
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Formal Specification of a Visual Language Editor

Jeannette M. Wing and Amy Moormann Zaremski
February 25, 1991

CMU-CS-91-1123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted to Sixth International Workshop on Software Specification and Design.

Abstract

This paper presents a non-trivial case study on the use of the Larch [GHW85, GHM90] specification languages to
describe the Mir6 visual languages and graphical editor [HMT90] . In addition to excerpts from the specification we
discuss properties of Miro provable from the specification, limitations of Larch, and general lessons learned from'this
exercise. The companion technical report, CMU-CS-91-111, contains the entire specification

f A F £ ? nT? T S P ° w °
 Kt hl ** A V i ° n i C S ^ W r i 8 h t R e S 6 a r C h

 md
 D e v e l ° P m e n t Center, Aeronautical Systems Division

\ \ . ' W n 8 h t - P a t t e r s o n A F B , OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No 7597
A. Moormann Zaremski is also supported by a fellowship from the Office of Naval Research.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.

Keywords: formal specification, visual language, Larch, Miro

1. Introduction to and Contributions of This Paper

The Mir6 visual languages let users specify formally through pictures the security configuration of file systems (i.e.,
which users have access to which files) and general security policy constraints (i.e., rules to which a configuration
must conform). With the Mir6 editor, users draw both types of pictures and access other Mir6 tools.

This paper presents a non-trivial case study on the use of the Larch specification languages to describe the Mir6
languages and editor. We had two goals in mind while writing the specification: to end up with a formal specification
that could serve as both documentation of and a basis for formal reasoning about the specificand, i.e., the Mir6
languages and editor; and to apply Larch to determine its strengths and weaknesses. Though there are a growing
number of cases studies of formal specifications for formal methods like VDM and Z, very few examples of Larch
specifications have been published. Moreover, whereas previous Larch papers have emphasized and presented Larch
traits, ours presents a balance of both traits and interfaces.

We begin with brief descriptions of Mir6 and Larch in Section 2 and present excerpts from the specification in
Section 3. In Section 4 we discuss properties of the specificand provable from the specification, limitations of Larch,
and general lessons learned from this exercise. In Section 5, we close with a brief discussion of related and future work.
All of the traits have been checked for syntactic and static semantic correctness using the Larch Shared Language
(LSL) Checker and the interface specification has been checked for syntactic and type correctness using the Generic
Interface Language (GIL) Checker.1 Including blank lines and comments in the code and specification, the code size
of the editor is 8400 lines of Common Lisp and the Larch specification is 1035 lines of Larch traits and interfaces.

2. Mir6 and Larch

2.1. Specificand: Mir6

Mir6 consists of two visual languages, the instance language and the constraint language [HMrT"90]. An instance
(language) picture graphically denotes an access matrix that defines which users have which accesses to which files.
Instance pictures model the specific security configuration between a set of users and a set of files, e.g., Alice cannot read
Bob's mail file. A constraint (language) picture denotes a set of instance pictures (or equivalently, the corresponding
set of access matrices) that satisfies a particular security constraint, e.g., users with write access to a file must also have
read access. When an instance picture, IP, is in the set denoted by a constraint picture, CP, we say IP "matches" CP
or IP is "legal with respect to" CP.

The basic elements in the instance language are boxes and arrows. Boxes that contain no other boxes represent
users and files. Boxes can contain other boxes to indicate groups of users and directories of files. User group boxes
may overlap to indicate a user is in more than one group. Labeled arrows go from user (group) boxes to file (group)
boxes; the label indicates the access mode, e.g., read or write. Access rights are inherited by corresponding pairs of
boxes contained within boxes connected by arrows, thus minimizing the number of arrows necessary to draw. Arrows
may be negated to indicate the denial of the labeled access.

Figure 1 shows an instance picture, as drawn in the Mir6 editor. The positive arrow from A l i c e to A l i c e ' s
f i l e s indicates that Alice has read and write access to her files. The positive arrow from A l i c e ' s f r i e n d s to
Alice's s c h e d u l e file indicates that both Bob and Charlie have read access to Alice's schedule. By default, since
there are no arrows between Alice's friends and her other files, Bob and Charlie do not have read access to Alice's
mail file. We could also show this property with an explicit negative arrow between Alice's friends and her mail file.

The constraint language also consists of boxes and arrows, but here the objects have different meanings. A box
labeled with an expression defines a set of instance boxes. E.g., the left-hand box in Figure 2 denotes the set of instance
boxes of type User. There are three types of arrows, allowing us to describe three different relations between boxes

1 The full specification is available as a technical report upon request from the second author. Tools are available upon request from the first hor. author.

Instance

Constraint

Name

label

Arrow Parity:
•j Positive Negative

PTeadli

[Exit!

Help Window

^Alice
/Al ice's files

/Al ice's friends

/

/Charlie \

I)

READ

r mail

'schedule

Figure 1: The Mir6 editor and a sample instance picture

in an instance picture, IP: syntactic (solid horizontal) - whether an arrow explicitly appears in IP; semantic (dashed
horizontal) - whether an access right exists in the matrix denoted by IP; and containment (solid vertical with head
inside box) - whether a box is nested within another in IP. Additionally, the thickness attribute of each constraint
object is key in defining a constraint picture's meaning: in general, for each set of instance objects that matches the
thick part of the constraint, there must be another set of objects (disjoint from the set matching the thick part) that
matches the thin part. Figure 2 shows a constraint picture that specifies that users who have write access to a file must
have read access to it as well.

The Mir6 editor provides the facilities to create, view, and modify both instance and constraint pictures. Pictures
can be saved in files and read back into the editor. The editor also serves as an interface to other Mir6 tools, e.g.,
one that generates the access matrix denoted by an instance picture, and one that translates a picture into PostScript
form. The left-hand side of the window in Figure 1 displays a menu from which users can select the type of picture
and object they wish to draw. Other menu buttons provide additional editing commands and interfaces to the other
Mir6 tools. The editor maintains language-specific constraints as users draw pictures. For example, all arrows in Mir6
pictures must be attached to boxes: if a user moves a box in the picture, all arrows attached to that box also move. Our
formal specification captures this behavior precisely.

2.2. Specification Language: Larch

We wrote our specifications using Larch specification languages. We assume some rudimentary knowledge of Larch,
present a refresher here, and give further details as we present the specification. See [GHW85, GHM90] for more

2

r type = User Write

Read

>
3

type = File

Figure 2: A sample constraint picture

details.

Larch provides a "two-tiered" approach to specification. In one tier, the specifier writes traits in the Larch Shared
Language (LSL) to assert state-independent properties of a program. Each trait introduces sorts and operators and
defines equality between terms composed of the operators (and variables of the appropriate sorts). E.g., the Box trait
(Figure 4) introduces the sort B and the operators move J D O X , resize_box , a n d copy-box; four equations constrain
the meaning of c o p y -box.

In the second tier, the specifier writes module interfaces in a Larch interface language, such as the Generic Interface
Language (GEL)[Che89], to describe state-dependent effects of a program. A requires clause states each procedure's
pre-condition; an ensures clause, its post-condition; a modifies clause lists those objects whose value may possibly
change. The assertion language for the pre- and post-conditions is drawn from LSL traits. Through based on clauses,
a Larch interface links to LSL traits by specifying a correspondence between (programming-language specific) types
and LSL sorts. An object has a type and a value that ranges over terms of the corresponding sort.

Part of the interface specification for the editor below defines the type Editor, which is based on the Ed sort,
introduced in the EditorTrait trait. The MoveBoxes procedure's pre-condition requires that some non-empty set of
objects be selected. The post-condition says that the state of the picture in the editor is updated (as defined by the
move-boxes operator whose meaning is obtained from EditorTrait) and that all objects are unselected. In a post
condition an undecorated formal, e, stands for the initial value of the object; a subscripted one, e ! p o s t , stands for
the final value. The modifies clause states that MoveBoxes may change only the editor and no other object.2

MODULE miro__editor

TYPE E d i t o r BASED ON Ed FROM E d i t o r T r a i t

PROCEDURE MoveBoxes (d e l t a : Cp, e : E d i t o r)
REQUIRES (~ (i s E m p t y (e . s e l e c t e d _ o b j s)))
MODIFIES (e)
ENSURES

% move s e l e c t e d b o x e s

((e l p o s t . p i c t u r e) =

move__boxes ((e . p i c t u r e) ,
& ((e l p o s t . s e l e c t e d _ o b j s) =

END MoveBoxes

b o x e s (e

{})
s e l e c t e d _ o b j s) , d e l t a))

cfae2^£ m^Gl^T^ * **** " S p e c i

T

f i c a t i o n '
 M

 deifications in this paper appear exactly as they have been cnecked by the LSL and GILC tools. Thus, non-ascn symbols appear as LSTEXmacros (e.g., \u for u (set union)).

3

3. The Specification

We divide the specification into two main pieces: that specifying properties of Mir6 pictures and that specifying
the behavior of the editor. We use LSL to describe Mir6 pictures and additionally use GIL to specify the editor's
procedures that manipulate the pictures.

Figure 3 illustrates how the traits of the LSL part of the specification fit together. Each oval corresponds to a
trait and an arrow indicates that one trait includes another. A picture in either the instance or constraint language
is a collection of boxes and arrows (BasicPic trait). Mir6 pictures are further constrained to satisfy well-formedness
properties (Pic and WFPic), which include, for example, the condition that arrows be attached to boxes. Pictures drawn
in the instance and constraint languages are structurally very similar, so our approach is to factor out the properties
common to both languages (bold ovals in Figure 3), and then specialize for each language (dashed ovals). At the
bottom we define the EditorTrait which includes all the others; it is the link between the LSL and GIL tiers in the
editor specification. In this paper we will walk through only the traits along the spine in the figure. Also, to save space
we will typically present only the signature and not the equations in each trait.

3.1. The Mir6 Languages

3.1.1. Basic Objects

Boxes and arrows are the basic objects of any Mir6 picture. Instance and constraint pictures differ only in the attributes
of their respective boxes and arrows and in the rules for combining them into pictures. Traits for boxes and arrows are
later specialized to distinguish between instance and constraint pictures.

A box object has a value of sort B (see Box trait in Figure 4) and has pos and s i z e attributes.3 We assume a
box's position is the coordinates of its bottom left corner, and its size is given as a coordinate pair of its width and
height. A box also has a l a b e l attribute, which will be customized for instance and constraint boxes, and the boolean
attributes t h i c k and s t a r r e d , needed for constraintpictues. Finally, we use s y s n a m e to identify a box. Although
we do not require it at this level, we assume that sysnames are unique. Sysnames serve two purposes: to distinguish
between otherwise identical objects and to provide an easy way to identify objects in a picture for other operations
(e.g., deleting a box).

The Box trait also introduces operators on boxes. The r e c o r d notation in Larch automatically produces the
generator for the record sort: an operator that takes as its arguments all of the attributes of the sort and produces
something of the record sort (e.g., mk_B). The record shorthand also generates operators of the form b . f oo and
f o o - g e t s (b,foo-val) for each field f oo (where b is of sort B and/00_va/ has the same sort as the field f 00).

The introduces clause declares additional operators and the equations in the asserts clause give them their meaning.
Move -box and r e s i z e _ b o x reset the position and size attributes of their respective box arguments. The reason we
even need a c o p y -box operator as opposed to relying on Larch's built-in equality operator for all sorts is that not all
values of all fields are the same when one box is a copy of the other. Having an explicit copy-box operator also
makes it convenient to specify default initialization values for certain fields. For example, one issue in the design of
the editor was whether or not a copy of a box should have the same label, or should have a default label (the empty
string). Thus, we choose instead to write equations only for the fields we require to be the same, and allow the values
of the other fields to be specified in another trait or at the interface level.

Boxes in the instance language differ from those in the constraint language in two ways. First, the sort of values
for some attributes are different. Namely, an instance box's l a b e l is a string whereas a constraint box's label is "box
descriptor" - a boolean expression that describes a set of boxes. We handle this difference by using the generic sort
LabelSort and then in the InstanceBox trait, we rename LabelSort with the sort Str (for strings) and in the ConstraintBox
trait, we rename it with the sort BoxDesc (for box descriptors).

3The CP sort is defined in the CoordPair trait as a record of two integers

4

Figure 3: The dependencies of the Mir6 traits

The second difference is that some attributes are meaningful for only constraint pictures and hence are unnecessary
for instance pictures. We could avoid this problem if either Larch provided a way to extend (subtype) records or we
were willing to use nested records (see Section 4). However, since there are only a few of these attributes, we choose
instead to include at the trait level all possible attributes for the two kinds of boxes, and then make assertions at the
interface level that place constraints that will distinguish between instance and constraint boxes.

We specify properties on arrows similarly (using Larch's record construct) and omit the details here. T O J D O X and
f r o m J D o x are two of many fields in the record for arrows and are used to keep track of the boxes at the arrow's head
and tail.

3.1.2. Pictures

A picture is a set of boxes and set of arrows (see Figures 5 - 9). To avoid a long and confusing trait, we divide
the specification of properties of pictures into three main traits: B a s i c P i c t u r e , P i c t u r e , and W F P i c t u r e

Box (B) : t r a i t
includes CoordPair, Integer

B record of (pos : CP, s i z e : CP, l a b e l : LabelSort, thick : Bool,
starred : Bool, sysname : Int)

introduces
move_box : B, CP -> B
resize_box : B, CP -> B
copyjbox : B -> B

a s s e r t s
for a l l (b : B, cp : CP)

move_box(b,cp) == pos_gets(b,cp),
resize_box(b,cp) == s i z e _ g e t s (b , c p) ,

(copy_box(b)) .pos == b .pos,
(copy_box(b)) . s i z e == b . s i z e ,
(copyjbox(b)) . thick == b . t h i c k ,
(copy_box(b)) .starred == b .starred,

end

Figure 4: The Box Trait

(Well-Formed Picture). B a s i c P i c t u r e introduces the picture sort, Pic, and basic operators on apicture. P i c t u r e
introduces the sort O b j e c t , operators that manipulate objects in the picture, and sorts and operators for the "Change
Attribute" interface. Finally, W F P i c t u r e introduces the definition of "well-formedness" and operators that build on
top of the basic operators to create and manipulate "well-formed" pictures.

The BasicPicture trait (Figure 5) introduces the sort Pic for pictures. The includes clause lets us use all sort and
operator names from the included traits with appropriate renamings. E.g., the renaming of sort identifiers in the Set trait
(from the Larch Handbook) gives us a sort BSet for sets of boxes and an operator empty_BSet to denote the empty
set of boxes. The operators that generate a picture are c r e a t e _ p i c t u r e , i n s e r t -box, and i n s e r t - a r r o w .
This trait also introduces the operators move -a -box, r e s i z e - a _ b o x , d e l e t e - b o x , a n d d e l e t e _ a r r o w . We use
p i c u n i o n later in traits to perform the higher-level copy operation, b o x e s and arrows are observer functions on
pictures.

The axioms defining these operators are straightforward and given in the standard style of "algebraic" specifications
(define the meaning of each non-constructor operator in terms of each constructor operator). We give details of only
one here. C o p y - p i c t u r e recurses through the objects in the picture and calls the appropriate copy operator on each
object (box or arrow).

copy__picture (c r e a t e ^ p i c t u r e (empty_BSet, empty__ASet)) —
c r e a t e _ j ? i c t u r e (empty_BSet, empty__ASet) ,

c o p y _ j ? i c t u r e (c r e a t e _ j p i c t u r e (i n s e r t (b s , b) , as)) —
i n s e r t ^ b o x (copy__picture (b s , as) , copy_box (b)) ,

c o p y _ p i c t u r e (c r e a t e _ j ? i c t u r e (b s , i n s e r t (a s , a))) ==
i n s e r t _ a r r o w (copy_jpicture (b s , as) , copy__arrow (a)) ,

c o p y _ p i c t u r e (i n s e r t _ b o x (p i c , b)) ==

6

BasicPicture : t r a i t

includes Box, Set(B, BSet,empty_BSet for { }) , Arrow, Set(A,
ASet,emptyASet for {})

introduces

create_picture : BSet, ASet -> Pic
insert_box : Pic , B -> Pic
insert_arrow : P i c , A -> Pic

move_a_box : Pic , Int , CP -> Pic % move box with sysname int
resize_a_box : P i c , Int , CP -> Pic
delete_box : Pic , B -> Pic
delete_arrow : P i c , A -> Pic
copy_picture : Pic -> Pic
pic_union : P i c , Pic -> Pic
boxes : Pic -> BSet
arrows : Pic -> ASet

a s s e r t s

Pic generated by (create_picture, insert_box, insert_arrow)
Pic p a r t i t i o n e d by (boxes, arrows)

Figure 5: Part of the BasicPicture Trait

i n s e r t _ b o x (c o p y _ j p i c t u r e (p i c) , c o p y _ b o x (b)) ,

c o p y _ j p i c t u r e (insert__arrow (p i c , a)) ==
insert__arrow (c o p y _ j ? i c t u r e (p i c) , c o p y _ a r r o w (a))

The P i c t u r e trait (Figure 6) builds on the B a s i c P i c t u r e trait by introducing a new sort Object, which is a
union of the box and arrow sorts. Most of the editor's procedures work regardless of whether its argument is a box or
arrow; thus, for each operator common to the box and arrow sorts, we introduce an equivalent operator for the Object
sort.

The operator o b j e c t s returns the set of all objects in a picture; b o x e s and a r r o w s extract the sets of boxes
and arrows from a set of objects. The operator t o g g l e - i n adds the specified object to a set of objects if it is not
already in it, otherwise it deletes the object. The editor trait uses t o g g l e - i n to maintain a set of selected objects
in a picture. The operator copy_ob j e c t is the object analog of the corresponding box and arrow operators. The
operator c h a n g e _ a t t r lets us set the value of an object's attribute and rely on the helping operators v a l i d _ a t t r
and v a l i d - v a l u e which define which attributes and values are valid for each object. Some of the complexity of
this trait results from our decision to use the union construct for objects. The advantage of putting this complexity
here is that we keep the interfaces clean and simple; we discuss some of the disadvantages in Section 4.

3.1.3. Well-formed Pictures

B a s i c P i c t u r e and P i c t u r e traits introduce the picture son Pic and basic operators on pictures However Mir6
pictures drawnmtheeditor cannot be an arbitrary c o l ^

Among the many operators (not all are shown) in the WFPicture trait (Figure 7), we introduce operators for
defining well-formedness and extracting a maximal well-formed subset of a L of

7

Picture (Pic) : t r a i t

includes

BasicPicture, Set(Object,ObjSet, empty_OSet for {})

Object union of (box : B, arrow : A)

Label enumeration of (l a b e l , sysname, t h i c k , starred,
pos, s i z e , p a r i t y , from_box, to_box, kind)

Value union of (bool:Bool, cp:CP, s t r : S t r , i n t : I n t , b:B,
arrow_kind:ArrowKind)

introduces
objects : Pic -> ObjSet
boxes : ObjSet -> BSet
arrows : ObjSet -> ASet
toggle_in : ObjSet, Object -> ObjSet

copy__object : Object -> Object

v a l i d _ a t t r : Label, Object -> Bool
valid_value : Value, Label -> Bool
change_attr : Object, Label, Value -> Object

a s s e r t s
for a l l (b:B, bs:BSet, a:A, as:ASet, o b j : 0 b j e c t , osrObjSet,

p i c : P i c , cpl:CP, l a b e l : L a b e l , value:Value)

Figure 6: Part of the Picture Trait

but give no equations defining w e l l - f o r m e d operator in this trait because instance and constraint pictures have
different notions of well-formedness. However, since one well-formedness condition common to both instance and
constraint pictures is that all arrows must be attached to boxes, we additionally introduce and define here the operator
a l l _ a r r o w s _ a t t a c h e d . There are other well-formedness conditions, e.g., arrows must go from user boxes to file
boxes in an instance picture, but for this paper, we assume only the arrows-attached property.

We use e x t r a c t _ w f in the editor interface to describe the behavior of the command to copy a set of selected
objects, which itself is a picture that may or may not be well-formed. The result of e x t r a c t - w f (os) is a picture
that contains all the objects of os except the "dangling" arrows (i.e., arrows which are not attached to boxes in os).

b o x e s (extract__wf (p i c , os)) == b o x e s (o s) ,

a \ i n arrows (extract__wf (p i c , os)) ==

(a \ i n a r r o w s (o s)) &

((a . t o _ b o x) \ i n b o x e s (o s)) &

((a .from_box) \ i n b o x e s (o s))

To show how we define properties of a well-formed instance picture, let us look at the WFInstancePicture trait
(Figure 8), which includes and specializes the WFPicture trait. The asserts equation states that an instance picture
is w e l l - f o r m e d if and only if all arrows in the picture are attached. In WFInstancePicture we also introduce the

8

WFPicture (Pic) : t r a i t
includes Picture

introduces

well_formed : Pic -> Bool
all_arrows_attached: Pic -> Bool
extract_wf : ObjSet -> Pic

Figure 7: Part of the WellFormedPicture Trait

WFInstancePic : t r a i t
includes InstancePic,

WFPicture(IPic, create_instance_pic for create_picture,
IB for B, Str for LabelSort, IA for A,
10 for Object, IOSet for ObjSet)

introduces
ambiguous : IPic -> Bool

a s s e r t s

for a l l (i p i c : I P i c)

well_formed(ipic) == all_arrows_attached(ipic)

end

Figure 8: The WellFormed Instance Picture Trait

function a m b i g u o u s . Because there are both positive and negative arrows in the instance language, it is possible to
draw pictures that lead to the reasonable interpretation that a user has access to a file and to the reasonable interpretation
that the user does not. The semantics of ambiguity is well-defined[MTW90], but is somewhat complex, so we do not
reproduce it here. The Mir6 editor enforces well-formedness, but does not require that the pictures drawn are always
unambiguous. For this reason, we cannot write the equation:

w e l l - f o r m e d (i p i c) ~ a l l - a r r o w s - a t t a c h e d (i p i c) & ~ambiguous (i p i c) .

Finally, most of the editor's procedures work on pictures regardless of whether they are drawn in the instance
or constraint language. For example, moving a collection of boxes behaves the same regardless of whether they are
instance or constraint boxes. To avoid duplicating the entire interface (e.g., have two separate Move Instance-Picture
and MovejConstraint-Picture procedures) we introduce a union sort P to handle both instance and constraint pictures
- just as we introduced an Object sort to handle both boxes and arrows. Figure 9 shows the signature for the PicUnion
trait. By providing a union sort P and the appropriate operators, the editor's procedures can now work on either type of
Mir6 picture. Most of the operators introduced in PicUnion trait deal with coercing to and from values of the picture
sort P and values of instance and constraint picture sorts.

9

PicUnion: t r a i t
includes WFInstancePic, WFConstraintPic,

Set(A,ASet,empty_ASet for { }) ,
Set(B,BSet,empty_BSet for { }) ,
Set(0,0S)

B union of (ibox:IB, cbox:CB)
A union of (iarrow:IA f carrow:CA)
0 union of (i o b j : I 0 , cobj:C0)
P union of (i n s t a n c e : I P i c , constraint:CPic)
BoxLabel union of (i l a b e l : S t r , clabel:BoxDesc)
PicType enumeration of (instance, constraint)

introduces
as_iobjset : OS -> IOSet
as_cobjset : OS -> COSet
box_to_0 : B -> 0
sysname : B -> Int

boxes : P -> BSet
create_picture : PicType -> P
insert_box : P, B -> P
insert_arrow : P, A -> P

- copy_joicture : P -> P
pic_union : P, P -> P

objects : P -> OS
boxes : OS -> BSet
arrows : OS -> ASet
toggle_in : OS, 0 -> OS
v a l i d _ a t t r : Label, 0 -> Bool
change_attr : 0, Label, Value -> 0

create_box : PicType, CP, CP, BoxLabel, Int , Bool, Bool -> B

create_arrow :
PicType, B, B, Bool, Str , Int , ArrowKind, Bool, Bool -> A

move_boxes : P, BSet, CP -> P
resize_box : P, I n t , CP, CP -> P
delete_objs : P, OS -> P
extract_wf : P, OS -> P

well_formed : P -> Bool
ambiguous : P -> Bool

Figure 9: Part of the PicUnion Trait

10

3.2. Editor

TZ w ! 7 T a Z*l d e S C n b i n * M i * P i c ^ > we are ready to describe the editor's effects of manipulating
nV?h?f S t a t e a t ^ l e V d ^ U S e i n t e r f a c e s t o d e s c r i b e s t * e Ganges. We ignore S S ^ i S T ; ^ K e S . (e ' g ; ; t 0 m ° U S e " * k e y b o a r d a c t i o n s ' h o w text interaction works); these L descnbed informally in the Editor User's Guide[Zar90].

3.2.1. LSL Level

E d i t o r T r a i t : t r a i t

includes PicUnion, PixelMap, A t t r i b u t e S o r t s

% object type

OT enumeration of (box, arrow)

% l i n e thickness

LineThickness enumeration of (thin, thick)

Ed record of (

pos : CP, s i z e : CP,
picture : P,
picture_type : PicType,
object_type : 0T,
arrow_kind : ArrowKind,
arrow_parity: Bool,
thickness : LineThickness,
starred : Bool,
selected_objs : OS)

introduces

display_window : Ed -> PixelMap
end

Figure 10: The Editor Trait

The Editor trait (Figure 10) introduces the sort, Ed, which we use to model the editor state, again via the record
construct. The p o s and s i z e fields indicate the location and size of the editor window on the screen. The p i c t u r e
field contains the current Mir6 picture, of sort P (introduced in the PicUnion trait). S e l e c t e d - o b j s is the set of
currently selected objects in the picture. The remainder of the record describes the current "mode" of the editor (as
indicated in the menus): p i c t u r e - t y p e indicates whether the current picture is an instance or constraint picture,
o b j e c t - t y p e is either box or arrow, a r r o w - k i n d is the kind of arrow - syntactic, semantic or containment
(relevant for only constraint pictures), and the rest of the attributes are self-explanatory. EditorTrait introduces one
additional operator: d i s p l a y - w i n d o w is left unspecified here, but is intended to be a mapping from the abstract
editor value to actual screen pixels.

3.2.2. Interface Level

Now that we have build up a rich trait, we are ready to specify the editor's interface. First we name the module we
are speafymg (mi r o . e d i t or) , and then establish correspondences between types and sort ^ X ^ S S S l E
SSnTflT1 * " *

 6:ery Pr0CedUre
 " * *

 pr0Cedures
 tbo^^ZSS^j clause. Here, the mvanant states that the picture maintained by the editor is always well-formed. n u , a , , z e d ^

11

MODULE miro e d i t o r

USING E d i t o r

INITIALIZED BY C r e a t e E d i t o r

E d i t o r % e d i t o r i s g l o b a l v a r i a b l e

INVARIANT (w e l l f o r m e d (e . p i c t u r e))

TYPE Cp BASED ON CP FROM E d i t o r

TYPE S t r BASED ON S t r FROM E d i t o r

TYPE I n t BASED ON I n t FROM E d i t o r

TYPE BL BASED ON BL FROM E d i t o r

TYPE Box BASED ON B FROM E d i t o r

TYPE Arrow BASED ON A FROM E d i t o r

TYPE E d i t o r BASED ON Ed FROM E d i t o r

TYPE O b j e c t BASED ON O FROM E d i t o r

TYPE O b j S e t BASED ON OS FROM E d i t o r

TYPE V a l u e BASED ON V a l u e FROM E d i t o r

TYPE L a b e l BASED ON L a b e l FROM E d i t o r

TYPE P i c t u r e BASED ON P FROM E d i t o r

% c o o r d i n a t e p a i r

% arrow l a b e l s

% box sysnames

% box l a b e l s

% b o x e s

% arrows

% e d i t o r

% box o r arrow

% s e t of o b j e c t s

% u n i o n o f f i e l d s o r t s

% e n u m e r a t i o n of f i e l d l a b e l s

% p i c t u r e

There are twelve procedures specified in the full specification. They include creating an editor, drawing a box,

drawing an arrow, selecting an object, selecting a group of objects, unselecting objects, moving boxes, resizing boxes,

deleting objects, copying objects, changing an object's attribute, and clearing the editor. Below we walk through only

three to show what information is typically captured in an interface and how we rely on the traits to make this precise.

C r e a t e E d i t o r is the procedure that gets things started. Its effect is to initialize a new editor object with the

default initial modes:

PROCEDURE C r e a t e E d i t o r (p o s , s i z e : Cp) RETURNS (e : E d i t o r)

REQUIRES t r u e

ENSURES (NEWOBJ(e)) &
(e = (mk_Ed(pos, s i z e ,

c r e a t e _ p i c t u r e (i n s t a n c e , empty__BSet, empty__ASet) ,

i n s t a n c e , b o x , s y n , f a l s e , t h i n , f a l s e , { })))

END C r e a t e E d i t o r

Resizing in the editor is fairly restrictive: a user can resize only boxes (not arrows), and must resize exactly one

at a time. The third conjunct of the requires clause captures these restrictions. The hard "work" in the the ensures
clause is done by a call to the trait operator r e s i z e -box defined for pictures; additionally the post-condition states

that once a resize operation is performed all objects are unselected.

PROCEDURE R e s i z e B o x (b : B o x , pos : Cp, s i z e : Cp, e : E d i t o r)

REQUIRES (b \ i n b o x e s ((e . p i c t u r e))) &

((s e l e c t e d (b)) = t r u e) &

((e . s e l e c t e d _ o b j s) = i n s e r t ({ } , box_to__0 (b)))

MODIFIES (e, b)

ENSURES ((e l p o s t . p i c t u r e) =

resize__box ((e . p i c t u r e) , s y s n a m e (b) , p o s , s i z e)) &

((e l p o s t . s e l e c t e d _ o b j s) = {})

END R e s i z e B o x

12

™ ̂ l00^0^011
 i n ^ somewhat complex because of the well-formedness constraint. Copy operates

ZZL^ TT'f ^ ° f

 Cf^0b^ * M * e n ™ P^ure object, newpic, is the result of copying the

lc n r S H t l D E C K T E D ° B J E C T S ° F ^ ' C F L W - D ^ then the result of combining the exiLg
picture with newpic, which has been moved by delta. CopyOb j s also unselects all objects

PROCEDURE CopyObjs (o b j s : O b j S e t , e : E d i t o r , d e l t a : Cp)

RETURNS (newpic : P i c t u r e)

REQUIRES (o b j s = (e . s e l e c t e d _ _ o b j s))

MODIFIES (e)

ENSURES

. (NEWOBJ(newpic))

& (newpic = c o p y _ j p i c t u r e (extract__wf ((e ! p r e . p i c t u r e) , o b j s)))
& ((e l p o s t . p i c t u r e) =

pic__union ((e ! p r e . p i c t u r e) ,

move__boxes (newpic, b o x e s (newpic) , d e l t a)))
& ((e l p o s t . selected__ob j s) = {})

END CopyObjs

4. Discussion

Uien two hmuations of Larch that arose out of this specification exercise, and finally some
from having done the specification after the implementation g

4.1, Stating Consequences

Larch provides a way to state consequences of a trait's theory through an implies clause. This clause is a good place
to document additional assertions about a specificand. As a simple example, and also one that shows the interplay
between traits and interface, consider copying objects. At the interface level the CopyOb j s procedure copies only the
subset of selected objects that form a well-formed picture. We could have defined the c o p y - p i c t u r e operator in the
BasicPicture trait to copy only the well-formed subset but decided it was more appropriate to specify this restriction
at the interface level, leaving the trait level more general: the c o p y - p i c t u r e operator copies all the objects in the
picture. We add the following implies clause to the BasicPicture trait in order to record this decision explicitly. Note
that we cannot make the stronger statement that c o p y - p i c t u r e (p) == p because when objects are copied, not
all of the fields, e.g., box labels, are copied.

i m p l i e s f o r a l l (p : P i c)

s i z e (boxes <copy_jpicture <p))) == s i z e (boxes (p))

S 1 z e (arrows (c o p y _ j ? i c t u r e <p))) == s i z e (a r r o w s (p))

We can also state the strong assertion that a well-formed picture is actually just a graph where boxes are nodes and
arrows are edges. Thus, we add the following consequence to the WFPicture trait:

i m p l i e s

G r a p h (B , A, P i c , C r e a t e P i c t u r e f o r empty, i n s e r t _ b o x f o r addNode,
i n s e r t _ a r r o w f o r addEdge)

where we are reusing the Graph trait from the Larch Handbook.

13

Finally, we can take this one step further. If we add to the WFInstancePic trait the requirement that each arrow
goes from a user box to a file box and no arrow goes from a box of one type to a box of the same type, we can state as
a consequence that a well-formed instance picture is a bipartite graph.

4.2. Assessment of Larch

4.2.1. Subtyping Records

We made a critical design decision by representing each Mir6 graphical object as a record. Records conveniently let
us associate attributes with each kind of object and give us operators that let us set and get values of each of those
attributes. However, die main drawback to using records is that Larch does not permit record "subtyping". It would
be more general to define a GraphicalObject trait that introduces a record sort GO with fields like l a b e l and then to
define Box and Arrow traits, introducing B and A sorts, each as a "subtype" of GO. B would "automatically" have the
same fields as GO plus ones like p o s i t i o n and s i z e ; A would add fields like f ronLbox and t o - b o x . Then we
could write for b of sort B, b. l a b e l and b. s i z e , and for a of sort A, a. l a b e l and a. f rom_box. However, in
Larch, if we were to factor out attributes common to all Mir6 objects into a GraphicalObject trait, we would be forced
to use nested records in the records in the Box and Arrow traits and to write b.go. l a b e l or a. g o . l a b e l where
g o is the field name of sort GO.

Instead, we decided to avoid nesting records entirely since the resulting specifications would be less readable.
However, this decision forced us to include attributes of records in some traits that make sense only for subsequent
uses of that trait. For example, the Box trait's record has a t h i c k attribute that makes sense only for constraint,
not instance, pictures. This land of problem and solution is well-known in the "object-oriented" community; not
until writing this specification did we see that record subtyping would not only be convenient, but lead to better
specifications.

4.2.2. Union Sorts

Sort checking is invaluable in Larch, but one place where it gets in the way is in the use of unions. In the PicUnion
trait, the P sort is introduced to be the union of instance and constraint pictures. In the editor, it does not matter we
have an instance picture or a constraint picture, we just want to select an object or copy objects. So, if the operators
c o p y . p i c t u r e : P -> P, c o p y - p i c t u r e : IPic -> IPic and c o p y - p i c t u r e : CPic -> CPic are defined, then
ideally we would like the constraints on c o p y - p i c t u r e to hold regardless of whether the picture is an instance or
constraint. Instead we are forced to first determine whether the picture is an instance (or a constraint) picture and then
coerce the picture to be an instance (or constraint) picture so that we can apply the appropriate, more specific, copy
operator, and finally, coerce back the result into the more general picture sort, P:

c o p y _ j ? i c t u r e (p) ==
i f i s _ i n s t a n c e (p) t h e n

to__P (c o p y _ p i c t u r e (a s _ i n s t a n c e (p)))
e l s e % i s _ _ c o n s t r a i n t

to_P (c o p y _ j ? i c t u r e (a s _ c o n s t r a i n t (p)))

Another variation of this problem arose from specifying the c h a n g e - a t t r operator in the Picture trait. We would
like to specify c h a n g e - a t t r with the following simple equation:

c h a n g e - a t t r (o b j , l a b e l , v a l u e) == l a b e l - g e t s (ob j , v a l u e)

but we cannot for two reasons. First, an LSL operator name is an unstructured identifier - l a b e l - g e t s really stands
for a set of possible identifiers depending on what the actual name of l a b e l is in the left-hand side of the equation

14

above. Instead, we are forced to use a large if-then-else statement to cover each possible label. Second, the ob j and
v a l u e parameters to c h a n g e - a t t r are union sorts. As argued above, we need to do explicit coercion between the
union sort and the specific sorts of the union (and vice versa) in order to achieve the intended effects of the above
equation. Hence, c h a n g e _ a t t r becomes one big two-layered if-then-else clause, first on object sort (box or arrow),
then on label name. For each valid object/label pair, there is a clause to do the appropriate coercions and assign the
value to the appropriate label:

c h a n g e _ _ a t t r (o b j , l a b e l , v a l u e) ==
i f (i s _ b o x (o b j)) t h e n

i f (l a b e l = p o s) t h e n
t o _ O b j e c t (p o s _ _ g e t s (as__box (o b j) , as__cp (v a l u e)))

e l s e . . .

4.3. Implications of Specifying After Implementing

We began writing formal specifications in parallel with designing the Mir6 languages and designing and implementing
of the editor. We wrote three major versions where the last version (this one) was written after the implmentation
was running. The current version itself went through at least six minor iterations. Writing a formal specification
after an implementation has two obvious implications. One is that the specification tends to be biased towards the
implementation; the other is that places for improving the implementation become embarrassingly evident. We found
both to be true in our case.

Having already implemented the editor before completing the specification, we had a concrete model of the
languages and editor in mind. This model led to an implementation-biased initial specification. In each subsequent
iteration we removed some of the "implementation details." We believe the final specification is relatively unbiased,
but that we would have taken fewer steps to get where we are had we written more of the specification before the
implementation.

One example of implementation detail we removed is in the definition of well-formedness. In the implementation
of the editor, the condition that all arrows be attached to boxes is enforced automatically by checking and reestablishing
certain constraints on arrow objects. So, in a previous version of the specification, the arrow sort A had fields for the
coordinate positions of the arrow's head and tail. The WFPicture trait defined an operator called a d j u s t - a r r o w s
that took a picture and a box, and based on the position of the boxes at the arrow's head and tail, algorithmically
recomputed the new coordinates. But at a more abstract level, coordinate information for an arrow is not important; we
only need to know which boxes are at its head and tail. As a result, we define an abstract well-formedness property (e.g.,
all arrows are attached) at the trait level and require through an interface invariant that all editor procedures enforce
this property. No where in the current specification do we ever give a precise algorithm for enforcing well-formedness.
It would be up to the implementor to decide whether and how arrows need to be adjusted to maintain well-formedness.

The second observation from doing the specification after the implementation is that doing the specification
earlier would have resulted in a better implementation. One example to support this argument is our experience in
implementing multiple selection in the editor. The initial implementation of the editor allowed at most one object
to be selected at any time. While working on the specification we decided to extend the editor to allow selecting
multiple objects. So before coding multiple selection, we wrote a mostly formal specification defining precisely what
the effects of each editor operation would be on the set of selected objects. The result was an implementation of
multiple selection that was clean, consistent and relatively easy to add to the editor.

15

5. Final Remarks

5.1. Related Work

The largest collection of Larch traits is the Larch Handbook[GHW85] (990 lines). The extended example in [GGH90]
specifies some traits for a simple windowing system. Larch has also been used to specify properties of objects in a
transaction-based distributed system[Win88]. To our knowledge, our specification is the largest Larch specification
ever written and the only written for a "real" system.

In our specification, we assume that details about how Mir6 pictures are represented on the screen and what
keyboard and mouse inputs activate the specified procedures are specified elsewhere. This in itself is a difficult
problem, but has been addressed by others ([GGH90] and[Bow89]). Thus, we chose to focus at the next level of detail:
properties of pictures and the editor. We have not seen any other specifications that deal with an interactive window
application.

5.2. Further Work

As with any specification (or program), ours can be improved. We can generalize our traits to be suitable for more
general graphical editors. We can extend the traits and interfaces to describe the more intricate behavioral aspects of
the editor (e.g., other menu operations). However, the more interesting and challenging work we would rather pursue
is to do mechanized proofs given that we have a formal specification and the Larch Prover [GG89]. There are two
kinds of proofs we could perform: showing additional properties hold (e.g., the consequences discussed in Section 4.1
or the well-formedness invariant), and showing that the implementation of the editor satisfies our specification. There
is evidence [GGH90] that the Larch Prover could "easily" be used to do the first kind of proof; doing the second kind
would entail extensions to the Larch Prover itself.

6. Acknowledgments

We thank Allan Heydon, Rick Lerner, Mark Maimone and Doug Tygar for their extremely helpful comments on earlier
drafts. We are also indebted to Brad Myers and the rest of the Garnet group for help in implementing the Mir6 editor.

References

[Bow89] Jonathan Bowen. Formal specification of window systems. Technical Report PRG-74, Oxford University
Computing Laboratory, June 1989.

[Che89] Jolly Chen. The Larch/Generic Interface Language. S.B. Thesis, MIT, May 1989.

[GG89] S J. Garland and J.V. Guttag. An overview of LP, the Larch Prover. In Proceedings of the Third
International Conference on Rewriting Techniques and Applications, pages 137-151, Chapel Hill, NC,
April 1989. Lecture Notes in Computer Science 355.

[GGH90] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch Shared Language specifica
tions. Technical report, DEC-SRC, 1990.

[GHM90] J.V. Guttag, JJ. Horning, and A. Modet. Report on the Larch Shared Language: Version 2.3. Technical
report, DEC-SRC, 1990.

[GHW85] J.V. Guttag, JJ. Horning, and J.M. Wing. Larch in five easy pieces. Technical report, DEC-SRC, 1985.

16

[HMT"90] Allan Heydon, Mark W. Maimone, J.D. Tygar, Jeannette M. Wing, and Amy Moormann Zaremski. Mir6:
Visual specification of security. IEEE Transactions on Software Engineering, 16(10): 1185-1197, October
1990.

[MTW90] Mark W. Maimone, J. D. Tygar, and Jeannette M. Wing. Formal semantics for visual specification
of security. In S.K. Chang, editor, Visual Languages and Visual Programming. Plenum Publishing
Corporation, 1990. A preliminary version of this paper appeared in Proceedings of the 1988 IEEE
Workshop on Visual Languages, October, 1988, pages 45-51.

[Win88] Jeannette M. Wing. Specifying Avalon objects in Larch. Technical Report CMU-CS-88-208, CMU, 1988.

[Zar90] Amy Moormann Zaremski. The Mir6 editor: A user's guide. Mir6 Note 7, Carnegie Mellon University,
School of Computer Science, 1990.

17

