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1 I n t r o d u c t i o n 

The Miro visual languages allow a user to specify the security configuration of a file system (i.e., 

which users have access to which files) and general security policy constraints (i.e., rules to which 

a configuration must conform). With the Miro editor, a user can draw both types of pictures and 

invoke other Miro tools on them. 

This paper describes our use of the Larch specification languages to specify the Miro languages 

and editor and discusses some of the issues tha t arose from this work. This formal specification has 

two main purposes: in the application domain, the specification serves as formal documentation 

of and a basis for reasoning about the Miro languages and editor. In the specification domain, it 

serves as a useful exercise to determine some of the strengths and weaknesses of Larch. 

We begin with brief descriptions of Miro and Larch (Section 2). In Section 3, we present a 

sketch of the specification, followed by a description of some of the assertions we would like to 

make about the languages and editor in Section 4. Section 5 discusses some of the more general 

issues tha t arose in the work, and we close with areas for further exploration and conclusions 

(Section 6). The full specification is presented in the appendix. All of the trai ts have been checked 

for syntactic and static semantic correctness using the Larch Shared Language (LSL) Checker. 

The interface specification has been checked for syntactic and type correctness using the Generic 

Interface Language checker[Ler91]. 

2 M i r o a n d L a r c h 

2 . 1 M i r o 

Miro consists of two visual specification languages, the instance language and the constraint lan

guage [HMT+90]. The meaning of a picture in the instance language is an access matr ix tha t 

defines which users have which accesses to which files. Instance pictures are used to model the 

specific security configuration of a particular set of users and files. The constraint language pro

vides a means for defining more general security policies to which a file system configuration must 

conform. The meaning of a picture in the constraint language can be thought of as the set of 

instance pictures (or the corresponding set of access matrices) tha t satisfies a particular security 

constraint. 

The basic elements in the instance language are boxes and arrows. Boxes that contain no other 
u n s v e p - s i t y u q s a r i z s 



boxes represent users and files. Boxes can be contained in other boxes to indicate groups of users 

and directories of files (user group boxes may also overlap so that a user can be in more than one 

group). Labeled arrows go from one box to another; the label indicates the access mode. The 

relationship represented by an arrow between two boxes is also inherited by all pairs of boxes 

contained in those two boxes. Arrows may be negated, indicating the denial of the specified access. 

Instance ^ 
Q Constraint I 

/Name ^ 

v J 
label ^ 

Arrow Parity: 
Positive Q Negative 

Figure 1: The Miro editor and a sample instance picture 

Figure 1 shows a typical instance picture, as drawn in the Mito editor. The positive arrow from 

Alice to Alice's files indicates that Alice has read and write access to her files. The positive 

arrow from Alice's friends to Alice's schedule file indicates tha t both Bob and Charlie have 

read access to Alice's schedule. By default, since there is no arrow to indicate the relation between 

Alice's friends and her mail file, Bob and Charlie do not have read access to Alice's other files (e.g., 

mail). 

The Miro constraint language also consists of boxes and arrows, but here the objects have 

different meanings: a constraint picture defines a set of instance pictures. If a given instance 
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picture satisfies the restrictions in a constraint picture, we say it is legal Different sets of constraints 

can be used to describe different security policies. In a constraint picture, a box is labeled with 

an expression tha t defines a set of instance boxes (for example, in Figure 2, the left-hand box 

refers to the set of instance boxes of type User). There are three types of arrows, which allow us 

to describe different relations between boxes in an instance picture: syntactic (solid horizontal), 

semantic (dashed horizontal), and containment (solid vertical with head inside box). Additionally, 

each constraint object is either thick or thin (we call the thick par t of the constraint the trigger). 

The thick/ thin a t t r ibute is key in defining the semantics of a constraint picture: in general, for 

each set of instance objects tha t matches the thick part of the constraint, there must be another 

set of objects (disjoint from the set matching the thick par t ) tha t matches the thin par t . Figure 2 

shows a constraint picture which specifies tha t a user who has write access to a file should have 

read access to it as well (i.e., the thick boxes and arrow must match a user u who has write access 

to a file / . For each such u and / , u must also have read access to / ) . 

r type = User Write 
Read 

J 
a type = File 

Figure 2: A sample constraint picture 

A visual language is not very useful unless there is a way to create and manipulate pictures 

in the language. The Miro editor provides the facilities to create, view and modify both instance 

and constraint pictures. Pictures can be saved in files and read back into the editor. The editor 

also serves as an interface to other Miro tools that generate the access matr ix corresponding to an 

instance picture, or translate an instance or constraint picture into PostScript form. Figure 1 shows 

the Miro editor window. A user selects the type of picture and object he or she wishes to draw 

from the menu along the left side of the window. Buttons in the menu provide additional editing 

commands and interfaces to other Miro tools. There are some assumptions about the languages 

built in to the editor. For example, all arrows in Miro pictures must be attached to boxes. The 

editor maintains this condition. So, for example, if a user moves a box in the picture, all of the 

arrows tha t are attached to tha t box also move. 
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2 . 2 L a r c h 

We wrote our specifications using the Larch specification languages. We present a brief overview 

here, and give further details as we present the specification. See [GHW85, GHM90] for more 

details. 

Larch provides a "two-tiered" approach to specification. In one tier, the specifier writes traits 

in the Larch Shared Language (LSL) to assert state-independent properties of a program. Each 

trait introduces sorts and operators and defines equality between terms composed of the operators 

(and variables of the appropriate sorts). For example, the Box trait (Figure 4) introduces the sort 

Bx and the operators copyJ>ox and is.on.box] five equations constrain the meaning of copy-box. 

In the second tier, the specifier writes module interfaces in a Larch interface language, such as 

GCIL [Ler91], an extended Generic Interface Language [Che89], to describe state-dependent effects 

of a program. A requires clause states each procedure's pre-condition; an ensures clause, its post

condition; a modif ies clause lists those objects whose value may possibly change. The assertion 

language for the pre- and post-conditions is drawn from LSL trai ts . Through based on clauses, a 

Larch interface links to LSL traits by specifying a correspondence between (programming-language 

specific) types and LSL sorts. An object has a type and a value tha t ranges over terms of the 

corresponding sort. 

Part of the interface specification for the editor below defines the type Editor, which is based on 

the Ed sort, introduced in the EditorState t rai t . The ResizeBox procedure's pre-condition requires 

tha t the set of selected objects is exactly the box tha t is to be resized (box-to-0 is a coercion 

operator) . The post-condition says tha t the value of the box is updated (as defined by the set-size 

and set-pos operators whose meanings are obtained from EditorState) and tha t all objects are 

unselected. In a post-condition an undecorated formal, e, stands for the initial value of the object; 

eJstands for the final value. The modifies clause states tha t ResizeBox may change only the editor 

and no other object. 

objec t miro_editor 

t y p e Editor based o n Ed from EditorState 

o p e r a t i o n ResizeBox (b : Box, pos : Cp, size : Cp) 
requires e.selected_objs = {box_to_0(b)} 
modif ies (e0bj) 
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ensures V = set_size(set_pos(b,pos),size) A 
e'.selectecLobjs = {}:0S 

3 T h e Specification 

There are two main parts of the specification: specifying properties of Miro pictures, and specifying 

the behavior of the editor. We use LSL to describe the properties of Miro pictures and GCIL to 

define the editor operations that manipulate pictures. 

Figure 3 illustrates how the traits of the LSL part of the specification fit together. Each oval 

corresponds to a t rai t , and an arrow indicates that one trait includes another. The Box and Arrow 

t rai ts define each kind of graphical object in a picture (boxes and arrows). The BasicPicture trait 

introduces the picture sort and basic picture operators. In order to capture more of the structure 

of Miro pictures, we define a more restricted kind of picture tha t includes the well-formedness 

property (WFPicture). This includes, for example, the condition tha t arrows must be attached 

to boxes. The shaded "helper" traits introduce auxiliary sorts or operators; the BandASorts trait 

defines the sorts for many of the box and arrow at tr ibutes. 

Pictures drawn in the instance and constraint languages are structurally very similar, so our 

approach is to factor out the properties common to both languages (denoted by bold ovals in 

Figure 3), and then specialize for each language (denoted by dashed ovals in the figure). The 

Picllnion t rai t provides a union sort tha t allows us to talk about either instance or constraint 

pictures at the editor level. At the bot tom we define the EditorTrait, which includes all the others; 

it is the link between the LSL and GCIL tiers in the editor specification. In this section, we describe 

the trai ts in bold ovals, the instance trai ts , and the interface specification. The appendix contains 

the specification in its entirety. 

3 . 1 M i r o P i c t u r e s 

Boxes and arrows are the basic objects of any Miro picture. Instance and constraint pictures differ 

only in the at t r ibutes of their respective boxes and arrows and in the rules for combining them 

into pictures. Traits for boxes and arrows are later specialized to distinguish between instance and 

constraint pictures. 

The Box and Arrow t rai ts introduce sorts for boxes and arrows respectively. The important 
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main trait 

instance trait 

constraint trait 

"helper" trait 

main includes 

instance includes 

constraint includes 

Figure 3: The dependencies of the Miro trai ts 

properties of a box or arrow are its distinguishing graphical and semantic characteristics, such as 

size, type or name. Larch provides a convenient shorthand for defining a sort as a collection of 

at tr ibutes: the tuple. 

3.1 .1 B o x 

Figure 4 shows the Box t rai t , which introduces the tuple sort Bx. The sorts of each of the fields 

(e.g., CoordPair and BoxType) are defined in the BandASorts t rai t . Bx contains the at tr ibutes pos 
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Box(Bx) : t ra i t 
i n c l u d e s BandASorts 

Bx t u p l e o f pos : CoordPair, size : CoordPair ,b.label : BoxLabel, thickness : LineThickness, 
starred : Bool, box.type : Box Type 

i n t r o d u c e s 
copy.box : i fa —• Ite 
is.on.box : CoordPair, Bx —> 5oo/ 

a s s e r t s 

copy.box(b).pos = = ft.pos 
copy.box(b).size == b.size 
copy .box (6). thickness == b.thickness 
copy, box (b). starred == b.starred 
copy.box (b). box.type == b.box.type 

Figure 4: The Box trait 

and size, which specify the position and size of the box in the p ic ture 1 . We assume tha t pos specifies 

the coordinates of the bo t tom left corner of a box, and tha t size specifies the width and height of a 

box. The b.label a t t r ibute will be customized for instance and constraint boxes; thickness, starred 

and box.type further define the appearance and semantics of the box. 

The Box t rai t also introduces operators on boxes. The tup le notation in Larch automatically 

produces the generator for the tuple sort: an operator tha t takes as its arguments all of the 

at t r ibutes of the sort and produces something of the tuple sort. The operator is [ . . . ], which in 

this case has the following signature: 

[__, __, __, _, : CoordPair, CoordPair, BoxLabel, LineThickness, Bool, BoxType Bx 

The tuple shorthand also produces operators of the form b.field and set.jield(b, field.val) for each 

field field (where b is of sort B and field.val is the same sort as the field field), b.field returns the 

value of the field field, and set-field(bffield.val) returns a tuple tha t is equal to b except for the field 

field, which has value field.val. 

In the in troduces clause of the trai t , we declare operators on the box sort Bx. The reason we 

even need a copy.box operator as opposed to relying on Larch's built-in equality operator for all 

sorts is tha t not all values of all fields are the same when one box is a copy of the other. One issue 

1The CoordPair sort is denned in the BandASorts trait as a tuple (pair) of integers 
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in the design of the editor was whether a copy of a box should have the same label or a default label 

(the empty string). Thus for copy.box we write equations only for the fields we require to be the 

same, and allow the values of the other fields (in this case bJabet) to be specified in another trait 

or at the interface level. Is.on.box is intended to return true if the coordinate is "on" (or within 

some small delta of) any point on the outline of the box. We leave this operator unspecified. 

Boxes in the instance language differ from those in the constraint language in two ways. First, 

the sorts of some of the at tr ibutes are different. Namely, an instance box's label is a string whereas 

a constraint box's label is "box descriptor" - a boolean expression tha t describes a set of boxes. We 

specify this difference by using the generic sort BoxLabel in the Box trait ; then in the InstanceBox 

t rai t , we rename BoxLabel with the sort Str (for strings) and in the ConstraintBox t ra i t , we rename 

it with the sort BoxDesc (for box descriptors). 

The second difference is tha t some attr ibutes of the box tuple are meaningful for only constraint 

pictures and hence are unnecessary for instance pictures. For example, thickness is unnecessary for 

instance boxes. We could avoid unnecessary field names if either Larch provided a mechanism to 

extend (subtype) records or we were willing to use nested records (see Section 5). However, since 

there are only a few of these at tr ibutes, we instead specify all of the at tr ibutes in the box sort, and 

then define separate operators to create instance and constraint boxes, specifying default values 

where necessary. 

3.1 .2 A r r o w 

The Arrow t rai t is similar to the Box t rai t , but with some additional fields to reflect these additional 

parameters (Figure 5). The parity field indicates whether an arrow is positive or negative, and kind 

determines the type of an arrow. 

The fields from.box and to.box are the boxes to which the tail and head of the arrow are 

connected. In the Miro languages, the head and tail of every arrow must be attached to a box; 

actual locations (i.e., coordinates) of arrows are not important . The sort of the boxes (Bx) is not 

defined in this t rai t , although the intent is tha t it is the same as the sort Bx in the Box trait 

(as indicated by the a s s u m e s clause). The InstanceArrow and Constraint Arrow t rai ts include the 

InstanceBox and ConstraintBox t rai ts , respectively, to satisfy this assumption. 
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Arrow (Ar) : trait 
includes BandASorts 
assumes Box(Bx) 

Ar tuple of kind : ArrowKind, aJabel : Str,parity : Parity, thickness : LineThickness, 
starred : Bool, from-box : Bx, to.box : Bx 

introduces 
copy.arrow : Ar —» 

asserts 
V a : Ar 

copy .arrow (a), kind == a. kind 
copy .arrow (a), parity == a.parity 
copy.arrow (a).thickness == aAhickness 
copy .arrow (a), starred == a.starred 
copy .arrow (a), from.box == copy .box (a. from.box) 

copy.arrow (a), to.box == copy .box (a. to.box) 

Figure 5: The Arrow trait 

InstanceBox (IB) : trait 
includes String(Str for C, null .string for new), Box (IB, Str for BoxLabel) 

asserts 
V t'6 : 7 5 

copy .box (ib).b.label == null.string 

Figure 6: The InstanceBox trait 

3.1 .3 I n s t a n c e B o x and I n s t a n c e A r r o w 

On top of these general traits we define the specific traits for the Instance and Constraint languages. 

Figures 6 and 7 show the InstanceBox and InstanceArrow t rai ts , respectively. The InstanceBox 

trait includes the Box trait and the String trait from the Larch Handbook. The inc ludes clause 

lets us use all sort and operator names from the included traits with appropriate renamings. E.g., 

the renaming of sort identifiers in the Box trait gives us the sorts IB for instance boxes and Str for 

box labels. Recall tha t we used the BoxLabel in the Box trait as a "place-holder" for the sort of 

labels on boxes, since instance boxes have a different sort of label than constraint boxes. The trait 

also contains an additional equation for copy.box tha t specifies copy.box(ib) should result in a box 

whose label is an empty string. 
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InstanceArrow : trait 
includes InstanceBox, Arrow(IA, IB for Bx) 

Figure 7: The InstanceArrow trait 

The InstanceArrow t rait includes both InstanceBox and Arrow. By renaming IB for Bx in 

Arrow, the sort used for the from- and to-boxes of instance arrows is IB, the same sort as for the 

instance boxes. 

3.1 .4 B a s i c P i c t u r e 

BasicPicture(Pic) : trait 

includes Box, Set(Bx, BxSet), Arrow, Set(Ar, ArSet) 

introduces 
create.picture :—• Pic 
insert.box : Pic, Bx —• Pic 
insert.arrow : Pic,Ar —• Pic 
move.all.boxes : Pic, CoordPair —» Pic 
copy.picture : Pic —• Pic 
pic.union : Pic, Pic —• Pic 
delete.box : Pic, Bx —• Pic 
delete.arrow : Pic,Ar —• Pic 

&oxes : Pic —> BxSet % observers 
arrows : Pic —• ^4rSe£ 
arrows.attached.to.box : Pic, Bx —> ArSet 
arrows.attached.to.boxes : Pic, BxSet —• ArSet 
is.on.a.box : CoordPair, Pic —> Boo/ 
box.at : CoordPair, Pic —• Bx 

asserts 
Pic generated by create.picture, insert.box, insert.arrow 
Pic partitioned by boxes, arrows 

Figure 8: Signatures from the BasicPicture trait 

A Miro picture is essentially a collection of boxes and arrows. The BasicPicture trait introduces 

the picture sort Pic as well as basic operators on pictures. Figure 8 shows the signatures from the 

BasicPicture t rai t . The includes statement includes traits for boxes, sets of boxes, arrows, and 

sets of arrows. The Set trait is defined in the Larch Handbook; the renaming of sort identifiers in 

the first Set trait gives us the sort BxSet for sets of items of sort Bx and all other set operators. Sets 
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of arrows (ArSet) are similar. The operators tha t generate a picture are createjpicture, insert.box, 

and insert-arrow. We define each of the remaining operators in the trait with equations in the 

asserts clause (see appendix for the complete BasicPicture t ra i t ) . We now discuss some of these 

equations. 

Move-all-boxes (pic, delta) moves each box in the picture pic by delta. The picture is either 

empty, the result of inserting a box, or the result of inserting an arrow (since these are the three 

generating operators) . We write equations for each of these cases, as shown in Figure 9. The second 

equation states tha t if the picture argument to move-all-boxes is the result of inserting a box b in 

a picture pic then the result of move-all-boxes is the picture formed by changing the position of b 

and inserting tha t new (moved) box value into the result of move-all-boxes (pic, delta). Since we 

only wish to move boxes and not arrows, the third equation simply inserts the (unchanged) arrow 

into the result of moving the boxes in pic. 

move-all-boxes (create-picture, delta) == create-picture 
move-all-boxes (insert-box (pic, b), delta) == 

insert-box(move-all-boxes(pic, delta), set-pos(b,b.pos + delta)) 
move-alLboxes(insert-arrow(pic,a), delta) == 

insert-arrow (move-all-boxes(pic, delta), a) 

Figure 9: Equations for move-all-boxes 

Copy-picture is similar to move-alLboxes, although with copy-picture (pic), we wish to create a 

new picture tha t is a copy of pic. Thus, for each box and arrow in pic, we must insert a copy of 

tha t object in the resulting picture (recall tha t a copy of a box or arrow has different values for 

some of its fields). 

Later t rai ts use the pic-union operator to perform the higher-level copy operation. The result of 

pic-union(picl}pic2) is a picture tha t contains all the boxes and arrows of pic 1 and pic2. Figure 10 

shows the equations for pic-union. 

pic-union(create-picture, pic 2) == pic2 

pic-union(insert-box(pic,b),pic2) == pic-union(pic1, insert-box(pic2, b)) 
pic-union(insert-arrow(pic,a),pic2) == pic-union(pic1, insert-arrow(pic2, a)) 

Figure 10: Equations for pic-union and createjpicturesets 

With delete-box (and delete.arrow), the result is a picture with the appropriate box (or ar

row) deleted. Thus , our equations check to see whether the current object is the one we wish to 

delete. We also leave the result of delete-box (create-picture, b) and delete.arrow(create-picture, a) 
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unspecified, since terms tha t would produce error values are typically left unspecified and handled 

appropriately at the interface level. The equations for delete-box are shown in Figure 11. 

delete-box (insert-box (pic, b), 61) = = 
if b = bi then pic 
else insert-box(delete-box(pic,bi),b) 

delete J>ox(insert-arrow(pic, a), b) == 
insert-arrow (delete-box (pic, b), a) 

Figure 11: Equations for delete-box 

Boxes, arrows, arrows-attached-to-box, is.on-a-box, and box-at are observer operators; they 

return information about a picture. Boxes and arrows return the set of boxes and arrows in a picture 

respectively; their equations are very straightforward. Arrows-attached-to-box(pic,b) returns the set 

of arrows in pic tha t are attached to b. Arrows-attached-to-boxes(pic,bs) returns the set of arrows 

tha t are attached to any box in the set bs; i.e., the union of the arrows attached to each box in the 

set. Figure 12 shows the equations for these last two operators. 

arrows-attached-to-box (create-picture, bi) —— {} 
arrows-attached-to-box (insert-box (pic, b),bi) == 

arrows-attached-to-box (pic, bi) 
arrows-attached-to-box (insert-arrow (pic, a), b\) == 

if (((a.from-box) = &i)V 
((a.to-box) = 61)) then 
insert(arrows-attached-to-box(pic, b\),a) 
else arrows-attached-to-box(pic, &i) 

arrows-attached-to-boxes (pic, {}) == {} 
arrows .attached-to-boxes (pic, insert(bs,b)) == 

arrows-attached-to-boxes(pic, bs)U 
arrows-attached-to-box (pic, b) 

Figure 12: Equations for arrows-attached-to-box and arrows-attached-to-boxes 

Is-on-a-box(cp, pic) is simlar to arrows-attached-to-box; it checks each box in pic to see whether 

cp is on tha t box and returns true if cp is on some box in pic. The final operator in BasicPicture 

is box-at (Figure 13), which returns the box at the coordinate cp if such a box exists. 
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box-at(cp, insert-box(pic,b)) == 
if is-on.box(cp, b) then b 
else box .at (cp, pic) 

box-at (cp, insert .arrow (pic, a)) == box-at(cp, pic) 

Figure 13: Equations for box.at 

3.1.5 O b j a n d C h a n g e A t t r 

There are two characteristics of pictures tha t we chose to separate into individual trai ts to avoid 

an even longer picture trai t . The Obj trait defines two new sorts tha t are useful in manipulating 

objects in a trait regardless of whether they are boxes or arrows; the ChangeAttr trait introduces 

sorts and operators to change an arbitrary at t r ibute in a box or arrow tuple. 

Since many of the picture operators are essentially the same for both boxes and arrows, we 

would like to operate on objects or sets of objects rather than having separate operators for boxes 

and arrows in a picture. For example, selecting an object does not depend on whether tha t object 

is a box or an arrow, so we would like a single operator to select either a box or an arrow. The Obj 

trait (Figure 14) introduces the new sorts Ob, a union of the box and arrow sorts, and ObjSet, a 

set of objects. 

The un ion o f shorthand provides coercion operators between the union sort and its component 

sorts. So the union declaration: 

Ob union of box : Bx, arrow : Ar 

produces operators with the following signatures: 
box : Bx Ob 
arrow : Ar —> Ob 

box : Ob —> Bx 
arrow : Ob —» Ar 

tag : Ob —* Ob-tag % where Ob-tag enumeration of box, arrow 

The operators box (and arrow) coerce a box (or arrow) to an object, .box (and .arrow) coerce 

an object back to a box (or arrow), and tag is used to determine whether an object is a box or an 

arrow. 

The Obj t rait also introduces operators to manipulate sets of objects. The operator objects 

returns the set of all objects in a picture; boxes and arrows extract the sets of boxes and arrows 

from a set of objects. The operator toggle-in adds the specified object to a set of objects if it is 

not already in it , otherwise it deletes the object. The editor trait uses toggle-in to maintain a set 

of selected objects in a picture. 
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: trait 

includes Set(Ob, ObjSet) 
assumes BasicPicture(Pic) 

Ob union of box : Bx, arrow : Ar 

introduces 
objects : Pic —• ObjSet 
boxes : ObjSet —• BxSet 
arrows : ObjSet —» ArSet 
toggle Jn : ObjSet, Ob —> ObjSet 

asserts 
V b : Bx, bs : BxSet, a : Ar, as : ArSet, obj : Ob, os : ObjSet, pic : Pic 

objects(create -picture) == {} 
objects(insert.box(pic,b)) == insert(objects(pic),box(b)) 
objects(insert-arrow(pic,a)) == insert(objects(pic), arrow(a)) 

boxes({}) == {} 
boxes(insert(os, obj)) == 

if tag (obj) = box then insert (boxes (os), obj.box) 
else boxes (os) 

arrows ({}) == {} 
arrows (insert(os, obj)) == 

if tag(obj) = arrow then insert(arrows(os), obj .arrow) 
else arrows(os) 

toggle Jn(os, obj) == 
if 067* E 05 then os — { 0 6 ; } 
else os U { 0 6 ; } 

implies 
converts objects, boxes : ObjSet —* BxSet, arrows : ObjSet —» ArSet, toggle 

Figure 14: The Obj trait 
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3.1 .6 C h a n g e A t t r 

ChangeAttr : trait 

assumes Box, Arrow, Obj 

Label enumeration of b-label, a-label, thickness, starred,pos, size, 
parity, from .box, to-box, kind, box-type 

Value union of bool : Bool, cp : CP, box-label : BoxLabel, str : Str, 
b : Bx, arrow-kind : ArrowKind, line-thickness : LineThickness, 
parity : Parity, bt : BoxType 

introduces 
valid-attr : Label, Ob Bool 
valid-value : Value, Label —> Bool 
change-attr : Ob, Label, Value —• Ob 

Figure 15: Signatures from the ChangeAttr trait 

The ChangeAttr t rai t (Figure 15) contains the specification for the change-attr operator, which 

takes an object (obj), field name , and value, and returns a new object tha t is the same as obj 

except tha t it has the new value for the field fieldname. We would like to specify change-attr with 

the following simple equation: 

change-attr (obj, fieldname, value) == set-fieldname (obj, value) 

But there are two problems with this equation. First, Larch does not permit "structured names." 

Tha t is, we cannot put a field name (fieldname) in our operator names. Instead, we must use a 

large if-then-else statement to cover each possible field. Second, the object and value parameters 

to change-attr are union sorts (obj is a union of the box and arrow sorts and value is a union of all 

possible field sorts), so we must check whether the object is a box or an arrow and wrap coercion 

operators around obj and value. 

Change-attr thus becomes one big two-layer if-then-else clause, first on object sort (box or 

arrow), then on label name. For each valid object/label pair, there is a clause to do the appropriate 

coercions and assign the value to the appropriate label. For example, if obj is a box and fieldname 

is pos, then the first case of change-attr is matched, and the object returned is the result (coerced 

to object) of changing the pos field of the obj (coerced to box) to the value value (coerced to cp). 

Figure 16 shows the first case of the change-attr operator. 
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change.attr(obj, fieldname, value) == 
% boxes 
if (tag(obj) = box) then 

if (fieldname = pos) then 
box(set.pos(obj.box, value.cp)) 

else ... 

Figure 16: Par t of the equation for change.attr 

We also define the operators valid.attr and valid-value; these define which at tr ibutes are valid 

for each object and which labels are of which sorts, respectively. These are used to ensure tha t all 

the values are valid before calling change.attr in the interface specification. 
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3.1 .7 W F P i c t u r e 

With the BasicPicture t ra i t , we have introduced the picture sort, Pic, and the basic operators on 

pictures. However, in the Miro languages and editor we add an additional constraint that pictures 

be well-formed. One well-formedness condition is tha t the ends of each arrow be connected to boxes. 

There are some additional semantic well-formedness conditions (e.g., tha t arrows must go from user 

boxes to file boxes), but for this specification, we assume only the arrows-attached constraint. 

WFPicture(Pic) : trait 
includes BasicPicture(Pic), Obj, ChangeAttr 

introduces 
extract-wf : ObjSet —• Pic 
delete-objs : Pic, ObjSet —» Pic 
delete jwf J>ox : Pic,Bx —• Pic 
delete-wf -arrow : Pic,Ar —• Pic 
delete-arrows : Pic, ArSet —• Pic 

arrows-attached : Pic, ArSet —• Bool 
arrow-attached : Pic,Ar —• Bool 
well-formed : Pic —• Bool 

Figure 17: Signatures from the WellFormedPicture trait 

The Well-Formed Picture trait (Figure 17) introduces operators that define well-formedness 

properties and new "well-formed" versions of the operators tha t create and modify a picture. In 

many cases, the result of a well-formed operator differs from the result of its non-well-formed 

counterpart . For example, deleting just a box may violate well-formedness, since it could result in 

"dangling" arrows. Hence, deletejwf-box must delete all attached arrows before deleting the box. 

Thus, we introduce an additional operator, delete-arrows, to delete a set of arrows from a picture, 

and define delete-wf-box to be the result of deleting all the arrows attached to the box as well as 

the box. Both delete.wf-box and delete.wf-arrow delete the box or arrow only if it is in the picture. 

The operator delete.objs uses delete.wf-box and deletejwf-arrow to return a picture tha t is the result 

of deleting a set of objects in a well-formed manner. For each object in the set of objects to be 

deleted, it checks to see whether the object is a box or an arrow and then uses the appropriate 

operator. The equations for delete.objs and deletejwf-box are shown in Figure 18. 

Well-formedness also explains why we define the operator move-boxes as opposed to move-objects 

in the BasicPicture t rai t . Just moving an arrow could result in the head or tail of tha t arrow not 

touching a box, so this is not allowed; similarly, if a box to which an arrow is attached moves, the 
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delete-objs(pic, {}) == pic 
delete-objs(pic, insert(os, obj)) == 

if tag(obj) = box then delete-objs (delete-wf -box (pic, obj.box), os) 
else delete-objs (delete-wf-arrow (pic, obj.arrow), os) 

delete-wf -box (pic, b) == 
delete-box (delete-arrows (pic, arrows-attached Jo-box (pic, b)), b) 

Figure 18: Equations for delete-objs and delete-wf-box 

end of the arrow must also move to remain attached, regardless of whether the arrow was selected. 

The operator extract-wf returns a picture tha t is the maximal well-formed subset of a set of 

objects. The editor interface specification uses extract-wf to define the behavior of the CopyObjs 

operation. The set of objects to be copied describes a sub-picture, which may or may not be 

well-formed. The result of extract-wf(os) is a picture tha t contains all the objects of os except the 

"dangling" arrows (i.e., arrows tha t are not attached to boxes in os). Since extract-wf depends on 

information about other objects in os, we cannot define it in terms of the set constructors. Instead, 

we define which boxes and arrows are in the picture returned by extract-wf (Figure 19). 

boxes(extract-wf(os)) == boxes(os) 
a 6 arrows(extract-wf(os)) == 

(a £ arrows(os)) A 
((a.to-box) € boxes(os)) A 
((a.from-box) 6 boxes(os)) 

Figure 19: Equations for extract-wf 

Note tha t although the well-formed operator is introduced in this t rai t , it is not defined. 

This is because instance and constraint pictures may have different notions of well-formedness. 

A well-formedness condition tha t is common to both instance and constraint pictures is that all 

arrows must be attached to boxes. This condition is defined in the arrows-attached operator. Ar

rows-attached checks a set of arrows in a picture to see tha t all of them are attached. It uses 

arrow-attached to check each arrow in the set. Figure 20 shows the equations for arrows-attached 

and arrow-attached. 

3.1.8 W F I n s t a n c e P ic 

The WFInstancePic trait (Figure 21) includes the InstanceBox and InstanceArrow t ra i ts , and the 

WFPicture t rai t with appropriate substitutions and introduces the createJbox and createJarrow 

operators. These operators are defined in the WFInstancePic and WFConstraintPic t rai ts rather 
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arrows.attached (pic, {}) == true 
arrows.attached (pic, insert(as,a)) == 

arrow .attached (pic, a) A arrows.attached (pic, as) 

arrow.attached (pic, a) == 
(((a.Jo_&ox) £ boxes(pic)) A ((a.from.box) £ fcoxes(pic))) 

Figure 20: Equations for arrows .attached and arrow.attached 

WFInstancePic : trait 
includes InstanceBox, InstanceArrow, 

WFPicture(IPic, create.instance.pic for create.picture, IB for Bx, 
JBSe* for BxSet, Str for LabelSort, 1A for Ar,IASet for ArSet, 
10 for Ob,IOSet for ObjSet) 

introduces 
create.ibox : CP, CP, Str, BoxType -» TP 
create.iarrow : IB, IB, Parity, Str —• ZA 
ambiguous : /Pic —* Poo/ 

asserts 
V ipic : /Pic , c p l 5 cp 2 • CP,parity : Parity, label : Str,b,b\ : i B , : BoxType 

create.ibox(cp1, cp2, label, bt) == 
[cpx, cp2, label, thin, false, bt] 

create.iarrow{b,b\,parity, label) == 
[syn, label, parity, thin, false, b,b\] 

well.formed(ipic) == arrows.attached(ipic, arrows(ipic)) 

implies 
converts create.ibox, create .iarrow, well.formed 

Figure 21: The WellFormedlnstancePicture trait 

than the BasicPicture t rait because they require different arguments for the different languages. 

Namely, in the constraint language, there are more parameters for the constraint-specific fields 

(thickness and starred for boxes and arrows, plus kind for arrows). We specify default values for 

these fields in the WFInstancePic t rai t . The equation for well.formed specifies tha t a picture is 

well-formed if all arrows in the picture are attached. If we were to add additional well-formedness 

conditions, we could define an additional operator for each condition; well.formed (pic) would then 

be a conjunction of these conditions. 

We also introduce the operator ambiguous. Because there are both positive and negative arrows 
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in the instance language, it is possible to draw pictures that we call ambiguous. Essentially a 

picture is ambiguous if there are both positive and negative arrows concerning a user box and 

a file box such tha t one arrow does not clearly override the others. The semantics of ambiguity 

are well-defined[MTW90]. Rather than reproduce them in the specification, we simply declare the 

operator. The Miro editor enforces well-formedness, but does not require tha t the pictures drawn 

are always unambiguous. For this reason, we cannot write welLformed as alLarrows-attached(ipic) 

A -iambiguous(ipic). 

3.1 .9 P i c l l n i o n 

Most of the editor operations will be performed on both instance and constraint pictures. For 

example, moving a collection of boxes behaves the same regardless of whether the picture is an 

instance picture or a constraint picture. Rather than duplicate the entire interface, we use the 

same technique as we did in the Obj trait for handling operators on both boxes and arrows: we 

introduce a union type, P , of the instance and constraint picture sorts, and operators on P tha t 

simply check the type and coerce and call the appropriate instance/constraint operators. We also 

introduce union sorts for each other sort tha t is a parameter of or is returned by these operators 

and is not the same for instance and constraint pictures (i.e., .0, A, 0 , and BL). Figure 22 shows 

the signature for the Picllnion t rai t . By providing a union sort P and the appropriate operators, 

our editor can now work on either type of Miro picture. 
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PicUnion : trait 
includes WFInstancePic, WFConstraintPic, Set(A, ASet), 

Set(B,BSet),Set(0,OS) 

PicType enumeration of inst.pic, const.pic 
B union of ibox : IB, cbox : CB 
A union of iarrow : IA, carrow : CA 
0 union of iobj : 10, cobj : CO 
P union of instance : IPic, constraint : CPic 
BL union of ilabel : Str, clabel : BoxDesc 

% picture type 
% box union 

% arrow union 
% object union 

% picture union 
% box label 

introduces 
— iobjset : OS -* IOSet 
—cobjset : OS -+ COSet 
iobjset : IOSet -* OS 
cobjset : COSet OS 
box.to.O : B -> O 
set.pos : B, CoordPair —• B 
—pos : B —• CoordPair 
set.size : B, CoordPair —• P 
—size : B —• CoordPair 
create .picture : PicType —• P 
insert.box : P , P —• P 
insert.arrow : P, A P 
copy.picture : P —» P 
pic.union : P , P —• P 
is.on.a.box : CoordPair, P —* Poo/ 
box.at : CoordPair,P —• P 
ofcjecte : P -+ OS 
boxes : 0 5 -» B5e* 
toggle.in : 0 5 , O -> OS 
valid.attr : Label, O —> Poo/ 
change.attr : O, Label, Value —• O 
create.box : PicType, CoordPair, CoordPair, BL, LineThickness, Bool, BoxType -> P 
create.arrow : 
PicType, B, B, Parity, Str, ArrowKind, LineThickness, Bool -* A 
move.all.boxes : P , CoordPair —• P 
delete.objs : P , 0 5 P 
extract.wf : PicType, OS —> P 
well.formed : P —» Poo/ 

Figure 22: Signatures from the PicUnion trait 
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Recall tha t the union of shorthand introduces coercion operators, as well as a tag operator 

(Section 3.1.5). As an example of how the coercion operators are used in Picllnion, consider the 

insert-box operator. The equations for insert-box (Figure 23) consist of checking to see whether 

the picture is an instance or constraint, performing the corresponding instance/constraint operator 

on the (coerced) picture, and then coercing the result back to a picture. Note tha t these equations 

assume tha t if p is instance then 6 is ibox (and similarly for constraint). 

insert-box (p,b) == 
if tag(p) = instance then instance(insert-box(p.instance, b.ibox)) 
else constraint {insert-box {p. constraint, b.cbox)) 

Figure 23: Equation for insert-box 

In addition to the explicitly declared union types for boxes, arrows, objects, pictures, and box 

labels, we also wish to use sets of boxes, arrows and objects as unions. For example, OS is the sort 

for a set of O values (object unions). We need to be able to "coerce" terms of sort OS to terms of 

sort 10Set or COSet, since many of the operators take object sets as arguments. Thus, we define 

our own "coercion" operators for object sets and box sets, assuming tha t objects in a set will be 

either all instance objects or all constraint objects. Figure 3.1.9 shows the equations for iobjset 

and iobjset 

({}).iobjset == {} 
(insert(os,obj)).iobjset == insert(os.iobjset, obj.iobj) 
iobjset({}) == {} 
iobjset(insert(ios, io)) == insert(iobjset(ios),iobj(io)) 

Figure 24: Equations for iobjset and iobjset 

Objects and delete-objs are two examples of operators tha t use these set coercion operators; 

their equations are shown in Figure 25. 

objects(p) == 
if tag(p) = instance then iobjset (objects (p. instance)) 
else cobjset(objects(p.constraint)) 

delete-objs(p, os) == 
if tag(p) = instance then instance(delete-objs(p.instance, os.iobjset)) 
else constraint (delete-objs (p. constraint, os.cobjset)) 

Figure 25: Equations for objects and delete-objs 
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3 . 2 M i r o E d i t o r 

Given this model of the Miro languages, we now build a description of the Miro editor. We begin 

by establishing a model of the editor s tate at the trait level. The interface level specification then 

introduces the editor operations defined in terms of changes to tha t s tate . Much of the lower-level 

detail (e.g., mapping to mouse and keyboard actions and how text interaction works) is assumed. 

Many of these details are described in the informal specification of the editor found in the Editor 

User's Guide[Zar90]. 

The basic Miro editor interface is straightforward. Along the left side of the editor window, 

there are several sets of objects and but tons tha t allow the user to specify the kind of picture he or 

she wishes to draw (instance or constraint), the kind of object (box or arrow), and at tr ibutes of the 

object (e.g., arrow pari ty) . Other but tons in the menu provide editing commands and interfaces 

to other tools ( I / O , ambiguity checker). The main part of the editor is the drawing region, where 

the user actually draws the picture. Various mouse but tons provide additional editing commands 

here (e.g., right but ton to draw an object, left but ton to select an object). 

3.2 .1 LSL Level 

EditorState : trait 

includes Pic Union( Obj Type.Obj for 0, Box. Obj for B, Arrow. Obj for A),PixelMap 

OT enumeration of box, arrow % object type 

Ed tuple of pos : CoordPair, size : CoordPair, 
picture : P, 
picture.type : PicType, 
object.type : OT, 
arrow.kind : ArrowKind, 
arrow.parity : Parity, 
thickness : LineThickness, 
starred : Bool, 
selected .objs : OUS 

% position info 
% graphical objects 

% picture type 
% object mode info 

% selection 

introduces 
display .window : Ed —• PixelMap % not defined here 

Figure 26: The EditorState trait 
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The EditorState t rait (Figure 26) introduces the sort Ed, a tuple tha t we use to model the editor 

s tate . The pos and size fields indicate the location and size of the editor window on the screen. 

The picture field contains the current Miro picture, of sort P2 (introduced in the Picllnion t ra i t ) , 

and selected-objs is the set of currently selected objects in the picture. The remainder of the tuple 

describes the current "mode" of the editor (as indicated in the menus): picture-type indicates 

whether the current picture is an instance or constraint picture; object-type is either box or arrow; 

arrow-kind is the kind of arrow - syntactic, semantic or containment (this is only interesting for 

constraint pictures); the rest of the at tr ibutes are self-explanatory. The only operator introduced 

in the EditorState t rai t is display-window. Display-window is not specified here, but is intended 

to be a mapping from the abstract Ed sort to an actual mapping of the pixels on a screen. This 

defines the actual appearance of the editor as a function of the editor s tate . The FiniteMapping 

trait is from the Larch Handbook. 

3,2 .2 Interface Level 

The next step of the specification is to use the properties defined in the traits to specify the 

interfaces for the Miro editor operations. The semantics of the Generic Interface Language (GCIL) 

are defined as predicates on state pairs; s tate is a mapping of objects to values. In GCIL, we 

specify each operation in terms of its pre- and post-conditions (requires and ensures clauses). 

The modif ies clause specifies which objects may be changed in the operation. GCIL uses call-by-

reference for parameter passing. 

The first par t of the interface specification (Figure 27) names the object module we are spec

ifying (miro-editor), and establishes correspondences between the types of objects manipulated 

in the interface and sorts in the trait-level specifications. For example, "type Box based on B 

from PicUnion" introduces the type Box, which has the object sort Box-Obj and the value sort 

B. This distinction between object sorts and value sorts allows us to specify both which objects 

are created and what their values are. Specifically, by the renamings in the EditorState t rai t , we 

define a picture to be a collection of box and arrow objects, so tha t we can use properties of -Obj 

sorts to assure the uniqueness of each box and arrow in a picture, while still being able to change 

the values of existing boxes or arrows. The private variable e is an implicit input parameter to 

2 The renamings for the object, box, and arrow sorts are needed to allow us to manipulate objects whose values 

are O, B , and A, respectively, at the interface level. 
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all operations except the initialization operation, where it is an implicit return parameter . The 

invariant specifies properties tha t must be t rue after every operation and before all operations 

except those named in the init ial ized by clause. The invariants s tate tha t the editor maintains the 

well-formedness of a picture, and tha t the set of selected objects is always a subset of the objects 

in the current picture. 

objec t miro_editor 
init ial ized by CreateEditor 

using EditorState 
t y p e Cp based on CoordPair from BandASorts 
t y p e Str based on Str from String 
t y p e Bt based o n BoxType f rom BandASorts 
t y p e BI based on BL f rom PicUnion 
t y p e Box based on B f rom PicUnion 
t y p e Arrow based on A from PicUnion 
t y p e ObjType based o n 0 from PicUnion 
t y p e ObjSet based on OS from PicUnion 
t y p e Value based o n Value from ChangeAttr 
t y p e Label based on Label f rom ChangeAttr 
t y p e Picture based on P from PicUnion 
t y p e Editor based o n Ed from EditorState 

private e : Editor 

invariant (e.selected_objs C objects(e.picture)) 
invariant (well_formed(e.picture)) 

Figure 27: First part of the editor interface specification 

CreateEditor (Figure 28) is the operation that gets things started. Its effect is to initialize a new 

editor object with the default initial modes. The ensures clause states tha t a new object is created 

whose value is the result of the [...] term. For a parameter or global variable e, we distinguish 

between the values before and after the operation with the notations e and e', respectively. 

DrawBox and Draw Arrow require that the editor's current object type be box and arrow respec

tively. DrawArrow (Figure 29) has additional clauses requiring the parameters cpl and cp2 to be 

coordinates on some boxes in the picture. The effects of each operation are to create a new object 

(box or arrow) and insert it into the picture. The values for the parameters of the create.arrow 

operator come from either the parameters of the operation (e.g., cpl, cp2), or from the editor state 
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o p e r a t i o n CreateEditor (posn, size : Cp) 
requires t rue 
ensures n e w o b j (eQbj) A 

e' = [posn, size, create_picture(inst_pic), 
inst_pic, box, syn, positive, thin, false,{}:0S] 

Figure 28: CreateEditor operation 

(e.g., e.thickness). The ensures clause requires tha t we create a new object, a, whose value is that 

of the create^arrow term, and tha t the value of the editor picture is the result of inserting a in the 

previous p ic ture 3 . The n e w o b j term states tha t a is a new object; it exists after the operation 

but did not exist before. By using n e w o b j in the ensures clauses of all operations tha t create 

new boxes and arrows (i.e., DrawBox, Draw Arrow, and CopyObjs), we ensure the uniqueness of all 

boxes and arrows in the picture. 

o p e r a t i o n Draw Arrow (cpl , cp2 : Cp, label : Str) 
requires e .objectJype = arrow A 

is_on_a_box(cpl,e.picture) Ais_on_a_box(cp2,e.picture) 
modif ies (eQbj) 
ensures 

3 a:Arrow 
n e w o b j (a) A 
alpost = create_arrow(e.picture_type, box_at(cpl, e.picture), box_at(cp2, e.picture), 

e.arrow_parity, label, e.arrowJrind, e.thickness, e.starred) A 
e'.picture = insert_arrow(e.picture, a) 

Figure 29: Draw Arrow operation 

In the editor, there are three different ways to select or unselect objects: individual select/unselect, 

sweep select, and global unselect. Each of these correspond to an operation at the interface level 

and effect changes to the selected.objs field of the editor. Select takes an object, obj, as a parameter. 

If tha t object is already selected, it becomes unselected, otherwise it becomes selected. GroupSelect 

adds a set of objects, os, to the currently selected set. If an object in os is already selected, it re

mains selected. Thus, the ensures clause states that the value of e.selected-objs after the operation 

is the value of e.selected-objs before the operation unioned with os. Unselect is very straightforward: 

3 We use e' for the value of the editor and alpost for the value of the arrow because GCIL's notation differs for 
parameters and quantified variables. 
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there are no preconditions, and the effect of the operation is tha t the e.selected.objs set is empty. 

Figure 30 shows the specifications of all three select operations. 

o p e r a t i o n Select (obj : ObjType) 
requires (obj £ objects(e.picture)) 
modif ies (e 0 t j ) 
ensures (e'.selected.objs = toggleJn(e.selected_objs, obj)) 

o p e r a t i o n GroupSelect (os : ObjSet) 
requires (os C objects(e.picture)) 
modif ies (e0&j) 
ensures (e'.selected_objs = (e.selected.objs U os)) 

o p e r a t i o n Unselect ( ) 
requires t rue 
modif ies (e0&j) 
ensures (e'.selected_objs = {}:OS) 

Figure 30: Select, GroupSelect, and Unselect operations 

MoveBoxes(delta) moves each box in the set of selected objects by delta (arrows remain attached 

to the same boxes). For each box object b tha t is in boxes(selected.objs), the value of b after 

MoveBoxes is the result of setting the position of the box to its previous position plus delta. In the 

editor, once one of these operations is performed, all objects are unselected. This is reflected in 

the second clause of the ensures in each operation, which states tha t the set of currently selected 

objects in the editor s ta te after the operation is empty. The specification of ResizeBox is similar, 

but operates only on a single box; it takes a box as a parameter and requires tha t box be the only 

object selected (box.to..O is a coercion operator) . The ensures clause changes both the position and 

size of the box and unselects the box. Figure 31 shows the MoveBoxes and ResizeBox operations. 

In DeleteObjs, shown in Figure 3.2.2, the operator delete.objs (defined in the PicUnion t rai t) 

modifies e.picture by removing all of the selected objects. Thus, the new picture is a picture without 

any of those objects, and the set of selected objects becomes empty. 

The copy operation in the editor is somewhat complex because of the well-formedness constraint. 

Copy operates on a subset of the currently selected objects, namely the maximal well-formed subset 

(i.e., all objects except "dangling" arrows). The ensures clause of CopyObjs thus specifies a new 

picture object, newpic, whose value is the result of copying the well-formed subset of the selected 

objects of e.picture. The second clause states that each object in newpic must be a distinct new 
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opera t ion MoveBoxes (delta : Cp) 
requires t rue 
modif ies (e0&j) 
ensures 

V b:Box 
(b £ boxes(e.selected_objs) = > 

blpost = set_pos(b!pre, (b!pre).pos+delta)) A 
e'.selected.objs = {}:0S 

opera t ion ResizeBox (b : Box, pos : Cp, size : Cp) 
requires e.selected_objs = {box_to_0(b)} 
modif ies (e0ij) 
ensures b ' = set_size(set_pos(b,pos),size) A 

e'.selected_objs = {}:0S 

Figure 31: MoveBoxes and ResizeBox operations 

o p e r a t i o n DeleteObjs ( ) 
requires t rue 
modif ies (e0bj) 
ensures e'.picture = delete_objs(e.picture, e.selected.objs) A 

e'.selected.objs = {}:0S 

Figure 32: DeleteObjs operation 

object, e'.picture is then the result of combining the existing picture with newpic, which has been 

moved by delta. Like the other operations, CopyObjs also unselects all objects. Figure 33 shows 

the CopyObjs operation. 

Although complicated at the trait level, the ChangeAttribute operation becomes one of the 

"cleanest" at the interface level (Figure 34). It simply requires tha t its arguments "type check" 

(i.e., tha t attr is a valid a t t r ibute of the object o, and tha t val is a valid value for attr). The 

ensures clause simply states tha t the value of attr of o becomes val. 

Finally^ the operation Clear (Figure 35) "erases" the current picture by setting e.picture to the 

empty picture (of appropriate type) . The set of currently selected objects also becomes empty. 
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o p e r a t i o n CopyObjs (delta : Cp) 
requires t rue 
modif ies (e0&j) 
ensures 

3 newpic : Picture V o:ObjType 
n e w o b j (newpic) A 
newpiclpost = copy_picture(extract_wf(e.picture,e.selected>objs)) A 
(o £ objects(newpiclpost) = > n e w o b j (o)) A 
e'.picture = pic_union(e.picture, 

move_all_boxes(newpic!post, delta)) A 
e'.selected-objs = {}:0S 

Figure 33: CopyObjs operation 

o p e r a t i o n ChangeAttr ibute (o:ObjType, attr:Label, val:Value) 
requires (valid_attr(attr , o)) A(valid_value(val, a t t r ) ) 
modif ies (oobj) 

e n s u r e s (o ; = change_attr(o,attr,val)) 

Figure 34: ChangeAttr operation 

o p e r a t i o n Clear ( ) 
requires t rue 
modif ies (e0&j) 
e n s u r e s (e'.picture = create_picture(e.picture_type)) A 

(e'.selected_objs = {}:0S) 

Figure 35: Clear operation 
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4 Mak ing Asser t ions 

The Larch Shared Language provides a way to state consequences of a t rai t ' s theory through an 

impl ies clause. This clause is a good place to document additional assertions about a specificand. 

The Generic Interface Language provides an invariant clause. The invariant specifies properties 

tha t must be true after every operation and before all operations except those named in the 

init ial ized by clause. This section describes some of the assertions we make about our specification 

through the impl ies and invariant clauses. 

4.1 Stating Consequences 

As a simple example of the kinds of implications we can write in the Larch Shared Language, 

consider the impl ies clause of the BasicPicture t rai t , shown in Figure 36. The first two equations 

in the clause assert tha t copy-picture copies all the objects in the picture. We could have defined 

the copyjpicture operator in the BasicPicture trait to copy only the well-formed subset but decided 

it was more appropriate to specify this restriction at the interface level, leaving the trait level more 

general. We add the equations about copyjpicture to the impl ies clause in order to record this 

decision explicitly. Note tha t we cannot make the stronger statement tha t copyjpicture (p) == p 

because when objects are copied, not all of the fields (e.g., box labels) are copied. 

The converts clause in Figure 36 claims tha t the trait includes sufficient information to fully 

define the operators listed, excluding the terms listed in the e x e m p t i n g clause. This means tha t , if 

we fix the interpretations of the other operators and of terms matching delete.box(create..picture, b) 

and delete.arrow(create.picture, a)', there are unique interpretations for the operators listed in the 

converts clause. 

Figure 37 shows the impl ies clause from the WFPicture t rai t . In WFPicture, we add an 

assumption about the appearance of our pictures. Namely, that they are "well-formed" in the 

sense tha t all arrows are attached to boxes at both ends. The trait introduces new operations that 

assume they are operating on well-formed pictures to produce well-formed pictures. One operator 

tha t behaves differently because of the well-formedness assumption is delete-objs. In the case where 

we are deleting a box, we must also delete all arrows attached to tha t box in order to preserve 

well-formedness. The last two equations in the implies clause state which boxes and arrows are 

removed by delete.objs. Although this information is available in the equations for delete.objs, 

stating this explicitly in the impl ies clause allows a specification reader to confirm his or her 
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implies 
V p : Pic, delta : CoordPair 

size(boxes(copy-picture(p))) == size(boxes(p)) 
size(arrows(copy-picture(p))) == size(arrows(p)) 

converts move.all-boxes, copy-picture, pic-union, 
delete-box, delete-arrow, boxes, 
arrows, arrows-attached-to-box, arrows-attached-to-boxes, is-on-a-box 
exempting V b : Bx,a : Ax 

delete-box (create-picture, b), delete-arrow (create -picture, a) 

Figure 36: impl ies clause from BasicPicture t rai t 

understanding and also can serve as a reminder to the specifier in the event the specification needs 

modification. 

The other assertion in the WFPicture impl ies clause states tha t a well-formed picture sort, 

Pic, is a graph where boxes are nodes and arrows are edges with an appropriate renaming of the 

operators. The Graph trait is defined in the Larch Handbook, 

implies 
Graph(Bx,Ar, Pic, create-picture for empty, insert-box for addNode, 

insert-arrow for addEdge, boxes for nodes, arrows for edges) 

V pic : Pic, objs : ObjSet 
boxes(delete-objs(pic, objs)) == boxes(pic) — boxes(objs) 
arrows (delete-objs(pic, objs)) == 

arrows(pic) — (arrows(objs) U 
arrows-attached-to-boxes (pic, boxes(objs))) 

Figure 37: impl ies clause from WFPicture t rait 

The WFInstancePic t rai t adds an additional assertion about well-formedness and delete-objs. 

Since we define the well-formedness operator in this t rai t , we also add an implication stating that 

delete-objs maintains well-formedness: 
V pic : IPic, objs : IOSet 

(well-formed(pic) A objs C objects(pic)) 

welLformed(delete-objs(pic, objs)) 

We could also extend on our assertion in WFPicture tha t a picture is a graph. Although the 

editor does not currently enforce it (and we do not specify i t ) , another well-formedness condition 

for instance pictures is tha t arrows go from user boxes to file boxes. If we add this requirement to 

our definition of well-formedness, we can assert tha t a well-formed instance picture is a bipartite 

graph. 

31 



4.2 Stating Invariants 

At the interface level, we state two invariants. An invariant in GCIL specifies a property that 

must be t rue after every operation and before all operations except those named in the initialized 

by clause. The first invariant states that the set of selected objects in the picture is a subset 

of the set of objects in the picture. It is fairly easy to see tha t the editor operations maintain 

this property. Many of the operations (CreateEditor, Unselect, MoveBoxes, ResizeBox, DeleteObjs, 

CopyObjs, and Clear) specify in their ensures clauses that ef.selected = {}. DrawBox, DrawArrow, 

and ChangeAttribute do not change the set of selected objects, and either increase or do not change 

the set of objects in the picture. And for Select and GroupSelect, if the invariant holds before the 

operation, the requires clause ensures tha t it holds after. The selection invariant will be useful in 

proving the second invariant, which states that the editor picture is always well-formed. Many of 

the other Miro tools assume that the picture they are manipulating is well-formed; thus, this is an 

important property. 

invariant (e.selected_objs C objects(e.picture)) 

invariant (well_formed(e.picture)) 

5 Discussion 

In this section, we discuss two limitations of Larch that arose out of this specification exercise, some 

general lessons learned from having done the specification after the implementation, and related 

work. 

5.1 Why Tuples? 

One important design issue was how to represent each of the graphical objects of the Miro languages. 

Wha t are the essential characteristics of a box? It has such at tr ibutes as location, size and type. 

Operations on boxes include creating new boxes, changing at tr ibutes of a box, copying a box, and 

checking to see whether a coordinate is on a box. Larch's tup le shorthand provides much of the 

functionality we want (the at tr ibutes of a box are fields of a tuple, and tuple operators include 

a generator and operators to change each field). It is possible tha t knowing how the editor was 

implemented influenced this choice, but we note that other graphical specifications also use tuples. 

For example, the extended example in [GGH90] defines a window sort as a tuple. 
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One drawback to using tuples is tha t Larch does not permit "subtyping" of tuples. For example, 

a more general approach to specifying Miro objects would have been to define trai ts for a base set 

of generic graphical objects (box, text , line, arrow, . . . ) , and then build the Miro object traits by 

including the appropriate generic objects. But since we cannot specify tha t the Miro box sort tuple 

is a subtype of the generic box sort tuple with the additional fields type and label, we would instead 

have to nest tuples. The Miro box would be a tuple that has a generic box as one of its fields (say, 

box)). Then, to talk about the location of a Miro box, we would have to say b.box.location. 

A second example of the usefulness of tuple subtyping is in defining instance and constraint 

boxes. Some of the fields in the box trait are only meaningful for constraint boxes (e.g., thick and 

starred). Yet we could not define an instance box sort as a subtype of the box sort with those 

additional fields. Instead, we included those fields in the general Miro box sort, even though they 

are meaningless for instance boxes. 

5.2 Union Sorts 

Another difficulty in the specification was in moving from operators on specific sorts to operators on 

a more general sort (i.e., from boxes and arrows to objects, and from instance pictures and constraint 

pictures to pictures). There are places in the specification where it does not mat te r whether an 

object is a box or an arrow, we just want to delete it (and similarly for instance/constraint , since the 

editor can operate on either type of picture). So, if the operators copyjpicture: P —• P, copy-picture: 

IPic —> IPic and copyjpicture: CPic —• CPic are defined, then ideally we would like the constraints 

on copyjpicture to hold regardless of whether the picture is an instance or constraint (i.e., allow 

operators to be overloaded). The solution we use in this specification is to define union sorts for 

objects and pictures. This makes for two somewhat tedious traits (Objand Picllnion), but a fairly 

"readable" specification overall (the alternative was to add explicit sort checking in the interface 

specification in order to call the correct operator) . For copy-picture (pic), this means we must first 

determine whether pic is an instance (or a constraint) picture and then coerce it to be an instance 

(or constraint) picture so tha t we can apply the appropriate, more specific, copy operator, and 

finally, coerce back the result into the more general picture sort, P. 

Another variation of this problem arose from specifying the change-attr operator. Intuitively, 

changejattr should take as arguments an object, an a t t r ibute and a value, and return a new object 

tha t differs from the old only in the value of the at t r ibute . But different objects have different 
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at tr ibutes, and different at tr ibutes have different sorts, so change-attr turns out to be a long nested 

if-then-else statement tha t uses union types and coercion (we discuss this in detail in Section 3.1.6). 

5.3 Lessons Learned 

We began writing formal specifications in parallel with designing the Miro languages and designing 

and implementing of the editor. We wrote three major versions of the specification where the last 

version (this one) was written after the implmentation was running. The current version itself went 

through at least eight minor iterations. Writing a formal specification after an implementation has 

two obvious implications. One is tha t the specification tends to be biased towards the implementa

tion; the other is tha t places for improving the implementation become clearly evident. We found 

both to be true in our case. 

Having already implemented a version of the editor before completing the specification, we had 

tha t model of the languages and editor in mind, which led to some very implementation-biased 

versions of the specification. In each subsequent iteration we removed some of the "implementation 

details." We believe the final specification is relatively unbiased, but tha t we would have taken 

fewer steps to get where we are had we written more of the specification before the implementation. 

One example of the implementation details tha t we removed from the specification is the cor

relation between mouse actions and interface procedures. One of the issues in specifying the editor 

is dealing with interactive user input. What is the best way to model a mouse? Wha t level of 

detail should be represented? An initial specification modeled "mouse clicks" and a state-transition 

diagram tha t kept track of the current s ta te . For each state (e.g., Waiting, Moving, Resizing) and 

each mouse action (e.g., RightUp, MiddleDown), there was a rule about what the effects of the 

mouse action would be. This was a bit too much detail for this specification, since we did not want 

to commit a particular operation to a particular mouse but ton (or series of mouse operations). 

Thus, in the current specification, we assume that the mouse operations produce some coordinate 

information, which is used to produce calls to the operations specified in the interface. The Miro 

Editor User's Guide[Zar90] defines the correlation between particular mouse operations and the 

operations defined in the interface level. 

Another example of initial bias toward the implementation is in the definition of well-formedness. 

In the implementation of the editor, the condition tha t all arrows be attached to boxes is enforced 

automatically by constraints on arrow objects. So in a previous version of the specification, the ar-
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row sort A had fields for the coordinate positions of the head and tail of the arrow. The WFPicture 

trait defined an operator called adjust.arrows, which took a picture and a box and adjusted those 

fields based on the position of the boxes at the head and tail of the arrow. But at a more abstract 

level, the coordinate information for an arrow is not important (since the boxes it is attached to 

are also fields of an arrow, and the coordinates can be derived from them), and it is more accurate 

to define the well-formedness property at the trait level but enforce it at the interface level, as the 

current specification does. 

The second observation about doing the specification after the implementation is that doing 

the reverse would probably have resulted in a bet ter implementation. As partially illustrated in 

the previous examples, the specification helped us to understand the languages and editor more 

clearly, and to realize the essential characteristics of the languages and editor. Particularly in the 

case of the editor, it is our further belief that if the work had instead progressed in the opposite 

order, this understanding would have helped to create a "cleaner" editor tha t would have been 

easier to implement and later modify. 

One example to support this argument is our experience implementing multiple selection in the 

editor. The initial implementation of the editor allowed at most one object to be selected at any 

time. We extended the editor to allow selecting multiple objects while we were also working on 

the specification. So we wrote an informal specification of how the set of selected objects would 

be affected by each editor operation before we implemented multiple selection. The result was an 

implementation of multiple selection tha t was clean, consistent and relatively easy to add to the 

editor. 

This specification was also useful for exploring the power and limitations of Larch as a tool 

for specifying a large interactive graphical application. We discovered two limitations tha t made 

the specification more difficult: the lack of tuple subtyping and operator overloading (Sections 5.1 

and 5.2). But overall, we found Larch to be powerful enough to express the properties of our 

application. The tools (LC and the GCIL checker) proved invaluable in locating the minor errors 

in our specification through sort- and type-checking. We also found that writing such a specification 

taught us to think about program behavior in a more structured and property-oriented way that 

we hope will be useful in future projects. 
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5.4 Related Work 

There are several Larch Shared Language specifications to read and learn from. The largest collec

tion of Larch traits of which we are aware is the Larch Handbook[GHW85]. The extended example 

in[GGH90] specifies some traits for a simple windowing system. Larch (both trait and interface 

levels) has also been used to specify properties of objects in a transaction-based distributed system 

([Win88] and [Ler91]). 

In our specification, we assumed details about how Miro pictures are represented on the screen 

and what keyboard and mouse inputs activate the specified procedures. These are difficult prob

lems, but have been addressed by others: basic properties of window systems have been specified 

in both Larch [GGH90] and Z [Bow89]; basic picture primitives as well as a method for specifying 

user interaction are defined in [Mal82]; a display-based text editor is specified in [Suf82]. Thus, we 

chose to focus at the next level of detail: properties of Miro pictures and the the editor. We have 

not seen any other specifications tha t deal with an interactive graphical application. 

6 Further Work and Conclusions 

The specification as is depends on the structure of Miro objects and the particular behavior of the 

editor. There are several axes along which it could be generalized. One possibility would be to 

move from specific Miro graphical objects to more generic objects, such as boxes, lines, and text, 

which could then be composed and extended to generate the particular objects for Miro. We could 

use these same graphical object specifications as a general library on top of which many different 

graphical languages could be specified. 

A second issue is how the specification would change if we were to add or change features of the 

language or editor. Adding characteristics to objects should be fairly easy, since tha t is mainly a 

mat ter of extending the appropriate tuple. But in the current Arrow t ra i t , the only way to identify 

ends of an arrow is by the boxes to which it is attached (there are no arrow coordinates). What if 

we change the editor to allow unattached arrows? How difficult would it be to include additional 

conditions in our definition of well-formed? How would our definitions of additional characteristics 

of Miro pictures such as ambiguity and legality translate into Larch? 

Although we have checked all par ts of the specification shown in this paper with the LSL and 

GCIL checkers, we have not tried using the Larch Prover (LP) to prove any of our assertions. This 

would serve both to demonstrate the correctness of parts of this specification and to explore the 
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powers and limitations of LP. A final "link" would be to show tha t the specification models the 

actual editor implementation. 

In conclusion, this specification has been an instructive exercise. We have learned more about 

Miro and we now have a formal definition of both the language and editor. Additionally, we have 

explored the Larch languages as a tool for specification. 

I am particularly grateful to my advisor, Jeannet te Wing, for her patience and guidance on this 

work. I would also like to thank Rick Lerner for the many conversations about LSL and GCIL, and 

Allan Heydon, Mark Maimone and Doug Tygar for their extremely helpful comments on earlier 

drafts. I am also indebted to Brad Myers and the rest of the Garnet group for help in implementing 

the Miro editor. 
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A Miro Editor Specification 

% 
% BOX AND ARROW ATTRIBUTE SORTS 
% 
BandASorts : trait 

includes Integer 

CoordPair tuple of x : Int, y : Int 
LineThickness enumeration of thin, thick 
BoxType enumeration of user, file, unknown 
Parity enumeration of positive, negative 
ArrowKind enumeration of syn, sem, con 

% Coordinate Point 
% Line Thickness 

% B o x T y p e 
% Arrow Parity 

% Arrow Kind 

introduces 
_ + __ : CoordPair, CoordPair —• CoordPair 

asserts V x\, y\ : Int, cpx,cp2 : CoordPair 
cPi + CP2 == [(cp1.x) + (cp2.x),(cp1.y) + (cp2.y)] 

% 
% BOX 
% 
Box(Bx) : trait 

includes BandASorts 

% pos is bo t tom left corner of box. size is width and height. 
Bx tuple of pos : CoordPair, size : CoordPair, bJabel : BoxLabel, thickness : LineThickness, 

starred : Bool, box-type : BoxType 

introduces 
copy.box : Bx —• Bx 
is.on.box : CoordPair, Bx —• Bool 

asserts 
V b:Bx 

% Specify Copy-Box with rules for each field. 
% b Jabe l intentionally not specified here. 
copy-box (b). pos —— b.pos 
copy-box (b). size == b.size 
copy-box (6). thickness == b.thickness 
copy-box (6). starred == b.starred 
copy-box (b). box-type —— b.box-type 
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% 
% I N S T A N C E B O X 
% 
InstanceBox (IB) : trait 

includes String(Str for C, null string for new), Box (IB, Str for BoxLabel) 

asserts 
V tb : 7 5 

% Additional rules for Copy_Box: 
% Do not copy label, instead set to empty string. 
copyJ)ox(ib).bJabel == null string 

% 
% CONSTRAINT BOX 
% 
ConstraintBox(CB) : trait 

includes Box(CB,BoxDesc for BoxLabel) 

% 
% A R R O W 
% 
Arrow(Ar) : trait 

includes BandASorts 
assumes Box(Bx) 

Ar tuple of kind : ArrowKind, aJabel : Str,parity : Parity, thickness : LineThickness, 
starred : Bool, from-box : Bx, to-box : Bx 

introduces 
copy .arrow : ylr —• ylr 

asserts 
V a : 

% Copy Arrow: 
% aJabe l intentionally not specified here. 
copy-arrow (a).kind == a.kind 
copy-arrow (a), parity == a.parity 
copy-arrow (a).thickness == a.thickness 
copy .arrow (a), starred = = a.starred 
copy .arrow (a), from-box == copy-box (a. from-box) 
copy-arrow (a).to-box == copy-box (a.to-box) 

39 



% 
% I N S T A N C E A R R O W 
% 
InstanceArrow : trait 

includes InstanceBox, Arrow(IA, IB for Bx) 

% 
% CONSTRAINT ARROW 
% 
ConstraintArrow : trait 

includes ConstraintBox, Arrow(CA, CB for Bx) 

% 
% BASIC P I C T U R E 
% 
BasicPicture(Pic) : t r a i t 

includes Box, Set(Bx, BxSet), Arrow, Set(Ar, ArSet) 

in t roduces 
create-picture :—• Pic 
insert-box : Pic, Bx —• Pic 
insert-arrow : Pic,Ar —• Pic 
move-all-boxes : Pic, CoordPair —• Pic 
copyjpicture : Pic —• Pic 
pic-union : Pic, Pic —• Pic 
delete-box : P ic , Px —• Pic 
delete-arrow : Pic,Ar —• Pic 

boxes : P ic —* BxSet 
arrows : Pic —• Ar5e£ 
arrows-attached-to-box : Pic, Bx —* ArSet 
arrows-attached-to-boxes : Pic, BxSet —• ArSet 
is-on-a-box : CoordPair, Pic —• Poo/ 
box-at : CoordPair, Pic —> Px 

asser ts 

Pic genera ted by create-picture, insert-box, insert .arrow 
Pic pa r t i t i oned by boxes, arrows 

V pic,picx,pic2 : Pic, cp, delta : CoordPair,b,b\ : Bx,a,a\ : 
Ar, bs : BxSet, as : ArSet 

% Move All Boxes in the picture by delta. 
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move .all-boxes (create .picture, delta) == create.picture 
move.all.boxes (insert.box (pic, b), delta) == 

insert.box (move.all.boxes(pic, delta), set.pos(b,b. pos + delta)) 
move.all.boxes(insert.arrow(pic,a), delta) == 

insert.arrow(move.all.boxes(pic, delta),a) 

% Copy Picture: copy each object. 
copy .picture (create.picture) —— create.picture 
copy.picture (insert.box (pic, b)) == 

insert.box (copy.picture(pic), copy.box(b)) 
copy .picture(insert.arrow (pic, a)) == 

insert.arrow (copy .picture(pic), copy .arrow (a)) 

% Union of two pictures. 
pic. union(create.picture, pic 2) == pic2 

pic.union(insert.box(pic, b),pic2) == pic.union(pic1, insert.box(pic2, b)) 
pic.union(insert.arrow(pic,a),pic2) == pic.union(pic1, insert.arrow(pic2, a)) 

% Deleting a box or arrow is exempt for empty pictures. 
delete.box (insert.box (pic, b),b\) == 

if b = 61 then pic 
else insert.box ( delete .box (pic, bi),b) 

delete.box (insert.arrow (pic, a), b) == 
insert.arrow (delete.box (pic, b),a) 

delete.arrow (insert.arrow (pic, a),a\) == 
if a = a\ then pic 
else insert.arrow (delete.arrow (pic, a\),a) 

delete.arrow (insert.box (pic, b), a) == 
insert.box (delete.arrow (pic, a), b) 

% Return the set of boxes and set of arrows in picture. 
boxes(create.picture) == {} 
boxes(insert.box(pic,b)) == insert(boxes(pic),b) 
boxes(insert.arrow (pic, a)) == boxes(pic) 

arrows (create .picture) == {} 
arrows(insert.box(pic,b)) == arrows(pic) 
arrows (insert.arrow (pic, a)) == insert (arrows (pic), a) 

% Arrows_Attached _To_Box: 
% Find all arrows attached to a box - look at each arrow in 
% picture to see whether to or from b. 
arrows.attached.to.box (create.picture, bi) == {} 
arrows .attached.to.box (insert.box (pic, b),b\) == 
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arrows.attached-to-box (pic, bi) 
arrows.attached.to.box (insert .arrow (pic, a), bi) == 

if (((a.from.box) = 6i)V 
((a.to.box) = bi)) then 
insert (arrows.attached.to.box (pic, bi), a) 
else arrows.attached.to.box (pic, bi) 

% Arrows _At t ached _ToJ3oxes: 
% Find all arrows attached to a set of boxes - union of sets of 
% arrows attached to each box. 
arro ws.attached.to.boxes (pic, {}) == {} 
arrows.attached.to.boxes (pic, insert(bs,b)) == 

arrows.attached.to.boxes (pic, bs)\J 
arrows.attached.to.box (pic, b) 

% Is_On_A_Box returns true if there exists a box b in the picture. 
% such tha t is_on_box(cp,b) is t rue. 
is.on.a.box (cp, create.picture) == false 
is.on.a.box (cp, insert.box (pic, b)) =— 

is.on.box(cp,b) V is.on.a.box (cp, pic) 
is.on.a.box (cp, insert.arrow (pic, a)) == is.on.a.box (cp, pic) 

% Box_at returns the box b such that is_on_box(cp,b) is t rue 
% if such a box exists. 
box.at (cp, insert.box (pic, b)) == 

if is.on.box(cp, b) then b 
else box.at (cp, pic) 

box.at (cp, insert.arrow (pic, a)) == box.at(cp,pic) 

implies 
V p : Pic, delta : CoordPair 

% Copy .pic copies _all_ objects (this won't necessarily be t rue at wf-pic level) 
size(boxes(copy.picture(p))) == size(boxes(p)) 
size(arrows(copy.picture(p))) == size(arrows(p)) 

converts move.all.boxes, copy .picture, pic.union, 
delete.box, delete.arrow, boxes, 
arrows, arrows.attached.to.box, arrows.attached.to.boxes, is.on.a.box 
exempting V b : Bx, a : Ar 

delete.box (create.picture, b), delete.arrow (create.picture, a) 
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% O B J E C T 
% 
Obj : trait 

includes Set(Ob, ObjSet) 
assumes BasicPicture(Pic) 

Ob union of box : Bx, arrow : Ar 

introduces 
objects : Pic —• ObjSet 
boxes : ObjSet —> BxSet 
arrows : ObjSet —> ArSeJ 
toggle Jn : ObjSet, Ob —* ObjSet 

asserts 
V 6 : Bx, 6s : BxSet,a : >lr, as : >lr£e£, 06; : 06 , os : ObjSet,pic : Pzc 

% Form the set of all objects by recursing through the sets of boxes and arrows. 
objects(create .picture) == {} 
objects(insert-box(pic,b)) == insert(objects(pic), box(b)) 
objects(insert-arrow(pic,a)) == insert(objects(pic), arrow(a)) 

% Boxes/Arrows: extract box and arrow sets from set of objects. 
boxes({}) == {} 
boxes(insert(os, obj)) == 

if tag(obj) = box then insert(boxes(os), obj.box) 
else boxes (os) 

arrows({}) == {} 
arrows(insert(os, obj)) == 

if tag (obj) = arrow then insert(arrows(os), obj .arrow) 
else arrows(os) 

% Toggle membership in set of objects (used in keeping set of 
% selected objects). 
toggle Jn(os, obj) == 

if obj € os then os — { 0 6 ; } 
else os U { 0 6 ; } 

implies 
converts objects,boxes : ObjSet —• BxSet,arrows : ObjSet —» Ar Set, toggle.in 

% 
% CHANGE A T T R I B U T E 
% 
ChangeAttr : trait 
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assumes Box, Arrow, Obj 

Label enumera t ion of bJabel, aJabel, thickness, starred, pos, size, 
parity, from.box, to .box, kind, box .type 

Value un ion of bool : Bool, cp : CoordPair, box .label : BoxLabel, str : Str, 
b : Bx, arrow.kind : ArrowKind, line .thickness : LineThickness, 
parity : Parity, bt : BoxType 

in t roduces 
valid.attr : Label, Ob —> Bool 
valid.value : Value, Label —• Bool 
change.attr : Ob, Label, Value —• Ob 

asser ts 
V fieldname : Label, value : Value, obj : Ob 

% Valid Attr ibute if label is an at t r ibute in object 
% valid a t t rs for box = ( pos, size, bJabel , thickness,starred, boxJype ) 
% valid a t t r s for arrow = (aJabel , parity,from_box, 
% to-box, kind, thickness, starred) 
valid.attr (fieldname, obj) == 

if tag (obj) = box t h e n 
((fieldname = pos) V (fieldname = size)V 
(fieldname = bJabel) V (fieldname = thickness)^ 
(fieldname = starred) V (fieldname = box .type)) 
else % tag(obj)=arrow 

((fieldname = aJabel) V (fieldname = parity) 
V(fieldname = from.box) V (fieldname = to.box) V (fieldname — kind) 
\/(fieldname = thickness) V (fieldname = starred)) 

% Valid Value if value is correct type for label 
valid.value(value, fieldname) == 

% valid labels for bool = (starred) 
if tag (value) = bool t h e n 

(fieldname = starred) 
% valid labels for line Jhickness = thickness 
else if tag (value) = line.thickness t h e n 

(fieldname = thickness) 
% valid labels for parity = parity 
else if tag (value) = parity t h e n 

(fieldname = parity) 
% valid labels for cp = (pos, size) 
else if tag (value) = cp t h e n 

((fieldname = pos) V (fieldname = size)) 
% valid labels for boxJabel = (bJabel) 
else if tag (value) = boxJabel t h e n 
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((fieldname = bJabel)) 
% valid labels for str = (aJabel) 
else if tag (value) = str then 

((fieldname = aJabel)) 
% valid labels for b = (from.box, to_box) 
else if tag (value) = 6 then 

((fieldname = from.box) V (fieldname = to .box)) 
% valid labels for arrow Jrind = (kind) 
else if tag (value) = arrow.kind then 

(fieldname = kind) 
% valid labels for bt = (box_type) 
else 

(fieldname = box.type) 

% Change Attr ibute assumes valid arguments. Just huge case 
% statement , first on object type, then on label 
change.attr(obj, fieldname, value) == 

% boxes 
if (tag(obj) = box) then 
if (fieldname = pos) then 

box(set.pos(obj.box, value.cp)) 
else if (fieldname = size) then 

box(set.size(obj.box, value.cp)) 
else if (fieldname = bJabel) then 

ftoz (set.b.label( obj. box, value. box .label)) 
else if (fieldname == thickness) then 

box(set.thickness(obj.box, value.line.thickness)) 
else if (fieldname — starred) then 

box(set.starred(obj.box, value.bool)) 
else % (fieldname=box_type) then 

box (set.box Jype(obj .box, value.bt)) 
else % tag(obj)=arrow 
if (fieldname = kind) then 

arrow (set.kind( obj. arrow, value. arrow .kind)) 
else if (fieldname = aJabel) then 

arrow(set.a Jabel(obj.arrow, value.str)) 
else if (fieldname = parity) then 

arrow (set.parity (obj. arrow, value .parity)) 
else if (fieldname — thickness) then 

arrow(set.thickness(obj.arrow, value.line.thickness)) 
else if (fieldname = starred) then 

arrow(set.starred(obj.arrow, value.bool)) 
else if (fieldname = from.box) then 

arrow(set.from.box(obj.arrow, value.b)) 
else % (fieldname=to_box) then 

arrow (set.to.box(obj .arrow, value.b)) 

% tag(value) = bt 
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implies 
converts valid .attr, valid.value 

% 
% WELL-FORMED P I C T U R E 
% 
WFPicture(Pic) : trait 

includes BasicPicture(Pic), Obj, ChangeAttr 

introduces 
extract .wf : ObjSet —» Pic 
delete.objs : Pic, ObjSet —> Pic 
delete.wf .box : Pic, Bx —• Pic 
delete.wf .arrow : Pic,Ar —• Pic 
delete.arrows : Pic,ArSet —» Pic 

arrows.attached : Pic,ArSet —• Poo/ 
arrow .attached : Pic , —• Poo/ 
well-formed : Pic —• Poo/ % defined in W F instance/constraint 

asserts 
V pic : Pic , 6 : Par, a : Ar, as : ArSet, obj : Ob, os : ObjSet 

% Extract W F : keep all boxes and arrows in os whose boxes are also in os. 
boxes(extract-wf(os)) == boxes (os) 
a G arrows (extract .wj(os)) == 

(a 6 arrows(os))A 
((a.to-box) € boxes(os))A 
((a.from.box) € boxes(os)) 

% Delete a set of objects. 
delete-objs(pic, {}) == pic 
delete-objs(pic, insert(os, obj)) == 

if tag (obj) = 6ox t h e n 
delete-objs(delete-wf-box (pic, obj.box), os) 
else % is an arrow 

delete-objs(delete-wf-arrow(pic, obj .arrow), os) 

% When deleting box, delete all attached arrows first. 
% If box is not in picture, just return picture. 
delete.wf.box (pic, b) == 

if b € boxes(pic) t h e n 
delete.box (delete.arrows (pic, arrows.attached.to.box (pic, b)), b) 

else pic 

% Check to see if arrow is in picture first. 
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delete.wf .arrow (pic, a) == 
if a £ arrows(pic) then delete.arrow (pic, a) 
else pic 

% Delete a set of arrows. 
delete.arrows (pic, {}) = = pic 
delete.arrows (pic, insert(as,a)) == 

delete, arrows (delete.wf.arrow(pic, a), as) 

% arrows_attached(pic,as) iff each arrow in as (set of arrows) is attached. 
arro ws.attached (pic, {}) == true 
arrows.attached (pic, insert(as, a)) == 

arrow.attached (pic, a) A arrows.attached (pic, as) 

% An arrow is attached in a picture if both of its boxes are in the picture. 
arrow.attached (pic, a) —— 

(((a.to.box) £ boxes (pic)) A ((a.from.box) £ boxes(pic))) 

implies 
% A well-formed picture is a graph. 
Graph(Bx,Ar, Pic, create .picture for empty, insert.box for addNode, 
insert.arrow for addEdge, boxes for nodes, arrows for edges) 

V pic : P ic , : ObjSet 
% The result of delete is a picture with all boxes in objs deleted, 
% and all arrows attached to boxes in objs, as well as all arrows 
% in objs, deleted. 
boxes(delete.objs(pic, objs)) == boxes(pic) — boxes(objs) 
arrows (delete.objs(pic, objs)) == 

arrows(pic) — (arrows (objs)\J 
arrows.attached.to.boxes (pic, boxes(objs))) 

converts arrows .attached, arrow .attached 

% 
% WELL-FORMED INSTANCE P I C T U R E 
% 
WFInstancePic : trait 

includes InstanceBox, InstanceArrow, 
WFPicture(IPic, create.instance.pic for create.picture, IB for Px, 
iPSe* for BxSet, Str for BoxLabel, IA for Ar,IASet for ArSet, 
10 for Ob, IOSet for ObjSet) 

introduces 
create.ibox : CoordPair, CoordPair, Str, BoxType —» TP 
create.iarrow : IB, IB, Parity, Str —• ZA 
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ambiguous : IPic —*• Bool 

asserts 
V ipic : IPic,cp1,cp2 : CoordPair,parity : Parity,label : Str,b,b\ : IB, bt : BoxType 

% Default values for thickness (thin), starred (false). 
create Jbox(cpx, cp2, label, bt) == 

[cp1,cp2, label, thin, false, bt] 

% default values for thick (thin), starred (false), and kind (syn) 
create Aarrow(b,b\, parity, label) == 

[syn, label, parity, thin, false, b,b\] 

% Well Formed. 

well-formed(ipic) == arrows-attached(ipic, arrows(ipic)) 

implies 
V pic : IPic, objs : IOSet 

% delete_objs maintains well-formedness 
(well-formed(pic) A objs C objects(pic)) 

well-formed(delete-objs(pic, objs)) 

converts create Jbox, create Jarrow, well-formed 

% 
% WELL-FORMED CONSTRAINT P ICTURE 
% 
WFConstraintPic : trait 

includes ConstraintBox, Constraint Arrow, 
WFPicture(CPic, 
create-constraint-pic for create-picture, 
CB for Bx,CBSet for BxSet, BoxDesc for BoxLabel, 
CA for Ar, CASet for ArSet, CO for Ob, COSet for ObjSet) 

introduces 
create-cbox : CoordPair, CoordPair, BoxDesc, LineThickness, Bool, BoxType ~> CB 
create-carrow : 

CB, CB, Parity, Str, ArrowKind, LineThickness, Bool —• CA 

asserts 
V epic : CPic,cp1,cp2 : CoordPair,parity : Parity, thickness : LineThickness, 
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starred : Bool, kind : ArrowKind, boxlabel : BoxDesc, 
arrowlabel: Str,b,b\ : CB,bt : BoxType 

create.cbox(cp1, cp2, boxlabel, thickness, starred, bt) == 
[cpx, cp2, boxlabel, thickness, starred, bt] 

create.carrow(b,b\, parity, arrowlabel, kind, thickness, starred) == 
[kind, arrowlabel,parity, thickness, starred, b, b\] 

% Well Formed. Right now, just require tha t all arrows are attached. 
well-formed (epic) == arrows .attached (epic, arrows (epic)) 

implies 
converts create.cbox, create .carrow, well.formed 

% 
% P I C T U R E UNION 
% 

PicUnion : trait 
includes WFInstancePic, WFConstraintPic, Set(A, ASet), 

Set(B,BSet),Set(0,OS) 

PicType enumeration of inst.pic, const.pic 

B union of ibox : IB, cbox : CB 
A union of iarrow : I A, carrow : CA 
O union of iobj : 10, cobj : CO 
P union of instance : IPic, constraint : CPic 
BL union of ilabel : Str, clabel : BoxDesc 

% picture type 

% box union 
% arrow union 

% object union 
% picture union 

% box label 

introduces 
% explicit coersion functions for sets of objects 
% OS ~ union of iobjset:IOSet, cobjset:COSet 
^.iobjset : OS -» IOSet 
^.cobjset : OS -* COSet 
iobjset : IOSet -* OS 
cobjset : COSet -» OS 

box.to.O : B -> O 

set.pos : B, CoordPair —• B 
—pos : B —• CoordPair 
set.size : B, CoordPair —• B 
—size : B —• CoordPair 
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% operators from BasicPicture 
create .picture : PicType —> P 
insert J>ox : P,B —• P 
insert-arrow : P,A —» P 
copyjpicture : P —• P 
pic-union : P, P —• P 
is-on-a-box : CoordPair, P —» Poo/ 
box-at : CoordPair, P —• P 

% operators from Picture 
067'ecte :P OS 
boxes : OS -+ BSet 
toggle-in : OS,0 -+ OS 
valid.attr : Label, O —• Poo/ 
change-attr : O, Label, Value —• O 

create-box : PicType, CoordPair, CoordPair, BL, LineThickness, Bool, BoxType 
create-arrow : 
PicType, B,B, Parity, Str, ArrowKind, LineThickness, Bool —• A 

% operators from WFPic ture 
move-all-boxes : P, CoordPair —» P 
delete-objs : P,OS -+ P 
extract-wf : PicType, OS —• P 
well-formed : P —» Poo/ 

asserts 
0.9 generated by iobjset, cobjset 

V p£ : PicType,p,p\ : P,b,b\ : B,a : A, cp, cpx : CoordPair, bs : PSe£, as : j45e£, 
06; : 0,os : OS, labelvar : Label, value : Value, bl : BL,parity : Parity, 
thickness : LineThickness,starred : Bool,str : Str,kind : ArrowKind, 
bt : BoxType, ib : 7P, 165 : JPSeJ, c6 : C P , c&s : CPSe*, ios : JOSct, to : 7 0 , 
cos : CO Set, co : CO 

% explicit coersion functions to convert a set of objects to a set 
% of instance or constraint objects 
({}).iobjset == {} 
(insert(os, obj)).iobjset == insert(os.iobjset, obj.iobj) 
({}).cobjset == {} 
(insert(os, obj)).cobjset —— insert(os.cobjset, obj.cobj) 
iobjset({}) == {} 
iobjset(insert(ios, io)) == insert(iobjset(ios),iobj(io)) 
cobjset({}) == {} 

cobjset(insert(cos, co)) == insert(cobjset(cos),cobj(co)) 

% explicit coersion from a (union) box to a (union) object 
50 



box.to.0(b) == 
if tag(b) = ibox t h e n iobj(box(b.ibox)) 
else cobj(box(b.cbox)) 

% explicit " tuple" operators for box union sort. 
set.pos(b, cp) == 

if tag(b) = ibox t h e n ibox (set.pos(b. ibox, cp)) 
else cbox(set.pos(b.cbox, cp)) 

b.pos == 
if tag(b) = iftox t h e n b.ibox.pos 
else b.cbox .pos 

set.size(b, cp) == 
if tag(b) = i6ox t h e n ibox (set size(b.ibox, cp)) 
else cbox(set.size(b.cbox, cp)) 

b.size == 
if tag(b) = i&ox t h e n b.ibox.size 
else b.cbox.size 

% for each of these operators, just do coersions based on whether 
% it 's an instance or constraint 

create.picture (pt) == 
if (pt = inst.pic) t h e n instance (create.instance.pic) 
else constraint(create.constraint.pic) 

insert.box (p,b) == 
if tag(p) = instance t h e n instance(insert.box(p.instance, b.ibox)) 
else constraint (insert.box (p. constraint, b.cbox)) 

insert.arrow (p, a) == 
if tag (p) = instance t h e n instance(insert.arrow (p.instance, a.iarrow)) 
else constraint (insert.arrow (p. constraint, a.carrow)) 

copy.picture (p) == 
if tag(p) = instance t h e n instance(copy.picture(p.instance)) 
else constraint(copy.picture(p.constraint)) 

pic.union(p,pi) == 
if tag(p) = instance t h e n instance (pic.union(p. instance, pi. instance)) 
else constraint (pic.union (p. constraint, pi. constraint)) 

is.on.a.box(cp,p) == 
if tag(p) = instance t h e n (is.on.a.box (cp, p.instance)) 
else (is.on.a.box (cp, p. constraint)) 

box.at(cp,p) == 
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if tag(p) = instance then ibox (box.at (cp, p. instance)) 
else cbox(box.at(cp,p.constraint)) 

% Can' t tell from os whether instance or constraint, so have to 
% define boxes recursively. 
boxes({} : OS) == {} 
boxes(insert(os, obj)) == 

if tag (obj) = 106; then 
if tag(obj.iobj) = box then 

insert (boxes (os), ibox ( obj. iobj. box ) ) 
else boxes(os) 
else 
if tag(obj.cobj) = box then 

insert (boxes (os), cbox (obj. cobj. box)) 
else boxes (os) 

toggle Jn(os, obj) == 
if tag(obj) = iobj then iobjset (toggle Jn(os.iobjset, obj .iobj)) 
else cobjset(toggleJn(os.cobjset, obj.cobj)) 

valid.attr(labelvar, obj) == 
if tag(obj) = iofej then valid.attr(labelvar, obj.iobj) 
else valid.attr(labelvar, obj.cobj) 

change.attr (obj, labelvar, value) —~ 
if tag (obj) = iobj then iobj (change.attr (obj .iobj, labelvar, value)) 
else cobj (change.attr (obj .cobj, labelvar, value)) 

create.box(pt, cp, cp1, bl, thickness, starred, bt) == 
if (p£ = inst.pic) then 

ibox (create.ibox (cp, cp1, bl.ilabel, bt)) 
else 

cbox (create.cbox (cp, cp1, bl.clabel, thickness, starred, bt)) 

create.arrow(pt,b, bi,parity, str, kind, thickness, starred) == 
if (p£ = inst.pic) then 

iarrow (create.iarrow (b.ibox, b\.ibox, parity, str)) 
else 

carrow(create.carrow(b.cbox,b\.cbox,parity, str, kind, thickness, starred)) 

move.all.boxes(p,cp) —— 
if tag(p) = instance then instance(move.all.boxes(p.instance, cp)) 
else constraint(move.all.boxes(p.constraint, cp)) 

objects(p) == 
if tag(p) = instance then iobjset (objects (p. instance)) 
else cobjset(objects(p.constraint)) 
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delete-objs(p, os) == 
if tag(p) = instance then instance(delete-objs(p.instance, os.iobjset)) 
else constraint (delete-objs(p. constraint, os.cobjset)) 

extract„wf (pt, os) == 
if pt = inst-pic then instance (extract.wf(os. iobjset)) 
else constraint(extract.wf(os.cobjset)) 

well .formed (p) == 
if tag(p) = instance then well-formed (p. instance) 
else well-formed(p.constraint) 

implies 
converts box-to-0, create-picture : PicType —» P, 

copy-picture : P —• P, is.on-a-box : CoordPair, P —• Poo/, iozes : 0 5 —• P5e£, 
objects : P —• 0 5 , move-all-boxes : P, CoordPair —» P, well-formed : P —» Poo/ 

% not converted because doesn't check all coercions: insert_box, insert_arrow, 
% p icun ion , toggleJn, valid_attr, change_attr, create_box, create_arrow, 
% delete_objs, extract_wf 

% box_at is not converted because it assumes is_on_a_box 

% 
% PIXEL MAP 
% 
PixelMap : trait 

PixelValue enumeration of on, off 

includes BandASorts, FiniteMapping(PixelMap, CP, PixelValue) 

% 
% E D I T O R S T A T E 
% 

EditorState : trait 

includes PicUnion(ObjType-Obj for O, Box-Obj for B, Arrow-Obj for A), PixelMap 

OT enumeration of box, arrow % object type 

Ed tuple of 
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pos : CoordPair, size : CoordPair, 
picture : P, 
picture.type : PicType, 
object.type : OT, 
arrow.kind : ArrowKind, 
arrow.parity : Parity, 
thickness : LineThickness, 
starred : Bool, 
selected .objs : OS 

% position info 
% graphical objects 

% picture type 
% object mode info 

% selection 

introduces 
display .window : Ed —» PixelMap % not defined here 

objec t miro_editor 
init ial ized by CreateEditor 

using EditorState 
t y p e Cp based on CoordPair from BandASorts 
t y p e Str based o n Str from String 
t y p e Bt based o n BoxType from BandASorts 
t y p e BI based o n BL from PicUnion 
t y p e Box based o n B from PicUnion 
t y p e Arrow based o n A from PicUnion 
t y p e ObjType based on 0 f rom PicUnion 
t y p e ObjSet based o n OS from PicUnion 
t y p e Value based on Value from ChangeAttr 
t y p e Label based o n Label from ChangeAttr 
t y p e Picture based o n P from PicUnion 

t y p e Editor based on Ed from EditorState 
private e : Editor 

invariant e.selected_objs C objects(e.picture) 

invariant well_formed(e.picture) 

o p e r a t i o n CreateEditor (posn, size : Cp) 
requires t rue 
ensures n e w o b j (e0&j) A 

e' = [posn, size, create_picture(inst_pic), 
inst.pic, box, syn, positive, thin, false,{}:0S] 

o p e r a t i o n DrawBox (cp l , cp2 : Cp, label : BI, bt : Bt) 
requires e.object.type = box 
modif ies (e0bj) 
ensures 
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3 b:Box 
n e w o b j (b) A 
blpost = create_box(e.picture_type,cpl, cp2, label, e.thickness, e.starred, b t ) A 
e'.picture = insert_box(e.picture, b) 

o p e r a t i o n Draw Arrow (cp l , cp2 : Cp, label : Str) 
requires e .objectJype = arrow A 

is_on_a_box(cpl,e.picture) Ais_on_a_box(cp2,e.picture) 
modif ies (e0bj) 
ensures 

3 a:Arrow 
n e w o b j (a) A 
alpost = create_arrow(e.picture_type, box_at(cpl , e.picture), box_at(cp2, e.picture), 

e.arrow_parity, label, e.arrowJdnd, e.thickness, e.starred) A 
e'.picture = insert_arrow(e.picture, a) 

o p e r a t i o n Select (obj : ObjType) 
requires obj € objects(e.picture) 
modif ies (e0bj) 
e n s u r e s e'.selected_objs = toggleJn(e.selected_objs, obj) 

o p e r a t i o n GroupSelect (os : ObjSet) 
requires os C objects(e.picture) 
modif ies (e0bj) 
e n s u r e s e'.selected.objs = (e.selected_objs Uos) 

o p e r a t i o n Unselect ( ) 
requires t rue 
modif ies (e0&j) 
e n s u r e s e'.selected_objs = {}:0S 

o p e r a t i o n MoveBoxes (delta : Cp) 
requires t rue 
modif ies (eQbj) 
e n s u r e s 

V b:Box 
(b 6 boxes(e.selected_objs) = > 

blpost = set_pos(b!pre, (b!pre).pos+delta)) A 
e'.selected.objs = {}:0S 

o p e r a t i o n ResizeBox (b : Box, pos : Cp, size : Cp) 
requires e.selected_objs = {box_to_0(b)} 
modif ies (e0&j) 
ensures b ' = set_size(set_pos(b,pos),size) A 

e'.selected-objs = {}-0S 

o p e r a t i o n DeleteObjs ( ) 
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requires t rue 
modif ies ( e ^ ) 
ensures e'.picture = delete_objs(e.picture, e.selected.objs) A 

e'.selected_objs = {}:OS 

opera t ion CopyObjs (delta : Cp) 
requires t rue 
modif ies (e0bj) 
ensures 

3 newpic : Picture V o:ObjType 
n e w o b j (newpic) A 
newpiclpost = copy.picture(extract.wf(e.picture_type,e.selected_objs)) A 
(o 6 objects(newpiclpost) = > n e w o b j (o)) A 
e'.picture = pic_union(e.picture, 

move_all_boxes(newpic!post, delta)) A 
e'.selected _objs = {}:0S 

opera t ion ChangeAttribute (o:ObjType, attrrLabel, val:Value) 
requires valid_attr(attr , o) Avalid_value(val, a t t r ) 
modif ies (o0&j) 
ensures o' = change_attr(o,attr,val) 

o p e r a t i o n Clear ( ) 
requires t rue 
modif ies ( e 0 y ) 
ensures e'.picture = create_picture(e.picture_type) A 

e'.selected_objs = {} '0S 
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