
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

First Year End Report for
Perception for Outdoor Navigation

Charles Thorpe and Takeo Kanade

CMU-RI-TR-90-23 7

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

November 1990

© 1990 Carnegie Mellon University

Research supported by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under
contract DACA 76-89-C-0G14, tided T^wcqaiM for Outdoor Nm^mmm.

Table of Contents

1 Introduction
1.1 Abstract 1
1.2 Introduction 1
1.2.1 SCARF 1
1.2.2 YARF 2
123 The EDDIE Architectural Toolkit and Annotated 3
1.2.4 Range Data Analysis 4
1.3 Open Problems and Current Work 5
1.4 Theses 6
1.5 Personnel 6
1.6 Publications 6

2 Toward Autonomous Driving: The CMU Navlab
2.1 Introduction 9
2.1.1 Context 9
2JJ2 Navlab TVstbedVehkte 10
2 3 Color Vision far Road Following 11
22.1 SCARF 12
2 ^ 2 YARF 13
223 ALVUMN 17
2.3 3-D Perception 19
2.3.1 Range sensing 20
2.3.2 Discrete objects and obstacle detection 21
2.3.3 Terrain modeling for cross-country navigation 24
2.3.4 Map building from terrain features 26
2.3 JS High resolution terrain models 27
23.6 Discussion 29
2.4 Planning 30
2.5 Architectures and Systems 32
2.5.1 Background 33
2.52 EDDIE 34
253 Annotated Maps 35
2.5.4 AMV 36
2 5 5 Discussion 37

2.6 Contributions, Lessons, and Conclusions 38
2.6*1 QsHEfiwtkKB 38
2A2 Perception Lessons 38
2.6.3 Systems Lessons 39

40'
2.7 Acknowledgements 41
2.8 References 42

CONTENTS

3 Annotated Maps for Autonomous Land Vehicles
3.1 Introduction 45
3.1.1 Motivation 45
3.12 Related Woik 45
3.2 Scenario 46
3.2.1 Knowledge and Organization 47
322 Annotated Maps 47
3.23 Example Runs 47
33 Tenets of Map Construction and Use 48
3.4 Implementation of Annotations 50
3.4.1 Representing Annotations 51
3.4.2 Implementation Details 51
3.4.3 Trigger Details 53
3.5 Conclusion 54
3.6 Acknowledgements 54
3.7 References 54

4 The Warp Machine on NAVLAB
4.1 Introduction 57
4 2 History of the Warp machine on NAVLAB 57
43 FIDO 60
43.1 FIDO Algorithm 60
43.2 Implementation of FIDO on Warp 61
43.2.1 Image Pyramid Generation 62
43.2.2 Interest Operator 62
43.23 Image Pyramid Correlation 63
433 Performance of the Vision Modules 64
4.4 SCARF 65
4.4.1 SCARF Algorithm 65
4.4.2 Imptementadon of SC.\RFoa the Warp machine 66
4.4.2.1 Texmxe Operator 67
4,42.2 Classifier 67
4.4.23 Road Hough 68
4.4.2.4 Cbtar Model Generator 69
4.43 Performance of SCARF Implementations 70
4 5 ALVMN 72
4.5 Evaloauo^ of ±e Warp machine on NAVl-^B _ 72
4.6.1 Warp Hardwaie 72

73
4.6.1.2 The External Host 73

4j5.13TtoWatpCeDAinv 74
4j62Waip Software ' 74

75
76

4£23Wmpmmj 76
4.7 CoodisiQiis 78
4 J References *B

ANNUAL REPORT AUGUST 1990

5 YARF: A Progress Report
5.1 Introduction 81
5.2 Previous Work 82
5.2.1 VTTS (Martin Marietta) 82
522 FMC system 82
5.23 MARF (University of Maryland) 82
5.2.4 VaMoRs (UniBw Munich) 83
5.2.5 LANELOK (GMR) 83
5.2.6 University of Bristol 83
5.2/7 ARF (CMU) 83
5.2.8 Sidewalk H (CMU) 84
5.2.9 SCARF (CMU) 84
5.2.10 ALVINN (CMU) 84
5.2.11 Analysis 85
5.3 Robust painted stripe detection 85
5.4 The road model and fitting detected feature local 88
5.5 Bootstrap location of road features 89
5.6 Intersection navigation 92
5.7 Conclusion 92
5.8 Acknowledgements 93
5.9 References 93

TOWARD AUTONOMOUS DRIVING

List of Figures
Figure 2.1: TheNavlab 10
Figure 2.2: SCARF correctly finding the road in difficult shadows 13
Figure 23: SCARF finding an intersection 14
Figure 2*4: YARF tracking yellow and white lines in complex shadows 15
Figure 2^: YARF tracking result 17
Figure 2*6: ALVINN weights for one hidden unit Bottom: input weights. Top: output 19

weights. Positive weights are white, negative are black.
Figure 2.7: Building the obstacle map. 3-D data points are projected into discrete 22

buckets on a horizontal grid.
Figure 2JJ: Obstacle detection on a sequence of images. For each image, top: original 23

range image; bottom left: overhead view; bottom right: segmented elevation
map.

Figure 2*9: Matching objects in a sequence of range images. White lines show 25
corresponding objects in sequential images-

Figure 2.10: Range image and elevation map. 26
Figure 2.11: Four levels of the terrain quadtree. 27
Figure 2.12: 3-D map built from 5 range images. 27
Figure 2.13: The Locus Method: intersection of scanned surface with vertical line in 29

world space (top), and same intersection in image space (bottom).
Figure 2.14: An elevation map built by the locus algorithm from 122 range images, 30

covering 250 meters.
Figure 2.15: Environmental constraints. 32
Figure 2.16: Planned path through cross-country terrain. Crossed squares are 33

inadmissible regions, passable areas are empty squares.
Figure 2.17: Position estimation during a robot run. The solid line shows the accurate 35

vehicle track given by inertia! navigation sensors. The dotted line shows the
less accurate vehicle track estimated by dead reckoning.

Figure 2.18: Annotated map of a suburban neighborhood, showing roads, intersections, 37
landmark annotations (small circles and dots), and trigger annotations (lines
across the road).

ANNOTATED MAPS

Figure 3.1: Map built of suburban streets and 3-D objects 49
Figure 3-2: Trigger annotations for sensing and vehicle control 49
Figure 33: Problems with retiring mission triggers 53

WARPONNAVLAB

Figure 4.1: FIDO Block Diagram 61
Figure 4.2: SCARF Block Diagram 66
Figure 4 J: Road Hough 68
Figure 4.4: Implementation of ISODATA Clustering on the Warp Machine 69

YAR5

Figure 5J:
Figure 5.2:
Figure S3:
Figure 5.4:
Figure 5-5:
Figure 5.6:

Color classification by hue to detect ydtaw stripes
Yellow hue and white bar opera tors, sunny image
Yellow hue and white bar operators, shadowed image
fit of road model to detected feature positions
Feature locations In a sequence of eight frames
line segments extracted by the vanishing point Hough algorithm

m
87
S7
89
90
91

INTRODUCTION 1

Chapter 1: Introduction

1.1 Abstract
This report reviews progress at Carnegie Mellon from August 16,1989 to August 15,1990 on research sponsored

by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under contract DACA 76-89-
C-0014, titled "Perception for Outdoor Navigation".

Research supported by this contract includes perception for road following, terrain mapping for off-road
navigation, and systems software for building integrated mobile robots. We overview our efforts for the year, and
list our publications and personnel, then provide further detail on several of our subprojects.

L2 Introduction
This report reviews progress at Carnegie Mellon from August 16, 1989 to August 15, 1990 on research sponsored

by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under contract DACA 76-89-
C-0014, titled "Perception for Outdoor Navigation".

During the past year, this contract has supported research on cote vision for road following; 3-D perception for
terrain mapping and cross-country mobility; and system building for autonomous navigation. We have
demonstrated autonomous navigatkm on a vanety of roads, including single lane dirt, gravel, and paved; and
multi-lane roads with and without lane markings. Our perception modules use a variety of techniques for video
processing (clustering theory, symbolic feature detection, neural nets), and for range data analysis (landmark
navigation, reflectance processing). We have also integrated position-based navigation (INS and GPS), and
combinations of all these techniques into mobile robot systems and demonstrations. Our scientific papers this year
include a book (Vision and Navigation: the CMU Navlab), three PhD dissertations, and an MS thesis.

In the first chapter of this report, we briefly summarize our progress ova- the past year, and list personnel md
publications. Following chapters go into greater detail on individual projects and accomplishments.

SCARF
SCARF, which stands for Supervised Classification Applied to Road Following, tacks roads by adaptive color

classification. Under previous contracts, we developed SCARF, implemented it on various computers including the
Warp, and used it For many Navlab runs. During this past year, Crisman finished her thesis on SCARF [31. TMs
entailed thiee new research initiatives: intersection detection, analysis of perfoonaice on Warp, sod tests CM nacre
road types.

SCARF Gpen&es in unstructured environments, where imersec tioiis insy not be accurately mapped, 3nd whers ihe
size and shape of branch roads may not be known. Wi le our p w t a « experimenis with SCA1F mmm^m
detection used a template of the intersection shape, we wanted to tali a $$mm^^m&wmmMMmmgm®MiL
Naive approaches to intersection detection could be compuianonaily inefficient m intersection with lime roads*
each of which has two degrees of freedom, could oeste a 6-D search. Our approach, ins:s&l fak« adv^&ge of
scene snnctare to deawtpoie tie smch into seven! s m i e r m d n . After we have classified !he pixds :^^ rosa,
and offh^ , we search for the main rmcL This it a M> «rcfa» looking for m d mgfe and o t t e t Ofce w &ti the
main road, we search for the biggest bnadt road. This is also a 2-D pmbkm, sir̂ ce ihe branch cm^ lette tie ^ u i
mad ai aiiy point dong iis length and at any a^gie. Once we find L̂ e :*L-S: branch, other br̂ ^̂ ^
leave me i ^ road ai Lhe same pemu so addiacnai searches are o c ^ 1-DV Icck^g m M p » ^ ^ ^
search looks in. to classified, kr:age for a road'Shaped I ^ O I wfakh has t m ^ pnr̂ bar iL-ty of greo^r ±ar, 0,5.

2 ANNUAL REPORT AUGUST 1990

on the classification probabilities of its pixels. The search for branches terminates when none of the candidates have
high enough probability. A variation on this process confines the search to the top portion of the image, since
SCARF processes sequences of images as the vehicle moves and intersections first appear in the upper part of the
images. Once an intersection has been detected in one image, the search in subsequent images can be confined to a
smaller range of locations and angles, depending on vehicle motion between frames.

SCARF was the primary vision system that used the Warp supercomputer on board the Navlab. Our experience
with Warp was somewhat mixed. In the early days of Warp, the software and hardware environment had not
matured, and it was difficult to really use the full power of the machine. Close cooperation between our group and
the Warp group led to some important changes in hardware and in the programming environment, which in turn
gave much better performance.

The early development of SCARF used our Flagstaff Hill bicycle path as the main test site. In the past year, we
have run SCARF on several more test sites. In particular, at DARPA's request we tested various road following
methods on sites that did not have paved roads. SCARF performed very well on gravel and dirt roads, as expected.
The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images by
having less leaf cover than the surrounding forest floor. The philosophy of tracking the entire road, and using the
entire image, mSde it possible for SCARF to track the road even though there were no cfear border lines. We also
ran SCARF on uniined suburban streets, with excellent results.

A brief overview of SCARF, and a description of the systems of which It is a part, are included in Chapter 2 of
this report, The New Generation System for the CMU Navlab". The Warp work is presented in more detail in
Chapter4. Plotter details on SCARF may be found in Crisman's thesis [3].

1JL2YASF
Our Systran for following structured roads is called YARF, for Yet Another Road Follower (an earlier version was

called FERMI [5]). YARF addresses the problems of navigating on networks of city streets. This task requires the
following capabilities:

• robust detection of road features (painted stripes, pavement/shoulder boundaries, etc.);
• detection of changes in feature appearance, such as changes in the color or continuity of a painted line;
• detection of changes in lane geometry, such as the addition of a turn lane near an intersection; and
• recognition of intersections, and path planning fen* navigation through them.

Current systems are limited in their ability to achieve these capabilities for several reasons. First, they typically
use a single segmentation technique. Any single method will fail under certain circumstances, limiting system
performance. Second, most systems fail to determine the confidence with which the road has been detected. Many
current systems will follow the results of incotxect segmentations until the vehicle has driven off the road. Third,
Lhey havenomoMof thelanesmictureo
semantics of the hues. Finally, many systems have limited capabilities for intersection navigation. Intersections
c o w a large ana compared m typical cameia fields

• Multiple, specialized segmentation techniques for robissiiy cxtrac ling dlff&sM kinds of JO3d
On typical rural roads, ihz double yellow ine k tie asmx of ifae tmd is detected by locking for pixels
whicii tern t ydlow hue, while the white stripe on H© right side of the i&ue is being tracked toy
searching far a M$bt tar of a specified widfb * t spooled orieoainL

• Explicit detection of segmenranon failure and the analysis of possible causes of Mimes to detect
changes in road appearance m& h fg pp ^pp

• Aa opiicit model erf Hie kne stracnw of ft© ratd. TM$ model fcxases processing on widows it

INTRODUCTION

image in which features should appear. It contains semantic information about the lane structure. It also
provides the geometric model for the combination of the individual feature location measurements into
a single estimate of the vehicle position on the road.

• Use of data from multiple images calibrated into a single vehicle-centered coordinate system for
recognizing intersections and navigating through them.

Progress in the last year has included new trackers, models of road curvature, and road model fitting over multiple
images. The combination of these new approaches and techniques has enabled us to increase our maximum
demonstrated speed from 1 kph to IS kph, with all processing on a single Sun4. Parallel versions, still being tested,
hold the promise for further speed increases. YARF is described in Chapter 5, "YARF: A Progress Report".

123 The EDDIE Architectural Toolkit and Annotated Maps
Our new system, EDDIE (Efficient Decentralized Database and Interface Experiment), marks a turning point

away from centralized, standardized architectures, to a flexible architectural toolkit Our previous architectures
concentrated on geometric reasoning and centralized, anonymous communications. EDDIE decentralizes those
functions. Instead of all data flowing through a central map module, communications are now point to point. This
allows the faster communications needed for reflex-level actions, while separating map-based reasoning into a
dedicated module.

EDDIE is not a complete architecture, in the sense that it does not enforce a standard for how all robots ought to
be built Instead, it provides building blocks for communications, and for system start-up, monitoring, and control.
In addition, EDDIE uses and supports the new mechanisms of annotated maps and of the integrated controller,
described below.

EDDIE has been used to build several different architectures. The simplest systems use only a single perception
module and the controller to do road following. These systems use the built-in position tracking of the low-level
controller to monitor vehicle motion during image processing, and the smooth control modes of the controller to
track commanded paths. More complex systems add modules, such as an "em
range data to fmd obstacles in the vehicle's path. The most complex systems we have built with EDDIE use several
different road following modules, pitis landmark detection, emergency stop, and map position update, along with
Annotated Maps for mission planning and execution. A description of EDDIE is included in Chapter 2, "The New
Generation System for the CMU Navlab*.

Integrated Controller: Real-time mobile robot controllers have usually been designed with an emphasis en
control theory Ignoring the importance of system integration. Oiir new controller is based on the philosophy that
useful mobile robots require a real-time controller with a wide range of capabilities in addition to control theory.
These capabilities include:

• mapping and tracking of paths,

fast communication,
B client support,p

* and monitoring vehic ie stains for safety and debugging.
We hove designed and implemented a comrolkr iamework flat ^ q p « s St^» a p ^ f t k s . Using thh fmmemA*
indrridwi modules such as a position estimator, a path
have been saccessMiy integrate ^ T^e coniroiler Incorpooies
an iadrtml o&vigsEiofi system into the low-level control loop, to provide accurate position c^timttra dint p&ife
racking, lliese capabiimes are i n t ^ ^
lo the lowest-level controller, close to the hardware. AsidFs master's them [1] cisewses the rssulcs of rials

ANNUAL REPORT AUGUST 1990

different strategies for steering control, velocity control, and controller design.

Annotated Maps: EDDEE does not have a global map at the center, as does CODGER. Local positions, used
only for the purposes of obstacle avoidance or path following, are never written into a map. Global, permanent,
maps are handled by the separate mechanism of "annotated maps".

Besides die usual geometric data, annotated maps provide a mechanism for storing arbitrary bit fields, and
associating those "annotations" with particular objects or locations. The information is then either retrieved on
request, or automatically sent to a particular module by the "trigger" mechanism when the vehicle arrives at a
specified location. In typical situations, annotations are used to describe the appearance of roads and landmarks.
Triggers are used to indicate changes in vehicle control and sensor processing during the course of a mission.

The most ambitious mission we have performed to date is a 0.4 mile run on unmodified suburban streets in
Pittsburgh's North Hills. This involved:

• Driving along curving suburban streets, with no pavement markings, including many different types of
driveways;

• Traversing four intersections, at two of which the Navlab had to make a 90 degree left turn;
• Stopping for unexpected obstacles, and resuming motion when dear;
• Locating landmarks for position updates and for finding the destination.

We built a map of the route, driving the Navlab by hand and using the laser scanner to record the location of 3-D
objects. Object positions were measured in multiple images, to discaid moving ob^cts (pedefflians, cars, dc^s) aad
to improve the accuracy of measured position. The resulting map was annotated with triggers that controlled vehicle
path execution. During the run, the vehicle started moving slowly, while it found landmarks to initialize its position.
A trigger then caused the vehicle to speed up until it approached the first turn. At that point, triggers caused various
modules to slow the Navlab, find 3-D objects, match them against the map, and update the vehicle's position
estimate. Through the turn, vision was not able to see the road, so another trigger caused dead reckoning to take
control until the vehicle was lined up with the next road, when the road was again in the field of view and vision
could resume control. The nm proceeded in fois fashion until the fwml triggers, which matched the mailbox at the
destination with the map, and brought the vehicle to a stop*

Detail on annotated maps may be found in Chapter 3, "Annotated Maps for Autonomous Land Vehicles".

1.2.4 Range Data Analysis
We have continued the development of a robust map building system for the Navlab. The maps produced by the

system are stored in annotated maps. Our map building is made robust by

• Using the position information from Ihe INS.
• Matching well-defined discrete; objects between frames before attempting to match terrain descriptions.
• Representing expEcisiy tmcMsfaiiy and confidence to produce m sccuntie map and to lemove spurious

i from the snap*

Matching objects is not vary expensive in our case because we fat« only a few objects to mate h in each fkwm
and because we e n assume tint we have a reasonable estiim.it of the displacement between frames front MS «
dead-reckoning so that the locations of the objects detected In one image can be easily pfedkted i t tike mM image.
The main issues arc to remove spunous objects a d ID couple ihe location of the objects as accurately as possible..
Spurioos objects can be d s ^ ^ ^
hallucinate, xtd mcvin g otjeos (e.g. people} crossing §m fie Id of view age detected as objects even thoa gh they
should not be included in a map. Spoons objects mm be zlimmzx&l because they may lead m -'disastrous results
when mey mm ased bier on to coraoct ffae position of the vehicle. H e pesi don of ihe objecis nuttt be cewprted as

INTRODUCTION 5

accurately as possible so that the position corrections that are computed using the object map are also accurate.

The problem of spurious objects is solved by calculating a confidence measure for each object The confidence of
an object is decreased if it is not found in an image in which it should appear based on previous observations and the
current vehicle position, otherwise the confidence is increased. The objects with low confidence are discarded.
Accurate object locations are obtained by updating the uncertainty on object location (mean and covariance matrix)
each time an object is observed in a new image. The initial uncertainty is based on a sensor model and depends
mostly on the distance between the object and the vehicle. The uncertainty also takes into account the fact that only
a small part of the object surface is observed. The uncertainties are combined using standard maximum likelihood
techniques.

The same techniques are used to identify specific objects in the map and to correct the vehicle position as it
traverses a pie-stored map: the observations are matched with the information stored in the map. The matching uses
several observations to allow for uncertainty computation and removal of spurious object detection through
confidence evaluation. The map building and matching is now integrated into the annotated map navigation system
and has been demonstrated in complex navigation scenarios.

13 Open Problems and Current Work
The results presented in this report cover the first year of an ongoing research program. SCARF is currently not

active, and the EDDIE toolkit is currently stable. We continue our work in YARF, in annotated maps, and in range
data analysis. In addition, we have begun new projects in integrating multi-sensor data and in understanding neural
networks for road following.

YARF. The thesis work coming in YARF involves diagnosing failures of the trackers. If a white stripe is not
detected as predicted, it could be because it is temporarily occluded, or is in deep shadow, or because the road
markings changed, or because the road widens or turns abruptly. Some clues about the failure come from individual
trackers: if the tracker window is all very dark, for instance, tte vehicle may be entering a shadow. Other cues are
global: if the detected location is drifting outward, perhaps die road is widening. Combining local reasoning, about
appearances, and global reasoning, about geometry, will give YARF increased capabilities to understand the
situation, update its models, and continue tte ran.

Annotated Maps* Our prototype implementation used a very low-level user interface, that allows unlimited
flexibility in specifying each annotation, tat requires almost unlimited typing and mouse pointing. We are first
building a higher-level interface with macro capabilities, so we can define packages such as "turning at an
intersection" that combine ail the triggers typically used. In addition, we will build a computer interface, so
autonomous or computer-aided mission planning systems will be able to generate annotations. Finally, we are
expanding our annotated maps for off-road navigation. Instead of triggering a particular action when tte vehicle
crosses a line across the road, we will build triggers thai fire when tte vehicle enters or leaves a designated polygon
in tte ietr^in

Range Data. We have used INS (inertia! navigation) data for mafidung discrete objects* and we have separately
developed tte locos method for maiching terrain patches and building maps. We wil now combine tte two ideas,
using INS information to seed tte locus search. Tte locus search finds the besi transform between two msp patches
by an iterative process, -which measures tte residual match error and updaies the transform. Tte search process is
currently slow, since it must -consider all six degrees of freedom (three a^nsladon and three rotation). We will be
able lo ran much more quickly by constraining the search, especially with accurate angular information from die

6 ANNUAL REPORT AUGUST 1990

Integrated Positioning. Our map navigation experiments currently update vehicle position using only the most

recent information. When 3-D landmarks are seen, their position relative to the vehicle is used as an absolute

correction; when the road is visible, its perceived lateral position and orientation are assumed to be exact; and in

other cases, the INS data is used A better scheme would use data from each source, combined according to the

error distributions for the individual position updates. We already have estimates of the precision of our INS

system, and of the 3-D landmark location measurements. We will use a Kalman filter to keep a running track of the

best estimate of vehicle position, and of the error margins in that estimate-

Understanding Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the

road in video images. We are beginning a set of experiments to understand what features the neural net "hidden

units" axe matching, and whether we can achieve similar or superior performance by directly programming those

feature detectors, rather than learning weights.

1.4 Theses
Omead Amidi, "Integrated Mobile Robot Control*, Master's Thesis, Department of Electrical and Computer

Engineering.

Jill Crisman, "Color Vision for the Detection of Unstructured Roads aid Intersections", PhD Thesis, Department
of Electrical and Computer Engineering.

InSo Kweon, "Modeling Rugged Terrain by Mobile Robots with Multiple Sensors", PhD Thesis, Robotics PhD
Program.

Anthony Stenlz, The NAVLAB System for Mobile Robot Navigation", PhD Thesis, School of Computer
Science.

13 Personnel
Supported by this contract or doing closely related research:

Faculty: Martial Hebert, Takeo Kanade, Chuck Thorpe

Staff: Mike Bbckwell, Thad Draffel, Jim Frazier, Eric Hoffman, Ralph Hyre, Jim Moody, Bill Ross, Hans
Thomas

Graduaie students: Omead Amidi, Jill Crisman, Jennie Kay, Kari Ktuge, InSo Kweon, Dean Poraoieaxt* Doug
Reece, Tony Stcntz

L6 Publications
Selected publications by mem

[1] QioeadAiMdL
Integrated Mobile Robot Qmtrol*
Tecfaweal Report, Robotics Institute, Carnegie Melton UeiwBity, 199(k

[2] DidierAiibenaiid Charles Thorpe.
C@kw Image ProcmhgJr Atari'psAm:TymRoMTrmdo&^m

INTRODUCTION

[3] J. Crisman.
Color Vision for the Detection of Unstructured Roads and Intersections.
PhD thesis, Carnegie-Mellon University, 1990.

[4] Jill D. Crisman and Jon A. Webb-
The Warp Machine on Navlab.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 14.

[5] Kail Kluge and Charles E. Thorpe.
Explicit Models for Robot Road Following.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 3.

[6] Eric Krotkov, Reid Simmons, and Charles Thorpe.
Single Leg Walking with Integrated Perception, Planning, and Control.
lnIROS90. IEEE, July, 1990.

[7] InSo Kweon.
Modeling Rugged Terrain by Mobile Robots with Multiple Sensors.
PhD thesis, Carnegie-Mellon University, 1990.

[8] Dean A. Pomerleau.
Neural Network Based Autonomous Navigation.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 5.

[9] Dong Hun Shin 2nd Sanjiv Singh.
Vehicle and Path Models for Autonomous Navigation.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 13.

[10] T. Stentz.
The NAVLAB System for Mobile Robot Navigation.
PhD thesis, Camegie-Mellon University, 1989.

[11] Anthony Stentz.
The CODGER System for Mobile Robot Navigation.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 9.

[12] Anthony Stentz.
Multi-Resolution Constraint Modeling for Mobile Robot Plaining.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 11.

[13] Hans Thomas, David Wettergxeen, Charles Thorpe, and Regis Hoffman.
Simulation of the Ambler Environment.
In 23rd Pittsburgh Conference on Modeling and Simulation. IEEE, May, 1990.

[14] A. Stentz ami C. Thorpe.
Against Complexg p
In Proc. 6th International Symposium on Unmanned Unlettered Suhmersibies. June, 1989.

[151 Charles E. Thorpe.
Outdoor Visual Navigation for Autonomous Robots.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 15.

[16] Charles E. Thorpe.
VMm and Navigation: the The Carnegie Mellon N^iah.
Kltmer Academic Publishers* 1990.

ANNUAL REPORT AUGUST 1990

[171 Dmtf Wettenpten, Hans Thoiiutt, awl Oiarles Thorpe.
Phasing StettgKS (m tfao AmMer Wrftoig Robot
ID /£ff£ iMermdmml Canferemce on System EMgimeHng* IEEE. Attjpst^ 1990.

Chapter 2: Toward Autonomous Driving: The CMU Navlab

Charles Thorpe
Martial Hebert
Takeo Kanade
Steven Shafer

21 Introduction
The goal of the CMU Navlab project is to build autonomous systems capable of outdoor navigation, both on roads

and cross-country. Since die outset of the project in 1984, we have held two main tenets: the importance of
complete systems, and the importance of focusing on bottlenecks. Our emphasis on complete systems has meant
that, since the beginning, we have closed the loop from sensing to action, in realistic outdoor scenarios. We have
been forced to deal with the vagaries of natural illumination, of bright sunlight and clouds and rain and snow; and
we have had to confront the problems of camera calibration, path planning, real-time computing power, and
software system architectures. While the logistical costs of performing such real experiments have sometimes been
significant, our resulting algorithms and systems are calibrated to reality. Our second principle, of focusing on the
bottlenecks, has pushed us to work on the most difficult problems first For outdoor navigation, the biggest
challenge, and our main area of research, has been in image understanding in difficult conditions. Instead of running
at high speeds on cleanly-marked expressways, we have worked on unstructured roads (including dirt roads and a
winding asphalt bicycle path), on the changing appearance of structured roads in dappled shadows and at
intersections, and on off-road navigation over rough terrain. Once we had the first versions of reliable perception
software, we also developed novel planning methods for rough terrain, and have designed and built systems
software to forge the separate perception and planning modules into integrated systems. Other technologies, such as
vehicle design, high-speed computing, and control theory, are not the main bottlenecks. While important
components, they have been or are being developed by other groups, often outside the mobile robotics community.
By directly confronting the central areas of perception, planning, and system-building for mobile robots, we axe
completing the missing links that will enable us to build the reliable high-speed mobile robots of the future.

We now have significant results in many of those areas. Our Navlab robot van (shown in Figure 2.1) drives itself
at slow speeds along unmarked, unmapped trails, locating and traversing intersections. On more typical structured
roads, the Navlab drives up to its mechanical limit of 28 kph. It can run without a map, or use maps it has built,
along with information from previous runs, to select different behaviors at different locations. Off road, the Navlab
can move slowly over moderately rough terrain, and can map large areas as it drives. The resulting software has
been transferred to other projects, including the DARPA Martin Marietta ALV and our own NASA-sponsored
AMBLER, a walking machine for planetary exploration.

2 X 1 Context
Our work is part of the broader framework of DARPA's Strategic Computing Initiative, including the

Autonomous Land Vehicle (ALV) project that began in 1984. Sevenil of the contractors from Strategic Computing
Vision worked on perception and planning fey autonomous navigation. Among others, the University of
Massachusetts and Honeywell developed motion tracking software [3,6]; SRI developed tracking using 3-D
data [7]; ADS twit Qualitative Navigation [29]. Martin Marietta buik and operated the ALV vehicle itself* and
devebped i e k own road fbOowing software. [41]. Hngbes and the Untasi ty tf
on-iood navigation, respectively, drectly to the ALV lesstoed [20»42]» The role erf CMU was m tatld a New
Generation Vision System. We wore tasked to lock beyond the inunediaie problems erf getting the ALV ihrough its
first demonstrations, and to address the issues erf more difficnit perception and ir;:egraaon.

10 ANNUAL REPORT AUGUST 1990

TheNaviab

Beyond the DARPA community, the pas: five years have seea several other outdocr mobile robot pr̂ ^̂ Mthe
US, Texas A&M bas begun work on visual cracking for convoy following and obstacle avoidance [19]. General
Motors is working on lane following ai high speeds, under relatively consent iilumination [21,22]. In Germanyr

Prafessora Dickm&rais and Graefe [22] have btnlt an elegant control focnralatioii for driving on ausobahns. Fujitsu
and Nissan m Japan taw tmic prototype road-foilowmg sofr^/are [33]. The research at CMU, and wiim Urn

DARPA community, is distinginshed from ail of ±ese by its concer.craiion on ihe ir.oie difEoilt ¥iskm problems of
bad weailier, ted lighting* s id bsd OT -diangiiig roads.

2J-2 Navlab Teatbed Vehide
lim 1986 ^provide a arstbed for ̂ id; &

If based on a standard commercial TOR, witli ft iroftop air coisdlsionar, pins one or more video
iBJsgeSnder mounigd o w tht d iL On ihc iiiside, it 5s 3, coinpiiier room, with five ciectroa
onboard powcf* ant niiscgllajieous ^consoles 3Bd moniiors. Owr dine, the Navisb has casi^ed Sms 3*s% S I K

of te 'CMU / GE W s p mfmaampmttt, mmm speoalksd, rtol-dme o » n d

: ana i suBiwiB posi*ioiaiig fys^fiL we c m i i j f wo omy u

occ*2plcs four slots is ;of te ml dte&ncsl pow. 0'iir
g consists, of tec® SOB 3 # I m « ^ # e cage, 3D,d M O S m 4*$ M maths

TOWARD AUTONOMOUS DRIVING 11

The most important payload of the Navlab is the researchers. There is always a safety driver in the driver's seat,
watching over the Navlab's autonomous runs. In the back, there is room for five researchers plus observers. The
quality of our mobile robot software increased greatly when the graduate students and engineers were able to ride
along on autonomous runs, partly out of self-preservation, but mainly because they could see and feel how their
code worked. We run standard SunOs Unix1 on the Navlab, so we have a standard programming environment and
tools to find and fix bugs in our programs during an experimental run (debuggers, editors, compilers, etc.).

2.2 Color Vision for Road Following
Roads that are nearly straight, evenly-illuminated, and well-marked, can be tracked easily in color or

monochrome video images. Finding the edges of a clean sidewalk, or tracking freshly-painted white stripes on an
empty expressway, are both straightforward. Road following becomes much more difficult when the road runs
through dappled shadows, or when illumination suddenly changes as the sun goes behind a cloud, or when the
"road" is a meandering bicycle path with no lines or stripes and with broken and uneven borders. Therefore, the
challenge in building truly autonomous road following systems is to be able to handle a variety of road conditions
and changing illumination. To illustrate the problem, our first road following software ran a simple edge detector
(Roberts' operator, followed by thresholding) over the image, and looked for edge fragments that had strong
contrast, were parallel, and pointed in roughly the correct direction. This worked very well for clearly-marked
sidewalks. When we took our robot onto a bicycle path, the highest-contrast edges in the scene were shadow edges.
At tte right time of day, the shadows of tree tnmks fell along tte road, producing strong, straight, parallel edges at
nearly tte predicted direction. Our road-following software turned into tree-shadow-following software.

Navlab test sites include a variety of road conditions, from dirt roads to freeways. A single perception system
would not be able to address all possible configurations. Instead, our approach is to build different systems for
unstructured roads, such as dirt roads, and structured roads, such as highways and city streets. This allows us to take
advantage of the road structures when they are available while retaining the ability to deal with unstructured roads
when needed.

A first system, SCARF, deals with unstructured roads. The SCARF system uses adaptive color classification. It
(teals with changing illumination ami changing road appearance by updating its color models for each new image. It
handles poorly-defined roads by classifying all the pixels in die image, and by using a simple road model in a voting
scheme to find tte most probable road in tte image.

YARF, our second vision system, deals with structured roads, such as highways aid city streets. It takes
advantage of the lines and stripes of structured roads, and uses an explicit model of those features both to guide
Individual trackers and to filter and validate its detected road model.

SCARF and YARF do not require any external input expect to bootstrap tte system at tte beginning of a run. A
road following system that can be trained on a section of road prior to a mission should be faster and more reliable.
To investigate this idea* we haw towk ALVINN, tte ±ird m ^ color vision system cunendy nmning on the Navhb,
which uses a connectionist architecture. It achieves its power by being trained directly on tte current road, and by
processing quickly so that small imperfections teed to be smoothed out

12 ANNUAL REPORT AUGUST 1990

2-2.1 SCARF
Three approaches have been used in unstructured road following: edge extraction, thresholding, and classification.

In systems that use edge extraction, gradient operators are applied to the image of the road. Strong edges are
assumed to correspond to road edges and are grouped to yield road geometry [42]. Edge-based systems can be very
fast and can work well on clearly delineated roads with no shadows. As soon as strong shadows appear, however,
they break down rapidly because strong edges now correspond to shadow edges. Systems that use thresholding use
some combination of the color bands, e.g., red - blue, and threshold the resulting image [17,26,41]. Those systems
are also limited by shadows. They label all pixels with similar intensities as road. But when shadows are present,
shaded road and shaded off-road often have very similar features, thus confusing the classification.

Our approach to avoid shortfalls of those previous systems is to use adaptive color classification. We have built a
system, SCARF, which stands for Supervised Classification Applied to Road Following, to demonstrate the
performance of this approach [10]. SCARF runs in a loop of: classify image pixels, find the road model that best
matches the classified data, and update the color models for classification. The simple models of road color and
geometry make very few assumptions about the road, and allow SCARF to run robustly even when following
unstructured roads.

The first strength of SCARF comes from representing multiple color classes, as Gaussian distributions in full
RGB color, and from calculating probabilities instead of using binary thresholds. SCARF typically uses four color
classes to describe road appearance, and four for off-road objects. In the classification step, each pixel is compared
to all eight classes. The output of classification is both the label of the most probable class, and its probability.
Having multiple classes allows SCARF to represent the different colors of the road (for instance asphalt, wet
patches, shadowed pavement, and leaves) and off-road objects (trees, sunlit grass, shaded grass, and leaves). Using
full color, insiead of monochrome images or some combination of colors, keeps all the image information that may
be useful in discrimination. The Gaussian representation of each color class says, intuitively, whether a particular
variation in color is significant. Sunlit asphalt lands to be homogeneously colored, and is represented by a class
with small variance; grass has more variety, and is represented with correspondingly larger variances. Having
Gaussian representations of the colors for each class m a t e it possible lo calculate the likelihood that a given pixel
belongs ID a particular class. While most other navigation systems simpiy use binary thresholds, SCARF gives the
probability for each classified point This is especially important for cases such as dry leaves that occur both on and
off road, for example. A particular pixel may somewhat more closely resemble offroad leaves than onroad leaves,
bet die confidence that k should be classified as offroad will be very close to the confidence that it should be
classified as onroad, so that the pixel will (correctly) contribute very little to the overall road location determination.

Gassified pixels vote for alt road locations thai would contain them, with votes weighted by classification
confidence. The read with the most votes is used both for steering, and for recalculating the color classes using
nearest mean clustering to collect new road and offroad color statistics. SCARF uses a simple model of road
geometry. Roads are represented as mangles m the image. The apex is constrained to Ue on a pamoilar image rcwT

corresponding to the horizon, and ihe base of the triangle bag a fixed width, dependenton road width and camera
calibration. The* axe two few p r a a d o x the column in which 'lie apex appea r and the dear of the t r i n g b v
the image. WMe this simple 2-panmeter model does not represent curves or hills or road width varittioiis* ii -does
approximate the road shape well enough tc allow reliable driving. It is especially effective because the voting
p r e c e d e uses :dl pixels, n ^ A

model wife mam ftw parameters cmld i q m e i a n » i K 3 « ^ i i i « i d ^
curves or branches where i t fket Ml ttKH exists is noiss. FurttenBorc,, i te simple znodel allows for fast voting duct
functions well with a s a l amounts of data, so SCARF can process highly reduced images (typically '60 by '64 or 30'
by 32) m. high mes (appminttlefy two seconds par fmm% Pfcocasfeg tamps dosdy spaced along it© road mssam

smiil ccraci itt roM r^pres^fii&iioris me corrected bcfcrs: the VC&KID knives M tbe iBistskcn lociu

TOWARD AUTONOMOUS DRIVING 13

Processing images closely spaced in time means that even the drastic illumination changes caused by clouds
covering the sun appear as gradual shifts in road appearance, and so do not derail SCARF.

The basic SCARF system runs on Sun workstations. It was demonstrated on a number of different roads. SCARF
has driven the Naviab along bicycle paths, dirt roads, gravel roads, and suburban streets. SCARF has been
integrated into several of our Naviab systems. Figure 12 shows SCARF correctly finding the road even through
deep shadows, where die road is not obvious even to a human observer. It successfully demonstrated that pixel
classification based cm Gaussian representations of color classes is appropriate for road navigation in the presence of
strong shadows and changing illumination.

We have built several extensions of SCARF. The first extension is to use parallel hardware instead of
conventional workstations to improve preformance. We have implemented SCARF on the WARP computer, a
ten-cell systolic array. SCARF is parallelized by dividing the image into strips, and by processing each strip on a
separate celL The second extension to SCARF is to add to the road model by checking for intersections as well as
for the main road. Figure 2 3 shows SCARF finding an intersection in a series of images as the vehicle approaches
the branch point.

Figure 2^: SCARF coireciiy finding the road in diiTicuit shadows

2^.2 YARF
Tbe probfan of 'totA following is urban eovironxtieots reqi

knowledge of the cmmmmM* e.g. well-marked, highly structured highways. Several systems for following
structured roads have beat developed. The VaMcRs system [i3]ccm~Dines specialized liardware wwk a control

; specific techniques to take advantage of tbe prior

forrnuktion of the problem to achieve mm of up to msmfiL YaMcRs uses simple feature trackers to track tbe
position of road crater !m^

init)adsiractsire such as intersections UrnLAMELOKspmm UX221 cm usethrot dffifirat types of
p e n t t s ID track road edges, Sobei edge deiectioii foRawcd by Rou^ Tiinsfomu

Brinioi [36]» tan
Olt-iilie OH m W i Oi

s rsgioiis of ilic image
fram ibe

14 ANNUAL REPORT AUGUST 1990

Figure 2 3 : SCARF Snding an intersection

threshold and limited by edges of appropriaie geometry. A circular aic is fit to the regions after backprojection on
the ground plane.

AH these systems are limiied by the use of a single segmentation tectmiqiie to locale the road. Therefore, they do
not have any mechanism for recovery it the event thai this particular segmentation technique should fail. To address
Ibis problem, we have developed the YAIF system (Yet Another Road Follower) which explicitly models as many
assets of road foHowing as poss&^^ Highways, freeways, nirai roads, even

^ have strong constraints and eas% For instance, the road center line is yellow,
known width, and its airvarurc is lower ̂ an The key idea of YASF is to model

if each individual constraint and feature. From feature models we build specialized image operators that
find features such as road markings. From constraint modeis, ue buiid specialized trackers dm apply the image
operators on long sequence of images by predicting ihe location of a feature in an image from its location m the
previous image. A Mcker for ihe road center line fmds a yellow stripe in a small window in a color image and
predia its locatkn in tlie next iir^ge using a rnoki of r ^ Also, constraint
models pmvides a way m delect and recover OTm errors iii i i ^ ^ This makes reasoning easier and more
reliable. Whm a line nicker M s , for momce* m expidt

<MxfadBd» IKMSI at or eissered a shadow.
Lnaddiiicn

^ ^

date ry, and noise

i such i s
mm(ymmw^mt miAsmmmg. YABPi uses an sxptsci! g€CMiieiry snodel of libo

of stripes (eg. broken or

TOWARD AUTONOMOUS DRIVING 1 5

maximum and current road curvature. Other features, which are not yet modeled but which may be helpful, include
locations of shadows, 3-D effects as the road goes through valleys and over hills, and global illumination changes.

The yellow line tracker, for instance, uses the hue of the lines for segmentation. The hue is calculated for all
pixels within a window around the predicted line location. Pixels with a hue between 40 (reddish-yellow) and 100
(greenish-yellow) are set to 1, oth«s to 0. The results of this thresholding are quite noisy. Pixels that are very close
to gray have an unstable hue value, while yellow lines in dark shadows are often so dark that digitization noise
nearly swamps their yellow toe. As a result, the images after hue thresholding often have isolated noise points, both
false positives and false negatives. We dean up the output with a "shrink and grow" operator. The resulting image
is normally dominated by one or two blobs, corresponding to the yellow line or lines. The blob descriptors are
returned as the line locations. Figure 2.4 shows the yellow line tracker, and a separate white line tracker, finding the
road lines even in complex shadows.

Figure 2.4: YARF tracking yellow and white lines in complex shadows

Road Geometry

YARF is designed for higher speeds than SCARF, and mm in a more predictable environment Tim requires mid
allows a more complex road model, that encodes curvaoire as well as position. YARF models the road as a
generalized stripe, that is a one-dimensional feature lhai is swept perpendicular m a spine c a n e Use spine is
modeled Jocaiy by a diciifar n c assuming that the jmd^^mzOMsam

RS. Since, tiieequatioR of a circle

is nonlinear, and sensitive to

(32!:
re x j*

The least-squares vsiues of oxrvanro, slope, and lateral offset art easily computed using te mttix pmdb-imcne.
Smce 'Ms m done m vehicie coaOmmM* with tim vehicle pointing wpprnxismtefy along tm mad. die fsmmmn
calculated are good appra^ in practice, l i is approximation is ^ t e p t o fiar the
sons or^oin^iis^ and slopes of rtsad^ To L^prove Lhe s^mty of L̂ e es

16 ANNUAL REPORT AUGUST 1990

Error Detection and Recovery

Occasionally features are found incorrectly. YARF detects these mistakes both locally, based on the results of a
single operator, and globally, checking for consistency. Local error detection depends on the specific operator.
Some operators, such as the oriented window tracker, can only report a correlation measure as a confidence. Others,
such as the two-color blob detector, can provide a little more information. The blob detector usually finds a light
blob (the white line) against a dark background (asphalt). It maintains statistics of the mean, variance, and
covariances of red, green, and blue, for both feature and background colors. If all pixels in its prediction window
are the background color, the color blob detector reports a missing feature. If a light-colored blob is found, hit only
at the edge of the window, it reports a clipped feature. If all pixels are much lighter or darker than modeled by either
color, it reports an illumination shift It is up to the higher-level calling program to decide whether the road has
widened, the white stripe is temporarily missing, or the lighting really has changed.

Global error detection uses the output from all feature detectors is a single frame. There are many ways to check
for data consistency. The simplest, performing a least-squares fit and examining the residual, gives some cues as to
whether there is an outlier, but does not reliably indicate which point is in error. Better approaches come from the
"robust statistics" literature.

Error detection and recovery in a critical component of YARF. It allows for robust navigation in the presence of
changing iUiimination, shadows, and no

Noise Modeling

We have achieved good results by fitting curves to the points detected over the three most current frames, with no
eiror weighting or filtering at alL For instance, Figure 2.5(a) shows the features (center line and edge markings)
extracted from an road scene, Figure 2.5(b) shows the road the road model fit to the features using straight
least-squares. In Figure 2.5, the diamonds show tracked left and right lane lines, and the solid circles show
estimated road position and heading. For the relatively slow speeds (up to approximately IS kph) of YARF, and
with the Naviab's accurate dead reckoning, the errors in detected positions are probably dominated by image
processing noise rather than vehicle motion noise. Future runs, at higher speeds, will probably require moie
elaborate filtering schemes. We are woridng on two approaches to noise filtering: Kalman filters, and robust
statistics*

The intuition behind a Kaiman filler is that the current estimate of state is a com binaiion of current measurements
and the previous stale estimate, transformed to account for system dynamics. The weight given to current
measurements depends on their believed accuracy. The weight given to the previous estimate depends both en how
accurate the previous estimate was thought to be, and on tow accurately it o n be transformed into current
coordinates. In the case of road following, the weight fa- current detected features comes from the accuracy of
feature detection and camera calibration. Vehicle motion errors can be reduced by inertial sensing. Read model
errors will depend on the situation. For the gentle curves mi smoothly varying curvamre of an interstate, prior
estimates cm be extrapolated for long distances, and can a n y the vehicle through shadows and other visually
confusing areas where current tracking fails. For die winding tens of country took,
change radically over very short dtaances, and the weight gives to prior models in the filter equations must decrease
rapidly.

Kaiman filtering radices tie influence erf noise m
that fm from &e real value. Robust statistics provide i way ID dimmaiz outliers by mmmzmg a fendioo of tfae

ktss-sspaies Tzsiwazls that &Us off mm rapidly for tage residuals. G a l a s wm zlmmz'&d beans® they do sot

TOWARD AUTONOMOUS DRIVING 17

(a) Extracted center and edge features

(b) Road model derived from features extracted above. Diamonds stow
detected feature locations, solid circles show derived center line.

: YARF tracking result

YARF has driven tbe NAVLAB ax speeds of op to 15.0 mph
^*^BBk.̂ Bh^HB&^BHBk ^B^BBfeAriHl, ^Bh^Bh^BBiA^BfeM^BBi'^MhJlft 1^Bft^BfcrtBM^& jMlfe^hJflKjtfBhjMBBnBaMf 4BB^BMBMB>^BMaaBMh'A^Bk^A B f e M

xperiments contained large snaoows g&icnucu oy

on a public road. The environment used in the
trees. It also including relatively Mgjbrcwmxm

curves, thus demonstrating the preforrnance of the rosd rnodeL

YARF works because of the integration of all its modeled constraints. Explicitly modeling cracker perfoonaoce
and feature appearance, ami using specialized trackers, allows high speeds, high accuracy, and load failure
detection. Explicitly modeling read geometry allows accurate predictions, and enables global error detection.
Ex$kMy modeling emm and uncmainty aHows YAKF to o r o w l y sfase to i ^ o t o i m wimkws. And expiicrJy
modeling changes in road geometry gives YARF tbe capability to handk urban streeis, with intersections and mter

2JL3AJLWINN
SCABF 2nd YARF do ootf video a c s p i for booistrappiBg the sysiam. If we

m^uaHytraK^
and more robust system sin more ^ c r information M*VHMJm

a Neiinii Net implement mis idea. ALV1#I wm b^ik bf ite CMU C &Vehicle
groop[35]. The weighs in the hidden units at ALVINPTs
band. Dnciog tbe taimng pbaas, ALV1NN inputs tbe camen
at each ttme step. The image is pre-processed to enhance toad

am nteed toy driving im Navhb by

Thei

18 ANNUAL REPORT AUGUST 1990

are fed to a back-propagation algorithm that adjusts weights in the hidden units, until the weights settle to values that
give the correct steering response for each input image. Typically, training lakes less than a hundred input images
and uses less than 5 minutes.

With this training scheme, ALVINN directly learns how to follow roads. It is more difficult to train the network
to recover from errors, when it is not quite aligned on the road. To provide examples of images from slightly
different vantage points, and the proper steering commands, each input image is reused in several positions. The
images are shifted to simulate a variety of errors, and the steering command is shifted to generate the command that
would bring the Navlab back on to the road

When ALVINN runs, it preprocesses the input images, and gives them to the net ALVINN then directly outputs
the steering wheel angles as dictated by the network, with no reasoning about road location, ALVINN uses
reduced-resolution images (typically 30 by 32 or 45 by 48 pixels), and runs in about a fifteenth of a second per
image.

One characterization of ALVINN is that it uses a compiled representation, going straight from images to steering
with no intermediate geometric or symbolic representation. During its learning phase, the back-propagation
algorithm automatically compiles this knowledge, by selecting the features that discriminate between different
steering angles, which correspond to different road locations. Since ALVINN starts with no pie-conceived idea of
what the road looks like, it learns different sets of weights to follow many different types of roads with no change in
the underlying algorithms.

The disadvantage of a compiled representation such as that used by ALVINN is that it cannot take advantage of
geometric or symbolic input If ALVINN is trained to run on a particular road, it is impossible to tell it that a
second road is just like the first, only twice as wide. Since there is no explicit representation of **road width", el-
even of "road", there are no symbolic parameters to be changed or manipulated. The advantage of such a
representauon is that it is fast, and is easy to train fora particiilar road. The weights learned by ALVINN tend to be
large, low-frequency edge masks, or matched filters that look for the road in genera! locations. Thus, local
imperfections in the road or in lighting do not greatly distort the output steering direction, R g a * 2.6 shows the
weights for one of ALVINN's hidden units. The square shows the weights coming in to one hidden w i t from the
input image, and the l ee at the top shows the weights going out to different steering angles. White indices
positive weights, and dark negative. This unit mainly looks for a road on the left edge of the image, and mainly
votes for turning left There is also a secondary pattern that would match a road further to the right, and slightly
positive weights supporting straight ahead steering.

ALV1W is * € fastest of o w a ^ ^ It to also
been the most difficdt to mtegrate m White SCARF
and YASFiapmMiocs^mw^iotimmm^ the road, ALYBm mky po&atm m»^ a^mm^. bit,
however, possible to reason g ^
location. T l e < w i « M € w i l h ^ t t o f & v t o < ^ o * e < ^ t a r r f m m a d m M m ® m m m ® k s m ^ ^ ™ s
distance wodd in general be unknown depending on the parricide
atifirially shifted images, osed k trailing the J^vlab i© TWs
geometry, used for shilling the roads ID provide training examples, can also be used to mmmm tot far along fte

lie oa tto iwd c o w I K . Otooiriigsefwalcrft^^
t dbipe, which alows tfae map-based l e a n u g needed ID integrate ALVINKiri

TOWARD AUTONOMOUS DRIVING 19

Figure 2.6: ALVINN weights for one hidden unit Bottom: input weights. Top:
output weights. Positive weights are white, negative are black.

23 3-D Perception
AM outdoor mobile robot needs information derived &om ai (e.g* road location in a co te image, or

tenata type), but ig also needs to know the geometry of the obsesrwd environment* In some tasks, such as
cross-country navigation, * * a w t important information is the geometry of the terrain, the set of 3-D surfaces
observed or traversed toy the vehicle. The first step lowartis building geometrical reprasentaiions of a

choose a suitable saisor. Oeariy a single color camera is IK^ suitable for coHecting 3-D ^ An aitenmrive is &
use passive techniques fisr rccoverin g 3-D dasa such as stereo vision. There ate significant dmwbacks 10 ±ose

including high compusationai demand, diffiailty in ranging bland surfaces, and reliance on ambiesn
sstead, we use a t active s&nsotv a laser range scanner, which cm genenne a Mgh resolution deptli image

of the lenain ia feoot of tlje veMcie. Using socli a soisoraEeviaifis the need for infening 3-D M^
> besn g active, is also less sesisitive 10 outside ilimniiiati^i. Tbe lech used in sensor isg

warn and is not wed veqr wi toy yet We discuss ite drawbacks, advantages, and prospects for fatae
" d echnology in Section 2J^L

ANNUAL REPORT AUGUST 1990

Tte lamia can be described at dfferaic levels of leaohtfkNn depending OQ tbe tuft, the ewinxuneiit, and die
amount of computation mm allocated lor 3-0 parepiQit in the system. Rot example, a sysant dsat follows roots
sbti tse known to be kxmlly flat and mcwly obstacle §ec» lequtm a cooipfciely dtffaitot feptsentitioii than a
syseim tel Mvigaaes though n ^ p t dpet tank, la tie latter cai*, vcted© Mfcty bacooes die ovowtelniing
issse wMJe vehicle speed beeewes iwcb less aqmaoL. TO* hcamiamm w§& to paeal approach dnttte
campi^M erf t nobile «*m onar be OAMCI ̂ > ̂ »w

frwa

bnildmg a 3-D map of a long stteieh of tem» so that tte qmem can teter uae tlae m ^ to r ^ a v « » that aim
the eavuoofnoit and tic ask, we sixwld be ̂ te to build n a p at all

tettag conquest ̂ ^ ^ m «^r^« ^ ^ f f

R S:%p >â *̂ f^XlttBttKtfeK :Cf 1T3€- :^irtK«riiin:g l t tHte» This
8 3ppfCipHMEe ^ ftCR !H3VIg2**ng bl B&S V t ^ t t •* ̂ -fe Cfaifijf d&fln^*J: ©Oj'SCS, TllCft '1C6

few* ircc^^ons of Mi ^

f a A* aup.
2. P'tmmfrlwmi amm mwktiHf: A Ster ^ ^ i ^ ^ of the €»¥ifo«!iWt i s ^ i ^ desonbinf the tmitii

oiotwcitiiirf Mtnp&Qti* m m^k the vekade, tn a t e m navtpie ttftly, M M ^ * t i t MMNM tbe

* ^ i ^ ^ € ^ r t My It • tm,m Bern, tmm ̂ ^> ^ P CM be

^A^^fc

8JLt

fates M^ m Us M H W W of *t pkaie *A of * msimmk ^ ^ ^ lanrlS), T ^ 11 S
ctamsMMici of M l iha .HM, »e ef she sartai $onm» mi tm taopGKA, i laaaar model

war am a ^ « ^ « t e ^ ^ mek m tmm

MdMqwBi a«l« pmnt* t fe# aaKioain « p M ^ * ^ p ^ » te vane sup ^ ^ ^ by
•§mmm mtuaqm- Hwwr, we tevt few* t ^g*»' af p ^ ^ M wris sta iaear aa»|0g tt^^^y MM

a mim kx i s&be wvMhr suet:
% "M baamtmy tam» wo c%«s. one part sf dae tear sffc* m !mi^m&L» m m mm

TOWARD AUTONOMOUS DRIVING 21

ERIM Perception

Eye Safe
Field of View
Pixels
Ambiguity interval
Depth
Intensity
Max range
Scan rate
Scan direction
Interface
Temperature
Construction
Components
Size
Weight
Power

yes(?)
80hby30v
256 by 64
20 m
8 bits (8 cm)
8 bits
40m(?)
2 frames / sec
top to bottom
VMEtoSun
narrow range
wire wrap
all custom
90w by 35h by 45d cm
50kg
26VDC

yes
60 by 60 (programmable tilt)
256by256
40m
12 bits (Ian)
8 bits
50m
2 frames / sec
programmable
VMEtoSun
'Pittsburgh'
printed circuit
most off the shelf
45w by 35h by 35d
<25kg
110VAC

Table 2.1: Relative performance of example range scanners

surface while tte other is on the other surface. Since tte sensor integrates over tte entire footprint, tte
resulting measured point does not lie on either surface but is "in between" tte two surfaces. Such a
point is a mixed point, because it is measured from a mixture of reflections from both surfaces. Mixed
points are inevitable with the current technology. Most mixed points can be removed through median
filtering. However, tte mixed point problem implies that edges in range images, especially edges
between distant objects, are highly unreliable. This should be taken into account in the choice of range
image processing algorithms.

• Acquisition rate: The typical acquisition rate of two images/second is too slow. The motion of the
vehicle can be significant while the image is being scanned, thus leading to a distorted range image.
This is not a problem at very low speed, such as in cross country navigation, but may preclude the use
of this type of sensing at higher speeds, such as in highway driving, and for tracking moving obstacles.

•Sensitivity to surface material: In early scanners, tte measured range varied with surface type. More
recent scanners can adjust for different uniform surfaces, but still have problems with edges between
surfaces that are at the same depth but have different reflectances. Tte change in reflectance causes
changes in internal sensor gains, which upsets tte phase detection, which produces a spurious depth

23 .2 Discrete objects and obstacle detection
Tte lowest resolution terrain representation is an object map which contains a small number of objects

represented by their trace on the ground plane. Several techniques have been proposed for obstacle detection. Tic
Martin-Marietta ALV [14, 15,41] detects obstacles by computing fte difference between tte observed range image
and pre^omputed images of ideal ground planes at sevei^ different slope angles. Points that are far from the ideal
ground planes are grouped into regions ihat arc reported as obstacles A very fast implementaiion
of this techniqiie is possible sirre it require only image dilTerencesa^^ It makes, however, strong
assumptions on the shape of tte isnsin. Specifically, it restricts terrain shape to a few admissible slopes and
elevations. 1 also takes into account only tte absolute posidons of die potential obstacle points, not relative
positions and slopes. As a result a short, sharp ridge or step would be overlooked, even ihoogh k iraj be m
obs^cle. Another approach proposed by te Hughes -41 group [II] is to detect ite obstacles by Uiresholdkig tte
nomslned nmge gradient, &D09 and by thresholding the radial slope, DAo/M). Tte first test detect! die
discontinuities in nmgfr lAOe tte 90DGnd m i ^^te» te p « A » rf^lencik wsthl%b ApB. This approach has
Lhe advantage of t i k i ^ a i^Arfe TOKW ^ O a a » a E wtoi dec^&gis*^a-

E^ch cell of the ^rnin contains ihe set of

22 ANNUAL REPORT AUGUST 1990

data points that fall within its field. We can thai estimate the surface normal at each elevation map cell by fitting a
reference surface to the corresponding set of data points. Cells that have a surface normal far from the vehicle's idea
of the vertical direction are reported as part of the projection of an obstacle (FIgureZT). Obstacle cells are then
grouped into regions corresponding to individual obstacles. The final product of the obstacle detection algorithm is
a set of 2-D polygonal approximations of the boundaries of the detected obstacles that is sent to an A**type path
planner. In addition, we can roughly classify the obstacles into holes or bumps according to the shape of the
surfaces fonidft the polygons*

Figure 2.8 shows the result of applying the obstacle detection algorithm to a sequence of ERIM images. The
Figure shows the original range images (top), the range pixels projected in the elevation map (left), and the resulting
polygonal obstacle map (right). The large enclosing polygon in the obstacle map is the limit of the visible portion of
the world.

LIST Of
MEASURED POINTS

BUCKET (1 , j)

Figme2.7: Biiildmg ffie obstacle map. 3-D data points are projected inio
discrete buckets on a horizontal grid.

The obstacle detection algorithm does not make assumptions on die position of the ground plane, in thai it only
assumes i ^ the pkiie is roughly hon^^ Compudng ± e sieves wiihin each ceil has a

resolimoG is cwtsity cemimesers. The size of Lhe des^ndle obsiade also varies wi&
due ID sparser range pixe

111 j ^ —I., MAM ,—f,.,

look lot
several ifnproveoie^is C2n be meet 10 dect^isc the oompyf&ison tine; We need &3

ordy a t rarow s^ipe m few of ihe vehicle. We do rot i e« i t0 detect ail ihe irf>|a^iv k k
we w WSM WOW mgp spiiiM resoinoois m cicsse fsngB*

scMeved
fzst obsoc !e ftM nms i f l D n a i a SPAIC woxsm^on, wiitfa is &st eno^gn 3X the a s m speech.

TOWARD AUTONOMOUS DRIVING 23

Figure 2.8: f ^ on a p ^ For each image, top:
original range image; bottom Ie£fc overhead view; bottom right: segmented

Another application

expensive in our

of object detection is to buM object maps by combifluig many observations, CraW
is critical to m$mm object locaOzacon and ID remove spmious objects. MzzcMsig objects is not

we have only a few objeos to match in each finme and because we cm assume i
of the dlspiacwsiciE between ftuwss froni INS or dcad-fisclcQisiisg so thai the locaiioiis

erftitec*j^ts ejected in c»c tepc» be o n l y]B«c&»d k l i t easa i i i a^ . Tbe mam issues are ^ remove
spurious objects and to 'compute the hxmkm of the objects as acaintely as; possible. S purious d^c t s cm be
de^c2£d k two cases: noise a ite imge image nxay cause Ae object detection program to haikscimm* m& moiritg

24 ANNUAL REPORT AUGUST 1990

objects (e*g. people) crossing the field of view are detected as objects even though they should not be included in a
map. Spurious objects must be eliminated because they may lead to disastrous results when they are used later on to
correct the position of the vehicle. The position of the objects must be computed as accurately as possible so that
the position corrections that are computed using the object map are also accurate.

The problem of spurious objects is solved by calculating a confidence measure for each object Once an object
hm been seen m one image, it should appear in subsequent images, as predicted by vehicle motion, object position,
and sensor field of view. If it appears as predicted, its confidence is increased, otherwise its confidence decreases.
Objects with low confidence are discarded. Accurate object locations are obtained by updating the uncertainty on
object location (mean ami covariance matrix) each time an object is observed in a new image. The initial
mortality is based on a sensor model and depends mostly on the distance between the object and the vehicle. The
uncertainty also takes into account the fact that only a small part of the object surface is observed. The uncertainties
are combined using standard maximum likelihood techniques. Figure 2.9 shows a sequence of fourteen images.
The images am separated by about 50 cm. The white lines connect the objects that are matched between images.
The white dots indiane the locations of the detected objects in the images. Spurious objects are detected in images
13,18,2G» aid 22. Since they are aoc matched, their confidence is low and they are eventually discarded from the
map*

2 3 3 Terrain modeling for cross-country navigation
Obstacle deletion is sufficient for navigation in flat terrain with discrete obstacles, such as following a road

tnrdered by trees. We need a more detailed description when the terrain is uneven as in the case of cross-country
navigation. For that impose, an elevation map could be used directly [12] by a path planner. This approach is
costly because of the amount of data to be handled by the planner which does not need such a high resolution
description to do the job in most cases. For example, the planner should not need to scan a full elevation map if the

.£ compieidy flat. In this example, the lermin representation should provide enough information to quickly
An alternative io elevation maps is to group smooth poisons of the terrain

y the planner. This set of features provides a compact
Howevert me planner may still need M^

1% emspki* m ctt t tmd environments the planner has to examine small portions of die terrain ID decide which

arav are inworniiie [1'9\ Therefore, t compromise representation should include both high resolution elevation

dale and fatte infbnutioa tad stiotsld allow for efficient access to large chunks of terrain.

Sadi t sornpromise is realized by organizing elevation ami feature maps in a quadtree structure. Each node of the

Me zmmm :mmrmmm t t e describes tie portion of the terrain covered by the corresponding quadrant: minimum

M l mmkmm tkmtimk mmmam slope* araage ctontkn, and maximum discoBtnmity within the quadrant

t anl slopes are oqmpatA % applying t gradient operator to the elevation nap. Using this

Ming it 9m p i t :^r,:-£. A com?itx tenaii representadon can mm be built in 2 seconds on a SPARC
« r i ^ ^ » ¥%M» 111 ttim wwri took of the cpasface tefrnmrnkm tail from she ran
l t d

Tha m a i n w U ftoai i atogfe n a p m a p aaay not be sufficient due to i te linn ted field of view cf te sensor.

; -nougr, ap to 6 a t o m k front of the vehicle. Bowotr , q^aaduse repr^nsrdons
rnodd crfste I M C ^ In te <

TOWARD AUTONOMOUS DRIVING

25

have to search radivkfaal ekntents of t&e

thattcroa

to ooo-cocraiy syaem has to deal with lobe
ID

not

26 ANNUAL REPORT AUGUST 1990

just discrete objects. In addition, due to the complexity and randomness of natural terrain, any attempt to make the
problem simpler by fitting mathematical models to the terrain ends up with a representation that is just as intractable
as an elevation map.

Instead of looking for a more compact representation, we achieved our goal by implementing a system that
represented the terrain hierarchically, in a pyramid of elevation maps of descending resolution. Getting information
about a patch of terrain using the terrain pyramid is more efficient than using the raw elevation map in the same way
that representing an object with a quad-tree is more efficient that representing it with pixels. For a small initial cost,
the amount of duplicated computational effortneededby the cross country planner is vastly reduced

By considering what the planner needed to know about the terrain, we were able to reduce the computations by
adding extra features to the terrain pyramid, such as terrain discontinuity and terrain gradient We only added such
features if the initial overhead of calculating the feature was less then the computational benefit to the planner.

F5gme2.1O: Range image and elevan

23*4 Map buil ding from terrain features
As in tiie case of object descnptbns^ The basic probiern is

to m&tch tcsrain {estates between successive linages ind ID compute ufee caasfonnaiioii between features. In this
case die faacir^ are die legions ±ai describe ite

is-Qf i ^ If objects ai«decccted±iey are also
ksdic same way as before m^^9M^^ieMhwm^^mMmM,m^B$^^ttxm

be wcA for ibi maicMEg. As in the csss of object s w l i ^ aa izmial animate of £he displacssnent betwera
*,.

As ^fcre, Research is acmally very fasidi^
imagtsis ^aally quii£ dc.se ^ ac^ai >-Elue. The feacaiss are weighted in uhe

be detected. VmmiUbak^ ofafeamit cicpcsids on iis tyjpm
iMd edges. Once % stt of co&sistrat mantes is fooad,

beat MMd CM

acccning m bom

ofejecss

TOWARD AUTONOMOUS DRIVING 27

Figure 2.11: Four levels of the terrain quadtree.

meter in translation and 20 degrees in rotation. For example, figure 2.12 shows a sequence of fiw maps that
merged into a comoosite mao using feature matching. are

Figure 2.12: 3-D map buik &x>rn 5 ranee imaees.

2 J 3 High resotution terrain models

straightforward way to coown a nnge image to an e
e) of t ie range image co an (XJM) location in map coordinates,

are a nmnhernf r""*»**«"5 wfth thjf apunwM?h:

• Sampling: Since mis approach is similar to image waning, the distribution of data

> not visible even diough they lie
_ „ . j. . caiy idemified and nsonssemed

is available m those regions. Toe difBculty here is to MmA^^,
noj s aailable in those regi

oetweengeaome range shadows and rerioasc^ die n ^ w t o

28 ANNUAL REPORT AUGUST 1990

• Uncertainty: Range measurements are corrupted by noise due to electronic noise, surface material, laser
footprint, etc. The noise can be modeled by a variance, 0, for each measurement As a first
approximation, a depends only on the measured range. This uncertainty is represented in sensor space
and must be converted into a representation of the uncertainty in the elevation map.

Those problems could be solved by applying a standard interpolation technique to the sparse elevation map. This
would provide a dense elevation that is a reasonable interpolation of the sparse input However, such an
interpolation technique would not take into account the geometry of the sensor thus making it difficult to identify
shadows or to convert sensor uncertainty to map uncertainty.

The locus algorithm overcomes many of these problems by explicitly taking into account the sensor geometry in
building a dense elevation map. The idea is illustrated in Figure 2.13: Finding the elevation z of a point (xj) is
equivalent to computing the intersection of the surface observed by the sensor with a vertical line passing through
(x,y). Knowing the geometry of the sensor, the line can be represented in image space by an analytical equation of
the form range=f{r7c) where r and c are the row and column coordinates in the image. (The projection of this line
into the image defines a locus of points which gives the algorithm its name.) The intersection between the line and
the observed surface is found between two adjacent pixels (r ^) and (r2tc^) such that range^f^r^^ and
range2>f(r2*c2)^ where rangex and range2 are the values in the image. The final value of z is obtained by
interpolating the range between (r ^) and {r2£$.

The key point of the locus algorithm is that the interpolation is taking place in the image instead of in the map.
This allows us to explicitly take into account the sensor model: the unceitainty on z is computed by combining the
known uncertainties at (rltcx) ami (r2^2). The unknown regions in the map can be detected by observing that (xj)
belongs to an unknown region of the map if (r lrcj) or (r^*^) are on a range discontinuity in the image. Another
important consequence is that the elevation can be computed at any point of the map without having to recompute
the entire map whereas standard map interpolation would have to compute the entire sparse map before interpolating
the (tense map. Finally, there is no constraint on where the map coordinate system is located with respect to the
image. In particular, we can generalize the algorithm to compute the intersection of any line in space with the
image.

This technique has bemused to hdld terrain maps, with resoludGns as fine as 10 cm, that mciude uncertainty and
explicit representadon of unknown regions. The locus algorithm can also be used to buM large maps by matching
maps from individual images. Two images of the same area taken from two different locations, are related by a
transformation T (rotation and translation) between the two locations. The matching problem is essentially to
compote I" as accurately as possible. Once this is clone, the maps can easily be merged into a larger composite map.
Given some value of Tf we cm compute from the images two elevations z, and ^ for each point (x,v) In the map.
The squared difference (ifi^f' is a measure of how good our knowledge of T is. Since one point in ttae map is not
sufficient because of the uncertainty, we can we the sum of the squared differences, E(T)% over the pan of the map
Lhai is visible in botli l inage £(T) is minimum who* T is the exact liaisfcwi^km b e t i ^ « t te k>cmk»s * whMi
the two images were taken. Sfctmg with m initial estimation of T we can therefore apply a minimfaairioa j p i t m
(gradient descent) to £(T) to com puts the best possible value erf T. to practice, the initial value of T is computed
from feauro m a t c ^ £ (r n s not computed over smooth areas cf ±e

nap, which woM pswisfc little m i a t k » as a fisnakmofT.

This mz$Lhm% tsdtaiaqne has been applied m the building of large maps (several hundred meters) using many
nnge mzzss, collected as the vehicle travels. Experimental results shew that te locus algorithm can be used 1®
buiM accents naps otcr long d t t oces of travel Figure 2.14 shows a nq> boBl by combining IZZ ran ge i mages..

Far instance, wmtuog local map far

TOWARD AUTONOMOUS DRIVING 29

the vehicle with low-resolution aerial elevation maps can be implemented using the locus algorithm. Detailed teirain
features, such as ridges and valleys can be extracted from high resolution maps [27].

IMAGE

Depth Profile

LOCUS
(Projection of H(X) on image

Hguw2.13: The LOOTS Method: intersection of s c a n ^
in world space (top), and same intersection in image space (bottom).

ssfM mobile
2-3.6 Discussion

Tte ienaiii repesaitatioiis dm we have developed have pioved to be critical M balding a
robot ttm includes cai^fliti^ of obstacle avoidance open t o i ^ Wehweaha
demosstraisd thai laser snge fiiK^ m a sensor iiiodaiiy f tos l io i iMtei i^
ai least at this stage of the researciL TT«©aelioi^w>tii^*crcrfmM&iK^I«^

• Semwfksbm: l ^ t g graocw wftxiwtiM tao*»4W«il
woold be beneficial to explicitly merge geomctiic

-mm

l^wpiwtf«aArmdi:i^effli»iiMk»beiM^peC WcIwi«'Ch ê
^ fusica bo& 21 Lhe ̂ ^^

with mfamwrinB, For
exampie, shape and color are apafly importam k object recognoioii. Ja road following, the usejof
raxnetric informaDon would help dtstisguisfa between shadows aad other fflataiiiation effects a ^
P ^ c e o f real objectsoa the road. This WOBM greatly improve the perfbcmaBce of color

ri h l d fiti be

ê nWBdfiomcoteaiidnBt̂ miages. ^ ° ^ i s ^ ^ ^ $ ^ f ^ ^ ! ^ ±
should be merged (images, features, or interpretation), and the difficulty of aomateiy

registaing range sensor and color camoas. Machinorewaricreniaaisto be done m this area.
• Useefnflecamce: In addition to range, a laser scanner can also measore an image of the energy of the

reflected laser beam. This image, usually called the nfleamce iniage. is saaaar w » mteosay nnage

30 ANNUAL REPORT AUGUST 1990

Figure 214: An elevation map built by the locus algorithm &om 122 range
images, covering 250 meters.

except that it is largely insensitive to outside illumination. Therefore it does not exhibit effects such as
shadows, highlights, or inttneflectiott, all of which are hard to model. We have used reflectance data
for icad following and object recognition with some success. The main limitation was poor
performance of the reflectance measuring, which we believe is not i n t e n t to the technology but is due
to the particular sensor that we woe using. Those preliminary experiments have shown that active
reflectance images are an attractive alternative to intensity images and that research in this direction
should be pursued further.

• Uncertainty: We have proposed ways of representing uncertainty for various terrain representations.
However, the way we deal with uncertainty is still somewhat ad hoc in thai it makes heavy use of the
characteristics of our sensor and the particular representations that we have developed. A more
systematic approach to modeling uncertainty in 3-D terrain is neetted-

2.4 Planning
Intelligent action requires perception, planning, and concroL While our main emphasis has beat on perception,

we have also developed the planning and control needed for smoothly following roads, and for traversing ragged
off-road terrain thai challenges the limits of the vehicle hardware.

The into of planing is m gemme oqectories that meet
for example) without endangering the roboL It must also make sure tint the robot is kinematicaily able ID execute
these t^fecsmes, ail m the presence of mommmy in iht robot's control and environment. A number of systems

B«i j planners wens tainted for iadoor mobile robots md

robot u s assumed m be circular mi omnidirectional Later, Laumcnd [28] and Jacobs
£18$ ftitt^t 'As oitmidirsCiionsi rapigoiiiSl by modeling si car-liie robot with & minimum tsinnng isdw* In &

sysiB® itfe^doped BI Hogiscs {12\ ih& indoor sn¥iioiiii3cnt CO^SSBIIII wss rsi^xed and a. pl&jnisr wss developed s>
plan pi^te in off-road cstsm^wtts. M M of die sbow sysiDns wc^ able id W&SSM aboM sopliisiic^isd gc&l

Hie steweiiai groEisdwoik was spelled out to PS]S bm.

be« ex^mA to «Mfp
of itsggg icdsMpct ID planning fipy mobile robocsB

TOWARD AUTONOMOUS DRIVING 31

While the contributions of the above work are very important, in many cases it is difficult to see how to extend
them to address the remaining issues or how to generalize to other robots or environments. Our planner addresses
those problems by providing a framework for building efficient planners for different types of robots, environments,
goals, and uncertainty models.

The first step in building a planner is to define the constraints that must be used to compute a safe trajectory and
to reach the goal. We define three types of constraints: sensing, environmental, and kinematic. First, we select
positions at which the robot registers its position relative to the world or to map new areas. Those positions are
intermediate goals that provide additional constraints to the planner. Second, we identify placements
(configurations) of the robot in the environment that will incapacitate it or render it unable to locomote. They define
environmental constraints that a trajectory must satisfy. Such configurations include those that bring the robot in
contact with other objects in the environment, as has been modeled in traditional indoor robotics. Outdoor robots
face other hazards as well. Configurations that cause the robot to tip over or place it in situations where it cannot
propel itself forward are also be avoided. Figure 2.15 shows a set of environmental constraints. Third, we define
kinematic constraints. Most robots are not omnidirectional. They cannot travel between two arbitrary
configurations within given bounds. For example, car-like vehicles cannot translate directly sideways. In the case
of the Navlab, the minimum turning radius is seven meters. In addition to the three basic constraints, uncertainty in
robot position must be taken into account. Sources of uncertainty range from random error in the robot's control to
gross errors such as wheel slippage. Oar local path planner accounts for control-based uncertainty to avoid
collisions and to guarantee goal attainment.

The planner generates trajectories to the next sensing point using a range map of the terrain in front of the robot
acquired from an ERIM laser rangefinder. Since the Navlab's pose can be represented by two translational
parameters and one heading parameter, the planner must find an admissible trajectory through a three-dimensional
configuration space. Conceptually, each constraint is represented by a functional inequality of the form fip)<K,
where p is the vector of robot configuration parameters. The constraint is satisfied if the inequality is satisfied
Applying the constraints divides the configuration space into admissible subspaces. The sensing positions form a
subspace of this configuration space which comprises the goal of the path. The environmental constraints form a
subspace representing unsafe configurations for the robot The kinematic constraints dictate the functional form of
the trajectory, and the uncertainty constraints dictate an envelope about the trajectory guaranteed so contain the
robot

Analytic approaches to the problem are infeasible given the complexity of some of the constraint functions-
Furthermore, the constraints are dependent on the terrain itself, which does not have a functional form. A
straightforward approach is to tesselate the space into pixel-sized points, evaluate the constraints at each point, aid
search the resultant lattice. However, even for moderately-sized planning spaces, the number of points (states;
makes the search prohibitively expensive. Instead, oar planner finds paths for a mobile robot using a parameier
resolution hierarchy. In this hierarchy, ail constraints (sensing, environmental, kinematic, uncenainty, etc.) are
evaluated across a subspace of configurations at a time (rather than individual configuration points), thus reducing
the total number of states in die search. Sensing and environmental constraints are evaluated across three-
dimensional voxels m configuration space, kinemaxic constraints are enforced between faces of the voxels, and
uncertainty constraints determine tbe voxel expansion needed so bound the robot's pose. Hie planner finds a

searching con.nec^d sequences, of voxels. For a p w a suhspace* tbe planner evaluates eac
e whether ail, none, or some configurations in tbe subspace satisfy the consusioL Tbe planner begins by

considering large suhspacss. Passage through tbe subspace is permitted if aU constraint are satisfied for all
configuration If at least one constraint faiis for ml configursdcTss, the entire sisbspace is oitwrosabfe «nt is
removed ^ m fisher censideraden. la the event erf the mmakmg case (at letst one
least one enfigoniim)»the sais^pice m y toe ttwrasable, so te p b n r subdivides the subspace In to mailer spaces

32 ANNUAL REPORT AUGUST 1990

and continues to plan at a higher resolution. Most of the constraints are modeled uniformly as functional
inequalities. Thus, the planner can classify a subspace into one of the three cases by computing the upper and lower
bounds for the function across the subspace and comparing than to a constant. A cost can be assigned to each
subspace, and a standard, depth-first, breadth-first, or heuristic search can be employed

The quadtree representation of the terrain described above provides m efficient way to implement the hierarchical
search. Relevant terrain parameters such as min and max elevation are maintained for each quadrant so that the
planner does not have to go back to the highest resolution map to evaluate its constraints. Figure 2.16 shows one
slice of the constraint space generated by running our cross-country planner on the elevation map of Figure 2.10.
The crossed areas represent inadmissible areas of terrain, i.e., areas on which it is illegal to place the center of the
vehicle. In the process of planning this path, the planner made 1493 queries for terrain information. This shows the
efficiency of both hierarchical search and hierarchical representation of the terrain.

Due to the uniform way in which the constraints are modeled and the resolution hierarchy is built, the framework
employed in this planner is applicable to other classes of robots, environments, and goal specifications. Future work
will include building a complete system around the planner to autonomously drive the Naviab off-road,
implementing algorithmic improvements and utilizing Easter computer hardware to increase performance, and
extending this work to operate on more capable off-road vehicles.

LL

Figuic2.15: al constraints.

2J& Artfaitocfar
The software arc

and Systems
ecai^ of i

^ i i t o t coherent sy Simple robots, performing simple tasks, oftsn hmm m "archil
Mem complex robots and mmm

IO enable cfianging beliaviois and confMcdng s&bgoals* and ID specify functions and
searchers can amnbm to building me sptm*

I maps lor awripatog niwtei awra, m m Sfmem we ai l At W

TOWARD AUTONOMOUS DRIVING 33

Figure 2.16: Planned path through cross-country terrain. Crossed squares are
inadmissible regions, passable areas are empty squares.

2&JL Background
The most conventional architectures separate robot software into separate modules for sensing, thinking, and

control. This has the advantage of giving one module control of the vehicle, another control of ail sensors, and a
third control of modeling and planning. This decomposition groups design tasks in the likely areas of expertise of
separate research groups. The drawback of this approach is thai it does not allow for high-speed special-purpose
reflexes, that must do sensing, thinking, and control all in one tightly-integrated module. ,

The opposite approach is typified by Brooks in his subsumption architecture [8]. In his robots, each module
covers the complete range from sensory input ID control output. He divides his modules into a hierarchy of
functions, each "subsuming" die lower levels. Hi© Gist module watches sensor data and moves the vehicle away
from obstacles. The next layer moves the vehicle randomly, unless the lowest layer takes over to avoid hiaing an
object. Higher layers add purpose to the wandering (e.g. towards open doorways), look for objects of Interest, and
so forth. Each layer is relatively simple to build, and at leas! in principle mostly decoupled from adjacent layers.
But with no central world model, it takes careful design to ensure thai various modules are mm working at cress
purposes. Related ideas include reactive at reflexive ^mMmg^mlmAem^mMm^qm^mspcmeia^m^
preplanning; and behaviors, which package serving and o^ntroi mc^

that combine the best of I
typicaHy propose a hierarchy, in which:
HQH aigocr-icvci wsmM inisrprccaoofi [ij . i v s 3i cacii icvei are decomposed n p
the next lower level fir execution. The hierarchies ate often stmemred by time (quick reflexes at the km
uiroiigli slower ptoccssss 2X higher levels); <^tt abstractioii (raw signals ID symbolic reasonoig); aad spsce
effe^s to gloisai daiEteses). in trying ID encompass sii pQisUft systems, tlsese gensral-pinpose gp^tftccfci lose
ttaeir prescs^uve power. Their m i n contribulioii fnsy instead be descriptive, providing a ^
wliicii ID1 di'sojss ite' differ^ices between srcMnscsaies.

For our first
',401 CODGER xi

CODGER, fcr

[ona:

far GB
Local Map

34 ANNUAL REPORT AUGUST 1990

(LMB). CODGER was designed to handle all communications and geometric transforms, to make it easier to build
and interface individual modules. Communications are anonymous; modules semi data and requests to the LMB,
and receive responses when available, without knowing which other modules are generating or using data or where
those modules are running. The LMB stores all geometric objects, and keeps track of a history list of vehicle motion
and position updates. CODGER uses its history list to answer geometric queries that involved multiple coordinate
frames. The LMB can take a location specified relative to the vehicle at a particular time, and return the coordinates
of that point, either in the world frame, or relative to the vehicle at a different time.

US2 EDDIE
Our current system on the Navlab is based on EDDIE (Efficient Decentralized Database and Interface

Experiment). EDDIE does not specify a particular architecture, but rather provides a toolkit which allows specific
systems to be built quickly and easily. Vehicle positions are maintained by the lowest level controller, which has
the closest access to the vehicle and therefore the most accurate information. Communications are greatly
simplified, and are point to point, increasing their efficiency. The map is divided into local and global
representations. By splitting architectural functions into separate pieces for local communications, vehicle history,
and map handling, the individual modules are much smaller and easier to maintain.

The first part of EDDEE is the new real-time controller. This module does low-level vehicle control and handles
communication with higher-level modules, and in addition maintains the current vehicle position. Vehicle motion
commands arrive at the controller labeled as either "immediate" or "queued". The controller parses incoming
commands, handles the queue, and talks to the hardware motion controller at the appropriate times to set new
steering wheel positions and vehicle velocities. By querying the vehicle's encoders at frequent intervals, the
controller is able to maintain an accurate dead-reckoned position estimate. In EDDIE, no vehicle position history is
kept The only times when it is necessary to know vehicle position are when new data is acquired, or during
trajectory planning. It is easier, and more accurate, to dispense with history mechanisms, and instead to quay the
controller for the current vehicle position each rime an image is digitized, and whenever a planner needs to know tbe
vehicle's location.

The vehicle controller uses different tracking strategies ID keep the vehicle on the desired path. It cm also be
called upon to follow a previously recorded map if the perception clients are temporarily unable to navigate the
vehicle. H i s keeps tbe vehicle on a M e path white the vehicle turns sharp comers, outside the camera's field of
view, or travels through featureless or confusing visual scenes. Another safety consideration is smoothly regulating
velocity, trading seme reduction in accuracy of velocity for smooth accelerations and reduced vehicle roil around
sharp curves. The controller waras zgsinst system failures and rectmfaak^of evoits farfiitmeKfeOT^x. This Is
extremeiy vduabie m system configuraiion and debugging. Tne low-level controOer is also responsible for udiizmg
INS and encoder dam to find the ben estimate of current position and relaying it to external clients through ihe
ezhemeL H g v e 2.17 shows accmHe vehicle position estimation, using ihe INS (solid line), and the less accurate,
but still stable, estmatkii using only dead reckoning (dodod line). The clients me managed by a software seiver
which prioritizes the connections- in order ID meet the needs of many clients without degrading the level of
perfonnBBce rs^uired by criticM cornponents of the system [2].

Cosing all poskto-etfioNtiaa loops tbmgfc t te controller allows mnspzrznt path modificadons. We bgve
a pysuck tBteifece thai allows M wm to notify commanded trajectories. Joystick Inpm is simply

wills computer nipiic so the irtor hzs [tht s^nsaiion of ^nudgingw the vehicle away from its plumed putt,
l i e Xaviab is also being equipped with t "soft bzm?zT*t i i i tg of wbmsmk i m p sensors m de^ct nearfĉ y ofejecxŝ

die soft winiBSf wilt ttftxsDt wiili sic coiiiroilc^ si it^ ^SDC tumnio* w$ die
joysuck, by adding Its cô â rol input to tht hipul fiom piajmiiigs tat will ka¥S progressively higher 'g^jusB 3$ -tbe liin^

TOWARD AUTONOMOUS DRIVING 35

Figure 2.17: Position estimation during a robot run. The solid line shows
the accurate vehicle track given by inernal navigation sensors. The dotted

line shows the less accurate vehicle track estimated by dead reckoning.

to collision decreases. Previous systems would have been destroyed by this subversion of planned paths, since
CODGER kept vehicle position history by anopen-loopexpectanonof perfect path tracking. In the EDDIE system,
all position queries aie handled directly by the oDntroOer, aiui are therefore answered correcdy even if the paiii

Communications in EDDIE are unexotic and uninteresting, but fast, with point-to-point connections. We
currently use TCP/IP over the ethemet, but could go to shared memory or other protocols for particular connecdcns,
as needed. Instead of biiEdmgspecM-pox^^
pause module execution until data arrives.

2.5.3 Annotated Maps
EDDIE does not have a global map ai the

or path folio wing, are
tof

-. Local positions* w d only &r Che puiposes of obstacle

maps stait witb a geomeinc i tp iuMst io i of objects, such as roads,:
additional imbnriaiion, noc usaaily ccncained in n p ^ tied to a parnoikr iocanon or ocjaci

a particular map locHion (2-object. Annotations o n range from high-level ^dtmOO m geomesic fs^epk h^CT
25m, _"} to seasor-speciilc ("look lor long nearly-vcnkai edges") to mm data Ccclor 1 1 Q I B 1 "X
in $n ^M^ttttw csm conis irons a wioo varissy of *
^entbevehkie's^

36 ANNUAL REPORT AUGUST 1990

A map manager module controls the annotated map. Two forms of access are provided, queries and triggers.
Queries allow a module to fetch information on demand- They return all annotations of the requested type within a
specified polygon. Typical queries ask for descriptions of landmarks, or for which recognition methods have
worked for this landmark on previous vehicle runs. Triggers are a special form of annotations, monitored by the
EDDIE map manager. When the vehicle reaches the trigger's location, the map manager automatically sends a
specified message to a named module. Triggers may be set up during mission planning, and used to wake up
sleeping processes at specified locations or to alert a miming module to a change in conditions. In a typical run,
triggers are used to tell the vehicle when and where to look for landmarks, ami when to switch from straight road
following to the slower intersection navigation code.

Annotated maps are not designed to be a master control, but rather to serve as a scratchpad (for queries) and alarm
clock (for triggers), in the EDDEE architecture. Annotations have a standard format for header information, such as
type and location. The format for the rest of the annotation is defined by the modules that post and retrieve the
annotations, and need not be interpreted by the map manager.

Annotated maps provide a convenient framework for organizing knowledge. Tying the knowledge in annotations
to particular locations in the map makes it possible to pre-plan difficult mission segments, and to retrieve that
information efficiently during execution. This framework enables missions that would not otherwise be possible,
due to real-time constraints and limits in processing and algorithmic power.

2 ^ 4 AMV
We have built several systems on top of EDDIE and the Annotated Maps. The road following system for the

Navlab is the Autonomous Mail Vehicle, or AMV. This system draws its inspiration from postal deliveries in
suburban or rural areas, which follow the same route day after day, undeterred by "rain nor snow nor dark of stormy
night". The mail carriers drive ai relatively slow speeds, often on many different kinds of roads. They do gross
navigation through a network of roads and mtersections, and fine posidon servoing to mail boxes.

This type of system is an example of a broader class of applications which focus on map building and reuse,
positioning, road following, and object recognition. Our AMV project is investigating those issues, including
strategies for using different s&isors and different image undgrstsuding operators for the perception components.

The most ambitious mission we have performed to date is a 0.4 mile run m unmodified suburban streets in
's North Hills. This involved:

• Driving along carving suburban streets, with no pavement markings, including many different types cf
driveways;

fo tasectxw,
* Slopping for une^pecied obsiacies, and resuming mouon Vr̂ ea clean
* firiflciitiiiiff M îi|yw^yfĵ . firjf ipc^sitfon updates flmE for finding tin* ocstiiittfctoiflL

We built sm miotitted rap of the routs, driving the N&viab by hsnd and using the laser scanner to record the
loc^e^ of 3-D objects. Object posidons were measured in muldple images, to discard m
cars, dogs) m t to improve the iccwaey of m e w e d position. The mao was then mmmisd with triggers :hai
ooeiwjlwi vehicle pam execution* Dtffing lie nm, the vehicle sttrtwl moving slowly, while it fatisd landmarks ID
initialize in posidonu A tt^^i^aim^^^^Mmsp&^^mMk^^m^^^^&mtmB. Ai thai point*
triggers caused uriotts moddes to slew the NMtb* Bud 3-D objects, mtch ih.em against the map* aad updiie the

position estiir^i^; Thrcogli the timi. vision was aoi able to see the nwL MI anoifeet trigger onscd dead

TOWARD AUTONOMOUS DRIVING 37

Hpn2.lt: A anp of t tttabm wfhi
^m f̂SwCLor̂ ,, iuMJtpwit • iwHi ioBi (mi l l ciicSfti m i dots), nod inner

2JJ

BnF ^̂ ^̂ i

tasi

38 ANNUAL REPORT AUGUST 1990

The evolution of our architectures up to EDDIE is a natural one in the evolution of the Navlab project. In the
early days, the nature of the modules and their interactions were not known, and our major concern was to not
preclude any conceivable system design. Thus, we built CODGER, which was very general and provided easy
reconfiguration through anonymity of data storing and access. Now that we know the specific configuration of
low-level modules that we need to run the NAVLAB, and how they communicate and synchronize with each other,
we seek the simplicity and higher performance that can be achieved by a more specialized architecture. EDDIE is
thai new design.

2.6 Contributions, Lessons, and Conclusions
We began the Navlab project six years ago with the firm conviction that the best way to make real progress on

outdoor mobile robots was to build complete systems, and io concentrate our efforts on eliminating the bottleneck of
inadequate perception. We continue to agree with, and to follow, those convictions. Following those general
guidelines, we have built a number of successful perception, planning, and control modules, and integrated them
into systems that drive the Navlab on a wide variety of test sites. During the course of our work, we have also been
surprised (usually unpleasantly) by several other aspects of building mobile robots: problems with sensors,
difficulty of using experimental computers, questions of how to evaluate our work and how to compare it with
results from other groups, and the critical importance of simplicity, and of defining the environment in which the
vehicle must operate.

2 .6J Contributions
Navlab experiments have validated and demonstrated several new ideas.

1. SCARF demonstrates following unstructured roads using color classification. SCARF uses adaptive
classification; multiple classes, described by Gaussian distributions in RGB color space; and simple,
piece-wise linear rood models- These features enable SCARF to follow roads with indistinct edges
awl changing appearance.

2. YARF uses specialized operators for tracking individual features, combined into a reliable road
follower for structured roads. On roads that have lane markings and smooth curves, YARF gains
performance by using models of road shape and feature appearance.

3* ALVXNN demonstrates neural nets learning to tuck roads. A single algorithm leams many different
roads, with only a few minutes training time for each new n>ad.

4. Om algorithms build accurate < to^%M^ of iiimnKaiiied I O T M fiKHa 3-D (tola. Different levels of
are available, depending on the task i^mri^i«ts airf availabte iroc^sskg power. This

information is directly useful for cross-country navigation.
5. The Navlab bmlds maps of nigged main , combining many noisy 3-D range images to form large-

scale maps. Our approach uses a combination of iconic matching, feature matching, and vehicle
position sensing. I l k has been shown before for simple indoor environments, buf we invented new
ischniques and representations for cudocr unstructured terrain.

6. Cross-country trajectory planning requires HOC only a representation of obstacles, but also reasoning
about vehicle capabilities, Hrnits, and inacciiracies. Tnese constraints can be combined efficiently and
powerfully, to giiide she vehicle up to the Emits of their sensing and mechanisms.

7. Siiiiple arcMtccDires work best Dic^ungthestrocmrcof ^edaxaandconcroiilowisnotneed^ It is
better io build t soelkit Uiai provides ccmm unicadon, sv^chronizaiio^ map data handling, and clean
w i e r f i c e s to tin te«*fawi c m t o a l , a n d l e t i n d h r f t t a ! symm taata'toA
O'Wn needs.

2 A 2 Perceplion Lessons
Perception: Psrcspsen ^

u h * d prooieras (paii p l m b f ; n i p mfmmmimK etc) tat latter t&ai fay cannot be properly explored until
robust pcrcspEQn couponssits ore bmII The p£r£onn&H€& of a mofcils robot system depends on tte perfonnance of

It is OIWB 3SSUH1C4 tMx robots M® control sysisnis, and. th&t pcrcspuoo will provide

TOWARD AUTONOMOUS DRIVING 39

clean numerical input; or that robots are cognitive problem-solvers, and that perception will provide clean symbolic
scene descriptions. Neither of those assumptions are justified by the current state of the art in perception. Robots
will not fulfill their potential unless we continue to improve perception capability.

Sensors: While the most important scientific bottlenecks to perception involve inadequate algorithms, the current
state of the art of sensor design is also a stumbling block. Too much effort has been spent in overcoming sensor
limitations, which is necessary to do real experiments but makes no lasting scientific contribution. A few examples:
laser scanning technology is a great advent in 3-D sensing. It still has considerable limitations, however slow
image acquisition which puts a severe limit on the speed of the vehicle, ambiguity intervals, bad behavior on certain
material types, etc Color cameras also have problems: limited field of view, inadequate dynamic range for mixed
sun / shadow conditions, unpredictable response from automatic irises and gains, etc. We do not believe that any
one magic sensor will "solve" the outdoor robot problem, but advances in sensors will certainly enable and
encourage advances in the image understanding algorithms. We continue to build better algorithms, but their full
power will not become useful until we have adequate sensors.

2.6.3 Systems Lessons
Design for task and environment: Mobile robots operate in a certain environment to cany out a certain task. In

the current state of the ait, there is no such thing as a completely general-purpose robot, universal vision system, car
generic architecture. Tracking highways requires substantially different processing from driving cross-country.
Some of the concepts are shared (local map building, control); and some systems use shared modules, such as neural
nets, which adapt to different situations. But currently the right way to build mobile robot systems is to incorporate
in the design, from the beginning, knowledge of the task and the environment Too often, neat ideas are investigated
in perception or planning and then artificially matched to an environment and a task. While this is great to
demonstrate some new research results, it usually does not contribute much to mobile robots.

Simplicity: The simplest approach is always the best Designing a complex system does not solve any problems,
especially if the components of the system (e.g. perception components) have not even been considered yet The
research community is full of proposed architectural standards that needlessly complicate mobile robots, and that are
not based on experience with working perception systems. Simpler is better. For example, the approach that we
have followed in our AM V system is to:

1. Define the task: Track roads with the help of a map, ami perform actions at specific locations.
2. Develop and analyze the necessary components: road following, object detection, map buflding-
3. Build and evaluate the components separately to understand their limitations. For example* we first

built a smaller system that tracks a road map and stops ax specific objects, thai expanded to annotated
maps and the AMV.

4. Define representations that are matched with the task, such as the annotated maps.
5. Put together components ami representations in a system that is configured for the task. Tne system is

"simple" in the sense that it includes only the functionality thai is needed for the task asing the selected
components.

6. Experiment. The important point is thai the expermentai phase is used to evaluate h®w well me
mission is carried out and to maybe add new perception components, or modify the representations. It
is wr used for debugging a giant complex system.

Computation: Fast computadon is of c^^ Not only does I:
improve the peribnuance of the final system, it also holds the promise for more images processed, faster runs, and
mote oqwMMts, and thus fitter progress in tbe basic reseaick We h r o fbond, faoiww, tint fitter mmpmmim
should not be the highesi priority. In the emfy steges of t mobile robot project, especially, ffae leseafdteis need m
fry many different possible approaches to perception. & is more important to have tmy^hmc compoteo, with

rtod ad efficte

40 ANNUAL REPORT AUGUST 1990

supported* both for image digitization and for comfnunicaiiiig results. Now, after ax years of Ac project, oor
alforittau ant stable enough that we can property take advantage of non^nadanl Mgfa-speed machines; bat those

should be stable and wel l -aww«i It a wry difficult 10 do roixxks research simuboieaEisly with

te The "wsfekte itself most be
miikh aqperimatti a n cmdicied. The Ntvlab was

anintegnl put of 1
to our eariy systems* provides the

speeds*
and dow speeds me needed [23]. It waa noi M p d for migki l aa in m^icm, aor for highway

mm hanle and wiB be mm capable of « ^ b w n « i opentloft A» iMbed ¥^fc te « e being
sdcctel aad a o d i ^ to eampfenwtt

Coatorolteir: Rttl-tonc mobile robot contioltaft need so integrate a w ^ wigc of capabilities* beyond just control
.^ory: position cstistatioft, mapping and unking of path$t human mterf«cs» fasi conununicatkuit multipte client

M ^ » i o » s | vcfecte states for safely and debugging. Mew* md)ik .i^ocs do not push the Emits of
control iheory. The « a ^ isaue m cmtMki design is aA omtt^I iwKy, bui m i w i e a p for system

wpmM, it ia letattvely
tm te 1 ^ : seconds,

cf t Our

:::orx; w-; :> -1 wmimg .gnipnic

wrte»

As a ewollary, YAIF caat now pwecis h n ^ ^ of images a * fypc^ nai. or i t o t t a ^ of images daring a day's
esqperamti, wtefe » ^ : a exammttig tte1 output by had ledioos ac best We need ixxh ^ ^ tetttt»iof y (faster

* ̂ ^ v«too «antes» etc.) and b&m «te» for iefetagptS totapksx realHAme ̂ ^ ^ s .

"Docs

j i t e D ^ S i S f c A ^ J S t e l P ' ^ S W T t j B ^ t t k •fe^^wMaff^iimte.^iftMijiliBiitt. \>M W^tiS^iMlMMLia^^^ui^k' itelfeM^feiiitfBiitSfasbSt iH^fej^i^feawsafesaite j^MWfetesssMSif^Bfiiaaa^isa^ii^rite iAsi «ass/**89Wia*&^ ÊatmWBw-mBStfffih rj^BWi^^^Mfcaffi^^Btfflfe^ •iW^Bfet)^jirtM!ffilJiMi^a^-&l nifftili'iilliiJiiHii Hi'i'll'in'iMi) ilrti< (A f » iMBIti.fm.'Wlttii unffiiniiiMiiffTnl i^hiaUaK IMIHHWI. irmi tnM

TOWARD AUTONOMOUS DRIVING 41

developed in isolation in the laboratory, have proven difficult to use or incomplete in the context of real outdoor
systems. Our greatest advances have come by developing modules to fit a certain system need, using real vehicle
data for development and debugging, and testing the modules in the context of a complete vehicle running realistic
experiments.

This experimental approach will continue to be fruitful. In the first six years of this project, we have gone fiom
excruciatingly slow motion (2 cm / sec) in benign conditions (clean sidewalks) to driving up to the vehicle's top
speed (20 mph) on a variety of real roads. There remain big challenges ahead both in driving on roads (handling a
variety of lighting conditions, dealing with changing road shapes and lane markings, and handling traffic); and in
driving cross-country (moving at higher speeds, mapping terrain and avoiding obstacles). We are working in both
those areas. For road tracking, we continue to pursue vision for road tracking, including ALVINN for learning road
tracking and YARF for detecting and explaining changes in road shapes. Other projects at CMU are working on
strategies for interacting with other traffic, and on tracking moving objects. We continue to need new sensors, both
for road tracking and for longer-range obstacle detection. Off road, we are working with new range sensors, with
inenially stabilized sensor platforms, and with new computer architectures, to build faster and more accurate
systems. For both on aid off road systems, we Me refining our software architecture, continuing the development of
maps and planning systems, and building new testbed vehicles.

While general-purpose systems are still far off, t t e large amount of experimental work over t te past few years has
brought several mobile robot research groups to t te threshold of applications in limited domains. Prototype robots
are being proposed or built for several environments. Barren terrain, such as planetary surfaces or some hazardous
waste sites, allows easier perception. Limited-access environments* such as underground or strip mines, decrease
the need for safety checks and eliminate unknown moving obstacles. Convoy following relies on a person driving
the lead vehicle to avoid difficult situations, while subsequent robotic vehicles have the much simpler task of
tracking the leader. Other applications involve a human supervising one or more semi-autonomous vehicles, so tte
vehicles can handle routine cases and decrease operator workload. All these applications will not only be useful ki
themselves, but will continue to build t te components needed for tte truly intelligent autonomous vehicles of i te
future.

2*7 Acknowledgements
Navlab work is t te product erf many people. Takeo Kanade, Waiiani WMdakr, and Steve SMor l a w i l shared

in Principal Investigator responsibilities. Navlab planning and systems have beat done by Taiy Slentz and Eddie
WyatL T te new controller is tte w o k of Omead Amidi. Martial Heben is, the CMU expert on 3-D perception
including t t e Navlab's medium resolution mapping. Dave Simon built tte first AMV prototype* and Jay (kmiy
continues development. Karl Kluge is following structured reads with explicit models wble J i i C a s m a and
Didier Aubert work on unstructured reads with simple appearance models. Dirk Langer is woricstg oa fhe w a r
"soft temper19. Ken Rosenblatt is developing new system integradon approaches. Dean, F o o n t a n , i student of
Dave Touretzky, does neural nets on the Navlab.

Thanks also to those who keep t te Navlab alive and productive: especially Jim Fkizta, BiQ Hess, Js» Moody%

and Eric Hoffman.

This paper benefited from comments and ccntnbuiicns of Spues toa many people, ts^ci^W Dbfc Liftgo;

Didier A n t a t , Kari Huge* Omead Amidi, JIH Q w i i a l J (k f y

IMS research is sponsored in part by emmem fiwn DA1PA (iHfed *Tmep$im far Outdoor timrigakm* ant
OTt of an Integrate! ALV System*), by NASA under contact NA0W-1175, by tbo MIIJOMI Sdeaat

contract 1X31-8604199, mi fay die Digiu* E q a i p n t t

42 ANNUAL REPORT AUGUST 1990

2,8 References

[I] J. Albus, H. McCain, and R. Lumia.
NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM).
Technical Report Technical Note 1235, National Bureau of Standards, 1987.

[2] O. AmidL
Integrated Mobile Robot Control.
Technical Report, Robotics Institute, Carnegie Mellon University, 1990.

[3] P. Anandan.
A Computational Framework and an Algorithm for the Measurement of Visual Motion.
J/CT 2(3), 1989.

[4] D. Anbat and C TTiorpe.
Color Image Processing for Navigation: Two Road Trackers.
Technical Report CMU-RI-TR-90-09, Robotics Institute, Carnegie Mellon University, 1990.

[5] P. Rest.
Range Imaging Sensors,
Technical Report GMR-6090, General Motors Research Labs, Warren, MI, 1988.

161 B. Bhanu, P. Symosek, J. Ming, W, Burger, H. Nasr and J. Kim.
Qualitative Target Motion Detection and Tracking.
In Proc Image Understanding Workshop. Morgan Kaufmann Publishers, 1989.

[7] A.Bo&ckandR.Bones.
Representation Space: An Approach to the Integration of Visual Information.
In Proc. Image Understanding Workshop. Morgan Kaufmaim Publishers, 1989.

[8] R. Brooks,
A Robust Layered Control System for a Mobile Robot
IEEE Journal of Robotics and Automation RA-2(I), 1986.

[9] R. Brooks.
Solving the Find-Path Problem by Representing Free Space as generalized Cones.
Technical Report AX Memo No. 674, MTT, May, 1982.

[10] I. Crisman and C.Thorpe.
Color Vision for Road Following.
Vision and Navigation: The Carnegie Mellon Nmlab.
Kluwar Academic Publishers, 1990, Copter 2.

II1] M. Daily, J. Harris and K. Reiser.
Delecting Obstacles in Range Imagery.
MProc. Image Umkrmmimg Workshop. Los Angeles, 1987.

[12] M. Daly, J, Harris ami K. Reiser.
An OperaDcr^ Psrcepdcn System fc^ .
In Proc. Image Understanding Workshop. Cambridge, 1988.

[13] E.Dirkmannsar.dA.Zapp.

[141
Detection s d A v w t a i » fro© Ranp Data,

b Pmc SPIEMoUteRobm Cmimmm.

l\5\ T. g
Cbstacic A vc: dar, ee ?^rzzmon Process: ng' lor im Aucoocrr*c^ Lan

TOWARD AUTONOMOUS DRIVING 43

[16] Y. Goto and A. Stentz.
Mobile Robot Navigation: The CMU System.
IEEE Expert, 1987.

[17] Y. Goto, K. Matsuzaki, L Kweon, and T. Obatake.
CMU Sidewalk Navigation System: A Blackboard-Based Outdoor Navigation System Using Sensor Fusion

with Color-Range Images.
In Proc. First Joint Conference ACM/IEEE. London, November, 1986.

[18] P. Jacobs and J. Canny.
Planning Smooth Paths for Mobile Robots.
In Proc. IEEE International Conference on Robotics and Automation. Cincinnati, February, 1986.

[19] N, Kehtamavaz and N. GriswokL
Establishing collision-zones under uncertainty.
In Mobile Robots IV. SPIE, November, 1989.

[20] D. Keirsey, D. Pay ton, and J. Rosenblatt.
Autonomous Navigation in Cross Country Terrain.
In Proc. Image Understanding Workshop. Morgan Kaufmann Publishers, 1988.

[21] S.Kenue.
Lanelok: Detection of Land Boundaries and Vehicle Tracking Using Image-Processing Techniques. Part I:

Hough-Transform, Region-Tracing, and Correlation Algorithms.
In Mobile Robots IV. SPIE, November, 1989.

[22] S.Kenue.
Lanelok: Detection of Land Boundaries and Vehicle Tracking Using Image-Processing Techniques. Part It

Template Matching Algorithms.
In Mobile Robots IV. SPIE, November, 1989.

[23] K. Dowling, R. Guzikowski, J. Laid, HL Pangek, S. Singh, and W. Whittaker.
Navlab: An Autonomous Navigation Testbed.
Vision and Navigation: The Carnegie Mellon Navlab.
Kiuwer Academic Publishers, 1990, Chapter 12.

[24] O. Khatib.
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
URR XIX Spring, 1986.

[25] K. Kiuge and C. Thorpe.
Explicit Models for Robot Road Following.
Vision and Navigation: The Carnegie Mellon Navlab.
Kiuwer Academic Publishers, 1990, Chapter 3.

[26]
Autonomous Land Vehicle Road Following.
In Proc. ICCV. London, June, 1987.

f27J LKWCQIL
Mooting Rugged Terrain By Mobile Robots With AMtipie Severs.
PhD thesis, Carnegie Mellon, M y , 1990.

Finding Collision-Free Smooth Trajectories for a Ncn-Holcncmic Mobile Robot.
MPmcUCAI. August, 1987.

[29] T. Levio, D. LawtC'O, D. Chelberg, and P. Nelson.
Qualind ve Navigadcn.
In Proc. Image Understanding Wcrtehop. Morgan Kffifinan PnWM»s» 1937.

Pi T.
SpsiiM Plaoiung: A Configursnoo Sptoe Approach.
JEEE Tmmsotti@n$ on Compmars C-32(2), FdFiMiry, 1983.

44 ANNUAL REPORT AUGUST 1990

[31] T. Lozano-Perez, M. Mason, R. Taylor.
Automatic Synthesis of Fine-Motion Strategies for Robots.
IJRR 3(1), February, 1984.

[32] B. Mysliwetz, and E Dickmanns.
Distributed Scene Analysis for Autonomous Road Vehicle Guidance.

In Free. SPIE Coherence on Mobile Robots. November, 1987.

[33] T. Ozairi, M. Ohzora, and K. Kurahashi.
Image Processing System for Autonomous Vehicle.

In Mobile Robots IV. SPIE, November, 1989.

[34] DPaytcm.

An Architecture For Reflexive Autonomous Vehicle Control.
In Proc. of IEEE International Conference on Robotics and Automation. IEEE, 1986.

[35] D. Pomerleau.
Neural Network Based Autonomous Navigation.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 5.

[363 L. Shaaser and B. Thomas.
Finding Road Lane Boundaries for Vision Guided Vehicle Navigation.
In Roundtable Discussion on Vision-Based Vehicle Guidance 90. July, 1990.

[37] S. Shafer, A. Stenez and C Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.

Technical Report CMU-RI-TR-86-9, Carnegie-Melton University, the Robotics Institute, 1986.
[38] R. Smith, M. Self, and R Cheeseman.

Estimating Uncertain Spatial Relationships in Robotics.

In Froc. AAAI Workshop on Uncertainty. 1986.

[39] A. Stentz.
Multi-Resolution Constraint Modeling for Mobile Robot Planning.
Vision and Navigation: The Carnegie Mellon Navlab.

Klawer Academic Publishers, 1990, Chapter II .

[40] A. Stentz.

The CODGER System for Mobile Robot Navigation.
Vision and Navigation: The Carnegie Mellon Navlab,
Kluwer Academic Publishers, 1990, Chapter 9.

[41] M. Turk, D. Morgenthaler, K. Gremban and M. Maira,
VTTS-A Vision System for Autonomous Land Vehicle Navigation.
/£EEfMAff, May, 1988.

[42] A. WaxmaiM. LeMcigne. L. Davis,and X S\dMing2izn.
A Visuai Navigation System for Autonomous hml Ythiclt.
lEEEJ.Rcooricsar^Auiomxiaon RA-3:I24-141V ApH 1987.

Chapter 3: Annotated Maps for Autonomous Land Vehicles

3.1 Introduction

3.1.1 Motivation

Much of the information that mobile robots need is tied directly to particular objects or locations. Maps, object
models, and other data structures store useful information, but do not organize it in efficient and useful ways. We
have built a new map-based knowledge representation, the "annotated map", to index information to the relevant
object and locations. The annotations are used for a wide variety of purposes: describing objects, providing hints
for perception or control, or specifying particular actions to be taken. We have provided a query mechanism to
retrieve annotations based on their map locations. We have also built "triggers", which cause a specified message to
be delivered to a particular process when the vehicle reaches a given location in the map.

These annotated maps serve a crucial role in enabling missions that are otherwise beyond the reach of
autonomous systems. Control descriptors allow mission planners to specify what the vehicle is to do at particular
locations, reducing the need for onboard planning. Object descriptors contain detailed instructions of how to
recognize a particular object, or contain the appearance of this object as seen by a particular sensor on a previous
vehicle run. Such information gready simplifies the problem of seeing and recognizing objects. Geometric queries
enable the vehicle to focus its attention on objects in its vicinity, reducing database access and matching time. The
trigger mechanism frees individual modules from having to track vehicle position, allowing them to devote their
processing to the task at hand or to lie dormant until they receive their trigger message.

Annotated maps do not by themselves solve difficult problems of sensing, thinking, or coatool for autonomous
vehicles. Their contribution is to provide a framework that makes it easy for other modules to cooperate in planning
and executing a mission. Annotated maps thus fill a need that is common to many different vehicles, missions, and
architectures.

Many analogous annotated maps exist for human use. Aeronautical navigation charts contain symbolic
descriptions of routes (airways) aid landmarks, and include annotations such as the Morse code caU letters of radio
navigation beacons. The AAA produces Triptiks*1, which Include annotations for route, current conditions
("construction", "speed check"), road type (interstate, two lane, etc.), geneial conditions C ^ d s through rolling
hills"), points of interest (rest areas, gas, food, and lodging) etc. An intelligent person can usually drive a route
without such aids; but they do provide a convenient framework for preplanning, and make "mission execution"
easier. Furthermore, as we drive a route, we build our own menial representations of landmark appearance, curves
in the road, aid so for*, which we ose to follow tte sam» H K ^ nM ê eaaly ^ a laio^ tk^. Om annotated maps
provide the same kind of functionality for autonomous mobile vehicles.

3.L2 Related Work

At CMU, we have developed a family of antoncmoiis mobile robots over the past ten years. Vehicles have
included Neptune, a testtoed for stereo vision and pail planning [12]; Lhe Terrega&x our first outdoor mobile- robot
[171; the AMBLER, a walking machine fm plane&ry exploration '[2]; and, principally, the CMU NMUb [15,16].

Our experience, especially with the Naviab, has driven the design of the mnomed maps. We akady have
perception and control modules thai can use mformznon from annotated maps, including color vision [St 9J, neural

1TWptlk if « icytand t n i m k of I

46 ANNUAL REPORT AUGUST 1990

networks [10], 3-D object recognition [71, and planning [11], We have also built the EDDIE architecture, which
provides inter-module communications, control, and system structure for mobile robots [13,14]. The tools provided
by EDDIE are used for the messages that underly queries and triggers in the annotated map.

Many other groups are working on related problems of mobile robots and knowledge representation. Rather than
competing with the ideas of annotated maps, most of this research is providing useful tools and ideas that could use
or help generate die annotated maps.

Fennema, Hanson, and Riseman at the University of Massachusetts are building world models and maps for their
mobile robot, Harvey [6], They have defined the concepts of "neighborhoods" (topoiogicai regions), "locales"
(information to decide whether the robot is within a neighborhood), "milestones" (perception for verification), and
actions. The UMass map and plan representations are similar to some of the uses of annotations, but have simple,
fixed formats, are focused on declarative representations of 3-D object models, and do not provide map-based
triggers.

Rod Brooks at MIT has long argued for simple robots with simple control schemes and simple world maps [3].
We concur that simple, sensor-based maps of particular locations are often useful. The lowest levels of our
descriptor annotations are designed to contain precisely the sort of information that Brooks' robots use to calculate
their position, or to cause a particular action, in a small local area. We disagree with Brooks' contention that this is
the only sort of information that a robot should remember. Robots often work in open, featureless environments,
and need precise maps ami accurate navigation even where no landmarks may be nearby. Annotated maps are
designed to keep precise meirk: information in the geometric levels of annotations, as well as the lower-level cues
advocated by Brooks.

Kender gives a much more abstract view of planning for sensor-based navigation [8]. He describes the
combinatorial problem of deciding which sensors to use, and which landmarks should be recognized, in order to
reach a given goal The results of analyses such as Render's should be entered into triggers, to teU the veWcle what
to look for, and into objecrdescriptors, to say how to lock for those objects.

Blldberg and his associates at the University of New Hampshire's Marine Systems Engineering Laboratory have
Implemented world models for underwater mobile robots [4]. Most of their wok has concentrated on efficient
descriptions of space, such as qimtaees. These spatial descriptions are important, but do not include many of the
other forms of knowledge (actions, descriptions) for which annotated maps are useful.

3-2 Scenario
A typical m ission for ®m Na vhb mobile robot is a deli very cask on mined, unmodified suburban streets. The

Navlab hat specialized perception modules, including color vision for road following on major roads [9], dirt
reads [5Jt md suburban streets [10]. ft also fan 3-D perception, using a scanning laser rangeflnder, for landmark
recognition and obs^cle deletion [71. Lnertiai na\igadon on the N a v ^
d o o m s (1).

In cwfa* lo accomplish its »&«»* the N«vlab mm use seveal of ttsese modules. Road faBammg using color
vhkm wffl follow aras» tat wil not be able to msog^im immmiam InenM navigation wtH tkim ttaangh

bui is ^c slew to be nm connnuoiisly.

ANNOTATED MAPS 47

3J2A Knowledge and Organization
In general, planning and executing such a mission requires several types of knowledge: what to look for, and how

to see it; what to do, and how to accomplish it; where to go, and how to get there. The knowledge may range from
high-level symbols, to low-level raw data. Knowledge is both internal to a single module, and used by controlling
modules to switch between knowledge sources. Approaching the intersection, for instance, the perceptual
knowledge includes:

• symbolic: intersection
• geometric: size and shapes of intersecting roads
• sensor-specific: use laser range finder to pinpoint the position by landmark identification
• raw data: landmark 2 meters tall, 0.4 meters wide at position (x,y)

Control knowledge can also span a range of levels:
• symbolic: turn left at intersection
• geometric: intersection angle 45 degrees
• vehicle-specific: turn with a circular arc of radius 15m
• raw data: steering wheel position left 1200 clicks

This knowledge must be carefully organized if it is to be usefuL If the vehicle has to sort through all bits of
information it has about every possible object, it will overshoot the intersection long before it has figured out how to
recognize it or deduced that it was supposed to turn. It is far better to have information tied directly to the map, or
automatically retrieved as needed. The landmark recognition module, for instance, must be able to ask for a
description of objects within its field of view, and retrieve die knowledge it needs to recognize them.

3.2.2 Annotated Maps
Annotated maps provide the mechanism for organizing this knowledge, by tying information to a map. The

annotations contain knowledge about particular objects, locations, or actions. Annotations come in one of two
classes: descriptors and triggers. Descriptors are passive, and are retrieved by queries based on geometry and object
type. A query for "all objects of type 'intersection' in this polygonn would return the annotation for the requested
intersection, if it were in range. Triggers are active, firing when the vehicle reaches a particular location or crosses a
certain line. A trigger will send a message to a particular module, such as "controller start turning hard left in five
more feet".

The knowledge in these annotations comes from many sources, including human experts, mission planning
software* and even the vehicle's own observations and experiences on previous missions. It is both declarative
(data) and procedural (methods and procedures). The level of the annotations depends partly on the vehicle's
computational capabilities. Simple vehicles, in known environments, are able to execute simple pre-planned
missions by having every object and action completely annotated at low levels. A more challenging environment,
with more variation over time, may require higher-level symbolic descriptors in the map and more reasoning at run
time. Practical missions will probably require a mix of levels of detail. Even a sophisticated vehicle may* for
Instance, decide ID record the locations of specular reflections front a fnailhox, and use ihose speculiiriiies i s
recognition CMS. It may be much more difficult ID reconstruct a 3-D model from the observed 'data, and ID bier

3.23 Example Rues
Rgmts 3,1 tad 3.2 shew a typical annotated map. Figure 34 shows a map cf a suburban area, including about

QJknto f iwdwi l i two T i^Kseara^ awl a vwtay erf 3-D ds^as. Object Momrnkm w collected w a g the
HRIM laser ninge fmder, and the road information was collected by mmg ihs s e r M navlgad.cn system to provide
acosmic vehicle positions while we trawersei ite :route. Hgwe 3*2 shows t dettfl of lie first iniersecson, induing

s po§isk» during a rwa and several triggers-

48 ANNUAL REPORT AUGUST 1990

The goal of this run was to drive from a house near the beginning of the map to a specified house near the end.
Annotations were added to the map to enable the Navlab to carry out this mission. There were annotations to set the
speed appropriately: up to 3D m/s in straightaways and down to 0.5 m/s in intersections. Other annotations
activated and deactivated the module that uses the laser range finder to correct vehicle position based on detected
landmarks. Before every intersection there was an annotation that switdied driving control from a neural network
vision program to a module that used knowledge from the map of the intersection structure and dead reckoning to
traverse the intersection. Finally, there was an annotation at the end of the route that caused the vehicle to stop at
the appropriate object The route was successfully traversed autonomously.

In this mat, and a variety of other runs, we have successfully used nine different types of trigger annotations:

• set speed
• dead redeem through intersection
• resume vision after intersection
• start landmark matching
• stop landmark matching
• stop at objects
• stop and start fast obstacle detection
• use vision through intersection
• switch perception modules

33 Tenets of Map Construction and Use
Several key ideas underiy our assign for annotated maps, reflecting our experience in building perception and

navigation systems ftr a variety of robots.

Minimize semantic interpretation. No-one can predict all the kinds of knowledge thai will be placed in
annotations. Moreover, the map module need not understand the annotations. The only common knowledge in
annotadons shodd be enough header Mon^auon to store and remeve the annotation. AH the rest of the annotation
belongs to the modules thai oreaie it The
annotated map serves only as a scratchpad.

No specialized query language is needed- The standanl queries ask fc«-ail objects of type X within polygon
Y. .^y query more ambitious than lhat need not be supported. .Any more detailed query would require that Lhe map
module know the internal details of each tvpe of annotation. It is mere efficient, and a better abstraction, to let the

querying module son through die returned objects.

Separate global position tracking from local servoing. Maintaining the current position estimate in local
CGordira&s is a r e ^ ^ In order that locations stored m
iecd coordinates will always be ^^ Commanded
trajectories, current positions of obstacles ID be avoided, and other phenomena thai axe wed once m& then
discarded* should be kept It local coordinates and never eatoed into &e map. Map-based caloilaiicns, such as
mashing Landmarks againsi i map, or aterpttBg & PCMMDB fix, are aperiodic events bat tarn by a separate
Navigator mGdme, The N ^ Any module that needs
lo know c-jnent vehicie posrdon in world coordinates s w t acquire the Navigators rrajisfcrm, then apply that to tie

way$» specified xt siBit-iipi
ti»e Ii Is ipteetL This is used by fiw^rwamg modules

Q p
* SIowis* ^OCIEISS^ thzn hzvt u longer cycl^ lime, Tnky not os^d ^vsiy qictosd, tmsfbent* Worse,

receiving loo many -.dpdzuzs before tte mo&mz h rody to read Lhem,, may cause the input cpetie 'la

ANNOTATED MAPS 49

Figure 3.1: Map built of suburban streets and 3-D objects

50 ANNUAL REPORT AUGUST 1990

overflow. Instead, these modules are notified that a new transform is ready, but do not receive the
update until they request it The Navigator stores which modules have been notified and have not yet
requested updates, to avoid sending repeated notifications.

Centralize position tracking. Modules often want to perform specific actions when the vehicle arrives at
particular locations in the map. If each module were to continuously poll the Navigator and controller for current
position, the controller could become overloaded. Active polling also means that those modules are using computer
cycles. Moreover, a Navigator position update may skip the vehicle position estimate past the point for which a
module is waiting. For each update, each module would have to figure out if any of its target positions had been
passed. We prefer to have a angle module, the map manager, doing position tracking for all modules. On reaching
the points of interest, it awakens or signals the appropriate module. This is the function of "trigger" annotations.

No master control. The map module is best thought of as an alarm clock (for the triggers) and a scratchpad (for
descriptors and trigger messages). It is not some "master" module that controls all thinking, and that therefore can
become a major bottleneck. We prefer point-to-point communication between modules, with flow of data and
control decided on module by module, rather than forcing all information through a single controller.

Plan incrementally. The map module is designed to be used by many programs, for many purposes, at many
times. Some information may be permanent; other annotations may be added to provide directions for only a single
mission. It is an advantage to be able to update, add, and delete at various times. In particular, display and user
interface modules may read the annotated map from a file, look at it, display the annotations, change things, and
write it back out

3.4 Implementation of Annotations
The anootafled map needs to provide efficient access, indexed by position. The annotations themselves need to

contain an arbitrary amount of data, with a minimum of externally imposed organization on the contents. We have
designed and implemented a two-part representation, consisting of a map grid and an annotation database. Each
square of the grid contains a list of any annotations that are included in that squared area.

Adding m annotation to the map is a two-step process. First, the actual annotation is added to the annotation
database. Secondly, the map grid A I M be updsied. The location of the annotation is either a point, a line, or a
polygon. This kK t̂ion c:m either be an
object description, for -hose annotations that describe an object. The location is then scan-converted (convened to a
list of ceils) into the grid, and a pointer to the appropriate entry in the database is written into each of the
couespondtiig grid cells*

Retrieval erf annotations in response to tqoery is also a two-siep process. Queries can specify a poly gon and an
type. The qyeiy polygon is scan-convened into grid ceils. The annotadens pointed ID by each of those

cells in© coHociCyL cftttCwjxl to see if tlwy ronicii ttie specified type* upd letuniedL

Triggen work iimilarly. At each cycle* tim «ap module calculates the coiem vehicle position. It calculates the
l;ne on-Mth me vehide has m o ^ Each cell through
^h^ch ^e vehicle has moved :s checked for digger annotauons. If any sre fo-ond Lhai have not already been f^ea
their messages mm mm m their icmkimkM modules* Since ihe locanon of a mgger can be a point, line, cr set of

ANNOTATED MAPS 51

3.4.1 Representing Annotations
Annotations are represented with a uniform header format, plus a free-fonmat data field. Typical header fields

include:

header.
{type, destination module, used flag, text description, location, next object, previous object, data size}

data:
{pointer to data}

The header portion contains all the information that the map module needs to understand Type" and "location"
are sufficient for answering queries; "destination" is required for sending trigger messages. The "used" flag is set
when a trigger is fired, to avoid firing the same trigger repeatedly if the vehicle stays in the area covered by the
trigger for more than one cycle. "Text description" is used by graphics display modules. This information is also
sent as part of messages, to make it easier to debug receiving modules. The "location" of the annotation is used both
in initially setting up the grid pointers, and for the use of the receiving module. "Next object" and "previous object"
are used to describe extended linear objects. Extended objects may also have branches, which meet at intersections.
Intersections have a center point, and any number of vertices, each of which points to the beginning of an extended
object The most common extended objects are roads, which are represented as short segments pointing to their
preceding or following segments, or pointing to intersections.

The data portion of the annotation is, in the view of the map, an undifferentiated field of bytes. Any internal
structure need only be understood by the modules that create and read the annotation. Since the headers have a
known, fixed size, they can be stored in a random-access file. The data may be stored as a stream of bytes, with the
header containing only a pointer to the beginning of the data and the number of bytes.

3.4.2 Implementation Details
Our prototype implementation has tested some of our design decisions, while (Khar details will be decided af tar

further data collection and analysis.

Grid cell size. If grid rails are tro small, queries w& have to look at
become a problem. Bin the querying becomes simpler, because any object found in my of the cells can be returned.
Larger cells give faster lookups, but are no longer selective enough to answer (pories on their own. Instead, objects
within grid cells must still be checked to make sure they are wiihin the query polygon. For autonomous land
vehicles with sensor ranges of two to thirty meters, a grid with 0.5 lo 1.0 mem* cell spacing probably provides the
right tradeoff; our current implementation uses 0.5 meter cells.

Handling large maps. For a grid with LO m ceUs, each square kilometer wm contain a million cells. Each cell
can be represented with at most a few bytes of data, 'depending on annotation density. The amount of memory
required by a grid this size is easily within the capability of today's computer systems, but for missions spanning
several kilometers, we wM not be able to keep the whole grid in mm. memory at mm On© possible solution is
impiemenringquad-m^iot A mere likdy sLniiegy
is to keep the grid on secondary s inge* m& only keep a window around the aneot vehicle position m man
memory. The annotation databases themselves may also need ID be kept on backing store, and only read in m
needed*

Distributed databases. Object descriptions migtti be most easily inpleiitCBtcd M sepnte databases, internal to
the modules that use tern* Then the annoiadons need only remm ihe index erf the database entry* The problem wiit
ttes method is ens»ifig cmmssmcf betwee® databases in the nwifcfcs, iwl taias k i » grid. At the

52 ANNUAL REPORT AUGUST 1990

extreme, the map annotations could contain all the data. The disadvantage of this approach is requiring more traffic
between maps and objects. An intermediate approach is to start with all the knowledge in the map annotations, but
have it automatically replicated in the appropriate modules at system initialization time. This ensures consistency
while reducing runtime overhead, at the expense of startup costs. The design of distributed databases interacts with
the design for handling large maps. Keeping annotations in individual modules would decrease the amount of
information needed by the map module, and thus make building large maps somewhat easier.

In the current implementation, the annotation database is static during a run. When the system is initialized, the
user adds stop points, turn points, or other triggers to specify the current mission. When the user is ready, the
interface module saves the current annotation database and sends the name of the file to the map module. At start
up, each module that needs a copy of the annotation database requests the name of the file from the map module. So
modules contain a complete, consistent copy of the annotation database. The map module builds the grid, so it can
handle geometric queries. It communicates with the other modules by specifying the index in the annotation
database of the objects that match the current query. The map module also watches the grid for triggers.

Map update. Changing an annotation during a run is conceptually easy. Moving objects and annotations is more
difficult. If a single object moves, it is easy to erase it from one part of the map and write it into another location.
But if an entire portion of the map moves, such as discovering that a portion of the road is really longer than
previously thought, the changes can be very hard to handle. Many objects would have to move: the road, all objects
attached to it, all landmarks that were seen on previous inaccurate runs and indexed to the road, planned mission
steps based on following the road or on seeing those landmarks, etc. It is probably better to note the new
information, keep running with the Sawed map, and build a new map at the end of this ran, rather than try to do
updates on the fly. Map update strategy is also influenced by the "large maps" and "distributed databases" design
issues. If an individual module updates its copy of an object description annotation, it will need to make sure any
permanent information is written out when the run is terminated or when that portion of the map is overwritten by a
new data window.

Since in die current implementation, each module keep its own internal copy of the annotation database, map
update musi bs specially handled while bdlding a new map. Under most circumstances, the map updates refer 10
objects that the vehicle will not see again on this run, and therefore the updates need not be propagated to ail the
modules. At the end of a nm, all the new objects cat be written to a new map fife, to be used on succeeding runs.
The exception is Cor building maps of intersections. Our procedure is to drive through the intersection, following
one branch, and building a map; then to reposition the vehicle before the intersection, and follow the second branch.
In order to register the two branches correctly, the perception and matching systems need to find newly-mapped
landmarks. The map manager writes the anootkn database to a fife and K X I ^ i ^ reievaiit nwxfaiks, wlifch rrad
intbe updated database.

CancepmaMy, it is easy to add annotations ID uhe map. A program reads in tfae annotadon database,
3iddsrsewamotadoi^t and writes ihe updated files. Machine-generated anrocaiions, such as object descrii

routines ID rai and write to rap* a d to taat mmmiom into the annotation database. Annotations
added by innd req oire, besides the basic map menace routines, a user interface to point to locations or objects on
:he rrap^>i^ or read &e ^ WWk the fata* a d

We
have buili an iniertkx, i^^ The same

ANNOTATED MAPS 53

3 . 4 3 Trigger Details
In order for the map module to track vehicle position, it must know both the controller's current local position

estimate, and the navigator's transform that relates local to global coordinates. Position queries to our vehicle
controllers are efficient, returning in less than 10 milliseconds. Our current implementation uses an efficient process
for getting transforms from the navigator, by having the navigator send the transform each time it is updated- Since
landmark sightings or position fixes are relatively infrequent, an event-driven transform update is much more
efficient than polling.

When die navigator updates position, the map module has to pay special attention to triggers. It may be that the
vdiide position estimate will jump forward, skipping some triggers; or it may be that it will move backwards,
creating the potential for firing triggers that have already been fired (see Figure 33). If the position update is
relatively small, it makes sense to use the line of vehicle travel, plus the "used" flag, to make sure that all
appropriate triggers get fired once. If the update is large, it may no longer make sense to fire triggers that should
have been fired long ago; and it may make sense to retire triggers that were fired very prematurely. Details of these
design decisions are yet to be worked out.

Before
update

Case 1: position update skips over trigger Case 2: position updaie causes retraversai of trigger

Figintj33r Pn>blsois witbi^lkiiiginsiiisiOEi triggsrs

The meclwimt of notifying a module of a trigger is by sending % message G W & port. In the Uuix opeiEdiig
system^ pcarts can be set up by broadcast^
to them* Once connected, potts appear as files, and can be lead and wnttmewily. A module can easily check if
d^rs ars any b>^s waiting ooi^GiggcrpQTL Wmo^k^mM.m^^mma^^^mdamcsMmmxmumg. If so,
it csn rtad ibe message header, allocate tlie weBMwy structure flbr the message, a d ieid the tpproprisifi number of
bytes into i s meiisary* A rjimsg nK>dol£ can p e ^ ^ A rfeepiBg mcMfafe

of Bril h*m

54 ANNUAL REPORT AUGUST 1990

can simply block on read, which will cause it to pause until data arrives. It is possible to set timers, so a module can
wait until either a timer expires or a message arrives, whichever occurs first It is also possible to have an incoming
message generate an interrupt, so the module can be notified while running even without checking for incoming

3-5 Conclusion
Annotated maps provide a framework to organize knowledge storage and retrieval for autonomous mobile robots.

The Navlab group at CMU, and other groups around the world, have many of the individual pieces of a complete
system: sensing, sensor understanding, local trajectory planning, control, aid vehicles. These pieces in themselves
are only sufficient to perform limited tasks. Integrating those components into an efficient system is one of the
difficult remaining gaps. The annotated map helps fill that gap. By providing generic data handling, it allows
diverse modules to communicate their specialized knowledge. By tying this knowledge to specific locations and
objects, the annotated map provides a focus of attention, using an efficient grid structure to answer queries about
specific parts of the map. And through the automatic triggers, the annotated map eliminates the need for individual
modules to attend to vehicle position and map location. We have built our first prototype annotated map, interfaced
several modules to it, and used it to store and retrieve data during real Navlab runs. We are currently addressing the
issues of large maps, and continue to interface more modules and to use annotated maps to manage a wider variety
of knowledge.

3.6 Acknowledgements
Our w o ± with autonomous mobile robots, and the Navlab in particular, is done with a host of colleagues in the

Robotics Institute and School of Computer Science at CMU. Our thanks especially to Takeo Kanade and William

Whittaker, co-principal investigators; to Jill Crisman, Martial Hebert, Dean Pomerieau, Didier Aubert, and Karl

Kluge, who built the perception modules that the annotated maps support; and to Jim Frazier, who keeps the Navlab

running ami happy. Martial Hebext, along with our colleagues Stan Dunn, Joe CuscMeri, and K. Ganesan of Florida

Atlantic University, provided useful comments on early versions of this report. This research is sponsored in part by

contracts from DAKPA, titled "Perception for Outdoor Navigation* ami "Development of an Integrated ALV

System*.

3.7 References

[1] Orne^d
Integrated Mobile Robm CommA*
Technics Report, R c b c ^

[2] JL Bares, M. Hebert T. Kanade, £. Krotkov, T. Mitchell, R. Simmons and W. WMttafeer.
Ambler: AM Autonomous Rover fcr Phnetvy &qptoratiw.
IEEE Compuier s June, 1989.

PI R. Brocks.
A Rdfamt Ltywwt Control S y « s i lor t ifafaBeltoboi

RA~2(l)t 1986*.

hi Sixth ImmimkmrtSympadtomUmm Marine Systenis
E t a Lataaiiny* Uflran&y of Mew Han{N&H^J989

ANNOTATED MAPS 55

[5] Jill D. Crisman and Charles E. Thorpe.
Color Vision for Road Following.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlab, chapter 2. Kluwer

Academic Publishers, 1990.

[6] Claude Fennema, Allen Hanson and Edward Riseman.
Towards Autonomous Mobile Robot Navigation.
In DARPA Image Understanding Workshop. Morgan Kaufmann, May, 1989.

[7] Martial Hebert, InSo Kweon and TakeoKanade-
3-D Vision Techniques for Autonomous Vehicles.
In Charles R Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlab, chapter 8. Kluwer

Academic Publishers, 1990.

[8] J. R. Render and A. Leff.
Why Direction-Giving is Hard: The Complexity of Linear Navigation by Landmarks in One-Dimensional

Navigation.
IEEE Transations on Systems, Man, and Cybernetics 19(6), November/December, 1989.

[9] K. Kluge and C Thorpe.
Explicit Models for Robot Road Following.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlah, chapter 3. Kluwer

Academic Publishers, 1990.

[10] Dean A. Pomerfeau.
Neural Network Based Autonomous Navigation.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlaby chapter 5. Kluwer

Academic Publishers, 1990.

[11] Anthony Stentz.
Multi-Resolution Constraint Modeling for Mobile Robot Planning.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlab, chapter 11. Kluwer

Academic Publishers, 1990.

[12] Charles E. Thorpe.
FIDO: Vision and Navigation for a Robot Rover.
PhD thesis, Carnegie-Mellon University, December, 1984.

[13] A. Stentz and C.Thorpe.
Against Complex Architectures.
In 6th International Symposium on Unmanned Untethered SubmersMes. June, 19S9.

[14] Charles E Thorpe.
Outdoor Visual Navigation for Autonomous Robots.
In T. Kanade, F. C. A. Groen and L. O. Heitzberger (editor), IAS-2. OP-Gegevens Koninklijke Bibliotheek,

Den Haag, the Netherlands, 1989.

[15] Charles & Thorpe.
Vision and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publishers, 1990.

[16] C Thorpe, M.Heber^T. Kanade and S.Shafer.
VisicE and navigatiori for iheCamegic-Melion Naviab.
lEEEPAMIW®), 1988.

[17] R. Wallace, A. Steniz, C. Thorpe, H. Moravec, W. Whit&ksr and T. Kanade.
Hrst Results in Robot Road-Fallowing*
lMPmcJJCAI-85. Angus*, 1985.

56 ANNUAL REPORT AUGUST 1990

Chapter 4: The Warp Machine on NAVLAB

4.1 Introduction
The Carnegie Mellon Warp machine is a systolic array computer developed by H. T. Kung's group, and used for

many applications including image processing and mobile robot control [1]. We relate the history of the use of the
Warp machine on NAVLAB (Navigation Laboratory) and evaluate the Warp machine in light of this experience.
As we will demonstrate, the Warp and NAVLAB projects influenced each other in several ways; this influence led
to increased capabilities in the Warp machine and useful applications experience, as well as increased capabilities
for NAVLAB.

We begin with a short history of the Warp machine on NAVLAB. Next we describe the major NAVLAB systems
that were implemented using the Warp machine. Then we evaluate the Warp machine using experience from these
systems.

4.2 History of the Warp machine on NAVLAB
This section traces the history of the development of the machine, its software, and its application on NAVLAB,

and discusses the motivations that led to key decisions. The earliest systolic array designs that led to the Warp
machine were two-level pipelined arrays by Kung, et aL [6,9], described in the early 1980s. The systolic array
formed one pipeline, because the linear array of ceils could pipdine data from one cell to the next, and within each
cell the floating-point pipeline formed another. These designs were shown to be capable of convolution.

With the introduction of the Weitek 1032 floating point chips in 1983, it became possible to urapfemeat a
powerful machine based on these ideas using ordinary engineering effort- i.e., without custom VLSI and with a
moderate number of processors. A machine using these chips was designed in the fall of 1983, and it was shown to
be capable of performing one- and two-dimensional convolution as well as the Fast Fourier Transform (FFT) [7].

At this point the Warp ceU included the Weitek S^
file, t^oinpm and output queues connecting each c^U, and some onboard ceU mem Addresses were supplied
externally via a third queue. No data-dependent branching or address generation was possible.

In early 1984 a group of researchers, Including hardware, software, and applications designers, began planning the
design of the Warp computer. Tte design of the machine changed rapidly, and became much moie general Data
dependent control flow and program memory was added. A crossbar, originally with limited interconnection and
later with full general!£>% was added to connect tte various functional units on the cell. Tte pipelined register files
woe replaced by random access register files.

Tte ceil at this point had several features that were eliminated later. Tte address queue was still tte sole source
of addresses for cells. It was thought that address genera^^
be factored out from tte array and performed en a special beard called the Interface Unit Tte address and data
paths between ceils fed into RAMs with read and write counters that could be incremented or held-not queues.
This made it possible for tte queue to be used as an wmBmysczMsfa^wiwegp^f^ However, it was net possible
to switch back and forth between rising the RAM as a register file and a$ a queue, since tte counters could not be
saved ex restored Tins, using ite RAM as a scratchpad icgister file tMmbmoAoaedm^p^k^oimcdL There was
also a * *tooptack** feaaire where the output of a ceil could be fed back into its input qpoae in order to allow a cei so
simulate multiple cells.

Tte Warp eel was twit k prototype form* as a two-ceil array with m i&forfaoe tak, called tte 44ctaicim

58 ANNUAL REPORT AUGUST 1990

machine. Assembler development proceeded in parallel through two stages: first at the 100 ns, 16-bit word level
(summer of 1984), and later at the 200 ns, 32-bit word level (fall of 1984). Even before assemblers or simulators
were available, programs such as affine transformation, clipping, histogram, median filtering, and binary image
processing were being written.

Carnegie Mellon selected General Electric and Honeywell as industrial partners to help in the later design and
build the full-scale machines at the beginning of 1985. They participated in the design and construction of the first
two-cell demonstration machine and in the design of the external host software.

The first demonstration Waip cell array was completed and demonstrated in mid-1985. The array consisted of two
Warp cells and an interface unit The array was controlled and fed data by a Sun 2, which also ran applications code
not running on the. Warp array. (The external host had not yet been completed).

FIDO, a stereo vision system used to drive a robot vehicle, was a key application of the Warp machine in the early
part of the project It was proposed to speed up FIDO by a factor of ten, from about 30 seconds/step to about 3
seconds/step. Implementation of FIDO algorithms on the Warp machine started in the summer of 1984.

The start of the Parallel Vision and Road Following projects in January of 1985 led to early use of the Warp
machine in real situations. In most hardware projects, applications of the hardware to real problems occurs only
aftermuchof the software and hardware is already developed But these projects helped provide focus and direction
for the Warp project even as the hardware and software were being defined. A simple color-based road-following
program was implemented on Warp in July, 1985, and used to drive the Tenegator in the fall. To our knowledge,
this is the first application of a supercomputer to actual control of a robot vehicle. These runs set records for speed
and distance (up to several hundred meters at 0.5 km/hr) of the Terregator.

In parallel with the applications of the demonstration Warp array, the development of the W2 compiler proceeded.
Early in the compiler's design, it was realized that a design error in the ceil made it difficult to generate code
efficiently. The problem was that on transfer of a word of data from one cell to another, the receiving cell had to
explicitly increment its queue counter when the word arrived [l t Section IVa]. lit order to generate such code, the
sending and receiving loops had to be unwound three times m general This led to very large code bodies. A
hardware change was completed by the end of September, at which time the old machine (and Wl programming)
was retired and the new machine (with W2) was used exclusively.

In December of 1985 we began serious plans for insmUaion of a Warp machine on NAVLAB. Since NAVLAB
was to be 2 self-contained machine, it was not practical to do the image processing remotely using the Warp
machine, as we had with Tenepror. Bat inialliDg
required careful planning, both ID ensue thai it was useful to NAVLAB and to guarantee that this atacst-uraque
machine was not damaged Issues lite cooing and vibration- of the Warp M l may were considered in particular.
In fact, m we later learned, the critical Issues were cooling of the external host MC68020 processor and memory
beards and eonnec:^ Cooling of the Waip
cells was not difficult because ±ey dUjptiod much less heat per area ttsaa the commercial external host hoards,
which were dghtly pscked with ch:ps. V&mi:crx w*is easily d
hold fee Waip ce Is m place,, sud not&^ng tbc rack holding die Warp m^hiiie with shock-absorbing moon is.

As tie first fcfrscafe prototypes woe being bailL we begin ID look fomwf to fte production Warp machines,
would be bolt using p^meA<aatk boards. The change from w i p m p t® pris tea-circiik beards allowed

* we msplttMKtod the ceil input spikes wftlt specisi-pinpose chips, md eliminaicd tbe
This v e t uss owl m expnet the odt datt md program memory by a

W A R P ON NAVLAB 59

f a c t o r of eight, add another register file and local address generation, and add local control so a cell could be
b l o c k e d if it tried to write to a full queue at an adjacent cell, or read from an empty queue. The result of all these
c h a n g e s was to create a much more powerful cell, with flexibility comparable to a standard computer. The
extens ive changes (particularly the blocking mechanism) required considerable redesign time. Hie first full-scale
PC Warp machine (called the "production" machine) was accepted at Carnegie Mellon from General Electric in the
spring of 1987.

Towards the end of 19S6 Hamey began developing the Apply compiler. Apply had been previously developed as
a. C subroutine package for writing image processing functions; the programmer would write a simple subroutine
t h a t processed a window of an image and the Apply subroutine would "apply" the subroutine all across an image.
T h i s was done to speed up image processing using a subroutine package for accessing images in different formats;
t h e C Apply subroutine buffered the image especially efficiently. Hamey adapted the C subroutine idea to a code
generator for the Warp machine that took W2-like Apply programs and generated W2 programs. In the summer of
1 9 8 7 , Wu developed the first "full" Apply compiler, that took Ada-like Apply programs and generated W2
c o d e [5], This compiler took advantage of the Warp cell's capabilities and generated efficient W2 programs for
l o c a l image processing functions. At the same time, Ribas developed a library of approximately one hundred Apply
programs.

T h e new Warp prototype was used extensively with Terregator in stereo vision, obstacle avoidance (using the
E R I M scanning laser rangefinder), as well as color-based road following, from April to August 1986.

T h e NAVLAB work on the Warp machine began in June 1986. The work included development of a geometry
m o d u l e for color road classification, which was tested from the beginning on the Warp machine. One of the
wirewrap prototype machines was mounted in NAVLAB January 1987, and demonstrated color-based road
f o l l o w i n g and ERIM-based collision avoidance in the spring of 1987. Both the color and the ERIM code were ran
o n the same Warp machine; we thought we could get better performance with two Warp machines, and tried this

later in the year.

I n the course of integrating the Waip machine into NAVLAB we replaced a complex linking procedure that
c o m b i n e d the C program calling the W2 Warp program with a runtime cock downloading interface. The same
nterface supported remote procedure call of Warp routines over the Ediemet As a result* in early 1987 we

con structed a runtime code downloading procedure together with an interface that allowed calling Warp routines
r e m o t e l y with ait Ethernet interface. This Lnterface greatly aided developmem of Warp code.

A second, smaller (four-cell)-PC Warp system was iitoi^edim NAVLAB in ffo^^Bbo-1^7. Wkb £wo separate
Wainp arrays we could do the ERIM processing in parallel with the color-based road following. This two Warp
i n A c M n e system was demonstrated at the end of 1987. However, there were serious problems with mounting a
s e c o n d Warp machine on NAVLAB. The Warp cells were not a problem; a ten cell array could easily be split Into
t w o a m p i . Bat the external host boards had to be dupl

/Moreover/the external host w

I n this period we seriously addressed &^ We
a special air conditioner for Warp, and added temperature sensors thzi would atiiomadcaily tarn off the

machine when the temperature went too high. This allowed m to tm the Warp machine condnuo^Iy an
, giving m a three Warp system; tuo m $m laboratory, and one on NAVLAB, which could be used

the NAVLAB was ai bmm and connected to Etfseaei

60 ANNUAL REPORT AUGUST 1990

The major application of the Warp machine from here on was color-based road following. In the spring of 1988
an adaptive color classification algorithm, using one or two cameras (one with the iris wide open and one with the
iris nearly closed, to increase the dynamic range) and a simple geometric model was implemented. The SCARF
road following algorithm was re-implemented on the Warp machine in October with a speed of four seconds per
image. This was sped up to two seconds per image in November. The resulting system was demonstrated in
December; NAVLAB was driven at one meter/second^ with a processing speed of ten to one hundred over the sane
algorithm running on the Sun. SCARF speed was further improved in February 1989.

At this point development of AL VINN, for neural net-based road following, began. A three-layer neural net was
trained to recognize driving direction in graphics-generated road images. The training was done off-line, in an
eight-hour run on the Warp machine in the laboratory. The resulting trained network was then used to drive
NAVLAB. Runs began approximately in February of 1989. Images could be processed as quickly at 0.75 s/image;
on March 16 a new NAVLAB record of 1.3 m/s was set. Later, in June, we found that we could train the network
"on the fly" by feeding it live road images and driver steering angle while NAVLAB was under human control.
This training was done using the Warp machine on the NAVLAB. The resulting technique was very powerful; we
could for example train the network by driving the NAVLAB halfway along a test course under driver control, and
then allow the network to take over vehicle control.

In order to see further speed improvement both in the color-based and the neural net-based road following work it
was thought that the Sim 3 Warp tost should be replaced with the newly available Sun 4. To do this for the Warp
host would involve extensive changes to the Warp software. Moreover, the Sun 4 was several times more powerful
than the Sun 3 and its integrated, general-purpose nature made this power more usable than the Sun 3/Warp machine
combination. The Sun 4 also required less power, space and cooling, which were critical limitations on NAVLAB.
Accordingly, the Warp machine was taken off NAVLAB September 6,1989, and replaced by a Sun 4.

4 J FIDO
FIDO (Find Instead of Destroy Objects) was a stereo vision navigation system used for the control of robot

vehicles; it included a stem vision module, a path planner, and a motion generator. This system descended from
work done by Moravec at Stanford [12]. A t e Moravec came to Carnegie Mellon in 1980, work was done by
Thorpe and Maohies [11,14], who gave the system its name. More recently, work was continued by Klinker,
Crisman, and Gune [2] as well as odiers. Tliis vision system was unusual in its longevity arid in the range of speed
over its span of development Moravee*$ original algorithm, which was heavily optimized (though different in many
Important ways from tlse FIDO algorithm), look fifteen: minutes to make a single step white running on an unloaded
DEC KL10: the Vax 7S0 napkmentttait ran ai ihiny-five seconds per step; the Sun 3 impkmmtmm took 8.5
seconds per step; and the Implementation on the Warp machine took 4.8 seconds per step.

43 .1 FIDO Algorithm

?IIX) was a featiire-based algonchm. hmtm w a point &at was detected wife FIDO's I B » O I operator awl
iocai^ in &res-di^ An obstacle W2S a fsaturt thzi
me vehicle could not Mm over-i.e., a loom sufficiently above ground level. ft was assumed that ail actual
obstacles to the ipebicfc would ham enough image features K> be detected by FIDO as ©teases.

FHX) performed ± e following steps* as shown in figure 4.L Hnt, k took two 512x512 images of i s
c n i r a n a t t , t left image m l t ri gh; image. H m o two input images mm reduced by thz Image Pjr&mid
Gemmim- by success© facten of two* aeniag irapes of size 255x256, 128x228, and so on. H a t Juwgc

WARPONNAVLAB 61

Left
I mage

Right
image

Hold Previous
Right Pyramid

Image Pyramid
Generator

Image Pyramid
Generator

Left
Pyramid

Old Right
Pyramid

Right
Pyramid

Image Pyramid
Correlation

Tracked
Features

J image Pyramid 1
J Correlation I

Feature
Locations

(interest I
Operator 1

New
Features

image Pyramid
Correlation

Feature
Locations

Path
Planner

Figure 4.1: FIDO Block Diagram

could be seal in the new scene, it became a tracked feature. Image Pyramid Correlation was thai used to Identify
the tracked feature from the new right pyramid in the new left pyramid. Once the corresponding features woe
located, the three-dimensional position of the obstacle creating that feature was identified and the vehicle was
directed one step towards its goal by the Path Planner. The Interest Operator picked new features in the right
pyramid so that new obstacles moving into the scene could be detected. Again Image Pyramid Correlation was
used to find the corresponding point features in the left image pyramid. The new features and the tracked features
woe combined to form the new list of "previously known'* features for the next image.

433. Implementation of FIDO on Warp
FIDO has been implemented on the demonstration Warp system as well as the prototype Waip machine. In the

summer of 1984, Dew, Chang, Matthies and Thorpe designed a new version of the FIDO system to ran on Warp,
which was them in its initial design phase. Hey identified the iteee major vision atpritttms (camWta, Interest
opemoc; and pyramid generation), which were considered lo be suitable for implementaiicxi on M systolic array such
as the Warp machine. Tbea they redesigned FIDO to ran on the Wmp andine. Noa te tfaee visio® modules wete
implemented using Wmp microcode by Klinker on the demonstmdon Warp system. Later, when she prototype
Warp machine was available, the modules were reimplemenied by Gune using W2 and Lhe external host aid the
Wscp array ran pans cf uhe algorithm it parallel.

Each of the modules that woe irnpknienisd on the Warp machine wil be m described » d ine ir pa:

62 ANNUAL REPORT AUGUST 1990

will be given,

43X1 Image Pyramid Generation
H e ioafe pfnmM consisted of smm levels, starting wfth a 512x512 M M ^ and aiding witfi an 8x8 image.

Areas of 2 x 2 p a d s woe replaced by O K fri»l in ite ̂ a tei^l erf ite f ^ w n i i The nor pixel value in a lower
H e simplest averaging

was to trios i 2 x 2 pood a w and aveafe ii » one ptaL The initial gqifcaieDiatioii en the Waip array used
overtappiig 4x4 willows* which gave sightly b e t t t i w i t s i t a 2x2 wisdom

H e p jnaM feawatieii afprittai was —p,z:r:a::^ m Wl i n ^ t t t ; i d a a e , as s^gges^d by Ktmg for
[7], 11K algorithm tccanuiaDd sateen p a d s » a 4 x 4 window and then normalized

This was mapped onto the Warp anay as nine modules, with the first eight each
adding two new pixel values to the accumulated partial sumt and die ninth module normalizing the result. Hie
second* fourth and uxth module also mxed the prtaJ remits unttl die ^ c « a r y pixels from the next row
tmderfymg cte 4x4 window had « w c d ai the nwiate* The osw ciia md the pvtial icsults woe then sent £ogetlicr

A ̂ »pfa* sequential aigoriifaa {wift mm<^'smwmz ftdacioB tn tov i) took about one wcmi on a '
Mine Wmp :t^ vrz\:::-c^ a ipmkip -:.:: 14, -",.;: i « reteifieij ^aA* I t e .^p.^T.er.n^on ctf lite pynmM

low),

ft* 25 M i i F S Am lie any. TUg « ^ M » dw « M ^ y a ^ ^^*^> erf the pyramid gmemim

m e a & would not iocitase the spood snoe tbte fpoold aoc R^KC the axnmimication

TMi i i C popta to CM
two

2x2

FIDO ̂ w ^ f^f is^ wuh m macst opaatort whxa « s t a i n e d ^ <fa*ct p i n s H M cmM be iocatized well
jfl d i l l s s t s n i p s {fa6 eusajde censers;. Socft pousts had -4^^e suessities !hat cisanged ispidly is all direc&cns.
The a » ^ ^ o ^ » a ^ sqaBBred poei f&ffesnences is she 3 x j aeithboriood » a s ^ the prnsf |3,14j. The output

opmm mm the amaiHa of the sqtanxf 4 f f « c ^ » a the muciL honsoetat* and both diagonal dinctioni.
a m i «ates wmm iocaQy niaxisuied is one feusciiDd ' 3 ^ « ^ w that west a n n | e d in a iOx 10 ̂ id. Tim

mauasa of a i ;^tei^^ vcie ^ ^ a a list i a ^ ^ 6y deaotsag a t o u t n&ies. H i s p w a set of poim

te Itapatof ih» aî arafea, « ^ ^ ^ ^ ^ M i ^ p i d dilfaamBi a i l f ^ ^ ^ ^ a w fiarevery pixel,
a WZ on Ae W*p anqr. 2a tte ^ ^ ^ t t ^ ^ fjrsttm* Ac p ^ m g ^ p ^ hm. Laer, we

osaer a ^ M prooosor.

We ihus dfal not ary to
I a i sfaojc ^ ^ ^ m 'vm ̂ K ^ r f Eor the pfmsti ^ ^ a ^ ^ p 9 ^ * a the p i w ^ SBC&OR»

aad & * ^ ^ » w | aodei T101 W*EW dhas w» # ^ W isto opaBy ftwt ^ m Is iha schenae*
aria ^ ^ ^ K I ihe soajpte aiftanttss » i p a ^ af she da& Ai « *n 8Mve •*» #%^^^ aio e

WARPONNAVLAB 63

the width of the operator window. Thus, every cell ran on m • (TJ1+4) pixels. The systolic communication facilities

were then used like a "bus": each cell received data from the previous cell and sent it to the next cell. The host sent
the data interleaved such that each cell could use every c^ pixel for itself. At the beginning of every new iteration, c
new pixels weie sent over the "bus." The offset between programs that ran on neighboring cells was two cycles
such that each cell started a new iteration exactly when a new pixel arrived.

The sequential algorithm ran in about 2.65 seconds on a Vax/780. Ten Warp cells provided a speed-up of 26.5.
The adder was the most used resource of the interest operator. It was used in forty out of sixty-five cycles of the
innermost loop. The multiplier was barely used (four multiplications in sixty-five cycles). The algorithm thus used
each cell as a 3.4 MFLOP machine. The addition of more cells would greatly improve the speed. In the described
implementation, each cell needed a new pixel every sixty-five cycles. Thus, maximally sixty-five cells could have
been used in parallel before the interest operator had become I/O limited.

43 .13 Image Pyramid Correlation
For a given pair of images and a given list of point features in one image, the correlation algorithm found the

corresponding point features in the other image. The search for the most likely correspondence was performed on
the image pyramids, starting at the lowest resolution (8x8) image. At each level, a 4 x 4 template around tfie
interesting point was correlated with an 8 x 8 search area in the other image at the same resolution. The best
matching position of the template in the search area determined the position of the search area in the next higher
resolution image in the pyramid [12].

A pseudo-normalized correlation was used, as given by this formula [3]:

C 0 R R
 Si

where r-- denotes the template element at position (j j) v ami I^j^m ^ e n o l e s P^ e i u position (i+lrj+m) in the
image.

In the Wl version of the algorithm, the Warp machine found the positions of all features for one given pyramid
level at a time. First, templates for all pyramid levels were SOIL The cells stored the templates and computed their
means and variances. Then the search areas of each level were given to the Warp array in the same sequence as the
templates. The cells correlated the current template with the current search area and sent the correlation results for
every template position to tie output cluster. The cluster processor then found the best position of each template
within i s search window and determined the seaich areas for the next higher resolution. The process was repealed
for ail of ihe images in the pyramid [3].

The correlation algorithm was implemented in a sysioilc programming scheme, just as in ihe pyramid generation
algorithm. It was designed as nine modules. Each of the first eight modules covered two templaie elements. The
algorithm was designed so that initially, each module received the template elements and stored the respective
template dfanerts ot cicb ternplats. The mean and the variance of all templates were computed End stored in the
ninth moduiz. Then J.n me correkdon phase, ê ^̂
S:, and Sr iron m kft neighbor and updated tfte partial sums before it sent then to its right neighbor with lie next
pair of pixels. As m the case of 'dam pyramid ger.eradon, -he second, fourth and sixth module stored the derived
partial remits uotil the pbcels of Hie next row, underlying ihe current window position, amved. The r̂ mih

64 ANNUAL REPORT AUGUST 1990

combined the partial sums and the mean and variance of the current template into a correlation value that denoted
how well the template fitted the data in the search area at the current position.

The sequential algorithm took about 23 seconds on a Vax 780. Nine cells provided a speed-up factor of
seventy-eight This was a much higher speed-up than that achieved by the pyramid generation algorithm and the
interest operator because the multiplier was used in every cycle and the adder was used in every other cycle. Each
cell thus ran here as 15 MFLOP a machine. The communication facilities were also used in every other cycle.
Therefore, the correlation algorithm was a fairly well balanced algorithm. The maximum speed-up would have been
reached if eighteen cells had been used (due to communication requirements).

This module was originally written as a systolic program, but could not be reimplemented in W2 in this way
because the prototype W2 compiler allowed only homogeneous code. Instead, it was implemented using input
partitioning, like the interest operator.

4 J J Performance of the Vision Modules
The ^implementation of FIDO led to a total system time for one step of 4.8 seconds, which was a large speedup

over the original time, but still relatively small compared to the time that had been achieved by that time on a Sun 3
alone (8.5 seconds). In this section we will analyze the perfonnance of the FIDO system on the Warp machine.

Most interesting was the pyramid generation module on the Warp machine. It actually took longer to run on the
Warp machine than on the Sun alone. This was because the data flow between the clusters and the Warp machine
was unbalanced. Time consuming manipulations were required to order the data correctly for the Warp machine in
this Implementation, but the actual pyramid generation on the Warp array was not computationally intensive. The
array was virtually starved for data. This was a case where the ordering of data was too complex for the Warp
machine (specifically the clusters). A more efficient implementation would be for the cluster processors to send the
pixels in the order that they woe stored in memory so thai daia could flow rapidly into the array, and the Warp array
could reorder the data.

The interest operator and correlation functions did not perform a: the predicted speeds on tic prototype machine,
although they were faster than the comparable Sun functions. If die startup times on the Warp machine woe
subtracted (the startup time was much Iowa: on the production Warp machine), then the actual times were close to
the predicted times.

The interest operator required about 0.1 seconds of Warp array processing time for the ten ceil implementation
companed with a one second Sum 3 lime. Additional time was speni starting the Warp a n y (about 25 milliseconds).
However, most of ±e time was spent in post processing. Mter the interest operator was run, the cluster processors
sorted and selected the resulting data. This was about 28% slower than the S an 3 processor, because of a slower
clock rate.

The eorreladon funcuen ^̂ .As with the interest
operator; die time required for the coirdaiion function on the Warp army was small. However the dme spent
processing cfau for the Warp wray on fee cluster processors dominated fie torn CBcecntkn lime. This time included
:he following:

• S^nup overhead of 25 ms. b one step* contfaiiQB wm d i e d sewn tfanet* for a total overhead of
approximaieiy 0*2 seconds.

* Reari3ng^,g ;iata for i e WwpumcHm* Qmpiei addressing was. m k d to lead im image pucfacs
tixm tm dMfimot pfmuiA kmis m &e Waq» w e t a e .
Fixed Hoop ftucttaa of ±e W2 onpfcr* A fixed saaber of teores wxm, he processed, in svery

fai is our C3S& fifty, 3liliOiigh ^e Evcmgc mioibcr of i s t t t s M i 'Corrstoion was

WARP ON NAVLAB 65

approximately twenty-five.

Work on FIDO stopped in 1987. The move from Terregator to NAVLAB, with its ERIM laser range scanner,
ended iL FIDO's stereo vision was not as reliable, and could not be made significantly faster, than the ERIM
scanner. While FIDO could locate a small number of' "feature points" in a few seconds of Warp machine time, the
ERIM scanner provides a dense three-dimensional array of points in one-half second scanning time and a few
seconds of processing. Moreover, ERIM worked much more reliably than FIDO-it could even be used at night,
and FIDO's interest operator, designed to look for object corners in indoor images, never performed very well
outdoors; it was confused by image clutter, such as leaves, in outdoor images.

4.4 SCARF
SCARF (Supervised Classification Applied to Road-Following) is a road-following navigation system used to

drive the Naviab. The system labels every pixel in an image as road or off-road depending on how well the color of
the pixel matches road and off-road colors from previous images. The road location is determined by matching an
ideal road shape model with the labeled image data. This location is than used to update the stored road and
off-road colors and to steer the robot vehicle. This system has evolved over a period of four years and is still being
used as a research tool today.

SCARF has had several implementations on the Wazp machine. The first of these implementations was written in
W2 and Apply on the prototype Warp machine. This implementation showed only a factor of two speedup over the
Sun 3 version of the code. Later versions of SCARF were implemented on the production machine. We used the
Warp machine to process two larger images rather than the one smaller image of the prototype implementation. In
this case we saw a speedup of six over the Sun 3 implementation. The fastest SCARF system had a total one second
Warp machine time and a total time of three seconds counting all the overhead including vehicle control. Compared
to a Sun 3 implementation, the speedup was thirty for the Warp machine time or ten counting all overheads.

In the next section, we will describe the SCARF algorithm in more detail. Thai we will show equations for each
SCARF module that was implemented on the Warp machine ami describe their implementation. Finally, we will
discuss how the later SCARF implementations were derived from ite first and discuss in general terms the timing of
the systems.

4 A 1 SCARF Algorithm
The program flow and data transfer between the different SCARF modules are shown in Figure 4.2. SCARF

starts with (480x512) RGB images from the color camera. The Image Pyramid Gtmarmrr creates an image
pyramid for each of the RGB input images. The Texture Operator takes the blue image pyramid and creates m
image corresponding to the texture seen In the scene. The tcxtue image and the smallest level of the RGB pyramid,
'the RGB Images* are sent to the Classifier. The Classifier compares the color of each pixel in the image with
remembered road and off-road color described by ihe Color Model Each color pixel Is assigned a vake in the

m i s image is used as voting weights by
the Road Hough module. Each pixel voces, using its assigned probability, for ail cf ihe possible roads i m contain
that pixel. The Road Location with the largest accumulated vtue is selected as die best HWL The matting Rmd
L o c a l s is wed by l i i eC^ The Msetod pixels
are then osed to fomailate mew road a i l <^-n«l rates nwiels*
comrawds for the veMde.

66 ANNUAL REPORT AUGUST 1990

Camera U

Input RGB Images

image Pyramid
Generator

<

RGB Ima

Blue Image Pyramid^

ges

Classifier

Color Model

Zoior Model
Generator

—-

Texture
Operator

Texture1 Image

Probability Image

Road
Hough :

Road Location
Drive Vehicle

Figmt4± SCARF Block Diagrain

4.4.2 Implementation of SCARF on the Warp machine
SCARF has been implemented m tm prototype Warp system as well as the production machine. In the Initial

system, fair modules were picked for impiementaiion on the Wsp machine: ihe Texture Operator* the Classifier*
±^ Rood HougK-md tit Color Model Genercwr. Thx modules were inidaMy implemented by Crismaii and Web^
for fte pK«Hypc machine. Laier, Chen and Cnsinan implemented a dkTeiem version of S C ^ ^
machine. Thit noiaa ww TO» ccmputacionaily ocpc^w than the crianal s>pstem. A final SCARF system was

dbyCns^^^

The next wQI describe each module tlm m lni|tow^rf » 0M»e iteaiL Tte genera! equations will be
gjve;-and a bnef overview of how the algcn^-s were div:d^^ FEnaily we will discuss hew
Lhess modules i m com b med m film ihe SCARF system and give o very lews of ibdr peifonnanca.

WARP ON NAVLAB 67

4,4.2.1 Texture Operator
The Texture Operator consists of two Roberts* edge operators and a Texture Determination operator. The first

Roberts' operator is run over the 120x 128 blue image to form a 120x 128 Fine Edge Image. The second Roberts'
operator is run over the 30x32 image to form the 30x32 Coarse Edge Image. A Roberts operator computes an
edge value by looking at the input image, in, values around the edge pixel location* Therefore edge value at row i
and column j is calculated by

The final phase of the Texture Operator is the Texture Determination operator. It first creates a Fine Texture

Image and then counts the fine texture pixels in a region to form the smaller, output Texture Image. The Fine

Texture Image is computed from the Fine Edge Imagey the Coarse Edge Image* and the Average Image. The

Average Image is the 60x64 input blue image. The pixel located at row i and column j of Fine Texture Image is

calculated by

finejexturetnjj] =* THRESHOLD (fine_edge[i]\j] I (a coarse_edge[i/4]\j/4] + (1-a) average[i/2]lj/2])).

THRESHOLD is a thresholding function that outputs a 1 if its argument is greater than a particular threshold value

and 0 otherwise. The constant a=0.2 is a weighting value; it was set heuristically. The purpose of the Fine Texture

Image was to locate texture in the input image that was independent of brightness and scale.

The implementation on the Warp machine used three different modules, the first two of which were Roberts edge
operators ami the third was a combination of the Texture Determination operator. Although the algorithm was the
same for the edge operators, they needed to be implemented separately since the input images were different sizes.

The edge operators were written in Apply and the last module was implemented in W2. The input images were
divided column-wise among the cells. To speed up the processing time, the loops were unwound and each pixel of
the output Texture Image was calculated immediately after the calculation of the corresponding 4 x 4 block of the
Fine Texture Image. Therefore there were 16 explicit equations in the W2 code for each of the fine texture pixels in
the block, each of which was followed by a counter keeping track of the sum.

4.4JL2 Classifier

The classification module of SCARF uses a Bayesian classification technique to determine the likelihood that
each pixel is a road pixel by matching pixel colors with remembered road class colors. A Bayesmn classifier takes a
^-dimensional measurement vector, x, and chooses the best class label, w-f from a set of K classes, using a
previously computed, class conditional probability, F(x |HO» for each class [4, Section 2.8]. For our case x » [Red

Green Blue Texnarep. We assume that the class conditional probability can be modeled by a Gaussian distribution
and therefore, is totally specified by {m-,CJVy}, the mean color and texture, the covariance matrix describing the
relationship between the colors and texture, and the number of samples in class Wj. This classifier can be shown to
be equivalent ID picking the class that maximizes the following likelihood:

^-kcwy/;v)-4ah(^)-i£^
wheie each pixd provides a f o r dimensional measurement vector (d * 4). To get t ie Probability Image n t e tbe
exponential function is applied to the maximum likelihood value. The sign Is negated if the maximum class :s m

off-rad class.

This module was implemented in W2 by once again civiii ig the input 30x32 JtGB Images and Texture Image

Into column stripes. The mputstadsneal color models were diipilcai^ en each cell Mot iwt to i t e f imt teee terns
of the likelihood calculation cm be computed only once for each class a t t a r ±sn once- for each pixel and was
passed m input into the Warp array. To get tbe desired probability measure. m exponential nincdcn is needed. An

to an wponefitial was impiems nsed cut the Warp ceils.

68 ANNUAL REPORT AUGUST 1990

4.4JL3 Road Hough

This SCARF module searches through all possible road interpretations for the road having the greatest
accumulated probability based on the Probability Image from the Classifier. We assume the road is locally nearly
straight, andean be parameterized using (v, 8) where v is the column where the center of the road intercepts with the
vanishing row in the image and where 0 is the angle difference from perpendicular where the center line lies (see
Figure 4J.) These two parame.fp.re are tfm *™g eyf ̂ y nimtTlafrn* span* iisffri for rollfftmg voflcs. Each pixel in the
probability image votes for all the roads that contain that pixd by adding its probability to the proper positions in the
accumulator. For each angle 9;, a given pixel location (r, c) will vote for a set of vanishing points lying between v,
and vtf given from the equations below:

where horiz is the horizon row in the image, w is the road width at the bottom of the image, and / is the length from
the horizon row to the bottom of the image. The maximum value of the accumulator is chosen to be the road.

Figure 4 3 : Road Hough

the wipe Boogie te imlmdml ̂ TM Hough ap
may*

To get
wtta

^

WARPONNAVLAB 69

4,4.2.4 Color Model Generator
This function calculates the road and off-road color models after each image is processed so that the system can

adapt to changing illumination conditions. The texture model is not adapted and therefore is not computed after
each image like the color modeL The road and off-road color models are modified in three steps. First a s&t of
pixels in the current image is chosen as road and off-road training sets. Next the training sets are subdivided into
classes using an ISODATA clustering algorithm. Finally, the new statistical color models are calculated for each
class.

Road Location
Host

Initial Class
image Generator

Initial Class Image

{N, sum, sum }

Calculate
Mean, Covariance
s. J

(N, m}

T

Warp
RGB Images

Image Images
Class
mage

CN, m, C)

Figure 4.4: Implementation of ISODATA Clustering on the Warp Machine

The ISODATA clustering algorithm was implemented by a pair W2 modules; die Sample module and the Adjust
module as shown in Figure 4.4. It started with a Class Image generated on the external host and the input RGB
Images. This pur was called several times before the new color models were formed. After the last iteration, the
Sample was executed one last dine to generate the sums rtvpiiirA for the final color models to be <

The Sample Module computed sums of pixel values from a labeled Input training set The labels far each image

70 ANNUAL REPORT AUGUST 1990

pixel were stored in the input Class Image which either labeled each pixel as one of the road or off-road classes, or
as unknown. It also read the RGB Images. From this it accumulated the sums, sura,-, and the squared sums, sum,, of
the red, green, and blue pixel value for each class wj. It also counted the total number of samples per labeled class,
Nj. Color vatoes were calculated for each class using samples labeled from the Class Image. From this information,
the mean co te of each road and off-road classes were calculated by an extonal hc^t routine.

The Adjust Module adjusted the Class Image by using the current mean colors road aid off-road classes. It read
the mean class colors from the external host, the old Class Image, and the input RGB Images. Any pixel that was
labded as unknown in the old Class Image remained labeled as unknown. If the pixel was labeled as one of the road
classes, then the pixel color (from the input color images) was compared with each of the road mean colors. The
pixel was thai re-labeled as the class whose mean color most ctosely matched the pixel color value. Similarly, if the
pixel was labeled as off-road in the Class Image, then the new Class Image label was determined by the class whose
color mean value was closest to the original pixel data. This module wrote a new Class Image.

The Sample module was implemented in W2 by dividing the RGB Images and the Class Image evenly among the
cells. Each cell calculated its own partial sum of the color values for each class, partial sum of the color values
squared, and number pixels with each label The resulting sums were accumulated as the values were passed out of
the Warp array and to the external host The host then calculated the statistical color models using this values by the
standard statistical equations for mean and covariance. The new mean values wexe then passed into the Adjust
model

The Adjust module was implemented in W2 by also dividing the input Class Image and RGB Images evenly
column-wise among the cells. The mean values were copied to all of the cells. Therefore each cell produced a
column stripe of the output Class Image.

4 A 3 Performance of SCARF Implementations
SCARF was picked for implementation on the prototype Warp machine in January of 1987. At that time, the

system was already implemented on a Stm 3 and was processing images in about thirty seconds per image. During
tie time thai W2 code was implemented, the C code was optimized, giving a final Sim 3 time of about twenty

The first hnpferaeniatikxi of SCARF used die prototype Wmp machine ami was completed in March of 1987.
This implemer&anon used only tight of the leu available cells so tint the column data could be distributed evenly
among the cells to simplify !he implementadcn. Initially, the modules were implemented as described above.
However, the time for downloading microcode to the Warp cells and the time required for passing data to aid from

ibe ceils prevented my speed op of the tmfkma&Mkm on tbe Warp' machine over the Sim 3 implementation. This

leqwied about fourteen ^

To improve the processing speed, the aiiicrocods for individual modules were linked together forming three
microcode blocks. As a result, ±e microcode ŵ To improve ihis rate, we
irnplerBeB^d ttie two Roberts operators In W2 ID reduce the size of the microcode required for these modules. At
Ibis tune,, the microcode could be linked ins® two s e p a l s sections and ften required only two downloads pa* mage.

We also noticed >±zi we ww© pissing fat toptt mafe daii repeatedly io ise Warp array. By locking the Warp

mcbioe so ta£ no odser a m corid accesi the mm±im*
k eacb W2 mccuia, the input cooU be loaded once, aad i m used by different modules wjtfaotn being

reloaded WM this nocIicMiQt i ^

WARPONNAVLAB 71

We implemented a version of Image Pyramid Generator on the cluster processors. This removed some of the
load from the Warp array and had the additional advantage that the data from the frame buffer did not need to be
copied to the external host before it was transferred to the cluster memory. Instead, the reduction implementation
read the first of its inputs directly from the frame buffo and this data was never copied. In order to be as fast as
possible, however, this implementation only approximated the averaging that was done in the Sun implementation.

Using microcode linking, common global storage, and by hand optimizing the W2 code, we were able to get the
system running in about ten seconds per image. This speedup was small* but the results were promising for future
implementations on the production Warp machine.

The next implementation of SCARF was more computationally expensive than the original version. It used two
color camera inputs rather than the original one camera. It also classified 60x64 images rather than the original
30x32 images. The image pyramid generator now had twice as much data to process, and the classifier and the
color model update had four times as much data since the vectors were now six dimensional rather than four as
before. This implementation ran in about sixty seconds on a Sun 3.

This new SCARF was implemented on the new production machine by Chen and Crisman. On this machine, we
had eight times more cell memory for global data and for programs. This machine used DMA for faster I/O from
the external host to the Warp cells. The image data was now divided by rows on the cells rather than by columns.
This allowed an even division of the 60 rows among ten cells rather than 64 columns divided among eight cells.

The new machine allowed successful use of the reverse data path feature where data could be accumulated on one
data path onto the last cell, then the data could be passed back and coped into the other cells. This then allowed us
to combine the Sample and Adjust modules from the Color Model Update into one W2 module. To do this the
Sample module was modified so that after all of the sums were passed to the last ceil, the last cell would calculate
the new mean values and pass then back to all of the other cells. Then the Adjust module can be run without the
intervention of the external host

The largo* memory of this machine also allowed us to store the RGB Images in a global memory location and thai
only input this dasa once per processing step. The increase in program memory allowed all of the modules to be
linked into one microcode which was only downloaded to the Warp machine once before any image processing
began. This implementation required about ten seconds par image, which was a speedup of six over the Sun 3
implementation.

The last implementation of SCARF on the Warp machine was completed in September of 1989 on the production
machine. This version still used 60x64 images; however, it returned to the original one camera version of the code.
The enure SCARF loop was implemented in one W2 function and one function was set up to initialize the whole
system. "The initialization process read in a 480x512 image and created a 60x64 image in Warp's cell memory.
The W2 SCARF loqp function s t a r ^ Then
ihe new color image was read iiito the Warp cells and reduced. Next &e Closer and ±e Road Hough was applied
to the input image. Only the resulting road location waspassedoutof the Warp array. Therefore, the main W2 loop
function read only the Ml size color Images, 2nd wrote a couple of floating poinl numbers representing the road
locaiio© m He Image.

This version of SCARF ran in one second of Waip machine lime, and a total of three seconds of time which
include some limited displays and sending motion cemmznds to the robot vehicle. This impicoieaattioii is
challenged only by a similar Sin 4/Andrac iniplemenianon which processes tower Tzsoluuon 30x32 images in 3,5
seconds.

72 ANNUAL REPORT AUGUST 1990

4,5 ALVINN
ALVINN (Autonomous Land Vehicle in a Neural Network) applied connectionist techniques to the same problem

addressed by SCARF, that is, road following using color images [13]. The key difference is that while SCARF was
"trained" by hand, adapting standard vision algorithms to the recognition of a road, ALVINN used a neural
network teaming algorithm to automatically learn what image features were useful to discover the position of the
road.

The development of ALVINN on the Warp machine went through two phases. In the first phase, from
approximately Febniary through May 1989, a road image generator was implemented and used to generate training
images that were fed, together with the correct road position, to a standard bade propagation learning algorithm.
The back propagation algorithm ran on Warp, off-line; training runs were done overnight in the lab. After training,
the learned network was used on NAVLAB to control the vehicle. (The network was ran on a Sun 3, since
application of the network, once it was learned, required relatively little computation).

This training technique fully exploited the power of the Warp machine; eight hour runs were used of the Warp
machine, with approximately three-quarters of the time during these runs representing actual Warp machine time.
Comparable training on a VAX 780 would have taken months.

Training using this method demonstrated the feasibility of using a neural network to control a robot vehicle. But
the method suffered from a serious problem. Essentially, the process of adapting computer vision techniques to road
recognition was replaced by the process of adapting computer graphics techniques to road image generation. This
"forward" generation problem was easier than the "inverse" recognition problem, at least for the simple roads in
the park, but it still required human intervention, so that the generated road images accurately represented the range
of images that would be presented to NAVLAB. For successful navigation in more varied environments, the road
image generation code would have to become more and more complicated and difficult to program and test

To overcome this, training "on the fly" was attempted, starting in June 1989. Road images were taken directly
from the camera, reduced in size, ami presented to the neural network together with the current driver's steering
angle (with the vehicle under human control). A clever technique was used to create many example images from
one road image and steering angle. With the Warp machine on NAVLAB, backpropagaiion was used to modify the
neural network weights as the vehicle was driven op the road.

Remarkably, it was found that with a short sequence of a few teas of images, the network could be trained
successfully so follow the road. The eight-hour runs on the Warp machine in the lab were replaced by short runs
driving NAVLAB for about lea minutes. Apparently, the intense training of the network in the long runs was
unnecessary; in fact, the read following problem was much easier than it had appeared based cm the long runs.

4.6 Evaluation of the Warp machine on NAVLAB
We now cridcaily evaluate she Warp machine in igbt of ihe NAVLAB experience.

scfr^are sepanuely.
We will treat hardware and

W w p Hardwire
Tie W«p hardware consists of toe© cofflpoacBts: ito $m host, te external toit, ar t fte W«p u y kse£

WARPONNAVLAB 73

4.6.1.1 The Sun Host
The choice of a Sun as the host of the Warp machine was one of the good early decisions made in the Warp

project At the time, the Sun workstation was one of the most powerful general-purpose workstations available; as it
turned out, Sun continued to lead the Geld both in hardware and in software. The NAVLAB group decided to use
Sun workstations as the base general-purpose computing element on NAVLAB. Since the Warp machine had a
Sun host, NAVLAB programs could be ran on the Warp host whether or not they used the Warp array. This was
important because of the limited space and power on NAVLAB; having to provide power and space for a
workstation that could only be used for controlling Warp programs would have been an extra burden. This is
demonstrated, in fact, by the eventual decision to remove the Warp machine from NAVLAB; this happened largely
because the NAVLAB group moved to Sun 4 workstations. Upgrading the Warp host to a Sun 4 would have
required extensive changes to the software. Thus, the Warp host would have been unavailable for running the rest of
NAVLAB software.

4.6.1.2 The External Host
The Warp machine's external host consists of three MC68020 processors in a VME card cage, together with their

memories totaling fourteen megabytes. Two of the processors input and output data to the Warp array, through a
special board called the switch; these processors are called the "cluster" processors. The third processor performs
auxiliary functions; it is called the "support" processor. The external host communicates with the Sun through a
VME bos repeater. The external host card cage also held commercial digitizer boards, which were originally
Datacube and later Matrox VTP boards,

A key early decision was to use a commercially available system that was programmable in C This decision has
been validated by the ease of code generation by the W2 compiler for the external host input and output routines
(using a commercially supplied C compiler) and by the availability of commercial boards for digitization. We had
lo do little software development for the basic functionality, and hardware development was limited to the switch
board.

Because erf the use of industry-standard processors and busses, the external host was the weakest part of the Warp
machine. Inourearly veisionsofFIDOon the Waipmachine^thiskeptus^miealizingfuiluseofihe Warp array,
because of the constraints in rearranging dust on the external host

The decision to include the support processor was questionable. The support processor was intended to be used
for auxiliary functions, such as controlling the digitizer beard and possibly controlling the driving functions on
NAVLAB; as it turned out, the digitizer hoards wore controlled by the Sun, and NAVLAB driving functions were
controlled by a separate processor entirely. In fact, the support processor was never used, because of the difficulty
of programming it and the absence of almost any debugging facility in the external host System cost amid have
been reduced by almost a sfaM by e i

Many of the external host capabilities weie ampkMiy oanaed. For example, it was possible to use the external
host to drive an RS232 connection; this connection, or another similar standard interface, could have been used to
control NAVLAB. This was never done, because the NAVLAB controlling software and hardware was developed
mdeper^dendy; and because of the difficulry of adapdn^

Placing the digidzer 'boards m the external host was also questionable. The intentioi was to feed data directly
frcm fhe digidzer boards lo tht Wnp Machine mdor costioi <rf tte cluster Qt support processors, In fict, the ocmi l
gnetbod was to copy daia from ifae digitizer board inso tbe Stn*$ menory, and cbai to sebsampie the dala there ami
pass It to te cluster processor far w e m the W s p machine. Only in the most optimized versions of FIDO and
SCARF dM we actually use the support p n o c ^ s w t o i i t e i t o a i i k « ^ & i O T ^ # g i t o x l x M i l m all other systems.

74 ANNUAL REPORT AUGUST 1990

the data traveled twice over the VME repeater connecting the external host to the Sun.

The large memories in the external host were rarely used in NAVLAB. NAVLAB datasets were generally quite
small, and there was no need for more than a few megabytes of memory* However, the large memories were useful
in onto to maintain compatibility with the Warp machines in the lab, where the large memories were used by other
programs. When NAVLAB was docked and connected to the Ethernet, programs could be run interchangeably on
the NAVLAB or the lab Warp machine.

4.6.1 J The Warp Cell Array
Hie overall structure of the Warp ceil array, a short linear array, has been validated by our experience on

NAVLAB. The linear array was quite capable for the low- to mid-level vision algorithms we intended to implement
on it at the start of the project; as the range of applications increased to include mid-level processing in SCARF and
the neural network back propagation algorithm, the same linear array was usable. The key reason for this was the
very high I/O rate within the array; this allowed us to overcome its limited connectivity.

The short linear array also lent itself to dealing with the relatively small datasets (32x32 or 64x64 images) in
SCARF. Our early applications studies of the Warp machine were oriented towards dealing with standard 256 x 256
or 512x512 images. We thought that the increased power of the Warp machine would make it possible for the
same processing then being done on small images to be done on Large images, which would improve the accuracy
and utility of color vision. As it turned out, this was not true. No increased vision performance could be obtained
by using more spatially dense images; the road was a fairly large object in most of the scene, and where it was small
(near the horizon), recognizing it accurately was useless, because of other uncertainties in the system. So we turned
instead to processing small images with the Warp machine. The short linear array was just as suitable for this as it
was for processing large images; in fact, with snail images the relatively small Warp cell memory could be used to
store previous images and other datasets, as in SCARF.

The two-way I/O pathway within the array was used to allow the computation of a result known to all cells
entirely within tbe array; this was used in SCARF and hi some implementations of the back propagation algorithm.
In fact, for many purposes a circular conneciion (allowing the last ceil to communicate directly with the first) would
have been preferable.

The Warp cell included hardware floating point; this facility was one of the main reasons for building the Warp
machine in the first place, and was one of the most expensive features in the Warp machine. The NAVLAB
application made good use of Warp's floating point hardware. In SCARF, floating point was used extensively in the
calculation of road stadsdes ami their application ID cote pixel classification; in ALVINN, floating point was
necessary for a good implementation of tbe back propagation algorithm. These applications of floating point came
from outside the Warp project; independently, the NAVLAB group began using statistical methods for color
classification, and the neurai network group requL*̂ d floating point for iheir work. Without floating point the Warp
machine wmM haw bees fir less effective as: a fool on NAVLAB.

4 1 2 Wtrp Software
As wMi kmferam, w© divide ifee software d into three para: Warp host (Sim) software* external host

softwwe* mi Wap oefl software (the W2 wu& Apply eenpfas}.

WARPONNAVLAB 75

4.6.2.1 Warp host
The Warp array was used as an "attached processor" to the Sun. Datasets were downloaded into the external

host, and then the Warp array was called to process them, usually while the Sun waited (In fact, Sun processing
could go on in parallel, and this was done in some of the SCARF systems. But generally this feature was not
exploited because there was little for the Sun to do firom the time the image was captured to the time the road was
recognized).

This model was extremely useful in the development of software for the Warp machine. It was implemented
using a mechanism that allowed replacement of a subroutine call in C by a single subroutine call in the Warp
software package; the subroutine handled all transfer of data to and firom the Warp external host, locking the Warp
machine for exclusive use, and downloading and call of the Warp program. This could happen even if the Sun
executing the call to the Warp machine was not a Warp host; data would be transferred over the Ethernet to a
selected Warp host. It is quite likely that the Warp machine would not have been used much at all in real
applications without such a simple method for accessing the machine.

However, the attached processor model implies many overheads. The Sun can become a bottleneck for
processing. The startup time for the Warp machine can be quite significant A serial processor, the Sun, must
prepare datasets for a much more powerful parallel processor, the Warp array. Data structures must be moved from
the Sun into the external host for processing. All of these overheads seriously affected the performance of theWarp
machine on NAVLAB.

For example, images as captured by the Datacube boards were 480x512 in size. They had to be reduced in size
for processing, since spatial resolution was not an important factor in road recognition. This could be done on the
Sim, in the external host, or on the Warp machine. Existing libraries of software made image reduction on the Sun
trivial-in fact, transparent to the programmer. Programming the external host (the logical place) to do the reduction
was difficult, and the Warp cell array could do the reduction only if the images were first teansfened from the
Datacube braids to the external host memory either by the Sim or the external host. These tradeoffs made image
reducuonusuaHy happen on the Sun, although in some SCARF systems it was implement^

The Warp machine's startup time (time to start up a Warp program with the axle already downloaded) was about
25 ms. This time was not a significant fraction of processing time for 256x256 or 512x512 images; in fact, the
minimum processing time for 512x512 linages was about 60 ins, and usually several times longer. But fix small,
32x32 or 64x64 images, this time could be a significant fraction of total time, particularly if several Warp
funcuons were applied to process the image and recognize uhe road, as in SCARF. As a resuk, Lhe prograir.nier had
to spend a lot of lime organizing the Warp functions so they could be executed as die result of a single call, to
reduce the overhead. We would haw been better served had the startup time been significantly reduced; this could
ha%̂e beat done by providing special hardware In the Warp machine's interface unit to allow die Warp machine to
initialize itself. As k was, the Sui* had to issue special ra^

Moving d m stracrures back and forth ^
many of these stnictm^s were embedded M various ways in C programs. This was especially true for FIDO; an old
pTcgram Lhat had been worked on by a number of prcgrammers. All of r±e data stmcturesh^d ^ be "cleaned up"
before lite Warp programming could begin; and the process of cleaning qp the dam ssrac&res introduced new
overheads.

If we had not used iise "attached processor** model, we might have t a i n an "amty-oofltond" irior of ihe Warp
machine. In ids model, the Warp army would have been viewed as the central processing resource, and other
devices, woch m the external host, wotid itave been viewed as supplying data for the Warp twcMne* We owkl have

76 ANNUAL REPORT AUGUST 1990

attached multiple I/O devices, supplying data from different cameras and perhaps the ERIM laser scanner, and
coordinated the processing through the Warp machine. This model would have required much more sophisticated
Warp software; we would have needed an operating system on the Warp array to manage all these resources. But
such a model would overcome the other problems discussed in this section.

4.6.2.2 External host. .Vo-.«. MM±ma I M I HUOl

The external host software was designed on the assumption that in NAVLAB speed was of overriding importance,
code would be linked together before runtime (i.e.t runtime downloading of code was not necessary), and a library
of compiled code could be built up that was not chained fiwtii*«*i"

In feet, these assumptions wane largely untrue. The W2 compiler made it possible to write new routines and test
research ideas using the Warp machine, which made it much more important to allow rapid.testing of new code.
(The early development of FIDO, with its programming of a few routines in microcode by several programmers
over a period of months, much more closely matches the model we had in mind when the external host software was
designed) The difficult programming environment of the external host, which might have been acceptable if the
code was not modified much, instead meant that it was reduced to performing I/O to and from the Warp array, using
programs generated by the W2 compiler. And testing of new Warp routines could be best done using an interactive
system, which meant that the external host software had to be adapted to allow runtime downloading of code.

One of the reasons for the difficult programming environment on the external tost was that control of the
development of external host software was transferred to Carnegie Melton's industrial partners at an early stage of
the project, well before it was used. This made it difficult to change the software as our applications experience
grew. The industrial partners did a competent job of maintaining and extending the external host software as it was
originally designed; hit the software would have had to be redesigned extensively to be widely used in NAVLAB.

The use of the external host in FIDO shows its capabilities when the programming difficulties are overcome.
Irregular operations woe mapped onto it as part of pre- and post-processing of data from the Warp machine. Also,
it performed memory access-intensive but not compute-intensive computations as well as or better than the Warp
array, which could also allow the Warp array to be used for something else in the meantime.

4£JL3< Warp wtmy

In this secrion we discuss the Warp This includes

many design decisions that w&m essentially forced by me Warp cell hardware, and thus are really hardware issues.
Dlsiinguiskmg between W2 issues forced by the hardware and forced by ether concerns is appropriate for another
report

W2 nade the Warp niachme much more programmable than we expected This led to major changes in the

instftid, For ensure* we could Modify out programs io accommodate & regular data pattern ftotn the host, which
l^i to higher I/rO rsies. TM&mMimpomm'mmM^km i « A w i r f i i e k ^ i i * t t todfiw^i»oc^^»sMui
higher data rarsst but w h ^ This flexibility was the main
reason we wesm able to otaem the jrodctei perfiwn^»^rfHDOtoaaffliW«pri»s.

W2 :s a sii^pte Tascai - !^ AH that is reqtrired is that ibe programmer
dent^ a i ^ s n ^ Hie

ogrammer* howtver, must decide taw to parallelize Ms programs. A W2 function io average a 4x4 window of

WARPONNAVLAB 77

procedure reduce();
begin

int r, c, row, pos;
float ace;

for r :» 0 to eval (SWATHROWS-1) do begin
for c :• 0 to eval(NCOLS-1) do begin

pos
ace

pos
ace

pos
ace

pos

- 4*r*IMGCOLS+c*4;
imgbuf [pos] -fimgbuf [pos+1] +ixngbuf [pos+2] +

imgbuf [pos+3];
pos + IMGCOLS;
acc+imgbuf [pos] +imgbuf [pos+1] +imgbuf [pos+2] +

imgbuf[pos+3];
pos + IMGCOLS;
acc+imgbuf[pos]+imgbuf[pos+1]+imgbuf[pos+2]+

imgbuf[pos+3];
pos + IMGCOLS;

out[r*NCOLS+c] = pos * 0.0625;
end;

end;
end;

Before this function is called, the input image to be reduced is divided into row swaths across the cells. 'Pos'
marks the position in the input image and 'ace' accumulates the sum of the pixel values.

W2 made it possible to experiment with different algorithms, in the context of a research system such as FIDO,
while getting good use of the powerful Warp array. As we programmed more and more of FIDO on the production
Warp machine, programmability was essential, especially as it allowed us to make use of more complex
programming models that used the powerful Warp array more and required less intervention by the relatively weak
host

Apply was used far less in the NAVLAB work than we had hoped. This was partly because of the relatively late
introduction of Apply into the project; the Gist true Apply compiler for the Warp machine was not running until the
fail of 1987, one year after the NAVLAB group began working with the Warp machine. By this time much of the
prognunming difficulties Apply addressed had been overcome by teaming on the part of NAVLAB progra
Just as important, Apply code tended to be larger than W2 code for she same problem. In order to process the
borders of the image properly, Apply duplicated the inner loop of tbe Image processing function once, leading to a
doubling of the code size. This was a serious problem when the user was attempting to keep all cock for the entire
SCARF application, for example, on the machine at the same lime, W2 programs woe smaller, though BO faster
than the Apply progra

Border processing was a problem for the WZ programs, too, however. The C functions processed borders by
duplicating rows ami columns near the edges of the image. This was tod for die W2 programs to do. It was
simpler just ID use a constant \ ^ u e (0) for Lhe border of the image. However, this led to spuriously high values of
edge detectors Hoe Roberts near the image border. This sometimes affecied the accuracy of the road image
processing based on the texture ins&ge.

Macro calls were used ins*^ad. This led IO code

size problems for inmscendent^ TMs often led to leas accurate

results lhan those used on the Suns. In p a r t i a l * the classification in the SCARF system was ofka noisier for the

W2 implementation in® for tm S m anipiem

There were some peculiarities in convening dtta belwem ± e otttnttl host and the Warp array. Because the

78 ANNUAL REPORT AUGUST 1990

Warp machine's primary processing power was in floating point, all images weie best processed in this way. The
interface unit had hardware conversion of 8-bit and 16-bit integers to and from floating point, but could not convert
32-bit integers. As a result, 32-bit integer images in the external host had to be treated differently from 8- or 16-bit
integer images.

Primarily as a result of the fixed-size queues, it was impossible to use variable-length for loops in W2 programs
until the design change thai allowed blocking on writing to a full queue, or reading an empty one, was fully
integrated into W2. This meant that image sizes were fixed at compile time. Tim increased code size (for example,
in SCARF there were three different versions of the Roberts operator).

It was impossible within W2 to execute a W2 function repeatedly until some condition was met, for example
repeatedly classifying image regions until convergence was achieved This was a consequence of the distributed
nature of control in the Warp machine. The result of this was that the Warp host was involved in repeatedly calling
W2 programs and testing for convergence, which significantly increased overheads.

Partly as a result of the small datasets used on NAVLAB, and partly as a result of limited hardware support, we
still needed to use speed tricks to generate Warp code that was significantly faster than the Sun code. For example,
we had to avoid using division on die Warp machine, especially when doing integer index calculation for arrays.

Given the research that was going on in the Warp project white the Warp machine was being used in the
NAVLAB project, it is remarkable that things worked as well as they did. NAVLAB programmers commonly had
to deal with new features in the W2 compiler, for example, and it is only due to the good support from the compiler
group that they were able to overcome bugs that were due to idiosyncrasies of the machine, and were extremely
difficult to identify without experience.

4.7 Conclusions
lent; the installation and use of a parallel supercomputer on a robotThis report tells the story of a unique expe

vehicle. Let us try to sunmarize and draw some conclusions from Lhis experimenL

• The Warp machine was useful in the NAVLAB project. The programmable floating point capability k
brought lo NAVLAB was unavailable by other means. Key elements of die architecture, such as its
high I/O rate and the short linear array, have been validated by the NAVLAB experience. The high
processing rate of SCARF could not have been obtained without the Warp machine, and it was the
presence of the Warp machine OR NA VLAB that led lo ALVINN,

• Early applications support is essential The development of FIDO and other vision applications guided
the early design erf the Warp machine ami provided test ^^mm ^i a^y ikmmstj&dmx Without
this eariy wesk, the Warp machine may never have been used on NAVLAB.

• Continuing software support is essential in a project such as this. It is impossible for hardware and
software designers 10 s i d p t t e all of the issues fine will tun: up in use of the machine, even if
appiicaiions designers participate early in uhe project This is parJy because applications can change,
and panfy because success in one area can affect others. For example^ iheWaipoiacfeine became much

of the W2 compiler, which made the design of the
hn* parJy obscleie.

The "attodhedi processor*' mode! i m t to the Warp machine is naiural and easy m use by die
progj^mer/trant l e ^ e Dtta surnames mesl
be redesigned, careful attsnticxt has lo be paid to small details of impIemeiHafion, awl so on. If we want
to see s p e e d s warn ±zn a hem of them i n , we w m afatodoit i t e aodei

WARP ON NAVLAB 79

Acknowledgments

"We" m this chapter refers to a very large group of people, indeed; too many to list here. The Warp project at
Carnegie Mellon and General Electric and Warp applications development (including the Parallel Vision and
NAVLAB projects) included over seventy people. We also benefited ftom the support of the Reid Robotics Center
and from many discussions with the vision group at Carnegie Mellon.

Research on NAVLAB (including Parallel Vision research) was supported by the Defense Advanced Research
Projects Agency, DOD, (DARPA) under contracts DACA76-89-C-0014, DACA76-86-C-0019, DACA76-85-
C-0003, and DACA76-85-C-0002, all monitored by the Engineer Topographic Laboratories. The Warp project was
supported in part by the DARPA under Contract N00039-85-C-0134, monitored by the Space and Naval Warfare
Systems Command, and in part by the Office of Naval Research under Contracts N00014-87-K-0385 and
N00014-87-K-0533. The ALVINN work was supported by the Office of Naval Research under Contracts
N00014-87-K-G385 and N00014-87-K-0533, by National Science Foundation Grant EET-8716324, and by the
DARPA monitored by the Space and Naval Warfare Systems Command under Contract N00039-87-C-0251. The
views and conclusions in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the funding agencies or the US government.

4.8 References
[1] Annaratone, M., Arnould, K, Gross, T., Kung, H. T., Lam, M, MenzilciogK O. and Webb, J. A.

The Warp Computer Architecture, Implementation and Performance.
IEEE Transactions on Computers C-36(I2):1523-1538, December, 1987.

[2] Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A.
Implementation and Performance of a Complex Vision System on a Systolic Array Machine,
Technical Report CMU-RI-TR-87-16, Robotics Institute, Carnegie Mellon University, 1987.

[3] Dew, P. and Chang, CJL
Passive Navigation by a Robot on the CvlU Warp Machine.
Aug, 1984.
Internal report, Department of Computer Science, Carnegie-Mellon University, Aug. 1984.

[4] Dtida,ILO.aiidHart,P.E.
Pattern Classification and Scene Analysis,
Wiley, 1973.

[5] Hamey, L. G. G. Webb, I. A.* and We, I-G
An Airhitecture Independent Programming Language for Low-Level Vision.
Compwter Vision, GrapMcs, ami Image Processing 48:246-264,1989.

[61 ^ ^
Two-Level Pipelined Systolic .Array for Multidimensional
Image and Vision Computing l(l):30-36, Febroaiy, 1983.
A® ta^sowd vmie» appears as a CMU Comjm& Sckmx Dqwrtm« l e d ^ ^ I rqxnt, Novaabar 1982.

[7] Knag,HX
SysmHc Algonthms for the C!vfU Warp Processor.
la PmcmMrtgs cftht Seventh In:ernudonal Confererxe m Fmmm RecognOkM* pages 570-577.

Intsrasxional .Associadcn fir Pattern Recognidon, 19S4.
A revised i^^on appears as Chapter 3 M S y ^ ^ S i ^ ^ y y B

Jr^ H ^ 73-95t mm Yak* Marcel Dekte , 1987.

IE] KiHig, H.T. and Menzilciogiu, O.
Warp: A Ftegjainmable Systolic .^TEV Processor,
h PmcemMmgs efSPIE Sjmpmkm* VML 495, Reol-Tbm Sigmt Pmmmmg W\ ^ p » 130-136. Socfcly of

Simmamiim Engineers, August

80 ANNUAL REPORT AUGUST 1990

[9]

[10]

[11]

[12]

[13]

[14]

Kung, HLT. and Picaid, R JL
One-Dimensional Systolic Arrays for Multidimensional Convolution and Resampling.
In Fu, King-sun (editor), VLSI for Pattern Recognition and Image Processing, pages 9-24. Springer-Verlag,

1984.
A preliminary version, "Hardware Pipelines for Multi-Dimensional Convolution and Resampling/' appears

in Proceedings of the 1981 IEEE Computer Society Workshop on Computer Architecture for Pattern
Analysis and Image Database Management, Hot Springs, Virginia, November 1981, pp. 237-278.

Kung, IL T. and Webb, J. A.
Mapping Image Processing Operations onto a Linear Systolic Machine.
Distributed Computing l(4):246-257,1986.

LJL Matthies, OR Tfaoipe.
Experience with visual robot navigation.
In Proc. IEEE OCEANS184 Corf., pages 594-7. IEEE, September, 1984.

Moravec,H.
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3, Carnegie-Mellon University Robotics Institute, September, 1980.

Poraerieau,D.A.
ALVINN: An Autonomous Land Vehicle In a Neural Network.
In Toiretzky, D. S. (editor). Advances in Neural Information Processing Systems. Kaufinann, 1989.

FIDO: Vision and Navigation for a Robot Rover.
PhD thesis, Carnegie-Mellon University, December, 1984.

Chapter 5: Autonomous Navigation of Structured City Roads

5.1 Introduction
In 1985, 8131% of the intercity passenger traffic in the United States — 1,418 billion passenger-miles — was

done by private car. This translates into a tremendous amount of time spent by drivers engaged in the task of
visually tracking and driving along a road. As autonomous road following programs become more competent they
will be able to take over more and more of the burden of driving - at first, in daylight under light traffic conditions,
then later under more challenging illumination, weather, and traffic conditions. Driving long stretches on open
freeway, while probably the easiest road following task to automate first, is only part of the larger domain of
autonomous road following. The length of the average automobile trip in the United States in 1983 was just 7.9
miles [21]. In order to liberate people from the tedium of driving, road following systems will need to be able to
follow city streets and maneuver through intersections, keeping track of what lanes are available for use, and not
straying into lanes for oncoming traffic.

The gap between this vision of robot chauffeurs whisking people to and from work while they read the morning
paper and the state of the art in robot road following is wide. While lane following on a freeway has been
demonstrated at speeds of up to 96 km/hr [13], lane following is only one of the capabilities that an autonomous
road following system must have. Current systems, while they have achieved fair levels of robustness in staying on
the xoad, don't model the lane structure of the road In order to progress toward the ultimate goal of robot
chauffeurs, road following systems need improved capability to keep track of the lane structure of the road (both for
purposes of lane following and for purposes of planning such as deciding if it is possible to change lanes or pass)
and improved capability to detect and navigate through intersections.

Achieving these capabilities requires first the ability to robustly detect various road features (painted stripes,
road/shoulder boundaries, etc.) under a variety of conditions (changes in lighting, pavement color, etc.). Dealing
with different feature appearances can best be accomplished through'the knowledge-based application of specialized
segmentation techniques that work well in specific cases. As an example, yellow stripes can be located in both sunlit
and shadowed image regions by thresholding on die pixel hue value. Given a known road geometry, the ability to
reliably locate road features allows a system to determine the position of the vehicle relative to the road and drive
the vehicle along the road in its lane. It is also necessary to instrument the segmentation techniques so that the
system can detect when they have failed, and to implement strategies for determining the cause of failure and
recovering from tfie problem. Lane boundaries may shift, requiring a change in the road model; markings may
change in appearance, requiring a change in segmentation technique; or the vehicle may be approaching an
Intersection, requiring changes in sensing strategy.

Improvements in intersection navigation capability and the capability to detect and correct for changes in lane
structure m® particularly critical for making progress towards systems that cm autonomously drive on city streets.
On the highway, lane structure is relatively fixed, and the vehicle does not have 10 go around sharp comers or track
the position of the road across z large int£fscction. In the city, lane edges shift as right and left two I&ises;
intersections^ and a vehicle needs to be able 10 mai^eiiver its way through intersections. Iniersec lions cover a farge
area cm t ie ground, creating a need ID combine informaiion iron several images in order to fix the location of the
vehicle in i te intersection and plan a path through i t

The problem, of autonomous road following In m urban caviRHMnt can be decomposed into the
sohprobtefis: segmeniadon of the image data to extract read features, modeling of ifae local road gpooactxy for
vdttd© kmlizmiofi md pzth plajining, md ImteiscctiQii ntvtutioii* to the nexi section we offlniiiic representative

existing systerns, tocamg o» their approaches to tbese stibpeUeats. After outlining cur approach 10 these Lasks, we

82 ANNUAL REPORT AUGUST 1990

present results in robust detection of painted lane markings, fitting features positions to a model of road geometry,
and locating road features without using a strong a-priori model. We close by discussing our planned extensions to
enable the system to navigate through intersections.

5.2 Previous Work

5-2.1 VTTS (Martin Marietta) [20]
• Segmentation: The road is extracted by thresholding a (red minus blue) image. The basic algorithm

was extended to include two road classes, sunny and shaded, whose thresholds were found by sampling
near the bottom of the image (which is assumed to be all road).

• Road model: The system assumes that the ground is locally flat, and projects the boundary of the road
regions onto the ground. More sophisticated models of road geometry such as the hill-and-dale or
zero-bank algorithm were rejected because of sensitivity to errors in segmentation and matching of
corresponding points on the road edges, and because they could not handle intersections.

The VTTS system was able to achieve fairly impressive performance, driving at up to 20 km/hr. on straight,
obstacle-free stretches of road. While the paper referenced mentions intersection navigation as a criterion for
selecting a technique for recovering the road shape, intersection navigation was not implemented. Sacrificing
general capability for speed, the restriction to two road color classes limits the robustness of the segmentation*

system [11]

• Segmentation: Regions from an Ohiander-Price style segmentation of an initial image are classified as
road/oon-road, and an optimal transform is derived to maximally separate road and non-road pixels.
Normalized histograms of the transformed road and non-road pixels are used to generate likelihood
ratios for each level of the transformed feature, which are then used to classify pixels in succeeding
images. The likelihood ratios are updated for each image in order to handle changes in road color and
lighdng.

• Road model: Line segments fit to the road region boundaries are tested for continuity with the road
boundaries from the previous image* consistency with constraints on the angle between successive
segments am each side* and parallelism between segments separated by the expected road width.

• Intersections: The system examined the road region boundary segments for lines which might support
an intersecting road.

The FMC system was also able ®o make runs at speed of up to 19 km/tir.* with an image cycle time of L5 seconds.
As m the VTTS system, the read is reconstnicted from the segmentation rather than fitting a road model to the results
of the segmentation. Speed was a major criteria driving the design of the system, again resulting in a tradeoff
between robustness and speed.

5J3M.4JRFiTnIversity of Maryland) [23]
Small wwfcw* mm ptowl ar the pedleiedp p g

fbc inssge. Sobei edgs deisciing and the Hough transform sre wed to cfaexmiiie the to&i edge location
In the wmdews. The system ihen repeals ihis process, tndcbg the features up though the image.

• Rmd Model: R e m n t a s m the Uraversuy of Maryland in vesd gated a number of ai gonthrns for
o d n c t n g 3-D road stractme from ina§& data. The most sophlsucamdmgonthm '[51 models the road as
a horizontal segment swept porpe^iaibr :c a smnz cv?e* Global opumimtion of ihe result is used to
comet for a n » m local pota mt tc tag beimm the tm&edgm*

TimMMF(to€MArjkmiRmdPoBmmr) symm « » p m M toii©Martin Mmkm ALV taicfrow the vehicle.
al.goriifens for r^overy of irad shape J&IHB image daia 0 0 probably ^ most significant conoiboiioes of this

YARF 83

5-2.4 VaMoRs (UniBw Munich) [13]
• Segmentation: Six 48-by-48 pixel windows selected from a grey-scale road image are convolved with

one of 16 oriented bar masks for edge detection.
• Road model: The system uses the flat earth assumption, and models the lane followed as having

parallel edges with constant separation and locally constant horizontal curvature.

The VaMoRs system combines custom hardware for image processing with an elegant control formulation to
achieve runs at speeds of up to 96 km/hr. The system fits the lane edge points to a model of the road geometry rather
than reconstructing the road boundaries from the segmentation results. The system does not model road structure
other than the lane being followed* and does not handle intersections. The experience of the NAVLAB group at
CMU with the use of oriented edge trackers [22] suggests that reliance on them as the only method of segmentation
will not be robust under difficult shadow conditions, although the Munich researchers claim that they have not
encountered problems with this.

5.2.5 LANELOK (GMR) [81, [91
• Segmentation: Several segmentation methods w o e tested. In the first method, edges segments are

extracted from a thresholded Sobel edge image, and the edge segments vote in a Hough transform for
• right and left lane edges. In the second method, growing and shrinking are applied to the binary edge

image to thicken the lane boundaries, and region tracing is applied to extract them. In the third method,
search areas are defined around the expected locations of the left and right lane edges, and template
correlation is done to find the lane markers. A least-squares fit is done to the optimum correlation
values to determine the lane edges. These methods have been tested independently, and are not used
cooperatively.

• Road Model: The lane is modeled as having parallel edges separated by a constant width. Shifts in the
lane markers are detected and corrected for.

LANELOK's algorithms have been tested on more than 3000 frames of videotaped data. The system is designed
to track lane boundaries in a freeway environment, and appears to work well, if slowly (three seconds/image on a
VAX 8600 for the template correlation algorithm, similar times for the Hough algorithm). The system also
incorporates obstacle detection, using template correlation to locale other vehicles in the lane.

52.6 University of Bristol [17]
• Segmentation: White lane markings are detected by creating a binary image in which the selected

pixels correspond to pixels in the intensity image which are brighter than a threshold value and between
two strong intensity gradients of opposite sign separated by the expected lane marking width. Regions
in the binary image are extracted, and shape cues are used to eliminate noise regions.

• Road model: The surviving regions are backprojected onto the ground plane, and a parabotic model is
fit to each candidate region. Dashed lane markings are accommodated by fitting arcs to ail pairs of short
regions. Minim unt separation and constant separation constraints are used to ciiminais erroneous
candidate arcs, and to produce a final set of consistent lane markings.

From [17] it Is unclear how much testing the algorithm has received, but the approach seems sound, m l could
adapt easily to use improved segrneiitstion lechniqiies,

& 1 7 A R F (C M U) [1 2]
• Segmentation: The system has two racking algon ihmst a profile correlation technique and a Sobel

edge tracker. These ai gorithms are used k mmkm m tuck rads in aexkl images. If she results of the
two traddag methods -diverge, then failure analysis mks arc Invoked to determine the cause of the
problem (intersections, tttaa§e$ m read width, changes fa surface maisnal, overpasses, occlusion,
vehicles en tht road), and appropriate cofTcciivg actions are talm*

g4 ANNUAL REPORT AUGUST 1990

Road Model: The road is modeled as locally having a ptrabalk shape. No interior road structure is
modeled.

The ARF s p t u t works in the domain erf tracking read networks in aerial images rather &zn in a vehicle

wvigatiofi domain, hot is included because of im Influence of Its arcbifiectm on the desip of YARF (specificaUy,

die we srf multiple s ^ s e i t t i o i lecfanagnes and cxpicit failure analysts).

5 J J SMawalk II (CMU) (7J
• Segmt nation: The system uses aa earlier vmkxi of the color •: hssiricaLon aigcnihrn fa* is used in

the SCARF s y a m deipflwl Wow. ft eta ata> fo» ir.e cxAir segaentiiiQs w:m a i s t p m ^
sepneoiaiait K> < t o « p i ^ tewom M M ^ a i m p , wod tim awwrniag p : ^ ^ ^

• Road U l a ^ Tt« sptem tei a map of die ̂ « n « i y of the s p » n of sidewalks it navigates on.
• Iaterscctiotti: lint mptmm fit sa the edges of the extracted rood region are matched with expected

edgcs from the map to «ktcima« position within an

Tte Si^wiJk 1 system was designed to q w a » in an environment whew the scff»»Mkii ptAlan would be

c$gf9 tiowsig G c ^ v ^ m :: tte higher tewl t n ^ :^ :-:,^^ pJExmiitg mM iatemoolim r^vigaucn. It

- ?.1, t i m i ft ^ m speedy to tt I m k d by itt ^ o l fcr t p s w i n : map :f «"e r^rssc^ons :i will

SJJSCAItf(CM])C4]
AB x ^ i w :o ,::.r ,_•;,,;• .CL .::- :̂ n-- - is mod* mh fc^ lo d^tt o&y classes och

aroad nmt ocMHoad arani.
• Rond ^ ^ ^ : T ^ system » $ w ^ thai the road is locally s t r a i t with a teaoton constant width. The

cianifiad p e l s vote m a Hoagh scka« to Soette te v a t A i ^ p iM and CNnentaiioa c^ the road m the

ta Imi Mi ©C i i ami ^ ^ mi mxmmM of to IQMI

S i l S ALVWN (CMU) (111
• ^zm^uu<m) MLWm $m tot tarn a ftawl ^ ^ ^ ^ ^ ^ ^ , ll ^ ^ ^ of i te»

ALV1NN s sw p ^ w , As w ^ f e ^ ^ P « ^ i does aot lw€ s fixad , i ^ ^ M ^ ^ SM3. endeaeo
to k « a » e fas tnHa»gcx«q^ It p ^ « m t very wdL md tedkfvca lie NAVLAB a is

2Q MPH. C^ de oter tal Us lack ̂ any cxpfaai Fepraosttuon ̂ ^ » it hint & afsLafe hov ̂ ^ n l i road
Ssmrng capaWbty A p s w i f̂ar issmiDe. s » i be mud » iaae f^^r a asy iane OR a»fe of differing

YARF 85

5.2.11 Analysis
All of these systems use a single segmentation technique to locate the road, making them vulnerable to situations

in which that technique fails. Binford made the same point with respect to object recognition programs [3]. Global
color classification schemes such as those used in [20], [18], and [11] work well for segmenting the road surface
from the background, but work less well at detecting painted lane marking because they look only at pixel color and
Ml to consider geometric constraints. Edge detectors have problems with textured areas and shadows, particularly
mottled shadows from trees.

There are two classes of techniques used to compensate for errors made by the segmentation algorithms. The first
is focusing, in which predictions of road feature location are used to limit the areas of the image which are examined
[23], [13], [9]. The second is use of global constraints, in which a model of the road structure is used to eliminate

errors in segmentation. A good example of this second approach is the Hough voting scheme used in SCARF, which
uses the assumptions of constant known road width and a straight road to correctly locate the road even in cases
where there are many misclassified pixels.

Few of these systems have any explicit representation of how confident they are that they located the road,
making it possible for them to "hallucinate" and drive off the road. Only LANELOK (and ARF in the aerial road
tracking domain) has any mechanism for detecting changes in road structure based on segmentation failures.
Intersection navigation capabilities of these systems are very limited. This is largely because they process one image
at a time, and real city intersections are large compared to the field of view of typical cameras. The exception to this
is the Sidewalk n system, which used a second camera to see around comers at intersections.

YARF addresses these problems through the following mechanisms:
• multiple segmentation techniques which are specialized to detect particular kinds of features or to work

in particular situations;
• examination of the results of the segmentation techniques and their geometric consistency with a model

of the road structure to detect when the systems flails, when the road appearance or structure changes, or
when the vehicle is approaching an intersection; and

• use of a local map to integrate feature location data and locations where segmentation failures have
occurred over multiple frames.

The remaining sections of this chapter describe oar current research in implementing these mechanisms, describiiig
the progress we have made since the initial results reported in [10].

53 Robust painted stripe detection
A major component of the program of research we described in f 10] was the investigation of specialized

segmentation techniques to robustly extract different types of road features. O r recent experiments in this area have
concentrated on testing two algorithms, one for delecting yellow stripes Ming pixel hue, and the other for detecting
white stripes using an oriented bar detector. These algorithms have been tested both in open loop mode, where they
track a stripe as a human drives the vehicle, and in closed loop mode* wliem their results are used to drive the
vehicle. The implementation'of these algori dims is described in detail in [11.

Hue appears to be a very stable cue for detecting yellow snipes under a wide variety of road ami lighting
conditions. Pulling red at zero degrees on the color wheel, pure yellow has a hue of 60 degrees. Histograms of
yellow stripe pixels in both bright sunlit images ami dorfer, shadowed images- show a peak located at 60 degrees,
with a width of 30 degrees on either side. Pixels with hues between 30 and 90 degrees are classified as yellow,
pixels with hues outside this range are classified as background (see figure 5.1), la order to avoid grey pixds being
classified m yellow due m the lusmbslity of hue near the intensity axis, we also require yeUow pixels to have a
saturation of at leas: 0.L The algorithm does not explicitly compote the fane erf the pixels. Instead, k tests the RGB

86 ANNUAL REPORT AUGUST 1990

value against two planes containing the intensity axis which bound the desired section of the color cube. Those
pixels whose RGB values fall on the correct side of both planes are labeled as yellow pixels, other pixels are labeled
as background. The mean row and column of the yellow pixels is returned as the position of the center of the yellow
stripe.

Robust detection of white stripes is done by looking for a bright bar of a specified width at a specified orientation.
Using an oriented operator reduces the effects of noise such as shadows or oil stains on the pavement Searching for
a bar ratter than an edge and blurring along the direction of the bar also improves the robustness of the operator.
The correlation is done with the blue band of the color road image.

Two techniques are used together to achieve a fast correlation. The first is the use of only +1 and -1 as weights.
This speeds up the correlation by reducing the number of additions and subtractions needed. When the mask is
shifted one pixel to the right, the leftmost pixel previously included in the correlation sum is removed, the new
rightmost pixel value is added in, and corrections are made for pixels whose weight changes sign when the mask is
shifted. As an example, if the mask is (-1 -1 -1 1 1 1 -1 -1 -1), only four additions/subtractions are needed: one for
the pixel which shifts off the left edge of the correlation window, one for the new pixel on the right edge, and one
each for the two pixels whose weights change sign. The second technique used to increase the speed of the
correlation is using a window which is a parallelogram parallel to either the rows or columns of the image rather
than an oriented rectangle, which speeds up the correlation through a more regular pattern of pixel access.

Figures 52 shows these operators tracking the centra' double yellow line and the right and left white lines on a
sonny, well-lit road. Figure 5.3 shows them tracking the center double yellow line and right white line on a road
covered with mottled shadows from trees. While these algorithms do not perform perfectly, they appear to be more
robust than any of the other techniques we had investigated. Detecting when these operators have failed to find the
desired feature is simple. In the case of the oriented bar operator, the correlation peak will not differ sufficiently
from the background level. In the case of the yellow hue operator, the area of the yellow pixel regions in the window
is either very small (if there is no yellow stripe) or much larger than tbe road model would predict (if the window
Mis onto a grassy region — surprisingly, some grass has a hue very dose to the hoe of yellow stripes). In the next
section we discuss the combination of she individual measurements of feature positions into an estimate of the local
road curvanire and the posidon of the vehicle on the road.

(0 degrees)

Figure 5J: CCICT chssificaiicri by hoe to detect yelicw stripes

YARF 87

Figure5.2: Yeilow hue and white bar openaore, sunny image

RgareSJ:

AmUAL REPORT AUGUST 1990

5.4 The road model and fitting detected feature locations
YARF inodds the road m t gemmttrnd stripe - a cw-dimawaial feature cross-section which is swept

papmiiadm to t spue curve* Tte m d a figwc 52. fir example, can be wedded by the following feature

• a solid while »ipe which stats -358 on. fton ilie spine;
which sons -342 i m t o n fie spine;

• t lane ofpaweomi wUch sttffto SI an. bam the spite;
• t so l i wtae stripe wfcich stwts4CB cm. froa tte sptoe; and
• t stenlfcr wMci mxu 419 CBL frs»n te i p t a

An tnp¥»« dsrifa dedsiaa b tte q«^c» crfkwr a » ^ t spine cave stoold be allowaL Should tte road
mode! allow for tatkijig? Should il assume i focaiy to fretj«t plane; or allow changes In surface slope?
Answering these questions requires considcrinig not only how mads behave in the real world, but what kinds of
rexiets produce algorithms thai are coaqnitatioiially tractable and fmls whach are sable in tte preseose of noise
and usable fa* atvipicift even if *ey cto sot repaiiee the worid wife awtplcie fidelity.

We .'̂ .ve c k ^ m ac.::: 2 ^ ^ i ^ u ^ r n ^ ^ b tte Maiieti ^±.\icRs- system [13] and woric at tte
U a ^ r i y of irfnoi f 17}, Tha iwt ^ m k towiy ^ w w i ^ ^ ^ bjr t ctaitac anc; will the xoad tying in a flat

• / + ^ r • j + l§mmljilm SJZ- t n^dd d o t s :^pua^on^^y e:Tic:eni n^ing, and products
rray mm be to or localy 1 circular

:f te f^tte aiw^mSKS tt Mid K> comet ^ ^,LZTI :: T.t :rjx:sd pmm so ±a: ibey lie
lite owner spiae of ite mad* We add the feature offset to the x coorfkise given by the parabola

above* wlci » t smaB-angle ^^^xiiaMte to (he p ^ w ctanectbn (II assumes ifM the costoe of tte
mgk teiwaa the tawfetf 10 the ioid and tte j axis is ̂ p w i ^ ^ I y one)*

Fiptt 5J ,.:rc -• 5 --:::,..;".;;- m i moid taa#«a§ A ^ :- He ^ ^ :>:--cns ^e^^d :n fipro 5 J .
^ - . ^ . _ . : - : - .;c-,-;.;. WmM v ^ :< ; : - z ^ ; ^ - ^ ^ ^ » H e i ^ ± dots ie

YARF 89

[nertial navigation is combined with the estimate of vehicle position from the previous image to predict feature
locations in the current image. When started, the system does not have a prediction of where to place trackers to
locate the road features. Initially we had a human operator use a cursor to select points along one feature to provide
Jie system with the initial vehicle position relative to the road. Now we are experimenting with a technique to
uitomaticaily extract candidate road features using Sobel edge detection, Hough transforms, and shared vanishing
X)int and global continuity constraints. We describe this algorithm in the next section.

Figure 5.4: Fit of road model to detected feature positions

.5 Bootstrap location of road features
There are two main techniques to compensate for incorrect segmentation results, the use of prediction to focus

-ocessing near features and the use of global constraint. In YARF's road-following mode, focusing is used, both to
duce computation cost and to reduce errors m feature location. In the absence of predictions of feature locations,
obal constraints must be used.

The features which form a straight road are parallel lines on the ground, which project into the image as lines
hieh meet at a common vanishing point In order to bandit curved roads, the road is modeled as a sequence of
raighi segments by dvidtag the image vertically into a small number of horizontal bands and approximaang the
ad as straight within each band, as Polk and Jain do 1141. In order m reduce the chances of noise in the image
adhtg 10 the selection of a spunous vanisftlng point in some of the hands, a global optimization is performed which
fees into account both the support for a given vanishing point within a band and the continuity of feamres between
Bids.

The Sobel edge dztzzior is n a on an image produced by an RGB road image. We have
green, ami blue hzn&s of tfae colorperimemed with various kinds of preprocessed images* mclu&m the

tte in&rsiv? i m p corresponding to the color I«tt§G» md the (trine minus red) Lrage. The gradient

90 ANNUAL REPORT AUGUST 1990

,71

I * , . . •

*

ait i w a k r f ^ 10 eitale i ha»y image of eandtdase ̂ p ^ ins* Any segmeatafion technique could be
used w t e i wmM p w poisa wiiere i w c aw disccwliiiutues ID ste i ^ ^ c ttoag with ao i

.v leprexmed by the cotaan vtem they cron a specified row (la Ibis case, tfae row'
r the feoraon), and she aa^e dwjr ante wife n^ect to the rows ef tfae ia«^B.GiveBfflcdgepoia(rw,^/)

^ to^^ ^tf it in ^ ^ ' - r -̂̂ . to i Mid te te

YARF 91

much of the overall lane and road structure as it can detect, rather than just a right and left road edge or road
centeriine. If given a model of the road structure so that it could label the various features found, it could steer the
vehicle down a specified lane using a pure pursuit strategy,.once again without having to have any calibration from
the image to the world other than a single gain paiameter. While relatively slow in a serial implementation, the
algorithm has a great deal of parallelism that could be exploited.

Figure 5,6 shows the results of the bootstrap algorithm on the image from figure 52. The algorithm successfully
finds the white stripes on the left and right side of the road, the double yellow line in the middle, and part of the
shoulder edge. There are a few extraneous edge segments caused by noise, for instance the tree shadow which runs
parallel to the road.

This part of the research is still very experimental, and quantitative performance results are not yet available.
Also, the issues of the best preprocessing to apply to the color image to produce the single-band image that the Sobcl
is run on, and how to set thresholds used in the algorithm are still under investigation.

So far we have described how YARF finds the location of the road in an initial image, how it locates individual
features given a prediction of the road location in subsequent images, and how it combines those new data points
into an updated estimate of the vehicle position on the toad. Next we discuss our plans to integrate feature locations
from multiple images into a local map, to reason about detected failures to locate features in order to detect changes
in the road structure and the approach of intersections, and to use the integrated local map to navigate through

Figure 5.6: Lme segnienis eximcted by ĥe vanishing point Hoogh algorithm

92 ANNUAL REPORT AUGUST 1990

5.6 Intersection navigation
In order to navigate a vehicle through an intersection, an autonomous road following system must detect that the

vehicle is approaching an intersection, use perception to locate the roads branching out from the intersection, and
plan a path from the current lane through the intersection into the desired lane of the next road segment to be
followed. More general intersection navigation capabilities than have been demonstrated in current systems require
the coordination of perceptual data from multiple images into a single local map of the intersection.

There are several reasons for this. The first is thai it gives the system a memory — once the system has detected
an approaching intersection based on the disappearance of some of the road features, it does not have to devote
processing cycles to remake this discovery on the following images. The second reason is that intersections of city
streets cover a large area compared to typical camera fields of view. The integration of perception results from
multiple images (both from the same camera over time as the vehicle moves, and from multiple cameras pointing in
different directions to cover a larger field of view) is necessary in order to create a complete model of the
intersection's geometry. Part of the NAVLAB project at CMU has been the creation of utilities to support an
annotated map for robot navigation [19]. The function of the annotated map is to provide a framework for the
communication of the results of different perception modules through a shared geometric database. YARF will use
the annotated map facility to store results from multiple images in a common coordinate system.

Our first experiments will focus on the question of whether the results from multiple images taken by multiple
cameras can be combined to produce a coherent, accurate map of the scene geometry. The coherence of data from
multiple frames taken by a moving camera (see figure 55) is promising. In our initial experiments we will run the
road following process with two different cameras at the same time and examine how well the feature positions
match between the two cameras.

The next step is to use local map data to detect the approach of an intersection. The annotated map will be used to
store information about locations where features woe not delected where they were expected. YARF will then
reason about the missing feature data to determine whether the road model has changed, whether a feature has
become obscured, whether a different segmentation technique should be switched to because of a change in feature
appearance, or whether the vehicle is approaching an intersection.

After YARF has the capaMiiy m detect that the vehicle is ̂ pEomto^ M B^oectkHi, tte &ml ̂ sq> is to create
perception strategies for locating the roads branching out of the inierseciioiL Rather thai assume complete
knowledge of the Imersecti«M geometry as the Sicfcwaflc E system diet YARF will assume only knowledge of the
feature cross-sections of the roads which meet at the Intersection, The current plan is to use a feed-forward tracking
strategy sirrikr ID ^iat usod by MARF lo follow mod features around corners and through the intersection, asmg the
feature aoss-sectkm models m predict feature locations once an initial estimate of a road branch's location is
available. YARF will toe multiple cameras to cover a wider field of view, using calibration information to track
features across the overlapping fields of m

5 J Conclusion
YARF project, jane mafe «p|ifftfityti pyflgffm pftcff f«e reported c w first fcsnfct. We have gone from MI initial

collection cf segnientaxioo techniques to focused research into robust techniques to mck different types
of road i n t t t We have ixnptentenied m a m s m & m-tiividml a inuies of road §msm locations so models of
ftmniinl gripe m b wkom spines a
and ite urn of robust sstirr^tion to improve reliability. We lmm made preliminary experimer? is in the initial
b c t t t a of tmi feataww askg- Hough llm zrxction lechniques and gttam! vanishmg point consmints. We have a
plan oT research to add imeooctim navigaacn opibl i tkf mm dm ^siem. YARF has driven die NAVLAB at

YARF 93

speeds of up to 6.75 MPH on a public road running through a golf course near campus, and we expect speed
improvements from the use of multiple processors.

Other research within the NA VLAB project at CMU has focused on planning in the domain of driving in traffic
on city streets, using a simulator (PHAROS) to provide the input of the system [16]. As the YARF project
progresses, it will provide some of the perceptual capabilities needed to transfer results from the research using the
PHAROS simulator into the real world. It provides an open ended architecture which improved segmentation
techniques can easily be plugged into to improve system performance.

5.8 Acknowledgements
Our thanks to Thad Druffel, who worked on various pieces of the system, and implemented a multiprocessor

version of YARF.

This research is sponsored by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories
under contract D AC A 76-89-C-OO14, titled "Perception for Outdoor Navigation'1 „

5.9 References
[1] Aubeft, Didier, and Thorpe, Chuck.

Color Image Processing for Navigation: Two Road Trackers.
Technical Report CMU-RI-TR-90-09, Robotics Institute, Carnegie MeUon, April, 1990.

[2] Besl, Paul X, Birch, Jeffrey B.* and Watson, Layne T.
Robust Window Operators.
In Proceedings International Conference on Computer Vision. 1988.

[3] Binford,T.O.
Survey of model-based image analysis systems,
InL 7. Robotics Research 1* 1981.

[4] Crisman, JilL
Color Vision for the Detection of Unstructured Roads and Intersections.
PhD thesis, Carnegie-Mellon University, 1990.

[5] DeMenthon, Daniel, ami Davis, Larry.
Reconstruction of a Road by Local Image Matches and Global 3D Optimization.
In Proceedings 1990 IEEE International Conference on Robotics and Automation. May, 1990.

[6\ Dickinson, S., and Davis, L.
An Expert Vision System for Autonomous Land Vehicle Road Following.
In Computer Vision and Pattern Recognition Conference. 1988.

[7] Goto, Y,, Matsuzaki, BL, Kweon, L, and Obatake, T.
CMU Sidewalk Navigation System: A Blackboard-Based Outdoor Navigation System Using Sensor Fusion

with Colored-Range Images.
In Proc. Fall Joint Computer Conference. November, 1986.

[8] Kenue, SurenderK.
LANELOK: Detection tfl^ boundaries and Vehicle Tracking Using Image-Pfcocessiiig Techniques - Part

I: Kough-Transformt Region Tracing ami Correlation Algorithms.
In SPIE Mobile Robots IV. 1989-

[9] Kemie, Ssirender K.
LANELOK: Detection ofLaneboiiiidaiiesaiid Vefakie TTradriiig Using Image-Ptocessing Tedtoriqoes

II: Template Matching Algorithms.
In SPIE Mobik Robots IV* 1989.

L

94 ANNUAL REPORT AUGUST 1990

[10] Kluge, Karl, and Thorpe, Charles E.
Explicit Models for Robot Road Following.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990* Chapter 3.

[11] Kuan, Darwin; Phipps, Gary; and Hsueh, A.-Chuan.
Autonomous Land Vehicle Road Following.
In Proceedings First International Conference on Computer Vision. June, 1987.

[12] McKeown, David M, and Denlinger, Jerry L.
Cooperative Methods for Road Tracking In Aerial Imagery.
In Proceedings Computer Vision and Pattern Recognition. June, 1988*

[13] Mysliwetz, Birger D., and Dfclonaniis, E. D.
Distributed Scene Analysis for Autonomous Road Vehicle Guidance.
In Proceedings SPIE Conference on Mobile Robots. November, 1987.

[14] Polk, Amy, and Jain, Ramesh.
A Parallel Architecture for Curvature-Based Road Scene Classification.
In Roundtable Discussion on Vision-Based Vehicle Guidance '90 (in conjunction with IROS), July, 1990.

[15] Pomerieau, Dean A.
Neural Network Based Autonomous Navigation.
Vision and Navigation; The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 5.

[16] Reece, Douglas A^ and Shafar, Sieve.
An Overview of the PHAROS Traffic Simulator.
M Proceedings cfthe Second International Conference on Road Sctfety. September, 1987.

[17] Schaaser, L. T., and Thomas, B. T.
Finding Road Lane Boundaries for Vision Guided Vehicle Navigation.
In Roundtable Discussion on Vision-Based Vehicle Guidance '90 (in conjunction with IROS). July, 1990.

[181 T l i c ^ Charles; Heber^
Vision and Navigation for the Carnegie-Mellon Navlab.
IEEE Tramacticns on Pattern Analysis and Machine Intelligence 10(3), May, 1988.

[19] Thorpe, Charles, and Go wdy, Jay.
Annotated Maps for Autonomous Land Vehicles.
In Proceedings of the DARPA Image Understanding Workshop. 1990.

120] T^k, Matthew A.; McxgraihatGr, BmM G.; Giemtaa, Keith D.; and Mana, Martin.
VTTS - A Vision System far Ammamam Land Vehicle Navigation.
IEEE JYansacikms on Pattern Analysis ami Machine Intelligence 10(3), May, 1988.

{21] U.S. Bmeaii of me Census.
Smtistiml Abstract cftke United States: 1988*
U.S. Bureau of !he Census, 1987.

Progress its Robot Road Following.
In Proceedings IEEE Internaiwnal Coherence on Robotics April, 1986.

f l d h i lA visoal iiavigaiion S}'Stem for aiiioiiomo.;os land vehicles.
JMfm f 19t7.

