
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Larch Specification of the Miro Editor

A m y M o o r m a n n Zaremski

Februa ry 25, 1991

C M U - C S - 9 I - I I I 3

School of Computer Science

Carnegie Mellon University

Pi t tsburgh, PA 15213

A b s t r a c t

The Miro visual languages [HMT+90] allow a user to specify the security configuration of a file
system and general security policy constraints. We describe our use of the Larch specification
languages [GHW85, GHM90] to specify Miro pictures and the Miro graphical editor; we include
the complete specification as an appendix.

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-
1465, Arpa Order No. 7597. The author is also supported by a fellowship from the Office of Naval Research.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. Government.

K e y w o r d s : formal specification, visual language, Larch, Miro

1 I n t r o d u c t i o n

The Miro visual languages allow a user to specify the security configuration of a file system (i.e.,

which users have access to which files) and general security policy constraints (i.e., rules to which

a configuration must conform). With the Miro editor, a user can draw both types of pictures and

invoke other Miro tools on them.

This paper describes our use of the Larch specification languages to specify the Miro languages

and editor and discusses some of the issues tha t arose from this work. This formal specification has

two main purposes: in the application domain, the specification serves as formal documentation

of and a basis for reasoning about the Miro languages and editor. In the specification domain, it

serves as a useful exercise to determine some of the strengths and weaknesses of Larch.

We begin with brief descriptions of Miro and Larch (Section 2). In Section 3, we present a

sketch of the specification, followed by a description of some of the assertions we would like to

make about the languages and editor in Section 4. Section 5 discusses some of the more general

issues tha t arose in the work, and we close with areas for further exploration and conclusions

(Section 6). The full specification is presented in the appendix. All of the trai ts have been checked

for syntactic and static semantic correctness using the Larch Shared Language (LSL) Checker.

The interface specification has been checked for syntactic and type correctness using the Generic

Interface Language checker[Ler91].

2 M i r o a n d L a r c h

2 . 1 M i r o

Miro consists of two visual specification languages, the instance language and the constraint lan

guage [HMT+90]. The meaning of a picture in the instance language is an access matr ix tha t

defines which users have which accesses to which files. Instance pictures are used to model the

specific security configuration of a particular set of users and files. The constraint language pro

vides a means for defining more general security policies to which a file system configuration must

conform. The meaning of a picture in the constraint language can be thought of as the set of

instance pictures (or the corresponding set of access matrices) tha t satisfies a particular security

constraint.

The basic elements in the instance language are boxes and arrows. Boxes that contain no other
u n s v e p - s i t y u q s a r i z s

boxes represent users and files. Boxes can be contained in other boxes to indicate groups of users

and directories of files (user group boxes may also overlap so that a user can be in more than one

group). Labeled arrows go from one box to another; the label indicates the access mode. The

relationship represented by an arrow between two boxes is also inherited by all pairs of boxes

contained in those two boxes. Arrows may be negated, indicating the denial of the specified access.

Instance ^
Q Constraint I

/Name ^

v J
label ^

Arrow Parity:
Positive Q Negative

Figure 1: The Miro editor and a sample instance picture

Figure 1 shows a typical instance picture, as drawn in the Mito editor. The positive arrow from

Alice to Alice's files indicates that Alice has read and write access to her files. The positive

arrow from Alice's friends to Alice's schedule file indicates tha t both Bob and Charlie have

read access to Alice's schedule. By default, since there is no arrow to indicate the relation between

Alice's friends and her mail file, Bob and Charlie do not have read access to Alice's other files (e.g.,

mail).

The Miro constraint language also consists of boxes and arrows, but here the objects have

different meanings: a constraint picture defines a set of instance pictures. If a given instance

2

picture satisfies the restrictions in a constraint picture, we say it is legal Different sets of constraints

can be used to describe different security policies. In a constraint picture, a box is labeled with

an expression tha t defines a set of instance boxes (for example, in Figure 2, the left-hand box

refers to the set of instance boxes of type User). There are three types of arrows, which allow us

to describe different relations between boxes in an instance picture: syntactic (solid horizontal),

semantic (dashed horizontal), and containment (solid vertical with head inside box). Additionally,

each constraint object is either thick or thin (we call the thick par t of the constraint the trigger).

The thick/ thin a t t r ibute is key in defining the semantics of a constraint picture: in general, for

each set of instance objects tha t matches the thick part of the constraint, there must be another

set of objects (disjoint from the set matching the thick par t) tha t matches the thin par t . Figure 2

shows a constraint picture which specifies tha t a user who has write access to a file should have

read access to it as well (i.e., the thick boxes and arrow must match a user u who has write access

to a file / . For each such u and / , u must also have read access to /) .

r type = User Write
Read

J
a type = File

Figure 2: A sample constraint picture

A visual language is not very useful unless there is a way to create and manipulate pictures

in the language. The Miro editor provides the facilities to create, view and modify both instance

and constraint pictures. Pictures can be saved in files and read back into the editor. The editor

also serves as an interface to other Miro tools that generate the access matr ix corresponding to an

instance picture, or translate an instance or constraint picture into PostScript form. Figure 1 shows

the Miro editor window. A user selects the type of picture and object he or she wishes to draw

from the menu along the left side of the window. Buttons in the menu provide additional editing

commands and interfaces to other Miro tools. There are some assumptions about the languages

built in to the editor. For example, all arrows in Miro pictures must be attached to boxes. The

editor maintains this condition. So, for example, if a user moves a box in the picture, all of the

arrows tha t are attached to tha t box also move.

3

2 . 2 L a r c h

We wrote our specifications using the Larch specification languages. We present a brief overview

here, and give further details as we present the specification. See [GHW85, GHM90] for more

details.

Larch provides a "two-tiered" approach to specification. In one tier, the specifier writes traits

in the Larch Shared Language (LSL) to assert state-independent properties of a program. Each

trait introduces sorts and operators and defines equality between terms composed of the operators

(and variables of the appropriate sorts). For example, the Box trait (Figure 4) introduces the sort

Bx and the operators copyJ>ox and is.on.box] five equations constrain the meaning of copy-box.

In the second tier, the specifier writes module interfaces in a Larch interface language, such as

GCIL [Ler91], an extended Generic Interface Language [Che89], to describe state-dependent effects

of a program. A requires clause states each procedure's pre-condition; an ensures clause, its post

condition; a modif ies clause lists those objects whose value may possibly change. The assertion

language for the pre- and post-conditions is drawn from LSL trai ts . Through based on clauses, a

Larch interface links to LSL traits by specifying a correspondence between (programming-language

specific) types and LSL sorts. An object has a type and a value tha t ranges over terms of the

corresponding sort.

Part of the interface specification for the editor below defines the type Editor, which is based on

the Ed sort, introduced in the EditorState t rai t . The ResizeBox procedure's pre-condition requires

tha t the set of selected objects is exactly the box tha t is to be resized (box-to-0 is a coercion

operator) . The post-condition says tha t the value of the box is updated (as defined by the set-size

and set-pos operators whose meanings are obtained from EditorState) and tha t all objects are

unselected. In a post-condition an undecorated formal, e, stands for the initial value of the object;

eJstands for the final value. The modifies clause states tha t ResizeBox may change only the editor

and no other object.

objec t miro_editor

t y p e Editor based o n Ed from EditorState

o p e r a t i o n ResizeBox (b : Box, pos : Cp, size : Cp)
requires e.selected_objs = {box_to_0(b)}
modif ies (e0bj)

4

ensures V = set_size(set_pos(b,pos),size) A
e'.selectecLobjs = {}:0S

3 T h e Specification

There are two main parts of the specification: specifying properties of Miro pictures, and specifying

the behavior of the editor. We use LSL to describe the properties of Miro pictures and GCIL to

define the editor operations that manipulate pictures.

Figure 3 illustrates how the traits of the LSL part of the specification fit together. Each oval

corresponds to a t rai t , and an arrow indicates that one trait includes another. The Box and Arrow

t rai ts define each kind of graphical object in a picture (boxes and arrows). The BasicPicture trait

introduces the picture sort and basic picture operators. In order to capture more of the structure

of Miro pictures, we define a more restricted kind of picture tha t includes the well-formedness

property (WFPicture). This includes, for example, the condition tha t arrows must be attached

to boxes. The shaded "helper" traits introduce auxiliary sorts or operators; the BandASorts trait

defines the sorts for many of the box and arrow at tr ibutes.

Pictures drawn in the instance and constraint languages are structurally very similar, so our

approach is to factor out the properties common to both languages (denoted by bold ovals in

Figure 3), and then specialize for each language (denoted by dashed ovals in the figure). The

Picllnion t rai t provides a union sort tha t allows us to talk about either instance or constraint

pictures at the editor level. At the bot tom we define the EditorTrait, which includes all the others;

it is the link between the LSL and GCIL tiers in the editor specification. In this section, we describe

the trai ts in bold ovals, the instance trai ts , and the interface specification. The appendix contains

the specification in its entirety.

3 . 1 M i r o P i c t u r e s

Boxes and arrows are the basic objects of any Miro picture. Instance and constraint pictures differ

only in the at t r ibutes of their respective boxes and arrows and in the rules for combining them

into pictures. Traits for boxes and arrows are later specialized to distinguish between instance and

constraint pictures.

The Box and Arrow t rai ts introduce sorts for boxes and arrows respectively. The important

5

main trait

instance trait

constraint trait

"helper" trait

main includes

instance includes

constraint includes

Figure 3: The dependencies of the Miro trai ts

properties of a box or arrow are its distinguishing graphical and semantic characteristics, such as

size, type or name. Larch provides a convenient shorthand for defining a sort as a collection of

at tr ibutes: the tuple.

3.1 .1 B o x

Figure 4 shows the Box t rai t , which introduces the tuple sort Bx. The sorts of each of the fields

(e.g., CoordPair and BoxType) are defined in the BandASorts t rai t . Bx contains the at tr ibutes pos

6

Box(Bx) : t ra i t
i n c l u d e s BandASorts

Bx t u p l e o f pos : CoordPair, size : CoordPair ,b.label : BoxLabel, thickness : LineThickness,
starred : Bool, box.type : Box Type

i n t r o d u c e s
copy.box : i fa —• Ite
is.on.box : CoordPair, Bx —> 5oo/

a s s e r t s

copy.box(b).pos = = ft.pos
copy.box(b).size == b.size
copy .box (6). thickness == b.thickness
copy, box (b). starred == b.starred
copy.box (b). box.type == b.box.type

Figure 4: The Box trait

and size, which specify the position and size of the box in the p ic ture 1 . We assume tha t pos specifies

the coordinates of the bo t tom left corner of a box, and tha t size specifies the width and height of a

box. The b.label a t t r ibute will be customized for instance and constraint boxes; thickness, starred

and box.type further define the appearance and semantics of the box.

The Box t rai t also introduces operators on boxes. The tup le notation in Larch automatically

produces the generator for the tuple sort: an operator tha t takes as its arguments all of the

at t r ibutes of the sort and produces something of the tuple sort. The operator is [. . .], which in

this case has the following signature:

[__, __, __, _, : CoordPair, CoordPair, BoxLabel, LineThickness, Bool, BoxType Bx

The tuple shorthand also produces operators of the form b.field and set.jield(b, field.val) for each

field field (where b is of sort B and field.val is the same sort as the field field), b.field returns the

value of the field field, and set-field(bffield.val) returns a tuple tha t is equal to b except for the field

field, which has value field.val.

In the in troduces clause of the trai t , we declare operators on the box sort Bx. The reason we

even need a copy.box operator as opposed to relying on Larch's built-in equality operator for all

sorts is tha t not all values of all fields are the same when one box is a copy of the other. One issue

1The CoordPair sort is denned in the BandASorts trait as a tuple (pair) of integers

7

in the design of the editor was whether a copy of a box should have the same label or a default label

(the empty string). Thus for copy.box we write equations only for the fields we require to be the

same, and allow the values of the other fields (in this case bJabet) to be specified in another trait

or at the interface level. Is.on.box is intended to return true if the coordinate is "on" (or within

some small delta of) any point on the outline of the box. We leave this operator unspecified.

Boxes in the instance language differ from those in the constraint language in two ways. First,

the sorts of some of the at tr ibutes are different. Namely, an instance box's label is a string whereas

a constraint box's label is "box descriptor" - a boolean expression tha t describes a set of boxes. We

specify this difference by using the generic sort BoxLabel in the Box trait ; then in the InstanceBox

t rai t , we rename BoxLabel with the sort Str (for strings) and in the ConstraintBox t ra i t , we rename

it with the sort BoxDesc (for box descriptors).

The second difference is tha t some attr ibutes of the box tuple are meaningful for only constraint

pictures and hence are unnecessary for instance pictures. For example, thickness is unnecessary for

instance boxes. We could avoid unnecessary field names if either Larch provided a mechanism to

extend (subtype) records or we were willing to use nested records (see Section 5). However, since

there are only a few of these at tr ibutes, we instead specify all of the at tr ibutes in the box sort, and

then define separate operators to create instance and constraint boxes, specifying default values

where necessary.

3.1 .2 A r r o w

The Arrow t rai t is similar to the Box t rai t , but with some additional fields to reflect these additional

parameters (Figure 5). The parity field indicates whether an arrow is positive or negative, and kind

determines the type of an arrow.

The fields from.box and to.box are the boxes to which the tail and head of the arrow are

connected. In the Miro languages, the head and tail of every arrow must be attached to a box;

actual locations (i.e., coordinates) of arrows are not important . The sort of the boxes (Bx) is not

defined in this t rai t , although the intent is tha t it is the same as the sort Bx in the Box trait

(as indicated by the a s s u m e s clause). The InstanceArrow and Constraint Arrow t rai ts include the

InstanceBox and ConstraintBox t rai ts , respectively, to satisfy this assumption.

8

Arrow (Ar) : trait
includes BandASorts
assumes Box(Bx)

Ar tuple of kind : ArrowKind, aJabel : Str,parity : Parity, thickness : LineThickness,
starred : Bool, from-box : Bx, to.box : Bx

introduces
copy.arrow : Ar —»

asserts
V a : Ar

copy .arrow (a), kind == a. kind
copy .arrow (a), parity == a.parity
copy.arrow (a).thickness == aAhickness
copy .arrow (a), starred == a.starred
copy .arrow (a), from.box == copy .box (a. from.box)

copy.arrow (a), to.box == copy .box (a. to.box)

Figure 5: The Arrow trait

InstanceBox (IB) : trait
includes String(Str for C, null .string for new), Box (IB, Str for BoxLabel)

asserts
V t'6 : 7 5

copy .box (ib).b.label == null.string

Figure 6: The InstanceBox trait

3.1 .3 I n s t a n c e B o x and I n s t a n c e A r r o w

On top of these general traits we define the specific traits for the Instance and Constraint languages.

Figures 6 and 7 show the InstanceBox and InstanceArrow t rai ts , respectively. The InstanceBox

trait includes the Box trait and the String trait from the Larch Handbook. The inc ludes clause

lets us use all sort and operator names from the included traits with appropriate renamings. E.g.,

the renaming of sort identifiers in the Box trait gives us the sorts IB for instance boxes and Str for

box labels. Recall tha t we used the BoxLabel in the Box trait as a "place-holder" for the sort of

labels on boxes, since instance boxes have a different sort of label than constraint boxes. The trait

also contains an additional equation for copy.box tha t specifies copy.box(ib) should result in a box

whose label is an empty string.

9

InstanceArrow : trait
includes InstanceBox, Arrow(IA, IB for Bx)

Figure 7: The InstanceArrow trait

The InstanceArrow t rait includes both InstanceBox and Arrow. By renaming IB for Bx in

Arrow, the sort used for the from- and to-boxes of instance arrows is IB, the same sort as for the

instance boxes.

3.1 .4 B a s i c P i c t u r e

BasicPicture(Pic) : trait

includes Box, Set(Bx, BxSet), Arrow, Set(Ar, ArSet)

introduces
create.picture :—• Pic
insert.box : Pic, Bx —• Pic
insert.arrow : Pic,Ar —• Pic
move.all.boxes : Pic, CoordPair —» Pic
copy.picture : Pic —• Pic
pic.union : Pic, Pic —• Pic
delete.box : Pic, Bx —• Pic
delete.arrow : Pic,Ar —• Pic

&oxes : Pic —> BxSet % observers
arrows : Pic —• ^4rSe£
arrows.attached.to.box : Pic, Bx —> ArSet
arrows.attached.to.boxes : Pic, BxSet —• ArSet
is.on.a.box : CoordPair, Pic —> Boo/
box.at : CoordPair, Pic —• Bx

asserts
Pic generated by create.picture, insert.box, insert.arrow
Pic partitioned by boxes, arrows

Figure 8: Signatures from the BasicPicture trait

A Miro picture is essentially a collection of boxes and arrows. The BasicPicture trait introduces

the picture sort Pic as well as basic operators on pictures. Figure 8 shows the signatures from the

BasicPicture t rai t . The includes statement includes traits for boxes, sets of boxes, arrows, and

sets of arrows. The Set trait is defined in the Larch Handbook; the renaming of sort identifiers in

the first Set trait gives us the sort BxSet for sets of items of sort Bx and all other set operators. Sets

10

of arrows (ArSet) are similar. The operators tha t generate a picture are createjpicture, insert.box,

and insert-arrow. We define each of the remaining operators in the trait with equations in the

asserts clause (see appendix for the complete BasicPicture t ra i t) . We now discuss some of these

equations.

Move-all-boxes (pic, delta) moves each box in the picture pic by delta. The picture is either

empty, the result of inserting a box, or the result of inserting an arrow (since these are the three

generating operators) . We write equations for each of these cases, as shown in Figure 9. The second

equation states tha t if the picture argument to move-all-boxes is the result of inserting a box b in

a picture pic then the result of move-all-boxes is the picture formed by changing the position of b

and inserting tha t new (moved) box value into the result of move-all-boxes (pic, delta). Since we

only wish to move boxes and not arrows, the third equation simply inserts the (unchanged) arrow

into the result of moving the boxes in pic.

move-all-boxes (create-picture, delta) == create-picture
move-all-boxes (insert-box (pic, b), delta) ==

insert-box(move-all-boxes(pic, delta), set-pos(b,b.pos + delta))
move-alLboxes(insert-arrow(pic,a), delta) ==

insert-arrow (move-all-boxes(pic, delta), a)

Figure 9: Equations for move-all-boxes

Copy-picture is similar to move-alLboxes, although with copy-picture (pic), we wish to create a

new picture tha t is a copy of pic. Thus, for each box and arrow in pic, we must insert a copy of

tha t object in the resulting picture (recall tha t a copy of a box or arrow has different values for

some of its fields).

Later t rai ts use the pic-union operator to perform the higher-level copy operation. The result of

pic-union(picl}pic2) is a picture tha t contains all the boxes and arrows of pic 1 and pic2. Figure 10

shows the equations for pic-union.

pic-union(create-picture, pic 2) == pic2

pic-union(insert-box(pic,b),pic2) == pic-union(pic1, insert-box(pic2, b))
pic-union(insert-arrow(pic,a),pic2) == pic-union(pic1, insert-arrow(pic2, a))

Figure 10: Equations for pic-union and createjpicturesets

With delete-box (and delete.arrow), the result is a picture with the appropriate box (or ar

row) deleted. Thus , our equations check to see whether the current object is the one we wish to

delete. We also leave the result of delete-box (create-picture, b) and delete.arrow(create-picture, a)

11

unspecified, since terms tha t would produce error values are typically left unspecified and handled

appropriately at the interface level. The equations for delete-box are shown in Figure 11.

delete-box (insert-box (pic, b), 61) = =
if b = bi then pic
else insert-box(delete-box(pic,bi),b)

delete J>ox(insert-arrow(pic, a), b) ==
insert-arrow (delete-box (pic, b), a)

Figure 11: Equations for delete-box

Boxes, arrows, arrows-attached-to-box, is.on-a-box, and box-at are observer operators; they

return information about a picture. Boxes and arrows return the set of boxes and arrows in a picture

respectively; their equations are very straightforward. Arrows-attached-to-box(pic,b) returns the set

of arrows in pic tha t are attached to b. Arrows-attached-to-boxes(pic,bs) returns the set of arrows

tha t are attached to any box in the set bs; i.e., the union of the arrows attached to each box in the

set. Figure 12 shows the equations for these last two operators.

arrows-attached-to-box (create-picture, bi) —— {}
arrows-attached-to-box (insert-box (pic, b),bi) ==

arrows-attached-to-box (pic, bi)
arrows-attached-to-box (insert-arrow (pic, a), b\) ==

if (((a.from-box) = &i)V
((a.to-box) = 61)) then
insert(arrows-attached-to-box(pic, b\),a)
else arrows-attached-to-box(pic, &i)

arrows-attached-to-boxes (pic, {}) == {}
arrows .attached-to-boxes (pic, insert(bs,b)) ==

arrows-attached-to-boxes(pic, bs)U
arrows-attached-to-box (pic, b)

Figure 12: Equations for arrows-attached-to-box and arrows-attached-to-boxes

Is-on-a-box(cp, pic) is simlar to arrows-attached-to-box; it checks each box in pic to see whether

cp is on tha t box and returns true if cp is on some box in pic. The final operator in BasicPicture

is box-at (Figure 13), which returns the box at the coordinate cp if such a box exists.

12

box-at(cp, insert-box(pic,b)) ==
if is-on.box(cp, b) then b
else box .at (cp, pic)

box-at (cp, insert .arrow (pic, a)) == box-at(cp, pic)

Figure 13: Equations for box.at

3.1.5 O b j a n d C h a n g e A t t r

There are two characteristics of pictures tha t we chose to separate into individual trai ts to avoid

an even longer picture trai t . The Obj trait defines two new sorts tha t are useful in manipulating

objects in a trait regardless of whether they are boxes or arrows; the ChangeAttr trait introduces

sorts and operators to change an arbitrary at t r ibute in a box or arrow tuple.

Since many of the picture operators are essentially the same for both boxes and arrows, we

would like to operate on objects or sets of objects rather than having separate operators for boxes

and arrows in a picture. For example, selecting an object does not depend on whether tha t object

is a box or an arrow, so we would like a single operator to select either a box or an arrow. The Obj

trait (Figure 14) introduces the new sorts Ob, a union of the box and arrow sorts, and ObjSet, a

set of objects.

The un ion o f shorthand provides coercion operators between the union sort and its component

sorts. So the union declaration:

Ob union of box : Bx, arrow : Ar

produces operators with the following signatures:
box : Bx Ob
arrow : Ar —> Ob

box : Ob —> Bx
arrow : Ob —» Ar

tag : Ob —* Ob-tag % where Ob-tag enumeration of box, arrow

The operators box (and arrow) coerce a box (or arrow) to an object, .box (and .arrow) coerce

an object back to a box (or arrow), and tag is used to determine whether an object is a box or an

arrow.

The Obj t rait also introduces operators to manipulate sets of objects. The operator objects

returns the set of all objects in a picture; boxes and arrows extract the sets of boxes and arrows

from a set of objects. The operator toggle-in adds the specified object to a set of objects if it is

not already in it , otherwise it deletes the object. The editor trait uses toggle-in to maintain a set

of selected objects in a picture.

13

: trait

includes Set(Ob, ObjSet)
assumes BasicPicture(Pic)

Ob union of box : Bx, arrow : Ar

introduces
objects : Pic —• ObjSet
boxes : ObjSet —• BxSet
arrows : ObjSet —» ArSet
toggle Jn : ObjSet, Ob —> ObjSet

asserts
V b : Bx, bs : BxSet, a : Ar, as : ArSet, obj : Ob, os : ObjSet, pic : Pic

objects(create -picture) == {}
objects(insert.box(pic,b)) == insert(objects(pic),box(b))
objects(insert-arrow(pic,a)) == insert(objects(pic), arrow(a))

boxes({}) == {}
boxes(insert(os, obj)) ==

if tag (obj) = box then insert (boxes (os), obj.box)
else boxes (os)

arrows ({}) == {}
arrows (insert(os, obj)) ==

if tag(obj) = arrow then insert(arrows(os), obj .arrow)
else arrows(os)

toggle Jn(os, obj) ==
if 067* E 05 then os — { 0 6 ; }
else os U { 0 6 ; }

implies
converts objects, boxes : ObjSet —* BxSet, arrows : ObjSet —» ArSet, toggle

Figure 14: The Obj trait

14

3.1 .6 C h a n g e A t t r

ChangeAttr : trait

assumes Box, Arrow, Obj

Label enumeration of b-label, a-label, thickness, starred,pos, size,
parity, from .box, to-box, kind, box-type

Value union of bool : Bool, cp : CP, box-label : BoxLabel, str : Str,
b : Bx, arrow-kind : ArrowKind, line-thickness : LineThickness,
parity : Parity, bt : BoxType

introduces
valid-attr : Label, Ob Bool
valid-value : Value, Label —> Bool
change-attr : Ob, Label, Value —• Ob

Figure 15: Signatures from the ChangeAttr trait

The ChangeAttr t rai t (Figure 15) contains the specification for the change-attr operator, which

takes an object (obj), field name , and value, and returns a new object tha t is the same as obj

except tha t it has the new value for the field fieldname. We would like to specify change-attr with

the following simple equation:

change-attr (obj, fieldname, value) == set-fieldname (obj, value)

But there are two problems with this equation. First, Larch does not permit "structured names."

Tha t is, we cannot put a field name (fieldname) in our operator names. Instead, we must use a

large if-then-else statement to cover each possible field. Second, the object and value parameters

to change-attr are union sorts (obj is a union of the box and arrow sorts and value is a union of all

possible field sorts), so we must check whether the object is a box or an arrow and wrap coercion

operators around obj and value.

Change-attr thus becomes one big two-layer if-then-else clause, first on object sort (box or

arrow), then on label name. For each valid object/label pair, there is a clause to do the appropriate

coercions and assign the value to the appropriate label. For example, if obj is a box and fieldname

is pos, then the first case of change-attr is matched, and the object returned is the result (coerced

to object) of changing the pos field of the obj (coerced to box) to the value value (coerced to cp).

Figure 16 shows the first case of the change-attr operator.

15

change.attr(obj, fieldname, value) ==
% boxes
if (tag(obj) = box) then

if (fieldname = pos) then
box(set.pos(obj.box, value.cp))

else ...

Figure 16: Par t of the equation for change.attr

We also define the operators valid.attr and valid-value; these define which at tr ibutes are valid

for each object and which labels are of which sorts, respectively. These are used to ensure tha t all

the values are valid before calling change.attr in the interface specification.

16

3.1 .7 W F P i c t u r e

With the BasicPicture t ra i t , we have introduced the picture sort, Pic, and the basic operators on

pictures. However, in the Miro languages and editor we add an additional constraint that pictures

be well-formed. One well-formedness condition is tha t the ends of each arrow be connected to boxes.

There are some additional semantic well-formedness conditions (e.g., tha t arrows must go from user

boxes to file boxes), but for this specification, we assume only the arrows-attached constraint.

WFPicture(Pic) : trait
includes BasicPicture(Pic), Obj, ChangeAttr

introduces
extract-wf : ObjSet —• Pic
delete-objs : Pic, ObjSet —» Pic
delete jwf J>ox : Pic,Bx —• Pic
delete-wf -arrow : Pic,Ar —• Pic
delete-arrows : Pic, ArSet —• Pic

arrows-attached : Pic, ArSet —• Bool
arrow-attached : Pic,Ar —• Bool
well-formed : Pic —• Bool

Figure 17: Signatures from the WellFormedPicture trait

The Well-Formed Picture trait (Figure 17) introduces operators that define well-formedness

properties and new "well-formed" versions of the operators tha t create and modify a picture. In

many cases, the result of a well-formed operator differs from the result of its non-well-formed

counterpart . For example, deleting just a box may violate well-formedness, since it could result in

"dangling" arrows. Hence, deletejwf-box must delete all attached arrows before deleting the box.

Thus, we introduce an additional operator, delete-arrows, to delete a set of arrows from a picture,

and define delete-wf-box to be the result of deleting all the arrows attached to the box as well as

the box. Both delete.wf-box and delete.wf-arrow delete the box or arrow only if it is in the picture.

The operator delete.objs uses delete.wf-box and deletejwf-arrow to return a picture tha t is the result

of deleting a set of objects in a well-formed manner. For each object in the set of objects to be

deleted, it checks to see whether the object is a box or an arrow and then uses the appropriate

operator. The equations for delete.objs and deletejwf-box are shown in Figure 18.

Well-formedness also explains why we define the operator move-boxes as opposed to move-objects

in the BasicPicture t rai t . Just moving an arrow could result in the head or tail of tha t arrow not

touching a box, so this is not allowed; similarly, if a box to which an arrow is attached moves, the

17

delete-objs(pic, {}) == pic
delete-objs(pic, insert(os, obj)) ==

if tag(obj) = box then delete-objs (delete-wf -box (pic, obj.box), os)
else delete-objs (delete-wf-arrow (pic, obj.arrow), os)

delete-wf -box (pic, b) ==
delete-box (delete-arrows (pic, arrows-attached Jo-box (pic, b)), b)

Figure 18: Equations for delete-objs and delete-wf-box

end of the arrow must also move to remain attached, regardless of whether the arrow was selected.

The operator extract-wf returns a picture tha t is the maximal well-formed subset of a set of

objects. The editor interface specification uses extract-wf to define the behavior of the CopyObjs

operation. The set of objects to be copied describes a sub-picture, which may or may not be

well-formed. The result of extract-wf(os) is a picture tha t contains all the objects of os except the

"dangling" arrows (i.e., arrows tha t are not attached to boxes in os). Since extract-wf depends on

information about other objects in os, we cannot define it in terms of the set constructors. Instead,

we define which boxes and arrows are in the picture returned by extract-wf (Figure 19).

boxes(extract-wf(os)) == boxes(os)
a 6 arrows(extract-wf(os)) ==

(a £ arrows(os)) A
((a.to-box) € boxes(os)) A
((a.from-box) 6 boxes(os))

Figure 19: Equations for extract-wf

Note tha t although the well-formed operator is introduced in this t rai t , it is not defined.

This is because instance and constraint pictures may have different notions of well-formedness.

A well-formedness condition tha t is common to both instance and constraint pictures is that all

arrows must be attached to boxes. This condition is defined in the arrows-attached operator. Ar

rows-attached checks a set of arrows in a picture to see tha t all of them are attached. It uses

arrow-attached to check each arrow in the set. Figure 20 shows the equations for arrows-attached

and arrow-attached.

3.1.8 W F I n s t a n c e P ic

The WFInstancePic trait (Figure 21) includes the InstanceBox and InstanceArrow t ra i ts , and the

WFPicture t rai t with appropriate substitutions and introduces the createJbox and createJarrow

operators. These operators are defined in the WFInstancePic and WFConstraintPic t rai ts rather

18

arrows.attached (pic, {}) == true
arrows.attached (pic, insert(as,a)) ==

arrow .attached (pic, a) A arrows.attached (pic, as)

arrow.attached (pic, a) ==
(((a.Jo_&ox) £ boxes(pic)) A ((a.from.box) £ fcoxes(pic)))

Figure 20: Equations for arrows .attached and arrow.attached

WFInstancePic : trait
includes InstanceBox, InstanceArrow,

WFPicture(IPic, create.instance.pic for create.picture, IB for Bx,
JBSe* for BxSet, Str for LabelSort, 1A for Ar,IASet for ArSet,
10 for Ob,IOSet for ObjSet)

introduces
create.ibox : CP, CP, Str, BoxType -» TP
create.iarrow : IB, IB, Parity, Str —• ZA
ambiguous : /Pic —* Poo/

asserts
V ipic : /Pic , c p l 5 cp 2 • CP,parity : Parity, label : Str,b,b\ : i B , : BoxType

create.ibox(cp1, cp2, label, bt) ==
[cpx, cp2, label, thin, false, bt]

create.iarrow{b,b\,parity, label) ==
[syn, label, parity, thin, false, b,b\]

well.formed(ipic) == arrows.attached(ipic, arrows(ipic))

implies
converts create.ibox, create .iarrow, well.formed

Figure 21: The WellFormedlnstancePicture trait

than the BasicPicture t rait because they require different arguments for the different languages.

Namely, in the constraint language, there are more parameters for the constraint-specific fields

(thickness and starred for boxes and arrows, plus kind for arrows). We specify default values for

these fields in the WFInstancePic t rai t . The equation for well.formed specifies tha t a picture is

well-formed if all arrows in the picture are attached. If we were to add additional well-formedness

conditions, we could define an additional operator for each condition; well.formed (pic) would then

be a conjunction of these conditions.

We also introduce the operator ambiguous. Because there are both positive and negative arrows

19

in the instance language, it is possible to draw pictures that we call ambiguous. Essentially a

picture is ambiguous if there are both positive and negative arrows concerning a user box and

a file box such tha t one arrow does not clearly override the others. The semantics of ambiguity

are well-defined[MTW90]. Rather than reproduce them in the specification, we simply declare the

operator. The Miro editor enforces well-formedness, but does not require tha t the pictures drawn

are always unambiguous. For this reason, we cannot write welLformed as alLarrows-attached(ipic)

A -iambiguous(ipic).

3.1 .9 P i c l l n i o n

Most of the editor operations will be performed on both instance and constraint pictures. For

example, moving a collection of boxes behaves the same regardless of whether the picture is an

instance picture or a constraint picture. Rather than duplicate the entire interface, we use the

same technique as we did in the Obj trait for handling operators on both boxes and arrows: we

introduce a union type, P , of the instance and constraint picture sorts, and operators on P tha t

simply check the type and coerce and call the appropriate instance/constraint operators. We also

introduce union sorts for each other sort tha t is a parameter of or is returned by these operators

and is not the same for instance and constraint pictures (i.e., .0, A, 0 , and BL). Figure 22 shows

the signature for the Picllnion t rai t . By providing a union sort P and the appropriate operators,

our editor can now work on either type of Miro picture.

20

PicUnion : trait
includes WFInstancePic, WFConstraintPic, Set(A, ASet),

Set(B,BSet),Set(0,OS)

PicType enumeration of inst.pic, const.pic
B union of ibox : IB, cbox : CB
A union of iarrow : IA, carrow : CA
0 union of iobj : 10, cobj : CO
P union of instance : IPic, constraint : CPic
BL union of ilabel : Str, clabel : BoxDesc

% picture type
% box union

% arrow union
% object union

% picture union
% box label

introduces
— iobjset : OS -* IOSet
—cobjset : OS -+ COSet
iobjset : IOSet -* OS
cobjset : COSet OS
box.to.O : B -> O
set.pos : B, CoordPair —• B
—pos : B —• CoordPair
set.size : B, CoordPair —• P
—size : B —• CoordPair
create .picture : PicType —• P
insert.box : P , P —• P
insert.arrow : P, A P
copy.picture : P —» P
pic.union : P , P —• P
is.on.a.box : CoordPair, P —* Poo/
box.at : CoordPair,P —• P
ofcjecte : P -+ OS
boxes : 0 5 -» B5e*
toggle.in : 0 5 , O -> OS
valid.attr : Label, O —> Poo/
change.attr : O, Label, Value —• O
create.box : PicType, CoordPair, CoordPair, BL, LineThickness, Bool, BoxType -> P
create.arrow :
PicType, B, B, Parity, Str, ArrowKind, LineThickness, Bool -* A
move.all.boxes : P , CoordPair —• P
delete.objs : P , 0 5 P
extract.wf : PicType, OS —> P
well.formed : P —» Poo/

Figure 22: Signatures from the PicUnion trait

21

Recall tha t the union of shorthand introduces coercion operators, as well as a tag operator

(Section 3.1.5). As an example of how the coercion operators are used in Picllnion, consider the

insert-box operator. The equations for insert-box (Figure 23) consist of checking to see whether

the picture is an instance or constraint, performing the corresponding instance/constraint operator

on the (coerced) picture, and then coercing the result back to a picture. Note tha t these equations

assume tha t if p is instance then 6 is ibox (and similarly for constraint).

insert-box (p,b) ==
if tag(p) = instance then instance(insert-box(p.instance, b.ibox))
else constraint {insert-box {p. constraint, b.cbox))

Figure 23: Equation for insert-box

In addition to the explicitly declared union types for boxes, arrows, objects, pictures, and box

labels, we also wish to use sets of boxes, arrows and objects as unions. For example, OS is the sort

for a set of O values (object unions). We need to be able to "coerce" terms of sort OS to terms of

sort 10Set or COSet, since many of the operators take object sets as arguments. Thus, we define

our own "coercion" operators for object sets and box sets, assuming tha t objects in a set will be

either all instance objects or all constraint objects. Figure 3.1.9 shows the equations for iobjset

and iobjset

({}).iobjset == {}
(insert(os,obj)).iobjset == insert(os.iobjset, obj.iobj)
iobjset({}) == {}
iobjset(insert(ios, io)) == insert(iobjset(ios),iobj(io))

Figure 24: Equations for iobjset and iobjset

Objects and delete-objs are two examples of operators tha t use these set coercion operators;

their equations are shown in Figure 25.

objects(p) ==
if tag(p) = instance then iobjset (objects (p. instance))
else cobjset(objects(p.constraint))

delete-objs(p, os) ==
if tag(p) = instance then instance(delete-objs(p.instance, os.iobjset))
else constraint (delete-objs (p. constraint, os.cobjset))

Figure 25: Equations for objects and delete-objs

22

3 . 2 M i r o E d i t o r

Given this model of the Miro languages, we now build a description of the Miro editor. We begin

by establishing a model of the editor s tate at the trait level. The interface level specification then

introduces the editor operations defined in terms of changes to tha t s tate . Much of the lower-level

detail (e.g., mapping to mouse and keyboard actions and how text interaction works) is assumed.

Many of these details are described in the informal specification of the editor found in the Editor

User's Guide[Zar90].

The basic Miro editor interface is straightforward. Along the left side of the editor window,

there are several sets of objects and but tons tha t allow the user to specify the kind of picture he or

she wishes to draw (instance or constraint), the kind of object (box or arrow), and at tr ibutes of the

object (e.g., arrow pari ty) . Other but tons in the menu provide editing commands and interfaces

to other tools (I / O , ambiguity checker). The main part of the editor is the drawing region, where

the user actually draws the picture. Various mouse but tons provide additional editing commands

here (e.g., right but ton to draw an object, left but ton to select an object).

3.2 .1 LSL Level

EditorState : trait

includes Pic Union(Obj Type.Obj for 0, Box. Obj for B, Arrow. Obj for A),PixelMap

OT enumeration of box, arrow % object type

Ed tuple of pos : CoordPair, size : CoordPair,
picture : P,
picture.type : PicType,
object.type : OT,
arrow.kind : ArrowKind,
arrow.parity : Parity,
thickness : LineThickness,
starred : Bool,
selected .objs : OUS

% position info
% graphical objects

% picture type
% object mode info

% selection

introduces
display .window : Ed —• PixelMap % not defined here

Figure 26: The EditorState trait

23

The EditorState t rait (Figure 26) introduces the sort Ed, a tuple tha t we use to model the editor

s tate . The pos and size fields indicate the location and size of the editor window on the screen.

The picture field contains the current Miro picture, of sort P2 (introduced in the Picllnion t ra i t) ,

and selected-objs is the set of currently selected objects in the picture. The remainder of the tuple

describes the current "mode" of the editor (as indicated in the menus): picture-type indicates

whether the current picture is an instance or constraint picture; object-type is either box or arrow;

arrow-kind is the kind of arrow - syntactic, semantic or containment (this is only interesting for

constraint pictures); the rest of the at tr ibutes are self-explanatory. The only operator introduced

in the EditorState t rai t is display-window. Display-window is not specified here, but is intended

to be a mapping from the abstract Ed sort to an actual mapping of the pixels on a screen. This

defines the actual appearance of the editor as a function of the editor s tate . The FiniteMapping

trait is from the Larch Handbook.

3,2 .2 Interface Level

The next step of the specification is to use the properties defined in the traits to specify the

interfaces for the Miro editor operations. The semantics of the Generic Interface Language (GCIL)

are defined as predicates on state pairs; s tate is a mapping of objects to values. In GCIL, we

specify each operation in terms of its pre- and post-conditions (requires and ensures clauses).

The modif ies clause specifies which objects may be changed in the operation. GCIL uses call-by-

reference for parameter passing.

The first par t of the interface specification (Figure 27) names the object module we are spec

ifying (miro-editor), and establishes correspondences between the types of objects manipulated

in the interface and sorts in the trait-level specifications. For example, "type Box based on B

from PicUnion" introduces the type Box, which has the object sort Box-Obj and the value sort

B. This distinction between object sorts and value sorts allows us to specify both which objects

are created and what their values are. Specifically, by the renamings in the EditorState t rai t , we

define a picture to be a collection of box and arrow objects, so tha t we can use properties of -Obj

sorts to assure the uniqueness of each box and arrow in a picture, while still being able to change

the values of existing boxes or arrows. The private variable e is an implicit input parameter to

2 The renamings for the object, box, and arrow sorts are needed to allow us to manipulate objects whose values

are O, B , and A, respectively, at the interface level.

24

all operations except the initialization operation, where it is an implicit return parameter . The

invariant specifies properties tha t must be t rue after every operation and before all operations

except those named in the init ial ized by clause. The invariants s tate tha t the editor maintains the

well-formedness of a picture, and tha t the set of selected objects is always a subset of the objects

in the current picture.

objec t miro_editor
init ial ized by CreateEditor

using EditorState
t y p e Cp based on CoordPair from BandASorts
t y p e Str based on Str from String
t y p e Bt based o n BoxType f rom BandASorts
t y p e BI based on BL f rom PicUnion
t y p e Box based on B f rom PicUnion
t y p e Arrow based on A from PicUnion
t y p e ObjType based o n 0 from PicUnion
t y p e ObjSet based on OS from PicUnion
t y p e Value based o n Value from ChangeAttr
t y p e Label based on Label f rom ChangeAttr
t y p e Picture based on P from PicUnion
t y p e Editor based o n Ed from EditorState

private e : Editor

invariant (e.selected_objs C objects(e.picture))
invariant (well_formed(e.picture))

Figure 27: First part of the editor interface specification

CreateEditor (Figure 28) is the operation that gets things started. Its effect is to initialize a new

editor object with the default initial modes. The ensures clause states tha t a new object is created

whose value is the result of the [...] term. For a parameter or global variable e, we distinguish

between the values before and after the operation with the notations e and e', respectively.

DrawBox and Draw Arrow require that the editor's current object type be box and arrow respec

tively. DrawArrow (Figure 29) has additional clauses requiring the parameters cpl and cp2 to be

coordinates on some boxes in the picture. The effects of each operation are to create a new object

(box or arrow) and insert it into the picture. The values for the parameters of the create.arrow

operator come from either the parameters of the operation (e.g., cpl, cp2), or from the editor state

25

o p e r a t i o n CreateEditor (posn, size : Cp)
requires t rue
ensures n e w o b j (eQbj) A

e' = [posn, size, create_picture(inst_pic),
inst_pic, box, syn, positive, thin, false,{}:0S]

Figure 28: CreateEditor operation

(e.g., e.thickness). The ensures clause requires tha t we create a new object, a, whose value is that

of the create^arrow term, and tha t the value of the editor picture is the result of inserting a in the

previous p ic ture 3 . The n e w o b j term states tha t a is a new object; it exists after the operation

but did not exist before. By using n e w o b j in the ensures clauses of all operations tha t create

new boxes and arrows (i.e., DrawBox, Draw Arrow, and CopyObjs), we ensure the uniqueness of all

boxes and arrows in the picture.

o p e r a t i o n Draw Arrow (cpl , cp2 : Cp, label : Str)
requires e .objectJype = arrow A

is_on_a_box(cpl,e.picture) Ais_on_a_box(cp2,e.picture)
modif ies (eQbj)
ensures

3 a:Arrow
n e w o b j (a) A
alpost = create_arrow(e.picture_type, box_at(cpl, e.picture), box_at(cp2, e.picture),

e.arrow_parity, label, e.arrowJrind, e.thickness, e.starred) A
e'.picture = insert_arrow(e.picture, a)

Figure 29: Draw Arrow operation

In the editor, there are three different ways to select or unselect objects: individual select/unselect,

sweep select, and global unselect. Each of these correspond to an operation at the interface level

and effect changes to the selected.objs field of the editor. Select takes an object, obj, as a parameter.

If tha t object is already selected, it becomes unselected, otherwise it becomes selected. GroupSelect

adds a set of objects, os, to the currently selected set. If an object in os is already selected, it re

mains selected. Thus, the ensures clause states that the value of e.selected-objs after the operation

is the value of e.selected-objs before the operation unioned with os. Unselect is very straightforward:

3 We use e' for the value of the editor and alpost for the value of the arrow because GCIL's notation differs for
parameters and quantified variables.

26

there are no preconditions, and the effect of the operation is tha t the e.selected.objs set is empty.

Figure 30 shows the specifications of all three select operations.

o p e r a t i o n Select (obj : ObjType)
requires (obj £ objects(e.picture))
modif ies (e 0 t j)
ensures (e'.selected.objs = toggleJn(e.selected_objs, obj))

o p e r a t i o n GroupSelect (os : ObjSet)
requires (os C objects(e.picture))
modif ies (e0&j)
ensures (e'.selected_objs = (e.selected.objs U os))

o p e r a t i o n Unselect ()
requires t rue
modif ies (e0&j)
ensures (e'.selected_objs = {}:OS)

Figure 30: Select, GroupSelect, and Unselect operations

MoveBoxes(delta) moves each box in the set of selected objects by delta (arrows remain attached

to the same boxes). For each box object b tha t is in boxes(selected.objs), the value of b after

MoveBoxes is the result of setting the position of the box to its previous position plus delta. In the

editor, once one of these operations is performed, all objects are unselected. This is reflected in

the second clause of the ensures in each operation, which states tha t the set of currently selected

objects in the editor s ta te after the operation is empty. The specification of ResizeBox is similar,

but operates only on a single box; it takes a box as a parameter and requires tha t box be the only

object selected (box.to..O is a coercion operator) . The ensures clause changes both the position and

size of the box and unselects the box. Figure 31 shows the MoveBoxes and ResizeBox operations.

In DeleteObjs, shown in Figure 3.2.2, the operator delete.objs (defined in the PicUnion t rai t)

modifies e.picture by removing all of the selected objects. Thus, the new picture is a picture without

any of those objects, and the set of selected objects becomes empty.

The copy operation in the editor is somewhat complex because of the well-formedness constraint.

Copy operates on a subset of the currently selected objects, namely the maximal well-formed subset

(i.e., all objects except "dangling" arrows). The ensures clause of CopyObjs thus specifies a new

picture object, newpic, whose value is the result of copying the well-formed subset of the selected

objects of e.picture. The second clause states that each object in newpic must be a distinct new

27

opera t ion MoveBoxes (delta : Cp)
requires t rue
modif ies (e0&j)
ensures

V b:Box
(b £ boxes(e.selected_objs) = >

blpost = set_pos(b!pre, (b!pre).pos+delta)) A
e'.selected.objs = {}:0S

opera t ion ResizeBox (b : Box, pos : Cp, size : Cp)
requires e.selected_objs = {box_to_0(b)}
modif ies (e0ij)
ensures b ' = set_size(set_pos(b,pos),size) A

e'.selected_objs = {}:0S

Figure 31: MoveBoxes and ResizeBox operations

o p e r a t i o n DeleteObjs ()
requires t rue
modif ies (e0bj)
ensures e'.picture = delete_objs(e.picture, e.selected.objs) A

e'.selected.objs = {}:0S

Figure 32: DeleteObjs operation

object, e'.picture is then the result of combining the existing picture with newpic, which has been

moved by delta. Like the other operations, CopyObjs also unselects all objects. Figure 33 shows

the CopyObjs operation.

Although complicated at the trait level, the ChangeAttribute operation becomes one of the

"cleanest" at the interface level (Figure 34). It simply requires tha t its arguments "type check"

(i.e., tha t attr is a valid a t t r ibute of the object o, and tha t val is a valid value for attr). The

ensures clause simply states tha t the value of attr of o becomes val.

Finally^ the operation Clear (Figure 35) "erases" the current picture by setting e.picture to the

empty picture (of appropriate type) . The set of currently selected objects also becomes empty.

28

o p e r a t i o n CopyObjs (delta : Cp)
requires t rue
modif ies (e0&j)
ensures

3 newpic : Picture V o:ObjType
n e w o b j (newpic) A
newpiclpost = copy_picture(extract_wf(e.picture,e.selected>objs)) A
(o £ objects(newpiclpost) = > n e w o b j (o)) A
e'.picture = pic_union(e.picture,

move_all_boxes(newpic!post, delta)) A
e'.selected-objs = {}:0S

Figure 33: CopyObjs operation

o p e r a t i o n ChangeAttr ibute (o:ObjType, attr:Label, val:Value)
requires (valid_attr(attr , o)) A(valid_value(val, a t t r))
modif ies (oobj)

e n s u r e s (o ; = change_attr(o,attr,val))

Figure 34: ChangeAttr operation

o p e r a t i o n Clear ()
requires t rue
modif ies (e0&j)
e n s u r e s (e'.picture = create_picture(e.picture_type)) A

(e'.selected_objs = {}:0S)

Figure 35: Clear operation

29

4 Mak ing Asser t ions

The Larch Shared Language provides a way to state consequences of a t rai t ' s theory through an

impl ies clause. This clause is a good place to document additional assertions about a specificand.

The Generic Interface Language provides an invariant clause. The invariant specifies properties

tha t must be true after every operation and before all operations except those named in the

init ial ized by clause. This section describes some of the assertions we make about our specification

through the impl ies and invariant clauses.

4.1 Stating Consequences

As a simple example of the kinds of implications we can write in the Larch Shared Language,

consider the impl ies clause of the BasicPicture t rai t , shown in Figure 36. The first two equations

in the clause assert tha t copy-picture copies all the objects in the picture. We could have defined

the copyjpicture operator in the BasicPicture trait to copy only the well-formed subset but decided

it was more appropriate to specify this restriction at the interface level, leaving the trait level more

general. We add the equations about copyjpicture to the impl ies clause in order to record this

decision explicitly. Note tha t we cannot make the stronger statement tha t copyjpicture (p) == p

because when objects are copied, not all of the fields (e.g., box labels) are copied.

The converts clause in Figure 36 claims tha t the trait includes sufficient information to fully

define the operators listed, excluding the terms listed in the e x e m p t i n g clause. This means tha t , if

we fix the interpretations of the other operators and of terms matching delete.box(create..picture, b)

and delete.arrow(create.picture, a)', there are unique interpretations for the operators listed in the

converts clause.

Figure 37 shows the impl ies clause from the WFPicture t rai t . In WFPicture, we add an

assumption about the appearance of our pictures. Namely, that they are "well-formed" in the

sense tha t all arrows are attached to boxes at both ends. The trait introduces new operations that

assume they are operating on well-formed pictures to produce well-formed pictures. One operator

tha t behaves differently because of the well-formedness assumption is delete-objs. In the case where

we are deleting a box, we must also delete all arrows attached to tha t box in order to preserve

well-formedness. The last two equations in the implies clause state which boxes and arrows are

removed by delete.objs. Although this information is available in the equations for delete.objs,

stating this explicitly in the impl ies clause allows a specification reader to confirm his or her

30

implies
V p : Pic, delta : CoordPair

size(boxes(copy-picture(p))) == size(boxes(p))
size(arrows(copy-picture(p))) == size(arrows(p))

converts move.all-boxes, copy-picture, pic-union,
delete-box, delete-arrow, boxes,
arrows, arrows-attached-to-box, arrows-attached-to-boxes, is-on-a-box
exempting V b : Bx,a : Ax

delete-box (create-picture, b), delete-arrow (create -picture, a)

Figure 36: impl ies clause from BasicPicture t rai t

understanding and also can serve as a reminder to the specifier in the event the specification needs

modification.

The other assertion in the WFPicture impl ies clause states tha t a well-formed picture sort,

Pic, is a graph where boxes are nodes and arrows are edges with an appropriate renaming of the

operators. The Graph trait is defined in the Larch Handbook,

implies
Graph(Bx,Ar, Pic, create-picture for empty, insert-box for addNode,

insert-arrow for addEdge, boxes for nodes, arrows for edges)

V pic : Pic, objs : ObjSet
boxes(delete-objs(pic, objs)) == boxes(pic) — boxes(objs)
arrows (delete-objs(pic, objs)) ==

arrows(pic) — (arrows(objs) U
arrows-attached-to-boxes (pic, boxes(objs)))

Figure 37: impl ies clause from WFPicture t rait

The WFInstancePic t rai t adds an additional assertion about well-formedness and delete-objs.

Since we define the well-formedness operator in this t rai t , we also add an implication stating that

delete-objs maintains well-formedness:
V pic : IPic, objs : IOSet

(well-formed(pic) A objs C objects(pic))

welLformed(delete-objs(pic, objs))

We could also extend on our assertion in WFPicture tha t a picture is a graph. Although the

editor does not currently enforce it (and we do not specify i t) , another well-formedness condition

for instance pictures is tha t arrows go from user boxes to file boxes. If we add this requirement to

our definition of well-formedness, we can assert tha t a well-formed instance picture is a bipartite

graph.

31

4.2 Stating Invariants

At the interface level, we state two invariants. An invariant in GCIL specifies a property that

must be t rue after every operation and before all operations except those named in the initialized

by clause. The first invariant states that the set of selected objects in the picture is a subset

of the set of objects in the picture. It is fairly easy to see tha t the editor operations maintain

this property. Many of the operations (CreateEditor, Unselect, MoveBoxes, ResizeBox, DeleteObjs,

CopyObjs, and Clear) specify in their ensures clauses that ef.selected = {}. DrawBox, DrawArrow,

and ChangeAttribute do not change the set of selected objects, and either increase or do not change

the set of objects in the picture. And for Select and GroupSelect, if the invariant holds before the

operation, the requires clause ensures tha t it holds after. The selection invariant will be useful in

proving the second invariant, which states that the editor picture is always well-formed. Many of

the other Miro tools assume that the picture they are manipulating is well-formed; thus, this is an

important property.

invariant (e.selected_objs C objects(e.picture))

invariant (well_formed(e.picture))

5 Discussion

In this section, we discuss two limitations of Larch that arose out of this specification exercise, some

general lessons learned from having done the specification after the implementation, and related

work.

5.1 Why Tuples?

One important design issue was how to represent each of the graphical objects of the Miro languages.

Wha t are the essential characteristics of a box? It has such at tr ibutes as location, size and type.

Operations on boxes include creating new boxes, changing at tr ibutes of a box, copying a box, and

checking to see whether a coordinate is on a box. Larch's tup le shorthand provides much of the

functionality we want (the at tr ibutes of a box are fields of a tuple, and tuple operators include

a generator and operators to change each field). It is possible tha t knowing how the editor was

implemented influenced this choice, but we note that other graphical specifications also use tuples.

For example, the extended example in [GGH90] defines a window sort as a tuple.

32

One drawback to using tuples is tha t Larch does not permit "subtyping" of tuples. For example,

a more general approach to specifying Miro objects would have been to define trai ts for a base set

of generic graphical objects (box, text , line, arrow, . . .) , and then build the Miro object traits by

including the appropriate generic objects. But since we cannot specify tha t the Miro box sort tuple

is a subtype of the generic box sort tuple with the additional fields type and label, we would instead

have to nest tuples. The Miro box would be a tuple that has a generic box as one of its fields (say,

box)). Then, to talk about the location of a Miro box, we would have to say b.box.location.

A second example of the usefulness of tuple subtyping is in defining instance and constraint

boxes. Some of the fields in the box trait are only meaningful for constraint boxes (e.g., thick and

starred). Yet we could not define an instance box sort as a subtype of the box sort with those

additional fields. Instead, we included those fields in the general Miro box sort, even though they

are meaningless for instance boxes.

5.2 Union Sorts

Another difficulty in the specification was in moving from operators on specific sorts to operators on

a more general sort (i.e., from boxes and arrows to objects, and from instance pictures and constraint

pictures to pictures). There are places in the specification where it does not mat te r whether an

object is a box or an arrow, we just want to delete it (and similarly for instance/constraint , since the

editor can operate on either type of picture). So, if the operators copyjpicture: P —• P, copy-picture:

IPic —> IPic and copyjpicture: CPic —• CPic are defined, then ideally we would like the constraints

on copyjpicture to hold regardless of whether the picture is an instance or constraint (i.e., allow

operators to be overloaded). The solution we use in this specification is to define union sorts for

objects and pictures. This makes for two somewhat tedious traits (Objand Picllnion), but a fairly

"readable" specification overall (the alternative was to add explicit sort checking in the interface

specification in order to call the correct operator) . For copy-picture (pic), this means we must first

determine whether pic is an instance (or a constraint) picture and then coerce it to be an instance

(or constraint) picture so tha t we can apply the appropriate, more specific, copy operator, and

finally, coerce back the result into the more general picture sort, P.

Another variation of this problem arose from specifying the change-attr operator. Intuitively,

changejattr should take as arguments an object, an a t t r ibute and a value, and return a new object

tha t differs from the old only in the value of the at t r ibute . But different objects have different

33

at tr ibutes, and different at tr ibutes have different sorts, so change-attr turns out to be a long nested

if-then-else statement tha t uses union types and coercion (we discuss this in detail in Section 3.1.6).

5.3 Lessons Learned

We began writing formal specifications in parallel with designing the Miro languages and designing

and implementing of the editor. We wrote three major versions of the specification where the last

version (this one) was written after the implmentation was running. The current version itself went

through at least eight minor iterations. Writing a formal specification after an implementation has

two obvious implications. One is tha t the specification tends to be biased towards the implementa

tion; the other is tha t places for improving the implementation become clearly evident. We found

both to be true in our case.

Having already implemented a version of the editor before completing the specification, we had

tha t model of the languages and editor in mind, which led to some very implementation-biased

versions of the specification. In each subsequent iteration we removed some of the "implementation

details." We believe the final specification is relatively unbiased, but tha t we would have taken

fewer steps to get where we are had we written more of the specification before the implementation.

One example of the implementation details tha t we removed from the specification is the cor

relation between mouse actions and interface procedures. One of the issues in specifying the editor

is dealing with interactive user input. What is the best way to model a mouse? Wha t level of

detail should be represented? An initial specification modeled "mouse clicks" and a state-transition

diagram tha t kept track of the current s ta te . For each state (e.g., Waiting, Moving, Resizing) and

each mouse action (e.g., RightUp, MiddleDown), there was a rule about what the effects of the

mouse action would be. This was a bit too much detail for this specification, since we did not want

to commit a particular operation to a particular mouse but ton (or series of mouse operations).

Thus, in the current specification, we assume that the mouse operations produce some coordinate

information, which is used to produce calls to the operations specified in the interface. The Miro

Editor User's Guide[Zar90] defines the correlation between particular mouse operations and the

operations defined in the interface level.

Another example of initial bias toward the implementation is in the definition of well-formedness.

In the implementation of the editor, the condition tha t all arrows be attached to boxes is enforced

automatically by constraints on arrow objects. So in a previous version of the specification, the ar-

34

row sort A had fields for the coordinate positions of the head and tail of the arrow. The WFPicture

trait defined an operator called adjust.arrows, which took a picture and a box and adjusted those

fields based on the position of the boxes at the head and tail of the arrow. But at a more abstract

level, the coordinate information for an arrow is not important (since the boxes it is attached to

are also fields of an arrow, and the coordinates can be derived from them), and it is more accurate

to define the well-formedness property at the trait level but enforce it at the interface level, as the

current specification does.

The second observation about doing the specification after the implementation is that doing

the reverse would probably have resulted in a bet ter implementation. As partially illustrated in

the previous examples, the specification helped us to understand the languages and editor more

clearly, and to realize the essential characteristics of the languages and editor. Particularly in the

case of the editor, it is our further belief that if the work had instead progressed in the opposite

order, this understanding would have helped to create a "cleaner" editor tha t would have been

easier to implement and later modify.

One example to support this argument is our experience implementing multiple selection in the

editor. The initial implementation of the editor allowed at most one object to be selected at any

time. We extended the editor to allow selecting multiple objects while we were also working on

the specification. So we wrote an informal specification of how the set of selected objects would

be affected by each editor operation before we implemented multiple selection. The result was an

implementation of multiple selection tha t was clean, consistent and relatively easy to add to the

editor.

This specification was also useful for exploring the power and limitations of Larch as a tool

for specifying a large interactive graphical application. We discovered two limitations tha t made

the specification more difficult: the lack of tuple subtyping and operator overloading (Sections 5.1

and 5.2). But overall, we found Larch to be powerful enough to express the properties of our

application. The tools (LC and the GCIL checker) proved invaluable in locating the minor errors

in our specification through sort- and type-checking. We also found that writing such a specification

taught us to think about program behavior in a more structured and property-oriented way that

we hope will be useful in future projects.

35

5.4 Related Work

There are several Larch Shared Language specifications to read and learn from. The largest collec

tion of Larch traits of which we are aware is the Larch Handbook[GHW85]. The extended example

in[GGH90] specifies some traits for a simple windowing system. Larch (both trait and interface

levels) has also been used to specify properties of objects in a transaction-based distributed system

([Win88] and [Ler91]).

In our specification, we assumed details about how Miro pictures are represented on the screen

and what keyboard and mouse inputs activate the specified procedures. These are difficult prob

lems, but have been addressed by others: basic properties of window systems have been specified

in both Larch [GGH90] and Z [Bow89]; basic picture primitives as well as a method for specifying

user interaction are defined in [Mal82]; a display-based text editor is specified in [Suf82]. Thus, we

chose to focus at the next level of detail: properties of Miro pictures and the the editor. We have

not seen any other specifications tha t deal with an interactive graphical application.

6 Further Work and Conclusions

The specification as is depends on the structure of Miro objects and the particular behavior of the

editor. There are several axes along which it could be generalized. One possibility would be to

move from specific Miro graphical objects to more generic objects, such as boxes, lines, and text,

which could then be composed and extended to generate the particular objects for Miro. We could

use these same graphical object specifications as a general library on top of which many different

graphical languages could be specified.

A second issue is how the specification would change if we were to add or change features of the

language or editor. Adding characteristics to objects should be fairly easy, since tha t is mainly a

mat ter of extending the appropriate tuple. But in the current Arrow t ra i t , the only way to identify

ends of an arrow is by the boxes to which it is attached (there are no arrow coordinates). What if

we change the editor to allow unattached arrows? How difficult would it be to include additional

conditions in our definition of well-formed? How would our definitions of additional characteristics

of Miro pictures such as ambiguity and legality translate into Larch?

Although we have checked all par ts of the specification shown in this paper with the LSL and

GCIL checkers, we have not tried using the Larch Prover (LP) to prove any of our assertions. This

would serve both to demonstrate the correctness of parts of this specification and to explore the

36

powers and limitations of LP. A final "link" would be to show tha t the specification models the

actual editor implementation.

In conclusion, this specification has been an instructive exercise. We have learned more about

Miro and we now have a formal definition of both the language and editor. Additionally, we have

explored the Larch languages as a tool for specification.

I am particularly grateful to my advisor, Jeannet te Wing, for her patience and guidance on this

work. I would also like to thank Rick Lerner for the many conversations about LSL and GCIL, and

Allan Heydon, Mark Maimone and Doug Tygar for their extremely helpful comments on earlier

drafts. I am also indebted to Brad Myers and the rest of the Garnet group for help in implementing

the Miro editor.

37

A Miro Editor Specification

%
% BOX AND ARROW ATTRIBUTE SORTS
%
BandASorts : trait

includes Integer

CoordPair tuple of x : Int, y : Int
LineThickness enumeration of thin, thick
BoxType enumeration of user, file, unknown
Parity enumeration of positive, negative
ArrowKind enumeration of syn, sem, con

% Coordinate Point
% Line Thickness

% B o x T y p e
% Arrow Parity

% Arrow Kind

introduces
_ + __ : CoordPair, CoordPair —• CoordPair

asserts V x\, y\ : Int, cpx,cp2 : CoordPair
cPi + CP2 == [(cp1.x) + (cp2.x),(cp1.y) + (cp2.y)]

%
% BOX
%
Box(Bx) : trait

includes BandASorts

% pos is bo t tom left corner of box. size is width and height.
Bx tuple of pos : CoordPair, size : CoordPair, bJabel : BoxLabel, thickness : LineThickness,

starred : Bool, box-type : BoxType

introduces
copy.box : Bx —• Bx
is.on.box : CoordPair, Bx —• Bool

asserts
V b:Bx

% Specify Copy-Box with rules for each field.
% b Jabe l intentionally not specified here.
copy-box (b). pos —— b.pos
copy-box (b). size == b.size
copy-box (6). thickness == b.thickness
copy-box (6). starred == b.starred
copy-box (b). box-type —— b.box-type

38

%
% I N S T A N C E B O X
%
InstanceBox (IB) : trait

includes String(Str for C, null string for new), Box (IB, Str for BoxLabel)

asserts
V tb : 7 5

% Additional rules for Copy_Box:
% Do not copy label, instead set to empty string.
copyJ)ox(ib).bJabel == null string

%
% CONSTRAINT BOX
%
ConstraintBox(CB) : trait

includes Box(CB,BoxDesc for BoxLabel)

%
% A R R O W
%
Arrow(Ar) : trait

includes BandASorts
assumes Box(Bx)

Ar tuple of kind : ArrowKind, aJabel : Str,parity : Parity, thickness : LineThickness,
starred : Bool, from-box : Bx, to-box : Bx

introduces
copy .arrow : ylr —• ylr

asserts
V a :

% Copy Arrow:
% aJabe l intentionally not specified here.
copy-arrow (a).kind == a.kind
copy-arrow (a), parity == a.parity
copy-arrow (a).thickness == a.thickness
copy .arrow (a), starred = = a.starred
copy .arrow (a), from-box == copy-box (a. from-box)
copy-arrow (a).to-box == copy-box (a.to-box)

39

%
% I N S T A N C E A R R O W
%
InstanceArrow : trait

includes InstanceBox, Arrow(IA, IB for Bx)

%
% CONSTRAINT ARROW
%
ConstraintArrow : trait

includes ConstraintBox, Arrow(CA, CB for Bx)

%
% BASIC P I C T U R E
%
BasicPicture(Pic) : t r a i t

includes Box, Set(Bx, BxSet), Arrow, Set(Ar, ArSet)

in t roduces
create-picture :—• Pic
insert-box : Pic, Bx —• Pic
insert-arrow : Pic,Ar —• Pic
move-all-boxes : Pic, CoordPair —• Pic
copyjpicture : Pic —• Pic
pic-union : Pic, Pic —• Pic
delete-box : P ic , Px —• Pic
delete-arrow : Pic,Ar —• Pic

boxes : P ic —* BxSet
arrows : Pic —• Ar5e£
arrows-attached-to-box : Pic, Bx —* ArSet
arrows-attached-to-boxes : Pic, BxSet —• ArSet
is-on-a-box : CoordPair, Pic —• Poo/
box-at : CoordPair, Pic —> Px

asser ts

Pic genera ted by create-picture, insert-box, insert .arrow
Pic pa r t i t i oned by boxes, arrows

V pic,picx,pic2 : Pic, cp, delta : CoordPair,b,b\ : Bx,a,a\ :
Ar, bs : BxSet, as : ArSet

% Move All Boxes in the picture by delta.

40

move .all-boxes (create .picture, delta) == create.picture
move.all.boxes (insert.box (pic, b), delta) ==

insert.box (move.all.boxes(pic, delta), set.pos(b,b. pos + delta))
move.all.boxes(insert.arrow(pic,a), delta) ==

insert.arrow(move.all.boxes(pic, delta),a)

% Copy Picture: copy each object.
copy .picture (create.picture) —— create.picture
copy.picture (insert.box (pic, b)) ==

insert.box (copy.picture(pic), copy.box(b))
copy .picture(insert.arrow (pic, a)) ==

insert.arrow (copy .picture(pic), copy .arrow (a))

% Union of two pictures.
pic. union(create.picture, pic 2) == pic2

pic.union(insert.box(pic, b),pic2) == pic.union(pic1, insert.box(pic2, b))
pic.union(insert.arrow(pic,a),pic2) == pic.union(pic1, insert.arrow(pic2, a))

% Deleting a box or arrow is exempt for empty pictures.
delete.box (insert.box (pic, b),b\) ==

if b = 61 then pic
else insert.box (delete .box (pic, bi),b)

delete.box (insert.arrow (pic, a), b) ==
insert.arrow (delete.box (pic, b),a)

delete.arrow (insert.arrow (pic, a),a\) ==
if a = a\ then pic
else insert.arrow (delete.arrow (pic, a\),a)

delete.arrow (insert.box (pic, b), a) ==
insert.box (delete.arrow (pic, a), b)

% Return the set of boxes and set of arrows in picture.
boxes(create.picture) == {}
boxes(insert.box(pic,b)) == insert(boxes(pic),b)
boxes(insert.arrow (pic, a)) == boxes(pic)

arrows (create .picture) == {}
arrows(insert.box(pic,b)) == arrows(pic)
arrows (insert.arrow (pic, a)) == insert (arrows (pic), a)

% Arrows_Attached _To_Box:
% Find all arrows attached to a box - look at each arrow in
% picture to see whether to or from b.
arrows.attached.to.box (create.picture, bi) == {}
arrows .attached.to.box (insert.box (pic, b),b\) ==

41

arrows.attached-to-box (pic, bi)
arrows.attached.to.box (insert .arrow (pic, a), bi) ==

if (((a.from.box) = 6i)V
((a.to.box) = bi)) then
insert (arrows.attached.to.box (pic, bi), a)
else arrows.attached.to.box (pic, bi)

% Arrows _At t ached _ToJ3oxes:
% Find all arrows attached to a set of boxes - union of sets of
% arrows attached to each box.
arro ws.attached.to.boxes (pic, {}) == {}
arrows.attached.to.boxes (pic, insert(bs,b)) ==

arrows.attached.to.boxes (pic, bs)\J
arrows.attached.to.box (pic, b)

% Is_On_A_Box returns true if there exists a box b in the picture.
% such tha t is_on_box(cp,b) is t rue.
is.on.a.box (cp, create.picture) == false
is.on.a.box (cp, insert.box (pic, b)) =—

is.on.box(cp,b) V is.on.a.box (cp, pic)
is.on.a.box (cp, insert.arrow (pic, a)) == is.on.a.box (cp, pic)

% Box_at returns the box b such that is_on_box(cp,b) is t rue
% if such a box exists.
box.at (cp, insert.box (pic, b)) ==

if is.on.box(cp, b) then b
else box.at (cp, pic)

box.at (cp, insert.arrow (pic, a)) == box.at(cp,pic)

implies
V p : Pic, delta : CoordPair

% Copy .pic copies _all_ objects (this won't necessarily be t rue at wf-pic level)
size(boxes(copy.picture(p))) == size(boxes(p))
size(arrows(copy.picture(p))) == size(arrows(p))

converts move.all.boxes, copy .picture, pic.union,
delete.box, delete.arrow, boxes,
arrows, arrows.attached.to.box, arrows.attached.to.boxes, is.on.a.box
exempting V b : Bx, a : Ar

delete.box (create.picture, b), delete.arrow (create.picture, a)

42

% O B J E C T
%
Obj : trait

includes Set(Ob, ObjSet)
assumes BasicPicture(Pic)

Ob union of box : Bx, arrow : Ar

introduces
objects : Pic —• ObjSet
boxes : ObjSet —> BxSet
arrows : ObjSet —> ArSeJ
toggle Jn : ObjSet, Ob —* ObjSet

asserts
V 6 : Bx, 6s : BxSet,a : >lr, as : >lr£e£, 06; : 06 , os : ObjSet,pic : Pzc

% Form the set of all objects by recursing through the sets of boxes and arrows.
objects(create .picture) == {}
objects(insert-box(pic,b)) == insert(objects(pic), box(b))
objects(insert-arrow(pic,a)) == insert(objects(pic), arrow(a))

% Boxes/Arrows: extract box and arrow sets from set of objects.
boxes({}) == {}
boxes(insert(os, obj)) ==

if tag(obj) = box then insert(boxes(os), obj.box)
else boxes (os)

arrows({}) == {}
arrows(insert(os, obj)) ==

if tag (obj) = arrow then insert(arrows(os), obj .arrow)
else arrows(os)

% Toggle membership in set of objects (used in keeping set of
% selected objects).
toggle Jn(os, obj) ==

if obj € os then os — { 0 6 ; }
else os U { 0 6 ; }

implies
converts objects,boxes : ObjSet —• BxSet,arrows : ObjSet —» Ar Set, toggle.in

%
% CHANGE A T T R I B U T E
%
ChangeAttr : trait

43

assumes Box, Arrow, Obj

Label enumera t ion of bJabel, aJabel, thickness, starred, pos, size,
parity, from.box, to .box, kind, box .type

Value un ion of bool : Bool, cp : CoordPair, box .label : BoxLabel, str : Str,
b : Bx, arrow.kind : ArrowKind, line .thickness : LineThickness,
parity : Parity, bt : BoxType

in t roduces
valid.attr : Label, Ob —> Bool
valid.value : Value, Label —• Bool
change.attr : Ob, Label, Value —• Ob

asser ts
V fieldname : Label, value : Value, obj : Ob

% Valid Attr ibute if label is an at t r ibute in object
% valid a t t rs for box = (pos, size, bJabel , thickness,starred, boxJype)
% valid a t t r s for arrow = (aJabel , parity,from_box,
% to-box, kind, thickness, starred)
valid.attr (fieldname, obj) ==

if tag (obj) = box t h e n
((fieldname = pos) V (fieldname = size)V
(fieldname = bJabel) V (fieldname = thickness)^
(fieldname = starred) V (fieldname = box .type))
else % tag(obj)=arrow

((fieldname = aJabel) V (fieldname = parity)
V(fieldname = from.box) V (fieldname = to.box) V (fieldname — kind)
\/(fieldname = thickness) V (fieldname = starred))

% Valid Value if value is correct type for label
valid.value(value, fieldname) ==

% valid labels for bool = (starred)
if tag (value) = bool t h e n

(fieldname = starred)
% valid labels for line Jhickness = thickness
else if tag (value) = line.thickness t h e n

(fieldname = thickness)
% valid labels for parity = parity
else if tag (value) = parity t h e n

(fieldname = parity)
% valid labels for cp = (pos, size)
else if tag (value) = cp t h e n

((fieldname = pos) V (fieldname = size))
% valid labels for boxJabel = (bJabel)
else if tag (value) = boxJabel t h e n

44

((fieldname = bJabel))
% valid labels for str = (aJabel)
else if tag (value) = str then

((fieldname = aJabel))
% valid labels for b = (from.box, to_box)
else if tag (value) = 6 then

((fieldname = from.box) V (fieldname = to .box))
% valid labels for arrow Jrind = (kind)
else if tag (value) = arrow.kind then

(fieldname = kind)
% valid labels for bt = (box_type)
else

(fieldname = box.type)

% Change Attr ibute assumes valid arguments. Just huge case
% statement , first on object type, then on label
change.attr(obj, fieldname, value) ==

% boxes
if (tag(obj) = box) then
if (fieldname = pos) then

box(set.pos(obj.box, value.cp))
else if (fieldname = size) then

box(set.size(obj.box, value.cp))
else if (fieldname = bJabel) then

ftoz (set.b.label(obj. box, value. box .label))
else if (fieldname == thickness) then

box(set.thickness(obj.box, value.line.thickness))
else if (fieldname — starred) then

box(set.starred(obj.box, value.bool))
else % (fieldname=box_type) then

box (set.box Jype(obj .box, value.bt))
else % tag(obj)=arrow
if (fieldname = kind) then

arrow (set.kind(obj. arrow, value. arrow .kind))
else if (fieldname = aJabel) then

arrow(set.a Jabel(obj.arrow, value.str))
else if (fieldname = parity) then

arrow (set.parity (obj. arrow, value .parity))
else if (fieldname — thickness) then

arrow(set.thickness(obj.arrow, value.line.thickness))
else if (fieldname = starred) then

arrow(set.starred(obj.arrow, value.bool))
else if (fieldname = from.box) then

arrow(set.from.box(obj.arrow, value.b))
else % (fieldname=to_box) then

arrow (set.to.box(obj .arrow, value.b))

% tag(value) = bt

45

implies
converts valid .attr, valid.value

%
% WELL-FORMED P I C T U R E
%
WFPicture(Pic) : trait

includes BasicPicture(Pic), Obj, ChangeAttr

introduces
extract .wf : ObjSet —» Pic
delete.objs : Pic, ObjSet —> Pic
delete.wf .box : Pic, Bx —• Pic
delete.wf .arrow : Pic,Ar —• Pic
delete.arrows : Pic,ArSet —» Pic

arrows.attached : Pic,ArSet —• Poo/
arrow .attached : Pic , —• Poo/
well-formed : Pic —• Poo/ % defined in W F instance/constraint

asserts
V pic : Pic , 6 : Par, a : Ar, as : ArSet, obj : Ob, os : ObjSet

% Extract W F : keep all boxes and arrows in os whose boxes are also in os.
boxes(extract-wf(os)) == boxes (os)
a G arrows (extract .wj(os)) ==

(a 6 arrows(os))A
((a.to-box) € boxes(os))A
((a.from.box) € boxes(os))

% Delete a set of objects.
delete-objs(pic, {}) == pic
delete-objs(pic, insert(os, obj)) ==

if tag (obj) = 6ox t h e n
delete-objs(delete-wf-box (pic, obj.box), os)
else % is an arrow

delete-objs(delete-wf-arrow(pic, obj .arrow), os)

% When deleting box, delete all attached arrows first.
% If box is not in picture, just return picture.
delete.wf.box (pic, b) ==

if b € boxes(pic) t h e n
delete.box (delete.arrows (pic, arrows.attached.to.box (pic, b)), b)

else pic

% Check to see if arrow is in picture first.

46

delete.wf .arrow (pic, a) ==
if a £ arrows(pic) then delete.arrow (pic, a)
else pic

% Delete a set of arrows.
delete.arrows (pic, {}) = = pic
delete.arrows (pic, insert(as,a)) ==

delete, arrows (delete.wf.arrow(pic, a), as)

% arrows_attached(pic,as) iff each arrow in as (set of arrows) is attached.
arro ws.attached (pic, {}) == true
arrows.attached (pic, insert(as, a)) ==

arrow.attached (pic, a) A arrows.attached (pic, as)

% An arrow is attached in a picture if both of its boxes are in the picture.
arrow.attached (pic, a) ——

(((a.to.box) £ boxes (pic)) A ((a.from.box) £ boxes(pic)))

implies
% A well-formed picture is a graph.
Graph(Bx,Ar, Pic, create .picture for empty, insert.box for addNode,
insert.arrow for addEdge, boxes for nodes, arrows for edges)

V pic : P ic , : ObjSet
% The result of delete is a picture with all boxes in objs deleted,
% and all arrows attached to boxes in objs, as well as all arrows
% in objs, deleted.
boxes(delete.objs(pic, objs)) == boxes(pic) — boxes(objs)
arrows (delete.objs(pic, objs)) ==

arrows(pic) — (arrows (objs)\J
arrows.attached.to.boxes (pic, boxes(objs)))

converts arrows .attached, arrow .attached

%
% WELL-FORMED INSTANCE P I C T U R E
%
WFInstancePic : trait

includes InstanceBox, InstanceArrow,
WFPicture(IPic, create.instance.pic for create.picture, IB for Px,
iPSe* for BxSet, Str for BoxLabel, IA for Ar,IASet for ArSet,
10 for Ob, IOSet for ObjSet)

introduces
create.ibox : CoordPair, CoordPair, Str, BoxType —» TP
create.iarrow : IB, IB, Parity, Str —• ZA

47

ambiguous : IPic —*• Bool

asserts
V ipic : IPic,cp1,cp2 : CoordPair,parity : Parity,label : Str,b,b\ : IB, bt : BoxType

% Default values for thickness (thin), starred (false).
create Jbox(cpx, cp2, label, bt) ==

[cp1,cp2, label, thin, false, bt]

% default values for thick (thin), starred (false), and kind (syn)
create Aarrow(b,b\, parity, label) ==

[syn, label, parity, thin, false, b,b\]

% Well Formed.

well-formed(ipic) == arrows-attached(ipic, arrows(ipic))

implies
V pic : IPic, objs : IOSet

% delete_objs maintains well-formedness
(well-formed(pic) A objs C objects(pic))

well-formed(delete-objs(pic, objs))

converts create Jbox, create Jarrow, well-formed

%
% WELL-FORMED CONSTRAINT P ICTURE
%
WFConstraintPic : trait

includes ConstraintBox, Constraint Arrow,
WFPicture(CPic,
create-constraint-pic for create-picture,
CB for Bx,CBSet for BxSet, BoxDesc for BoxLabel,
CA for Ar, CASet for ArSet, CO for Ob, COSet for ObjSet)

introduces
create-cbox : CoordPair, CoordPair, BoxDesc, LineThickness, Bool, BoxType ~> CB
create-carrow :

CB, CB, Parity, Str, ArrowKind, LineThickness, Bool —• CA

asserts
V epic : CPic,cp1,cp2 : CoordPair,parity : Parity, thickness : LineThickness,

48

starred : Bool, kind : ArrowKind, boxlabel : BoxDesc,
arrowlabel: Str,b,b\ : CB,bt : BoxType

create.cbox(cp1, cp2, boxlabel, thickness, starred, bt) ==
[cpx, cp2, boxlabel, thickness, starred, bt]

create.carrow(b,b\, parity, arrowlabel, kind, thickness, starred) ==
[kind, arrowlabel,parity, thickness, starred, b, b\]

% Well Formed. Right now, just require tha t all arrows are attached.
well-formed (epic) == arrows .attached (epic, arrows (epic))

implies
converts create.cbox, create .carrow, well.formed

%
% P I C T U R E UNION
%

PicUnion : trait
includes WFInstancePic, WFConstraintPic, Set(A, ASet),

Set(B,BSet),Set(0,OS)

PicType enumeration of inst.pic, const.pic

B union of ibox : IB, cbox : CB
A union of iarrow : I A, carrow : CA
O union of iobj : 10, cobj : CO
P union of instance : IPic, constraint : CPic
BL union of ilabel : Str, clabel : BoxDesc

% picture type

% box union
% arrow union

% object union
% picture union

% box label

introduces
% explicit coersion functions for sets of objects
% OS ~ union of iobjset:IOSet, cobjset:COSet
^.iobjset : OS -» IOSet
^.cobjset : OS -* COSet
iobjset : IOSet -* OS
cobjset : COSet -» OS

box.to.O : B -> O

set.pos : B, CoordPair —• B
—pos : B —• CoordPair
set.size : B, CoordPair —• B
—size : B —• CoordPair

49

% operators from BasicPicture
create .picture : PicType —> P
insert J>ox : P,B —• P
insert-arrow : P,A —» P
copyjpicture : P —• P
pic-union : P, P —• P
is-on-a-box : CoordPair, P —» Poo/
box-at : CoordPair, P —• P

% operators from Picture
067'ecte :P OS
boxes : OS -+ BSet
toggle-in : OS,0 -+ OS
valid.attr : Label, O —• Poo/
change-attr : O, Label, Value —• O

create-box : PicType, CoordPair, CoordPair, BL, LineThickness, Bool, BoxType
create-arrow :
PicType, B,B, Parity, Str, ArrowKind, LineThickness, Bool —• A

% operators from WFPic ture
move-all-boxes : P, CoordPair —» P
delete-objs : P,OS -+ P
extract-wf : PicType, OS —• P
well-formed : P —» Poo/

asserts
0.9 generated by iobjset, cobjset

V p£ : PicType,p,p\ : P,b,b\ : B,a : A, cp, cpx : CoordPair, bs : PSe£, as : j45e£,
06; : 0,os : OS, labelvar : Label, value : Value, bl : BL,parity : Parity,
thickness : LineThickness,starred : Bool,str : Str,kind : ArrowKind,
bt : BoxType, ib : 7P, 165 : JPSeJ, c6 : C P , c&s : CPSe*, ios : JOSct, to : 7 0 ,
cos : CO Set, co : CO

% explicit coersion functions to convert a set of objects to a set
% of instance or constraint objects
({}).iobjset == {}
(insert(os, obj)).iobjset == insert(os.iobjset, obj.iobj)
({}).cobjset == {}
(insert(os, obj)).cobjset —— insert(os.cobjset, obj.cobj)
iobjset({}) == {}
iobjset(insert(ios, io)) == insert(iobjset(ios),iobj(io))
cobjset({}) == {}

cobjset(insert(cos, co)) == insert(cobjset(cos),cobj(co))

% explicit coersion from a (union) box to a (union) object
50

box.to.0(b) ==
if tag(b) = ibox t h e n iobj(box(b.ibox))
else cobj(box(b.cbox))

% explicit " tuple" operators for box union sort.
set.pos(b, cp) ==

if tag(b) = ibox t h e n ibox (set.pos(b. ibox, cp))
else cbox(set.pos(b.cbox, cp))

b.pos ==
if tag(b) = iftox t h e n b.ibox.pos
else b.cbox .pos

set.size(b, cp) ==
if tag(b) = i6ox t h e n ibox (set size(b.ibox, cp))
else cbox(set.size(b.cbox, cp))

b.size ==
if tag(b) = i&ox t h e n b.ibox.size
else b.cbox.size

% for each of these operators, just do coersions based on whether
% it 's an instance or constraint

create.picture (pt) ==
if (pt = inst.pic) t h e n instance (create.instance.pic)
else constraint(create.constraint.pic)

insert.box (p,b) ==
if tag(p) = instance t h e n instance(insert.box(p.instance, b.ibox))
else constraint (insert.box (p. constraint, b.cbox))

insert.arrow (p, a) ==
if tag (p) = instance t h e n instance(insert.arrow (p.instance, a.iarrow))
else constraint (insert.arrow (p. constraint, a.carrow))

copy.picture (p) ==
if tag(p) = instance t h e n instance(copy.picture(p.instance))
else constraint(copy.picture(p.constraint))

pic.union(p,pi) ==
if tag(p) = instance t h e n instance (pic.union(p. instance, pi. instance))
else constraint (pic.union (p. constraint, pi. constraint))

is.on.a.box(cp,p) ==
if tag(p) = instance t h e n (is.on.a.box (cp, p.instance))
else (is.on.a.box (cp, p. constraint))

box.at(cp,p) ==

51

if tag(p) = instance then ibox (box.at (cp, p. instance))
else cbox(box.at(cp,p.constraint))

% Can' t tell from os whether instance or constraint, so have to
% define boxes recursively.
boxes({} : OS) == {}
boxes(insert(os, obj)) ==

if tag (obj) = 106; then
if tag(obj.iobj) = box then

insert (boxes (os), ibox (obj. iobj. box))
else boxes(os)
else
if tag(obj.cobj) = box then

insert (boxes (os), cbox (obj. cobj. box))
else boxes (os)

toggle Jn(os, obj) ==
if tag(obj) = iobj then iobjset (toggle Jn(os.iobjset, obj .iobj))
else cobjset(toggleJn(os.cobjset, obj.cobj))

valid.attr(labelvar, obj) ==
if tag(obj) = iofej then valid.attr(labelvar, obj.iobj)
else valid.attr(labelvar, obj.cobj)

change.attr (obj, labelvar, value) —~
if tag (obj) = iobj then iobj (change.attr (obj .iobj, labelvar, value))
else cobj (change.attr (obj .cobj, labelvar, value))

create.box(pt, cp, cp1, bl, thickness, starred, bt) ==
if (p£ = inst.pic) then

ibox (create.ibox (cp, cp1, bl.ilabel, bt))
else

cbox (create.cbox (cp, cp1, bl.clabel, thickness, starred, bt))

create.arrow(pt,b, bi,parity, str, kind, thickness, starred) ==
if (p£ = inst.pic) then

iarrow (create.iarrow (b.ibox, b\.ibox, parity, str))
else

carrow(create.carrow(b.cbox,b\.cbox,parity, str, kind, thickness, starred))

move.all.boxes(p,cp) ——
if tag(p) = instance then instance(move.all.boxes(p.instance, cp))
else constraint(move.all.boxes(p.constraint, cp))

objects(p) ==
if tag(p) = instance then iobjset (objects (p. instance))
else cobjset(objects(p.constraint))

52

delete-objs(p, os) ==
if tag(p) = instance then instance(delete-objs(p.instance, os.iobjset))
else constraint (delete-objs(p. constraint, os.cobjset))

extract„wf (pt, os) ==
if pt = inst-pic then instance (extract.wf(os. iobjset))
else constraint(extract.wf(os.cobjset))

well .formed (p) ==
if tag(p) = instance then well-formed (p. instance)
else well-formed(p.constraint)

implies
converts box-to-0, create-picture : PicType —» P,

copy-picture : P —• P, is.on-a-box : CoordPair, P —• Poo/, iozes : 0 5 —• P5e£,
objects : P —• 0 5 , move-all-boxes : P, CoordPair —» P, well-formed : P —» Poo/

% not converted because doesn't check all coercions: insert_box, insert_arrow,
% p icun ion , toggleJn, valid_attr, change_attr, create_box, create_arrow,
% delete_objs, extract_wf

% box_at is not converted because it assumes is_on_a_box

%
% PIXEL MAP
%
PixelMap : trait

PixelValue enumeration of on, off

includes BandASorts, FiniteMapping(PixelMap, CP, PixelValue)

%
% E D I T O R S T A T E
%

EditorState : trait

includes PicUnion(ObjType-Obj for O, Box-Obj for B, Arrow-Obj for A), PixelMap

OT enumeration of box, arrow % object type

Ed tuple of

53

pos : CoordPair, size : CoordPair,
picture : P,
picture.type : PicType,
object.type : OT,
arrow.kind : ArrowKind,
arrow.parity : Parity,
thickness : LineThickness,
starred : Bool,
selected .objs : OS

% position info
% graphical objects

% picture type
% object mode info

% selection

introduces
display .window : Ed —» PixelMap % not defined here

objec t miro_editor
init ial ized by CreateEditor

using EditorState
t y p e Cp based on CoordPair from BandASorts
t y p e Str based o n Str from String
t y p e Bt based o n BoxType from BandASorts
t y p e BI based o n BL from PicUnion
t y p e Box based o n B from PicUnion
t y p e Arrow based o n A from PicUnion
t y p e ObjType based on 0 f rom PicUnion
t y p e ObjSet based o n OS from PicUnion
t y p e Value based on Value from ChangeAttr
t y p e Label based o n Label from ChangeAttr
t y p e Picture based o n P from PicUnion

t y p e Editor based on Ed from EditorState
private e : Editor

invariant e.selected_objs C objects(e.picture)

invariant well_formed(e.picture)

o p e r a t i o n CreateEditor (posn, size : Cp)
requires t rue
ensures n e w o b j (e0&j) A

e' = [posn, size, create_picture(inst_pic),
inst.pic, box, syn, positive, thin, false,{}:0S]

o p e r a t i o n DrawBox (cp l , cp2 : Cp, label : BI, bt : Bt)
requires e.object.type = box
modif ies (e0bj)
ensures

54

3 b:Box
n e w o b j (b) A
blpost = create_box(e.picture_type,cpl, cp2, label, e.thickness, e.starred, b t) A
e'.picture = insert_box(e.picture, b)

o p e r a t i o n Draw Arrow (cp l , cp2 : Cp, label : Str)
requires e .objectJype = arrow A

is_on_a_box(cpl,e.picture) Ais_on_a_box(cp2,e.picture)
modif ies (e0bj)
ensures

3 a:Arrow
n e w o b j (a) A
alpost = create_arrow(e.picture_type, box_at(cpl , e.picture), box_at(cp2, e.picture),

e.arrow_parity, label, e.arrowJdnd, e.thickness, e.starred) A
e'.picture = insert_arrow(e.picture, a)

o p e r a t i o n Select (obj : ObjType)
requires obj € objects(e.picture)
modif ies (e0bj)
e n s u r e s e'.selected_objs = toggleJn(e.selected_objs, obj)

o p e r a t i o n GroupSelect (os : ObjSet)
requires os C objects(e.picture)
modif ies (e0bj)
e n s u r e s e'.selected.objs = (e.selected_objs Uos)

o p e r a t i o n Unselect ()
requires t rue
modif ies (e0&j)
e n s u r e s e'.selected_objs = {}:0S

o p e r a t i o n MoveBoxes (delta : Cp)
requires t rue
modif ies (eQbj)
e n s u r e s

V b:Box
(b 6 boxes(e.selected_objs) = >

blpost = set_pos(b!pre, (b!pre).pos+delta)) A
e'.selected.objs = {}:0S

o p e r a t i o n ResizeBox (b : Box, pos : Cp, size : Cp)
requires e.selected_objs = {box_to_0(b)}
modif ies (e0&j)
ensures b ' = set_size(set_pos(b,pos),size) A

e'.selected-objs = {}-0S

o p e r a t i o n DeleteObjs ()

55

requires t rue
modif ies (e ^)
ensures e'.picture = delete_objs(e.picture, e.selected.objs) A

e'.selected_objs = {}:OS

opera t ion CopyObjs (delta : Cp)
requires t rue
modif ies (e0bj)
ensures

3 newpic : Picture V o:ObjType
n e w o b j (newpic) A
newpiclpost = copy.picture(extract.wf(e.picture_type,e.selected_objs)) A
(o 6 objects(newpiclpost) = > n e w o b j (o)) A
e'.picture = pic_union(e.picture,

move_all_boxes(newpic!post, delta)) A
e'.selected _objs = {}:0S

opera t ion ChangeAttribute (o:ObjType, attrrLabel, val:Value)
requires valid_attr(attr , o) Avalid_value(val, a t t r)
modif ies (o0&j)
ensures o' = change_attr(o,attr,val)

o p e r a t i o n Clear ()
requires t rue
modif ies (e 0 y)
ensures e'.picture = create_picture(e.picture_type) A

e'.selected_objs = {} '0S

56

References
[Bow89] Jonathan Bowen. Formal specification of window systems. Technical Report PRG-74,

Oxford University Computing Laboratory, June 1989.

[Che89] Jolly Chen. The Larch/Generic Interface Language. S.B. Thesis, MIT, May 1989.

[GGH90] Stephen J. Garland, John V. Gut tag , and James J. Horning. Debugging Larch Shared
Language specifications. Technical report , DEC-SRC, 1990.

[GHM90] J.V. Gut tag , J .J . Horning, and A. Modet. Report on the Larch Shared Language:
Version 2.3. Technical report , DEC-SRC, 1990.

[GHW85] J.V. Gut tag , J .J . Horning, and J .M. Wing. Larch in five easy pieces. Technical report,
DEC-SRC, 1985.

[HMT+90] Allan Heydon, Mark W. Maimone, J .D. Tygar, Jeannet te M. Wing, and Amy Moor-
mann Zaremski. Miro: Visual specification of security. IEEE Transactions on Software
Engineering, 16(10):1185-1197, October 1990.

[Ler91] Richard Lerner. Modular specifications of concurrent programs. Ph .D. thesis, Carnegie
Mellon (to be published), 1991.

[Mal82] William R. Mallgren. Formal Specification of Interactive Graphics Programming Lan
guages. ACM Distinguished Dissertation Series. The MIT Press, Cambridge, Mas
sachusetts, London, England, 1982.

[MTW90] Mark W. Maimone, J. D. Tygar, and Jeannet te M. Wing. Formal semantics for visual
specification of security. In S.K. Chang, editor, Visual Languages and Visual Pro
gramming. Plenum Publishing Corporation, 1990. A preliminary version of this paper
appeared in Proceedings of the 1988 IEEE Workshop on Visual Languages, October,
1988, pages 45-51 .

[Suf82] Bernard Sufrin. Formal specification of a display-oriented text editor. Science of Com
puter Programming, l(2):157-202, May 1982.

[Win88] Jeannet te M. Wing. Specifying Avalon objects in Larch. Technical Report CMU-CS-
88-208, CMU, 1988.

[Zar90] Amy Moormann Zaremski. The Miro editor: A user's guide. Miro Note 7, Carnegie
Mellon University, School of Computer Science, 1990.

57

