
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Fusion of Monocular Cues 
to Detect Man-Made Structures 

in Aerial Imagery 

Jefferey A. Shufelt 
David M. McKeown, Jr. 

September 27,1990 
CMU-CS-90-194 ^ 

u 1 8 a r C V 1 S e d m d e x t e n d e d v e r s ion of a paper presented 
at the 1APR Workshop on Multisource Data Integration in Remote 

Sensing, College Park, MD, June 14-15, 1990 

Digital Mapping Laboratory 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Copyright © 1990 Jefferey A. Shufelt and David M. McKeown, Jr. 

This research was primarily sponsored by the U.S. Army Engineering Topographic Laboratories under 
Contract DACA72-87-C-0001 and partially supported by the Defense Advanced Research Projects 
Agency, DoD, through DARPA order 4976, and monitored by the Air Force Avionics Laboratory Under 
Contract F33615-87-C-1499. The views and conclusions contained in this document are those of the 
authors and should not be interpreted as representing the official policies, either expressed or implied, of 
the U.S. Army Engineering Topographic Laboratories, or the Defense Advanced Research Projects 
Agency, or of the United States Government. 



Keywords: Cartographic feature extraction, computer vision, aerial image interpretation, 
information fusion, building detection, monocular image analysis 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY 

Table of Contents 
Abstract 
1. Introduction 

1.1. Previous work 
1.2. Building extraction techniques 

2. Building hypothesis fusion using monocular imagery 
2.1. Fusion of hypotheses from a single view 
2.2. An evaluation of hypothesis fusion 
2.3. Results and analysis 

3. Building hypothesis fusion using stereo imagery 
3.1. Disparity effects on stereo mergers 
3.2. Stereo fusion experiments 

4. Thresholding the accumulator image 
5. Additional results in building hypothesis fusion 

5.1. Monocular fusion results 
5.2. Stereo fusion results 

6. Generating three-dimensional representations 
7. Conclusions 
8. Acknowledgments 
References 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY II 

List of Figures 
Figure 2-1: DC37405 image with ground-truth segmentation superimposed 4 
Figure 2-2: DC37405 Shadow/Building Edges 5 
Figure 2-3: DC37405 Grouper Regions 5 
Figure 2-4: DC37405 SHADE results 7 
Figure 2-5: DC37405 SHAVE results 7 
Figure 2-6: DC37405 GROUPER results 7 
Figure 2-7: DC37405 BABE results 7 
Figure 2-8: Monocular hypothesis fusion for DC37405 9 
Figure 3-1: S2 smoothed dense disparity map for the DC37405 stereo pair 11 
Figure 3-2: DC37405 BABE registered results, before and after disparity shift 11 
Figure 3-3: Left-right Fusion 11 
Figure 3-4: Extraction-based Fusion 11 
Figure 3-5: Stereo hypothesis fusion for DC37405 13 
Figure 5-1: DC36A image with ground-truth segmentation 17 
Figure 5-2: DC36B image with ground-truth segmentation 17 
Figure 5-3: DC38 image with ground-truth segmentation 17 
Figure 5-4: LAX image with ground-truth segmentation 17 
Figure 5-5: Monocular hypothesis fusion for DC36A 18 
Figure 5-6: Monocular hypothesis fusion for DC36B 19 
Figure 5-7: Monocular hypothesis fusion for DC38 20 
Figure 5-8: Monocular hypothesis fusion for LAX 21 
Figure 5-9: Monocular building detection percentages 22 
Figure 5-10: Monocular building pixel branching factors 22 
Figure 5-11: Stereo building detection percentages 25 
Figure 5-12: Stereo building pixel branching factors 26 
Figure 6-1: Perspective view for DC37405 using ground-truth building and height 27 

data 
Figure 6-2: Perspective view for DC37405 using ground-truth building data only 27 
Figure 6-3: Perspective view for DC37405 using stereo disparity information 28 
Figure 6-4: Perspective view for DC37405 using monocular shadow analysis 29 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY III 

List of Tables 
Table 2-1: Evaluation statistics for DC37 hypothesis fusion 9 
Table 3-1: Evaluation statistics for DC37 system fusions 12 
Table 3-2: Evaluation statistics for DC37 stereo fusion 13 
Table 4-1: Thresholding statistics for DC36A fusion results 15 
Table 4-2: Thresholding statistics for DC36B fusion results 15 
Table 4-3: Thresholding statistics for DC37 fusion results 15 
Table 4-4: Thresholding statistics for DC38 fusion results 15 
Table 4-5: Thresholding statistics for LAX fusion results 16 
Table 5-1: Evaluation statistics for DC36A hypothesis fusion 18 
Table 5-2: Evaluation statistics for DC36B hypothesis fusion 19 
Table 5-3: Evaluation statistics for DC38 hypothesis fusion 20 
Table 5-4: Evaluation statistics for LAX hypothesis fusion 21 
Table 5-5: Evaluation statistics for DC36A stereo fusion 24 
Table 5-6: Evaluation statistics for DC36B stereo fusion 24 
Table 5-7: Evaluation statistics for DC38 stereo fusion 24 
Table 5-8: Evaluation statistics for LAX stereo fusion 25 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY 1 

1. Introduction 
The detection and delineation of man-made structures from aerial imagery is a complex computer 

vision problem [10]. It requires locating regions in imagery that possess properties distinguishing them 
as man-made objects in the scene, as opposed to naturally occurring terrain features. The building 
extraction process requires techniques that exploit knowledge about the structure of man-made objects. 
Techniques do exist that take advantage of this knowledge; various methods use edge-line analysis, 
shadow analysis, and stereo imagery analysis to produce building hypotheses. It is reasonable, however, 
to assume that no single detection method will correctly delineate or verify buildings in every scene. As 
an example, a feature extraction system that relies on the analysis of cast shadows to predict building 
locations is likely to fail in cases where the sun is directly above the scene. 

In this paper we introduce a cooperative-methods paradigm for information fusion that is shown to be 
highly effective in improving the system performance over that achieved by individual building 
extraction methods. Using this paradigm, each extraction technique provides information that can be 
added or assimilated into an overall interpretation of the scene. Thus, our research focus is to explore 
the development of a computer vision system that integrates the results of various scene analysis 
techniques into an accurate and robust interpretation of the underlying three-dimensional scene. 

In the cooperative-methods paradigm we assume that no single scene analysis method can provide a 
complete set of building hypotheses for a scene. Each method, however, may provide a subset of the 
information necessary to produce a more meaningful interpretation of the scene. For instance, a 
shadow-based method might provide unique information in situations where ground and roof intensity 
are similar. An intensity-based method can provide boundary information in instances where shadows 
were weak or nonexistent, or in situations where structure height was sufficiently low that stereo 
disparity analysis would not provide reliable information. The implicit assumption behind this paradigm 
is that the symbolic interpretations produced by each of these techniques can be integrated into a more 
meaningful collection of building hypotheses. 

Abstract 
The detection and delineation of man-made structures from aerial imagery is a complex computer 

vision problem. It requires locating regions in imagery that possess properties distinguishing them as 
man-made objects in the scene, as opposed to naturally occurring terrain features. The building 
extraction process requires techniques that exploit knowledge about the structure of man-made objects. 
Techniques do exist that take advantage of this knowledge; various methods use edge-line analysis, 
shadow analysis, and stereo imagery analysis to produce building hypotheses. It is reasonable, however, 
to assume that no single detection method will correctly delineate or verify buildings in every scene. As 
an example, a feature extraction system that relies on the analysis of cast shadows to predict building 
locations is likely to fail in cases where the sun is directly above the scene. 

In this paper we introduce a cooperative-methods paradigm for information fusion that is shown to be 
highly effective in improving the system performance over that achieved by individual building 
extraction methods. Using this paradigm, each extraction technique provides information that can be 
added or assimilated into an overall interpretation of the scene. Thus, our research focus is to explore 
the development of a computer vision system that integrates the results of various scene analysis 
techniques into an accurate and robust interpretation of the underlying three-dimensional scene. 

We briefly survey four monocular building extraction, verification, and clustering systems that form 
the basis for the research described here. A method for fusing the symbolic data generated by these 
systems is described, and it is applied to both monocular image and stereo image data sets. A set of 
performance evaluation metrics are developed, described, and applied to the fusion results. Several 
detailed analyses are presented, as well as a summary of results on 23 monocular and 5 stereo scenes. 
These experiments show that a significant improvement in building detection is achieved using these 
techniques. 
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1.2. Building extraction techniques 
For the experiments described in this paper, a set of four monocular building detection and evaluation 

systems were used. Three of these were shadow-based systems; the fourth was line-corner based. The 
shadow based systems are described more fully by Irvin and McKeown [8], and the line-corner system 
is described by Aviad, McKeown, and Hsieh [2]. A brief description of each of the four detection and 
evaluation systems follows. 

It is reasonable to expect that there will be complications in fusing real monocular data. In the best 
case, the building hypotheses will not only be accurate, but complementary. It is just as likely, however, 
that some building hypotheses may be unique. Further, it is rare that building hypotheses are always 
accurate, or even mutually supportive of one another. For a cooperative-methods data fusion system to 
be successful, it must address the problems of redundant and conflicting data. 

1.1. Previous work 
There are many interesting building detection and extraction techniques in the contemporary literature. 

We briefly mention some recently developed methods, to illustrate the variety of techniques that 
produce building hypothesis information. Each of these techniques is one possible source of building 
segmentation. None of this previous work, to the best of our knowledge, addresses the problem of 
hypothesis fusion across multiple feature extraction systems. 

Fua and Hanson [3] described a system that used generic geometric models and noise-tolerant 
geometry parsing rules to allow semantic information to interact with low-level geometric information, 
producing segmentations of objects in the aerial image. The system used region-based segmentations as 
input, and applied the geometry rules to connect simple image tokens such as edges into more complex 
rectilinear structures. 

Nicolin and Gabler[12] described a system for analysis of aerial images. The system had four 
components: a method-base of domain-independent processing techniques, a long-term memory 
containing a priori knowledge about the problem domain, a short-term memory containing intermediate 
results from the image analysis process, and a control module responsible for invocation of the various 
processing techniques. Gray-level analysis was applied to a resolution pyramid of imagery to suggest 
segmentation techniques, and structural analysis was performed after segmentation to provide geometric 
interpretations of the image. These interpretations were then given confidence values based on their 
similarity to known image features such as roads and houses. 

Mohan and Nevada [11] present a method by which simple image tokens such as lines or edges could 
be clustered into more complex geometric features consisting of parallelopipeds. They used constraint-
satisfaction networks to decide which features were mutually supportive and which features subsumed 
or eliminated other features. They also applied set operations to the segments of features to merge pairs 
of features. 

Huertas and Nevatia [7] discuss a technique for detecting buildings in aerial images. Their method 
detected lines and corners in an image and labeled these corners based on detected shadows. Then, 
object boundaries were traced by grouping corners that shared line segments. The position and 
orientation of these chains of segments were then examined, and the appropriately aligned chains were 
connected to form boxes representing the structures in the image. Shadow analysis was used to verify 
the remaining chains by adding lines as necessary. 

The key contribution of our work is a demonstration of the effectiveness of simple information fusion 
techniques as applied to the problem of building detection in complex aerial imagery. These techniques 
significantly improve performance, compared to any of the component feature extraction systems. We 
demonstrate this by using several building analysis systems, each of which uses a different image 
domain cue to generate and evaluate building hypotheses. 
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2. Building hypothesis fusion using monocular imagery 
Building hypotheses generated from monocular imagery typically take the form of two-dimensional 

polygonal boundary descriptions. One can imagine "stacking" sets of these polygonal boundary 
descriptions on the image: in the process, those regions of the image that represent man-made structure 
in the scene should accumulate more building hypotheses than those regions of the image that represent 
natural features in the scene. The merging technique developed here exploits this idea. 

BABE (Builtup Area Building Extraction) is a building detection system based on a line-corner 
analysis method. BABE starts with intensity edges for an image, and examines the proximity and angles 
between edges to produce corners. To recover the structures represented by the corners, BABE 
constructs chains of corners such that the direction of rotation along a chain is either clockwise or 
counterclockwise, but not both. Since these chains may not necessarily form closed segmentations, 
BABE generates building hypotheses by forming boxes out of the individual lines that comprise a chain. 
These boxes are then evaluated in terms of size and line intensity constraints, and the best boxes for each 
chain are kept, subject to shadow intensity constraints similar to those proposed by Nicolin [12] and 
Huertas [7], 

SHADE (SHAdow DEtection) is a building detection system based on a shadow analysis method. 
SHADE uses the shadow intensity computed by BABE as a threshold for an image. Connected region 
extraction techniques are applied to produce segmentations of those regions with intensities below the 
threshold, i.e., the shadow regions. SHADE then examines the edges comprising shadow regions, and 
keeps those edges that are adjacent to the buildings casting the shadows. These edges are then broken 
into nearly straight line segments by the use of an imperfect sequence finder [1]. Those line segments 
that form nearly right-angled corners are joined, and the corners that are concave with respect to the sun 
are extended into parallelograms, SHADE 'S final building hypotheses. 

SHAVE (SHAdow VErification) is a system for verification of building hypotheses by shadow 
analysis. SHAVE takes as input a set of building hypotheses, an associated image, and a shadow 
threshold produced by BABE. SHAVE begins by determining which sides of the hypothesized building 
boxes could possibly cast shadows, given the sun illumination angle, and then performs a walk away 
from the sun illumination angle for every pixel along a building/shadow edge to delineate the shadow. 
The edge is then scored based on a measure of the variance of the length of the shadow walks for that 
edge. These scores can then be examined to estimate the likelihood that a building hypothesis 
corresponds to a building, based on the extent to which it casts shadows. 

GROUPER is a system designed to cluster, or group, fragmented building hypotheses, by examining 
their relationships to possible building/shadow edges. GROUPER starts with a set of hypotheses and the 
building/shadow edges produced by BABE. GROUPER back-projects the endpoints of a building/shadow 
edge towards the sun along the sun illumination angle, and then connects these projected endpoints to 
form a region of interest in which buildings might occur. GROUPER intersects each building hypothesis 
with these regions of interest. If the degree of overlap is sufficiently high (the criteria is currently 75% 
overlap), then the hypothesis is assumed to be a part of the structure which is casting the 
building/shadow edge. All hypotheses that intersect a single region of interest are grouped together to 
form a single building cluster. 

These four building extraction systems, each with particular strengths and weaknesses, provide an 
interesting set of feature extraction primitives. Their individual performance is, we believe, typical of 
the current state-of-the-art in automated building extraction. They are mature systems whose 
performance is not likely to improve significantly and therefore provide a 'best effort' comparison 
against which fusion results can be compared. 
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Figure 2-1: DC37405 image with ground-truth segmentation superimposed 

The basic fusion method takes as input an arbitrary collection of polygons. An image is created that is 
sufficiently large to contain all of the polygons, and each pixel in this image is initialized to zero. Each 
polygon is scan-converted into the image, and each pixel touched during the scan is incremented. The 
resulting image then has the property that the value of each pixel in the image is the number of input 
polygons that cover it. Segmentations can then be generated from this "accumulator" image by applying 
connected region extraction techniques. If the image is thresholded at a value of 1 (i.e, all non-zero 
pixels are kept), the regions produced by a connected region extraction algorithm will simply be the 
geometric unions of the input polygons. It is the case, however, that the image could be thresholded at 
higher values. We motivate thresholding experiments in Section 4. 
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Figure 2-2: DC37405 Shadow/Building Edges Figure 2-3: DC37405 Grouper Regions 

There are two variations on hypothesis fusion using a single monocular image. The first involves the 
creation of a single hypothesis out of a collection of fragmented hypotheses believed to correspond to a 
single man-made structure. This problem was addressed by applying the scan-conversion technique to 
the fragmented clusters produced by GROUPER. Figure 2-2 shows the shadow/building edges generated 
by SHADE, which are used by GROUPER to select a subset of the building hypotheses produced by BABE 
that are consistent with buildings casting shadows along each edge. The result of this process is shown 

There are several variations to the basic hypothesis fusion technique: 
1. Fusion of hypotheses generated by a single feature extraction method on a monocular 

image. 
2. Fusion of hypotheses generated by multiple feature extraction methods on a monocular 

image. 
3. Fusion of hypotheses generated by multiple feature extraction methods across a stereo 

image pair. 
4. Fusion of hypotheses generated by multiple feature extraction methods on multiple views 

taken over time. 
The careful reader may notice that two variations are missing from this list; namely, the fusion of 

hypotheses generated by a single feature extraction method across a stereo image pair, and on multiple 
views taken over time. These are simply special cases of fusion on multiple feature extraction methods, 
and do not merit separate treatment. We describe the application of the first three fusion variations as 
applied to the results of four building detection and evaluation systems (BABE, SHADE, SHAVE, and 
GROUPER). The first two variations, primarily monocular, are described in the following section. 
Experiments on the third variation, stereo fusion, are described in Section 3, along with a brief 
discussion of the fourth variation, multi-temporal fusion. 

2.1. Fusion of hypotheses from a single view 
Figure 2-1 shows a section of a suburban house scene in the Washington, D.C. area. This scene is 

quite complex; it contains a wide variety of buildings ranging from small individual houses and 
townhouses to large apartment buildings. There are a variety of roof shapes including pitched and flat 
roofs, and the roof colors vary due to surface materials with different reflectance properties. Simple 
intensity-based or shape-based techniques have significant difficulty with such scenes. We use this 
scene throughout our discussion of monocular hypothesis fusion. 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY 6 

2.2. An evaluation of hypothesis fusion 
To judge the correctness of an interpretation of a scene, it is desirable to have some mechanism for 

quantitatively evaluating that interpretation. Unfortunately, there is very little current work described in 
the computer vision literature that addresses this topic. Our approach is to compare a given set of 
building hypotheses against a set that is known to be correct, and analyze the differences between the 
given set of hypotheses and the correct ones. In performing evaluations of the fusion results, we use 
ground-truth segmentations as the correct detection results for a scene. Ground-truth segmentations are 
manually produced segmentations of the buildings in an image. Figure 2-1 shows the superposition of 
the manual ground-truth segmentation on the suburban house scene. 

There exist two simple criteria for measuring the degree of similarity between a building hypothesis 
and a ground-truth building segmentation: the mutual area of overlap and the difference in orientation. 
A correct building hypothesis and the corresponding ground-truth segmentation region should cover 
roughly the same area, and should have roughly the same alignment with respect to the image. A 
scoring function can be developed that incorporates these criteria. A region matching scheme such as 
this, however, suffers from the fact that multiple buildings in the scene are segmented by a single region 
in the hypothesis set. In these cases, the building hypothesis will have low matching scores with each of 
the buildings it contains, due to the differences in overlap area. 

A simpler coverage-based global evaluation method was developed. This evaluation method works in 
the following manner. H, a set of building hypotheses for an image, and G, a ground-truth segmentation 
of that image, are given. The image is then scanned, pixel by pixel. For any pixel P in the image, there 
are four possibilities: 

1. Neither a region in H nor a region in G covers P. This is interpreted to mean that the 
system producing H correctly denoted P as being part of the background, or natural 
structure, of the scene. 

2. No region in H covers P, but a region in G covers P. This is interpreted to mean that the 
system producing H did not recognize P as being part of a man-made structure in the 
scene. In this case, the pixel is referred to as a "false negative". 

in Figure 2-3, where each shadow/building edge has been used to select and cluster sets of building 
hypotheses that exhibited a strong relationship with each edge. The scan-conversion technique was 
applied to each cluster individually, and the resulting accumulator image was thresholded at 1. 
Connected region extraction techniques were then applied to provide the geometric union of each 
cluster. These clusters were then used as the building hypotheses produced by GROUPER as shown in 
Figure 2-6. 

The second variation involves the fusion of each of the monocular hypothesis sets created by BABE, 
SHADE, SHAVE, and that created by fusion of the GROUPER hypotheses, into a single set of hypotheses 
for the scene. Again, the scan-conversion technique was applied. The four hypothesis sets were scan-
converted into a single accumulator image, which was thresholded at a value of 1. Connected region 
extraction techniques were applied to produce the final segmentation for the image. 

Figure 2-4 shows the SHADE results for DC37405, the suburban house scene. Figure 2-5 shows the 
SHAVE results, Figure 2-6 shows the GROUPER results, and Figure 2-7 shows the BABE results. Figure 
2-8 shows the fusion of these four monocular hypothesis sets. Close inspection of each of the four 
figures indicates that each method produces building hypotheses that are (in most cases) complementary 
and tend to be mutually supportive, but there exist situations in which only one method arrives at a 
correct or partially correct building hypothesis. In the following section we discuss techniques for 
evaluating the performance of the hypothesis merging technique, and, as a side effect, the performance 
of each of the building hypothesis methods. 
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3. A region (or regions) in H cover P, but no region in G covers P. This is interpreted to mean 
that the system producing H incorrectly denoted P as belonging to some man-made 
structure, when it is in fact part of the scene's background. In this case, the pixel is 
referred to as a "false positive". 

4. A region (or regions) in H and a region in G both cover P. This is interpreted to mean that 
the system producing H correctly denoted P as belonging to a man-made structure in the 
scene. 

Figure 2-4: DC37405 SHADE results Figure 2-5: DC37405 SHAVE results 

Figure 2-6: DC37405 GROUPER results Figure 2-7: DC37405 BABE results 
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By counting the number of pixels that fall into each of these four categories, we may obtain 
measurements of the percentage of building hypotheses that were successful (and unsuccessful) in 
denoting pixels as belonging to man-made structure, and the percentage of the background of the scene 
that was correctly (and incorrectly) labeled as such. Further, we may use these measurements to define 
a building pixel branching factor, which will represent the degree to which a building detection system 
overclassifies background pixels as building pixels in the process of generating building hypotheses. 
The building pixel branching factor is defined as the number of false positive pixels divided by the 
number of correctly detected building pixels. 

2.3. Results and analysis 
Table 2-1 gives the performance statistics for monocular building fusion as applied to the suburban 

house scene in DC37405 shown in Figure 2-8. The first column represents one of the building extraction 
systems. The next two columns give the percentage of building and background terrain correctly 
identified as such. The fourth and fifth columns show incorrect identification percentages for buildings 
and terrain. The next two columns give the breakdown (in percentages) of incorrect pixels in terms of 
false positives and false negatives. The last column gives the building pixel branching factor. 

Examining the results for each extraction method individually, we note that BABE exhibits the best 
performance. This is not surprising, since the image domain cues that BABE utilizes (lines and corners) 
are relatively easy to detect in the DC37405 image. BABE also performs its own internal verification step 
to prune away building hypotheses that do not satisfy its own requirements for shadow support. Thus, 
BABE presents only those hypotheses in which it has high confidence as its final result. Of the four 
systems, SHADE is the least effective in terms of building detection; however, it also generates the 
fewest number of false positive pixels, which is a desirable property. 

GROUPER and SHAVE both operate on all of the hypotheses produced by BABE, not just those 
hypotheses that have passed BABE's conservative shadow evaluation; and each produce quantitatively 
similar results. It is worth noting that the building pixel branching factor for these systems is higher 
than in BABE or SHADE; this is due to the fact that both GROUPER and SHAVE are required to verify a 
larger number of hypotheses that are, in fact, incorrect. This has a more dramatic effect on the number 
of false positive pixels than erroneous line placement errors typically encountered in BABE or SHAVE. 

In this case, by performing monocular fusion, we are able to improve the building detection 
percentage from the best extraction result of 58% (due to BABE) to 77% for the fused results. This 
implies that the extraction systems as a whole provide more information about building structure than 
any individual system. We also note, however, that erroneous information accumulates as well. The 
building pixel branching factor indicates that for every pixel correctly hypothesized to belong building 
structure, over 0.6 pixels are incorrectly hypothesized as such. Just as each individual system can 
provide unique information about the presence of man-made objects in a scene, each individual system 
may also fail in a unique way under the absence of relevant image domain cues. 

We believe that the quantitative results generated by the new evaluation method accurately reflect the 
subjective visual quality of the set of building hypotheses, when taken as a relative measure. Further, 
the building pixel branching factor provides a rough estimate of the amount of noise generated in the 
fusion process. Judging by these measures, we note that the final results of the hypothesis fusion 
process significantly improve the detection of buildings in a scene. 
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Figure 2-8: Monocular hypothesis fusion for DC37405 

Evaluation results for the fusion process on DC37 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 37.5 98.2 62.5 1.8 15.0 85.0 0.294 
SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 0.408 

GROUPER 48.7 95.8 51.3 4.2 32.6 67.4 0.508 
BABE 58.9 97.2 41.1 2.8 28.5 71.5 0.278 

FUSION 77.7 92.0 22.3 8.0 68.0 32.0 0.611 
99 regions in ground truth 

Table 2-1: Evaluation statistics for DC37 hypothesis fusion 
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3.1. Disparity effects on stereo mergers 
As part of the overall building hypothesis fusion process, stereo pairs of building hypotheses are fused 

to provide a single set of hypotheses for a monocular view of the scene. As described earlier, a 
polynomial-based registration method was applied to bring regions from the right image's coordinate 
frame to the left image's coordinate frame. This procedure, however, does not take into account the 
disparity between the left image and the right image, which can cause the translated regions to suffer 
from displacement errors along the scanline. Since the translated regions may not be accurately located, 
the fused hypotheses are likely to cover extraneous pixels in the image, and the overall detection rate 
will decrease. As mentioned earlier, this is the case of fusion for multi-temporal imagery. 

To account for the disparity shift, a simple method was used to improve the location of regions 
translated from one coordinate frame to another. Given a stereo pair of images, a sparse disparity map 
was produced by S2, a feature-based hierarchical scanline matching system [5, 6]. Step interpolation 
was used to produce dense disparity maps from the sparse maps, and a vertical median filter algorithm 
was applied to smooth the dense maps. 

Once a smoothed dense disparity map is obtained, it is then possible to compute the disparity shift for 
a particular building hypothesis, by calculating the average disparity inside the hypothesized region. 
This average disparity value is then used to shift the region along the scanline. Assuming that the 
disparity map is relatively good, this procedure will shift the region to match it with the corresponding 
building in the image. Figure 3-1 shows the smooth dense disparity map for the DC37405 image, and 
Figure 3-2 shows the BABE right image results registered into the left image coordinate frame, before 

3. Building hypothesis fusion using stereo imagery 
In many cases, automated feature extraction systems may have multiple views of a scene available for 

analysis. As discussed in Section 2, there are two variations of information fusion on multiple views; 
the use of stereo coverage in an image pair, and the use of images acquired over time of a particular 
geographic area. In the case of multi-temporal acquisition, the viewing geometry may not generate a 
stereo pair; monocular feature extraction, however, can be employed on each image in the multi-
temporal dataset. In both cases, an image-to-image correspondence must be established, preferably by 
the use of a camera model. 

In this section we describe experiments utilizing stereo imagery to perform hypothesis fusion. We 
suggest that multi-temporal fusion could be performed in a similar way, except that the adjustments due 
to disparity (discussed in Section 3.1) could not be accomplished. Thus, the multi-temporal case is 
exactly the same as the stereo case with image-to-image registration, but without hypothesis position 
adjustment by the use of stereo disparity estimates. In this section we describe the fusion technique for 
the case where stereo imagery is available. 

Given a stereo pair of a scene, each of the building detection systems can be run on both the left and 
right images, to produce a set of hypotheses for each image. Since the images will be representations of 
the scene from different perspectives, and thus will have slightly different geometric features and 
intensities, the systems should produce slightly different results. Combining the left and right results for 
a particular system should provide a slightly more complete hypothesis set for a scene, due to these 
differences. 

Since the left results and right results might lie in different coordinate frames, the first step was that of 
placing both sets of hypotheses in the same coordinate system. Control points were manually selected 
for the left and right images, and a polynomial-based registration method was then applied to bring 
points in the right coordinate frame to the left coordinate frame [13]. Then, the scan-conversion 
technique was applied to the hypothesis pair (now in the same coordinate frame), and the resulting 
accumulator image was thresholded at 1 and segmented to produce the fused hypothesis set for a single 
building system. 
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Figure 3-1: S2 smoothed dense disparity 
map for the DC37405 stereo pair 
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Figure 3-3: Left-right Fusion 

Figure 3-2: DC37405 BABE registered results, 
before and after disparity shift 
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Figure 3-4: Extraction-based Fusion 

and after the disparity shifting process. The registered results appear in white, and the shifted results 
appear in black. 

3.2. Stereo fusion experiments 
Given the stereo fusion technique described in the previous sections, we can construct two basic 

processing models for merging building hypotheses. In the first model, which we call left-right fusion, 
all hypotheses for the left image are fused, and all hypotheses for the right image are fused. Then, the 
stereo fusion technique described in the previous section is applied to fuse the right monocular merger 
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An alternative model, which we call extraction-based fusion, applies stereo fusion to the results of 
each building extraction system, and then performs monocular fusion on these stereo mergers to produce 
a final result. Figure 3-4 gives a pictorial representation of this processing model. 

Evaluation results for DC37 system left/right fusion 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 37.5 98.2 62.5 1.8 15.0 85.0 0.294 
REG 16.8 97.9 83.2 2.1 13.1 86.9 0.749 

SHIFT 20.4 98.4 79.6 1.6 10.6 89.4 0.464 
MERGER 39.5 97.0 60.5 3.0 22.9 77.1 0.456 
SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 0.408 

REG 40.4 94.8 59.6 5.2 34.1 65.9 0.762 
SHIFT 44.8 95.5 55.2 4.5 32.4 67.6 0.591 

MERGER 65.0 93.3 35.0 6.7 53.1 46.9 0.610 
GROUP 48.7 95.8 51.3 4.2 32.6 67.4 0.508 

REG 29.0 94.9 71.0 5.1 29.8 70.2 1.037 
SHIFT 31.6 95.4 68.4 4.6 28.7 71.3 0.871 

MERGER 56.0 92.3 44.0 7.7 51.0 49.0 0.819 
BABE 58.9 97.2 41.1 2.8 28.5 71.5 0.278 
REG 42.5 95.9 57.5 4.1 29.8 70.2 0.575 

SHIFT 51.4 97.4 48.6 2.6 24.4 75.6 0.305 
MERGER 74.0 95.1 26.0 4.9 52.8 47.2 0.393 

FINAL 86.6 84.6 13.4 15.4 87.2 12.8 1.053 
99 regions in ground truth 

Table 3-1: Evaluation statistics for DC37 system fusions 

At first glance, one might expect the final results of these processing models to be exactly the same. 
This would certainly be the case if the building extraction systems produced error-free hypothesis sets, 
and if the stereo matching algorithms produced perfect disparity maps. In practice, this is not the case, 
and there will be slight differences between the results. To understand the source of the divergence, 
recall the stereo fusion algorithm described in the previous section. 

In the stereo fusion algorithm, building disparity is taken into account by computing the average 
disparity inside each polygonal boundary description, and shifting each boundary description along the 
scanline accordingly. The regions obtained by extraction-based stereo fusion will delineate different 
areas, and thus have different disparity values, than the areas obtained by left-right stereo fusion; hence, 
the building hypotheses will be shifted by differing values along the scanline. In practice, these 
differences are small, since the two types of stereo hypotheses tend to delineate approximately the same 
regions, and thus have similar disparity values. 

with its counterpart in the left image. Figure 3-3 gives a pictorial representation of this processing 
model. 



Evaluation results for stereo fusion on DC37 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

LEFT 77.7 92.0 22.3 8.0 68.0 32.0 0.611 
RIGHT 68.0 90.1 32.0 9.9 67.2 32.8 0.962 

REG 58.8 88.6 41.2 11.4 62.2 37.8 1.150 
SHIFT 65.5 89.8 34.5 10.2 63.7 36.3 0.927 

FUSION 86.4 84.7 13.6 15.3 86.9 13.1 1.049 

Table 3-2: Evaluation statistics for DC37 stereo fusion 
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Table 3-1 gives statistics for extraction-based fusion on the DC37405 scene. Each column gives the 
same statistics as in previous tables, but the first column bears additional explanation. The rows 
beginning with boldface names represent the raw results from each of the four building extraction and 
verification techniques on the left image of the stereo pair. Rows prefaced by REG represent the right 
image results after registration into the left image coordinate frame. Rows prefaced by SHIFT represent 
the registered results after shifting due to disparity. Rows prefaced by MERGER represent the results of 
fusing the left image results with the registered and shifted right image results. The final row of the 
table gives the results of the final fusion of all four system merger results. 

Analyzing these results, we first note that the disparity shifting process provides improved results in 
all cases, in terms of building detection rate and building pixel branching factor. We also note, however, 
that the results for the registered and shifted right results are uniformly worse than the corresponding 
results for the left image. In this case, the decline in performance can be attributed to the fact that the 
right image of the stereo pair had fewer image domain cues (such as shadow corners and intensity 
edges) than the left image. In other stereo fusion experiments, the left and right results were comparable 
in quality. 

We further note that the stereo fusion for each system provides a better result in terms of building 
detection rate than either of its component results, and we also observe that the final fusion provides a 
better result (again in terms of building detection rate) than any of the component system fusions. It 
should be noted, however, that the building pixel branching factor has increased as well, indicating that 
errors in each of the individual hypothesis sets have accumulated in the final result. 

Figure 3-5 shows the results of left-right image fusion on the DC37405 scene. Table 3-2 gives the 
statistics for the left-right image fusion. Again, the row headings bear explanation. The first two rows 
give the results for monocular fusion of the extraction results on the LEFT and RIGHT images of the 
stereo pair, respectively. The next two rows give the results of registering (REG) and shifting (SHIFT) the 
right monocular fusion in the left image coordinate frame. The final row gives the statistics for the 
merger of the left monocular fusion results with the registered and shifted right monocular fusion results 
(FUSION). 

Comparing the left-right fusion statistics with those of the extraction-based stereo fusion, we observe 
similar behavior in terms of increased building detection rate (after stereo and monocular fusion), as 
well as increased error as reflected in the building pixel branching factor. We further note that although 
the final results do in fact have different statistics, the differences are very minor, and our results for 
other stereo pairs exhibit only minor differences between left-right fusion and extraction-based fusion. 
In general, the fusion of stereo information provides improved performance over monocular fusion, just 
as monocular fusion provides improved performance over any individual building extraction technique. 

4. Thresholding the accumulator image 
As part of the scan-conversion fusion process, an accumulator image is produced that represents the 

"building density" of the scene. More precisely, each pixel in the image has a value, which is the 
number of hypotheses that overlapped the pixel. Pixels with higher values represent areas of the image 
that have higher probability of being contained in a man-made structure. Theoretically, thresholding 
this image at higher values and then applying connected region extraction techniques would produce 
sets of hypotheses containing fewer false positives, and these hypotheses would only represent those 
areas that had a high probability of corresponding to structure in the scene. 

To test this idea, the accumulator images generated by extraction-based fusion for several scenes were 
thresholded at values of 2, 3, and 4, since four systems were used to produce the final hypothesis fusion. 
Connected region extraction techniques were then applied to these thresholded images to produce new 
hypothesis segmentations. The new evaluation method was then applied to these new hypotheses. Brief 
summaries of the results are shown in Tables 4-1 through 4-5. 
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Summary of thresholding results for DC36A 
Threshold 

Value 
% Bldgs 
Detected 

% Bkgd 
Detected 

% False 
Positives 

Bid Pixel 
Br Factor 

1 0.904 0.857 0.910 1.071 
2 0.768 0.948 0.601 0.455 
3 0.626 0.973 0.324 0.286 
4 0.472 0.989 0.116 0.147 

Table 4-1: Thresholding statistics for DC36A fusion results 

Summary of thresholding results for DC36B 
Threshold 

Value 
% Bldgs 
Detected 

% Bkgd 
Detected 

% False 
Positives 

Bid Pixel 
Br Factor 

1 0.654 0.858 0.800 2.109 
2 0.300 0.964 0.332 1.159 
3 0.122 0.992 0.077 0.598 
4 0.020 0.999 0.006 0.292 

Table 4-2: Thresholding statistics for DC36B fusion results 

Summary of thresholding results for DC37 

Threshold 
Value 

% Bldgs 
Detected 

% Bkgd 
Detected 

% False 
Positives 

Bid Pixel 
Br Factor 

1 0.863 0.847 0.869 1.055 
2 0.682 0.956 0.450 0.380 
3 0.481 0.981 0.175 0.228 
4 0.281 0.994 0.040 0.108 

Table 4-3: Thresholding statistics for DC37 fusion results 

Summary of thresholding results for DC38 
Threshold 

Value 
% Bldgs 
Detected 

% Bkgd 
Detected 

% False 
Positives 

Bid Pixel 
Br Factor 

1 0.893 0.835 0.816 0.527 
2 0.723 0.926 0.433 0.292 
3 0.521 0.962 0.183 0.206 
4 0.332 0.983 0.067 0.145 

Table 4-4: Thresholding statistics for DC38 fusion results 

In each of the scenes, increasing the threshold from its default value of 1 to a value of 2 causes a 
reduction of roughly 20 percent in the number of correctly detected building pixels. This suggests that a 
fair number of hypothesized building pixels are unique; i.e., several pixels can only be correctly 
identified as building pixels by one of the detection methods. Another interesting observation is that the 
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Summary of thresholding results for LAX 
Threshold 

Value 
% Bldgs 
Detected 

% Bkgd 
Detected 

% False 
Positives 

Bid Pixel 
Br Factor 

1 0.931 0.891 0.917 0.817 
2 0.759 0.977 0.397 0.208 
3 0.506 0.991 0.108 0.119 
4 0.354 0.998 0.020 0.038 

Table 4-5: Thresholding statistics for LAX fusion results 

building pixel branching factor roughly doubles every time the threshold is decremented. These 
observations suggest that thresholding alone may eliminate unique information produced by the 
individual detection systems, and that more work will need to be done to limit the number of false 
positives (and erroneous delineations) produced by each system, and by the final fusion as a whole. 

5. Additional results in building hypothesis fusion 
The fusion process has been run on 51 monocular scenes (of which 23 have detailed hand 

segmentations) in addition to the DC37405 scene. We have also run the stereo fusion process on four 
stereo pairs in addition to the stereo pair for DC37405. In Section 5.1, we show some additional examples 
that are representative of our results on this larger number of examples, and we give the evaluation 
statistics for these scenes. We also give a brief analysis of the results on the monocular scenes, as well 
as graphs charting the performance improvement gained by the fusion process and the cumulative fusion 
error as represented by the building pixel branching factor. In Section 5.2, we give the evaluation 
statistics for the four additional stereo pairs, a brief analysis of the results, and performance and error 
graphs similar to those given in Section 5.1. 

5.1. Monocular fusion results 
The fusion process was applied to several monocular scenes. Here we show the results for scenes 

DC36A, DC36B, and DC38, three scenes from the Washington, D.C. area; and LAX, a scene from the 
Los Angeles International Airport [7]. Figures 5-1 through 5-4 are the ground-truth building 
segmentations used for performance analysis. The final fusion results for each of these scenes are 
shown in Figures 5-5 through 5-8. The coverage-based evaluation program was then applied to each of 
these results to generate Tables 5-1 through 5-4. As in the previous discussion, each of the results tables 
gives the statistics for a single scene. The first column represents a building extraction system. The 
next two columns give the percentage of building and background terrain correctly identified as such. 
The fourth and fifth columns show incorrect identification percentages for buildings and terrain. The 
next two columns give the breakdown (in percentages) of incorrect pixels in terms of false positives and 
false negatives. The last column gives the building pixel branching factor. 

In all of the scenes, the detection percentage for the final fusion is greater than the same percentage for 
any of the individual extraction system hypotheses, although the building pixel branching factor also 
increases due to the accumulation of delineation errors from the various input hypotheses. 

It is worth noting that the results for the DC36B scene (Table 5-2) are substantially worse than those 
of the other scenes. This is in large part due to the fact that the image intensity of the DC36B scene has 
a small dynamic range. Since the component systems used for these fusion experiments are inherently 
intensity-based, it is more difficult to detect shadow/building boundaries and building/background 
contours. As a result the building pixel branching factors reflect the poor performance of the component 
systems; in GROUPER 'S case, over 3 pixels are incorrectly hypothesized as building pixels for every 
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Figure 5-2: DC36B image with 
Figure 5-1: DC36A image with ground-truth segmentation 

ground-truth segmentation 

Figure 5-3: DC38 image with 
ground-truth segmentation 

Figure 5-4: LAX image with 
ground-truth segmentation 

correct building pixel. The fusion process, however, improved the building detection percentage 
noticeably over the percentages of the component systems. 
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Figure 5-5: Monocular hypothesis fusion for DC36A 

Evaluation results for the fusion process on DC36A 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 53.8 97.0 46.2 3.0 30.7 69.3 0.381 
SHAVE 63.6 96.2 36.4 3.8 41.8 58.2 0.411 

GROUPER 58.0 95.8 42.0 4.2 40.6 59.4 0.495 
BABE 51.0 97.9 49.0 2.1 22.1 77.9 0.273 

FUSION 80.9 91.9 19.1 8.1 74.3 25.7 0.682 
51 regions in ground truth 

Table 5-1: Evaluation statistics for DC36A hypothesis fusion 
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Figure 5-6: Monocular hypothesis fusion for DC36B 

Evaluation results for the fusion process on DC36B 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 29.8 93.8 70.2 6.2 46.3 53.7 2.034 
SHAVE 28.4 96.7 71.6 3.3 31.3 69.7 1.146 

GROUPER 10.3 96.8 89.7 3.2 25.9 74.1 3.027 
BABE 9.9 98.8 90.1 1.2 11.3 88.7 1.159 

FUSION 49.8 89.2 50.2 10.8 67.8 32.2 2.126 
133 regions in ground truth 

Table 5-2: Evaluation statistics for DC36B hypothesis fusion 
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Figure 5-7: Monocular hypothesis fusion for DC38 

Evaluation results for the fusion process on DC38 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 51.3 97.4 48.7 2.6 13.2 86.8 0.144 
SHAVE 43.1 95.3 56.9 4.7 19.1 80.9 0.311 

GROUPER 54.6 95.8 45.4 4.2 21.0 79.0 0.221 
BABE 44.7 96.0 55.3 4.0 17.3 82.7 0.260 

FUSION 74.7 90.6 25.3 9.4 51.5 48.5 0.360 
53 regions in ground truth 

Table 5-3: Evaluation statistics for DC38 hypothesis fusion 
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Figure 5-8: Monocular hypothesis fusion for LAX 

Evaluation results for the fusion process on LAX 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

SHADE 34.4 99.0 65.6 1.0 10.1 89.9 0.213 
SHAVE 54.1 94.9 45.9 5.1 43.6 56.4 0.655 

GROUPER 46.0 98.5 54.0 1.5 16.5 83.5 0.232 
BABE 63.3 98.8 36.7 1.2 18.3 81.7 0.130 

FUSION 73.0 92.9 27.0 7.1 65.0 35.0 0.687 
26 regions in ground truth 

Table 5-4: Evaluation statistics for LAX hypothesis fusion 



§ 3.50 

"g 3.00 
C 
JO 

8 
£ 2.50 

1 2.00 

1.50 

1.00 

0.50 

0.00 

- • FUSION 
-€> GROUPER 
- K SHAVE 
- * SHADE 
- a BABE 

15 20 25 
Monocular Test Scenes 

Monocular Fusion Branching Factor 
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We also note that several difficulties are attributable to performance deficiencies in the systems 
producing the original building hypotheses: 

l .The shadow-based detection and evaluation systems, SHADE and SHAVE, both use a 
threshold to generate "shadow regions" in an image. This threshold is generated 
automatically by BABE, a line-corner based detection system. In some cases, the threshold 
is too low, and the resulting shadow regions are incomplete, which results in fewer 
hypothesized buildings. 

2. GROUPER, the shadow-based hypothesis clustering system, clusters fragmented hypotheses 
by forming a region (based on shadow-building edges) in which building structure is 
expected to occur. This region is typically larger than the true building creating the 
shadow-building edge, and incorrect fragments sometimes fall within this region and are 
grouped with correct fragments. The resulting groups tend to be larger than the true 
buildings, and thus produce a fair number of false positive pixels. 

3. SHAVE scores a set of hypotheses based on the extent to which they cast shadows, and then 
selects the top fifteen percent of these as "good" building hypotheses. In some cases, 
buildings whose scores fell in the top fifteen percent actually had relatively low absolute 
scores. This resulted in the inclusion of incorrect hypotheses in the final merger. 

4. SHADE uses an imperfect sequence finder [1] to locate corners in the noisy shadow-
building edges produced by thresholding. The sequence finder uses a threshold value to 
determine the amount of noise that will be ignored when searching for corners. In some 
situations, the true building corners are sufficiently small that the sequence finder regards 
them as noise, and as a result, the final building hypotheses can either be erroneous or 
incomplete. 

Despite these problems, the fusion process outlined here performs well in obtaining improved building 
detection percentages for many scenes. Figure 5-9 gives the building detection percentages for the 23 
monocular scenes with detailed hand segmentations. The percentages for each of the four component 
systems and the final fusion are given, and the results are sorted by the detection percentage of the final 
fusion. As the figure shows, building detection is improved for every monocular scene. For some 
scenes, the fusion process produces smaller improvements, due to the fact that the best performing 
component system produces very good results. For example, the next to last point on the graph shows a 
small performance improvement. In this scene, the building edges were consistently strong, so BABE 
performed very well; and the sun was at zenith when the scene was imaged, so shadow analysis 
provided little complementary information. 

Figure 5-10 gives the building pixel branching factor for each of the 23 monocular scenes. Again, the 
scenes are sorted by the value produced by evaluating the fusion result. Not surprisingly, the building 
pixel branching factor for the fusion result is usually greater than the branching factor for each of the 
component results. In a few cases, this is not true; this can be explained by the fact that a component 
system performed very poorly, producing a small number of very bad building hypotheses, which results 
in a very high branching factor. The fusion results have a lower branching factor because other 
component systems produce better results, alleviating the number of false positive pixels. 

5.2. Stereo fusion results 
The stereo fusion processes (both left-right and extraction-based) were run on four stereo pairs in 

addition to the DC37405 scene. In all cases, the final results were quite similar; for brevity, we have 
omitted the statistics for the extraction-based fusion and present only the statistics for left-right stereo 
fusion. Tables 5-5 through 5-8 give the statistics for the four scenes. 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY 24 

Evaluation results for stereo fusion on DC36A 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

LEFT 80.9 91.9 19.1 8.1 74.3 25.7 0.682 
RIGHT 80.4 90.4 19.6 9.6 77.5 22.5 0.835 

REG 78.6 89.7 21.4 10.3 76.5 23.5 0.888 
SHIFT 79.3 89.9 20.7 10.1 76.7 23.3 0.861 

FUSION 90.5 85.9 9.5 14.1 91.0 9.0 1.060 

Table 5-5: Evaluation statistics for DC36A stereo fusion 

Evaluation results for stereo fusion on DC36B 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

LEFT 49.8 89.2 50.2 10.8 67.8 32.2 2.126 
RIGHT 48.4 92.6 51.6 7.4 59.7 40.3 1.578 

REG 51.5 93.4 48.5 6.6 57.0 43.0 1.249 
SHIFT 49.7 93.2 50.3 6.8 56.8 43.2 1.333 

FUSION 65.1 85.9 34.9 14.1 79.7 20.3 2.114 

Table 5-6: Evaluation statistics for DC36B stereo fusion 

Evaluation results for stereo fusion on DC38 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

LEFT 74.7 90.6 25.3 9.4 51.5 48.5 0.360 
RIGHT 81.1 89.7 18.9 10.3 63.2 36.8 0.402 

REG 73.8 88.9 26.2 11.1 54.9 45.1 0.432 
SHIFT 76.1 89.9 23.9 10.1 54.6 45.4 0.378 

FUSION 88.6 83.4 11.4 16.6 80.5 19.5 0.535 

Table 5-7: Evaluation statistics for DC38 stereo fusion 

On the LAX scene, we note that the right monocular results are quantitatively better than the left in 
terms of building detection rate. As with the DC37405 stereo pair, we have a situation where one of the 
images has more prominent cues than the other image; in this case, the right image of the stereo pair has 
more prominent building shadows, and the shadow-based analysis systems exhibit improved 
performance, which is then reflected in the monocular fusion results. As noted earlier, stereo fusion 
increases the overall building detection rate in all of our test scenes, although the branching factor 
increases as well due to the accumulation of individual delineation errors and erroneous hypotheses. 
These trends can be observed in Figures 5-11 and 5-12. 
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Evaluation results for stereo fusion on LAX 
System %Bld 

Detected 
% Bkgd 
Detected 

%Bld 
Missed 

% Bkgd 
Missed 

% False 
Pos. 

% False 
Neg. 

Br 
Factor 

LEFT 73.0 92.9 27.0 7.1 65.0 35.0 0.687 
RIGHT 91.8 93.5 8.2 6.5 85.1 14.9 0.508 

REG 90.3 94.4 9.7 5.6 80.3 19.7 0.438 
SHIFT 90.3 94.4 9.7 5.6 80.3 19.7 0.439 

FUSION 93.6 89.1 6.4 10.9 92.3 7.7 0.821 

Table 5-8: Evaluation statistics for LAX stereo fusion 
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Figure 5-11: Stereo building detection percentages 

It is worth noting that stereo fusion provides improved detection results over monocular fusion. In 
each of the five stereo pairs, the building detection percentage for stereo fusion is greater than the 
building detection percentage for the corresponding monocular fusion. (Compare Table 2-1 with Table 
3-2, and Tables 5-1 through 5-4 with Tables 5-5 through 5-8.) As noted in our initial discussion of 
stereo fusion, images taken from different vantage points provide different (and in many cases 
complementary) information. Shadows appear different in stereo imagery, and edges and corners may 
become more (or less) visible from different perspectives. Fusion of stereo data provides a means for 
taking advantage of the different results produced for each image. 
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Figure 5-12: Stereo building pixel branching factors 

6. Generating three-dimensional representations 
The goal of three-dimensional scene analysis is to generate an interpretation of the imagery that is as 

close as possible to the actual scene under consideration. It is our belief that no individual computer 
vision technique can reliably provide a complete scene reconstruction. To achieve this goal, we will 
need to utilize multiple sources of information (which may be incomplete or inconsistent) and integrate 
them into a consistent interpretation of the scene. The method described in this paper integrates one 
type of monocular information: building delineations. 

There are other types of information that can be integrated with these fused building delineations to 
allow the formation of three-dimensional representations. Since we have qualitative building boundary 
information, we can generate three-dimensional views with the integration of height information. This 
height information can be obtained from several visual cues as well; among these are shadow 
information and disparity information from the analysis of stereo imagery. 

Figure 6-1 shows a perspective view for the DC37405 scene, generated by the use of ground-truth 
terrain elevation values and building height segmentations. It is an accurate three-dimensional view of 
the scene structure using manual feature extraction techniques. Figure 6-2 shows a similar perspective 
view generated without manual height estimates for the terrain. Figure 6-3 shows a perspective view 
with structural height estimates automatically derived from a disparity map. The disparity map was 
generated by the fusion of disparity estimates produced by two stereo matchers, one area-based and one 
feature-based [5]. It is worth noting that height estimates of this nature do not constitute three-
dimensional representations of the scene; a true representation would include building delineations, a 
transportation network of roads, and a digital elevation model. The information fusion approach 
provides a means for integrating image cues to produce the components of a true three-dimensional 
representation of the scene. 
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Figure 6-2: Perspective view for DC37405 using ground-truth building data only 
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Figure 6-3: Perspective view for DC37405 using stereo disparity information 

Figure 6-4 shows another perspective view for the DC37405 scene, with structural estimates derived 
from SHAVE by analysis of the lengths of the cast shadows of buildings [8]. SHAVE detects and 
delineates the shadows cast by each of the fusion building regions by walking from the shadow/building 
edge along the sun direction vector. At each pixel along the shadow/building edge an estimate of the 
shadow length is computed. The median length of the set of shadow vectors is computed for each 
building; this becomes the building shadow length estimate. Using the trigonometric relationship 

In this particular case, the fusion of building boundaries (which are themselves fusions of building 
hypotheses) with disparity maps provides one component of the three-dimensional representation: 
qualitatively accurate building delineations and heights. In that sense, Figure 6-3 should be compared 
with the perspective view in Figure 6-2, since we do not utilize a terrain model in the fusion techniques 
described here. 
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Figure 6-4: Perspective view for DC37405 using monocular shadow analysis 

between building height, sun inclination angle, and length of the cast shadow we can estimate the 
building height with good accuracy. In fact, this procedure is used regularly in manual photo 
interpretation. It is interesting to note that this view was generated solely from monocular analysis; no 
stereo information was utilized. Although stereo information is necessary in many situations for 
accurate height estimation, monocular analysis is capable of providing reasonable qualitative building 
delineations and heights. 
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7. Conclusions 
This paper has described a simple, yet effective, method for fusing sets of monocular building 

hypotheses for aerial imagery. Scan-conversion and connected region extraction techniques were 
applied to produce mergers of sets of building hypotheses, and the results were analyzed by the use of an 
evaluation technique based on pixel coverage. We also show the ability to merge hypotheses generated 
from the left and right images of a stereo pair to obtain an improved interpretation of a scene. 

The simple hypothesis fusion approach developed here appears promising; the detection rate can be 
improved significantly by applying it to the results of several building detection systems. Much work 
remains to be done, however. Analysis of the fusion results has revealed shortcomings in each of the 
building detection systems, and there are also a number of directions to pursue in terms of improving the 
intermediate and final fusions generated during the overall fusion process. 

1. GROUPER is effective in clustering the fragmented hypotheses that are typically produced 
by BABE, but several of the grouped fragments do not correspond to building structure in 
the scene. Experimentation with disparity maps to refine these clusters is currently 
underway. 

2 . SHAVE's scoring system is simplistic and sometimes allows hypotheses with low shadow 
scores to pass as good hypotheses. Alternative scoring schemes might be explored. 

3 . SHADE 'S shadow segmentation and corner finding system can be improved. Work is 
currently underway on a method for iteratively approximating the location of corners in 
noisy lines by using an imperfect sequence finder to break lines at potential corners, and 
applying a gradient-based line evaluation function to score the breaks. 

4. The fusion steps in the overall fusion process tend to increase the number of false positive 
pixels, and thresholding alone may not improve this without decreasing the number of 
correctly hypothesized pixels as well. The use of a refined disparity map, as well as the 
use of the original intensity image, may aid in eliminating false positive pixels from 
hypothesized regions in the final fusion. Alternatively, active contour models [9, 4] might 
be used to refine segmentations, using the fusion segmentations (possibly thresholded) as 
the initial seed to the process. This may prove difficult, however: fairly accurate estimates 
of the building boundaries will be necessary, and there may be difficulties in recovering 
from local energy minima in complex high-resolution scenes. 

A more general question concerns the effectiveness of simple fusion approaches such as the one 
described here. Certainly, one can envision other approaches for combining building hypotheses that 
would make use of a priori information about the systems producing the hypotheses to produce 
meaningful fusions of the individual hypotheses. It is unclear, however, whether such approaches would 
ultimately benefit from the additional complexity required to take advantage of such knowledge. 
Although the results at this stage are rough, the fusion method developed here appears to be a simple 
and effective means for increasing the building detection rate for a scene, and may eventually provide a 
means for incorporating several sources of photometric information into a single interpretation of the 
scene. 



FUSION OF MONOCULAR CUES TO DETECT MAN-MADE STRUCTURES IN AERIAL IMAGERY 31 

References 
[I] Aviad,Z. 

Locating Corners in Noisy Curves by Delineating Imperfect Sequences. 
Technical Report CMU-CS-88-199, Carnegie-Mellon University, December, 1988. 

[2] Aviad, Z., McKeown, D. M., Hsieh, Y. 
The Generation of Building Hypotheses From Monocular Views. 
Technical Report, Carnegie-Mellon University, 1991. 
to appear. 

[3] Fua, P., Hanson, A. J. 
Resegmentation Using Generic Shape: Locating General Cultural Objects. 
Technical Report, Artificial Intelligence Center, SRI International, May, 1986. 

[4] Fua, P., Hanson, A. J. 
Objective Functions for Feature Discrimination: Theory. 
In Proceedings: DARPA Image Understanding Workshop, pages 443-460. May, 1989. 

[5] Hsieh, Y., Perlant, F., and McKeown, D. M. 
Recovering 3D Information from Complex Aerial Imagery. 
In Proceedings: 10th International Conference on Pattern Recognition, Atlantic City, New 

Jersey, pages 136-146. June, 1990. 

[6] Hsieh, Y., Perlant, F., and McKeown, D. M. 
Recovering 3D Information from Complex Aerial Imagery. 
In Proceedings: DARPA IUS Workshop, pages 670-691. September, 1990. 

[7] Huertas, A. and Nevatia, R. 
Detecting Buildings in Aerial Images. 
Computer Vision, Graphics, and Image Processing 41:131-152, April, 1988. 

[8] R. B. Irvin and D. M. McKeown. 
Methods for exploiting the relationship between buildings and their shadows in aerial imagery. 
IEEE Transactions on Systems, Man and Cybernetics 19(6): 1564-1575, November, 1989. 

[9] Kass, M., Witkin, A., and Terzopoulos, D. 
Snakes: Active Contour Models. 
International Journal of Computer Vision 1(4):321-331, 1987. 

[10] McKeown, D.M., 
Toward Automatic Cartographic Feature Extraction. 
In Pau, L. F. (editor), NATO ASI Series. Volume F 65: Mapping and Spatial Modelling for 

Navigation, pages 149-180. Springer-Verlag, Berlin Heidelberg, 1990. 

[ I I ] Mohan, R., Nevatia, R. 
Using Perceptual Organization to Extract 3-D Structures. 
IEEE Transactions of Pattern Analysis and Machine Intelligence 11(11): 1121-1139, November, 

1989. 

[12] Nicolin, B., and Gabler, R. 
A Knowledge-Based System for the Analysis of Aerial Images. 
IEEE Transactions on Geoscience and Remote Sensing GE-25(3):317-329, May, 1987. 

[13] Perlant, F. P., McKeown, D. M. 
Scene Registration in Aerial Image Analysis. 
Photogrammetric Engineering and Remote Sensing 56(4):481-493, April, 1990. 


