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Abstract

Achieving manufacturing efficiency requires that many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. In this paper we introduce the concept
of Enterprise Management Network (EMN) as the element to facilitate the integration of distributed
heterogeneous functions of a manufacturing enterprise. The integration is supported by having the
network first play a more active role in the accessing and communication of information, and second
provide the appropriate protocols for the distribution, coordination, and negotiation of tasks and
outcomes. The EMN is divided into six layers: Network Layer, Data Layer, Information Layer,
Organization Layer, Coordination Layer, and Market Layer. Each of these layers provides a portion
of the elements, functions and protocols to allow the integration of a manufacturing enterprise.



1. Introduction

This report presents the architecture, the elements and the organization of an Enterprise
Management Network (E.M.N.) to support the integration of the manufacturing enterprise. The
optimization of the manufacturing enterprise can only be achieved by greater integration of
activities throughout the production life cycle. Integration must not only address the issues of shared
information and communication, but how to coordinate decisions and activities throughout the firm.

Achieving manufacturing efficiency requires that the many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. Cooperation can take many forms:

e Communication of information relevant to one or more groups’ tasks. For example,
sales informing marketing of customer requirements, or production informing the
controller of production performances.

¢ Feedback on the performance of a group’s task. For example, field service informing
design and manufacturing of the operating performance of a new product.

¢ Monitoring and controlling activities. For example, controlling the execution of
operations on the factory floor.

¢ Assignment of new tasks. For example, a new product manager signing up production
facilities to produce a new product.

* Joint decision making where groups of "agents” have to negotiate and cooperate in
order to achieve their task (which can be antagonistic or not). For example, an inventory
manager and a scheduler negotiating to define the manufacturing activity.

An Enterprise Management Network is viewed as the "nervous system” of the enterprise, enabling
the functions described above. It is more than a network protocol (e.g., MAP) in that it operates and
participates at the application level. Its philosophy is different in terms of participation and
structuring. Such a system must be defined in such a generic way that it can be integrated with all
kinds of applications an enterprise can use. The following describes the capabilities provided by the
Enterprise Management Network Architecture:

« Information routing: given a representation for information to be placed on the
network and a representation of the goals and information needs of groups on the
network, the information routing capability is able to provide the following:

« Static routing: transfering information to groups where the sender and the
receivers are pre-defined.

» Dynamic routing: transfering information to groups which appear to be interested
in the information. This is accomplished by matching a group’s goals and
information needs to the information packet.
Reh‘ospecbvemuhngrenewmgoldmfomahmpackmmmﬂﬂmyma&hnm
goals and information requirements specified by a group.

~Clmedloopsyswm0ﬁm,fhecommummhmofmfwmahmrmlbsmmem

mtheorgamzatmm Foruample produchmprovxdmgfw&bu&ton}mmﬁw
receipt of orders.

» Novel feedback: Providing feedback for new and novel messages
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e Command and control: Given a model of the firm which includes personnel,
departments, resources, goals, constraints, authority and responsibility relations, the
EMN will support these lines of authority and responsibility in the assignment,
execution and monitoring of goals and activities.

¢ Dynamic task distribution: Supporting the creation of new organizational groups and
decomposition, assignment and integration of new goals and tasks, contracting and
negotiation are examples of techniques to be supported.

The design of the Enterprise Management Network is divided into six levels:

6. Market Layer

5. Coordination Layer

4. Organization Layer

3. Information Layer

2. Data Layer

1. Network Layer

The Network Layer provides for the definition of the network architecture. At this level, the nodes
are named and declared to be part of the network. Message sending (or message passing) between
nodes is supported along with synchronization primitives (such as "blocking”). Security mechanisms
are also provided such as message destination recognition.

The Data Layer provides for queries and responses to occur between nodes in a formal query
language patterned after SQL [6, 7).

The Information Layer provides "invisible" access to information spread throughout the EMN. The
goal is to make information located anywhere in the network locally accessible without having the
programs executed locally know where in the network the information is located nor explicitly
request its retrieval. This Layer also includes information distribution focussed on data classes,
keywords and content and security mechanisms such as agent blocking and unblocking and
schemata locking and unlocking. All the information queries expressed at this layer use the query
language defined at the data layer.

The Organization Layer provides the primitives and elements (such as goal, role, responsibility
and authority) for distributed problem solving. It allows automatic communication of information



based upon the roles a node plays in the organization. Each EMN-node knows its responsibility, its
goals, and its role in the enterprise organization.

The Coordination Layer provides the protocol for coordinating the activities of the EMN-nodes
through negotiation and cooperation mechanisms.

The Market Layer provides the protocol for coordination among organization in a market
environment. It supports the distribution of tasks and the negotiation of change and the strategies
to deal with the environment.

In this report, we present in details the three first layers of this architecture (Network, Data and
Information) which define the distributed knowledge base management [23, 1] supported by the
EMN architecture. In the next report [33], we will present the problems of distributed problem
solving and how they are covered and supported by the IN architecture.

The purpose of this architecture is to support, through the three first layers, distributed
knowledge base and, through the three upper levels, distributed problem solving. Distributed
systems have advantages but also inconveniences. Their characteristics are defined in terms of
coupling and grain size. Our architecture must be able to support the different types of distributed
systems we present in section 2.

In the next section, we focus our attention on the content of an Enterprise Management Network
node (EMN-node). We describe its content and characteristics. Then, each of the three first layers of
the EMN architecture is described in turn. The actual implementation of this system is presented in

[34].




2. Distributed Systems Definition

The Enterprise Management Network Architecture provides the elements and functions to define,
implemert and support a distributed system. A distributed system is a system with many
processing and many storage devices, connected together by a network.

2.1 Distributed Systems Advantages
Potentially, this makes a distributed system more powerful than a conventional, centralized one in

two ways:
o First, it can be more reliable. Every function can be replicated several times. When a
processor fails, another can take over the work. Each file can be stored on several disks,
so a disk crash does not destroy any information. We call this property fault tolerance.

e Second, a distributed system can do more in the same amount of time, because many
computations can be carried out in parallell.

We will say more about these advantages below.

2.2 Decentralized Systems top-level description

"In a very general terms, a system is said to be distributed when it includes several geographically
distinct components cooperating in order to achieve a common distributed task"”[2]. But this
definition is not true for all the domains. If we consider, for example, games involving two players,
the aim of each one is to win the game. So the two agents of this decentralized system do not
cooperate, they compete (they cooperate in playing the game, i.e., they follow some rules, but they
compete about sub-goals-winning).

The set of nodes in the system is usually organized according to various domain dependent
topologies. Decentralized systems in every day life come from a wide variety of areas, e.g., a business
firm, a system for traffic control, etc.

The processing nodes in a decentralized system may all be identical in their capabilities or they
may each possess specific skills. Whatever the configuration is, in a decentralized system both the
control (process) and the knowledge can be distributed throughout the system.

In actuality, there is a range of approaches for decentralized architecture, from an almost
centralized system to a distributed system with a centralized planning and control element, to a
distributed system with a distributed, hierarchical group of control elements, to a fully distributed,
"flat” system in which each element is responsible for its own control.

Moreover, the organization amongst the elements may either be static, remaining the same as
time elapses, or dynamic, adapting itself as the requirements of the environment needs it. In any
case, the processing nodes, or agents, contain knowledge about themselves and their environment,
and a logical capability to work on that knowledge. In other words, the agents have a memory and a

processor.

!Note we are talking sbout large grain parallelisms not connection machine style parallelism.



But we have a limitation for the memory aspect: we cannot have in a decentralized agent all the
needed information for completely autonomous running (the concept of bounded rationality [35]).
This means that we must acquire some information from the other agents of the decentralized
system: the agent must communicate. Bounded rationality implies that both the information a
computing agent can absorb and the detail of control it may handle are limited.

2.3 Distributed System Dimensions

Since almost any real world system is decentralized and, moreover, open in nature [19, 27, 20], the
spectrum of categories for decentralized system is infinite. But we can use two attributes to
categorize decentralized systems along two continuous dimensions: the degree of coupling among
the agents (or nodes), and the grain size of the processors of the agents.

Coupling is a measure related to links between the agents in the system. Loose coupling means
that information exchange amongst the agents is limited. In loosely coupled systems the agents
spend most of their time in local processing rather than in communication among themselves. Tight
coupling, therefore, indicates that there is no practical physical limit on the bandwidth of the
communication channel between the agents. Because of excessive communication, tight coupling also
indicates that the concept of bounded rationality of computing does not completely apply [35].

The grain size of the processors measures the individual problem-solving power of the agents. In
this definition, problem-solving power amounts to the conceptual size of a single action taken by an
agent visible to the other agents in the system. If the grain is coarse then the processing nodes are
themselves rather sophisticated problem-solving systems with a fair amount of complexity. In
coarse-grained applications, the distribution may be characterized to be, therefore, at the task level.
Fine grain often indicates that the individual processors are functionally relatively simple, i.e., they
do not exhibit any "intelligence” per se, and that their number in the system is substantial. Thus, the
distribution in fine-grained applications is at the statement level as opposed to task level
distribution.

2.3.1 Parallel Distributed Processing Systems

Decentralized, fine-grained systems with tight coupling are often referred to as parallel
distributed processing systems [24, 8, 5, 19]. The processing aspect emphasizes concurrent execution
of functionally decomposable tasks.

The objective in parallel distributed processing systems is usually load balancing of shared
informational and physical resources. In distributed processing systems, the computational or
syntactic motivations for decentralization are highlighted:

* speed,

e performance/cost,
¢ modularity,

¢ availability,

« scalability,

o reliability,




o extensibility,
o flexibility.

Although the current trends in the cost and availability of computer hardware would suggest that
adding up enough conventional, low cost processors would result in an immense overall computing
power with a reasonable investment, this has not proven to be the case. On the contrary, it has been
recognized that a severe bureaucracy "bog-down" effect in multiprocessor systems calls for totally
new architectural strategies to operate on the higher degree complexities in routine problem solving.

2.3.2 Distributed Problem Solving Systems Definition

As the opposite of PDP, we have distributed problem solving systems. These are defined
informally as networks of loosely coupled, relatively coarse-grained, semiautonomous, "artificially
intelligengent” asynchronous problem-solving agents, cooperating (or competing according to the
domain) to fulfill their global mission. Asynchronous means that the agents are thought to function
concurrently [24]. Cooperation means that because no node is capable of solving the entire problem
by itself; the nodes have to work as a team and exchange knowledge about the tasks, results, goals,
and constraints to solve the global problem or set of problems.

The degree of cooperation between the nodes in a decentralized problem-solving system may
vary. On one extreme, the nodes may all be pursuing a common goal and be thus fully cooperative.
This assumption is often referred to as tt- benevolent agent assumption. On the other extreme of
the cooperation continuum, the nodes are nonbenevolent, i.e., they are self-interested, possessing
conflicting goals and preferences. Thus, a process of negotiation to resolve the conflicts becomes
crucial.

Decentralized problem-solving architectures with the last set of characteristics mentioned above
are often categorized as nearly decomposable systems. In nearly decomposable systems, the
interactions among the components are weak but not negligible. The emphasis in studying
coordination within nearly decomposable systems is on dealing with the problems arising from
restricted communication and bounded rationality. In the case of decentralized problem solving, the
semantic motivation to pursue decentralization are thus addressed in terms of:

* complexity,

* possibility and
o natural decomposition.

2.4 Distributed Systems capabilities
As mentioned above, a distributed system has to be capable of parallel execution and of continuing
in the face of single-point failures, so it must have:
« Multiple processing elements that can run independently. Therefore, each processing
element, or node, must contain at least a CPU and memory?>.

2Note that multiple EMN-nodes may share a processor



o There has to be communication between the processing elements, so a distributed
system must have interconmection hardware which allows processes running in
parallel to communicate and synchronize.

¢ A distributed system cannot be fault tolerant if all nodes always fail simultaneously. The
system must be structured in such a way that processing elements fail
independently.

e Finally, in order to recover from failures, it is necessary that the nodes keep shared
state for the distributed system.

2.5 Distributed Systems Problems
All these advantages of distributed systems cannot be satisfied due to the complexity of designing
such systems. Some examples of system problems are:
e the amount of interconnections and risk of failure,

e the interferences between processes,

o the problem of propagation of effects between processes,

e the information inconsistency due to its duplication,

¢ the effects of scale due to the dimension of distributed systems and

e the partial failure of one processor that can perturbate the other ones
[29, 18, 22, 27, 15).

The EMN architecture we define in this paper covers most of these aspects. The utilization of
Artificial intelligence techniques to support communication and distribution offers help in solving
most of these problems, especially propagation of effect, information inconsistency and partial
failure.




3. Enterprise Management Network Node

The Enterprise Management Network links together two or more application nodes (EMN-nodes)
by providing the "giue" that integrates the manufacturing enterprise through architectures and
mechanisms to support decision making at all levels of the organization. For example, the CORTES
system [16] is composed of an uncertainty analyser, a planner, a scheduler, a factory model and two
dispatchers responsible for several machines (figure 3-1). Each is defined as an EMN-node.

UNCERTAINTY

FACTORY
ANALYSER PLANNER SCHEDULER MODEL

DISPATCHER-1 DISPATCHER-2

( MACHINE-1.1 @ACHINE—ZJ)—

canare 4 o \ no )
(MACHINEu ) QMCHINE 22 )

Figure 3-1: Example of decentralized system

Each EMN-node consists of the following subsystems3 (figure 3-2):
¢ Problem Solving Subsystem,
* Knowledge Base,
¢ Knowledge Base Manager, and
¢ Communication Manager.

The Problem Solving Subsystem represents all the rules and functions which allow the EMN-
node to solve problems related to its domain. The local execution cycle is triggered either by the
internal transactions generated during local problem solving, or by external events forwarded to the
EMN-node by the Communication Manager.

Each EMN-node contains a locally maintained Knowledge Base to support its problem solving.
It is composed of objects which may be either physical objects (products, resources, operations, etc) or

3Currently implemented in CommonLisp



conceptual objects (customer orders, process plans, communication. paths, temporal relations, etc).
The knowledge base is expressed as CRL* schemata [26].

The Knowledge Base Manager manages information exchanges between the problem solving
subsystem and the knowledge base, maintains the consistency of the local knowledge base, and
responds to request made by other EMN-nodes. In the Enterprise Management Network, knowledge
and data may be distributed throughout the network. It is the philosophy of the system that
knowledge does not have to be available locally in order for it to be used by the EMN-node.
Therefore, knowledge, in the form of schemata, fall into one of two classes: that owned by the
knowledge source which must be stored locally, and knowledge used by the knowledge source, in
which the original is stored at another EMN-node and a copy is stored locally.

K KBM
SEARCHER RESPONDER

Figure 3-2: The elements of an EMN-node

A problem that arises in supporting the exchanges between the problem solving subsystem and
the knowledge base is the unavailability of schemata locally. The problem solver often refers to
objects that cannot be found locally, but may be found in another EMN-node’s knowledge base. At
the time of reference, the problem solver may or may not know where in the Enterprise Management
Network the knowledge resides. It is the responsibility of the Knowledge Base Manager to "hunt
down” the missing knowledge and to respond to like requests from other EMN-nodes. To accomplish
this, the Knowledge Base Manager works with the Communication Manager. It both manages
the search for information in the EMN and responds to like requests from other EMN-nodes. To
perform these activities, the Communication Manager has two modules:

* The searcher communicates via message sending with other EMN-nodes. The searcher
peforms two tasks: searching for knowledge not available locally, and the updating of
knowledge changed and owned by the EMN-node. The policy for updating is defined in
section 5.

* The responder answers messages originating from other EMN-nodes’ searchers, and
updates the local knowledge base according to updating messages.

The communication manager manages four types of events:
¢ Triggering: information that triggers the node’s processing.
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e Dynamic retrieval: Requests for information not available in its knowledge base but
necessary to perform its task. This information needs appear during the internal
processing of an EMN-node.

¢ Updating information: When an EMN-node, as the owner of some schemata, modifies
these schemata, the searcher dispatches the modifications to other EMN-nodes that have
local copies of these schemata. The responder may or may not update a local copy
depending on the usage at the receiving EMN-node. Being the owner of a schema
means, the EMN-node is the only one allowed to globally modify the content of a schema.
But each EMN-node having a local copy of a schema can locally modify the content of
that schema.

e Transaction request: Similar to remote procedure calls.

Problem Solving

Subsystem - M (info. R)
- M (update)
) ,
- info. update X ' —
- info. R - Info. A Searcher CT
—
# - A (info. A)
Knowledge Base T
Manager ‘
- A (info. A)
s
 nio- ppdate | - nfo. A Responder |
L 4 - M (update)
- - M (info. R) ;
Knowledge Base V
~ Subsystem |

Wemmmmmmmmmem&m&mm-mdemﬁgum%.%s
‘mw rent nformation mmmmmmmm&mma
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To illustrate the functionalities of the three first layers of the EMN architecture, we will consider
a decentralized system composed of three agents, connected by a network. Each agent has a specific
Problem Solving subsystem (PS) and a specific Knowledge Base subsystem (KB) (figure 3-4). We
describe in this first figure an empty decentralized system, e.g., without the Enterprise Management
Network. We will extend this example by adding at each Level description the specific elements,

functions and protocols defined there.

NETWORK

AGENT-1 AGENT-2

AGENT-3

Figure 3-4: Decentralized system example




4. Network Layer

4.1 Introduction

The Network Layer defines the EMN-nodes that wxll participate in the Enterprise Management
Network. It assumes the existence of all the hardware and software facilities for this structure such
as: a network (in our case DECnet5), computers (in our case VAX-station® 3200s) and application
software (in our case Knowledge Craft?). It allows the identification of an EMN-node and specifies
its basic elements such as mail box, semaphore box, queues and low level message. In addition to
these elements, the Network Layer provides some basic primitives for this architecture. These

primitives are message passing functions with blocking and without blocking.

The Network Layer defines the following network components:
e EMN-nodes represent problem solving agents. They include the basxc communication
objects: queues, low level message, mail box and semaphore box®. Each EMN-node
initialization, is specified by an EMN-node schema (schema 4-2).

o Channels define communication links between EMN-nodes. Each channel is defined as
an instance of the channel schema (schema 4-3).

e Messages can be sent along channels between EMN-nodes. During the information
transfer, an EMN-node may be suspended (blocked) while awaiting a reply. Each
message is defined as an instance of the network-message schema. These instances are
stored in queues (supported by the network-message-queue schema). The message
passing and message reception is supported by some basic communication functions

dependent on the hardware and operating system.
e Protection is provided so that messages can only be processed by legal EMN-nodes.

o Synchronization primitives are defined to synchronize the internal problem solving of an
EMN-node and communication activities. Primitives such as "block-agent” are
implemented to interrupt the problem solving process until the excution of the "unblock-
agent” primitive. Blocking is used when information is needed for problem solving but
not available locally in the knowledge base system. In that case, the problem solving is
interrupted until the reception of the information. The blocking functions use selective
interruption: they only suspend the problem solving process and keep running the
message sending and message reception processes. This capability is very important in
terms of performance as well as coherence of the distributed system. Since the blocking
function executes selective blocking of the problem solving, during such an interruption
an agent is still able to answer received messages, to update and to distribute

SDECnet is & registered trademark of Digitsl Equipment Corporation.
SVAX is a registered trademark of Digital Equipment Corporation.
"Knowledge Craft is a registered trademark of Carnegie Group Inc.

#Note that these two last objects are dependent of the used operating system
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4.2 Network Specification :

Each implementation of our Enterprise Management Network must be specified. For this
purpose, we have created a schema called Network. It describes the main characteristics of the
global decentralized system by defining specific names for the net and its EMN-nodes (schema 4-1).

Schema 4-1: Network

Network
SLOT FACET VALUE

Name Value: | type string
Restriction:

Type Value: | network type
Restriction:

EMN-nodes Value: | type EMN-node-name*
Restriction:

In fact, each instance of the network schema represents a specific implementation of our
Enterprise Management Network architecture.

4.3 EMN-node specification

The Network Layer of the manufacturing architecture provides the most primitive functions that
enable manufacturing processes to participate in a distributed manufacturing system. All the
schemata presented at this layer must be duplicated in every EMN-node.

4.3.1 Schemata supporting EMN-nodes initialization

At the Network Layer, we intend to model the main characteristics of each EMN-node and
initialize it as a member of the decentralized system. We have defined an EMN-node as a
combination of a Problem Solving subsystem, a Knowledge Base subsystem and a communication
subsystem. The communication subsystem is composed of several elements. All the information
that identifies an EMN-node must be stored in a schema. The EMN-node identification, has been
implemented using a DKC-system® schema. This schema indicates all the details related to an EMN-
node. The initialization of an EMN-node as a member of the decentralized system is done by creating
an instance of the DKC-system schema (schema 4-2) in the corresponding EMN-node. This schema
initializes an EMN-node and also all the elements necessary for the communication activity: the
queues, the timers (one for the updating activity and one for the message reception), the flags and
the triggers. This function supports mainly the local initialization of an EMN-node but does not
support its instantiation as part of the decentralized system. Only local elements are defined in the
DKC-system schema. The creation of this schema is supported by a Lisp function called: DKC-init.

The DKC-system schema contains the name of its local-channel schema. This schema indicates
the addresses of its mail-box file and of its semaphore-box file. The third slot of the DKC-system

SDKC stands for Decentralized Knowledge Craft
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schema is the list of channels with the other EMN-nodes. Each time a channel is created, its name is
stored as a value of this slot. The queued-messages slot contains the new received messages. All the
other slots define names and addresses of flags and VMS routines to support the message passing
functionality.

Schema 4-2: DKC-System

DKC-System
SLOT FACET VALUE

Initialized Restriction: | t/nil

Local-channel Value: | type dke-channel
Restriction:

Channels Value: | type dkc-channel*
Restriction:

Queued-messages Value: | type dkc-queued-message*
Restriction:

Interrupt-function Value: | type lispobj/nil
Restriction:

Interrupt-lost Restriction: | nilt

Update-lost Restriction: | nilt

Timer-efn Value: | type integer
Restriction:

Update-efn Value: | type integer

‘ Restriction:

New-message-efn Value: | type integer

| Trigger-interrupt-id Restriction: | t/nil

j‘Updaﬁng-message-triger-id Restriction: | t/nil

The EMN-nodes of a decentralized system are connected by the network which allows them to
transfer information from one agent to another. But this transfer of information cannot be done
without knowledge about the existence of other agents on the network. Besides, since an agent has a
specific purpose, it includes some specific elements. These elements are the knowledge base sub-
system and the problem solving sub-system. As we intend to create an Enterprise Management
NetwrkaﬂowmngblemSolvmg negotiation, we must provide to each EMN-node the capability of

ognizing who are the other members of this network. Blind communication is possible and easy to
pelferm,:.e. broadcasting (in some cases we will use this capability), but the direct communication
type is more efficient. For this purpose, we define links between the EMN-nodes. We call these links

Channels allow mutual recognition between agents. They are conceptual links. The physical link
is the network. Channels must be created in both directions, i.e., EMN-node Al must have a channel
with EMN-node A2, but EMN-node A2 must also have a channel with EMN-node Al. If four nodes
in a network are to communicate with each other, then each EMN-node must have three channels.
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Schema 4-3: DKC-Channel

DEKC-Channel
SLOT FACET VALUE

Node Value: | type EMN-node-name
Restriction:

MailBox Value: | type symbol
Restriction:

SemaphoreBox Value: | type symbol
Restriction:

The creation, in each EMN-node, of an instance of the DKC-system schema initializes the
decentralized communication system. A new EMN-node, to become part of the global decentralized
system, must create some links with the other already existing EMN-nodes of the system. We must
establish strong connections between the EMN-nodes of the DKC structure (Decentralized System).
For that purpose, we create, using the DKC-channel schema (figure 4-3), channels between the
EMN-nodes of the DKC structure. These channels allow us to define the address of each
EMN-nodel?. In this way, we are able to transfer information (or schemata) through the network,
between the different EMN-nodes.

Schema 4-4: local-DKC-Channel

local-DKC-Channel
SLOT FACET VALUE
Key-words Value: | type string*
Restriction:
Node Value: | type local-EMN-node-name
Restriction:
MailBox ‘ Value: | type symbol
Restriction:
SemaphoreBox Value: | type symbol
Restriction:

An instance of the DKC-channel schema is created between an EMN-node and each of the other
EMN-nodes of the global system. But locally, an instance of this schema is also created and called
the local-channel. This schema contains the information about the local EMN-node name and
address and also a list of key-words which are attached to a specific EMN-node. These key-words will
be used at the upper level of the EMN Architecture. This slot is only created for the local-channel
schema. At the initialization of an EMN-node, this information is not available for the other
channels created with the other EMN-nodes. These key-words define the information type an EMN-
node is using. This slot is completed automatically by Lisp functions defined at the Data Layer of
this architecture.

10Note that in our specific implementation the address of each EMN-node is defined using mail-box and semaphore-box
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4.3.2 Functions supporting EMN-nodes initialization

The initialization of each EMN-node means the instantiation for each EMN-node of the DKC-
system schema, of the local-channel schema and of the channel schemata with all the other EMN-
nodes of the system. This activity is supported by several Lisp functions, such as dkc-init and open-

channel:
+« EMN-node-initialization: This function allows the creation of an instance of the EMN-
node schema. We must use this function at the beginning of the utilization of the
Enterprise Management Network architecture. Since, by initializing an EMN-node, we
define all the elements needed for communication such as mail box, semaphore, etc., the
implementation of a specific EMN-node must start with a call to this function (this
function is implemented as the "DKC-init" function).

¢« EMN-node-deletion: This function deletes an EMN-node schema instance. As we can
initialize an EMN-node, we can also remove an EMN-node from the decentralized
system. Removing an EMN-node is more -complicated than it seems. Since all the EMN-
nodes know the existence of the other EMN-nodes, to interrupt one EMN-node requires
an updating of all this knowledge (this function is implemented as the "DKC-term"
function).

¢ Link-between-EMN-nodes-creation: With this function we create an instance of the
channel schema. This function provides to each EMN-node the knowledge for direct

communication. They achieve a mutual recognition. The role of this function is very
important for efficiency (this function is implemented as the "open-channel” function).

¢ Link-between-EMN-node-deletion: With this function we delete an instance of the
channel schema, and we suppress a link between two EMN-nodes. As for the removing of
an EMN-node from the decentralized system, the deletion of a channel must be done
carefully. For example: a channel deletion must be done in both directions (this function
is implemented as the "close-channel” function).

4.3.3 Example of EMN-node initialization

At the initialization of each EMN-node, the schemata presented at this layer are created. As we
have seen in the previous section, the instantiation of these schemata is supported by Lisp functions.
The first step for the Network Layer instantiation in an EMN-node is the utilization of the DKC-init
function. This function creates the DKC-system schema and the local-channel schema:

(DKC-init ’‘agent-1
" [cortes.mailbox]agent-1.sem;1"
" [cortes.mailbox]agent-1.box;1"
’interrupt-function-1)

This function creates agent-1-DKC-system schema (schema 4-5) and agent-1-DKC-local-channel
schema (schema 4-6) (in this example). These schemata define the local elements of the agent-1.

This command has instantiated agent-1 EMN-node and has also created two files:
IWm%mhgmbLm,Lwh&uthesem&phm—bmﬁhofngmblmdm
: agent-1.box;1 which is the mail-box file of agent-1. In addition, pa: i
thxsmm-mdemdeﬁnedmchummagmt-l which is a unique value. This function
also initializes the interrupt-function-1. As we said previously in this chapter, the blocking
mechanism used by an EMN-node can either be the generic blocking primitive or a specific interrupt
function. In this example, the second possibility is used. The different queues and objects such as the
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network-message-schema are created to support the communication primitives triggered by the
DKC-init function.

Schema 4-5: Agent-1-DKC-System

Agent-1-DKC-System

SLOT FACET VALUE
Initialized Restriction: |t
Local-channel Value: | agent-1-dke-local-channel
Channels Value: | nil
Queued-messages Value: | nil
Interrupt-function Value: | interrupt-function-1
Interrupt-lost Restriction: | nil
Update-lost Restriction: | nil
Timer-efn Value: | timer-efn
Update-efn Value: | update-efn
New-message-efn Value: | new-message-efn
Trigger-interrupt-id Restriction: | trigger-interrupt-id
Updating-message-trigger-id | Restriction: | updating-message-trigger-id

Schema 4-8: agent-1-DKC-local-Channel

agent-1-DEKC-local-Channel
SLOT " FACET | VALUE
| Instance | Restriction: | dkc-channel
Key-words Value: | nil
Node Value: | agent-1
MailBox Value: | [cortes.mailbox]agent-1.box;1
SemaphoreBox Value: | [cortes. mailbox]agent-1.sem;1

This function creates also the different queues and schemata to support the different primitives of
this layer. In addition, the VMS routines which support these primitives are triggered. The network
layer instantiation is completed by the creation of the channels between this EMN-node (agent-1)
and the other EMN-nodes of the system. This channel creation is supported by the "open-channel”
Lisp function. Each time this function is called, a new channel schema is created between the local
EMN-node and the others. If we take the example of the channel creation between agent-1 and
agent-2, we have to execute this function:

{(open-channel ’agent-2
" [cortes . mailbox]agent-2.sem;1"
" [cortes.mailbox]agent-2.box;1")
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This function creates agent-2-DKC-channel schema (schema 4-7) and it represents the link
between agent-1 and agent-2 for the message passing purpose. This schema indicates the address of
the mail-box and semaphore box files of the agent-2. Besides, it also indicate the agent-2 node name.
This name is used to identify a specific EMN-node.

Schema 4-7: agent-2-DKC-Channel

agent-2-DKC-Channel
SLOT FACET VALUE
Instance Restriction: | DKC-channel
Node Value: | agent-2
MailBox Value: | [cortes.mailbox]agent-2.box;1
SemaphoreBox Value: | [cortes.mailbox]agent-2.sem;1

In addition, as a new DKC-channel schema is created, this information is stored as a value of the
channels slot of the Agent-1-DKC-system schema (schema 4-8). To create other links with the other
EMN-nodes of the system, we follow the same process. Each time the "open-channel" function is
called, an instance of the DKC-channel schema is created and agent-1-dkc-system schema is

updated.
Schema 4-8: Agent-1-DKC-System

Agent-1-DKC-System

SLOT FACET VALUE
Local-channel Value: | agent-1-dke-local-channel
Channels | Value: | agent-2-dkc-channel
Queued-messages Value: | nil
Interrupt-function Value: | interrupt-function-1
Interrupt-lost
| Update-lost
Timer-efn
| Update-efn
New-message-efn Va pSSage-¢
| Trigger-interrupt-id | Restriction: | trigger-interrupt-id

Updating-message-trigger-id | Restriction: | updating-message-trigger-id
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4.4 Communication Procedures

4.4.1 Schemata supporting the communication procedures
EMN-nodes communicate via message that are stored in a message-queue. These two elements
are also defined as schemata.

These two schemata (schema 4-9 and schema 4-10) are network level communication elements, i.e.
their purpose is message passing. At the other levels we will define other message schemata and
queues for more intelligent communication activity. These other schemata will be based on these
network layer schemata. The DKC-message schema allows the transfer of schemata from one
initialized EMN-node to another through the channels. The DEKC-queued-message schema stores
the exchanged DKC-messages before transfering them to or reading them from the mail box of the
destination EMN-node. These two schemata use also Lisp functions for their creation.

Schema 4-9: DKC-message
DEKC-message
SLOT FACET VALUE
Sender Value: | type EMN-node-name
Restriction:
Priority Restriction: | 0.0 to 1.0
: Role Value: | type lispobj
1 Restriction:
‘ Dialog Value: | type lispobj
Superclass Value: | type lispobj
Class ‘ Value: | type lispobj
Restriction: |
| Type
| Schemata
From-context
To-context
Metas
Lispobjs Value: | type lispobj*
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The DKC-message schema can support the transfer of schemata of strings and of Lisp objects. To
specify the information we are transfering, we indicate its value in the "type" slot of the message.
Different combination of context transfer are supported:

¢ <context> => <context>

o <context-1> => <context-2>

¢ <context> => :from-context

e :simple => :simple

e :simple => :from-context

e :current-context => <context>

¢ current-context => :current-context

¢ :current-context => from-context

We attribute to each message a priority. The aim of this parameter is to select from the message
queue the high level priority message. We only indicate the message sender (the EMN-node which
generates and sends the message) because the message receiver is the message destination.

Schema 4-10: DKC-queued-message

DEKC-queued-message
SLOT FACET VALUE

Sender Value: | type EMN-node-name
Restriction:

Priority Restriction: | 0.0 to 1.0

Role Value: | type lispobj

‘ Restriction:

Dialog Value: | type lispobj
Restriction:

Superclass Value: | type lispobj
Restriction:

Class Value: | type lispobj
Restriction:

| Type Restriction: | schema/string/lispobj

Body Value: | type lispobj*
Restriction-

4.4.2 Functions supporting the communication procedures

In the Network Layer, we define several types of primitives. The first ones allow the initialization
of an EMN-node (EMN-node-initialization). This initialization is done by creating instances of the
different schemata presented in the first section. In each EMN-node, we must create an instance of
the EMN-node schema. This instantiation also implies the creation of instances for the Knowledge-

base, knowledge-object, Problem-solving and procedure schemata.
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For mutual recognition between EMN-nodes, instances of the channel schema are defined. This
definition is also supported by primitives (link-between-agent-creation).

In addition, we define primitives for communication purposes. The two main primitives are

message passing and message reception. We can summarize the communication and
synchronization functions we define at the Network Layer:
e Message sending

* Message-sending-with-blocking: This function allows the execution of message
passing that blocks the running of the problem solving subsystem until the
reception of the answer to this message. The implementation of such a function is
specific to each EMN-node. For this reason we will provide a generic and also a
specific blocking function. The generic one will execute the Problem Solver
blocking without conditions. The specific one will use the generic one and will add
conditions for blocking.

* Message-sending-without-blocking: This function allows simple message
passing. It takes place only for asynchronous message passing. In this case, once
message sending is done, the Problem-solving subsystem continues its processing
(implemented as the "dkc-write” and the "dkc-send” functions).

¢ Message reception
* Message-reception-with-blocking: This function allows message reception with
blocking of the problem solving of the EMN-node. For this one we also define a
generic and a specific function. We can establish priority according to the nature of
the information which is received.

» Message-reception-without-blocking: This function allows simple message
reception. In this case, no blocking of the problem solving is executed. Mail box
checking is performed once the problem solving has finished its activity
(implemented as the "dkc-read” function).

¢ Blocking: This is a mechanism for stopping the problem solving subsystem from
running. This function is a primitive used by the four other functions defined previously.
This primitive causes a selective interruption of the problem solving process out, keeps
running two others: message-sending and message-reception (implemented as the
"block-EMN-node" function).

¢ Unblocking: This is a mechanism to re-start the running of the problem solving
subsystem. It is also a primitive function used by the previous ones. The utilization of
this function can only take place after the of the blocking one (implemented
as the "unblock-EMN-node" function).

4.4.3 Example of communication function implementation

In this section, we define the algorithms used for a specific implementation of the Network Layer
communication functions. This example assumes the utilization of Vax-320011, DECnet12, VMS13
operating system and Knowledge Craft!4.

11YAX is a registered trademark of Digital Equipment Corporation.
12DECnet is a registered trademark of Digital Equipment Corporation.
13yMS is a registered trademark of Digital Equipment Corporation.
MK nowledge Craft is a registered trademark of Carnegie Group Inc.
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1 Message passing without blocking
4";(8.“:33% passing is used to transfer a network-message schema from one EMN-node to another

(taking into account protections). This transfer is done using the channel schema and also the ma.il
box and semaphore box of the EMN-node destination of the message. The different steps of this

primitive are described in figure 4-1.

(dkc-send-message low-level-message-nameﬂ

lock-channel

!

write-message
into_mail box

!

b of e unlock-channel
semaphore-box

Figure 4-1: Message passing algorithm

verification is performed, we can test the availability of this channel. The ata of this test is t
mtm.i&ifmm-nodsmto'ﬁuintbemmaﬂbuatthesmeﬁme.

'mmmkthmﬁnﬁmdtbechmm!(mdahomaﬂ-box)stam.%en the mail bo:
ﬁhmm,wmﬁy&cmnﬁhcnmaphmbn%enﬂmesemaphomboxexists,i.e
another EMN-node is reading or writing into the mail-box, the EMN-node waits until it is deleted
mmh&hwkhdbo&ﬁﬁngmdmﬁngofthemaﬂbox When the semaphor
bwi;d&td,mmmmhﬁuluﬂtepoﬂhemmgepudngpﬁmiﬁve,whichisasequencec
three phases:
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1. lock the channel (by creating a semaphore box)
2. write the message into the destination mail box Gf

the mail box already exists, we

append the new message to this file, if not, we create this file and copy this new

message in this file)
3. unlock the channel (by deleting the semaphore box)

The different steps of the message passing function are described on figure 4-2 which gives an

example with two EMN-nodes.

TEPS:
AGENT-1
1
AGENT-1
mail-box-2 ?
2 message-1 sem-box-2 ?
AGENT-1
3 channel
message-1
AGENT-1
4

AGENT-2

AGENT-2
sem-box-2y AGENT-2
mail-box-2

AGENT-2

Figure 4-2: Message passing steps




4.4.3.2 Message reception
In the Network Layer, a second function is defined: message-receptlon (figure 4-3). This

function allows reading the contents of the mail box. When it is triggered, it checks first the mail box
status. When the mail box exists, it means another EMN-node has written a message in it, in which
case we verify the existence of the semaphore box. If the semaphore box exists, i.e., the mail box is
locked, the EMN-node waits until it is unlocked, i.e. the semaphore box is deleted. When the mail
box is unlocked, the second step can be executed.

(check-message)

try again

locked
channel ?

yes

creation of

lock-ch
a semaphore-box ock-channel

v

read-message
from mail box

!

uniock-channel

deletion of the
semaphore-box

Figure 4-3: Checking mail box algorithm

The second step of this function is performed in three phases:
1. lock mail box (by creating a semaphore box)
2. read mail box (by copying this message from the mail box to the EMN-node problem
solving sub-system). Once the message is transfered, it is deleted from the mail box and
if the mail box is empty, it is also deleted, i.e. the mail box file is deleted.

3. unlock mail box (by deleting the semaphore box)

This primitive is equivalent to the message passing one except that it reads instead of writing into ‘
the mail box and the "mail box existence checking” test is added. The mail box existence checking
test allows to suppress or to keep the execution of the second second step of that function, i.e. before
reading the mail box we test if this mail box exists or not, if it does not exists, this function return
'nil. If it exists, the second step is executed, i.e. mail box reading.

The different steps of the message reception function are described on figure 44 which gives an
example with two EMN-nodes.
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TEPS: —GENTS |
1 mall-box-2
message-1

AGENT-1 AGENT-2
mail-box-2 ?

2 mall-box-2 *
message-1 sem-box-2 7

AGENT-1 AGENT-2
3 mall-box-2
message-1

AGENT-1

Figure 4-4: Message reception steps

4.4.3.3 Message passing with blocking

The last function provided at the Network Layer is blocking. This function allows interruptio
the Problem Solving execution. This interruption occurs when the PS needs information; wsemspend
its running until the reception of the needed information.

The blocking primitive can be used either with message passing or message reception. We describe
an example of message passing with blocking, and the reception of the answer, which unblocks the
EMN-node. In the first steps (figure 4-5), the searcher, due to an information lack during the
execution of the Problem Solving, generates a message to acquire this information. Problem Solving
is blocked to suspend its running until the reception of the needed information.
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Phases:
( AGENT-1 )  AGENT-2
1
\_ J ‘ . Y,
( AGENT-1 mail-box-2 2 ( AGENT-2
2 P.S. blocked | <om-pox-2?
message-1 \
J . ,
AGENT-1 - -
5 [75 5ot cnamme
message-1 mail-box-2
\_ J ,
{ AGENT-1 W
P.S. blocked
‘4 mall-box-12
\_ J e y

Figure 4-5: Message passing with blocking: step 1

These first steps consist in the passing of message-1 from agent-1 to agent-2:
¢ The problem solving of agent-1 is blocked when message-1 is generated.
 The searcher verifies the existence of a channel with agent-2 and also the existence of
agent-2's mail-box and semaphore-box.

¢ In this case, both files, ie. semaphore and mail box files, did not exist, so they are
created by the searcher of agent-1. Message-1 is sent through the channel to the mail
box of agent-2.

¢ Once message-1 is copied into the mail box of agent-2, the semaphore box of agent-2 is
deleted, i.e., mail-box-2 is unlocked.

In the second step (figure 4-6), agent-2 receives message-1 (generated by agent-1 due to an
information lack). In response to message-1, the responder of agent-2 generates message-2.

This next step consists in mail-box-2 checking by the responder of agent-2. This mail box checking
is executed according to these steps:

‘ esponder of agent-2 is triggered by the existence of mail-box-2 file. It checks the
existence of semaphore-box-2, i.e., the status of mail-box-2.

* To lock mail-box-2, agent-2 responder creates sem-box-2 file.
¢ Then it reads the content of mail-box-2.

e Once all the messages contained in mail-box-2 are copied to agent-2, mail-box-2 and
sem-box-2 are deleted.




Phases:

5
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(AGENT-1

( AGENT-1 )

P.S. blocked
\_ J
(" AGENT-1 )

P.S. blocked

/

P.S. blocked

The message generated by agent-2 is sent back to agent-1 using the same sequence as in step one

\.
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mail-box-2
message-1

malil-box-2
message-1

AGENT-2
mail-box-2 ?

sem-box-2 ? )

AGENT-2

J

AGENT-2

message-1

J

Figure 4-6: Message passing with blocking: step 2

(figure 4-7). Step 3 is the passing of message-2 from agent-2 to agent-1.

Phases:

8

10

11

( AGENT-1

P.S. blocked

\. J

 AGENT-1 \
P.S. blocked

.

.

AGENT-1
P.S. blocked

\.

AGENT-1
| P.S. blocked

\.

mail-box-1 ?
sem-box-1 ?

>

channel

( AGENT-2 Y

messige- 1

\_message-2 J

( AGENT-2 Y

message-2

. J
( AGENT-2 Y

mall-box-1
message-2

-/
 AGENT-2
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Figure 4-7: Message passing with blocking: step 3




Step 3 contains the following phases:
o The searcher of agent-2 verifies the existence of a channel with agent-1 and also the
existence of agent-1’s mail-box and semaphore-box.

¢ In this case, both files, i.e. semaphore and mail box files, did not exist, so they are
created by the searcher of agent-2. Message-2 is sent through the channel to the mail

box of agent-1.

« Once message-2 is copied into the mail box of agent-1, the semaphore box of agent-1 is
deleted, i.e., mail-box-1 is unlocked.

Phases:
AGENT-1 f AGENT-2
12 P.S. IPIoc::gd
x- < - -
B L )
AGENT-1 sem-box-1 AGENT-2
13 [P biockes [T | |
)
\ .
(" AGENT-1 (" AGENT-2
P.S. blocked
14 mess:ge—2
\.unblock-agent J \_ )
( AGENT-1 ) ( AGENT-2
15
. y \ J

Figure 4-8: Message passing with blocking: step 4

The last step (figure 4-8), illustrates the reception of message-2 by agent-1. When mail-box-1
checking is executed and when message-2 is copied from the mail box to the KBS, problem solving is
unblocked. We must specify that the unblocking takes place only if the message contains the needed
information. The following steps are executed:
nder of agent-1 is triggered by the existence of mail-box-1 file. It checks the
ee ofsemaphore—box 1, i.e., the status of mail-box-1.

» To lock mail-box-1, agent-1 responder creates sem-box-1 file.

» Then it reads the content of mail-box-1.

* Once all the messages contained by mail-box-1 are copied into agent-1, mail-box-1 and
sem-box-1 are deleted.

* As message-2 contains the needed information, this information is provided to the
Problem Solver and the PS is unblocked.




4.5 Network Layer example
If we continue to describe the example we used in section 2 (ﬁgure 3-4), by adding the network
layer to this empty structure, we get figure 4-9.

The main modifications which occur in this structure are:
¢ The initialization of the EMN-node. This includes the definition, for each EMN-node, of
the decentralized system, of a name and of an address.

¢ The creation of links between the EMN-nodes through the utilization of channels. These
channels also include the basic primitives for the message passing activity and all the
schemata needed by this activity: queues and network-message schemata.

This first layer provides the frame for communication. Each EMN-node is defined and knows
about each others in terms of existence. Basic communication functions are provided to support
message exchanges between identified EMN-nodes. In addition, security mechanisms such as EMN-
node blocking and unblocking are specified.

NETWORK

CHANNEL

Figure 4-9: Network Layer implementation example
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5. Data Layer

5.1 Introduction
Assuming the existence of the Networ.. Layer, we define the Data layer of the manufacturing

architecture as the step for the definition of the objects supporting intelligent communication
between EMN-nodes.

A decentralized structure, to be coherent, must exchange information between its different EMN-
nodes. For that purpose, messages are sent through the network between the EMN-nodes.

The Data Layer provides EMN-nodes with the capability to explicitly request and send
information, in the form of schemata, from/to other EMN-nodes. The protocol for requesting and
asserting information between EMN-nodes is based on a subset of SQL [6, 28]. In this version,
schemata correspond to tables, and slots correspond to fields. Protection is provided at the schema
level; access to schemata may be locked and the requesting EMN-node blocked until the schema is

unlocked.

? —
> —» QUERY
K.B.S. _—
3 ANSWER
REQUEST
Figure 5-1: Query elements

The Data Layer contains the basic schemata manipulated and the language to express queries for
objects belonging to the KBS. These elements are a set of schemata allowing the manipulation of
high level information and the definition of a query language used to express an EMN-node request
for a specific piece of information in structured way. These requests are defined for KBS objects.

The information flow between EMN-nodes is dependant on each of their needs. These exchanges
are carried out to satisfy a request for information not available in the Knowledge Base subsystem of
an EMN-node. The request is done at first on a specific type of information (using for example the
CRL command GET-VALUE!Y). These exchanges can also be performed for the purpose of

“Farmmph,intbemnentCRL:(GET-VALUEMM‘C«puity)inthhuu'mnchine'istbenchemnnunelnd
“capacity” is the slot name. If this value is available in the Knowledge Base subsystem, it is returned; if not, an error message
is returned.
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consistency. We will see at the next Layer that several kinds of communication processes can be
defined. At this Layer we must provide all the elements to support these communication types.

Two sets of elements must be defined (Figure 5-1):
¢ The schemata manipulated (objects),

¢ The query language.

The query language allows the expression of a need for information in a generic and
understandable way. The objects provide the frame for the information definition and also for the
information exchange. Both must take into account several types of communication capabilities and
must be compatible (because the query language manipulates the objects and the result of a query is
an object).

We have identified four type of objects:
o Information: is a reference to the knowledge base. Each information object is represented
as a schema or part of a schema (slot).

o Message: is defined as a combination of an information need, a producer and a
destination. Each message is an instance of the generic message schema.

e Answer: is generated to answer a specific message schema. The answer schema includes
all the slots of the message schema with, in addition, a status slot (which indicates if the
information request is provided or not) and the schema-name-answer slot (whose value
is nil or the needed information).

e Communication schema: is the schema which provides the capability of the Enterprise
Management Network to efficiently acquire and distribute the information. Through the
utilization of a dictionary (and of a communication language), each EMN-node has the
capability for mutual understanding. The correspondance table allows an efficient
information search by defining the owner of the used schemata. The User-table defines
the users of the schemata owned by a specific EMN-node.

In the rest of this section we describe these two aspects, objects and language. In addition, we
introduce the communication information consistency primitives which maintain coherence between
the different tables and schemata used for the communication activity between the EMN-nodes.
These tables are defined as slots of the communication schema and are presented in the next section.

5.2 Schemata manipulated

Each EMN-node is an agent of a distributed system. This means each EMN-node has to perform
specific activities which represent a part of the global activity of the whole system. Each EMN-node
has the capacity to perform its own activity, but there are some limitations in terms of bounded
rationality, consistency and coordination. If a system is of n EMN-nodes, the realization of
n tasks (one by each EMN-node) is not enough to ensure consistency for the global result.
Consistency can only be achieved through negotiation and cooperation. Besides, bounded rationality
implies distribution of the knowledge in each EMN-node with some restriction on their
completeness. All these facts produce a need for a communication activity between the EMN-nodes.

In the Network Layer, we have defined the primitives for 2 message passing functionality. In this
level we are going to use these capabilities by building upon them the frame for more intelligent
communication, allowing information search, cooperation, negotiation and coordination.
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To communicate means that each EMN-node can exchange information with all the others. Each
EMN-node can receive or send messages according to its needs and also according to the requests it
receives. We can define what these possible exchanges are. We indicate in figure 5-2 the different

transactions which can occur in an EMN-node.

We indicate in this figure two kind of transactions: the request and answer for information and
the updating activity.

to send information .
message request or to receive
pdating message
4 4
SEARCHER RESPONDER )
A’ . -
to receive information information to send
answer

answer

Figure 5-2: Object flow representation

To support these exchanges, an EMN-node manipulates four types of schemata:
¢ information (or schema),

* message,
* answer and

: ati MW&W%&QW@M(J 2 5-1). It can be an &
mathibmbeefmm Inmrme,m asider an infeemation enm@

hema theswchergenmteaone(orseveral)mesmge(z)




33

Schema 5-1: Information

Information
SLOT FACET VALUE
Name Value: | type string
Restriction:
Lexicon Restriction: | type schema-name/slot-name
Lock-status | Restriction: | t/nil
Shared-status | Restriction: | t/nil

In our definition of what is an information object, we have kept the capability to express it either
as a schema or as a slot of a schema. In addition, we introduce the concepts of locked information
and shared information. The first aspect concerns the protection of information. The second concerns
the behavior of information.

The locking of an information can be used when conflicts appear. An example can be: two
EMN-nodes want to read and update the same information at the same time. In such a case, a
priority is defined between the two EMN-nodes and in between the information is locked. This
mechanism provides security in term of information consistency. The concept of shared
information is defined as follow: an information is said to be shared when it has several owners,
i.e., several EMN-nodes allowed to update the information globally along the decentralized system.
This concept defines the nature of an information.

5.2.2 The message schema

A message object is an information + a destination + a producer (schema 5-2). We have several
kind of messages: we have the messages sent due to a request for information coming from the
central kernel or we can have updating messages sent because of a Knowledge Base modification.
We have created a schema called message to be used by the communication system. This schema is
generic. The communication modules, to use it, generate instances of the message schema. For each
instance of the message schema, we must fill all the slots. Since a message schema is created due to
an information need, an information distribution or an updating activity, we use the name of that
information which is either needed or updated or distributed. This information is always a schema.

The first slot, number, is a label used to identify the message. In this way we will be able to make
the correspondance between an answer and its corresponding message. This label will be used to
check if the information request has been resolved or not.

The type slot can have four values: info-search, update, distribute-END, distribute-LC or
distribute-UT. In this way, we make the distinction between an updating message, a distribution
activity and a message created due to an information need. According to the type, the responder
which receives a message will generate an answer (if it is the info-search type) or will update its
Knowledge Base subsystem (if it is the update type) or will trigger its own distribution process (if it
is the distribute-CT or distribute-LC type). The distribute-END message type concerns the deletion
of an EMN-node in the global system.
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The priority slot is filled with a number (0.0 to 1.0). We currently use two values: 0.5 for the
search-info message type and 1 for the update message type. But this slot is allowed to receive all
kinds of values. This slot will be used when a responder has several messages in its mail box. These

messages will be processed according to their priority.
Schema 5-2: Message

Message
SLOT FACET VALUE
Number Value: | type integer
Restriction:
Type Restriction: | info-search/update/distribute-END
distribute-LC/distribute-UT
Priority Restriction: | 0.0 to 1.0
Schema-name Value: | type string
Restriction:
Slot-name value: | type string
Restriction:
Schema-name-translated Value: | type string
Restriction:
Slot-name-translated Value: | type string
Restriction:
Producer Value: | type local- EMN-node-name
Restriction:
Destination ‘ Value: | type EMN-node-name

The schema-name slot is the name of the schema needed by an application and not available in
its Knowledge Base sub-system (for example the schema "machine”).

The slot-name slot is the one needed by an application. We indicate this slot-name just to be sure
that the EMN-node which will provide the answer (this means the schema) will include that slot (for
example the slot "capacity” of the schema machine).

The schema-name-translated slot is the translation of the schema-name into the
communication language. As we have seen, each EMN-node has its own internal vocabulary. These
vocabularies are different from one EMN-node to another. To solve this problem, and to allow
communication, we must use a generic communication language understandable by all the EMN-
nodes. Whenthemmhergenemtesammsagetogetasdxema, the needed schema name is
translated into the communication language (to be understood by the responder of the EMN-node
which will receive the message). The responder which receives the message translates the needed
schema name from the communication language to its internal EMN-node vocabulary.
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The slot-name-translated slot is the translation of the slot-name into the communication
languagel$,

The producer slot is the local address of the message sender.
The destination slot is the destination of the message.

Each time an information object (a schema) is needed by the problem solving subsystem of an
EMN-node and not available in its Knowledge Base subsystem, the searcher generates an instance of
the message schema. For the updating message it is the same thing. The main problem for this
instantiation is to determine the destination and the translation of the slot and schema requested or
updated. These slots are completed by the searcher, which determines their values according to
heuristic rules and a dictionary. Regarding the distribution activity, it can be triggered for different
reasons. The first one is at each EMN-node initialization. The second is at the reception of
distribution messages from another EMN-node. The last possibility is for the creation of new
schemata.

Schema 5-8: Information-search-message

Information-search-message

SLOT FACET VALUE
Instance Restriction: | message
Number Value: | 1
Type Restriction: | info-search
Priority Restriction: | 0.5
Schema-name Value: | machine-1
Slot-name value: | capacity
Schema-name-translated Value: | machine-1-translated
Slot-name-translated Value: | capacity-translated
Producer Value: | EMN-node-1
Destination Value: | EMN-node-2

For information search activity, we add the slot: slot-name, to be sure that the EMN-node which
will provide the answer, will include in it the good schema but also the complete schema (with the
needed slot) (we give an example of an information search message schema 5-3). For this type of
message, we use the translator function to translate the information need (schema-name slot-name)
expressed with the internal EMN-node vocabulary into the generic communication language
(schema-name-translated slot-name-translated) understandable by the other EMN-nodes.

16The communication language we have defined in our specific implementation just supports direct translation of one
“word” into another unique "word™. This kind of translation is in most cases not enough. MWWMMM
is not taken into account. In our next implementation we will modify this structure by developing a more
system allowing us to support a specific communication language dedicated to the nature of the destination EMN-node. We
specify these functionalities in the query language we define in the next part.
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Schema §5-4: Updating-message . 1

Updating-message
SLOT FACET VALUE
Instance Restriction: | message
Number Value: | 2
Type Restriction: | update
Priority Restriction: | 1
Schema-name Value: | machine-2
Schema-name-translated Value: | machine-2-translated
Schema-name-updated Value: | (machine-2-translated
(ATTRIBUTE (capacity-translated 100-p/h)
(type-translated drilling-machine))
(RELATION (is-a machine)))
Producer Value: | EMN-node-1
Destination Value: | EMN-node-2

For updating messages, we add another slot schema-name-updated. This slot contains the
schema, with its slots and values, which is to be updated in the other EMN-nodes (we give an
example of an updating message schem: 5-4). In this kind of message, the translator function is used
for the two slots: schema-name-translated and schema-name-updated. We must translate the value
of these slots into the generic communication language because this information must be used by
other EMN-nodes having not necessarily the same internal vocabulary.

Schema §5-5: LC-distribution-message

LC-distribution-message
SLOT FACET VALUE
Instance | Restriction: | message
Number | Value:|3
Priority Restriction: | 1

| Local-channel Value: | (local-channel-1
(RELATION (instance DKC-channel))
(ATTRIBUTE (mbox-name mb1)
(semaphore-name sem1)
(node EMN-node-1)
(key-words kwl kw2 kw3)))

| Producer Value: | EMN-node-1
Destination | Value: | EMN-node-2
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For distribution activity, according to its nature, we add a specific slot. If we distribute the local-
channel schema, the message type will be "distribute-LC" and the message created will contain a slot
called local-channel having as value the local-channel schema (we give an example of a local-
channel distribution message schema 5-5. In this example, EMN-node-1 provides its local channel
schema to EMN-node-2.).

Schema 5-6: UT-distribution-me.ssage

UT-distribution-message
SLOT FACET VALUE

Instance Restriction: | message

Number Value: | 4

Type Restriction: | distribute-UT

Priority Restriction: | 1

UT Value: | ((article-1-translated
(EMN-node-2 EMN-node-3)

(article-2-translated

(EMN-node-2 EMN-node-4))

Producer Value: | EMN-node-1

Destination Value: | EMN-node-2

For the distribution of local channels, no use is done of the generic communication language.
Because, the information distributed concerns mainly file addresses which have unique names. If
we distribute the user-table, which is defined as a slot of the communication schema, the message
type will be "distribute-UT" and it will contain a slot called UT having value the user-table (we give
an example of a user-table distribution message schema 5-6. In this example, EMN-node-1 sends
this distribution message to EMN-node-2). The distribution of the UT needs the utilization of the
translator and of the generic communication language for the same reason as for the updating
activity.

Schema 5-7: distribution-END-message

distribution-END-message
SLOT | FACET VALUE
| Instance | Restriction: | message
Number Value: | 4
| Priority Restriction: | 1
| Producer | Value: | EMN-node-1
| Destination | Value: | EMN-node-2

The distribute-END messages type are generated when an EMN-node is removed from the global
system. In such a case, it informs the other EMN-nodes about its deletion. This message type
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contains only the EMN-node name to be deleted. The EMN-nodes can accordingly remove the
channel and the value of this EMN-node from all the tables it is member (we give an example of a
distribute-END message type in figure 5-7. In this example, EMN-node-1 is removed from the global
system and informs EMN-node-2 of this deletion).

5.2.3 The answer schema
The searcher of an EMN-node sends messages to the responder of the other EMN-nodes. The

responder, depending on the messages received, must send an answer. This answer is sent to the
responder of the EMN-node which has generated the message. To do this, the first responder
generates an instance of a generic answer schema. This schema has several slots which must be
completed by the responder according to the corresponding message and the available schema within
its Knowledge Base subsystem. The generic answer schema can be defined by the schema 5-8. The
answer schema is the basic schema of the responder of this communication system. For each
instance, the responder must fill all the slots of this schema.

Schema 5-8: Answer

Answer
SLOT FACET VALUE

Number Value: | type integer
Restriction:

Status Restriction: | nilt/locked

Schema-name-translated Value: | type string
Restriction:

Slot-name-translated Value: | type string
Restriction:

Schema-name-answer Value: | type lispobj
Restriction:

Producer Value: | type local-EMN-node-name
Restriction:

Destination Value: | type EMN-node-name

The first slot number links a message and its answer. The value of this slot is the same as the
corresponding message.

The status slot is filled based upon the ability to satisfy the request. If the schema and the slot
are available in the Knowledge Base subsystem of the EMN-node, then the value of this slot is t. If
not the value is nil. This slot is used by the searcher which generated the message. From the value of
the status slot of the answer schema, the searcher can decide whether its information request has
been satisfied or not. Based on this status, it either provides the schema to the problem solving
subsystem (if the status value is t) or it generates one or more new messages. Another possibility is
to have as the status value: locked. This means that the EMN-node possesses the schema, but is not
able to provide it due to a lock applied to the schema.
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The schema-name-translated slot is directly derived from the same slot of the corresponding
message schema.

The slot-name-translated slot is also directly derived from the same slot of the corresponding
message schema.

The main slot of the answer schema is the schema-name-answer. This slot contains the answer:
the schema requested or nothing, according to its availability in the Knowledge Base.

The last two slots producer and destination are the reversed values as those of the
corresponding message.

Schema 5-9: Answer-example

Answer-example

SLOT FACET VALUE
Instance Restriction: | answer
Number Value: | 1
Status Restriction: | nil
Schema-name-translated Value: | machine-1-translated
Slot-name-translated Value: | capacity-translated
Schema-name-answer Value: | nil
| Producer Value: | EMN-node-2
| Destination Value: | EMN-node-1

We give in schema 5-9 an example of an instance of the answer schema. This answer is the one
generated by the EMN-node-2 towards the EMN-node-1 in response to the information-search-
message of the figure 5-3. In that case, the EMN-node-2 does not possess the information (status nil).

5.2.4 The communication schema

Each node is independent and autonomous. But to ensure coordination within the global
structure, it is necessary to update all the individual subsystems. The EMN-nodes must exchange
messages to get information not available in their own Knowledge Base subsystem (figure 5-3). For
this purpose the searchers send messages to the responders of the other EMN-nodes.

The main problem in this activity is knowing the schema needed or modified by the central kernel,
to determine the destination of the message. The central kernel provides the schema to acquire or to
update to the searcher. The searcher must build an instance of the message schema by defining all
the elements of the message. The determination of the destination of the message is the main
difficulty of this activity.

The other problem concerns knowledge representation and understanding between the different
EMN-nodes of our structure. The vocabulary used to identify a piece of information from one EMN-
node to another is different. The information represented in an EMN-node by a single schema,
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identified by a unique name, can represent, in another EMN-node, a set of schemata. This
identification and re-construction of knowledge appears to be one of the main difficulties. To help us
in this task and also to provide the capability of a more intelligent communication activity, we define
a communication schema.
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The second slot, user-table, is used for the updating activity.. The local EMN-node has the
responsibility for updating the schemata of which it is the owner. It has the responsibility to transfer
the updated schemata to the other users. In this slot, we indicate the schemata owned by the local
EMN-node and for each of them we indicate the users (the other EMN-nodes which use that specific
schema).

Schema 5-10: Communication

Communication
SLOT FACET VALUE

Correspondance-table Value: | type (information EMN-node-name)*
Restriction:

User-table Value: | type (information (EMN-node-name [, EMN-node-name, ...J))*
Restriction:

Locked-schemata Value: | type (information (EMN-node-name [, EMN-node-name, ...]))*
Restriction:

Shared-schemata Value: | type (information (EMN-node-name [, EMN-node-name, ...]))*
Restriction:

Updated-schemata Value: | type information*
Restriction:

Dictionary Value: | type (information string)*
Restriction:

Local-address Value: | type local-EMN-node-name
Restriction:

The third slot, locked-schemata, indicates the list of informationl? object which are locked, i.e.
the EMN-nodes cannot access either for read or write. The locking mechanism is applied only to the
information object which are shared by two or more EMN-nodes. The regular policy for information
updating is the single owner policy, i.e. only one EMN-node is able to globally modify and update a
specific piece of information in the entire decentralized system. But, all the EMN-nodes can
locally the information they use. For shared information, i.e. information object have several owners
which are able to globally modify or update them, this policy is modified: each owner can update a
shared schema but the global update is done by the main owner, which is unique. This global update
can be triggered either by the main owner or by the others, i.e., if the main owner modifies a shared
schema, it updates it globally; if another owner modifies a shared schema, it sends an updating
message to the main owner which executes theglobalupdatewwrdmgtothmrewvredupdatmg
message. For these special shared schemata, to keep consistency, we use a locking mechanism. W
must lock these sharedobjectswhentwoownerEMN-nodeswanttomdandmodrﬁ'thesme
information globally. This slot contains the list of locked schemata and, for each locked schema, the
EMN-node name which causes the lock.




42

The fourth slot, shared-schemata, indicates the list of information object which have several
owners, i.e., several EMN-nodes are able to update globally this information. This slot indicates the

list of shared schemata and their owners.

The fifth slot, updated-schemata, indicates the list of information object which has been
modified between two updating sequences. Each time an information object is modified by an EMN-
node, if the information object is owned by this EMN-node, we add the information object as another

value of this slot.

The sixth slot, dictionary, establishes a correspondance between the internal vocabulary of an
EMN-node and the generic communication language.

The last slot, local-address, indicates the address of the local EMN-node.

Schema 5-11: Communication

Communication
SLOT FACET VALUE

Correspondance-table | Value: | (operation-1 agent-3)
(operation-2 agent-3)
(operation-4 agent-3)
(machine-1 agent-2)
(machine-6 agent-2)

User-table Value: | (article-2 (agent-2 agent-3))
(article-3 Q)

(article-1 (agent-3))
(article-2 (agent-3))

Locked-schemata Value:
Shared-schemata Value: | (article-3 (agent-3))

(article-1 (agent-2 agent-3))
Updated-schemata Value:
Dictionary Value:
Local-address Value: | 'agent-1

We give an example of a communication schema (schema 5-11). This schema is the one created for
the agent-1 EMN-node. It contains the schema owned, shared and used by this EMN-node. In this
example, the name of the EMN-node is indicated in the local-address slot: agent-1. This
communication schema indicated the schemata owned by this EMN-node. They are indicated in the
User-Table slot. Besides, for each owned schema, its list of user is defined. In the Correspondance-
Table slot, we indicate the schemata used by EMN-node agent-1. For each schema used by this
EMN-node, we define its owner. The Shared-Schemata slot indicates schemata which are owned by
several EMN-nodes (agent-1 is one of these owners). The agent-1 is the main owner of the two
schemata which are shared by several EMN-nodes because they also are indicated in its User-Table.
If they were indicated in its Correspondance-Table, the main owner would have been the EMN-node
indicated in this table. All the other slots have no values at the beginning because they are filled
during the EMN-node running and used by the different communication sequences.

{
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As we have seen previously, one of the main difficulties for communication is the determination of
the destination of a message.

A message is sent to a destination to get needed information or to update the Knowledge Base
subsystems of the other EMN-nodes. The destination is another EMN-node of the decentralized
system (DKC). Each message schema has a slot called "destination”. This slot indicates where to
send the message. For determining this destination, we have several possibilities: direct
communication, friend selection or broadcasting. In the searcher, when we build a message, we try at
first to use direct communication. For this purpose, we use the correspondance-table for information
search and the user-table for the updating activity. The correspondance-table is a slot of the
communication schema which gives the owner address of each schema used by an EMN-node
(application) and not available in its domain modeling sub-system. The values of this slot are lists
(pairs): the first element of a pair indicates the schema name and the second one the address of the
schema owner. We must build one correspondance-table per EMN-node. Similarly for the user-
table, for each schema owned by the local EMN-node, we indicate the list of users (EMN-node
addresses).

Since each EMN-node has its own Knowledge Base subsystem, we have a lot of redundancies
between them. In addition, since the utilization of these entities is different, their contents can be
different. The vocabulary in each EMN-node can be different. Because of this, we must have a
standard communication language to exchange messages between the EMN-nodes. To use the
content of the messages, we must translate them into the local EMN-node language. For this we use
a Translator (T) which is a part of the Knowledge Base Manager. So, we have two vocabulary
types:

¢ An internal one: used by the local central kernel (problem solving subsystem, knowledge

base subsystem and knowledge base manager). This vocabulary is specific to an
application (EMN-node).

¢ A communication language: used for communication between the EMN-nodes. It is a
standard vocabulary used by the responder and searcher of each EMN-node.

The dictionary (or translator) is another slot of the communication schema. It produces a
correspondance between the internal vocabulary of an EMN-node and the communication language.
The values of this slot are lists (pairs): the first element of a pair indicates the schema name (using
the internal vocabulary of an application) and the second one indicates its translation into the
communication language. We must build one dictionary per EMN-node. This dictionary structure is
the first step in the design of the communication system. This kind of 1-to-1 direct correspondance is
not enough in all cases. For example, a schema in an EMN-node can correspond to several schemata
in another. We need to define a mapping function able to establish the connection between schemata
of different EMN-nodes. Such a function must be able to split up or gather schemata according to the
specific context of an EMN-node.

This communication schema represents the specific part of the decentralized communication
system, which must be determined for each EMN-node. All the values of the slots are dedicated to an
EMN-node. We must determine the schemata needed by the EMN-node and define where is it
possible to get them. In addition, the dictionary is dedicated to the EMN-node according to the
information it manipulates and exchanges with the other EMN-nodes. The user list which is the
schemata owned by an EMN-node, is also specific.
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5.3 Information consistency checking primitives
In the Data Layer, schemata are defined to support the different sequences defined in the

Information Layer. In the previous section, three different tables have been presented:

« the Correspondance Table (CT): a list of pairs. The first element of the pair is the name
of a schema used by the EMN-node but owned by another EMN-node. The second
element of this pair is the EMN-node name owner of that schema.

o The User Table (UT): a list of pairs. The first element is a schema name owned by the
EMN-node. The second eleme:t is & list of EMN-node names which use that schema but
are not owner of that schema.

¢ The Shared Schemata Table (SST): a list of pairs. The first element is a schema name.
The second element is a list of EMN-node names which own that schema together with
the local EMN-node. For the shared schemata, we earlier defined the concept of main
owner. To share a schema means that all the owners are able to modify that schema. But
only the main owner can send the updating messages to all the users/owners of that
schema. The main owner of a shared schema is the EMN-node which has this schema in
its User Table. All the other owners of this schema must have it in their Correspondance

Table.

These three tables are used for the communication sequences we will define in the Information
Layer. As we can see, there exists some overlap between these tables (for example between the SST
and the CT or UT). Besides, we will define in the Information Layer some other schemata called the
class schemata which also manipulate information already included in these tables. These schemata
are defined at the Information Layer and used by the distribution sequence. The class schemata
define set of schemata with their users completed by key-words. These schemata are owned by the
EMN-node. To keep consistency between all these tables and schemata, we define some primitives
which allow the completion of one table using another. We also define primitives which check the
internal consistency of one table (the repetition and the validity of the information contained in the

table).

The table consistency checking primitives are the following (these ones allow an consistency
checking of a specific table in terms of redundancy and authorized values):

o check-CT-consistency: checks the consistency of the Correspondance Table (this one is
used for information search, it includes a list of schemata and their owner).

o check-UT-consistency: checks the consistency of the User Table (this one is used for
schemata update, it includes a list of schemata owned by an agent and for each schema
its list of users).

o check-SST-consistency: checks the consistency of the Shared Schemata Table (this one is
used for the update of the shared schemata, it includes the list of shared schemata and
their owners).

o check-class-consistency: checks the consistency of the different instances of the class
schema (these schemata are used for the distribution sequence, they include key-words,
members and users)!5.

o ckeck-key-words-consistency: checks the validity and non redundancy of the values of
the key-words slot of each class schema and of each channel schema.

15The class schema is defined in the Information Layer.
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Figure 5-4: Mutual table consistency checking

In addition, mutual consistency and completion checking functions have been defined (figure 5-4).
They allow the completion of one table, using the information of another table:
¢ complete-class-UT: completion of class schemata using the User Table. This function is
very important regarding to the information distribution at the EMN-node initialization.
The class schemata contains the owned schemata of an EMN-node, their users and in

addition some key-words attached to each class schema. This function allows to complete
or to create new class schemata according to the content of the User Table.

e complete-UT-class: completion of the User Table using the class schemata. This function
checks for the coherence between the User Table and the existing class schemata. For
each class member, the User Table must have the corresponding schema. In addition,
the users of a specific class member must also be defined as users of that particular
schema in the User Table.

e complete-class-SST: completion of the class schemata using the Shared Schemata Table.
o complete-UT-SST: completion of the User Table using the Shared Schemata Table.

¢ complete-CT-SST: completion of the Correspondance Table using the Shared Schemata
Table.

e complete-class-key-words: completion of the class schemata members using the key-
words concept attached to each EMN-nodes of the system.

e complete-key-words: this function allows to complete the key-words slot of the local-
channel schema. It uses the values indicated in the key-words slot of the different class
schemata owned by each EMN-node.

All these primitives are used in the initialization of the EMN-nodes and then, depending on the
modifications which occur either to the communication schema or the class schemata, some of them
can be triggered.




5.4 Query language
In the previous section, we defined the objects mampulated and needed for an intelligent

communication activity. In this part, we define the language which manipulates these objects to
express in a structured and unambiguous way requests for information defined in an EMN-node. To
define the different query possibilities, we use an SQL-type query language. SQL is a language
defined to access a relational data structure. The general level of the language is comparable to that
of the relational algebra. SQL (Structured Query Language) is more than a query language. It
provides not only retrieval functions but also a full range of update operations, and many other

facilities [6, 28].

In our case, we do not use the complete SQL language to support information queries between
EMN-nodes. We must adapt its syntax to our purpose. The elements manipulated by SQL are tables,
rows and columns (fields). We manipulate schemata and slots.

To use SQL, we have established a correspondance between: table —---> schema and field —->
slot.

In this section, we present the basic constructions for a query. More sophisticated queries can be
expressed by combining these basic ones. Our presentation starts with the simple request and goes
to sophisticated and precise requests. We conclude this part by describing the locking and unlocking
mechanisms.

We will use the same example data base all through this text. Consider 3 schemata: the machine
schema, the machine-1 schema and the machine-2 schema. The relations between these schemata
are described in the figure 5-5.

MACHINE

INSTANCE INSTANCE

MACHINE-1 MACHINE-2

Figure 5-5: Information flows representation

{{ MACHINE
INSTANCE+INV: Machine-1, Machine-2
IDENTIFICATION:
CAPACITY:
COLOR: )]

{{ MACHINE-1 {{ MACHINE-2
INSTANCE: Machine INSTANCE: Machine
TYPE: drilling-machine TYPE: milling-machine
IDENTIFICATION: DMl IDENTIFICATION: MM2
CAPACITY: 100-p/h CAPACITY: 50-p/h
COLOR: red H COLOR: red 1

2
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5.4.1 Complete schema request
To express a complete schema request we have to use this command:

SELECT *
FROM schema-name;

The result is a request for the entire schema. "*" replaces all the slot-names of this schema-name.
We could replace the "*" with the names of all the slots of the needed schema.

Example:
Query: get the machine-1 schema Result:
SELECT * {{ MACHINE-1
FROM machine-1; INSTANCE: Machine
TYPE: drilling-machine
IDENTIFICATION: DM1
CAPACITY: 100-p/h
COLOR: red H
5.4.2 Simple retrieval h

If we want a more specific request for a slot or a set of slots, we must use the following syntax:

SELECT slot-name [, slot-name ...]
FROM schema-name;

This function selects one or several slots (the listed ones) in the given schema (schema-name).

Example:

Query: get the capacity Result:

of the machine-1

SELECT capacity {{ MACHINE-1 :

FROM machine-1; CAPACITY: 100-p/h }}
5.4.3 Qualified retrieval

We can improve our selection if, for example, we know one slot value of the needed schema. For
this purpose, we can use the WHERE clause.
SELECT slot-name [, slot-name] ...

FROM schema-name
WHERE slot-name= ’value;

Example:

Query: get the capacity of the Result:
machine whose type is drilling-machine

SELECT capacity {{ MACHINE-1
FROM machine CAPACITY: 100-p/h
WHERE type = ‘drilling-machine; TYPE: drilling-machine }}
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In this case the result is just one schema. But if, for example, the machine schema had several
instances having a type equal to drilling-machine, the result would be a set of schemata.

In the WHERE clause, we can have a condition on either the slot-name or the schema-name. Also,
we have no limitation on the number of conditions.

We can add other conditions using the AND term:

SELECT slot-name [, slot-name] ..
FROM schema-name

WHERE condition-1

AND condition-2;

Example:
Query: get the capacity of the Result:
machine whose type is drilling-machine
and where the capacity is more than 70-p/h

SELECT capacity {{ MACHINE-1
FROM machine CAPACITY: 100-p/h
WHERE type = ’drilling-machine TYPE: drilling-machine }}

AND capacity > 70-p/h;

To improve the different conditions applied to both schemata and slots, we can use the comparison
and Boolean operators. The WHERE clauses can be very sophisticated and include a long set of
restrictions on the information we need to acquire. The reason for such a detail is to allow the user to
get exactly the needed information without redundancy.

WHERE CLAUSE CONDITIONS

Condition Symbol
Equal -
Greater than >
Less than <
Greater than or equal to >=
Less than or equal to <=
Not equal <
Between BETWEEN
Partial equality LIKE
Equal to one item in a list IN
Negation NOT
Logical connector Agsp

Logical connector
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The conditions on schemata and slots we can create can use a combination of several of these
operators. The created WHERE clause conditions can reach all kinds of sophisticated levels.

The operators described so far allow comparison between schemata or slots values. But since
knowledge could be described in each EMN-node of a computer system in different ways, we must
add operators providing the capability to combine the resulting schemata and slots. For this purpose,
we can use first the arithmetical operators.

OPERATORS

Operator Symbol
Addition +
Substraction -
Multiplication *
Division /
Count COUNT
Maximum MAX
Minimum MIN
Average AVG
Sum SUM

All these operators are described in the SQL language. For their definitions refer to [28]. These
operators only combine values. We need something more sophisticated, which allows us to combine
schemata and slots.

This collection of operators allows slots to be combined and acted upon in various ways. The result
of such operations are, in effect, new values for slots which are not held in storage within the system,
but which can be brought forth or created at any time. In this way, we can adapt the values of a slot
according to our purposes without changing its real value, just its units.

Example:
Query: get the capacity of the Result:
machine whose type is drilling-machine
and where the capacity is more than 70-p/h
give the capacity in lot |k (1 lot = 20 parts)

SELECT (capacity/20) {{ MACHINE-1
FROM machine CAPACITY: 5-lot/h
WHERE type = ’'drilling-machine TYPE: drilling-machine ]}

AND capacity > 70-p/h;

With the different commands we have already defined, we are able to select a part of a schema: for
example to get the capacity of a machine.
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Query: get the capacity from Result: .

the machines whose type is drilling-machine

SELECT capacity {{ MACHINE-1

FROM machine CAPACITY: 100-p/h
WHERE type = 'drilling-machine; INSTANCE: Machine

TYPE: drilling-machine }}

To complete our example, we define a new instance of the machine schema: machine-3.

{{ MACHINE-3
CAPACITY: 80-p/h
COLOR: green
IDENTIFICATION: DM2
INSTANCE: Machine
TYPE: drilling-machine }}

The result of the previous command is a schema issued from one unique schema. Such a query is
not enough if, for example, we intend to get the total available capacity of the drilling-machines. In

this case the query will have the following structure:

Query: get the total capacity from Result:
the machines whose type is drilling-machine

SELECT SUM(capacity) {{ MACHINE
FROM machine SUM-CAPACITY: 180-p/h
WHERE type = 'drilling-machine; TYPE: drilling-machine }}

The operators manipulate values. Until now, we have just expressed requests for single schemata.
But one of the problem to be able to support with our query language is to have the capability to
manipulate, to modify, to group or disjoin knowledge. We must be able to combine several schemata
into one representing the needed information. In SQL, there exists three other kinds of functions
which allow such a combination:

¢ the ordering of information,
« joining of information,
 queries within queries.

5.4.4 Retrieval with ordering
The command ORDER BY causes the selection of values in a specific order. This ordering is
defined on the values of a slot-name in one or two directions: ascending (ASC) or descending (DESC).
SELECT slot-namel, slot-name2
FROM schema-name

WHERE slot-name3 = "value"”
ORDER BY slot-name2 DESC;

The ordering can also be done on the slots of a schema. The result is a re-organization of the order
of the slots in one schema. This ordering can also have two directions.




SELECT =*

FROM schema-name

WHERE slot-name3 = "value"
ORDER BY schema-name DESC;
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Example:

Query: get the machine schema whose type
is a drilling-machine, where the capacity is

more than 70-p [k in descending order

SELECT *

FROM machine

WHERE type = ’drilling-machine
AND capacity > 70-p/h

ORDER BY machine DESC;

Query: get the names of the instances

of the machine schema in descending order

SELECT instance+inv
FROM machine
ORDER BY machine DESC;

Result:

MACHINE-1

CAPACITY: 100-p/h
COLOR: red
IDENTIFICATION: DMl
INSTANCE: Machine

TYPE: drilling-machine }}

Result:

MACHINE

INSTANCE+INV: machine-1,
machine-2, machine-3 }}

We can also use the command GROUP BY for ordering. This command causes instances of a
schema to be grouped and the groups to be considered as a whole. This command should follow the
WHERE clause within the SELECT statement, or immmediately follow the schema-name if no
WHERE clause is specified. The grouping can be done according to all kinds of characteristics (type,

color, capacity, etc.).

SELECT COUNT (slot-name)
FROM schema-name
GROUPBY ....:

Example:
. Query: get machine quantity
per type whose color is red

SELECT capacity COUNT (instance)
FROM machine

WHERE color= ’'red

GROUP BY type:

Result:

{{ MACHINE-1
CAPACITY: 100-p/h

COLOR: red

INSTANCE: Machine

TYPE: drilling-machine }}

{{ MACHINE-2
CAPACITY: 50-p/h

COLOR: red

INSTANCE: Machine

TYPE: milling-machine }}
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Query: get the total number of Result:
machines whose type is drilling-machine

SELECT COUNT (instance) {{ MACHINE
FROM machine COUNT-INSTANCE: 2

WHERE type = ‘drilling-machine TYPE: drilling-machine }}

5.4.5 Retrieval from more than one schema
To demonstrate the mechanism which underlies the join, let’s begin with a retrieval involving

several schemata:
SELECT schema-namel.slot-namel, schema-name2.slot-name2
FROM schema-namel, schema-name2

The result of such a command is the creation of a new schema having 2 slots: slot-namel and
slot-name2. Each one of these slots comes from a different schema.

Such a query is incomplete because we need to define the name of the new schema including the
two selected slots. In fact, we must store these slots into a schema. So we must complete the previous
request by defining where to store the information (in our case in schema-name-3).

SELECT schema-namel.slot-namel, schema-name2.slot-name2

FROM schema-namel, schema-name2
TO schema-name-3

The reason for such a query is to allow the re-construction and adaptation of knowledge to our
purpose. Using such a structure, we can redefine knowledge according to the specific needs of a

specific EMN-node.

Example:
Query: join the machine-1 identification Result:
and the machine-3 identification in the
query schema
SELECT machine-1.identification, {{ QUERY

machine-2.identification MACHINE-1.ID: DMl

FROM machine-l, machine-2 MACHINE-2.ID: MM2 }}
TO query;

We can also use the command UNION which creates a request for information derived from two
schemata.
SELECT .... UNION SELECT ...

The result of such a query is a schema containing all the slots selected from the first schema and
all the slots selected from the second schema. In this case we create a schema called UNION.
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5.4.6 Retrieval involving queries within queries
All equations have a left side and a right side. A subquery is a full select statement used as the
right-side expression within a WHERE clause. It is "sub-" in that it is a query which is subordonate
to, or inside of, another query:
SELECT slot-namel
FROM schema-namel
WHERE slot-name2 = (SELECT slot-name3

FROM schema-name2
WHERE slot-name3 = ’'value)

For the first WHERE condition, we can use all the kinds of operators described previously.

In this case, there is a restriction on the utilization of such a structure. We must have coherence
between "slot-name2” and the "SELECT" form to satisfy the equality. This means we must have a
one-to-one value correspondance.

Example:

Query: get the identification  Result:
of the existing machines

SELECT identification {{ MACHINE-1
FROM machine IDENTIFICATION: DM1 ]]
WHERE instance+inv IN

(SELECT instance+inv {{ MACHINE-2

FROM machine) ; IDENTIFICATION: MM2 }}

{{ MACHINE-3
IDENTIFICATION: DM2 }}

If one of the comparison operators precedes a subquery, the subquery must return only one value.
If a comparison operator is used alone and the subquery returns multiple values, the structure of the
query will be inadequate. In above example, we used the operator IN to avoid this problem. But IN
can only be substituted if we are testing for equality.

If we want to improve the subquery structure by providing a capability for multiple values
between the slot-name2 and the select statement, we can use some operators. We can use
comparison operators with multiple-valued sub queries if we follow the operator with one of the
words ANY, SOME or ALL.

SELECT ... WHERE A = ANY (SELECT ...)

SELECT ... WHERE A < ALL (SELECT ...)

SELECT ... WHERE A > SOME (SELECT ...)
Example of retrieval using ANY:

SELECT UNIQUE slot-namel

FROM schema-namel, schema-name2

WHERE schema-namel.slot-name2 = schema-name2.slot-name2
AND schema-name2.slot-name3 = ’‘value




This is equivalent to:

SELECT slot-namel
FROM schema-namel
WHERE slot-name2 =ANY (SELECT slot-name2
FROM schema-name2
WHERE slot-name3 = ‘value)

The operators <=ANY, >=ANY, >ANY, <ANY, not=ANY are analogously defined.

IN is equivalent to =ANY.

5.4.7 Locking and unlocking mechanism
Locking is a mechanism for protecting transactions from interference by other, concurrently

executing transactions, i.e., the presence of one transaction in the system should not cause some
other transaction to produce incorrect results.

We have two possibilities: we can lock either a complete schema or specific slots of a schema.

Complete locking schema request:
LOCK *
FROM schema-name;

The result is a = yuest for locking the entire schema. "*" replaces all the slot-names of this
schema-name. We c.:~. replace the "*" by the names of all the slots of the needed schema.

Example:
Query: lock the machine-1 schema Result:
LOCK * {{ COMMUNICATION-SCHEMA ;
FROM machine-1; LOCKED-SCHEMATA: Machine-1 }}
Simple retrieval:
If we want a more specific ] g request on a slot or a set of slots, we must use the following

slot-name [, slot-name ...]
FROM schema-name;

Example:
Query: lock the slot Result:
of the machine-1
LOCK capacity {{ COMMUNICATION-SCHEMA

FROM machine-1; LOCKED-SCHEMATA: (Machine-1 capacity) }}
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The unlocking mechanism has the same structure. But in this case we use the UNLOCK function.

Complete unlocking: Partial unlocking:
UNLOCK * UNLOCK slot-name [, slot-name ...]
FROM schema-name; FROM schema-name;

5.5 Data Layer example

As we can see, the objects needed for a more sophisticated communication capability have been
added to each EMN-node. These capabilities will be used in the upper levels for problem solving
negotiation and also for the information search and updating sequences. The elements we add at this
layer concern the internal structure of an EMN-node. We define the schemata to support the
different sequences of the Information Layer: updating, distribution and information search. If we
implement these new elements in our example, figure 5-6 becomes:

NETWORK

IN-NODE-1

CHANNEL

IN-NODE-2

ANSWER

Figure 5-6: Data Layer implementation example




6. Information Layer

6.1 Introduction
The information layer of the manufacturing architecture provides the functions, rules and

schemata that support information exchange between the  decentralized EMN-nodes of the
distributed manufacturing system. In particular, the Information Layer supports:
e automatic information acquisition and

¢ automatic information management.

The acquisition of information starts from the specific need of a specific EMN-node. Each EMN-
node must have the capability to acquire at any moment the schemata used by its Problem solving
subsystem but not available in its Knowledge Base subsystem. It must be able to generate requests,
to check messages and to generate answers to satisfy these needs. We can identify at this level and
for this specific purpose two functionalities:

o the message generation (information search) sequence, and

e the message and answer reception (answer sequence).

The second function, information management, provides the capability for each EMN-node to
maintain the consistency of knowledge throughout the distributed system. We can identify three
specific functions:

¢ updating (updating sequence),
¢ information distribution, and

¢ communication capability improvement (learning).

The updating activity provides updating of the content of a schema modified by its owner. When
the owner of schema modifies it, or when EMN-nodes change a specific value in a schema they are
authorized to modify but don’t own (they share), the owner EMN-node can generate an updating
message to inform all the users of the schema of the modification. Our policy for the updating
activity is one owner per schema, i.e., all the schemata can be read by all EMN-nodes but they can
only be modified (gloablly throughout the decentralized system) by one EMN-node: their owner. This
rule is true for all the schemata except the ones shared by several EMN-nodes. "Shared” means they
can be read and modified by several EMN-nodes. But even for these schemata, the updating
messages are generated by the unique owner.

ion distribution is concerned with the creation of new schemata in an EMN-node and the
mmahzamnd‘anewEMN-nodemthesystem.Intheﬁrstme,the EMN-node will have to inform
some other EMN-nodes of the existence of new schemata. The main question is who are these EMN.
nodes? Also when and what to distribute? To solve this problem, we define a user callable function
"distribution-function”. This function identifies, according to the nature of the new schema created
who the "potential” users of this new schema are. To do this, we define a taxonomy of th
information and key words attached to each piece of information. The taxonomy will allow th,
identification of a group of potential users. The key words will permit improvement of thj
identification. The second use of the distribution function is either at the initialization of an EMN
node or at the reception of distribution messages from a new EMN-node. The distribution function j
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triggered at the initialization of each EMN-node, to inform the others of its creation by providing
information about its local channel schema, about the schemata it owns (user-table) and about
schemata to be updated (class schemata). It is also triggered at the reception of distribution
messages from a new EMN-node in the system. The last use of the distribution activity concerns the
EMN-node deletion. As EMN-nodes generate distribution messages for their initialization, they also
create messages for their deletion. These messages are sent to all the other EMN-nodes to update
their tables and channels.

The learning activity uses received messages or information search results, to modify tables
(CT/UT/SST) defined at the Data Layer and used for communication. The modification of these
tables during the running of an EMN-node improves the capabilities of the EMN-node both to
acquire the needed information and also to keep information consistent in the distributed KBS.

The EMN-nodes are able to exchange some information according to their specific needs. In this
structure, each EMN-node is responsible for a set of schemata or slots depending on the defined
policy. Responsible means that the EMN-node is the only one allowed to update the owned schemata
or slots. Each piece of information has a list of users and one owner. The users are the EMN-nodes
which receive the updating messages. We have also seen that for some specific schemata, called the
shared schemata, we have a multi-owner policy which necessitate the use of the locking mechanism.

For the information search sequence, the policy is the same. Each EMN-node knows, from the
content of the communication schema, who the owner of each piece of information available in the
DKC system is. The information search sequence uses this knowledge. In case of failure in the
information search other policies are applied, such as broadcasting.

Each information is used according to specific views and privileges which are defined by the
information owner. The objects (schemata or slots) which are created by an EMN-node belong to it.
1t is the only one allowed to add, remove or change the content of these objects. But an important
part of a distributed system is the ability to access information from all EMN-nodes. This cannot be
done without any restriction. Some rights must be defined for the accessing capability. The owner of
a piece of information must define for this piece of information who shall be allowed to do what with
it.

In this section, we define the access privilege granting policy for the information schema. ’Ihenwe
present in detail the content and the algorithms of the different sequences (updating, informatio
search, distribution and answer) defined at the beginning of this section.

6.2 Access privilege granting

is called granting. An EMN-node must grant, for any objects which belong to it (owned by it), any of
the four privileges to any users (other EMN-nodes) of these objects. We use the SQL vocabulary
from the previous section to define the privileges attache schema or slot of a schema.

Each time we want to define the privileges attached to a schema or a slot we must use the word
GRANT. This word is followed by one or more of the defined privileges (select, insert, delete and
update or all).

s
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GRANT SELECT, INSERT,... (slot-name [, slot-name, ...])
ON schema-name
TO EMN-node-name [, EMN-node-name, ...];

After the key words, we indicate the slot name on which these privileges are applied (we can
indicate one, several or all the slots of a schema). If we want to apply the privileges to all the slots,
we put a "*". After the "ON" key word, we indicate the schema name for which the privileges are
defined. Finally, after the "TO", we indicate the list of users having these privileges for this schema.

Example:
Query: grant SELECT and INSERT privileges
for the machine-1 schema
to the EMN-nodes 1 and 2

GRANT SELECT, INSERT (%)
ON machine-1
TO EMN-node-1l, EMN-node-2;

In this case the privileges are applied to all the slots of the machine schema. If we want to have
diffe ¢ privileges for the different slots we have to duplicate this structure.

\. 2ery: grant the machine-1 schema
SELECT and INSERT privileges

for the capacity slot and SELECT for the
others to the EMN-nodes 1 and 2

GRANT SELECT, INSERT (capacity)
ON machine-1
TO EMN-node-1, EMN-node-2;

GRANT SELECT (instance, type, identification, color)
ON machine-1
TO EMN-node-1, EMN-node-2;

If we want to add all the privileges for the machine-1 schema to EMN-node-2 for example, we
must use the ALL key word;
GRANT ALL (*)
ON machine-1
TO EMN-node-2;

As we can create privileges, we can remove them. For this purpose we use the REVOKE function.

This uses the same structure and key words as the GRANT function. But in this case the privileges

are revoked.
ON schema-name
FROM EMN-node-name [, EMN-node-name, ...];

[, INSERT, ... (slot~name [, slot-name, ...])

In this declaration, we change one key word: TO becomes FROM.




Example:
Query: revoke the SELECT and INSERT privileges
for the machine-1 schema for the EMN-nodes 1 and 2

REVOKE SELECT, INSERT (*)
ON machine-1l
FROM EMN-node-1, EMN-node-2;

To complete these elements and the ones described in the previous section, we can use other words
from SQL for the updating, creation, deletion and modification of the schemata and slots. In each
case a specific function is used:

¢ slot value updating: UPDATE schema-name SET slot-name = new-value;

¢ schema creation: CREATE SCHEMA schema-name ( [slot-name, ...]);

s slot creation: INSERT INTO schema-name (slot-name [, slot-name, ...]);

¢ value creation: INSERT INTO schema-name (slot-name) VALUES ( value [, value ...]);
¢ schema deletion: DELETE schema-name;

¢ slot deletion: DELETE FROM schema-name (slot-name [, slot-name, ...]);

For all of these functions, we can use the WHERE clause condition and all the operators defined in
the previous section.

6.3 Automatic information acquisition
Automatic acquisition of information provides an EMN-node with the capability to acquire at any
moment and without knowledge of its location in the EMN architecture, the schemata needed by its
Problem solving subsystem but not available in its knowledge base subsystem. We can identify at
this level two functions:
o the message generation (information search) sequence, and

¢ the message and answer reception (answer sequence).

Information acquisition occurs automatically, when an EMN-node’s problem solver attempts to
access information that does not exist in its knowledge base. Four methods are then used by the
knowledge base manager to acquire the information:

1. First, the owner of the schema from which the reference to the information was made
may be a different EMN-node. Therefore it is reasonable to believe that EMN-node
may also have the desired information.

2. Secondly, the schema taxonomy, defined below, contains pointers to those EMN-nodes
that maintain schemata of a particular type.

3. Third, the EMN-node maintains a list of EMN-nodes that it corresponds to regularly
and may query them.

4. Fourth, as a last resort the request may be broadcast to all EMN-nodes to which it has
channels.
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We have defined in the network layer the locking and the blocking mechanisms. These two
primitives provide security and consistency of the information distributed and shared between the
EMN-nodes. Each of the two information acquisition functions can use either the blocking
mechanism or the locking mechanism:

¢ The blocking mechanism: During the information search or the information answer,
the problem solving activity can be suspended until the end of the search or answer.
Blocking is released when the information search or the information answer is finished.
The primitive functions for blocking and unblocking have been defined in the network
layer.

¢ The locking mechanism: The shared schemata, i.e. updated globally by several EMN-
nodes, can have their content locked. This mechanism is triggered when an EMN-node
able to update a shared schemata wants to read and then modify its contents. In this
case, we want to prevent information inconsistency, by locking the read schema, (if
another EMN-node asks for the same schema, it can get the old version of the schema).
The schema lock is released once the read and modifications have been done through an
updating message by the first EMN-node requesting the schema. If another request is
received by the EMN-node for the same schema during this locking period, answers will
be generated with a locked status value. An EMN-node which receives an answer with a
locked status value can generate another information search message, repeating until it
receives the needed schema. A schema lock can only be executed during an information-
search message reception for a shared schema, and the request must come from one of
the owners of the schema. The primitive functions for locking and unlocking have been
defined in the network layer.

Information acquisition uses these mechanisms in specific cases. Blocking is used when an EMN-
node needs to synchronize between its internal problem solving activity and communication. In this
case, the blocking function is triggered when an information search message is generated (to acquire
information not available in the local KBS). The unblocking function is triggered by the reception of
an answer containing the needed information. Blocking/unblocking functions perform selective
interruption of the problem solving mechanism only, all the other processes (updating, mail box
checking and distribution) are continued.

The locking mechanism is triggered by information search messages reception. When an EMN-
node receives an information search message which concerns a shared schema and when the agent is
the main owner (the schema is member of the UT), the schema is locked. The unlocking of this
schema is executed at the reception of an updating message for the schema coming from the EMN-
node producer of the information search message. This mechanism uses the locked-schema slot of
the communication system.

Message and answer reception is also an automatic process. It can be either synchronous or
asynchronous depending on the EMN-node implementation and needs (the synchronization of the
communication activity and the problem solving activity is performed using the blocking/unblocking
functions). Each message (either an updating, distribution or information search message) or answer
(in response to an information search message sent previously) is stored in the mail box of the
EMN-node. Periodically, this mail box is checked and its contents evaluated. Processes are
triggered according to the nature of the messages (the four types enumerated previously).
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6.4 Automatic information management
Automatic information management maintains the consxstency of an EMN-node’s knowledge
throughout the EMN. We can identify three functions:
e information updating,

o information distribution, and

e learning communication capabilities.

Information updating maintains consistency of schemata in the EMN. When the owner of a
schema, or an EMN-node authorized to modify a schema it doesn’t own but shares, makes a
modification, the owning EMN-node generates a message to inform the users of the modification.
Shared means they can be read and modified by several EMN-nodes, but global update messages are
generated by the single owner (called the main owner). The policy defined for the updating activity is
a single owner policy. Periodically the owner of a schema generates updating messages and sends
them to the users of the schema if it has been modified during the interval of the updating period.
This policy is modified for the shared schemata. The owners of a shared schema can all modify it and
have their modifications known by all the users of the schema. But this updating is always done by
the main owner, which receives direct updating messages from the other owners and in reponse to
these messages generates the global updating messages. The updating activity uses the updated-
schema slot of the communication schema. It contains the schemata modified during the previous
updating interval.

The information distribution function sends new schemata to EMN-nodes that are potentially
interested. The questions are what, when and to whom should schemata be distributed? To solve
this problem, we defined a user-callable function: distribution-function. This function identifies who
the "potential” recipients are. Types of information of interest to EMN-nodes are maintained in a
taxonomic hierarchy. For each class, a set of keywords are used to define the class; that is, schemata
that match the keywords are members of the information class. Each class also has a list of EMN-
nodes that are interested in the information class. If a recently created schema matches a particular
information class, the schema is distributed to the EMN-nodes interested in the class and to any
other EMN-nodes interested in classes above it in the hierarchy (subsumed by it).

The other utilization of the information distribution function concerns the EMN-node
initialization. When a new EMN-node is created in the system, different schemata are created such
as the DKC-system, the local channel schema, the queues schemata, the communication schema and
channels with the other EMN-nodes of the global system. To provide each EMN-node enough
information about itself, at each initialization, each EMN-node distributes several schemata which
characterize their own activity. The first element distributed is the local channel schema. It
provides other agents with the addresses of its mail-box, its semaphore-box and also the key-words
specific to the new EMN-node. It also distributes its user-table. The user-table defines the schemata
owned by the new EMN-node. The other EMN-nodes are able to complete their own local
correspondance-table thus improving their information search capabilities. The last information
distributed is the members of the class schemata to the different users of these schemata (the class
schemata will be defined in the next section).
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When an EMN-node is removed from the network, it informs the other EMN-nodes. It sends
distribute-END message types which only contain its name. The other EMN-nodes are then able to
delete the channel with this old EMN-node and also they remove this EMN-node from all the tables
(UT/CT/SST) and class schemata it was member.

When an EMN-node receives distribution messages from a new one, the distribution sequence
may be triggered on not. If there is no difference between the DKC-channel schema with this new
EMN-node and the local-DKC-channel-schema received in the distribution messages, no distribution
is performed. But, if an EMN-node does not have a channel with the new one, the open-channel
function is triggered. In addition, the distribution function is triggered to send to the new EMN-node

the schemata it can use according to its key-words.

Learning communication capabilities concerns the different tables presented in the Data Layer
and used by the different sequences presented previously. It also concerns the class schemata
defined for the distribution sequence. These functions allow to complete the different tables used for
the communication activity according to the performance of the system and also according to the
results of this communication.

Four main functions are defined for improving communication capabilities:
¢ learn-owner-fn: depending on the result of a broadcast or updating message reception,
the system can complete its Correspondance Table, which defines schema owners. The
Correspondance Table of the Communication schema is completed when a broadcast
succeds, i.e., the agent receives from another one the information it was lookink for, or
when an EMN-node receives an update message for a schema it does not own.

¢ learn-user-fn: depending on the information search messages received by an EMN-node,
the system has the capability to complete its User Table, which defines the list of owned
schemata and their users. The UT is completed when an EMN-node receives an
information search message which concerns a schema owned by that EMN-node.

¢ learn-shared-schemata: depending on the reception of updating messages concerning
owned schemata, the system can complete the Shared Schemata Table. The SST is
completed when an EMN-node receives an updating message for a schemata already
owned by that EMN-node.

¢ learn-class-user: depending on the reception of distribution messages from a new EMN-
node or from an EMN-node which has created new schemata, the class schemata are
completed in terms of members and users using the key-words concept.

6.5 Information Layer example
At this level, the main elements which are added to the previous figure 5-6 are the communication
protocols and functions (figure 6-1):
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Figure 6-1: Information Layer implementation example

6.6 Information Layer Implementation

The next four sections describe our specific implementation of the information layer into the
communication system of the DKC system. We start by a description of the information distribution
sequence. The distribution activity triggers the other sequences at initialization. The second
sequence presented is the message generation for information search capability. Then, we introduce
the updating activity used to keep knowledge consistency in the global system. The last sequence
presented is the message and answer reception which either triggers the answer generation
functions or the KB update or the distribution sequence or the information search message
generation.




6.6.1 Information distribution
This activity is triggered by three different events:

e At the EMN-node initialization: when a new EMN-node is created in the decentralized
system, it informs the others of its creation by sending information about itself: its user-
table, local channel schema and the class schemata members.

o At the deletion of an EMN-node: when an EMN-node is removed in the decentralized
system, it informs the others of its deletion by sending messages about it.

o At the reception of distribution messages: when an EMN-node receives distribution
messages containing a local channel schema of a new EMN-node, according to the
content of this schema, the EMN-node triggers its own local distribution activity to this

new EMN-node.

o When a new schema is created in an EMN-node: this schema must be distributed to
possible users. This distribution uses the key-word concept.

The distribution activity uses functions (we define in the next section) to perform selective
distribution of information according to different criteria. We present at first these primitives, then
in the next two parts of this paragraph, we define the distribution sequence process at an EMN-node
initialization and the distribution process at the reception of distribution messages from a new
EMN-node.

Schema 6-1: CLASS

CLASS
SLOT FACET VALUE

Key-words Value: | type string*
Restriction:

Users Value: | type EMN-node*
| Restriction:

Members | Value: | type schema-name*
| Restriction-

The functions for the information distribution use mainly the class schema slots. The information
distribution is done according to a key-word and taxonomy policy. Each schemata is attached to a
specific class. For each class, we define a shema which is an instance of the generic class schema.
This class schema contains two main slots: the users and the members. The members slot is a list of
schemata that are part of this class. The users slot is a list of EMN-node users of this class.

Distribution can be done in two ways: by the members or by the users. If we want to distribute a
specific schema, we have to find its class and then the users of this class. If we want to distribute
some schemata to an EMN-node, we have 1o determine its membership in some information classes
and then distribute these classes (figure 6-2 shows the process for distribution from a schema point
of view).

Distribution can also be performed from a knowledge classification perspective using class
schemata. The distribution messages are generated whenever a member of a class is modified.
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In our implementation, we have defined five functions which cover these three aspects:
¢ distribute-schema: distributes a schema to all its users according to its class
membership.

o distribute-schema-hierarchy: distributes a schema and its superclasses, subclasses and
instances to all users according to its class membership.

o distribute-agent: sends to a specific agent all the members of the different classes this
agent is a user of.

e distribute-agent-hierarchy: sends to a specific agent all the schemata and their
superclasses, subclasses and instances of the different classes this agent is user.

¢ distribute-class: performs a general distribution to all the users (EMN-nodes) of a
specific class of all the members (schemata) of that specific class.

C(distribute~fn ’schema-name))

Ind-type
schema-name
error message

find-users
‘'schema-name

Destination = |
first user

Destination =
next user

Figure 6-2: Information distribution sequence

On top of these, we have implemented a generic distribution-function which, according to the
nature of its parameters, triggers one of these previous functions.
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The distribution function takes into account the hierarchy of schemata linked either by an
INSTANCE relation, an IS-A relation and one or several user defined relations. The user defined
realtion are specific to each EMN-nodes and the ones which have to be taken into account to build
the hierarchy of schemata are indicated as a value of the *relation-name* variable. If we distribute a
schema, the complete tree under this schema will also be distributed and the direct hierarchy of
schemata above will also be distributed (figure 6-3). The inverse relation of both standard IS-A and
INSTANCE links and the user defined relations are also taken into account to define the hierarchy

of each schema to be distributed.

In the example presented in figure 6-3, we distribute a schema (which is indicated in black) which
has IS-A, INSTANCE, IS-A+INV and INSTANCE+INV with other schemata. In this case the
distribution of that schema will also imply the distribution of the 2 schemata above it and of the 11

schemata under it.

Schema to be distributed IS-A or INSTANCE

link

‘\ Hierarchy of schemata
distributed

Figure 6-3: Hierarchical distribution example
The purpose of the distribution in the Enterprise Management Network is very important mainly
in term of information consistency and acquisition. The role of the distribution function can be
divided in two different steps:
¢ Information distribution at the EMN-node initialization or at the EMN-node deletion
» Information distribution at the reception of other EMN-node initialization messages.

In the first case (figure 6-4), the process for an EMN-node initialization is described at the
Network Layer completed by the elements of the Data Layer. At the information Layer, the
initialization consists in triggering for the first time the different sequences supported by this layer:

* message generation,

* message and answer reception,
« updating activity and

o distribution.
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distribute all classes members of each classes
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‘ users of these schemata
Triggers the updating

Figure 6-4: Distribution sequence for an EMN-node initialization

The first sequence triggered is the distribution activity. This activity consists in distributing the
schemata owned by each EMN-node of the decentralized system to all the others EMN-nodes users
of these schemata. This distribution is executed according to the different classes of schemata
defined in each EMN-node, according to the list of schemata owned by each EMN-node (this list is
specific as a value of the User-Table slot of the communication schema) (each EMN-node is
responsible for distributing the schemata they own) and in correspondance with the key-words of the
other EMN-nodes (the ones recognize by each EMN-nodes, i.e., supported by a channel schema). The
distribution in an EMN-node is excuted for the different classes by matching the key-words of each
class with the key-words of each other EMN-nodes. In addition to the class schemata members
distribution, each EMN-node sends to the other recognized EMN-nodes, i.e., supported by a channel
schema, a copy of its local channel schema and of its local User-Table. By this way, each EMN-nodes
get the key-words atached to all the others (they can complete their class schemata members by
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matching key-words) and besides, they can complete their local Correspondance-Table knowing the
owner of some schemata. The aim of this distribution at the initialization of each EMN-node is
mainly to improve the communication capabilities between the EMN-nodes of the system but also to
ensure coherence and to provide to each EMN-node knowledges about the others and knowledges
about the schemata they need for their internal problem solving activity. Another goal of this
distribution for EMN-node initialization is to inform all the other already existing EMN-nodes of the
creation of a new decentralized system member. Once an EMN-node is initialized, the distribution
function triggers the others processes such as updating, message and answer reception and message
generation. These other sequences support the regular running of the internal problem solving

activity.

The distribution of the schemata owned by this new EMN-node is done by using updating message
schema. For the distribution of the local channel schema, we use the distribute-LC-message schema
created by the make-LC-distribution-message. For the distribution of the user-table, the new
EMN-node creates a distribute-UT-message created by the make-UT-distribution-message. In
addition, the distribution function triggers according to the modification performed on the different
tables and schemata (CT/UT/SST/class) the consistency functions defined at the Data Layer. The
triggering of all this activity is supported by a VMS routine system. This routine tiggers the
distribute-agent-fct which executes the distribution for each known EMN-node (having a channel
schema with this new EMN-node) of the different information (local-chanel, UT and classes).

To make a summary of this distribution activity for an EMN-node initialization, we can identify
these different steps:
1. The EMN-node to be initialized checks the different channels already created with the
other EMN-nodes of the system.
2. The EMN-node sends to each of these known EMN-nodes a copy of its local channel
schema.
3. The EMN-node sends to each of these known EMN-nodes a copy of its local User-Table.
4. For each class schema it owns, it generates an updating message for all the members
(schemata) of these different classes towards all their users (EMN-nodes).
For the distribution regarding to EMN-node deletion, the sequences are equivakmt. The only

difference is in the nature of the mform&tmn distributed. In this case, we use the distribu
message type.

thmchﬂmmstenmofachmmlmchemamththwmwmmm Accordir
mm ﬂle schema or not and m!pm me information (nm the M ok ol
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3. It creates the sehemata sent by this new EMN-node according to its own need (defined
by its local key-words).

4. It completes, using the key words of this new EMN-node, the different class schemata
users slot.

5.1t triggers the distribution sequence and sends to this new EMN-node its own local
channel schema (for information about its key-words) and updating schemata according
to the key-words of that new EMN-node matching with the key-words of the class
schemata it owns. In addition, it sends its local User-Table.

l distribution-message J

Using the received complete
User-Table of the Correspondance-Table
new EMN-node

MN-nodtg
channel
plready existg
?

no

open-channel
with this new EMN-nod

Key-words
slot already
exists ?

distribute all classes
members matching
with the new
key-words of this
new EMN-node

Figure 6-5: Distribution message reception

This sequence is executed between two EMN-nodes until the acquisition by both of them of all the
information regarding they key-words. The main test to stop replying to a distribution messages
sequence is the comparison between the received local channel schema of an EMN-node and the
existing copy of that schema in the EMN-node which receives these distribution messages.

The distribution sequence is only used when an EMN-node is initialized in the global system. For
all the other modifications about schemata or for all information acquisition between EMN-nodes, we
use the other processes defined in the next sections.
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6.6.2 The message generation sequence
The message generation sequence is presented in figure 6-6. We introduce the different functions

used for this activity, and we develop the contents of these functions in this section.

The function make-message-fn is the basic function of the message generation sequence. It is
used to generate instances of the message schema. This function creates schemata called message-1,
message-2, ... ,message-n. This function is the basic function of the searcher. All the other functions
will be used either to trigger or to complete some slots of the message schemata generated by the

make-message-fn function.

(GET-VALUE 'schema-name 'slot-name)

Value

trigger

Using "translator-fn*
and "address-fn".

Figure 6-8: Message generation sequence
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The make-message-fn function creates an instance of the message schema. It fills the slots of the
created message by calling other functions. To fill the message slot, this function starts with the
given data. As a message is created according to an information need (which is a schema), the first
elements provided are the needed schema name and slot name (because the command GET-VALUE
provides them). With these two data, we can fill the two slots "schema-name" and "slot-name" of the
generated message schema. For the "instance”, "priority” and "type" slots, their values are always
the same for each generated message. The value of the slot "number” is filled with the value of n
integers. This integer is automatically incremented by one each time a new message is created.

For the four other slots, we use the "translator-fn" and "address-fn" functions. The first function
translates the schema name and slot name needed from the internal vocabulary to the
communication language. The second one defines where to send a message depending on the needed
schema. Both of them use the communication schema.

The triggers of the make-message-function are the three following schemata: no-schema-spec,
no-slot-spec, no-value-spec. They are triggered when the CRL system creates an error message using
the system-error schema.

Before describing these triggers, we must define the utilization of the EMN-node-blocking
mechanism. We have defined a function called Block-EMN-node whose purpose is to suspend the
internal problem solving activity of an EMN-node. This function only suspends this process. The
others, such as mail-box-checking, updating, or distribution, are maintained. The block-EMN-node
function allows the interruption of the internal problem solving activity when some information is
not available locally and the communication system has to acquire it through message sending. In
this case, the internal problem solving activity is interrupted until reception of the needed
information, and is then re-started using the unblock-EMN-node function.

The unblock-EMN-node function is triggered by the receive-answer sequence. Depending on the
content of answer received in response to an information search (with block-EMN-node), we unblock
the internal problem solving of the EMN-node. The unblock-EMN-node function is triggered when an
answer contains the needed information. In this case and only in this case, the internal problem
solving of the EMN-node can continue its processing.

Schema 6-2: NO-SCHEMA-SPEC

NO-SCHEMA-SPEC
SLOT FACET | VALUE
Type Restriction: | value

Value | Restriction: | (lambda (x)
! (when *trace*
(format t"~%There is no schema by that name and”))
(create-schema (get-value x ‘schema))) |
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The schema no-schema-spec is the first trigger of the make-message-fn function. This schema is
an instance of the error-spec schema. It is connected to the "no-schema” slot of the "system-error”
schema. Each time the CRL system finds a "no-schema” error type, it dispatches the "value” slot of
the "no-schema-spec” schema. The "value" slot executes the make-message-fn.

The "no-schema-spec” does not trigger the make-message-fn because if we have a no-schema error,
we also have a no-slot error. Therefore we have given the trigger responsibility to the next schema:

no-slot-spec.
Schema 6-3: NO-SLOT-SPEC

NO-SLOT-SPEC
SLOT FACET VALUE
Instance | Restriction: | error-spec
Type Restriction: | value
Signal | Restriction: | nil

Value |Restriction: | (lambda (x)
(when *trace*
(format t"~%There is no slot by that name."))
(make-message-fn (get-value x 'schema)
(get-value x ’slot))
(send-message-fn (get-value ‘message ‘instance+inv))
(create-slot (get-value x 'schema) (get-value x ’slot)))

The schema no-slot-spec is the second trigger of the make-message-fn function. This schema is
also an instance of the error-spec schema. This one is connected to the "no-slot" slot of the "system-
error” schema. Each time the CRL system finds a "no-slot” error type, it dispatches the "value” slot of
the "no-slot-spec” schema. The "value” slot triggers the make-message-fn function.

The no-slot error type can be generated in two cases: if there is no schema (so there is also no slot)
or if there is no slot (but the schema exists). So we have given this error type the responsibility to
trigger the make-message-fn function. Once a message is created, we must send it to its destination
(which is indicated by the destination slot of the message). For this purpose we use the send-
message-fn function.

The last trigger of the make-message-fn function is the no-value-spec schema. This schema is
also an instance of the error-spec schema. This one is connected to the "no-value” slot of the "system-
error” schema. Each time the CRL system finds a "no-value” error type, it dispatches the "value” slot
of the "no-value-spec” schema. The "value” slot executes the make-message-fn.

Once an instance of the message schema is generated, we must send it to another EMN-node to
get the information (schema). The purpose of the send-message-fn is to send the messages. This
function sends an instance of a message from one EMN-node to another. We have seversal
possibilities for the destination of a message: if the destination is known (from the destination slot of
the message) we use direct communication; if not, we broadcast (in this case the destination slot of
the message has the value: all).
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Schema 6-4: NO-VALUE-SPEC .

NO-VALUE-SPEC
SLOT FACET VALUE
Instance | Restriction: | error-spec
Type Restriction: | value
Signal |Restriction: | nil

Value |Restriction: | (lambda (x)
(when *trace*
(format t"~%There is no value for this slot.”))
(make-message-fn (get-value x ’schema)
(get-value x ’slot))
(send-message-fn (get-value ‘'message ‘instance+inv))
(new-value (get-value x ’schema)
(get-value x ’slot) nil))

Direct communication means we have a unique destination for the message. This destination is
the owner EMN-node of the needed schema.

Broadcasting means we send the message to all the EMN-nodes of the DKC system. For this, we
use the Correspondance Table (CT). The send-message-fn sends the message to all the EMN-nodes
indicated in the CT. We have a loop which analyses the EMN-node addresses in the CT and sends
the message to each one. The message is sent just once to each EMN-node.

When we send a message from the local EMN-node to another, we copy the message into the mail
box of the other EMN-node, using the "dkc-send” function. To be able to use it, we must transform
our message into a dkc-message. So, we create an instance of the simple dkc-message schema with
the value message-name, for the schemata slot of the dkc-message created.

The dkc-send function copies the dkc-message into the dkc-queued-message of an EMN-node.
This queue is the file interface from one EMN-node to the others. We will see, in the message
reception section, that this is not the only queue. The difference between this one and the others is
its protection. To allow information exchange, we must have some free files open for writing and
reading. This is the purpose of this queue.

6.6.3 The updating activity

The previous section concerned information exchanges between EMN-nodes of the decentralized
knowledge craft. To ensure coordination, we must add a second functionality to our structure: the
updating activity.

Since the information is shared by all the EMN-nodes of the DKC, to maintain consistency we
must update the Knowledge Base subsystem of each EMN-node according to modifications made by
others. We make the assumption that each schema has a unique owner.

The owner is the only one allowed to update a schema globally, i.e., for all the EMN-nodes. But
each user of a schema can locally modify the content of a schema it uses. Each time an EMN-node
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modifies schemata it owns in its Knowledge Base subsystem, it generates updating messages and
sends them to the EMN-nodes who are users of these schemata. An updating message is an instance
of the message schema with the specific value update for the "type" slot.

The function make-updating-message-fn creates these instances. We summarize in figure 6-7
the sequence for the realization of the updating activity in an EMN-node. We define the trigger of
this activity and the different functions executed during this sequence. The EMN-nodes which
receive the updating messages are called the users of the updated schemata. The list of users of
each schema owned by an EMN-node is indicated in the user-table slot of the communication
schema. The updating messages use the generic communication language through the "mini-

translator-fn" function.

The purpose of an updating message is to update a schema in the other EMN-nodes who use it.
We know the schema name to be updated. This name is used to fill the "schema-name" slot of the
generated updating message. We also know the destination of the message (address of the user).
This address is provided by the trigger of the make-updating-message-fn function. The "instance",
“type” and "priority” slots are automatically filled (by the data related to an updating message). The
"number” slot is filled with the integer "n". This number is incremented by one each time an instance
of the general message schema is created. This instance can be either an information research
message type or an updating message. To start the "make-updating-message-fn", we must have a
trigger. In our case, we have an automatic trigger using the SYS$SETIMR VMS routine.

The syntax of this routine is: SYS$SETIMR [efnn], daytim,[astadr], [reqidt].
o efn: is the event flag to be set when the timer expires.
* daytim: is the time at which the timer expires.
< astadr: is the AST service routine that is to execute when the timer expires.
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Figure 6-7: Updating message generation sequence
schema. In this slot, we indicate the list of shared schemata and for each of them the list of owners.

For the shared schemata, we also apply a single-owner policy for the updating activity: only one of
the owners is allowed to send global updating messages. Each time a shared schema is modified by
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one of its owners if this owner is not the main one, it sends an updating message to the main owner.
In the next updating sequence, the modified schema will be updated globally.

6.6.4 The message and answer reception sequence

As in the updating message generation, the answer generation must be triggered. For this, we use
the same VMS routine with a different interval: *dkc-interrupt-interval*. The function which is
triggered by the SYS$SETIMR VMS routine checks in the mail box for messages which have been
received. If there are no messages, the VMS routine is re-armed. If messages are found, an answer
is created and the VMS routine is re-armed. The message (or answer) reception is automatic. The
utilization of the SYS$SETIMR VMS routine provides this automation. The VMS routine starts after
a period determined by the "daytim" parameter set to *dkc-interrupt-interval*, for the message (or
answer) reception activity. The message and answer reception sequence is summarized in figure 6-8.
It indicates the different Lisp functions used. But these functions are not enough. When the
responder of an EMN-node receives a message or when the searcher receives an answer, they must
react according to individual behaviour and also according to their content. For this, we use rules
and schemata.

Depending on the nature of the messages an EMN-node receives in its mail box, different
processes are executed. The first distinction we make is based on the nature of the received message:
message or answer. Then, the distinction is done on the type and/or status of the message or answer.
The different status are: t, nil and locked for the answer schema and the different types are: update,
information-search and distribution for the message schema. The distribution type has three
subtypes: distribute-UT, distribute-LC and distribute-END. These characteristics allow to
distinguish the messages. Processes are then triggered accordingly (figure 6-8). The different
sequences performed depending on the message or answer status and/or type are: '

» If it is a message, it can be either an information request or an updating message or a
distribution message.

«If it is an information-search message, the answer process is executed. %m
process checks in the KBS if the needed schema is available and its nature (owned,
used or shared). If it is not available, an answer with a nil status is generated. Ifrt
is available, according to ztsnatnredﬂferent functions are executed:

o If it is a used schema: an answer with a t status is generated.

+ If it is a shared schema: an answer with a t status is generated and it is
locked locally if the EMN-node requesting this information is one of the
owners of the schema. The schema is unlocked when the EMN-node receives
an updating message for it. ‘

'Iftheschemaislockad:mmwuwithalwkedstamsisgenemted.

ﬂ]e :w:'@e:
nnlmksiL
* When we received a distribution message type, it can be either a distribute-LC
message type, or a distribute-UT message type, or a distribute-END.
o If it is a distribute-LC message type, it contains a copy of the local channel
schema of a new initialized agent, the responder compares this received
schema and its local copy (if it exists) and triggers its own local distribution
sequence accordingly. If the channel does not exist with this new EMN-node,
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Figure 6-8: Message and answer reception sequence

it is created. The key words attached to this new EMN-node are examined
and according to their matching with class schemata key-words, updating
messages are generated.

o If it is a distribute-UT message type, it contains the User-Table of a new
initialized agent. Accordingly, the responder triggers some learning
functions to complete the Correspondance-Table using the UT of this new
agent. In addition, the class schemata users and the Shared-Schemata-Table
are completed.
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e If it is a distribute-END message type, it informs of an EMN-node deletion.
In such a case, the responder deletes the channel schema with this agent
and also remove its name from all the tables and class schemata.

¢ For received answers, we can distinguish several cases. These ca
according to the status of the answer: ses are defined
« If the status is locked: another message is generated to the EMN-node which sent
this answer.
« If the status is t: the schema is provided to the KBSS and PSS.

«If the status is nil: we apply several policies such as friend selection and
broadcastmg (if not already applied). In effect other messages are generated to
acquire the needed schema.

6.6.4.1 The message reception sequence

To be able to generate an answer to each message, we must store it in a queue. A queue must be
attached to a process. So we create a process called answer-message. The queue of this process is
the message-queue.

Schema 6-5: Answer-message

Answer-message
SLOT FACET VALUE
Instance Restriction: | process
Active-queues | Restriction: | message-queue

Schema 6-8: Message-queue

Message-queune

SLOT FACET VALUE
Instance Restriction: | imperative-queue
Queue-pointer | Restriction: | $message

Answer-message and message-queue are es
instance of the process schema and an instance ofthe mperative-que , 7
is the place where the system stores the received messages. Onue a message has been phwd in %e
queue, the system starts the answer-message process. The aim of this process is to generate an

answer to each received message.

Schema 6-7: New-message

= FACET VALUE
Is-a Restriction: event
Message-queue Restri tion.: ; )
Action Restriction: | ans wer-fn[

el ]
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In a queue we store events. The events of the responder are the messages that have been received.
So we create a schema called new-message, which is an event. All the messages which can be
received by the responder will be instances of this event schema. For this, we add a new value in a
message schema to its slot "instance": gets the value new-message and we create a new slot: "event-
time" with the value: gets (relative-time nil 5 0 0 0). The value of the event-time corresponds to §
seconds. Since a received message is also an instance of the message schema, the instance slot has
two values: message and new-message. The event-time slot corresponds to the time at which we
want to answer the received message. We store these events in the message-queue. The action
performed on these events is the "answer-fn" function. When the clock reaches the value of the
event-time, the system executes the contents of the action slot. This function creates an answer to
the message.

6.6.4.2 The answer reception sequence
This next sub-section describes how the searcher manages the answers received from the
responders of the other EMN-nodes, corresponding to the messages it has sent (figure 6-9).

Schema 6-8: Control-answer

Control-answer
SLOT FACET VALUE
Instance Restriction: | process
| Active-queues | Restriction: | answer-queue

Schema 6-9: Answer-queue

Answer-queue
SLOT FACET VALUE
Instance | Restriction: | imperative-queue
Queue-pointer | Restriction: | $answer

To be able to check the answer(s) received for each message, we must store them into a queue.
Since a queue must be attached to a process, so we create a process called control-answer. The
queue of this process is the answer-queue. The control-answer and answer-queue are represented
as schemata which are instances of, respectively, the process schema and the imperative-queue
schema.

The events of the searcher are the answers which are received. We create a schema called
new-answer, which is an event. We store these events in the answer-queue; the action performed
on these events is the "message-fn” function. We add in each answer received a new value to the slot
"instance": gets the value new-answer and a new slot "event-time"” with the value (relative-time nil 5
0 0 0). The instance slot of an answer already exists in the schema. So the value: new-answer is
added to this slot. The event time is the time when we will apply to this event its action function:
message-fn. This function will check if the received answer provides the needed schema. If yes, the
schema will be provided to the problem solving subsystem of the EMN-node. If not, the function will




answer

control-answer-trigger

v

message-fn

yes

|

make-schema-fn

the needed schema

yes is provided to the PSSS

r

make-message-fn

[?endomessage-fﬂ

destination
= answer-producer
DKC-system error
add-schema-fn
the needed schema
is created by the user
To get the fist
of agents we Usé |
the list of channels

Figure 6-9: Answer control sequence
- an error message if it is impossible to g




81

Schema 6-10: New-answer

New-answer
SLOT FACET VALUE
Is-a Restriction: | event

Message-queue | Restriction: | answer-queue

Action Restriction: | message-fn

6.7 Information Layer utilization example

In this section, we present an example of the Information Layer functionalities. This example is
the demonstration scenario presented at the 2nd Center for Integrated Manufacturing Decision
Systems (CIMDS) conference.

This scenario shows (a) accessing information from many parts of the enterprise and integration,
(b) direct communication of heterogeneous agents, (c) broadcasting capability, (d) how information
sent by one agent changes the decision of another.

This scenario uses six different agents in the system:
¢ one manager: responsible for preparing the process plan,

¢ one inventory manager: responsible for the stock management,

¢ and four scheduler: each one responsible for scheduling the activities of some machines
(each scheduler is responsible for different machines).

Assuming the existence of the lower levels of the architecture (initialization, channels, mail-boxes,
distribution, etc.) the manager gets an important order that he wants to expedite through the
factory floor.

1. The manager looks up the process plan for the order. The process plan is displayed in
the network form.

2. The manager controls the machine availability using a GANTT chart representation.
The manager only possesses the machine-1 availability information. But when the
GANTT chart display is triggered, messages are sent to acquire the availability of the
other machines (machine-2 through machine-5). These machine schemata are owned by
the schedulers and are shared schemata, i.e., they can be updated either by the
manager or by the schedulers. But the searcher of the manager does not know the
specific owner of each machine. Each one of the machine-2/machine-5 is owned by a
different scheduler. They are the main owners of these schemata, the manager is a
simple owner able to only trigger global update of these schemata through the main
owner.

3. So a broadcasting is performed by the searcher of the manager and four information-
search messages (one for each machine) are sent to each of the other agents of the
system (the four scheduler and the inventory managers).

4. The schedulers send back the calendars (the inventory sends an answer with a nil
status) which are displayed in the GANTT chart. These calendars are received through
answers with a ’t status. What is shown so far is the capability to access information
from many parts of the enterprise and integrate it.
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5. The GANTT chart shows the schedule of the activities in the order. The order requires
also some material. The manager inquiries of the inventory agent delivery dates of the
material. In fact the manager just inquiries for the delivery dates of the articles used
for the realization of the different products scheduled and the searcher generates direct
communication messages towards the inventory agent. In this case, the searcher knows
the owner of these schemata.

6. The inventory agent sends messages of quantity and deliirery dates. But delivery dates
necessitate delay in order processing (say, all activities must be shifted by one day)

7. GANTT chart displaying the shifting (schedule change) that resulted from the
information received from the inventory is sent as updating messages to the main
owner of each machine schema (at this point we know the main owner of each specific
machine-2/machine-5 due to the result of the broadcasting: learning functions have

been triggered).

8. Each scheduler then executes the global updating of the new schedules towards the
users of these schedules. This illustrates the updating activity for information
consistency.




7. Conclusion :

The Enterprise Management Network is designed to facilitate the integration of heterogeneous
functions distributed geographically. Integration is supported first by having the network play a
more active role in the accessing and communication of information, and second by providing the
appropriate protocols for the distribution, coordination and negotiation of tasks and outcomes.

As described in this paper, the Data Layer provides the ability to perform "standard" SQL-like
queries across the network. The Information Layer provides a node with the ability to "invisibly"
access information anywhere in the network, without explicitly referring to its location or its
retrieval.

Our design of the Enterprise Management Network has the following characteristics:
* Modular layered architecture: as we have defined six levels of descriptions for a
decentralized system, we can implement in a specific case either part of or the complete
architecture.

* High level decentralized communication system which flexibly supports
cooperative decision making: our structure includes a decentralized communication
system which, using the frame based structure, allows the exchange information
(schemata) between decentralized EMN-nodes.

¢ User transparent: the decentralized communication system is implemented in each
EMN-node of the decentralized system. It has the capability to provide the needed
information to the EMN-node. As this communication system is not specific to a
particular EMN-node, it has been defined as a shell. The EMN-node does not have to
know where to get the needed information. The communication system has the rules and
capability to play this role. In our specific implementation of this communication system,
the trigger of the information search is the CRL!? command: (GET-VALUE schema-

name slot-name)?°,

* Declarative layer specification provided by the frame based representation. Each
EMN-node has its own local knowledge and data base.

e Accessibility of information to different parts of the organization. Each EMN-node has
translation mechanisms to enable communication with others.

¢ Understandability of information through a common communication language.

e Awareness of problems and communication to appropriate EMN-nodes using a
communication schema.

¢ Focussed information dissemination.

» Responsiveness of EMN-nodes through rules and translation mechanisms.

 Flexibility of communication due to support for many types of interaction and of
representation through a frame based representation.

The current implementation of these three first levels of the Enterprise Management Network
Architecture are described in [34]. Our future work concerns the specification and implementation

19Carnegie Representation Language (CRL) is a registered trademark of Carnegie Group Inc.

2For example (GET-VALUE ’machine ’capacity). In this case, "machine” is the schema name and “capacity” is the slot
name. If the value is available in the Knowledge Base of the EMN-node, it is returned.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>