
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Enterprise Management Network Architecture

The Organization Layer

Michel Roboam, Mark S. Fox and Katia Sycara

CMU-RI-TR-90-22^

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

November 1990

© 1990 Carnegie Mellon University

Michel Roboam is currently visiting scientist in the Center for Integrated Manufacturing
Decision Systems and is sponsored by the AEROSPATIALE Company (France).

This research has been supported, in part, by the Defense Advance Research Projects Agency
under contract #F30602-88-C-O001t and in part by grants from McDonnell Aircraft Company
and Digital Equipment Corporation.

Table of Contents
1. Introduction 1

1.1 Enterprise Management Network Capabilities 3
1*2 Distributed Systems Definition 4

1.2.1 Distributed Systems Advantages 4
1.2.2 Decentralized Systems top-level description 5
1.2.3 Distributed System Dimensions 5

1J2.3.1 Parallel Distributed Processing Systems 6
1.2.3.2 Distributed Problem Solving Systems Definition 6

1*2.4 Distributed Systems capabilities 7
1.2.5 Distributed Systems Problems 7

2. Enterprise Management Network Node 8
3. Organization Layer 12

3.1 Modeling tool selection 14
3.2 Enterprise Modeling 16

3.2.1 The GRAI Methodology 16
3.2.1.1 The GRAI method modeling tools 18

3.2.2 Using the GRAI Model 21
3^2.1 EMN-nodes identification 21
3JL2J2 EMN-nodes hierarchy and inter-actions identification 25

3J2.3 A generic organizational model 28
3-2.4 The MERISE data modeling tools 29

3.2.4.1 Entities and entity types 29
3.2.4.2 Relationship 30
3-2,4.3 The MERISE data models 31
3.2.4.4 Translation rules for MERISE-CDM into MERISE-LDM 32

3-2.5 A generic data model supporting a manufacturing organization 35
3.2.6 Coherence tools 37

3-3 Schemata defined at the organizational level 38
3.4 Example 51
3.5 Organization Layer example 52

4. Conclusion 54
Acknowledgement 55
References 56

i i

List of Figures
Figure 1-1: Network Layer Implementation Example 1
Figure 1-2: Data Layer Implementation Example 2
Figure 1-3: Information Layer Implementation Example 2
Figure 2-1: Example of decentralized system 8
Figure 2-2: The elements of an EMN-node 9
Figure 2-3: Information exchanges overview 10
Figure 2-4: Decentralized system example 11
Figure 3-1: EMN architecture instantiation 13
Figure 3-2: Methodologies typology 15
Figure 3-3: Global conceptual model of the GRAI method 16
Figure 3-4: Structure of a Decision Center 17
Figure 3-5: GRAI grid 18
Figure 3-6: GRAI grid example 19
Figure3-7: GRAI grid decomposition in GRAI nets 20
Figure 3-8: GRAI net 20
Figure 3-9: GRAI net example 21
Figure 3-10: EMN-nodes identification using the organizational model 22
Figure 3-11: The organization tree 23
Figure 3-12: Example of EMN-nodes identification 24
Figure 3-13: Identification of the information exchanges 25
Figure 3-14: EMN-node hierarchy identification 26
Figure 3-15: MSP type identification 26
Figure 3-16: SPP type identification 27
Figure 3-17: MUP type identification 27
Figure 3-18: Example of EMN-node links identification 28
Figure 3-19: Organizational model: decisional point of view 29
Figure 3-20: The entity content 30
Figure 3-21: The relationship content 30
Figure 3-22: The entity/relationship model 31
Figure 3-23: Example of CDM 31
Figure 3-24: The Logical Data model 32
Figure 3-25: Organizational model: data point of view 35
Figure 3-26: The supplying function conceptual data model 36
Figure 3-27: The logical data model derivation 36
Figure 3-28: The supplying function logical data model 37
Figure 3-29: Data/Process coherence tool 38
Figure 3-30: Process/Data coherence tool 38
Figure 3-31: Example of task decomposition 39
Figure 3-32: Content of the central kernel 42
Figure 3-33: Problem-solving hierarchical levels 43
Figure 3-34: Problem solving hierarchical decomposition 44
Figure 3-35: Problem solving hierarchical decomposition example 51
Figure 3-36: Organization Layer implementation example 53

Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema
Schema

3-1:
3-2:
3-3:
3-4:
3-5:
3-6:
3-7:
3-8:
3-9:
3-10:
3-11:
3-12:
3-13:
3-14:
3-15:
3-16:

List of Schemata
Grid
Function
Decision-level
Decision-center
Model
Knowledge-Base
Knowledge-object
Problem-solving
Procedure
Activity
Decision-activity
Execution-activity
Informational-link
Decision-frame
Goal
Role

41
41
42
45
46
46
46
47
47
48
48
48
49
49
50
50

Abstract
Achieving manufacturing efficiency requires that many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. In this paper we introduce the concept
of Enterprise Management Network (EMN) as the element to facilitate the integration of distributed
heterogeneous functions of a manufacturing enterprise. The integration is supported by having the
network first play a more active role in the accessing and communication of information, and second
provide the appropriate protocols for the distribution, coordination, and negotiation of tasks and
outcomes. The Enterprise Management Network is divided into six layers: Network Layer, Data
Layer, Information Layer, Organization Layer, Coordination Layer, and Market Layer. Each of
these layers provides a portion of the elements, functions and protocols to allow the integration of a
manufacturing enterprise. The Organization Layer plays the central role in the EMN architecture by
defining the model of a decentralized structure, and identifying its major components to be
supported by the other layers.

1. Introduction
In the first report [38], we have introduced the concept of Enterprise Management Network

(EMN) architecture to support the integration of the manufacturing enterprise. We defined this
architecture as a multi-layers system supporting both distributed knowledge base and distributed
problem solving. We have identified six different layers:

6. Market Layer

5. Coordination Layer

4. Organization Layer

3. Information Layer

2. Data Layer

L Network Layer

The Network Layer provides for the definition of the network architecture (figure 1-1). At this
level, the nodes are named and declared to be part of the network. Message sending (or message
passing) between nodes is supported along with synchronization primitives (such as "blocking*1).
Security mechanisms are also provided such as message destination recognition.

CHANNEL + COMMUNICATION PRIMITIVES INFORMATION DISTRIBUTION

mm. mm mm SEMAPHORE BOX

Figure 1-1: Network Layer Implementation Example

h?> 2

The Data Layer provides for queries and responses to occur between nodes in a formal query
language patterned after SQL [7, 8] (figure 1-2).

COMMUNICATION SCHEMA

ANSWER SCHEMATA
MESSAGE SCHEMATA

Figure 1-2: Data Layer Implementation Example

The Information Layer provides "invisible" access to information spread throughout the EMN
(figure 1-3). The goal is to make information located anywhere in the network locally accessible
without having the programs executed locally know where in the network the information is located
nor explicitly request its retrieval. This Layer also includes information distribution focussed on
data classes, keywords and content and security mechanisms such as agent blocking and unblocking
and schemata locking and unlocking. All the information queries expressed at this layer use the
query language defined at the data layer.

Figure 1-3: Information Layer Implementation Example

The Organization Layer provides the primitives and elements (such as goal, role, responsibility
and authority) for distributed problem solving. It allows automatic communication of information
based upon the roles a node plays in the organization. Each EMN-node knows its responsibility, its

s, and its role in the enterprise organization.

The Coordination Layer provides the protocol for coordinating the activities of the EMN-nodes
through negotiation and cooperation mechanisms.

The Market Layer provides the protocol for coordination among organization in a market
environment. It supports the distribution of tasks and the negotiation of change and the strategies
to deal with the environment. In this report, we present in details the fourth layer of this
architecture (Organization Layer). The aspects covered by this report mainly concern the distributed
problem solving supported by the EMN architecture. In the previous report [38], we presented the
problems of distributed knowledge base and how they are covered and supported by the EMN
architecture (As another example for distributed knowledge base, we can refer to [25,1, 34]). The
implementation of this architecture and of the communication system is described in [39]. This
Layer provides the support for distributed problem solving by defining the type of interactions we
can have between EMN-nodes. In the next layers (Coordination and Market), we will define the
protocols supporting these type of interactions.

We define at first the concept of distributed problem solving by identifying its characteristics such
as coupling, grain size or degree of cooperation.

Then, after presenting the content of an EMN-node, we define the Organization Layer of our EMN
architecture. This level is the platform on which we build the structure to support the distributed
problem solving between the EMN-nodes. In addition, this layer provides information about the
EMN-nodes to complete the three first layers of our architecture described in [38].

1.1 Enterprise Management Network Capabilities
The optimization of the manufacturing enterprise can only be achieved by greater integration of

activities throughout the production life cycle. Integration must not only address the issues of shared
information and communication, but how to coordinate decisions and activities throughout the firm.

Achieving manufacturing efficiency requires that the many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. Cooperation can take many forms:

• Communication of information relevant to one or more groups' tasks. For example,
sales informing marketing of customer requirements, or production informing the
controller of production performances.

• Feedback on the performance of a group's task. For example, field service informing
design and manufacturing of the operating performance of a new product.

• Monitoring and controlling activities. For example, controlling the execution of
operations on the factory floor.

• Assignment of new tasks. For example, a new product manager signing up production
facilities to produce a new product

• Joint decision making where groups of "agents" have to negotiate and cooperate in
order to achieve their tasks (which can be antagonistic or not). For example, an
inventoiy manager and a scheduler negotiating to define the manufacturing activity.

An Enterprise Management Network is viewed as the "nervous system** of tihe anteirprise, enabling
the functions described above. It is more than a network protocol (e.g., MAP) in that it operates and

participates at the application level. Its philosophy is different in terms of participation and
structuring. Such a system must be defined in such a generic way that it can be integrated with all
kinds of applications an enterprise can use. The following describes the capabilities provided by the
Enterprise Management Network:

• Information routing: given a representation for information to be placed on the
network and a representation of the goals and information needs of groups on the
network, the information routing capability is able to provide the following:

• Static routing: transfering information to groups where the sender and the
receivers are pre-defined.

• Dynamic routing: transfering information to groups which appear to be interested
in the information. This is accomplished by matching a group's goals and
information needs to the information packet.

• Retrospective routing: reviewing old information packets to see if they match new
goals and information requirements specified by a group.

• Closed loop system: Often, the communication of information results in some activity,
which the initiator of the communication may be interested in. The EMN will support
the providing of feedback in two modes:

• Pre-define feedback: operationalizes pre-defined information flows between groups
in the organization. For example, production providing feedback to sales on the
receipt of orders.

• Novel feedback: Providing feedback for new and novel messages.

• Command and control: Given a model of the firm which includes personnel,
departments, resources, goals, constraints, authority and responsibility relations, the
EMN will support these lines of authority and responsibility in the assignment,
execution and monitoring of goals and activities. In particular, it will manage the
distribution of information and the performance of tasks.

• Dynamic task distribution: Supporting the creation of new organizational groups and
decomposition, assignment and integration of new goals and tasks, contracting and
negotiation are examples of techniques to be supported.

1.2 Distributed Systems Definition
The Enterprise Management Network Architecture provides the elements and functions to define,

implement and support a distributed system. A distributed system is a system with many
processing and many storage devices, connected together by a network.

Distributed Systems Advantages
Potentially, this makes a distributed system more powerful than a conventional, centralized one in

two ways:
• First, it can be more reliable. Every function can be replicated several times. When a

processor fails, another can take over the work. Each file can be stored on several disks,
so a disk crash does not destroy any information. We call this property fault tolerance.

• Second, a -distributed system am do more in the same amount of time, because many
computations can be carried out in parallel1.

w» m talking about large grmla parallelkms not easmectioEt «mAlni style parallelism.

1.2.2 Decentralized Systems top-level description
"In a very general terms, a system is said to be distributed when it includes several geographically

distinct components cooperating in order to achieve a common distributed task" [2]. But this
definition is not true for all the domains. If we consider, for example, games involving two players,
the aim of each one is to win the game. So the two agents of this decentralized system do not
cooperate, they compete (they cooperate in playing the game, i.e., they follow some rules, but they
compete about sub-goals-winning).

The set of nodes in the system is usually organized according to various domain dependent
topologies. Decentralized systems in every day life come from a wide variety of areas, e.g., a business
firm, a system for traffic control, etc.

The processing nodes in a decentralized system may all be identical in their capabilities or they
may each possess specific skills. Whatever the configuration is, in a decentralized system both the
control (process) and the knowledge can be distributed throughout the system.

In actuality, there is a range of approaches for decentralized architecture, from an almost
centralized system to a distributed system with a centralized planning and control element, to a
distributed system with a distributed, hierarchical group of control elements, to a fully distributed,
"flat" system in which each element is responsible for its own control.

Moreover, the organization amongst the elements may either be static, remaining the same as
time elapses, or dynamic, adapting itself as the requirements of the environment needs i t In any
case, the processing nodes, or agents, contain knowledge about themselves and their environment,
and a logical capability to work on that knowledge. In other words, the agents have a memory and a
processor.

But we have a limitation for the memory aspect: we cannot have in a decentralized agent all the
needed information for completely autonomous running (the concept of bounded rationality [40]).
This means that we must acquire some information from the other agents of the decentralized
system: the agent must communicate. Bounded rationality implies that both the information a
computing agent can absorb and the detail of control it may handle are limited.

1.2.3 Distributed System Dimensions
Since almost any real world system is decentralized and, moreover, open in nature [21,29,22], the

spectrum of categories for decentralized system is infinite. But we can use two attributes to
categorize decentralized systems along two continuous dimensions: the degree of coupling among
the agents (or nodes), and the gram size of the processors of the agents.

Coupling is a measure related to links between the agents in the system. Loose coupling means
that information exchange amongst the agents is limited. In loosely coupled systems the agents
spend most of their time in local processing rather than in communication among themselves. Tight
coupling, therefore, indicates that there is no practical physical limit on Hie bandwidth of the
communication channel between the agents. Because of excessive commiinicauon, tight coupling also
indicates that the concept of bounded rationality ©f computing does not completely apply [401

6

The grain size of the processors measures the individual problem-solving power of the agents. In
this definition, problem-solving power amounts to the conceptual size of a single action taken by an
agent visible to the other agents in the system. If the grain is coarse then the processing nodes are
themselves rather sophisticated problem-solving systems with a fair amount of complexity. In
coarse-grained applications, the distribution may be characterized to be, therefore, at the task level,
Fine grain often indicates that the individual processors are functionally relatively simple, i.e., they
do not exhibit any "intelligence" per se, and that their number in the system is substantial. Thus, the
distribution in fine-grained applications is at the statement level as opposed to task level
distribution.

1.2.3.1 Parallel Distributed Processing Systems
Decentralized, fine-grained systems with tight coupling are often referred to as parallel

distributed processing systems [26, 9, 6,21]. The processing aspect emphasizes concurrent execution
of functionally decomposable tasks.

The objective in parallel distributed processing systems is usually load balancing of shared
informational and physical resources. In distributed processing systems, the computational or
syntactic motivations for decentralization are highlighted:

• speed,

• performance/cost,

• modularity,

• availability,

• scalability,

• reliability,

• extensibility,

• flexibility.

Although the current trends in the cost and availability of computer hardware would suggest that
adding up enough conventional, low cost processors would result in an immense overall computing
power with a reasonable investment, this has not proven to be the case. On the contrary, it has been
recognized that a severe bureaucracy "bog-down" effect in multiprocessor systems calls for totally
new architectural strategies to operate on the higher degree complexities in routine problem solving.

UL3.2 Distributed Problem Solving Systems Definition
As the opposite of PDP, we have distributed problem solving systems. These are defined

informally as networks of loosely coupled, relatively coarse-grained, semiautonomous, "artifidaly
intelligent" asynchronous problem-solving agents, cooperating (or competing according to the
domain) to fulfill their global mission. Asynchronous means that the agents are thought to fuxieikr:
concurrently [26]. Cooperation means that because no node is capable of solving the entire proliera
by itself; the nodes have to work as a team and exchange knowledge about the tasks, results, goal%
and constraints to solve the global problem or set of problems.

The degree of cooperation between the nodes in a decentralized problem-solving system may
vaiy. On one extreme, the nodes may all be pursuing a common goal and be thus fully cooperative,

This assumption is often referred to as the benevolent agent assumption. On the other extreme of
the cooperation continuum, the nodes are nonbenevolent, i.e., they are self-interested, possessing
conflicting goals and preferences. Thus, a process of negotiation to resolve the conflicts becomes
crucial.

Decentralized problem-solving architectures with the last set of characteristics mentioned above
are often categorized as nearly decomposable systems. In nearly decomposable systems, the
interactions among the components are weak but not negligible. The emphasis in studying
coordination within nearly decomposable systems is on dealing with the problems arising from
restricted communication and bounded rationality. In the case of decentralized problem solving, the
semantic motivation to pursue decentralization are thus addressed in terms of complexity,
possibility and natural decomposition.

1*2.4 Distributed Systems capabilities
As mentioned above, a distributed system has to be capable of parallel execution and of continuing

in the face of single-point failures, so it must have:
• Multiple processing elements that can run independently. Therefore, each processing

element, or node, must contain at least a CPU and memory2.

• There has to be communication between the processing elements, so a distributed
system must have interconnection hardware which allows processes running in
parallel to communicate and synchronize.

• A distributed system cannot be fault tolerant if all nodes always fail simultaneously. The
system must be structured in such a way that processing elements fail
independently.

• Finally, in order to recover from failures, it is necessary that the nodes keep shared
state for the distributed system.

1*2*5 Distributed Systems Problems
All these advantages of distributed systems cannot be satisfied due to the complexity of designing

such systems [31, 20,24, 29,17]. Some examples of system problems are:

• the amount of interconnections and risk of failure,

• the interferences between processes,

• the problem of propagation of effects between processes,

• the information inconsistency due to its duplication,

• the effects of scale due to the dimension of distributed systems and

• the partial failure of one processor that can perturbate the other ones.

The EMN architecture we define in this paper covers most of these aspects. Hie utilization of
Artificial Intelligence techniques to support communication and distribution offers help in solving
most of these problems, especially propagation of effect, and information inconsistency.

*Nbto thai multiple EMH-nodbs may share m processor

8

2. Enterprise Management Network Node
The Enterprise Management Network links together two or more application nodes (EMN-nodes)

by providing the "glue" that integrates the manufacturing enterprise through architectures and
mechanisms to support decision making at all levels of the organization. For example, the COETES
system [18] is composed of an uncertainty analyser, a planner, a scheduler, a factory model and two
dispatchers responsible for several machines (figure 2-1). Each is defined as an EMN-node.

UNCERTAINTY
ANALYSER

I SCHEDULER I

cMACH1NE-1.1

cMACHINE-1.2

MACHINE-2.1

cMACHINE-2.2

Figure 2-1: Example of decentralized system

Each EMN-node consists of the following subsystems3 (figure 2-2):

• Problem Solving Subsystem,

• Knowledge Base,

• Knowledge Base Manager, and

• Communication Manager.

Problem Solving Subsystem represents all Hie rales and functions which alow the
to solve any problems related to its 'domain. The local execution cycle is triggered either by the

internal transactions generated during local problem solving, or by external events forwarded to the
EMN~node by the Communication Manager*

Each EMX-ivode contains a locally maintained Knowledge Base to support its problem solving
It is composed of entities (or objects) which may be either physical objects (products, resources.

^Cumoftly impleoMmtftd in Cbnnaaliqp

9

operations, etc) or conceptual objects (customer orders, process plans, communication paths,
temporal relations, etc). The knowledge base is expressed as CRL4 schemata [281.

The Knowledge Base Manager manages information exchanges between the problem solving
subsystem and the knowledge base, maintains the consistency of the local knowledge base, and
responds to request made by other EMN-nodes. In the Enterprise Management Network, knowledge
and data may be distributed throughout the network. It is the philosophy of the system that
knowledge does not have to be available locally in order for it to be used by the EMN-node.
Therefore, knowledge, in the form of schemata, fall into one of two classes: that owned by the
knowledge source which must be stored locally, and knowledge used by the knowledge source, in
which the original is stored at another EMN-node and a copy is stored locally.

Figure 2-2: The elements of an EMN-node

A problem that arises in supporting the exchanges between the problem solving subsystem and
the knowledge base is the unavailability of schemata locally. The problem solver often refers to
knowledge that cannot be found locally, but may be found in another EMN-node's knowledge base.
At the time of reference, the problem solver may or may not know where in the Enterprise
Management Network the knowledge resides. It is the responsibility of the Knowledge Base
Manager to "hunt down" the missing knowledge and to respond to like requests from other EMN-
nodes. To accomplish this, the Knowledge Base Manager has as part of it a Communication
Manager. It both manages the search for information in the EMN and responds to like requests
from other EMN-nodes. To perform these activities, the Communication Manager has two modules:

• The searcher corresponds via message sending with oilier EMN-nodes. The searcher
peforms two tasks: searching for knowledge not available locally, and the updating of
knowledge changed and owned by the EMN-node.

• The responded answers messages originating from other EMN-nodes' searchers, and
updates the local knowledge base according to updating messages.

The communication manager manages four types of interaction:
• Triggering: information that triggers the node's processing.

• Dynamic retrieved: Requests for information not available in its knowledge base and

4CHL stands for C&raegie Represettt&tSoa Laagixag®.

10

necessary to perform its task. This information needs appear during the internal activity
(processing) of an EMN-node.

> Updating information: When an EMN-node, as the owner of some schemata, modifies
these schemata, the searcher dispatches the modifications to other EMN-nodes that have
local copies of these schemata. The responder may or may not update a local copy
depending on the usage at the receiving EMN-node. Being the owner of a schema
means, the EMN-node is the only one allowed to globally modify the content of a schema.
But each EMN-node having a local copy of a schema can locally modify the content of
that schema.

• Transaction request: Similar to remote procedure calls.

Problem Solving
Subsystem

info, update
info. R

- M (info. R)
- M (update)

info. A

- A (info. A)

Knowledge Base
Manager

info, update
info. R

- A (info. A)

- info. A
or nil

Responder

Knowledge Base
Subsystem

M (update)
M (info. R)

Figure 2-3: Information exchanges overview

We summarize all these exchanges between the modules of an EMN-ncde in figure 2-3. This figure
shows the •different types of information sent and received by each module (M stands for Message, A
stands for Answer, R stands for Request, T stan'ds for Translator and CT stands
Table). We will diseufs in the next sections the content of these informations.

11

The three upper layers of the Enterprise Management Network architecture are defined in the
remaining sections. Each layer provides further detail on the functionality and operation of EMN-
nodes. To illustrate the specific content of these layers, we will take an example. We will consider a
decentralized system composed of three agents, connected by a network. Each agent has a specific
Problem Solving subsystem (PS) and a specific Knowledge Base subsystem (KB). We also assume
that the three first layers of the EMN architecture have been implemented in each EMN-node
(figure 2-4). We will extend this example by adding the specific schemata, functions and protocols
provided at the organization layer.

NETWORK

COMMUNICATION
PROTOCOLS

COMMUNICATION
FUNCTIONS

Figure 2-4: Decentralized system example

12

3. Organization Layer
The Organization Layer provides the primitives that define an agenf s goals, roles, responsibilities

and authority in an organization. These primitives are used to support distributed problem solving,
that is the definition of both structure and the support of different methods of coordination, and to
determine to whom information is to be communicated automatically.

Our approach to modeling an organization is to start with its structure [32]. The three main
aspects are:

• Physical: all the physical resources of the organization, such as the machines, the
personnel, the tools, etc.

• Decisional: all activities related to the control of the physical system which need a
decision to be taken. The main characteristic of these activities is the possibility of
multiple choices.

• Informational: the control of the physical activities by the decisional system is done by
exchanging information between them. Information exchanges are also present in each
systems. We include in the informational system all the information processing such as
the Material Requirement Planning.

We add to this structural information, the lines of authority, goals, roles and responsibilities of
each organizational entity. The model is then further refined with the information flows that are
necessary to support decision making, and the temporal horizon over which decision are to be made
or actions performed.

Our modeling methodology utilizes the GRAI [11, 36] and GDI [36,37] graphical modeling tools as
a means of specifying an organization5. The advantages of using such graphical tools are in the
clarity of the conceptualization of the real environment. They provide a strict formalism of the
different systems we intend to model. These models, once created, will allow a better understanding
of what the inter-actions and hierarchical links are.

The interactive graphical specification of organization is automatically translated into the
underlying organization, information, and network layer schemata and protocols. These schemata
allow the definition of links and inter-actions between the EMN-nodes. Mechanism are defined to
complete, using the content of these schemata, the communication schema, to create channels and
decision frames, to define, using the informational links, what are the updating sequences and
potential users of the information. In addition, the hierarchical structure of EMN-nodes will be
defined through the hierarchy of decision frame we define in the organizational model. This
hierarchy will be used at the coordination layer to define coordination and negotiation protocoled

In figure 3-1, we define the different sequences and functionalities supported by the Organization
Layer cf the EMN architecture. Starting from a specific enterprise, the first step performed at the
Organization Layer is. to build, using a graphical editor, a model of the organization of Hm
enterprise. This model uses both GRAI and GUI modeling formalisms. The GRAI model structures a
manufacturing organization according to a decision point of view. It defines the production
management of a manufacturing organization. Hie GUI model supports the data modeling. II

GRAI-IDEFO-MERISE or GEM l-iegruiec ifetiMxtoiogy MM been created in our PhD th®fb[$G] and is the
Eteropata BOTOT Pn#ct 418 Op« CAM flfrpfam [15,86]

13

Figure 3-1: EMN architecture instantiation

identifies the entities and their relationships. After a consistency diedking between these two models
(using coherence tools defined in paragraph 3.2.6), they are automatically translated into the
underlying organization and information schemata* These schemata support the definition of the
centralized structure of the manufacturing organization. The next step is to split up this centralized
structure into a decentralized one. For that purpose, we select one or several criteria of
decomposition. The definition of the decentralized structure of the enterprise is derived from these
schemata according to specific criteria. Hie instantiation of the different EMN-nodes, of their inter-
actions and content is defined using the GRAI grid, the information and decision links, etc. The
instantiation of an EMN-node means the creation of a decentralized agent and the initialization of
the different schemata defined at the three first layers of the EMN architecture in this agent In

14

addition, the used, shared and owned information specific to this EMN-node are identified, the
channels between this new EMN-node and the already existing ones are created. Then, the
hierarchy and interactions between this new EMN-node and the already existing ones are identified
and the corresponding coordination and negotiation protocols are applied to support the distributed
problem solving among the different EMN-nodes. The definition of the EMN-nodes and their
interactions are determined using both GRAI and GIM models. After defining one or several criteria
of decomposition, we can derive using the different rules specified in paragraph 3.2.2 the structure of
the decentralized production management system of a specific organization. This structure is also
supported by schemata we present in section 3.3. The negotiation and coordination protocols are
defined at the coordination layer. But their application is determined by the interactions identified
at the organization layer.

In this section, we define the concept of a modeling tool. Then, we present the modeling tools of the
GRAI and GIM methods and their application to define the structure of the organizational model. In
the last part, we present the schemata to support the implementation of this organization layer,

3.1 Modeling tool selection
Modeling is a difficult task; the domain we intend to model is complex. The goal of modeling is not

to simplify but to better represent the complexity in order to support analysis [30]. Simon suggests
analyzing a problem by splitting it up into "action and goals" [41]. Titli suggests decomposing and
aggregating hierachically a structure in order to identify modules and analyse their inter-actions
[48]. We have selected the GRAI methodology for modeling organizations. Our choice is based on

an existing classification [35,15] of the current methods and tools which use the following criteria:
• What aspects of the system modification life cycle is supported by the methodology,

• What abstractions of the system the methodology is able to model, and

• What types of subsystems can be modeled.

For our purposes, we can ignore the life cycle modeling criterion6.

The complexity of a manufacturing organization is great, thereby precluding its modeling in
complete detail. Consequently, a methodology must support the modeling of an organization at
different levels of abstraction. Three abstraction levels have been identified:

• The conceptual level defines a system in terms of entities, activities, and their
relationships.

an orguinftfim, them am Hm
• Analysis phase: we sfcady the situation of the existing system and we try i© dfifme its inconsistencies. The

Ccnntraliit® &nd goals ®t® slso dsftinsiL

pkase: the fonctimml spediicaticn&, the basic fhuntwofk: and the general behaviour of the
filter syste m are ikfinedt

• Development plmse; based on the choices mad® at the previous step, this phase concerns the tecrmicsi chokes
and thft naliimtlon of the prototype of tbs fitfcw ^ftem.

* Inspleaientatiosi pliase: isttgratioii mid adapt&tiss of the prototype in its VMI environment.

of the iinpiemested system.

15

• The organizational or structural level models both the system's structure, such as
departmental hierarchies, authority relations, etc., and the modeling of technologies
being used such as network and database types.

• The realizational or physical level defines the physical implementation of the system
defined at the previous level. Choices for software packages and hardware components
are made.

Organizations can be viewed in many ways, each having different representations, methods of
design and analysis, and separate criteria they must satisfy. The sub-systems of a manufacturing
system we wish to model are:

• The Physical subsystem which includes the men, the machines, the material flows, etc.
of a manufacturing system.

• The decisional subsystem which controls the physical system by triggering and
readjusting its activities. We introduce the concept of operating level which links the
decisional and physical level (it includes the control of machines, the security
procedures, etc.).

• The informational subsystem corresponds to all the information and information
processing which can occur between or inside of the two previous systems.

ABSTRACTION LEVEL

Conceptual

Structural

Operational

Analysis

IDEFO
SATT

GEMMA "
MFM

- IMMS -
GRAFGET

Design
Development s

implementation ~~
Operating J>

MERISE.
SSAD
GAG!

' 1DEF1 "

~

NATURE OF
MODELS

LIFE CYCLE

Figure 3-2: Methodologies typology

These elements allow to define a methodology typology, we represent in figure 3-2. Other criteria
can be added to this typology such as the pragmatic, semantic and syntactic characteristics of the
methodology tools where:

• the syntactic aspect covers the problems of vocabulary,

• the semantic aspect covers the problems of structure, and

• the pragmatic aspect covers the "problem solving^ power of these tools.

16

3.2 Enterprise Modeling
In this section, we define the content and use of the tools used to acquire the description of the

organizational model of the Enterprise Management Network (EMN) architecture. The first
graphical tools we describe are the GRAI [11, 36] tools. Then we define the data modeling tool of the
MEKISE method [46,47] which uses the entity/relationship model originaly created by Chen [5].
These two models span both aspects of problem solving and knowledge: the GRAI model describes
the enterprise's decision making processes and supporting knowledge, and the MERISE data
modeling tools define the data structure used in the decision processes. In the last part of this
section we propose two coherence tools to support the integration of both GRAI and GIM models.

3.2.1 The GRAI Methodology

Lsvs:cf
decomposition

Resource

Rsw material
Components

Products

Figure 3-3: Global conceptual model of the GRAI method

The GRAI methodology approaches the problem of modeling complex enterprises by viewing them
as being composed of the following systems:

• The physical subsystem which represents the machines, tools, men, products,
components, etc, of a manufacturing organization. Its purpose is to transform the raw
material, parts, components, etc. into products the company can sell.

• The decision subsystem drives the physical subsystem to perform the orders. It is
defined as a hierarchical structure composed by a set of decision centers.

17

• The informational subsystem is the link between the two previous subsystems. All
information exchanged, manipulated, transformed, created, etc. are part of this
subsystem.

Figure 3-3 provides a graphical depiction of an enterprise's systems from the GRAI perspective.

A decision system can be decomposed into decision centers at different levels of the enterprise's
hierarchy. Tasks are passed among decision centers in the form of decision frames which define the
goals, decision variables, rules, etc. The elements of a decision center are depicted in figure 3-4.

These two conceptual models define the concept behind the modeling tools of the GRAI method.
They introduce the notion of system, hierarchical decomposition, decision center and decision frame.

In the next section we describe the tools available in GRAI for acquiring and instantiating a
specific enterprise model. These tools are restricted to modeling the decisional subsystem and parts
of the other two subsystems relevant to the decision processes.

INFORMATION
SYSTEM

agregation

technical

adapted
to each

level

agregation

t

DECISION SYSTEM
DECISION Allocation of means
FRAME Performance to be reached

Responsibility frame

PHYSICAL
SYSTEM

Figure 3-4: Structure cf a Decision Center

18

3.2.1.1 The GRAI method modeling tools
GRAI has two graphical tools for modeling decision subsystems: GRAI grid and GRAI nets. The

GRAI grid (figure 3-5) provides a hierarchical representation of decision activities that spans the
entire decision system. The grid has two axes:

• The horizontal axis indicates the functions of a production management system. For
example, planning, purchasing, supply, quality control, engineering, etc

• The vertical axis defines a temporal decomposition of these functions, defined by two
parameters:

• The Horizon which is the duration of which a decision is valid (for example,
establishing a budget for one year => H = 1 year).

• The Period is the time after which you revise your decision (for example, I make a
schedule for the week and I readjust it every day => H = 1 week, P = 1 day).

Functions
Horizo>
Period

EXTERNAL
INFORMATION

TO
PURCHASE

TO
SUPPLY

TO
PLAN

TO MANAGE
RESOURCES

INTERNAL
INFORMATION

Dedstoi
Center

^Decision
Xenter 2

H

P

H :

P :

Decision
Center 3

Decision
Center 4

Decision
Center 5

Decision
Cunter 6

Red Urn

Figure 8-5: GRAI grid

Each I&WL* in the grid defines a deciskm center (for example, "to make the Master schedule", "to
make the schedule", "to define the supplying parameters*8, etc.). Decision centers can be linked as
follows:

• The initaranatkm link, drawn with a single arrow, represents the transmision of
information between two decision centers (for example, the engineering decision center
provides the process plan to the scheduling decision center).

• The decision fcame, drawn with a double airow, defines the goal, decision variables
and rales transmission. It defines the hierarchical tad: allocation link between two
decision centers.

Figure 3-6 is an example of a GRAI grid. In this example, four decision levels are defined: (1 year,
3 months), (1 month* 1 week)ff (2 weekif 1 day) and Real time. Four different functions have been
token into account; to purchase, to supply, to plan and to manage resources. The two columns:
interaal information and eactenial information am just information supports providing knowledge
about the source of information used by the Production Management System and which are not part

19

Fete

H/P

EXTERNAL
INFORMAT"

TO MANAGE
PRODUCTS

To Purchase! To Supply

TO PLAN THE
PRODUCTION

TO MANAGE
RESOURCES TO DELIVER

INTERNAL
INFORMAL

1 Year

1 Year

FORECAST
PER FAMILY
PRODUCT
PRODUCT

TO LOOK FOR :TO DETER*
S U P P L I E R S ^ — THE

TONEGOCIATE : SUPPLYING
THE MARKETS : PARAMETERS

BUDGET c
EOUIPEMENTS

AND
PERSONNEL
PLANNING

/EL THE RES

3 Month

FORECAST
PER PRODUCT

ORDER
BOOK

TO ADJUST
THE MARKETS

TO ADJUST
!THE SUPPLYING
PARAMETERS

PRODUCTION
PLANNING (UPS)

TO LEVEL THE RESOURCE
LOAD

/MONTH/SHOOP

1 Month

1 Week

STORAGE

LOAD PLANNING REPARTITION OF THE
PERSONNEL PER

TEAMS
AND PER SECTION

-MANUFACT.
PARTS

TO SUPPLY
iRAW MATERIALS

AND PARTS

STORAGE
-RM.
-PURCHASED
PARTS

1 Week

VDay
TRACKING

X/W.NUF.
SCHEDUL
/MACHINE

ASSEMBLY
SCHED.

/DAY
/TEAM .

DELIVERY
PLANNING

Real
Time

TO RECORD
THE ORDERS
(FINISHED P.)

TO ORDER
(RMAND
PARTS)

TO RECORD I/O
(RM, PARTS
FINISHED P.)

TO
MANUFACT.

> PARTS

TO
ASSEMBLE
FINISHED P.

TO DELIVER
THE

ORDERS

Figure 3-6: GRAI grid example

of this system. A GRAI grid is read from the top to the bottom. In the example we start from the
"master schedule" part of the planning function and performed every three months with a one year
horizon. Based on this "master schedule", the supply function defines at the same H/P level the
supplying parameter, the purchase function negotiates with suppliers, and the resource
management function determines the planning for the men and machines. The master schedule uses
the forecasts as a basic input. Then weekly (P= lweek), a "load planning'* is determined based on
the master schedule and adjusted with the real orders. According to the part availability, provided
by the supplying function, this load planning is adjusted. Its horizon is one month.

Each "box" of the grid is decomposed into a GRAI net (figure 3-7) (or several, depending on the
level of detail needed). A GRAI net (figure 3*8) defines the sequence of activities performed in a
decision center, and the information, resources, etc., used.

The decomposition process begins by splitting a decision center into two or three macro activities.
This first level is also called a macro GRAI nets. At least one of the activities must be a decisional
activity (implying a choice). Then, each of these activities can be decomposed into another GRAI net
we call micro GRAI net. This hierarchical decomposition of activities is equivalent to what we can
find in other structured methodology such as IDEFO.

A distinction is made between decision activities and execution activities. The first type implies
that a choice is to be made according to some goals and the values of "decision variables*8. Each
decision activity uses some knowledge, possibly in the form of rules. Decision activities are drawn
with vertical arrows in the GRAI net. The execution activities imply no choice. They are
information processing activities and are drawn as horizontal arrows in the GRAI net

20

\

H
/P

le

ve
ls

Functions

A l\ •

-CD

fi
Figure 3-7: GRAI grid decomposition in GRAI nets

RESOURCE

STATE

S!

OBJECTIVES
AND DECISION
VARIABLES

RESULTS

Q
TO DECIDE J

RESULTS

Figure 3-S: GRAI net

We give an example of GRAI net in the figure 3-9. This example represents the macro GRAI for
til© ^diipatebiiiff decision center. Two different activities have been identified: wto update schedide**
and wto select next orderw. Hie first actMly is an catenation activity. The previous schedule is
updated according to what has been performed in the shop floor. In the example, workstation 7 has
completed its ©rtlor and waits for the next one. The purpose of the "to select next order" activity is to
select the next order. Based on the updated schedule, taking into account the shop floor status, the

21

order
performed

t

^>
Workstation
number 7

Schedule | | Capacity

r \ t

• 1
f TO UPDATE
V SCHEDULE

To

Information
on the

workstations

i new
schedule

J @
parts

•

Objective :

respect due dates

^—j Shop floor status |

1

*

next order

rro SELECTV
NEXT 1

C ORDER J

Decision variable:
Time, resources

• ^
\ /

Workstation
number 7

Figure 3-9: GRAI net example

part availability and the feasibility of the schedule, this activity selects from the list of orders
allocated to workstation 7 the next one to be executed. This decision is made by trying to satisfy the
due date and start time of each order.

3.2.2 Using the GRAI Model

3.2.2.1 EMN-nodes identification
We use the GRAI grid to identify EMN-nodes (figure 3-10). An organization can be divided in

many ways; it can be decomposed by decision center, groups of decision centers, by function, etc.,
each corresponding to an EMN-Node. Once identified, channels and network layer attributes can be
defined and instantiated.

Consider a Production Management System (PMS), that can be structured according to following
functions:

1. Resource management: This function provides manufacturing with the ''resources'* it
needs at the right "time". These include, technical (machine) and human (personnel)
resources. This function is divided into two sub-functions: technical resource
management and human resource management.

2. Product management: This function provides the manufacturing activity the
"products" it needs at the right "time". These include, parts, raw materials,

22

components, etc. that are used, manufactured, supplied, etc. This function is divided
into 2 sub-functions:

• Supply: Determine the needed quantity of "products" and the date of this need for
the manufacturing activity.

• Purchase: Acquire needed products from suppliers.

3. Planning function: This function synchronizes manufacturing activities. It plans and
schedules the production of the "products'1 using "resources" of good quantity and at the
right "time".

EMN-node-4

EMN-node-3

EM -node-1 EMN-node-2

Figure 3-10: EMN-nodes identification using the organizational model

All these functions are performed at three levels:

• Strategic (S): which defines the objectives of the function,

• Tactical (T): which establish plans according to the objectives,

• Operational (0): which applies plans and re-actfusts them according to perturbations.

Additional functions include maintenance, quality control, distribution, design, etc

According to this functional decomposition and the three identified decision levels, each function
or sub-function can be split up into several activities. For example if we decompose the planning
function we can identify six main activities:

The first activity performed in the planning function is to do Production Planning. Frcdur:: ;r.
planning forecasts customer demand and determines the manufacturing activities required to gaiigfj
them, including budgets and capital investments.

Master Production Scheduling (MS) refines the Production Plan in more detail over a shorter
horizon, with specific products and using firm orders. This is used as input to Material
Planning (UBPX The MRP system produces three plans:

• a supply plan which is given to the supply function,

23

• a subcontracting plan which is given to the purchasing function and
• a manufacturing plan which is given to the planning function.

With the manufacturing plan, a Load Plan (LP) is developed by comparing the required demand
against the theoretical capacity of the resources. In situations where demand exceeds capacity, load
levelling is pefonned in order to create a feasible plan. Leveling can be achieved by subcontracting,
moving activities backward or forward in time, adding capacity through overtime, etc.

Given a load plan, Scheduling sequences the activities using detailed information about setup
and run times, tooling and personnel requirements, etc. Once sequencing is completed, jobs are
dispatched to the factory floor and schedules are adjusted in light of unplanned for events that may
occur, such as machines failures.

A Production Management System can be viewed as a tree composed of several levels, each level
corresponding to a criteria of decomposition (figure 3-11).

Level of
decomposition

FUNCTION

SUB-FUNCTION

DECISION
LEVEL

ACTIVITY

ORGANIZATION

r
Planning Fct

I
Resource

MgtFct

I

Product
MgtFct

\

Engineering
Fct

I
I I I I I

Technical Human Purchase Fct Supply Fct Means Process Product
Resource Resource i l design design design

MgtFct MgtFct Fct Fct Fct

nn nn Hn ni rn rn m
S T O S T O S T O S T O S T O S T O S T O S T O

i in
MS LPS D

Figure 3-11: The organization tree

All these functions and activities can be identified on a GRAI grid.

Once the GRAI net and grid have been constructed, we can now map the organization onto EMN
Agents. There exists more than one way in which to divide the organization, these criteria include:

• decomposition by function.

• decomposition by decision level (H/P level).

• decomposition by decision center.

Choosing a criterion depends upon how we value the degree of coupling and grain size of activities.
Hie resultant decomposition spans a variety of problem solving organizations, but will contain all
the activities present in the centralized structure described by the grid.

Additional elements can be added to distinguish these functions, such as:
« Resources (R): for example, machines and personnel.

• Product (P): genericaliy, all raw materials, components, parts, finished products, etc.
that are manufactured, supplied or sold hy the company.

24

• Time (T): such as duration, due date, starting date, etc.

For example, the three main functions of a PMS can be distinguished as follows:
• The Product Management function provides products to manufacturing at the right time

and quantity. So, the elements manipulated by this function are P and T.

• The Resource Management function provides resources to manufacturing at the right
time and capacity. So, the elements manipulated by this function are R and T.

• The Planning function synchronizes the production of products with the resources at the
right time. So, the elements manipulated by this function are P, R and T.

In the ESPRIT project 418 [15,35], physical levels are used as additional criterion for
decomposition:

• factory level,

• shop level,

• cell level,

• workstation level,

• equipment level.

It is possible to build for each of these levels a decentralized structure with their own
decentralized knowledge-base and problem solving subsystems. Such a decomposition has the
advantage of being coherent and easily "coordinated" because it follows the production management
hierarchical flow of decisions.

TO MANAGE
PRODUCTS

TO PLAN THE
PRODUCTION

TO MANAGE
RESOURCES

FORECAST
PER FAMILY
PRODUCT
PRODUCT

TO LOOK FOR ^ T O DE7ERMNE
SUPPLIERS^*— THE -

TDNEGOOATE j SUPPLYING
THE MARKETS 'PARAMETERS

FORECAST
PER PRODUCT

STORAGE
-F.P.
-MANUFACT.

PARTS

STORAGE
-R.M.
-PURCHASED
PARTS

DELIVERY
PLAtiNfNG

TOQRDER iTOREGORD&O
gRJ4,PAK!B

PARTS) ; FMHHGDP.)

TO RECORD
FHEQRDB3®
fRNWHED PJ

TODBJVER
THE

ORDERS

Figure 3-12: Example of EMN-nodes identification

25

As we can see, a wide variety of criteria is available to define the hierarchical structure of a
manufacturing system. The selection of a criterion is the key issue for identifying the EMN-nodes of
our structure (figure 3-12).

3.2.2.2 EMN-nodes hierarchy and inter-actions identification
The GRAI grid specifies the links between decision centers of a manufacturing organization. As

the smaller grain size for the definition of the EMN-nodes is the decision center, we can easily make
the correspondance between decision center links and EMN links.

The GRAI grid defines two link types:
• The information links, and

• the decision links.
The information link defines the information exchanges between decision centers (figure 3-13).
Using this aspects, we can derive the owner, the user and the shared information. The origin of the
information link can be defined as the information owner and the destination as the information
user. By analyzing all these links, we can easily derive the content of the communication schema,
defined at the data layer, for each different EMN-nodes. This derivation will be supported by some
Lisp functions which will, using the schemata supporting the organizational model, complete the
different slots of the communication schema of all the different EMN-nodes. Consistency checking
will be also ensured.

user

information exchanged

owner
Figure 3-13: Identification of the information exchanges

The decision link defines the hierarchy of decision centers (figure 3-14). A decision frame or
dedsional link between two decision centers (or EMN-nodes in case of direct coircspondance) defines
the transmission of goals and decisions! variables from one decision center to another. A decision
frame is used as a platform to support decision activities* They define the decision centers hierarchy.
In addition, elements such as goal, decision rules, responsibility, etc, are specified.

26

\

ve
ls

H
/P

 le
^

Functions

/
J
II)

• • ' i i .

• i - i

goal and
decision variables

Master

Servant

Figure S-14: EMN-node hierarchy identification

We use these links to define the hierarchy of EMN-nodes once these EMN-nodes have been
identified on the GRAI grid. These links allow to establish between pairs of EMN-nodes the type of
inter-action it exists between them. According to this type, we can select a negotiation protocol,
defined at the Coordination layer, to support the distributed problem solving between EMN-nodes.

\

o
>JS
0.

Functions

—ii

MSP type

mmt •MWMMi
— -

- 1

goal and
decision variables

Master

Servant

Figure 3-11: MSP type identification

We have identified three different type of inter-actions between EMN-nodes on a GRAI grid:
• Hie MSP (Master-Servant Protocol): when we h&re a decision frame between torn

decision eenterg which are in the same fimdSon but at different levels of decision (figure
3-15). This, type of relation can be identified as a global goal transmission between two
EMN-nodes of the qrstem* The 'wsenrantw performs its activity based cm the

27

\

le
ve

ls
H

/P

Functions

I

| 1

S i ^ j " " - 1 - 1 - 1 ••••:•••••• • • • • • • : | - - - - - ••••• ••••••••• ' " ^ p r

T
\

IN-node

IN-node

information
or goal

Figure 3-16: SPP type identification

\

ve
ls

H
/P

le

Functions

T
T \

•I
j

— • — ,

User

Master

information
or goal

Figure 3-17: MUP type identification

decision-frame it receives from the "master11. This deciskm-frame contains the goals and
plans to follow. Hie interaction is mainly unidirectional (from the MmasterH to the
"servant"*). The "servant*1 only sends feedback to the "master**.

• The SPP (Same-Power Protocol): when two decision colters are at the same level of
decision Imt in different functions and linked by an information link (figure 3-16). This is
the more complex type of relation. In that case, the EMN-nodes have to cooperate
because they are performing an antagonistic task. The goals of their activities can, he
different but they are manipiilating common resources. As an example, we can refer to
[13, 33,27,10,19, 12f 3, 4,42,45, 44] for a more complete description and study of
cxwrdination and negotiation mechanisms. Based on this literature, we will propose
different protocols at the coordination layer, to support this aspect cf coordination and
negotiation of antagonistic EMN-nodes.

28

• The MUP (Master-User Protocol): when two decision centers are at different level of
decision, in different functions and linked either by a decision frame or by an
information link (figure 3-17). In such a case, a partial goal and plan transmission is
done between the "master" and the "user". The "user" performs its activity by taking into
account the partial goals and plans provided by the "master" but completed by
information coining from an EMN-node located at a higher level of decision in the same
production management function.

The identification of the different inter-actions between EMN-nodes is supported at the
organization layer (figure 3-18). But the specification and implementation of the different identified
coordination protocols are presented at the Coordination Layer.

TO LOOK FOR rr 0 DETERMNE
SUPPLIERS^— THE

TONEGOOA7E : SUPPLYING
THE MARKETS : P A

Figure 3-18: Example of EMN-node links identification

3.2.3 A generic organizational model
We use the GRAI grid to define the model of a manufacturing organization according to a

dedsional point of view. In this section, we give a generic example of what could be an organizational
model (in this model, Cs is the supplying cycle and Cm is the manufacturing cycle).

This model (figure 3-19 represents the generic view of a MRP type manufacturing oiganizatwiL Its
definition has been initialized in [36] and completed in this project. The purpose of such a model is to
provide a platform for manufacturing organization design.

29

Figure 8-19: Organizational model: decisional point of view

3.2*4 The MERISE data modeling tools
The MERISE methodology uses entity/relationship model for data modeling. Data analysis is a

methodology which links together the analysis of functions and data in an integrated and structured
model. In this section, we define the concept of entity/relationship model to build a Conceptual Data
Model (CDM). Then, we introduce the Logical Data Model (LDM) derived from the CDM using some
translation rules we define.

3.2.4*1 Entities and entity types
The building block upon whidb all the entity analysis is based, is called an entity. An entity is

"anything relevant to the enterprise about which information could be or is kept*1. An entity
represents data but is not itself a data. For instance, a drilling machine exists as a machine but its
capability, number of tool, availability and so on are just characteristics which may or may not be
represented as data. A second term used in entity analysis Is entity iype (figure 3-2GX An entity
type covers all entities relevant to the enterprise, which have a given common definition.

We can determine several types of entity type:
• real entity types: these are tangible objects or things, such as machines, people,

buildings, etc.

• activity entity types: these are activities of interest to Che enterprise, about which data
could be kept, for instance: accident* inquiries, etc

30

entity name

[identifying name]

{propriety type name}

this is an optional part

Figure 3-2(fc The entity content

• conceptual entity types: a business can invent or use purely conceptual entity types, both
intangible and in some cases unique to the business, which might be: employment, cost
center, shop order, etc.

3.2.4.2 Relationship
A relationship is "an association between two or more entities which is of interest to the

enterprise". Anything that shows or sharpens a connection between two or more entities may be
thought of as a relationship.

The associated entities may be of one or two types, but not more than two. A relationship type
comprises "all the relationship occurences which fit a given definition" (figure 3-21). A relationship
type does not denote direction. If one were to draw a parallel between relationship types and
language the relationship type would be the verb and the two entity types the subject and predicate
nominative noun. In language these are reversible using a different verb construction (active and
passive). In other words we could just as easily have reversed the relationship type to read and mean
exactly the same thing.

Relationship type name

{propriety type name}

Figure 3-21: Hie relationship content

We can introduce the concept of degree in relationship. This concept is called cardinality. It
'exists several possibilities of expression to describe this degree. We present the three main found:

• One to' one: one entity of one entity type may have that relation type with one entity of
another or the same entity type,

• One to many: one entity of one entity type may have that relation type with one or more
entities of another or the same entity type,

• Many to many: many entities of one entity type may have that relation type with one or
more entity of another or the same entity type.

31

3.2.4.3 The MERISE data models
There exists one model per abstraction level and per life cycle step. For "data analysis", MERISE

has determined three different models corresponding to the level of details:

• The Conceptual Data Model (CDM) (figure 3-22),

• The Logical Data Model (LDM) (figure 3-24),

• The Physical Data Model (PDM).

To build the CDM model we use the entity/relationship model (figure 3-22). The first step consists
in determining a list of the vocabulary used within the company. Then we compare all these "words"
between them to exclude all the synonymous,...

Relationship-type name

entity-type name

Figure 3-22: The entity/relationship model

The list of purified vocabulary represents the list of the entity-types (example: the entity-type
workstation). For each entity-type we determine the attributes which allow to specify the content of
the entity-type (example: the attributes of the entity-type workstation can be: name, capacity,
identification,...). The second step is the determination of the relationship between each entity. We
establish a list of links and we give to each one a name. This list corresponds to the list of the
relationship-type.

Manu orders
Identification
Priority
Due date
State

Parts list

Route

Article axle
Type
Length
Description

Article reference
Type
Description

Operation1

Type
Description
State
Date

Figure S-2S: Example of CDM

32

With these two lists, we build the first draft of the CDM. We indicate for each link the cardinality
of the relation. Then step by step, the final version of the CDM (example: figure 3-23) is built and
adjusted. The MERISE methodology provides some rules to build the first draft and to revise the
CDM. In addition, a methodology step by step is also define.

The LDM is a modification and adaption of the CDM according to the technological constraints on
data base or files. The LDM is an adaptation of the CDM to the existing technology in term of data
bases and knowledge bases. At this level we make the dioices for the future structure of the data
system. We have several possible choices according to the existing technology: relational data bases,
hierarchical, network, object,...

RECORD TYPE

Owner

SET TYPE

RECORD TYPE

Member

Figure 3-24: The Logical Data mode!

Once we get the final version of the CDM, a choice is made in the data base type we are going to
use for this specific implementation. According to this choice, the LDM is build derived from the
CDM, If we select for example a CODASYL Data base type we have to modify the CDM according to
some rules (figure 3-24) to build the corresponding LDM (see translation rules for MEWSE-CDM
into MEMSE-LDM in the next section).

The PDM corresponds to the realization of data base. It is in fact the implementation of the data
bases according to the specification defined in the LDM.

SJLAA Tranalatioii rules for MEBISE-GDM into MHMSE-LDM
Hie conceptual model has a too rich formalism to be translated into a data definition language of a

data base management system. We have to fit this conceptual model according to the computer
constraints without losing the signification of this model. To reach this objective, some formalism
must be used to translate the CDM into the LDM.

The concepts of this logical internal formalism are:
• the field: It is the smallest part of a named data (we can compare the field to a small file

part),
• the record: It is a named collection, without repetition of one or many field types (we

can compare the record to a file),

33

• the set: It is a qualified relation between a record type which is declared as set master
and a record type which is declared as member. It is a binary functional relation (we can
compare a set to a data processing pointer).

The translation from an entity formalism structure to an equivalent structure in logical internal
formalism is completely algorithmic. It is not a reversible translation. The translation rules are:

Rule 1:

Property: each property (or attribute) in the CDM becomes a field in the LDM.

Rule 2:

Individual: each entity type in the CDM becomes a record type in the LDM.

Rule 3:

Binary relation 0,n-0,l or l,n-0,l: all binary relations O,n-O,l or l,n»O,l in the CDM become an
optional set type in the LDM.

RecordEntity

Relation Q

O,n

0,1

Entity J

f

J

Optional
setR

Record

Entity relationship
description

Internal logical
description

34

Rule 4:

Binary relation 0,n-l,l or l.n-1,1: All binary relations O,n-l,l or l,n-l,l in the CDM become an
obligatory set type in the LDM.

Entity

Relation

Entity

I

0,n

=1)

1,1

J

I Record

Obligatory
set R

Record

Entity relationship
description

Internal logical
description

Rule 5:

Binary relations G,n-G,n or l,n-l,n: These relation types in the CDM are transformed in one record
type and two set types in the LDM.

Entity

Relation (~~

Entity

0

R

0

J

,n

)

I

I

Record

Obligatory
setl/R

Record

Obligatory
setJ/R

Record

Entity relationship
description

internal logical
description

Ruled:

Relation which involves mare than two entities: TMs type of relation in the CDM is transformed in
one record and there are as many seta as entities which participate in the relation in the LDM.

35

Entity

Relation R

K

Entity relationship description

Obligatory
set J/R

Obligatory
set I/R record

Record

Obligatory
K/R

Internal logical description

3.2.5 A generic data model supporting a manufacturing organization
In this section, we define a generic data model, using the entity/relationship modeling tool, which

can support manufacturing organization. This model is dedicated to the job shop type of
manufacturing process. Based on this model, the decentralized subsystems can be derived. We give
an example of derivation for the supplying function.

S-25: Orgardzador^al model: data point of view

36

Factoryill lnv*io*

Totti

Figure 3-26: The supplying function conceptual data model

Artllll
Fftff>g»>f I

Mgur©S-27: The logical data mode! derivmtion

37

The supplying function example (figure 3-26) shows the domain covered by this activity on the
integrated model. Based on this domain, we define the submodel derived (figure 3-27). This
submodel needs to be adjusted in term of coherence, consistency and completeness. In figure 3-27, we
adjust the conceptual submodel defined as the basis of the logical data model of the supplying
function. In figure 3-28, using the translation rules presented in the previous section, we determine
the logical data model of the supplying function (in this example, we use the CODASYL standard).

Figure 3-28: The supplying function logical data model

3*2.6 Coherence tools
The two models we define in the previous sections model a manufacturing organization according

different points of view. As they will both support the definition of the corresponding decentralized
system, they should be coherent. For that purpose, in this paragraph, we define two different
coherence tools which ensure the mutual consistency of the GIM data model and of the GRAI
decisional model:

• The Data/Process coherence tool, and

• The Process/Data coherence tool.

The D/P coherence tool (figure 3-29) consists in making the data model complete and coherent
using tiie decisional model. The data model contains the entities and relationships which are
supposed to be necessary for the running of the decision system. The D/P coherence tool creates for
each decision process an external data model which represents the information necessary for that
specific decision process. Then it checks the existence of all the entities and relationships of this
external data model into the internal one (the G!M data model). This mechanism is applied to all the
decision processes.

38

prapriwiy-typm

Figure 3-29: Data/Process coherence tool

The P/D coherence tool (figure 3-30) consists in making the decision model coherent such as all the
information contained by the data model are created, modified, exploited and suppressed in the right
sequence. For that purpose, the P/D coherence tool defines in the chronological order the different
decision and information processing described in the GRAI model then the information creation,
modification, exploitation and suppression is derived. By checking for each information the order of
appearance, the decision and information processing can be adjusted.

A

1

Figure 3-30: Process/Data coherence tool

8.3 Schemata dBfinBd at the org&nizBtioiuil level
To be able to describe such a complex system, we must have a global and a detailed description of

its components. In the Organization Layer, we focus our description on the EMX-node concept. At
the upper level, as we describe the different types of organization, we provide tools to support the
description ef E^C\-node inter actions and coordination. Hie global view of an organization is given
by the GRAI grid. Hie detailed view (EMN-fiode) is given the Hie decision center description. The
data model provides the support for all the activities identified in the GRAI model

Our idea in denning schemata to support distributed problem solving is in creating for each
specific problem involving several EB4N»nodes a blackboard [14,23]. For example, if a problem to be
solved involves three different EMM-nodes, they will all have a local blackboard dedicated to that

39

problem. Each time one of the three agent will modify something in its local blacboard, modifications
(or updates) will be sent to the two other blackboards (of the two other EMN-nodes). Each EMN-node
will have one blackboard per antagonistic task and among the decentralized system, for a specific
antagonistic task, there will be as many blackboards as involved EMN-nodes (figure 3-31).

Organization
Md Sh

Satoctlonof
ttw criteria of

decomposition

EMN-nod«s
Unification

\

\
EUN-AOdM

D«(lnmon

EMN-ncxto-2

Figure 3*31: Example of task decomposition

In the previous paragraph and in figure 3-31, we define coordination and negotiation protocol as a
basis for our distributed problem solving architecture, this in addition with the schemata describing
the decentralized organization and the task blackboards. These protocols can be viewed as generic
rules to follow for negotiating and coordinating decentralized EMN-nodes. These protocols should be
general and must cover a class of problems instead being too precise and restrictive. Our idea for the
coordination layer is to define generic protocols which can allow agents to start working and to add
learning mechanisns so that the protocols can be improved during their execution. As an example of
generic protocol, we can refer to [43]. In this paper, a protocol for distributed scheduling system is
presented. Distributed scheduling is a process carried out by a group of agents each of which has (a)
limited knowledge of the environment, (b) limited knowledge of the constraints and intentions of
other agents, and (c) limited number and amount of resources that are required to produce a system
solution. Some of these resources may be shared among many agents, Global system solutions are
arrived at by interleaving of local computations and information exchange among the agents. There
is no single agent with a global system view.

The multi-agent communication protocol is as follows:
I. Each agent determines required resources by checking the process plans for £be orders it has to

schedule. It sends a message to each monitoring agent (as specified in a table of monitoring agent)
informing it that it will be using shared resources.

II. Each agent calculates its demand profile for the resources Goes! and shared) that it needs.

III. Each agent determines whether its nsw demand profiles differ «galfte«n% from the cms it sent
previously for shared Tesouram. If its demand has changed, an agent will nod it to ths monitoring
agent.

40

IV. The monitoring agent combines all agent demands when they are received and communicates the
aggregate demand to all agents which share the resource7.

V. Each agent uses the most recent aggregate demand it has received to find its most critical
resource/time-interval pair and its most critical activity (the one with the greatest demand on this
resource for this time interval). Since agents in general need to use a resource for different time
intervals, the most critical activity and time interval for a resource will in general be different for
different agents. The agent communicates this reservation request to the resource's monitoring agent
and awaits a response.

VI. The monitoring agent, upon receiving these reservation requests, checks the resource calendar
for resource availability. There are two cases:

1. If the resource is available for the requested time interval, the monitoring agent (a)
communicates "Reservation OK* to the requesting agent, (b) marks the reservation on the
resource calendar, and (c) communicates the reservation to all concerned agents (i.e. the
agents that had sent positive demands on the resource).

2. If the resource had already been reserved for the requested interval, the request is denied.
The agent whose request was denied will then attempt to substitute another reservation, if
any others are feasible, or otherwise perform backjumping.

VII. Upon receipt of a message indicating its request was granted, an agent will perform consistency
checking to determine whether any constraint violations have occurred. If none are detected, the agent
proceeds to step II. Otherwise, backjumping occurs with undoing of reservations until a search state
is reached which does not cause constraint violations. Any reservations which were undone during this
phase are communicated to the monitor for distribution to other agents. After a consistent state is
reached, the agent proceeds to step II.

The system terminates when all activities of all agents have been scheduled Backtracking, with
this version of the protocol, is based on the following design decisions: 1) Once an agent has been
granted a reservation, this reservation is not automatically undone when some other agent who had
to backtrack now needs the reservation. This can lead to situations where one agent solves its local
scheduling problem but the other agent cannot due to unresolvable constraint violations. 2) If an
agent backtracks, it frees up resources but the reservation of other agents on these resources remain
as they were. This policy may result in non-optimal reservation for other agents since it denies the
other agents greater opportunity to take advantage of the canceled reservations of the backtracking
agent, but it results in less computationally intensive performance.

At the Organization Layer, we must structure an organization. The grid schema supports such a
description. It partially specifies the decision center, the modules, the data-modules and the links
between them. The distinction is made between decisional and informational links. Both are
supported by schemata. The grid provides the global view of the organization we want to structure.
This model will be the basis in the definition of the decentralized EMN-nodes. The granularity of
this model is the decision center. This graphical tool produced from the GRAI method [36],
supported by a schema, describes the main characteristics of the decision system of this specific
organization. It shows the links between the EMN-nodes, as well as those with the environment of
the system. It provides a decisional and global description of the organization.

7With the eswpfiQti of tfee firm! time dem&n&s mm excfc^Rgsd, agents do not wait for aggregate demand* to be competed and returned prior to

41

Schema 3-1: Grid

Grid
SLOT

Name

Is-a

Functions

Decision-levels

Decision-centers

Decisional-links

Informational-links

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

model

type string*

type (horizon/period)*

type decision-center-name*

type decision-frame*

type informational-link*

The x-axis of the GRAI grid is composed by a set of functions. Each function can be described by
an instance of the schema 3-2. This schema defines the goals and decision centers composition of
each function. In addition, a description of the purpose of each function is provided.

Schema 3-2: Function

Function
SLOT

Name

Description

Goals

Has-modules

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type string*

type goal*

type decision-center*

The y-axis of the GRAI grid is defined by a set of decision levels. A decision level is a pair
(horizon, period). We describe each decision level by an instance of the schema 3-3. Each decision
level schema includes the value of the pair H/P and also an identifier which is generaly determined
according to the following rules:

• Each decision level is identified by a multiple of 10.

• Hie decision levels are classified fay decreasing period.

• At equivalent period, the decision levels are classified by decreasing horizon.

42

Schema 3-3: Decision-level

Decision-level
SLOT

Identification

Horizon

Period

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type string

type string

In this paragraph, we have to provide the elements to define the content of the two specific
subsystems of an EMN-node:

• a domain modeling subsystem,

• and a problem solving subsystem (figure 3-32).

Figure 3-32: Content of the central kernel

determination of the domain modeling subsystem can be done by using the model we defined
in the previous section. We have defined in figure 3-25 the stxucture of centralized data base. We
mutt identify on tMs global model the tobdomain of each functions. By this way we identify the
content of the decentralized data base or domain modeling subsystem.

43

To complete this work we must reorganize the elements of the suhdomain (figures 3-26, 3-27 and
3-28 shows an example for the supplying function) to have the "best" and more efficient organization
in a decentralized utilization.

For the problem solving subsystem, we have to build in the same way a decentralized structure
able to have an autonomous running and capability to react to the perturbations related to the
subdomain.

We can start our description with the centralized process model (figure 3-19) and to define the
subdomain. We have to identify the elements of the decentralized problem solving subsystem. We
must have a hierarchical decomposition to be able to respect the coordination aspect of an EMN-
node. We have seen previously that several criteria can be used to split up such a global structure
into a set of decentralized elements. To follow the hierarchical view of the grid, we can split up the
problem solving subsystem into several hierarchical levels (figure 3-33).

FUNCTION

DECISION DECISION DECISION DECISION
CENTER CENTER CENTER CENTER

ACTIVITY ACTIVITY ACTIVITY

Figure 3-33: Problem-solving hierarchical levels

For each of these elements, we can build a schema defining their charasteristics and content. The
first element is the function. A function represents a column of the grid (figure 3-25). A function is
composed of several decision centers. A decision center is a "box" of the grid. It is in fact the
intersection of a function and a decision level (H/P level). A decision center can be split up into
several activities. Each activity can be define as an object. We can identify7 two kind of activities:
the decision activities and the execration activities.

A decision activity implies a choice. This choice is done according to some rules or knowledge
rules. For each choice, we have to respect a local-goal and our choice is done by determining the
value of decision variables.

An execution activity is a calculus, an information processing we can define by an algorithm.

All these elements (EMX-nodes, Function, Decision center, Activity, Decision activity and
execution activity) are objects. For all these objects, we can build a schema. If we want to implement
this structure into knowledge craft, we must identify the schemata of such a structure, figure 3-34
provides an wemew of these schemata,

The basic element of the organization level is the EMN-node. As an EMM-node is responsible for a
specific task, we represent it as a d®d«i©» center. The concept of decision center comes from the

44

GRAI method. A decision center contains all the elements needed to perform a specific decision
activity.

has-module has-module

has-module

xt-DC V y next-DC

as-module

Figure 3-34: Problem solving hierarchical decomposition

We create for each decision center an instance of the schema 3-4, This one contains knowledge
related to the decision aspect. Hie decision center is the basic element of our organizational model
Hie granularity used to define the EMN-nodes is the decision center. Generally, a decision will
represent an EMN-ncde. But, in some structure, an EMN-node can be defined as a combination of
several decision centers.

A decision center has a specific role (described in the role slot), performs its activity according to
one or more goals (described in the goal slot) and determines the value of certain decision variables
(fisted in the decision-variables slot). To perform its activity, a decision center has a specific
Knowledge Base, a specific problem solving sub-system and can get information (schemata) from the
other decision centers.

AM we have seen, each EMN-node possesses a Knowledge Base sub-system and a Problem Solving
sub-system. Both of them are models. A model can be viewed as an abstraction of a specified object
116}. In each model an abstraction is composed of states and transition! between them.

45

Schema 3-4: Decision-center

Decision-center
SLOT

Name

Decision-variables

Goal

Role

Decision-rules

Decision-level

Period

Function

Has-module

Previous-decision-center

Next-decision-center

Inputs

Outputs

Knowledge-Base-subsystem

Problem-solving-subsystem

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type EMN-node-name

type string*

type goal-name*

type role-name*

type string*

type decision-level

type time

type function

type activity*

type decision-center*

type decision-center*

type information*

type information*

type data-model-name

type Problem-solving-name

A state in the computation is defined by a subset of state-variables with a particular position in
the object's code. A model is the generic entity which represents an abstraction of a real object. All
the other specific modek we will describe will be linked with that one with the IS-A relation.

The Knowledge Base sub-system and the Problem Solving sub-system are both models. We create
a schema for each one which describes their specific elements.

The Knowledge-Base schema is a collection of d&ta-ofcpects and knowledge objects. The purpose
of this schema is mainly to identify a KB as member of one EMN-node.

46

Schema 3-5: Model

Model
SLOT

Name

State-variables

States

Abstraction

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

iype string

type string

type string

Schema 3-6: Knowledge-Base

Knowledge-Base
SLOT

Name

Is-a

Knowledge-objects

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

VALUE

type string

model

type knowledge-object*

Each knowledge-object is also described by a schema which defines its content, attributes and
relations with the other knowledge-objects. H e Knowledge-object schema describes a specific
piece of data or a specific piece of knowledge in an EMN-node (We can identify this piece of data as a
schema or as a rule).

Schema 3-7: Knowledge-object

Knowledge-object
SLOT

Name

Is-a

Description

Attributes

; Relation

FACET

Value:
Restriction:

Restriction:

Value:
! Restriction:

Value:
Restriction:

Value:
Restriction:

VALO1

type string

model

type string* :

type (name, value [,. value,.- J)*

type fRnowledge-object-name, cardinality)*

For the problem solving subsystem, we me the first schema: VsobkmfrmAving. This schenaa IS-A
model, and it describes the procedures specific to an EMN-node. Each procedure is also denned as ft

schema. The procedures8 are subsets of the Problem-solving schema. Each of them represents a
specific function or functionality. The procedures manipulate the knowledge objects of the
Knowledge Base.

Schema 3-8: Problem-solving

Problem-solving
SLOT

Name

Is-a

Procedures

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

VALUE

type string

model

type procedure-name*

Schema 8-9: Procedure

Procedure
SLOT

Name

Is-a

Description

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

VALUE

type string

model

type string*

Each decision center can be split up into several activities. Two activity types are identified: the
execution and the decision activities. Each activity is defined by an instance of the activity
schema (schema 3-10). The activity is defined as one of the module of a decision center.

In the decentralized system, each EMN-node (or decision center) has a specific purpose and role to
play in the organization. A hierarchy exists in the organization. In this hierarchy, each specific
decision center has some responsibility and authority over other decision centers. Similarly, each
decision center also receives some orders and commands from the upper level of this hierarchy. The
decision centers are linked together. We can distinguish two kinds of links: information links and
decision frame links.

The first kind just concerns exchanges of information needed for the internal processing of the
EMN-node. We define for each informational link a schema which contains the information
exchanged between two EMN-nodes. The second kind of link concerns the decisional activity. A
decision frame contains elements concerning goals, decision variables and objectives. To allow the
transmission of coordination aspects through out the entire organization of EMN-nodes.

'in oar camnt implenieiilatkMt, proeednres are Cc-smsicnlisp functions

48

Schema 3-10: Activity

Activity
SLOT

Name

Input

Output

Description

Previous-activity

Next-activity

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type data*

type data*

type string*

type activity*

type activity*

Schema 3-11: Decision-activity

Decision-activity

SLOT

Name

is-a

Goal

Decision-variables

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

activity

type goal*

type information*

Schema 3-12: Execution-activity

Execution-activity

SLOT

Name

is-a

Algorithm

FACET

Value:
Restriction:

Restriction:

Value:
Restriction:

VALUE

typestring

activity

type string*

We have jiwt described the structure of a decision center. These schemata are connected by
channels, Channeb alow the exchange of schemata. To this point* we have developed information
exchange. The eoon&naium of the decentralized structure needs goal, decision-variable and rale
exchanges m well. The purpose d the Decision-frame schema is to support sudb exchanges. In

49

this way, we can describe the organization structure of a manufacturing system. The content of a
decision frame is as it has been described in section 3.2. We define goals, decision variables, and
some rules used in decision process.

Schema 3-13: Informational-link

Informational-link
SLOT

Name

Provenance

Destination

Information

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type decision-center-name

type decision-center-name*

type schema slot value

Schema 3-14: Decision-frame

Decision-frame
SLOT

Name

Provenance

Destination

Decision-variable

Goals

Decision-rules

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type decision-center

type decision-center

type string*

type goal*

type string*

An EMN-node uses another aspect: the EMN-node goal. This element is described by a specific
schema. The description of a goal is of primaiy importance to an organization. We can refer to [16] to
find the description of the Goal schema. In addition, a Sola schema can be defined to provide the
link between the EMN-node activity definition and the local goals.

50

Schema 3-15: Goal

Goal
SLOT

Name

Type

Precondition

Postcondition

Resource-consumption

Resource-production

Resource-transformation

Initiation

Goal-model

Ports

Objects

Organization-membership

FACET

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

Value:
Restriction:

VALUE

type string

type string

type string

type string

type string

type string

type string

type string

type string

type string

type string

type string

Schema 3-16: Role

Role

BWT

Name

Description

FACET

Value:
Restriction:

Value:
Se&trictfom:

VAUIE

type string

type string

51

3.4 Example
In this example, we define the hierarchical structure of the planning function. The figure 3-35

provides a global view of this structure and establishes the link between the generic schemata
defined in the previous section and their instantiation for the planning function.

has-modute
has-module

has-modute

Figure 3-35: Problem solving hierarchical decomposition example

Then, we define the content of some schemata part of this hierarchical structure. We present the
content of the load planning decision center. We detailed its content by defining two of its activities:
"to-detect-problems" and Mto-solve-problems*\

{ PLANNING-FUNCTION
INSTANCE: Function
NAME: Planning
DESCRIPTION: to synchronize the manufacturing activity
BASIC-ELEMENTS: P and R and T
GOALS: to satisfy due-date and delay of the customers
FRIENDS: 1 - Resource-Management function

2 - Product-Management function
3 - Engineering function

H&S-MODULES: PP, MPS, LP, S, AS, D. }

PP: Production Flan
MPS: Master Production Schedule
LP: Load Planning
S: Schedule
AS: Id just Schedule
D: Dispatch

52

{ LOAD-PLANNING
INSTANCE: Decision-center
NAME: Load Planning (LP)
IS-MODULE-OF: planning-function
DESCRIPTION: to adjust load according to capacity
DECISION-LEVEL: Tactical
GOALS: satisfy due-date
INPUTS: MRP calculus
OUTPUTS: load planning at finite capacity
PREVIOUS-DECISION-CENTERS: MPS
NEXT-DECISION-CENTERS: S
HAS-MODULES: - to make load planning at infinite capacity

- to detect problems
- to solve problems }

{ TO-DETECT-PROBLEMS
INSTANCE: execution-activity
IS-MODULE-OF: Load-planning
NAME: to detect problems
DATA-INPUTS: entities Machine/ operation/ routing/

task and date.
DATA-OUTPUTS: task and date
PREVIOUS-ACTIVITIES: to make load planning at infinite

capacity
NEXT-ACTIVITIES: to solve problems
ALGORITHM: to compare previsional load to capacity.

IF (load > capacity) THEN problem
IF (load < capacity > THEN nil }

{ TO-SOLVE-PROBLm
INSTANCE: decision-activity
IS-MODULE-OF: Load-planning
NAME: to solve problems
DATA-INPUTS: entities Machine, operation, routing,

task and date.
DATA-OUTPUTS: task and date
PREVIOUS-ACTIVITIES: to detect problem
NEXT-ACTIVITIES: to translate load into operations
RULES: < if overload then subcontract the task>
LOCAL-GOALS: to keep a regular manufacturing activity
DECISION-VARIABLES: internal or external machine }

3.5 Organization Layer example
In this Layer, we add to figure 2-4 the definition of roles, responsibilities, authority and goals

specific to each EMN-ncde to get figure 3-36. With these elements, the EMN-node knows exactly its
place in the o^jankatioii of the decentralized system.

53

NETWORK

IN-NODE-1

CHANNEL

CHANNEL

IN-NODE-3

IN-NODE-2

CHANNEL

/ COMMUNICATION
f ROLES PROTOCOLS

RESPONSIBILITY
AUTHORITY

GOALS

T

CT

MESSAGE

QUEUE

ANSWER

COMMUNICATION
FUNCTIONS

PS3

KB3

Figure 3-36: Organization Layer implementation example

64

4. Conclusion
The Enterprise Management Network is designed to facilitate the integration of heterogeneous

functions distributed geographically. Integration is supported by having the network first play a
more active role in the accessing and communication of information, and second by providing the
appropriate protocols for the distribution, coordination and negotiation of tasks and outcomes.

As described in this paper, the Organization Layer plays a central role in the EMN architecture. It
is the connection between a real manufacturing environment and its implementation as a multi-
agents system. This layer is also a platform for the negotiation and coordination activities between
antagonistic EMN-nodes. The different mechanisms defined in the three first layers of the
architecture provide the support for distributed knowledge base but also for all types of
communication. They are instantiated according to the EMN-nodes identified at the Organization
layer. In addition, the organization model provides conceptual links betwen the EMN-nodes and
identifies interactions between them in order to make them solve antagonistic problems. The
resolution of distributed problem solving is done by applying the coordination and negotiation
protocols defined at the Coordination Layer according to the identified EMN-node interactions on the
organization model. The schemata we define at this layer are the main elements to support
distributed problem solving. The way we intend to use them is presented at the Coordination Layer.

55

Acknowledgement
We would like to thank the CORTES and CAEMEMCO project members which have contributed

through their comments to the development of this Enterprise Management Network Architecture.

56

References
[1] Adler, M.R., and Simoudis, E.

£ p S 2 S S ^ S k / S ^ « r i Workshop an Distributed Artificial Intelligence.
Bandera, Texas, 1990.

[2] Alford, M.W., and all.
Distributed Systems - Methods and tools for specification.
Springer-Vertag, 1985.
Lecture notes in Computer Science 190.

|3] Barr, A., Cohen, PJL, and Feigenbaum, EA.
The Handbook of Artificial Intelligence, Volume 4.
Addison-Wesley Publishing Company, Massachusetts, 1989.

C43 Bond, A.H., and Gasser, L.
Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, 1988.

f S] Chen, PJP.
The entity/relationship model: toward a unified view of data.
ACM Transaction on Database Systems l(l):9-36,1976.

16] Coridil, D.D., and Lesser, VJR.
Hie Use of Meta-Level Control for Coordination in a Distributed Problem Solving Network.
In Proceedings of the International Jcdnt Conference on Artificial Intelligence, pages 748-755.

Morgan Kaufmann Publishers, Inc., 95 First Street, Los Altos, CA 94022, 1983.

[71 Date,OJ.
An imtmductim to data bam systems.
Addlson-Wesley Publishing Company, Massachusetts, 1981.

18] Date, C J . aad White, GJ.
A guide to SQL DS.
Addisen^Weshy Publishing Company, Massachusetts, 1989.

103 DUMB* R.. awl Smith, R.G.
NeptiatiQii as a Metaphor for Distributed Problem Solving.
Artificial ImtilUmnce 2ft63-109,1983.

1103 nmkmt$ K9 and Lesser, V.
A Setnario for Cooperative Distributed Prdblem Solving.
In PmmmBng§ of10th Intematkmal Workshop cm Distributed Artificial Intelligence.

B«iitraf Texas, 1990.

I 111 g
GMM meikod: A dmigm mMfwdd^gy for computer integrated manufacturing systems (in

Wnmh: M€tkmk GRM; muthode de conception des systemes en productique,
PhD thesis, Uhmwimim GEAI, Umfvwsfte de Botdeani; Borfeaux, Prance, 1984.

111] Diufte, E.H, mi Umm$ VJL
Usfaxf P»aml GUbal Pteis to CmtikmiM BktxibateA Prd>lem Solvers.
In ftwwdii^f^ JOtft Inlnnalkmrt Joint timtk^^ Milan, Italy,

1P87#
113] Dmfee, E,H.» and llontgwneiy, T A

A Hierarchical Protocol for Coordinating Multiagent An Update.
In Pmmding* of 10th International Workshop on Distributed Artificial Intelligence

Banders, Teww, 1990.

57

[14] Engelmore, R., and Morgan, T.
Blackboard Systems.
Addison-Wesley, 1988.

[15] Erkes, K, and Clark, M.
Public domain report number 1.
Technical Report, ESPRIT Project 418, Open CAM System, April 1987.

[16] Fox, M.S.
Organization Structuring: Designing Large, Complex Software.
Technical Report CMU-CS-79-155, Computer Science Department, Carnegie Mellon

University, 1979.

[17] Fox,M.S.
An Organizational View of Distributed Systems.
IEEE Transactions on Systems, Man, and Cybernetics SMC-U(l):70-80,1981.

[18] Fox, M.S., and Sycara, K
Overview of the CORTES project: a Constraint Based Approach to Production Planning,

Scheduling and Control.
Proceedings of the Fourth International Conference on Expert Systems in Production and

Operations Management. , May, 1990.
Submitted for publication.

[19] Gasser, L., and Huhns, M.N.
Distributed Artificial Intelligence, Volume II.
Pitman Publishing & Morgan Kaufmann Publishers, 1989.

[20] Gasser, L., Braganza, C, and Herman, N.
MACE: A Flexible Testbed for Distributed AI Research.
In Michael N. Huhns (editor), Distributed Artificial Intelligence, chapter 5, pages 285-310.

Pitman Publishing & Morgan Kaufmann Publishers, 1987.

[21] Hayes-roth, F.
Towards a framework for distributed AI.
1980
In: Randy Davis Ed, Report on the workshop on distributed AI, SIGART Newsletter.

[22] F. Hayes-Roth and V.R. Lesser.
Focus of Attention in a Distributed Logic Speech Understanding System.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 27-35.

1977.

[23] Hayes-Roth, B.
A Blackboard Architecture for Control.
Artificial Intelligence 26,1985.

[24] Huhns, M.N.
Distributed Artificial Intelligence.
Pitman Publishing & Morgan Kaufmann Publishers, 1987.

[25] Huhns, M.N., Bridgeland, M.L., and Ami, N.V.
A DAI Communication Aide.
In Proceedings of 10th International Workshop on Distributed Artificial Intelligence.

Bandera, Texas, 1990.

[283 Hynynen,NJ.
A framework for coordination in distributed production management.
PhD thesis, Acta Polytechnics Sandinavica, Helslnky, Finland, 1988.

58

[27] Klein, M.
Supporting Conflict Resolution in Cooperative Design Systems.
In Proceedings of 10th International Workshop on Distributed Artificial Intelligence.

Bandera, Texas, 1990.

[28] Knowledge Craft
Carnegie Group Inc, Five PPG place, Pittsburgh PA 15222,1985.

[29] Lesser, V.R.
Cooperative Distributed Problem Solving and Organization Self-Design.
SIGARTNewsletter :46, October, 1980.

[30] Meleze, J.
Approches systemiques des organisations.
Paris, Editions hommes et techniques, 1979.

[31] Mullender,&
Distributed Systems.
ACM Press, New York, N.Y., 1989.

[32] Pause, &
CIM-OSA - A vendor independent CIM architecture.
In Proceedings ofCIMCON W, pages 177-196. Gaithersburgh, MD 20899,1990.

[33] Parunak, H.V.D.
Toward a Formal Model of Inter-Agent Control
In Proceedings oflOih International Workshop on Distributed Artificial Intelligence.

Bandera, Texas, 1990.

[34] Ram, S., Carlson, D., and Jones, A.
Distributed Knowledge Based Systems for Computer Integrated Manufacturing.
In Proceedings ofCIMCON *90, pages 334-352. Gaifchersburgh, MD 20899,1990.

[35] Eoboam, M., Doumeingts, G., Dittman, K, and Clark, M.
Public domain report number 2.
Technical Report, ESPRIT Project 418, Open CAM System, October 1987.

[36] Roboam, M.
Reference models and analysis methodologies integration for the design of manufacturing

systems (in French: Modeles de reference et integration des methodes d'analyse pour la
conception des sysiemes de production.

PhD thesis, Labcratoire GRAI, Universite de Bordeaux, Bordeaux, France, 1988.

[37] Roboam, M., Zanettin, M.f and Pun, L.
GRM-IBBFQ-MERI3E (GIM): integrated methodology to analyse and design manufacturing

systems.
In Compmter-Integmted Manufacturing Systems, V(dume 2 Number 2, pages 82-98. PO box

63, Westtmry house, Biny gtamt, Goilford, G02 5BH, UK, 1989.

[38] Robeum, M., Pox, MS.f and Sycara, EL
Enterprise Management Network Architecture - Distributed Knowledge Bam support.
Technical Report CMU-RI-TB-90-21, CBID'S, Cwii^ie Mdhm Umvwmty, KttslMir^i, FA,

[391 Robtmrn, l l v and F«m» MJSL
Distributed communication %ys£em: mmr mammal.
Tedhnical Report^ CEMDS, Cam^ te Mcllcm Htwmrmiyf Pittskur^i, PA, 1990.

[40] Simon, H A
Model cfman*
Mhn Wiley, 1957«

59

[41] Simon, HA
The science of the artificial.
Cambridge, Massachussets, The MIT Press, 1969.

[42] Sycara, K
Resolving Goal Conflicts via Negotiation.
In Proceedings of the Seventh National Conference on Artificial Intelligence [AAAI-88]. 1988.

[43] Sycara, K, Roth, S., Sadeh, N.f and Fox, M.S.
Distributed Production Control.
In Proceedings of the Fourth International Conference on Expert Systems in Production and

Operations Management. 1990.

[44] Sycara, K and Roboam, M.
Intelligent Information Infrastructure for Group Decision and Negotiation Support of

Concurrent Engineering.
In Proceedings of the 24th Hawaii International Conference on System Sciences. 1991.

[45] Sycara, K
Negotiation Planning: An AI Approach.
European Journal of Operational Research (46):216-234, 1990.

[46] Tardieu, H., Rochfeld, A., and Colletti, R.
La methode Merise, principes et outils.
Paris, Les editions (f Organisation, 1983.

[47] Tardieu, H., Rochfeld, A., Colletti, R., Panet, G., and Vahee G.
La methode Merise, demarche et pratiques.
Paris, Les editions d'Organisation, 1985.

[48] Titli, A.
Analyse et commande des systemes complexes.
Toulouse, Cepadues Editions, 1979.

