in the 
device driver. The variable-operations approach, in contrast gains its power precisely by moving significant user 
interface decisions into the device driver. The trick here is to choose a coherent set of decisions that are not tightly 
coupled to those remaining in higher level software. (Some of the problems with GKS input devices are due to 
failure to maintain this separation [Rosenthal 81].) 

II2 Representation Issues 
After defining the major system components and allocating functionality among them, the next order of business 

is selecting data representations to be used within the system. We must consider both actual data, in the sense of 
values passing through the user interface, and metadata that specifies the appearance and behavior of the user 
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interface. Meta-data may exist explicidy in the system (for example, as a data structure describing the layout of a 
dialog window), or only implicitly. We further subdivide meta-data according to whether it bears on "surface" UI 
details or on deeper questions of application semantics. 

IL2.1 User Interface Definition 

Notation for user interface definition. Here we consider the means of defining UI appearance and behavior the 
meta-data that describes surface details. We classify notations for UI definition as follows: 

• Implicit in shared user interface code: This is simple and efficient; it is the appropriate choice for UI 
behavior that is fixed by the support software. In systems where strong UI conventions exist, quite a lot 
of the definition can reasonably be represented this way. It should be avoided when the user interface 
system is to be adaptable across a wide range of UI styles, or when user customizability is important. 

• Implicit in application code: This is the traditional approach that most UI researchers have tried to 
move away from. But it will never be eliminated entirely since it, too, is simple and efficient. It is most 
appropriate where the application is already tightly involved in the user interface, for example, in 
handling semantic feedback in direct manipulation systems. It should be avoided when application 
portability (across I/O devices or UI styles) or user customizability is important 

• External declarative notation: Declarative representations in general provide the least flexibility of 
interface design, but are the easiest to use. External declarative notations are particularly well suited to 
supporting user customization and to use by nonprogramming UI experts. Use of an external notation 
helps keep the main application code portable across UI styles and I/O devices, but only if the notation 
is flexible enough to specify all the required variations by itself. Processing power requirements can be 
high, unless the notation can be precompiled in some way. Graphical specification is a special case of 
external declarative notation; graphical methods are particularly appropriate for specification of visual 
appearance. 

• Internal declarative notation: From the application programmer's viewpoint this is nearly as easy to 
use as external declarative notation, and it requires much less supporting mechanism; however, it makes 
user customization much more difficult 

• External procedural notation: Procedural notations are more flexible than declarative ones, but are 
harder to use. User-accessible procedural mechanisms, such as macro definition capability or the 
programming language of EMACS-like editors, provide very powerful customization possibilities for 
sophisticated users. Use of an external notation helps keep the main application code portable across UI 
styles and I/O devices. Substantial processing power may be needed, depending on the efficiency of the 
mechanism that executes the notation. Also, an external notation by definition has limited access to the 
state of the application program, which may restrict its capability. 

• Internal procedural notation: This is the most commonly used notation for customization of 
extensible interaction managers. It provides an efficient and flexible notation, but is not accessible to 
the end user, and so is useless for user customization. It is particularly useful for handling application-
specific feedback in direct manipulation interfaces, since it has both adequate flexibility and efficient 
access to application semantics. This approach is not favored when application portability is a strong 
requirement 

Typically, several kinds of notation are used in a user interface system. Almost always there are some instances 
of both kinds of implicit notation, and one or more of the others is often used as well. The crucial question is thus 
which aspects of UI behavior should be described in which kinds of notation. The best indicators of the appropriate 
class of notation are the required degrees of flexibility and efficiency. 

A good rule of thumb is that declarative notations are appropriate for static information or restricted choices, such 
as the layout of a display or the selection of one of several predefined behaviors. Procedural notations are a better 
choice for description of dynamic behavior, because presently available declarative methods aren't sufficiently 
flexible. In either case, an external notation should be used when user customization is required; otherwise an 
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internal notation is simpler and more efficient Implicit representation should be used only when efficiency is 
crucial or the probability of change is low. 

IIJL2 Application Semantic Information 

Representation of semantic information. This dimension classifies the techniques used for defining 
application-specific semantic (as opposed to external appearance) information that is needed by the user interface. 
An example of such information is range restrictions on an input value. The classes are: 

• Implicit 

• Declarative. 

• Procedural. 

The limited range of possibilities allowed by a declarative notation is more of a drawback here than it is for user 
interface definition. (Semantic information is inherently more variable across applications than surface user 
interface choices; were this not so, shared UI behavior would be of no interest) Procedural representations are 
therefore the best bet where shared code must have access to semantic information, while implicit representations 
are usually used otherwise. In cases where only a limited number of alternatives are likely to be needed, declarative 
representations are recommended for ease of use. 

Natural language interfaces have special requirements: a great deal of semantic information must be explicitly 
represented for use in disambiguating sentences. Both declarative and procedural techniques are commonly used. 

JL23 Representation of Data Values 
It turns out that the application interface class is usually sufficient to predict the kinds of data types passed 

between modules, so the design space does not include a separate dimension for this issue. 

The lowest application interface abstraction levels rely on device-related data types, such as bitmaps or other 
image representations for displays, or keystroke sequences for keyboards. Toolkit systems introduce data types for 
user interface constructs such as menus or scroll bars. Interaction managers use "internal" data types that might be 
directly used within application computations, such as integer or floating-point values. Simple IMs use a fixed set 
of standard internal types, while extensible IMs can be extended to communicate in terms of application-specific 
internal data types. 

As a rule of thumb, application-related data types should be used in preference to device-related data types. For 
example, integer or Boolean values are preferred to equivalent character strings or bitmaps. This rule encourages 
moving representation conversions into the user interface code. 

n.3 Control Flow and Synchronization 
We turn now to questions of control flow: what are the control relationships between the system components, and 

how are sequences of events synchronized? 

It is convenient to visualize control flow in terms of logical control threads. A control thread is an entity capable 
of independently performing computations and waiting for events to occur. We use this term in place of "process" 
because we do not want to restrict the notion to standard operating-system-supplied processes. (Section n.5.2 lists 
numerous mechanisms that can support the logical notion of a control thread, possibly with some restrictions in 
thread structure or event response time.) 



33 

Application control flow. Our most basic control flow dimension is a variation of the standard distinction 
between "internal control" and "external control" [Hayes 85]. We prefer to define the categories as: 

• Single input point 

• Multiple input point 

A single input point is appropriate for creating "modeless" interfaces. Even with a moded interface, building the 
application in single-input-point style can be helpful, since it serves to decouple the application from details of user 
interface sequencing. Hence high requirements for application portability or user customizability favor single input 
point control flow. The major advantage of multiple input point flow is that application actions need not be atomic 
with respect to user interaction. Generally, multiple input points should be used only if this is an essential feature. 

A single input point is also desirable when external events are to be handled while waiting for user input; then 
there is only one point at which to worry about external events. 

Number of control threads. This dimension counts the control threads: 

• Single thread: This approach is adequate for simple systems, particularly if single input point control 
flow can be used (i.e., "external control" of the application is sufficient). It is usually not appropriate 
when external event handling is important nor when long command execution times occur. 

• One UI thread and one application thread: This alternative is very popular since it decouples user 
interface control flow from the application. Two threads are sufficient to allow user interface 
operations to execute concurrently with the application. On the user interface side, this allows user 
input to be processed and feedback displays to be updated while commands are being executed. On the 
application side, external events can be handled without impeding user interface response, and the 
application is made more independent of user interface event sequencing. The cost of providing a 
multiple-control-thread mechanism is the major drawback to using this approach. An existing control 
thread mechanism may be usable, depending on the cost of communication between threads. 

• Multiple UI threads: Multiple UI threads simplify dealing with logically independent parallel 
interactions. These occur in modeless interfaces and when multiple input devices are used. An 
inexpensive thread mechanism is necessary to make this a reasonable approach. 

• Multiple application threads: Multiple application threads may be useful for dealing with external 
events. Some systems use them to control cancellation of user commands. 

If an inexpensive control thread mechanism is available, the two-thread approach should be used for all but the 
very simplest user interfaces. The tradeoff point changes if one must build one's own thread mechanism, although a 
simplified mechanism may be adequate. If independent concurrent sequences of events must be dealt with, explicit 
use of multiple threads is nearly always the right choice. Even with a restrictive thread mechanism, this will be 
cleaner and more reliable than ad hoc solutions. 

If external event handling is required to preempt user command execution, a thread mechanism that provides 
preemptive scheduling is very desirable. Without one, it will be necessary to poll for external events during 
command execution; this is feasible, but inefficient and error-prone. 

Treatment of asynchronous input The user interface must have a strategy for handling asynchronous input 
events (events that occur while the application is computing). The standard approaches are: 

• Ignore asynchronous input: Often the simplest approach to implement and it has some advantages in 
terms of simplicity of UI behavior. It is usually not appropriate if commands may take a long time to 
execute. 

• Queue before all processing: A satisfactory solution if events do not remain in the queue for long. 
Otherwise, the lack of feedback is a serious human factors shortcoming. Hence this approach is also 



34 

inappropriate if commands may take a long time to execute; but it is usually the best solution for short 
or intermediate command times. 

• Partial processing with queuing: Provides flexibility, but requires multiple control threads and 
introduces synchronization concerns. Hence it should be avoided unless necessary (i.e., unless there are 
long commands). 

Fast input processing. When partial processing is provided, the variability of behavior of the fast processing is 
an important issue. This may be: 

• Fixed behavior: Simple and has no synchronization problems, but is obviously inflexible. It is 
sufficient if user interface system adaptability is not a strong requirement 

• Parameterized behavior: Recommended in most cases, because the parameter semantics can be 
defined to minimize synchronization problems. (In particular, one should be wary of parameters that 
will be changed "on the fly" when already-processed input may be pending.) 

• Application-dependent behavior: Should be used only if user interface system adaptability 
requirements are so high as to make it mandatory. Use of application-supplied fast processing routines 
reduces application portability and creates significant synchronization concerns. 

The more flexible alternatives in this dimension carry increasing risk of synchronization problems. (A simple 
example is that typed-ahead characters may be echoed twice or not at all when switching between asynchronous 
echoing and application-driven echoing.) Communication costs can also be a problem for the last alternative. In 
general, one should use the least flexible method possible. 

Application communication grain size. How frequently does communication occur between application and 
shared user interface code? 

• Coarse grain: This is suitable when the application need not be involved in the details of UI 
interactions. 

• Fine grain: This is most likely to be required in direct manipulation interfaces. Communication costs 
and application portability are sacrificed, so this alternative should not be used unless necessary. 

Coarse-grained communication should be used if the application has long-running commands or external events 
to cope with, since then one cannot rely on it to provide feedback promptly. 

It is also possible to distinguish between coarse-grained and fine-grained communication at the device interface. 
In coarse-grained device communication, the device-specific code handles feedback for entire sequences of input 
events; while with fine-grained device communication, feedback is handled at higher levels. As a rule of thumb, 
fine-grained device communication is preferable. Coarse-grained communication may be acceptable if substantial 
control of the user interface is to be put in the device driver level; this is associated with the device interface 
classification of abstract devices with variable operations. 

H.4 Matters of State 
The system architecture should explicitly recognize state information, whether hidden within one module or 

shared between modules. Shared state is a useful vehicle for communication. Shared or not, the existence of 
persistent state is a key aspect of system semantics and an important basis for performance optimization. 
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n.4.1 Representation of Interface State 
How to represent the state of the user interface is a very general question. Our rules of thumb address only a 

small part of it, to wit whether to retain intermediate representations of output (such as display lists or cached 
bitmaps). Intermediate representations take extra work to maintain, but can provide valuable benefits. We 
recommend maintaining an intermediate output representation when (1) the output device can usefully be treated as 
having a state (not true for audio output, for instance); (2) recalculating the output device's state from scratch (from 
underlying application state) is expensive; and (3) partial or incremental updates are common. Under these 
conditions the performance gain is worth the extra trouble. 

Intermediate output representations are also important for handling reference interpretation (e.g., deducing that a 
mouse click represents a menu element selection). This may justify maintaining an intermediate representation even 
when display update savings are not significant A partial representation (e.g., just menu coordinates) may be 
enough for this purpose. 

UA2 Communication via Shared State 

Basis of communication* Communication between modules may depend on shared state or on events, or both. 
(An event is a transfer of information occuring at a discrete time, for example via a procedure call or message. 
Communication through shared state variables is significantly different because the recipient need not use 
information in the same order in which it is sent) 

• Events. 

• Pure state. 

• State with hints. 

• State plus events. 

State-based communication can be recommended for driving devices that exhibit persistent state, such as displays. 
The use of explicit state is a natural way of formalizing the maintenance of intermediate representations of output 
(see above). However, event-based communication is more appropriate for devices that have no useful 
characterization of state. 

The hybrid communication forms which combine events with shared state allow improved performance at the 
price of increased complexity. As a rule of thumb, pure state systems are simpler and less efficient than pure event 
systems, which in turn are simpler and less efficient than hybrid systems. 

The major drawback to state-based communication is that it requires efficient access to shared storage. This may 
not be available in multi-process systems, especially when communication across network links is involved. 
Synchronization issues must also be considered if multiple threads access the shared state. 

n.5 Mechanisms 

The final group of dimensions concern the mechanisms used to implement communication and control flow. The 
classifications used here are the lowest level of detail that can reasonably be described as part of the system 
architecture. But these issues are indeed part of system architecture, because they have strong implications for 
questions that we have already discussed. 
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IL5.1 Communication Mechanisms 

Event mechanisms. A pure state-based system has no events and so needs no event communication mechanism. 
The other three classes of communication require a mechanism to pass events between modules. For 
communication within a single control thread, the alternatives are: 

• Direct procedure call. 

• Indirect procedure call. 

Indirect calls provide useful separation between the communicating modules. If the chosen programming 
language has a natural mechanism for representing indirect calls, they are usually well worth the small runtime cost; 
but otherwise the difficulty of using indirect calls may outweigh their value. 

For communication between control threads, the alternatives are: 

• Asynchronous message. 

• Synchronous message. 

Asynchronous messages are often superior since they reduce synchronization problems and can be batched to 
reduce overhead. Synchronous messages have simpler semantics and sometimes can be implemented more easily 
(e.g., message buffers may not be needed). If a message mechanism is already available, one should probably use it 
by default; otherwise asynchronous messages seem better suited to most UI purposes. 

Separation mechanisms. A separation mechanism isolates software components while still permitting 
communication. We recognize four classes: 

• Programming convention: This approach provides very weak protection, but it is flexible and incurs 
no runtime cost This is a reasonable choice for communication between closely related components, or 
when the system components are automatically generated (and thus less prone to human coding error). 

• Visibility rules: This type of mechanism is quite flexible, since the programmer can choose what to 
export or hide. The runtime cost is small: at most a procedure call is needed to cross a protection 
boundary. In many programming languages the protection is not secure against runtime errors. 

• Hardware separation: Security is strong, but the cost of communicating across the protection 
boundary is high—often several orders of magnitude more expensive than a procedure call. This is an 
appropriate choice when it is important to ensure security, for example in a window manager that serves 
multiple applications. This approach may also be necessary for communication between modules coded 
in different programming languages. An important aspect of hardware separation is that most current 
operating systems associate these protection boundaries with processes; hence division of the user 
interface system into protectable entities must be considered jointly with control flow and 
synchronization concerns. 

• Network link: The communicating parties can exist on nonidentical machines. The cost of 
communication in such a case is inherently high, but is worthwhile in distributed environments. 

Generally, visibility rules are the minimum separation that should be used between application and user interface 
code. Stronger separation mechanisms should be used only where there are system considerations that justify their 
cost The major considerations that may justify a stronger mechanism are (1) the need for a shared user interface 
system to protect itself against errors in any one application; (2) use of a system-provided process mechanism that 
forces hardware separation; or (3) the desire to distribute system components across machines in a network. 

Separation will also exist between the shared user interface code and the device-specific code. This may or may 
not use the same class of mechanism as is used at the application interface. In most cases visibility rules are 
sufficient; the main exception is to permit distribution across a network. 
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IL5.2 Control Flow Mechanisms 

Control thread mechanism. Among the many ways to provide the abstract notion of a control thread are: 

• Standard processes: These provide security against other processes, but interprocess communication 
is relatively expensive. For a user interface system, security may or may not be a concern, while 
communication costs are almost always a major concern. If the operating system already provides 
processes, not having to implement one's own process mechanism is an important advantage. In 
network environments, standard processes are usually the only kind that can be executed on different 
machines. 

• Lightweight processes: These are suitable only for mutually trusting processes due to lack of security; 
but often that is not a problem for user interface systems. The benefit is substantially reduced cost of 
communication, especially for use of shared variables. Few operating systems provide lightweight 
processes, and building one's own lightweight process mechanism can be difficult 

• Non-preemptive processes: These are relatively simple to implement since no preemption mechanism 
is needed. Synchronization can be achieved merely by not yielding the processor, although explicit 
interlocks are safer. The major drawback is that response to I/O devices can be slow, and response time 
is hard to control. 

• Interrupt service routines: These provide a simple preemptive scheduling mechanism. The control 
flow and communication patterns of ISR-implemented processes are very restricted, but they are useful 
for ensuring fast response to I/O devices. ISRs are highly machine-dependent and may not be available 
to unprivileged programs. 

• Event handlers: The main advantage of this method is that it requires virtually no support mechanism. 
The key disadvantages are the control flow restrictions, which are comparable to ISRs, and the lack of 
fast response, which is comparable to non-preemptive processes. 

Of these, the most commonly useful alternatives are standard processes, lightweight processes, and event 
handlers; the others are appropriate only in special cases. For most user interface work, lightweight processes are 
very appropriate if available. Standard processes should be used when protection considerations warrant, and in 
network environments where it may be useful to put the processes on separate machines. If these conditions do not 
apply, event handlers are the best choice when their response time limitations are acceptable; otherwise it is 
probably best to invest in building a lightweight process mechanism. 
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