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Abstract 

We survey learning algorithms for recurrent neural networks with hidden units and attempt 
to put the various techniques into a common framework. We discuss fixpoint learning al­
gorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and 
non-fixpoint algorithms, namely backpropagation through time, Elman's history cutoff nets, 
and Jordan's output feedback architecture. Forward propagation, an online technique that 
uses adjoint equations, is also discussed. In many cases, the unified presentation leads to 
generalizations of various sorts. Some simulations are presented, and at the end, issues of 
computational complexity are addressed. 
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1 Introduction 

1.1 Why Recurrent Networks 
The subject of this document is training recurrent neural networks. The problem of training 
non-recurrent, layered architectures has been covered adequately elsewhere, and will not be 
discussed here. 

The motivation for exploring recurrent architectures is their potential for dealing with 
two sorts of temporal behavior. First of all, recurrent networks are capable of settling to a 
solution, as in vision system which gradually solve a complex set of conflicting constraints 
to arrive at an interpretation. Although this is discussed to some extent below, we are pri­
marily concerned with the problem of causing networks to exhibit particular desired detailed 
temporal behavior, as in the modeling of a central pattern generator of an insect. 

It should be noted that many real-world problems which one might think would require 
recurrent architectures for their solution seem soluble with layered architectures; for this 
reason, we would urge engineers to try layered architectures first before resorting to the "big 
gun" of recurrence. 

1.2 Why Hidden Units 
We will restrict our attention to training procedures for networks with hidden units, units 
which have no particular desired behavior, axe not directly involved in the input or output 
of the network. For the biologically inclined, they can be thought of as interneurons. 

With the practical successes of backpropagation, it seems gratuitous to expound the 
virtues of hidden units and internal representations. Hidden units make is possible for 
networks to discover and exploit regularities of the task at hand, such as symmetries or 
replicated structure [15], and training procedures for exploiting hidden units, such as back-
propagation, [18, 44] are behind much of the current excitement in the neural networks field. 
Also, training algorithms that do not operate with hidden units, such as the Widrow-Hoff 
LMS rule procedure [51], can be used to train recurrent networks without hidden units, so 
recurrent networks without hidden units reduce to non-recurrent networks without hidden 
units, and therefore do not need special learning algorithms. 

Consider a neural network governed by the equations 

^j- = -yi + <r(xi) + Ii (1) 

where yt- is the state or activation level of unit i, 

Xi = WjiVj (2) 
i 

is the total input to unit z, wtj is the strength of the connection from unit i to unit j , and a 
is an arbitrary differentiable function. (Typically the function chosen is either the squashing 
function <T(£) = (1 + e -* ) - 1 , in which case cr'(0 = - a({)), or <r($) = tan _ 1 (£) , in 
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which case cr'{£) = (1 +a(£))(l — a(£)). Even though the latter symmetric squashing function 
is usually preferable, as it has a number of computational advantages, the former was used 
in all the simulations presented below.) The initial conditions y,(£o) and driving functions 
Ii(t) are the inputs to the system. 

This defines a rather general dynamic system. Even assuming that the external input 
terms Ii(t) are held constant, it is possible for the system to exhibit a wide range of asymp­
totic behaviors. The simplest is that the system reaches a stable fixpoint; in the next section, 
we will discuss two different techniques for modifying the fixpoints of networks that exhibit 
them. 

More complicated possible asymptotic behaviors include limit cycles and even chaos. 
Later, we will describe a number of training procedures that can be applied to training 
networks to exhibit desired limit cycles, or particular detailed temporal behavior. Although 
it has been theorized that chaotic dynamics play a significant computational role in the 
brain [11], there are no training procedures for chaotic attractors in networks with hidden 
units. However, Crutchfield et al. [8] and Lapedes and Farber [27] have had success with the 
identification of chaotic systems using models without temporally hidden units. 

1.3 Continuous vs. Discrete Time 
We will be concerned predominantly with continuous time networks, as in (1). However, 
all of the learning procedures we will discuss can be equally well applied to discrete time 
systems, which obey equations like 

yi(t + l)=<r(zi(t)) + Ii(t). (3) 

Continuous time has advantages for expository purposes, in that the derivative of the state 
of a unit with respect to time is well defined, allowing calculus to be used instead of tedious 
explicit temporal indexing, making for simpler derivations and exposition. 

When a continuous time system is simulated on a digital computer, it is usually con­
verted into a set a simple first order difference equations, which is formally identical to a 
discrete time network. However, regarding the discrete time network running on the com­
puter as a simulation of a continuous time network has a number of advantages. First, more 
sophisticated and faster simulation techniques than simple first order difference equations 
can be used, such as higher order forward-backward techniques. Second, even if simple first 
order equations are used, the size of the time step can be vaxied to suit changing circum­
stances; for instance, if the network is being used for a signal processing application and 
faster sensors and computers become available, the size of the time step could be decreased 
without retraining the network. Third, because continuous time units are stiff in time, they 
tend to retain information better through time. Another way of putting this is that their 
bias in the learning theory sense is towards temporally continuous tasks, which is certainly 
advantageous if the task being performed is also temporally continuous. 

Another advantage of continuous time networks is somewhat more subtle. Even for tasks 
which themselves have no temporal content, such as constraint satisfaction, the best way for 
a recurrent network to perform the required computation is for each unit to represent nearly 
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the same thing at nearby points in time. Using continuous time units makes this the default 
behavior; in the absence other forces, units will tend to retain their state through time. In 
contrast, in discrete time networks, there is no a-priori reason for a unit's state at one point 
in time to have any special relationship to its state at the next point in time. 

A pleasant benefit of units tending to maintain their state through time is that it helps 
make information about the past decay more slowly, speeding up learning about the rela­
tionship between temporally distant events. 

2 Learning in Networks with Fixpoints 
The fixpoint learning algorithms we will discuss assume that the networks involved converge 
to stable fixpoints.1 Networks that converge to fixpoints are interesting because of the class 
of things they can compute, like constraint satisfaction and associative memory tasks. In 
such tasks, the problem is usually given to the network either by the initial conditions or by 
a constant external input, and the answer is given by the state of the network once it has 
reached its fixpoint. This is precisely analogous to the relaxation algorithms used to solve 
such things as steady state heat equations, except that the constraints need not have spatial 
structure or uniformity. 

2.1 Will a Fixpoint Exist? 

One problem with fixpoints is that recurrent networks do not always converge to them. 
However, there are a number of special cases that guarantee converge to a fixpoint. 

• Some simple linear conditions on the weights, such as zero-diagonal symmetry (wij = 
W j t * wa = 0) guarantee that the Lyopunov function 

L = - E wHViVi + J2(Vi l o S Vi + (1 " Vi) log(l - yi)) (4) 

decreases until a fixpoint is reached [7]. The weight symmetry condition arises naturally 
if weights are considered to be Bayesian constraints, as in Boltzmann Machines [17]. 

Atiya [4] showed that a unique fixpoint is reached regardless of initial conditions if 
wfj < max((j /), but in practice much weaker bounds on the weights seem to suffice, 

as indicated by empirical studies of the dynamics of networks with random weights 
[41]. 

Other empirical studies indicate that applying fixpoint learning algorithms stabilizes 
networks, causing them to exhibit asymptotic fixpoint behavior [2, 12]. There is as yet 
no theoretical explanation for this phenomenon. 

'Technically these algorithms only require that a fixpoint be reached, not that it be stable. However it 
is unlikely (with probability zero) that a network will converge to an unstable fixpoint, and in practice the 
posibility of convergence to unstable fixpoints can be ignored. 
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Figure 1: This energy landscape, represented by the curved surface, and the balls, repre­
senting states of the network, illustrates some potential problems with fixpoints. The initial 
conditions a and b can differ infinitesimally but map to different fixpoints, so the mapping 
of initial conditions to fixpoints is not continuous. Likewise, an infinitesimal change to the 
weights can change which fixpoint the system evolves to from a given starting point by 
moving the boundary between the watersheds of two attractors. Similarly, point c can be 
changed from a fixpoint to a non-fixpoint by an infinitesimal change to the weights. 

One algorithm that is capable of learning fixpoints, but that does not require the network 
being trained to settle to a fixpoint in order to operate, is backpropagation through time. 
This has been used by Nowlan to train a constraint satisfaction network for the eight queens 
problem, where shaping was used to gradually train a discrete time network without hidden 
units to exhibit the desired attractors [32]. 

However, the other fixpoint algorithms we will consider take advantage of the special 
properties of a fixpoint to simplify the learning algorithm. 

2.2 Problems with Fixpoints 
Even when it can be guaranteed that a network settles to a fixpoint, fixpoint learning 
algorithms can still run into trouble. The learning procedures discussed here all compute 
the derivative of some error measure with respect to the internal parameters of the network. 
This gradient is then used by an optimization procedure, typically some variant of gradient 
descent, to minimize the error. Such optimization procedures assume that the mapping 
from the network's internal parameters to the consequent error is continuous, and can fail 
spectacularly when this assumption is violated. 

Consider mapping the initial conditions y(t0) to the resultant fixpoints, ¿/(¿00) = ^(iK^o) ) . 
Although the dynamics of the network are all continuous, T need not be. For purposes of 
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visualization, consider a symmetric network, whose dynamics thus cause the state of the 
network to descend the energy function of equation (4). As shown schematically in figure 1, 
even an infinitesimal change to the initial conditions, or to the location of a ridge, or to the 
slope of an intermediate point along the trajectory, can change which fixpoint the system 
ends up in. In other words, J7 is not continuous. This means that as a learning algorithm 
changes the locations of the fixpoints by changing the weights, it is possible for it to cross 
such a discontinuity, making the error jump suddenly; and this remains true no matter how 
gradually the weights are changed. 

2.3 Recurrent Backpropagation 
Pineda [39] and Alemeida [3] discovered that the error backpropagation algorithm [34, 44, 49] 
is a special case of a more general error gradient computation procedure. The backpropaga­
tion equations are 

yi = cr(xi) + Ii (5) 
Zi = <T'(Xi) ^ WijZj + e i (6) 

where Z{ is the ordered partial derivative of E with respect to yt-, E is an error metric over 
2/(ioo), and et- = dE/dy^t^) is the simple derivative of E with respect to the final state of 
a unit. In the original derivations of backpropagation, the weight matrix is assumed to be 
triangular with zero diagonal elements, which is another way of saying that the connections 
are acyclic. This ensures that a fixpoint is reached, and allows it to be computed very 
efficiently in a single pass through the units. But the backpropagation equations remain 
valid even with recurrent connections, assuming a fixpoint is reached. 

If we assume that equation (1) reaches a fixpoint, j/(<oo)> then equation (5) must be 
satisfied. And if (5) is satisfied, then if we can find zt- that satisfy (6), then (7) will give us 
the derivatives we seek, even in the presence of recurrent connections. (For a simple task, it 
has been reported [33] that reaching the precise fixpoint is not crucial to learning.) 

One way to compute a fixpoint for (5) is to relax to a solution. By subtracting yt- from 
each side, we get 

0 = -yi + a(xi) + U 
and at a fixpoint dyi/dt = 0 so the equation 

k— = -1Ji + <T(Xi) + i t 

has the appropriate fixpoints. Now we note that if — yi + <j(xt) + /, is greater than zero than 
we could reduce its value by increasing ?/,-, so under these circumstances dyi/dt should be 
positive, so k should be greater than zero. We can choose k = 1, giving (1) as a technique 
for relaxing to a fixpoint of (5) . 
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Equation (6) is linear once y is determined, so its solution is unique. Any technique for 
solving a set of linear equations could be used. Since we are computing a fixpoint of (5) 
using the associated differential equation (1), it is tempting to do the same for (6) using 

dz 
-jt = -Zi + <j\xi) WijZj + e t. (8) 

i 

These equations admit to direct analog implementation. In a real analog implementation, 
different time constants would probably be used for (1) and (8), and under the assumption 
that the time y and z spend settling is negligible compared to the time they spend at their 
fixpoints and that the rate of weight change r/ is slow compared to the speed of presentation 
of new training samples, the weights would likely be updated continuously by an equation 

dwij dE , . 

or, if a momentum term 0 < a < 1 is desired, 

^ + ( l - a > ^ + ™-0. (10, 

2.3.1 Simulation of an Associative Network 

We simulated a recurrent backpropagation network learning a higher order associative task, 
that of associating three pieces of information: two four bit shift registers, A and B, and a 
direction bit, D. If D is off, then B is equal to A. If D is on, then B is equal to A rotated one 
bit to the right. The task is to reconstruct one of these three pieces of information, given 
the other two. 

The architecture of the network is shown in figure 2. Three groups of visible units hold A, 
B, and D. An undifferentiated group of ten hidden units is fully and bidirectionally connected 
to all the visible units. There are no connections between visible units. An extra unit, called 
a bias unit, is used to implement thresholds. This unit has no incoming connections, and is 
forced to always have a value of 1 by a constant external input of 0.5. Connections go from 
it to each other unit, allowing units to have biases, which are equivalent to the negative of 
the threshold, without complicating the mathematics. Inputs are represented by an external 
input of +0.5 for an on bit, —0.5 for an off bit, and 0 for a bit to be completed by the 
network. 

The network was trained by giving it external inputs that put randomly chosen patterns 
on two of the three visible groups, and training the third group to attain the correct value. 
The error metric was the squared deviation of each I/O unit from its desired state, except 
that units were not penalized for being "too correct."2 All 96 patterns were successfully 
learned, except for the ones which were ambiguous, as shown in the state diagrams of 
figure 4. The weights after this training, which took about 300 epochs, are shown in figure 3. 
By inspection, many weights are large and decidedly asymmetric; but during training, no 

2 A unit with external input could be pushed beyond the [0,1] bounds. 
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Bias +0.5" 

Rotate? 

Register A — 1 

Register B — 1 

Figure 2: The architecture of a network to 
solve an associative version of the four bit 
rotation problem. 

Figure 3: A Hinton diagram of weights 
learned by the network of figure 2. 

instabilities were observed. The network consistently settled to a fixpoint within twenty 
simulated time units. When the network was tested on untrained completion problems, such 
as reconstructing D as well as half of A and B from partially, but unambiguously, specified A 
and B, performance was poor. However, redoing the training with weight symmetry enforced 
caused the network to learn not only the training data but also to do well on these untrained 
completions. 

Pineda and Alemeida's recurrent backpropagation learning procedure has also been suc­
cessfully applied to learning weights for a relaxation procedure for dense stereo disparity 
problems with transparent surfaces by Qian and Sejnowski [40]. By training on examples, 
they were able to learn appropriate weights instead of deriving them from simplified and 
unrealistic analytical model of the distribution of surfaces to be encountered, as is usual. 

2.4 Deterministic Boltzmann Machines 

The mean field form of the stochastic Boltzmann Machine learning rule [38] has recently 
been shown to descend an error functional [16]. Stochastic Boltzmann Machines themselves 
[1] are beyond the scope of this document; here we give only the probabilistic interpretation 
of MFT Boltzmann Machines, without derivation. 
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Figure 4: Network state for all the cases in the four bit rotation problem. This display shows 
the states of the units, arranged as in figure 2. Each row of six shows one value for register 
A, There are 2 4 = 16 such rows. Within each row, the three diagrams on the left show the 
network's state when competing the direction bit, register B, and register A, unshifted. The 
right three are the same, except with a shift. Note that all completions are correct except 
in the two cases where the rotation bit can not be determined from the two shift registers, 
namely a pattern of 0000 or 1111. 

In a a deterministic Boltzmann Machine, the transfer function of (1) is cr(£) = (1 + 
e - 4 / T ) - i ? w k e r e j» j s temperature, which starts at a high value and is gradually lowered 
to a target temperature each time the network is presented with a new input; without loss 
of generality, we assume this target temperature to be T = 1. The weights are assumed 
to be symmetric and zero-diagonal. Input is handled in a different way than in the other 
procedures we discuss: the external inputs /, are set to zero, and a subset of the units, rather 
than obeying (1), have their values set externally. Such units are said to be clamped. 

In learning, a set of input units (states over which we will index with a) axe clamped to 
some values, the network is allowed to settle, and the quantities 

P -.= < y i y j > s j ; p ( « ) ^ « > ( i i ) 
a 

are accumulated, where <•> denotes an average over the environmental distribution and 
superscripts denote clamping. The same procedure is then repeated, but with the output 
units (states of which we will index by /3) clamped to their desired values too, yielding 

PS = = £ n^Vr"- (12) 
At this point, it is the case that 

where 
( 1 3 ) 

o - E ' W * ^ ( 1 4 ) 

is a measure of the information theoretic difference between the clamped and undamped dis­
tribution of the output units given the clamped input units. P'{0\a) measures how probable 
the network says /? is given a, and its definition is beyond the scope of this document. 



QUOD 
Figure 5: A recurrent network is shown on the left, and a representation of that network 
unfolded in time through four time steps is shown on the right. 

This learning rule (13) is a version of Hebb's rule in which the sign of synaptic modifica­
tion is alternated, positive during the "waking" phase and negative during the "hallucinat­
ing" phase. 

Even before the learning rule was rigorously justified, deterministic Boltzmann Machines 
were applied with success to a number of tasks [37, 38]. Although weight symmetry is 
assumed in the definition of energy which is used in the definition of probability, and is 
thus fundamental to these mathematics, it seems that in practice weight asymmetry can be 
tolerated in large networks [12]. This makes MFT Boltzmann Machines the most biologically 
plausible of the various learning procedures we discuss, but it is difficult to see how it would 
be possible to extend them to learning more complex phenomena, like limit cycles or paths 
through state space. And thus, although they are probably the best technique in their 
domain of application, we now turn our attention to procedures suitable for learning more 
dynamic sorts of behaviors. 

3 Backpropagation Through Time 
The fixpoint learning procedures discussed above are unable to learn non-fixpoint attractors, 
or to produce desired temporal behavior over a bounded interval, or even to learn to reach 
their fixpoints quickly. Here, we turn to learning procedures suitable for such non-fixpoint 
situations. 

Consider minimizing E(y), some functional of the trajectory taken by y between t0 and 
¿1. For instance, E = - f(t))2dt measures the deviation of yo from the function / , 
and minimizing this E would teach the network to have yo imitate / . Below, we derive a 
technique for computing dE(y)/dw{j efficiently, thus allowing us to do gradient descent in the 
weights so as to minimize E. Backpropagation through time has been used to train discrete 
time networks to perform a variety of tasks [44, 32]. Here, we will derive the continuous time 
version of backpropagation through time, as in [36], and use it in a couple toy domains. 



Figure 6: The infinitesi­
mal changes to y consid­
ered in ei(t). 

Figure 7: The infinitesi­
mal changes to y consid­
ered in Z\(t). 

Figure 8: A lattice representa­
tion of (16). 

In this derivation, we take the conceptually simple approach of unfolding the continuous 
time network into a discrete time network with a step of At, applying backpropagation to 
this discrete time network, and talcing the limit as At approaches zero to get a continuous 
time learning rule. 

The derivative in (1) can be approximated with 

H [ t ) ~ At ' ( 1 5 ) 

which yields a first order difference approximation to (1), 

xjiit + At) = (1 - At)y,(t) + Ata(ii(t)) + Ai/ t ( t ) . (16) 

Tildes axe used throughout for temporally discretized versions of continuous functions. 
Let us define 

* ( ! ) - m - ( 1 7 ) 

In the usual case E is of the form 

E= f f(y(t),t)dt (18) 

so e,(i) = df(y(t)Jt)/dyi(t). Intuitively, e t(i) measures how much a small change to y,- at 
time t affects E if everything else is left unchanged. 

As usual in backpropagation, let us define 

d+E 
= HMD ( 1 9 ) 

where the d+ denotes an ordered derivative [50], with variables ordered here by time and 
not unit index. Intuitively, 5 t(i) measures how much a small change to y t at time t affects 
E when this change is propagated forward through time and influences the remainder of the 
trajectory, as in figure 7. Of course, z t is the limit of 5,- as At —* 0. This z is the 6 of the 
standard backpropagation "generalized 8 rule." 

10 



We can use the chain rule for ordered derivatives to calculate 5 t(t) in terms of the Zj(t + 
At). According to the chain rule, we add all the separate influences that varying y;(t) has 
on E. It has a direct contribution of Ate.;(t), which comprises the first term of our equation 
for 2i(t). Varying j/i(t) by djji(t) has an effect on yi(t + At) of djji(t) (1 — At), giving us a 
second term, namely (1 — At)z(t + At). 

Each weight Wij makes t/ t(t) influence yj(t + At), i ^ j . Let us compute this influ­
ence in stages. Varying by dy.(t) varies ij(t) by djji(t) iy t J, which varies <j(ij(t)) by 
dyi(t) Wij (r1[xj(t)), which varies yj{t + At) by cft/»(t) (r1[xj(t)) At. This gives us our third 
and final term, Ylj w i j ^t^i( ' )) At + At). 

Combining these, 

ii(t) = Aie t ( i) + (1 - Ai)z t(t + At) + Y^u>ij<r'(xj(t))Atzj(t + At). (20) 
i 

If we put this in the form of (15) and take the limit as At 0 we obtain the differential 
equation 

dz{ 
- ± - Z i - et- - u>ij<7'(xj)zj- (21) 

For boundary conditions note that by (17) and (19) i,(ti) = Ate t(ti), so in the limit as 
At -> 0 we have z t (t x ) = 0. 

Consider making an infinitesimal change dwij to Wij for a period At starting at t. This 
will cause a corresponding infinitesimal change in E of yi(t)cr'(xj(t))Atzj(t)dwij. Since we 
wish to know the effect of making this infinitesimal change to Wij throughout time, we 
integrate over the entire interval, yielding 

| | = yvX^dt. (22) 

One can also derive (21), (22) and (26) using the calculus of variations and Lagrange 
multipliers (William Skaggs, personal communication), as in optimal control theory [22]. In 
fact, the idea of using gradient descent to optimize complex systems was explored by control 
theorists in the late 1950s. Although their mathematical techniques handled hidden units, 
they refrained from exploring systems with so many degrees of freedom, perhaps in fear of 
local minima. 

It is also interesting to note the recurrent backpropagation learning rule (section 2.3) can 
be derived from these. Let 7t- be held constant, assume that the network settles to a fixpoint, 
and let E be integrated for one time unit before t\. As t\ —» oo, (21) and (22) reduce to the 
recurrent backpropagation equations (8) and (7), so in this sense backpropagation through 
time is a generalization of recurrent backpropagation. 

3.1 Time Constants 

If we add a time constant T, to each unit i, modifying (1) to 

Tl^ = -yi + a(xi) + Iij (23) 
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and carry these terms through the derivation of the last section, equations (21) and (22) 
become . 

dt Ti j Tj 

™d dE 
dw 

- = ^ fl Vio\*i)zjdt. (25) 

In order to learn these time constants rather than just set them by hand, we need to 
compute dE(y)/dTi. If we substitute pi = T," 1 into (23), find dE/dpi with a derivation 
similar to that of (22), and substitute Ti back in we get 

f f (26) 
oTi Ti Jto dt 

3.2 Time Delays 
Consider a network in which signals take finite time to travel over each link, so that (2) is 
modified to 

**(*) = £ " Ti«)» ( 2 7 ) 

3 
Tji being the time delay along the connection from unit j to unit t. Let us include the 
variable time constants of section 3.1 as well. Surprisingly, such time delays merely add 
analogous time delays to (24) and (25), 

= ^ ( 0 - - E ^ M ^ ( < + th))yM* + m), (28) 

dE 1 r'i 

while (26) remains unchanged. If we set r t J = At, these modified equations alleviate con­
cern over time skew when simulating networks of this sort, obviating any need for accurate 
numerical simulations of the differential equations and allowing simple difference equations 
to be used without feax of inaccurate error derivatives. 

Instead of regarding the time delays as a fixed part of the architecture, we can imagine 
modifiable time delays. Given modifiable time delays, we would like to be able to learn 
appropriate values for them, which can be accomplished using gradient descent by 

(30) 

We have not yet simulated networks with modifiable time delays, although there is work in 
progress at another institution to do so. 

An interesting class of architectures would have the state of one unit modulate the time 
delay along some arbitrary link in the network or the time constant of some other unit. Such 
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architectures seem appropriate for tasks in which time waxping is an issue, such as speech 
recognition, and can certainly be accommodated by this approach. 

In the presence of time delays, it is reasonable to have more than one connection between 
a single pair of units, with different time delays along the different connections. Such "time 
delay neural networks" have proven useful in the domain of speech recognition [25, 26, 48]. 
Having more than one connection from one unit to another requires us to modify our notation 
somewhat; weights and time delays are modified to take a single index, and we introduce 
some external apparatus to specify the source and destination of each connection. Thus tu, 
is the weight on a connection between unit C(i) and unit 7£(i), and T{ is the time delay along 
that connection. Using this notation we write (27) as 

*»•(*) = - r i ) - ( 3 1 ) 

Our equations would be more general if written in this notation, but readability would suffer, 
and the translation is quite mechanical. 

3.3 Some Simulations 

In the following simulations, we used networks without time delays, but with mutable time 
constants. As in the associative network of section 2.3.1, an extra input unit whose value 
was always held at 1 by a constant external input of 0.5, and which had outgoing connections 
to all other units, was used to implement biases. 

Using first order finite difference approximations, we integrated the system y forward 
from ¿0 to tij set the boundary conditions = 0, and integrated the system z back­
wards from ¿1 to t0 while numerically integrating Zj<j'(xj)yi and Zidyi/dt, thus computing 
dE/dwij and dE/dT{. Since computing dzi/dt requires cr'(xi), we stored it and replayed 
it backwards as well. We also stored and replayed y,- as it is used in expressions being 
numerically integrated. 

We used the error functional 

E = \ ^ C s i { y i - d ^ '•dt (32) 

where di(t) is the desired state of unit i at time t and s,(i) is the importance of unit i 
achieving that state at that time. Throughout, we used cr(£) = (1 + e - *)" 1 . Time constants 
were initialized to 1, weights were initialized to uniformly distributed random values between 
1 and - 1 , and the initial values yi(tQ) were set to 7 t(t 0) + cr(0). The simulator used first 
order difference equations (16) and (20) with At = 0.1. 

3.3.1 Exclusive Or 

The network of figure 9 was trained to solve the xor problem. Aside from the addition of 
time constants, the network topology was that used by Pineda in [39]. We defined E = 
l*k J h Wo - d^>) dt where k ranges over the four cases, d is the correct output, and y 
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Figure 9: The XOR network. 

Figure 10: The states of the output unit in the four input cases plotted from t = 0 to t = 5 
after 200 epochs of learning. The error was computed only between t = 2 and t = 3. 

is the state of the output unit. The inputs to the net i}^ and /2*^ range over the four 
possible boolean combinations in the four different cases. With suitable choice of step size 
and momentum training time was comparable to standard backpropagation, averaging about 
one hundred epochs. 

For this task it is to the network's benefit for units to attain their final values as quickly 
as possible, so there was a tendency to lower the time constants towards 0. To avoid small 
time constants, which degrade the numerical accuracy of the simulation, we introduced a 
term to decay the time constants towards 1. This decay factor was not used in the other 
simulations described below, and was not really necessary in this task if a suitably small At 
was used in the simulation. An easier, and perhaps more justifiable, approach is to simply 
introduce a minimum time constant; this was done in later simulations. 

What is interesting is that that even for this binary task, the network made use of 
dynamic behavior. After extensive training the network behaved as expected, saturating 
the output unit to the correct value. Earlier in training, however, we occasionally (about 
one out of every ten training sessions) observed the output unit at nearly the correct value 
between t = 2 and t = 3, but then saw it move in the wrong direction at t = 3 and end up 
stabilizing at a wildly incorrect value. Another dynamic effect, which was present in almost 
every run, is shown in figure 10. Here, the output unit heads in the wrong direction initially 
and then corrects itself before the error window. A very minor case of diving towards the 
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Figure 12: Desired states d\ and d2 plotted against each other (left); actual states j/i and y 2 

plotted against each other at epoch 3182 (center) and 20000 (right). 

correct value and then moving away is seen in the lower left hand corner of figure 10. 

3.3.2 A Circular Trajectory 

We trained a network with no input units, four hidden units, and two output units, all fully 
connected, to follow the circular trajectory of figure 11. It was required to be at the leftmost 
point on the circle at t = 5 and to go around the circle twice, with each circuit taking 16 
units of time. The environment does not include desired outputs between t = 0 and t = 5, 
and during this period the network moves from its initial position at (0.5,0.5) to the correct 
location at the leftmost point on the circular trajectory. Although the network was run for 
ten circuits of its cycle, these overlap so closely that the separate circuits are not visible. 

Upon examining the network's internals, we found that it devoted three of its hidden 
units to maintaining and shaping a limit cycle, while the fourth hidden unit decayed away 
quickly. Before it decayed, it pulled the other units to the appropriate starting point of the 
limit cycle, and after it decayed it ceased to affect the rest of the network. The network used 
different units for the limit behavior and the initial behavior, an appropriate modularization. 

3.3.3 A Figure Eight 

We were unable to train a network with four hidden units to follow the figure eight shape 
shown in figure 12, so we used a network with ten hidden units. Since the trajectory of the 
output units crosses itself, and the units are governed by first order differential equations, 
hidden units are necessary for this task regardless of the a function. Training was more 
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Figure 13: The output of the rotated eight network at all the trained angles (left) and some 
untrained angles (right). 

difficult than for the circular trajectory, and shaping the network's behavior by gradually 
extending the length of time of the simulation proved useful. 

From t = 0 to t = 5 the network moves in a short loop from its initial position at (0.5,0.5) 
to where it ought to be at t = 5, namely (0.5,0.5). Following this, it goes through the figure 
eight shaped cycle every 16 units of time. Although the network was run for ten circuits of 
its cycle to produce this graph, these overlap so closely that the separate circuits are not 
visible. 

3.3.4 A Rotated Figure Eight 

In this simulation a network was trained to generate a figure eight on its output units in 
precisely the same way as in the last section, except that the figure eight was to be rotated 
about its center by an angle 0 which was input to the network through two input units which 
held the coordinates of a unit vector in the appropriate direction. Eight different values of 
0, equally spaced about the circle, were used to generate the training data. In experiments 
with 20 hidden units, the network was unable to learn the task. Increasing the number of 
hidden units to 30 allowed the network to learn the task, as shown on the left in figure 13. 
But when the network is run with the eight input angles furthest the training angles, as 
shown on the right in figure 13, generalization is poor. 

The task would be simple to solve using second order connections, as they would allow 
the problem to be decoupled. A few units could be devoted to each of the orthogonal 
oscillations, and the connections could form a rotation matrix. The poor generalization of 
the network shows that it is not solving the problem in such a straightforward fashion, and 
suggests that for tasks of this sort it might be better to use slightly higher order units. 
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Figure 14: The output states y\ and yi plotted against each other for a 1000 time unit run, 
with all the units in the network perturbed by a random amount about every 40 units of 
time. The perturbations in the circle network (left) were uniform in ±0.1, and in the eight 
network (right) in ±0.05. 

3.4 Stability and Perturbation Experiments 

We can analytically determine the stability of the network by measuring the eigenvalues A, 
of Df where / is the function that maps the state of the network at one point in time to its 
state at a later time. For instance, for a network exhibiting a limit cycle one would typically 
use the function that maps the network's state at some time in the cycle to its state at the 
corresponding time in the next cycle. 

In an attempt to judge the stability of the limit cycles exhibited above, rather than 
going to the trouble of calculating D / , where f(y(t)) = y(t + 16), we simply modified the 
simulator to introduce random perturbations and observed the effects of these perturbations 
upon the evolution of the system.3 The two output units in the unrotated figure eight task 
appear to be phase locked, as their phase relationship remains invariant even in the face of 
major perturbations. This phase locking is unlike the solution that a human would create 
by analytically determining weights through decoupling the two output units and using 
linearized subnets to generate the desired oscillatory behavior. 

The limit cycle on the right in figure 12 is symmetric, but when perturbations are in­
troduced, as in the right of figure 14, symmetry is broken. The portion of the limit cycle 
moving from the upper left hand corner towards the lower right hand corner has diverging 
lines, but we do not believe that they indicate high eigenvalues and instability. The lines 
converge rapidly in the upward stroke on the right hand side of the figure, and analogous 

3Actually, we wouldn't care about the eigenvalues of Df per se, because we wouldn't care about pertur­
bations in the direction of travel, as these efTect only the phase. For this reason, we would want to project 
this out of the matrix before computing the eigenvalues. This eflect is achieved automatically in our display 
in figure 14. 
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unstable behavior is not present in the symmetric downward stroke from the upper right 
hand corner towards the lower left. Analysis shows that the instability is caused by the 
initialization circuitry being inappropriately activated; since the initialization circuitry is 
adapted for controlling just the initial behavior of the network, when the net must delay at 
(0.5,0.5) for a time before beginning the cycle by moving towards the lower left corner, this 
circuitry is explicitly not symmetric. The diverging lines seem to be caused by this circuitry 
being activated and exerting a strong influence on the output units while the circuitry itself 
deactivates. 

3.5 Leech Simulations 
Lockery et al. used the techniques discussed above to fit a low level neurophysiological model 
of the leech local bending reflex to data on sensory and motor neuron activity [28, 29, 30, 31]. 
They modified the dynamic equations substantially in order to model their system at a 
low level, using activity levels to represent currents rather than voltages. Their trained 
model disagreed with human intuition concerning what the synaptic strengths, and in fact 
signs, would be, but qualitatively matched empirical measurements of these counterintuitive 
synaptic strengths. 

4 Other Non-fixpoint Techniques 

4-1 "Elman Nets" 
Elman [9] investigated a version of discrete backpropagation through time in which the tem­
poral history is cut off. Typically, only one or two timesteps are preserved, at the discretion 
of the architect. This cutoff makes backpropagation through time an online algorithm, as 
the backpropagation to be done to account for the error at each point in time is done imme­
diately. However, it makes the computational expense per time step scale linearly with the 
number of timesteps of history being maintained. This accuracy of the computed derivative 
is smoothly traded off against storage and computation. 

The real question with Elman networks is whether the contribution to the error from the 
history that has been cut off is significant. This question can only be answered relative to a 
particular task. For instance, Elman [9] finds some problems amenable to the history cutoff, 
but resorts to full fledged backpropagation through time for other tasks. Cleeremans et al. 
[6] find a regular language token prediction task which is difficult for Elman nets when the 
transition probabilities are equal, but find that breaking this symmetry allows these nets to 
learn the task. 

4.2 The Moving Targets Method 
Rohwer, among others, has proposed a moving targets learning algorithm [43]. In such 
algorithms, two phases alternate. In one phase, the hidden units' targets axe improved, 
such that if the targets are attained better performance would be achieved. In the other 
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phase, the weights are modified such that each unit comes closer to attaining its target. The 
error can be regarded as having two terms, one term which penalizes the units being too far 
from their targets, and another which penalizes the targets for being too far from the values 
actually attained. This technique has the appeal of decoupling temporally distant actions 
during the learning of weights, and the disadvantage of requiring the targets to be stored and 
updated. In the limit, as learning rates axe decreased, the moving targets method becomes 
equivalent to backpropagation though time. 

The primary disadvantage of the technique is that each pattern to be learned must have 
associated with it the targets for the hidden units, and these targets must be learned just 
as the weights axe. This makes the technique inapplicable for online learning, in which each 
pattern is seen only once. 

4.3 Forward Propagation 

An online, exact, and stable, but computationally expensive, procedure for training fully 
recurrent networks was discovered by Robinson and Fallside [42], and later rediscovered 
independently by others [13, 52]. We can develop this technique as follows. If E is of the 
form of (18), we can calculate dE/dwij as follows. First apply the chain rule to J5, 

n - / ? a w j & w * - / ? <33» 
where 

Hjk = dyk/dwij. (34) 
These can be calculated by taking the derivative of (1) with respect to ipy, yielding the 
auxiliary equations 

^ - « » • ( » ) 

Rather than integrating (33) during the simulation and then making a weight change, 
we can continuously update the weights according to the equation 

^ m - - . , E (36) 

By integrating this expression between to and ti under the assumption that the online weight 
changes do not affect the trajectory taken, we can see that it is equivalent to the discrete 
update equation it replaces. 

Since the auxiliary quantities have only initial boundary conditions-zero at the start 
of time-all the computations can be carried out forward in time. Because of this, the 
technique is an online learning procedure, as the amount of time that the network will be 
run need not be known in advance, and no history need be stored. In addition, (35) is stable 
if (1) is, so the technique will not introduce numerical instabilities. 
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Regretably, this technique poses a substantial computational burden, with the compu­
tation of the auxiliary equations dominating. If we have n units and n 2 weights, then there 
are n primary state variables and only 0(n2) calculations are required to update them. But 
there are n 3 auxiliary variables, and they require a total of 0 ( n 4 ) calculations to update! 
Furthermore, although the primary equations could potentially be implemented directly in 
analog hardware, the auxiliary equations use each weight n 2 times, making analog hardware 
implementation difficult. 

4.3.1 Extending Online Learning to Time Constants and Delays 

We can easily extend this online learning procedure to take account of time constants. If we 
begin with (23), substitute k for t, take the partial with respect to my, and substitute in 7 
where possible, we have a the differential equation for 7 

T*4r = -7*0' + a ' M E (37) dt 

nearly the same as (35) except for a time constant. 
We can derive analogous equations for the time constants themselves; define 

< 3 8 > 

take the partial of (1) with respect to Tj, and substitute in q. This yields 

* $ ~ « S - £ + «'<».>Z>w} (») 
K 

which can be used to update the time constants using the continuous update rule 

Similarly, let us derive equations for modifying the time delays of section 3.2. Define 

- 4 « - ^ <«> 

and take the partial of (1) with respect to ry, arriving at a differential equations for r, 

included if j = k 

The time delays can be updated online using the continuous update equation 



4.3.2 Faster Online Techniques 

One way to reduce the complexity of the algorithm is to simply leave out auxiliary variables 
that one has reason to believe will remain approximately zero, simply discarding the corre­
sponding terms. This approach, in particular ignoring the coupling terms which relate the 
states of units in one module to weights in another, has been explored by Zipser [53]. 

Recently Toomarian and Barhen [46] used clever transformations of the adjoint equations 
to derive an exact, stable variant of this forward propagation algorithm which requires only 
2n + n 2 auxiliary variables, which can be updated in just 0 ( n 3 ) time. Their technique was 
announced just before this document went to press, and has not yet been simulated, but 
appears quite promising. If verified in practice, their technique would appear to dominate 
the online algorithm described above, and would become the technique of choice for online 
learning. 

4.4 Feedforward Networks with State 

It is noteworthy that that the same basic mathematical technique of forward propagation 
can be applied to networks with a restricted architecture, feedforward networks whose units 
have state [14, 24, 47]. This is the same as requiring the W{j matrix to be triangular, 
but allowing non-zero diagonal terms. If we let the 7 quantities be ordered derivatives, as 
in standard backpropagation, than this simplified architecture reduces the computational 
burden substantially. The elimination of almost ail temporal interaction makes 7 , ^ = 0 
unless i = A:, leaving only 0(n2) auxiliary equations, each of which can be updated with 
0(1) computation, for a total update burden of 0 ( n 2 ) , which is the same as conventional 
backpropagation. This favorable computational complexity makes it of practical significance 
even for large feedforward recurrent networks. But these feedforward networks are outside 
the scope of this paper. 

5 Teacher Forcing 
Teacher forcing [52] consists of jamming the desired output values into units as the network 
runs; thus, the teacher forces the output units to have the correct states, even as the network 
runs, and hence the name. This technique is applied to discrete time, clocked networks, as 
only then does the concept of changing the state of an output unit each time step make 
sense. 

The error is as usual, with the caveat that errors are to be measured before output 
units are forced, not after. Williams and Zipser report that their teacher forcing technique 
radically reduced training time for their recurrent networks, although others using teacher 
forcing on networks with a larger number of hidden units reported difficulties[35]. 
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5.1 In Continuous Time 
Williams and Zipser's application of teacher forcing to their networks is deeply dependent on 
discrete time steps, so applying teacher forcing to temporally continuous networks requires 
a different approach. The approach we shall take is to add some knobs that can be used to 
control the states of the output units, and use them to keep the output units locked at their 
desired states. The error function to be minimized will measure the amount of control that 
it was necessary to exert, with zero error coming only when the knobs need not be twisted 
at all. 

Let 

Fi = TfirVi + + b) (44) 

so that (1) is just dyi/dt = Fi, and let us add a new forcing term /,(<) to (1), 

f - f i + A . (45) 
Using $ to denote the set of units to be forced, we will let d{ be the trajectory that we will 
force yi to follow, for each i € $ . So we set 

(«0 

and yi(t0) = di(t0) for ¿ 6 $ and = 0 for i £ with the consequence that yi = di for 
i € Now let the error functional be of the form 

E= P L(f(t),t)dt, (47) 
Jto 

where typically L = ff. 
We can modify the derivation in section 3 for this teacher forced system. For i € $ a 

change to yi will be canceled immediately, so taking the limit as At —• 0 yields = 0. 
Because of this, it doesn't matter what et- is for i € 

We can apply (17) to calculate et- for iI £ The chain rule is used to calculate how a 
change in yt- effects E through the /,-, yielding 

e i ~ ft. 6fi dVi 

or 
« = £ w - ^ ' ( * > * (48) 

For i ^ $ (21) and (26) are unchanged, and for ; £ $ and any i (22) also remains unchanged. 
The only equations still required are dE/dwij for j € $ and dE/dTi for i € To derive 
the first, consider the instantaneous effect of a small change to Wij, giving 

e ^ ' T j L ( 4 9 ) 
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Analogously, for i € $ 

We are left with a system with a number of special cases depending on whether units 
are in $ or not. Interestingly, an equivalent system results if we leave (21), (22), and (26) 
unchanged except for setting z, = dL/dfi for i € $ and setting all the et- = 0. It is an 
open question as to whether there is some other way of defining Z{ and et- that results in this 
simplification. 

5.2 "Jordan Nets" 

Jordan [21] used a backpropagation network with the outputs clocked back to the inputs to 
generate temporal sequences. Although these networks were used long before teacher forcing, 
from our perspective Jordan nets are simply a restricted class of teacher forced recurrent 
networks, in particular, discrete time networks in which the only recurrent connections 
emanate from output units. By teacher forcing these output units, no real recurrent paths 
remain, so simple backpropagation through a single time step suffices for training. 

The main disadvantage of such an architecture is that state to be retained by the net­
work across time must to manifest in the desired outputs of the network, so new persistent 
internal representations of temporal structures can not be created. For instance, it would 
be impossible to train such networks to perform the figure eight task of section 3.3.3. In 
the usual control theory way, this difficulty can be partially alleviated by cycling back to 
the inputs not just the previous timestep's outputs, but also those from a small number 
of previous timesteps. The tradeoffs between using hidden units to encapsulate temporally 
hidden structure and using a temporal window of values which must contain the desired 
information is problem dependent, and depends in essence on how long a hidden variable 
can remain hidden without being manifested in the observable state variables. 

5.3 Continuous Time "Jordan Nets" 

It is easy to construct a continuous time Jordan network, in which the units' values are 
continuous in time, the output units constantly have corrected values jammed into them 
from external sources, and the only recurrent connections are from the outputs back to the 
inputs. Although this was done in the more general setting of fully recurrent networks, we 
note in passing that the most natural teacher forced continuous time Jordan network has 
no state held at individual units, and is equivalent to simply training a layered network to 
produce the first derivative of the "output signal" given the current value of the "output 
signal" as an input. 
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technique time space online? stable? local? 

storing y 0(m) 0(sn + m) no yes yes 
y backwards 0(m) 0{m) no no yes 
forward propagation 1 0{n2m) 0(nm) yes yes no 
forward propagation 2 0(nm) 0(n2 + m) yes yes no 

Table 1: A summary of the complexity of some learning procedures for recurrent networks. 
In the "storing y" technique we store y as time is run forwards and replay it as we run time 
backwards computing z. In "y backwards" we do not store y, instead recomputing it as time 
is run backwards. "Forward propagation" 1 and 2 are the online techniques described in 
section 4.3. The times given are for computing the gradient with respect to one pattern. 

6 Summary and Conclusion 

6.1 Complexity Comparison 
Consider a network with n units and m weights which is run for s time steps (variable grid 
methods [5] would reduce s by dynamically varying Ai) where s = (*i — to)/At. Additionally, 
assume that the computation of each e,(£) is 0(1) and that the network is not partitioned. 

Under these conditions, simulating the y system takes 0(m + n) = 0(m) time for each 
time step, as does simulating the z system. This means that using the technique described 
in section 3.3, the entire simulation takes 0(m) time per time step, the best that could be 
hoped for. Storing the activations and weights takes 0 (n + m) = 0(m) space, and storing 
y during the forward simulation to replay while simulating z backwards takes 0(sn) space, 
so if we use this technique the entire computation takes 0(sn + m) space. If we simulate y 
backwards during the backwards simulation of z, the simulation requires 0(n + m) space, 
again the best that could be hoped for. This later technique, however, is susceptible to 
numeric stability problems. 

The online technique described in section 4.3 requires 0(n2m) time each time step, and 
0(nm) space. The other technique alluded to in that section requires less time and space, 
and retains all of its online advantages, so it would appear to dominate the original technique, 
assuming simulations bear out its stability. 

These time complexity results are for sequential machines, and are summarized in table 1. 
Note that in this section we are concerning ourselves with how much computation it takes 

to obtain the gradient information. This is generally just the inner loop of a more complex 
algorithm to adjust the weights, which uses the gradient information, such as a gradient 
descent algorithm, or gradient descent with momentum, or conjugate gradient, or whatever 
is used. Experience has shown that learning in these networks has tended to be "stiff" in 
the sense that the Hessian of the error with respect to the weights (the matrix of second 
derivatives) tends to have a wide eigenvalue spread. One technique that has apparently 
proven useful in this particular situation is that of Robert Jacobs [20] which was applied by 
Fang and Sejnowski to the problem described in section 3.3.3 with great success [10]. It was 
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also used in the leech simulations of Lockery et al. described in section 3.5, apparently with 
a substantial reduction in the number of epochs required for convergence. 

6.2 Future Work 

Applications to identification and control are being explored in the author's thesis research. 
Signal processing and speech generation (and recognition using generative techniques) are 
also domains to which this type of network might be naturally applied. Such domains may 
lead us to complex architectures like those discussed in section 3.2. For control domains, it 
seems important to have ways to force the learning towards solutions that are stable in the 
control sense of the term. In fact, Simard, Rayzs and Victorri have developed a technique 
for learning the local maximum eigenvalue of the transfer function [45], optionally projecting 
out directions whose eigenvalues are not of interest. This technique has not yet been applied 
in a control domain. 

On the other hand, we can turn the logic of section 3.4 around. Consider a difficult 
constraint satisfaction task of the sort that neural networks axe sometimes applied to, such 
as the traveling salesman problem [19]. Two competing techniques for such problems are 
simulated annealing [23, 1] and mean field theory [37]. By providing a network with a 
noise source which can be modulated (by second order connections, say) we could see if the 
learning algorithm constructs a network that makes use of the noise to generate networks 
that do simulated annealing, or if pure gradient descent techniques are evolved. If a hybrid 
network evolves, its structure may give us insight into the relative advantages of these two 
different optimization techniques, and into the best ways to structure annealing schedules. 

6.3 Conclusions 

Recurrent networks are often avoided because of a fear of inordinate learning times and 
incomprehensible algorithms and mathematics. It should be clear from the above that such 
fears are unjustified. Certainly there is no reason to use a recurrent network when a layered 
architecture suffices; but on the other hand, if recurrence is needed, there are a plethora of 
learning algorithms available across the spectrum of quiescence vs. dynamics and across the 
spectrum of accuracy vs. complexity and across the spectrum of space vs. time and storage. 
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