
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Programming With
Intersection Types, Union Types,

and Polymorphism

Benjamin C. Pierce
February 5, 1991
CMU-CS-91-106^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Type systems based on intersection types have been studied extensively in recent years, both as tools
for the analysis of the pure A-calculus and, more recently, as the basis for practical programming
languages. The dual notion, union types, also appears to have practical interest. For example,
by refining types ordinarily considered as atomic, union types allow a restricted form of abstract
interpretation to be performed during typechecking. The addition of second-order polymorphic
types further increases the power of the type system, allowing interesting variants of many common
datatypes to be encoded in the "pure" fragment with no type or term constants.

This report summarizes a preliminary investigation of the expressiveness of a programming language
combining intersection types, union types, and polymorphism.

This research was supported in part by the Office of Naval Research and in part by the Defense Advanced-

^ t ^ ^ l ^ } ' m ° n i t 0 r e d ^ ° f f i C e ° f N a V a l R e S e a i C h U n d 6 r C ° n " r a C t N00014-84-K o i l 5

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of ONR, DARPA or the U.S. government.

Keywords: Lambda calculus and related systems, Language theory, Programming, Type
ture, Data types and structures, Polymorphism, Intersection types, Union types.

1 INTRODUCTION 1

1 I n t r o d u c t i o n

This report describes the preliminary results of an investigation of a typed A-calculus combining
intersection types, union types, and second-order polymorphism. Although the proof-theoretic a n d
model-theoretic properties of this calculus have not yet been investigated in detail, a number of
interesting observations can be made about its expressive power. Specifically, the report presents:

1. A formulation of the notion of union types in a programming-language setting.

2 . Encodings of several common inductive datatypes showing how intersections, unions, a n d
polymorphic types together allow a restricted form of abstract interpretation t o b e p e r f o r m e d
b y the typechecker.

3. A novel treatment of finitary polymorphism in terms of an explicit finitary quantifier.

4. A comparison of two different ways of combining polymorphism and intersection types, with
one formulation, based on ordinary universal quantification, worked out in detail. The prin
cipal alternative, based on bounded quantification, is discussed in Section 5.2 and in more
detail in [33].

The remainder of the report is organized as follows. Section 2 sketches some background to the
research described here and outlines related work by others. Section 3 defines a calculus A(V, A , V)
with intersection types, union types, and polymorphic types, gives typing rules for expressions,
and illustrates these rules with some small examples. Section 4 presents several larger examples.
Section 5 discusses alternatives in the definition of the calculus. Section 6 outlines paths for future
research.

2 Background and R e l a t e d Work

The work described in this report builds on previous studies of two well-known calculi: the inter
section type discipline and the polymorphic A-calculus.

2 . 1 Intersection Types
Intersection types in the pure A-calculus have been extensively studied by researchers at the uni
versity of Turin and elsewhere [14, 13, 15, 2, 39, 26, 10]. More recently, Reynolds has showed
how intersection types can be used as the basis for the type system of a practical programming
language, called Forsythe [38]. The core Forsythe type system can be viewed as consisting of the
following components:

1. a collection of primitive types and, for each pair of types a and tau, a function type a—r.
as in the simply typed lambda calculus [12];

2. a preorder (the "subtype relation") on the primitive types, which is extended to a preorder
on the entire set of type expressions;

3. a rule of "subsumption" stating that the type of a term may be promoted to any supertype:

4. a type constructor A (intersection) yielding meets in the subtype ordering, along with appro
priate subtyping laws for distributing intersections and arrows and a typing rule for intro
ducing intersection types. U N I V E R S I T Y L I B R A R I E S

C A R N E G I E M E L L O N U N I V E R S I T Y
P I T T S B U R G H , P A 1 5 2 1 3 - 3 8 9 0

2 BACKGROUND AND RELATED WORK

The calculi discussed in this report retain this basic structure, extending it with

1. a type constructor V (union) yielding joins in the type preorder, with appropriate distributive
laws and typing rules; and

2. second-order polymorphism.

A few ideas mentioned in this report are directly applicable to Forsythe itself: the notion of
finitary polymorphism (Sections 2.4 and 4.6) and the observation that the Forsythe type system
can express types for procedures with default parameters (Section 4.7).

2 . 2 Un ion T y p e s

The dual notion, union types, is a very natural one, and appears to have occurred to a number
of researchers working independently in surprisingly disparate contexts. The idea arises in several
different ways:

1. as the dual of intersection types [1, 18, 38, and this report];

2. from logical or semantic considerations [25];

3. as a generalization of disjoint unions or variant records [11, 17],

Intuitively, union types stand in the same relation to disjoint union types (also called sum
types or variant records) as ordinary set-theoretic union does to set-theoretic disjoint union.1 Op
erationally:

1. The injections in l : r x -* (TI + T2) and inr : r 2 —• (T\ + r 2) are replaced by implicit coercions
represented by the subtyping laws T\ < (rxVr2) and r2 < (t , i V t 2) .

2. Whereas each element of T\ + r2 contains a tag indicating which of the two summands it
comes from, elements of the union type TI\/T2 are untagged: the only operations that can be
applied to values of type TiVr2 are those that make sense for both T\ and r 2.

These differences can also be seen by comparing the usual elimination rule for disjoint union
types with the rule proposed here for union types:

T h e i n r x + r2 f o r a l l z, T , x : r t- h e t- € r

T h (c a s e e o f i n l (x) => Qi | i n r (x) => e 2) € r

r h e i n T i V r 2 f o r a l l i , I \ x : r t- h e ' e r

; D i s j - U n i o n - E)

(U n i o n - E)
T h (c a s e e o f x =» e ') € r

The formulation of union types used in this report is described in detail in Section 3. The rest
of this subsection describes related formulations by other researchers.

In the report on the Forsythe language [38], Reynolds describes an attempt to add ordinary
sum types (disjoint unions) to the language. The attempt was eventualy abandoned because sums
interacted badly with the "generalized conditional" construct to produce a failure of confluence for
the operational semantics.

^ o r e formally, unions should probably be interpreted in a category-theoretic model as pushouts, by analogy with
Reynolds' interpretation of intersections in Forsythe as pullbacks [38]. The details of the construction are problematic.

2 BACKGROUND AND RELATED WORK 3

MacQueen, Plotkin. and Sethi, in their work on ideal models of polymorphic types [281, intro
duce a notion of union types with a rule for union elimination that is essentially the same as the
alternative form of the U n i o n - E rule given in Section 5.3:

r h e in TiVr2 for all z, T, x : rt- h e' e r
(U n i o n - E 1)

(The metanotation [e/x]e' denotes the capture-avoiding substitution of e for free occurrences of
x in e'.) Their system does not include an explicit notion of subtyping or a rule of subsumption.
so its proof-theoretic properties involving intersections and unions are simpler than those for the
other systems discussed here.

Barbanera and Dezani-Ciancaglini [1], working in a Curry-style type assignment system, have
studied a formulation of union types much more similar to the one presented here. However, their
system includes two distributivity axioms not present in the one described in this report:

a A (rlyr2) < (<rAri) V (<tAt 2)

(<rVri) A (<rVr2) < a V {TxI\T2)

Formal properties of this system are proved using a notion of large basis and a different formulation
of the union elimination rule:

f, e : j h e' e r f h 86(7
T h e ' e r

Barbanera and Dezani-Ciancaglini's long-term interests in union types are directed toward an
investigaton of infinitary union types, along the lines suggested by Leivant's work on infinitary
intersections [27]. In their paper they present several intruguing examples of encodings of algebraic
datatypes, including the Berarducci numerals, which can be shown to have no uniform type in the
second-order polymorphic A-calculus.

Fagan and Cartwright [11, 17] have developed an extension of the ML type system [20, 30] that
includes both recursive types and a notion of "true union" of disjoint types. This is not quite the
same as the union types described in this report, since for Fagan and Cartwright <rVr is defined
only when a and r have different outermost type constructors. Their system has a decidable type
reconstruction problem but lacks principal types.

Freeman and Pfenning [18] describe a type system incorporating a variant of intersection and
union types with the restriction that all conjuncts and disjuncts must have the same functionality.
They propose a variant of Standard ML where an ML type is derived for an expression e and then
refined by performing an abstract interpretation of e with respect to the finite lattice of restricted
intersection and union types lying beneath it. 2

Hayashi and Takayama [23, 25] propose a logic with a new existential quantifier whose read
ability interpretation has the same form as a union type. The elimination form for this quantifier
is rather limited, however [24].

2 The notion of union types used by Freeman and Pfenning was inspired by an early draft of the present report.
Conversely, the idea of using intersection and union types to perform a restricted form of abstract interpretation
during typechecking, used in several of the examples in Section 4, is based on early descriptions of their work.

2 BACKGROUND AND RELATED WORK 4

2.3 P o l y m o r p h i s m

The second-order polymorphic A-calculus was originally developed by Girard [19] and Reynolds [36]
and has since been a topic of significant research from both theoretical and pragmatic perspectives.
For present purposes, two lines of work are particularly relevant:

1. Methods for encoding inductive datatype definitions as types in the pure polymorphic A-
calculus [4, 31, 32, 35, 36, 37]. These encodings form the basis for most of the examples
presented here.

2. Type systems combining polymorphism with an order structure on the set of types.

The first calculus to combine polymorphism and subtyping was Cardelli and Wegners Bounded
Fun [8]. Bounded Fun has been studied fairly extensively in its own right [3, 9] and has been incor
porated into various proposals for programming languages with subtyping and polymorphism [5. 6].

Curien and Ghelli [16] have studied a minimal formulation of a second-order A-calculus with
bounded quantification called F< ("F-sub"), containing only pure type and term constructors.
Cardelli and others have extended the usual encodings of common inductive dataypes to encodings
in F< [7] that take account of the order structure on types in interesting ways; these encodings
have much in common with the examples shown in Section 4.

One of the goals of this report is to formulate a type system combining polymorphism with
intersection types. As far as I know, this combination has not yet been satisfactorily achieved in a
programming-language context, though some preliminary work along these lines appears in [33, 34];
a more theoretical analysis of the combination has been carried out by Jacobs, Margaria, and
Zacchi [26].

2.4 Finitary P o l y m o r p h i s m

Because the type reconstruction problem for the usual formulation of intersection types is undecid-
able, a programming language incorporating intersections in its type system must use explicit type
annotations to make the typechecking problem tractable. The solution adopted in Forsythe is to
require type annotations on A-abstractions as usual in explicitly typed A-calculi, but to allow any
finite number of types, rather than just one, to be mentioned as possible domains for the function
described by the abstraction. The body of the abstraction is typechecked once for each given type
and the results conjoined to form the final type of the abstraction. This maintains the decidability
of typechecking, while allowing "finitely polymorphic" types to be derived for A-abstractions.

The present report proposes a refinement of this scheme, where A-abstractions are annotated
with exactly one type and a new for construct is introduced to provide finitary polymorphism.
Separating the two mechanisms (functional abstraction vs. typechecking an under a finite set of
assumptions) has two advantages:

1. In calculi with (ordinary or bounded) universal polymorphism in addition to intersection
types, a typing assumption may need to be mentioned explicitly as part of a type argument
to a polymorphic function. The for construct provides a name (a type variable) for the
assumptions it introduces. See Section 4.4.

2. Even in the fragment without the universal quantifier, the explicit for construct may improve
typechecking efficiency. See Section 4.6.

3 SYNTAX

3 S y n t a x

This section introduces the notational conventions used in the rest of the report and defines the
concrete syntax and typing rules of A(V, A, V), a polymorphic A-calculus with intersection and union
types.

3.1 Notat iona l Convent ions

The metavariables <r, r, 0, 0, and range over types; a and 0 range over a denumerable set of
type variables; e, f, and b range over terms; x ranges over a denumerable set of variables.

The notation r t , r 2, . . . , rn represents a finite sequence of types indexed by the set { 1 n } .
where n > 0. To save space in formulas, r 1 ? r 2, . . . , r n is normally shortened to T\..rn. When the
set that an index variable ranges over is clear from context, it is usually omitted. It is occasionally
convenient to use a "sequence comprehension" notation to denote a finite sequence of types. For
example,

MWuTi] 11 < i < 3] = A[Vki ,n] , V K r 2] , V f o , ^]] .
The sets of types and typed terms are denned by the following abstract grammars:3

r ::= a

I A[Tl~Tn}
I V[n..rn]
| Va.r

e ::= x
| Ax:r. e
| e e'
| Aa. q

i « w
| for a in 7i..r n. e
| case x = ei of e 2

A context is a finite sequence of pairs x : r of a variable and a type, with no variable mentioned
twice. The metavariable T ranges over contexts. The set of variables in T is written dom(T).

FV(e) is the set of variables free in e. F T V (r) is the set of type variables free in r. FTV(T) is
the set of type variables free in T, that is,

F T V (r) = (J F T V (t v) .
xt:rt-<=r

Terms and types are identified up to renaming of bound (term and type) variables. When e
and e' are the same modulo renaming of bound variables, we write 9 = 9 ' .

When a term 9 is substituted for a variable x in another term 9 ' , written [e/x]e7, the bound
variables of e ; are first renamed to be different from the free variables of e. Similarly, when a type r
is substituted for a type variable a in r7, the bound variables of r' are first renamed to be different
from the free variables of r.

3 To reduce the number of cases in the grammar and inference rules, intersection and union are formulated as
rc-ary type constructors rather than giving a binary and a miliary constructor for each.

3 SYNTAX 6

The following abbreviations for common intersection and union types are useful for making
complicated expressions more readable:

NS S A[]
aAr = /\[cr, T]

VOID = V[]
<JVT = \J[<T,T].

The "nonsense" type NS is a maximal element in the type preorder; VOID is a minimal element.
The expression "aAr" may be read as u<7 intersect r," "cr meet r," or "cr and r." The expression
"crVr" may be read as "<r union r," "cr join r," or "cr or r."

Sessions with the prototype compiler for A(V, A, V) are set in a typewriter font using only Ascii
symbols. The mathematical symbols used in the more formal A-calculus notation are transliterated
as follows:

Ascii
s , t <T, T

'a , >b a, 0
S

A A, A
\ / V, v
All 'a . t Va. r
\ x : s . e Ax:<7. e
W'a . e Aa. e
<- <

3.2 T h e S u b t y p e Relat ion

We define a preorder < on the set of type expressions, where a < r asserts that every value in
type a is also in type r, or, operationally, that a term of type a may safely be used in any context
where a term of type r is expected. When cr < r we say that a is a subtype of r and that r is a
supertype of a . When a and r inhabit the same equivalence class in the subtype preorder (cr < r
and r < a), we say that a and r are equivalent and write <J~T.

The rules in this section and the following one are summarized in Appendix A.

The first two rules state that < is a preorder.

T <r (Sub-Refl)

<T < 9 9 < T ™ x
— = = — (Sub-Trans)

The subtyping rule for arrow types is covariant on the right hand side and contravariant on the
left, as usual.

Ti < <J\ (72 < r2 (Sub-Arrow)

V is covariant in its body type.
- (Sub-All)

Va.cr < Va.r

3 SYNTAX

A [r i - - r n] is a greatest lower bound of r t . .r n .

for all i, a < rt-
(S u b - I n t e r - G)

^ < Atn-Tn]

A[n»Tn] < T{ (S u b - I n t e r - l b ;

V [r i - * r n] is a least upper bound of Ti..rn.

for all i, <7t- < r
— 7 r — (S U B - U N I O N - L)

\J[<T\..(Tn\ < T

n < y[ri..rn] (S u b - U n i o n - U B)

Arrows may be distributed over intersections on the right hand side and over unions of the
left hand side. When an arrow is distributed over a union, the union changes to an intersection.
Similarly, quantifiers distribute over intersections. (These rules and the two distributive laws below
are actually equivalences; the other directions may be derived from the laws for A and V.)

A [(7 ^ r 1 . . (T - r n] < <7->/\[Ti..Tn] (S u b - D i s t - A I)

l\[<T\-+T..<TN-+T] < V f c l - ^ n] — T (S U B - D l S T - A U)

A[Va.r 1..Va.r n] < Va.A[n..r n] (S u b - D i s t - Q I)

Finally,4 intersections and unions distribute with each other.

u = [V[n , i - r i ,m 1] . .V[^na . .T n , m n]]
I = [Mrhji ~TnJn] 1 1 <ji < mi]

V I < Au
1 = [A[n,i~Thmi}..f\[Tnyl..rnymn]]

U 5 [V l r i ^ . . ^] 1 1 < j ^ m , -]

Au < V i

(S u b - D i s t - I U :

(S u b - D i s t - U I I

These laws may be used to transform type expressions into a "canonical form" where arrows and
quantifiers have been pushed inward as far as possible, intersections distributed over unions, and
most redundant conjuncts and disjuncts dropped. (For efficiency in the normalization procedure,
redundant conjuncts and disjuncts are not guaranteed to be dropped; a simple heuristic discovers
most situations where they may be.) For example:5

4There is one other plausible distributive law, relating quantifiers and arrows:

a i F T V (n)
^—^r: 7 (SUB-DlST-QA)

Since its status is less clear than the other rules and it appears somewhat tricky to implement, it is omitted from the
present formulation.

5 In sessions with the prototype compiler, lines of input typed by the user are preceded by an angle bracket.

3 SYNTAX S

> n o r m a l i z e t l A N S A t l ;

N o r m a l f o r m : t l

> n o r m a l i z e (s l \ / s 2) - > (t l / \ t 2) ;

N o r m a l f o r m : s l - > t l A s 2 - > t l / \ s l - > t 2 / \ s 2 - > t 2

> n o r m a l i z e t l \ / (t 2 / \ t 3) ;
N o r m a l f o r m : (t l \ / t 2) / \ (t l \ / t 3)

> n o r m a l i z e s - > (t l / \ t 2) ;

N o r m a l f o r m : s - > t l A s - > t 2

> n o r m a l i z e s - > N S ;

N o r m a l f o r m : NS

> n o r m a l i z e VOID - > t ;

N o r m a l f o r m : NS

> n o r m a l i z e A l l ' a . , a - > (t l / \ t 2) ;

N o r m a l f o r m : (A l l ' a . ' a - > t l) A (A l l ' a . * a - > t 2)

> n o r m a l i z e A l l ' a . N S ;

N o r m a l f o r m : NS

> n o r m a l i z e s - > (t l \ / (t 2 / \ t 3)) ;

N o r m a l f o r m : s - > (t l \ / t 2) A s - > (t l \ / t 3)

> n o r m a l i z e (s l / \ (s 2 \ / s 3)) - > t ;

N o r m a l f o r m : (s l A s 2) - > t A (s l / \ s 3) - > t

3.3 Wel l -Typed Terms

W e c a n n o w d e f i n e t h e s e t o f we l l t y p e d A(V, A, V) t e r m s .

T h e S u b s u m p t i o n r i d e s t a t e s t h a t a t y p e t h a t h a s b e e n d e r i v e d f o r a t e r m m a y b e p r o m o t e d ,

a s d e s i r e d , t o a n y s u p e r t y p e .
r h e € c r c r < r

— (S u b s u m p t i o n)
r h e € r

(The claim that this rule is valid essentially amounts to asserting that the subtype relation is
correctly defined.)

The intersection introduction rule states that if all of the types Ti„rn have been derived for an
expression e , then A [r i - r n] m a y ^ s o be derived.

for alii, T h e € r t

(I N T E R - I)
r h e € A[n-.rn]

No elimination rule will be needed for intersection types; its effect is already provided by the
S u b s u m p t i o n rule. For the same reason, no introduction rule is needed for union types.

3 SYNTAX 9

THE RULES FOR TYPING VARIABLES, ABSTRACTIONS, AND APPLICATIONS ARE THE USUAL ONES.

R 1 ? x : r, T 2 h x e r (Var

T, x : <7 h a € r
T h Ax:<7. 9 € <r—*r

T h f €(7—r R h 9€<7

(A r r o w - I)

(A r r o w - E)
T H f 9 € R

To apply the A r r o w - E rule, the rule of Subsumption may need to be applied to the types of the
function f and/or the argument e so that the type of e precisely matches the domain type of f:°
> \ f : s l - > t . \ x : s l / \ S 2 . f x;
i t : (s l -> t) -> (s l / \ S 2) -> t

If f has an intersection type, A r r o w - E may be applied more than once to give different types for
(f x), which may then be conjoined using Inter - I : 7

> \ f : s l - > t l / \ S 2 - > T 2 . \ x : s l / \ S 2 . f x;
i t :

(s l - > t l / \ S 2 - > T 2) - > (s l / \ S 2) - > t l
A (s l - > t l / \ S 2 - > T 2) - > (s l / \ S 2) - > T 2

If f has an intersection type, some of whose conjuncts are not arrow types, then the application
rule is not used for these conjuncts. In the result type of the application (f x), these applications
simply disappear:

> \ f : s l / \ S 2 - > t . \ x : S 2 . f x;
i t : (s l / \ S 2 - > t) -> S2 -> t

Similarly, if x has an intersection type, some of whose conjuncts are not subtypes of any domain
type of f, the A r r o w - E rule fails to apply for these conjuncts and they disappear in the result
type:

> \ f : s l - > t . \ x : s l / \ S 2 . f x;
i t : (s l -> t) -> (s l / \ S 2) -> t

Together, these observations illustrate some of the power of the conjunctive typing discipline by
allowing a restricted form of self-application:

> \ f : s / \ s - > t . f f;
i t : (s / \ s - > t) -> t

If f and x fail to have any supertypes to which the Union-E rule is applicable, the minimal type
of the application is NS:

6 To reduce clutter in some of the examples, primitive (-built-in") types like s i are used in place of type variables
Ineir formal treatment is discussed in Section 5 .1.

By convention, when an "anonymous" term is presented to the compiler's read-eval-print loop, it is assigned the
name i t so that it can be referred to again.

7Arrow binds more tightly than intersection or union.

3 SYNTAX 10

> \ f : s l . \ x : s 2 . f x;
i t : NS

Indeed, every A(V, A, V) term has type NS. The NS type in this calculus (as in Forsythe) corresponds
both to complete lack of information about a term's runtime behavior and to typechecking failure.

The rules for type abstractions and applications are standard.

r H e € T a * F T V (r)
— (A L L - i) T h Aa. e € Va. r

T h e € Va.r (A l l - E)
T h Q[<T] e [<r/a]r

Similar observations to the ones above for the Union-E also apply to A l l - E :

> (W a . \ x : ' a . x) [s] ;

i t : s - > s

> \f: (A l l 'a . , a - > , a) . \ x : s . f [s] x ;
i t : (A l l 'a . 'a->'a) -> s -> s

> f : (A l l 'a . > a - > (t l / \ t 2)) ;
f : (A l l ' a . * a - > t l) / \ (A l l ' a . * a - > t 2)

> f Cs] ;
i t : s ->t l / \ s - > t 2

> f : (A l l 'a . ' a - > (t l / \ t 2)) A s->t;
f : (A l l ' a . ' a - > t l) / \ (A l l ' a . ' a - > t 2) / \ s - > t

> f [u] ;
i t : u->tl / \ u - > t 2

> \ x : s . f x ;

i t : s -> t

The union elimination rule is probably the most novel element of the calculi investigated in this
report.

T h e in V[ri..rw] for all i, T, x : n h e / 6 r / T T m t a m

T h case 8 of x e' € r
Operationally, the rule reads as follows: if an expression e has type V[ri-- rn]> a ^d if ey is an

expression with a free variable x , such that e7 has type r under the assumption that x has type rx

for every i, then case x = e of e7 has type r as well.
For example, if

> f : s l - > t A s 2 - > t ;
f : s l - > t A s 2 - > t

and

3 SYNTAX 11

> e : s l \ / S 2 ;
e : s i \ / S 2

then the value of e will certainly have either type s i or type S2; in both cases, supplying it AS AN
argument to f will yield a a result of type t:

> case x=e of f x;
i t : t

To make typechecking more efficient, the syntactic marker "case" is used to indicate where ANION
elimination may be applied:

> \ f : s l - > s l - > t / \ S 2 - > S 2 - > t . \ e : s l \ / S 2 . case x=e of f x x;
i t :

(s l - > s l - > t / \ S 2 - > S 2 - > t) - > s l - > t
A (s l - > s l - > T A S 2 - > S 2 - > t) - > S 2 - > t

> \ f : s l - > s l - > T A S 2 - > S 2 - > t . \ e : s l \ / S 2 . f e e ;
i t : NS

The rule can also be formulated without the case, placing on the typechecker the burden of choosing
the correct points to apply union elimination. (See Section 5.3.)

Since A-abstractions may be annotated only with a single domain type, the constructs described
so far do not allow the "finitary polymorphism" of functions with intersection types to be inherited
by function definitions that use them. For example, assume we have a type int and a type real
such that int < r e a l 8

> prim int <= real ;

and a plus function that maps pairs of integers to an integer and pairs of reals to a real:

> plus : int -> int -> intAreal ->rea l ->rea l ;
plus : int ->int ->int A real->real->real

Then

> \ x : i n t . plus x x;
i t : int -> int

> \ x : r e a l . plus x x;
i t : real -> real

> \ x : i n t / \ r e a l . plus x x;
i t : int -> int

> \ x : i n t \ / r e a l . plus x x;
i t : int->real A real->real

Again, the specification of a subtype relation on primitive types falls outside the calculus defined in this section
though it is supported by the prototype compiler. See Section 5.1.

4 EXAMPLES 12

To allow the type int—• int A real-^real to be derived for this function, it is necessary to
typecheck the body twice — once under the assumption that x : int and once under the assumption
that x : real . The for construct is used for this purpose:

r

 F *~ [< T i / a] * 6 T ' (F o r)
i r for a in a\..on. e € rt-

Using F o r , our function definition can be typechecked twice and the results conjoined using
I n t e r - I to obtain the desired type:

> for 'a in i n t , r e a l . \ x : ' a . plus x x;
i t : int ->int A real->real

For notational convenience, when a $. FTV(e) we write

Ax:ri..rn.e = f for a in Ti..rn. Ax:a.e.

as in Forsythe:

> \ x : i n t , r e a l , plus x x;
i t : int->int A real->real

4 E x a m p l e s

To make the foregoing definitions more concrete and demonstrate some of the expressive power of
A(V, A, V) , we now develop several larger examples. The interactions shown are reproduced exactly
from sessions with a prototype compiler implemented in Standard ML.

The compiler itself is not discussed in detail in this report, beyond a rough sketch of its internals
in Section 4.1.1. The focus in the work described here has been on the examples that could be
expressed rather than the compiler technology necessary to support their translation. In particular,
the completeness of the algorithms used in the typechecker have not been proved complete.

4.1 T h e Compi ler

We begin by sketching the architecture and some of the features of the compiler.

4.1.1 Internals
The high-level flow of information through the compiler is as follows:

1. An expression typed by the user is parsed into an abstract syntax tree.

2. The abstract syntax tree is passed to the typechecker, which returns a data structure rep
resenting a proof of a (purportedly) minimal typing for this term in the inference system
described in Section 3.

3. Because it was coded for simplicity rather than efficiency, the typing derivations returned by
the typechecker can be quite large. A simple proof-normalization procedure transforms the
original derivation into an equivalent but more compact derivation.

4 EXAMPLES 13

4. Object code for the expression is produced by walking over the optimized typing derivation
and generating a Standard ML program, which is then passed to the Standard ML compiler ro
be translated to native code and executed. (Standard ML makes a convenient target language
in this case because the prototype compiler itself is implemented in SML. The only hitch is
that, since the type system of A(V,A, V) is more flexible than that of SML, instances of an
unsafe "typecast" operator must be sprinkled through the SML object code to discourage the
SML typechecker.)

The present compilation scheme translates values of intersection types into expressions whose
result is a list with the same number of elements as the original type had conjuncts. Union
types are translated into variant records.

5. The result is printed, along with its type.

4.1.2 Type abbreviations

The keyword type introduces an abbreviation for a common type expression.

> type Polyld = All 'a. 'a -> 'a; ,
type Polyld = All 'a. 'a -> 'a

When a type involving the abbreviation is presented to the parser, it is immediately expanded.
All internal processing is in terms of the expansion:

> \pid:Polyld. pid [i n t] ;
i t : Polyld -> int -> int
val i t = <fn>

Finally, when the top-level read-eval-print loop is about to print a type, it checks whether any
subexpressions are equal (modulo renaming of bound type variables) to the right hand side of
previously introduced type abbreviations. If so, it prints the names of the abbreviations in place
of the subexpressions themselves:

> \ V a . \ x : ' a . x;
i t : Polyld
val i t = <typefn>

4.1.3 Observing results

The final feature of the compiler that is important for present purposes is the facility for printing
the results of computations on encodings of algebraic datatypes.9

For example, the usual encoding of booleans in the polymorphic A-calculus is:

> type Bool = All ' t . ' t -> ' t -> »t;
type Bool = All ' t . ' t -> ' t -> ' t

The boolean values t t and ff are then defined as:

9 A similar facility is discussed by Michayiov and Pfenning [29].

4 EXAMPLES 14

> t t = W t . \x : ' t . \y: ' t . x;
t t : BOOL
VAL TT = <TYPEFN>

> FF = W t . \ X : ' T . \ Y : ' T . Y;
FF : BOOL
VAL FF = <TYPEFN>

The default result-printing mechanism is only able to display the fact that these values are both
type functions. However, we can install a special-purpose printing function for a specified type,
providing an SML function to be applied to a runtime result of this type to coerce it into a string:10

> i n s t a l l 'FUN B.TO.STR b = b () "TT" " F F " ; ' ;

> OBSERVE BOOL == ' B . T O . S T R * ;

> (\X:BOOL. X) TT;
IT : BOOL
VAL IT = TT

In some of the examples below, where the results that would be printed are uninteresting, the
code generation and execution phases are omitted.

4.2 Church ar i thmet ic

Our first programming example shows a variant OF Church's encoding of natural numbers where
the type ZERO, whose only member is the encoding OF the number ZERO, is distinguished from the
type POS, whose members are all the positive natural numbers.

4.2.1 Type definitions

For comparison, recall that Church numerals are encoded in the ordinary polymorphic A-calculus
as elements of the following type:

> TYPE ORIGNAT = ALL ' T . O t - V T) - > ' T - > ' T ;
TYPE ORIGNAT = ALL ' T . (, T - > , T) - > ' T - > 't

To print an element of NAT, we apply it to the integer successor function and the integer 0.

> INSTALL 'FUN PRT.ORIGNAT (N : U N I T - > U N I T - > (I N T - > I N T) - > I N T - > I N T) =
> MAKESTRING (N () () (FN I = > I + L) 0) ; ' ;

> OBSERVE ORIG ~ 'PRT.ORIGNAT' ;

Then the first few natural numbers are encoded as follows.

1 0 The first argument passed to b in the body of the printing function is a placeholder for the type parameter
expected by values of type Bool. The code generation phase of the compiler erases all type information except the
positions of type abstractions and applications.

4 EXAMPLES 15

> origzero = W t . \ s : ' t - > ' t . \ z : ' t . z;
origzero : QrigNat
val origzero = <typefn>

> origone = W t . \ S : , t - > , t . \ z : ' t . S z;
origone : OrigNat
val origone - <typefn>

> origtwo = W t . \ s : , t - > , t . \ z : ' t . S (S z) ;
origtwo : OrigNat
val origtwo = <typefn>

Operationally, THE type argument 't to an element e element OF type QrigNat NAMES THE TYPE of
THE result of the n-fold iteration of the argument S over the argument z, where n IS THE NUMBER
coded by e.

Since we intend to distinguish zero from all other natural numbers, our encoding HERE NEEDS to
take two type arguments — one for the result type of a 0-fold iteration of S over z (that IS, z itself)
and one for the result type of an n-fold iteration of S over z, for some n > 1. Also, THE function
s must map elements of 'z to elements of 'p (on the first iteration, when it is applied TO THE BASE
element z) and elements of 'p to elements of 'p (for successive iterations).

> type Zero = All >z. All 'p. / \ C , z - > , p , , p - > , p] -> 'z -> 'z;
type Zero = All 'z . (All 'p. (, z - > , p / \ , p - > , p) - > , z - > , z)

> type POS = All ' z . All 'p. / \ C , z - > , p , , p - > , p] -> 'z -> 'p;
type POS = All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > , z - > , p)

Now, the type of all natural numbers is just the union of Zero and POS:

> type Nat * Zero \ /POS;
type Nat = Zero \ / POS

Again, to print elements of Zero and POS, we apply them to the integer successor function AND
the integer 0.

> i n s t a l l 'fun prt.Nat (n :un i t ->uni t ->((in t -> int) l i s t) -> int -> int) =
makestring (n () () [(fn i=> i+ l) , (fn i=>i+l)] 0) ; ' ; >

> observe Zero ~ 'prt .Nat';

> observe Pos == c prt_Nat';

Aside from their types, elements of Nat are precisely the same as the corresponding elements
of OrigNat.

> zero = W z . W p . \ s : / \ [>z-> 'p ,>p->'p] . \ z : ' z . z;
zero : Zero
val zero = 0

> ONE = \ \ > z . W p . \ s : / \ [' z - > ' p , ' p - > ' p] . \ z : ' z . S z;

4 EXAMPLES 16

one : P o s

val one = 1

> t w o = W z . \ V p . \ s : / \ [, z - > ^ p , , p - > J p] . \ z : ' z . s (s z) ;
t w o : P o s

v a l t w o = 2

4 . 2 . 2 B a s i c a r i t h m e t i c f u n c t i o n s

The successor function for ordinary church numerals takes a numeral n as argument and returns a
new numeral that iterates n times and then once more.

> o r i g s u c c * \ n : 0 r i g N a t . W t . \ s : ' t - > ' t . \ z : ' t . s (n C ' t] s z) ;

o r i g s u c c : O r i g N a t - > O r i g N a t

Successor for our new encoding is exactly the same, except that we explicitly allow for the
argument n to be either Z e r o or P o s and check the body separately for each case.

> s u c c = \ n : Z e r o , P o s .
> W ' z . \ V p . \ s : / \ [' z - > ' p , ' p - > ' p] . \ z : ' z .
> s (n C ' z] C ' p] s z) ;
s u c c : Z e r o - > P o s A P o s - > P o s

> o n e s s u c c z e r o ;

o n e : P o s

Addition o f original-style church numerals m and n is defined by iterating the successor function
m times, using n as the starting value instead o f z e r o .

> o r i g p l u s = \ m : O r i g N a t . \ n : O r i g N a t . m [O r i g N a t] o r i g s u c c n;

o r i g p l u s : O r i g N a t - > O r i g N a t - > O r i g N a t

Again, addition of numerals is exactly the same, except that we need to be more careful about
the types. As for s u c c , we allow the types o f both m and n to be either Z e r o or P o s , checking the
body separately in each case. Here, though, we need to use the f o r construct explicitly so that
we have a name for the type o f n : this type will be passed as the result type of a 0-fold iteration
of s u c c over n — that is, the result o f a p p l y i n g m to s u c c and n in the case that m happens to be
z e r o . When m has type P o s , the result type o f the iteration is always P o s .

> p l u s = f o r ' m i n Z e r o , P o s .

> f o r ' n i n Z e r o , P o s .

> \ m : ' m . \ n : ' n .

> m C ' n] [P o s] s u c c n ;

p l u s : Z e r o - > Z e r o - > Z e r o A Z e r o - > P o s - > P o s A P o s - > Z e r o - > P o s A P o s - > P o s - > P o s

Multiplication and exponentiation of our numerals can be defined in the same way.

> m u l t = f o r ' m i n Z e r o , P o s .

> f o r 'n i n Z e r o , P o s .
> \m:}m. X n r ' n .

> m [Z e r o] [* n] (p l u s n) z e r o ;

m u l t :
Z e r o - > Z e r o - > Z e r o A Z e r o - > P o s - > Z e r o A P o s - > Z e r o - > Z e r o A P o s - > P o s - > P o s

4 EXAMPLES 17

> exp = for 'm in Zero,Pos.
> for } n in Zero,Pos.
> \m:'m. \n:*n.
> n [Pos] C'm] (mult m) one;

exp : Zero->Zero->Pos A Zero->Pos->Zero / \ Pos->Zero->Pos / \ Pos->Pos->Pos

4.2.3 Predecessor
Defining the predecessor function on Church's original encoding was a significant feat in the earl
days of A-calculus.11 First, we need pairing functions for numerals:

> type OrigNatPair = All 'r . (OrigNat->QrigNat->*r) -> 'r;
type OrigNatPair = All 'r . (OrigNat->OrigNat->'r) -> 'r

> origpair = \pl:OrigNat. \p2:OrigNat.
> W r . \f:(OrigNat->OrigNat->'r).
> f pi p2;
origpair : OrigNat t> OrigNat -> OrigNatPair

> or igfs t = \p:OrigNatPair. p [OrigNat] (\pl:OrigNat. \p2:0rigNat. p i) ;
or igfs t : OrigNatPair -> OrigNat

> origsnd » \p:OrigNatPair. p [OrigNat] (\pl:OrigNat. \p2:OrigNat. p2);
origsnd : OrigNatPair -> OrigNat

Then predecessor is defined by an iteration that starts with the pair (zero,zero) and returns,
as the result of the nth iteration, the pair (n,pred n):

> origpred = \n:OrigNat.
> origsnd (n [OrigNatPair]
> (\p.-OrigNatPair. origpair
> (origsucc (or igfs t p))
> (or igfs t p))
> (origpair origzero origzero)) ;
origpred : OrigNat -> OrigNat

For our new encoding, we need three separate pair types: 1 2

> type ZeroZeroPr = All *r. (Zero->Zero-> , r)-> , r;
type ZeroZeroPr = All ' r . (Zero->Zero-> ,r) -> »r

> type PosZeroPr = All 'r . (Pos->Zero->'r)->'r;
type PosZeroPr = All ' r . (Pos->Zero->*r) -> 'r

nReaders unfamiliar with this encoding may find the more expository presentations in [35, 37] helpful.

rU W ! W e r e 7 ° r k i n g * a c a J c u l u s w i t h higher-order polymorphism (see Section 6), Pair itself would be a tvpe
constructor and we would simply apply it to pairs of types as needed. Here we're forced to write out Pair(a,^ for
each a and 3 where it's needed. 1 u r

4 EXAMPLES 18

> TYPE POSPOSPR = ALL ' R . (P O S - > P O S - > ' R) - > ' R ;
TYPE POSPOSPR = ALL ' R . (P O S - > P O S - > ' R) - > 'R

> PAIR
>

FOR ' P I IN ZERO,POS.

>
FOR ' P 2 IN ZERO,POS.

\ P L : ' P L . \ P 2 : ' P 2

>
> W ' R . \ F : ' P L - > ' P 2 - > ' R .

F P I P 2 ;
PAIR

ZERO->ZERO->ZEROZEROPR
/ \ ZERO->POS->(ALL ' R . (Z E R O - > P O S - > ' R) - > ' R)
A POS->ZERO->POSZEROPR
/ \ POS->POS->POSPOSPR

> FST = FOR ' P I IN ZERO,POS.
> \ P : (ALL ' R . C P L - > N S - > ' R) - > ' R) .
> P [' P I] (\ P L : ' P L . \ P 2 : N S . P I) ;
FST : (ALL ' R . (Z E R O - > N S - > ' R) - > ' R) - > Z E R O / \ (ALL ' R . (P O S - > N S - > ' R) - > ' R) - > P o s

> SND = FOR ' P 2 IN ZERO,POS.
> \ P : (ALL ' R . (N S - > ' P 2 - > ' R) - > ' R) .
> P C ' P 2] (\ P L : N S . \ P 2 : ' P 2 . P 2) ;
SND : (ALL ' R . (N S - > Z E R O - > ' R) - > ' R) - > Z E R O / \ (ALL ' R . (N S - > P O S - > ' R) - > ' R) - > P O S

Now we can have enough types to express the predecessor function in the same style as above.

> PRED = \ N : P O S .
> SND (N [ZEROZEROPR] [POSPOSPR\/POSZEROPR]
> (\P:ZEROZEROPR,POSPOSPR\/POSZEROPR.
> PAIR (SUCC (FST P)) (FST P))
> (PAIR ZERO Z E R O)) ;
PRED : POS - > (POS\ /ZERO)

The most interesting feature of this example is that it's the first use we've seen of a union type —
one of the few that I know of— where the union is essential, that is, where the union cannot be
transformed into an intersection by applying the S U B - D I S T - A U law and where the function cannot
be given an appropriate type without using unions.

4 . 2 . 4 TESTING FOR ZERO

Our PRED function has intentionally been defined so that applying it to a numeral that is not known
to be positive fails.

> F S \X :NAT. PRED X;
F : NS

Using a technique similar to that used for PRED, we can define a NATCASE function that takes
a natural number n, a function (like PRED) that expects only positive arguments, and a default
argument to be returned when n is ZERO and applies the function to n if possible.

4 EXAMPLES 19

> type ZERONATPR = ALL ' r . (ZERO->NAT -> ' r) -> ' r ;
type ZERONATPR = ALL } r . (ZERO->ZERO -> 'r / \ZERO->POS -> 'r) -> 'r

> TYPE POSNATPR = ALL >R. (P O S - > N A T - > ' R) - > ' R ;
TYPE POSNATPR = ALL ' R . (P O S - > Z E R O - > * R / \ P O S - > P O S - > ' R) - > 'R

> PAIRN = FOR ' P I IN ZERO,POS.
> \ P L : ' P L . \p2 :NAT.
> W r . \ F : ' P L - > N A T - > ' r .
> F P I p2;
PAIRN :

ZERO->ZERO->ZERONATPR
/ \ ZERO->POS->ZERONATPR
/ \ POS->ZERO->POSNATPR
/ \ POS->POS->POSNATPR

> FSTN = FOR ' P I IN ZERO,POS.
> \ P : (ALL ' R . (, P L - > N S - > , R) - > , R) .
> P C p l] (\ p l : ' p l . \ P 2 : N S . P I) ;
FSTN :

(ALL ' R . (Z E R O - > N S - > , R) - > , R) - > Z E R O / \ (ALL >R. (P O S - > N S - > ' R) - > ' R) - > P O S

> SNDN = \ P : (ALL >R. (N S - > N A T - > ' R) - > ' R) .
> P [NAT] (\ p l : N S . \ P 2 : N A T . P 2) ;
SNDN : (ALL ' R . (N S - > Z E R O - > ' R / \ N S - > P O S - > ' R) - > J R) - > NAT

> NATCASE = \ N : Z E R O , P O S .
> \SCASE:POS->NAT. \ZCASE:NAT.
> SNDN (N [ZERONATPR] [POSNATPR]
> (\P:ZERONATPR,POSNATPR.
> PAIRN (SUCC (FSTN P))
> (SCASE (SUCC (FSTN P))))
> (PAIRN ZERO ZCASE)) ;
NATCASE :

ZERO->(POS->NAT)->ZERO->NAT
/ \ ZERO->(POS->NAT)->POS->NAT
/ \ POS->(POS->NAT)->ZERO->NAT
/ \ POS->(POS->NAT)->POS->NAT

> F = \ X : N A T . NATCASE X PRED ZERO;
F : ZERO->NAT / \ POS->NAT

4.3 Church Ar i thmet i c (Al ternate Form)

There is another way of encoding the basic arithmetic functions on Church numerals:

> ORIGPLUS' = \M:ORIGNAT. \N:ORIGNAT.
> \ \ ' T . \ S : , T - > , T . \ Z : ' T .

4 EXAMPLES '20

> m C't] s (n C't] s z) ;
origplus' : OrigNat -> OrigNat -> OrigNat

> ORIGMULT' » \M:ORIGNAT. \n:ORIGNAT.
> W t . \ S : ' T - > ' T .
> M C 'T] (N C 'T] s) ;
ORIGMULT' : ORIGNAT - > ORIGNAT - > ORIGNAT

> origexp'
>

\M:OrigNat. \n:OrigNat.

>
Wt.

n C ' T - > ' T] (M C ' T]) ;
ORIGEXP' : ORIGNAT - > ORIGNAT - > ORIGNAT

This version of the arithmetic functions is interesting to try to emulate on our new encoding;
the solution involves some fairly tricky use of the FOR construct. Also, the exponential function in
this encoding requires iteration at higher types, which provides another good test of the limits of
this encoding.1 3

We need to use a slightly more refined formulation for ZERO here.

> TYPE ZERO = ALL ' Z . ALL ' P . NS - > ' Z - > ' Z ;
TYPE ZERO = ALL ' Z . (ALL ' P . N S - > ' Z - > ' Z)

> TYPE POS » ALL ' Z . ALL ' P . A [, Z - > , P , ' P - > ' P] - > ' Z - > ' P ;
TYPE POS = ALL ' Z . (ALL ' P . (, Z - > ' P / \ , P - > , P) - > , Z - > ' P)

> TYPE NAT = ZERO\ /POS;
TYPE NAT » ZERO \ / POS

> INSTALL 'FUN PRT.NAT (N : U N I T - > U N I T - > ((I N T - > I N T) L I S T) - > I N T - > I N T) =

> MAKESTRING (N () () [(F N I * > I + L) , (F N I = > I + D] 0) ; ' ;

> OBSERVE ZERO == ' P R T . N A T ' ;

> OBSERVE POS == ' P R T . N A T ' ;

The novel feature of the PLUS 7 function on our new encoding is the use of the FOR construct in
the second line from the end to "guess" the result type of the iteration when M is ZERO. What we
want to write, intuitively, is "If n has type ZERO then apply M to 'Z , otherwise apply M to 'p." But,
of course, this falls far outside of what can be expressed in a type system of this kind. What is
surprising is that it can be simulated by guessing: we simply try applying M to both 'Z and 'p in
turn. One choice is the one that we "should" have made, and it yields the desired result type. The
other choice is wrong, yields an ill-typed application in the last line, and drops out of the result.
> PLUS' S \M:ZERO,POS. \ N : Z E R O , P O S .
> W ' Z . W ' p .

1 3 I t may provide an even better test of the limits of the encoder. It took me several hours to figure out how to
type this version of the exponential function.

4 EXAMPLES

> \ s : (»z\ / 'p)->'p,NS.
> \ z : ' z .
> for 'g in ' z , ' p .
> m C'g] C'p] s (n C'z] CJp] s z) ;
plus' :

Zero->Zero->(All 'z . (All 'p. (, z - > , p / \ , p - > , p) - > , z - > , z))
/ \ Zero->Zero->Zero
/ \ Zero->Pos->Pos
/ \ Pos->Zero->Pos
A Pos->Pos->Pos

The typing that the typechecker discovers for this function is actually slightly better than we need
the first conjunct is a proper subtype of Zero->Zero->Zero.1 4

The cases for multiplication and exponentiation are similar, but slightly more complicated.

> mult* = \m:Zero,Pos. \n:Zero,Pos.
> W z . W p .
> \ s : (>z\ / 'p)->'p,NS.
> for 'gl in ' z , ' p .
> m C'z] C g l]
> (for 'g2 in ' z , ' p .
> (n [>g2] ['pj s)) ;
mult 1 :

Zero->Zero->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > , z - > , z))
/ \ Zero->Zero->Zero
A Zero->Pos->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > , z - > , z))
/ \ Zero->Pos->Zero
/ \ Pos->Zero->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > ' z - > , z))
/ \ Pos->Zero->Zero
/ \ Pos->Pos->Pos

> exp' = \m:Zero,Pos. \n:Zero,Pos.
> W z . W p .
> for 'n in NS, , z - > , p / \ , p - > , p . for 'm in ' z ^ p .
> n ['n] [, z-> , m/\ , m-> , m]
> (for ' g l , ' g 2 in ' z , ' p .
> m C'gl] C'g2]);
exp' :

Zero->Zero->Pos
/ \ Zero->Zero->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > ' p - > , p))
/ \ Zero->Pos->Zero
/ \ Pos->Zero->Pos
/ \ Pos->Zero->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > , p - > , p))
/ \ Pos->Pos->Pos
/ \ Pos->Pos->(All ' z . (All 'p. (, z - > , p / \ , p - > , p) - > , p - > , p))

1 4 This means, of course, that the second conjunct can be dropped without changing the type. The type simplifi
cation heuristic presently used in the compiler misses this case. P

4 EXAMPLES

The diagonalization of this formulation of the exponential function is particularly interesting,
since it involves a polymorphic self-application.

> d i a g ' = \ n : Z e r o , P o s . exp' n n;
d i a g ' :

Zero->Pos
A Zero->(Al l ' z . (A l l 'p. (, z - > , p / \ , p - > , p) - > , p - > , p))
/ \ Pos->Pos

/ \ P o s - > (A l l ' z . (A l l 'p. (, z - > ' p / \ , p - > , p) - > , p - > , p))

4.4 Church Booleans
We can play a similar game with operations on booleans, using a Church-like encoding that dis
tinguishes "true" booleans from "false" booleans.
> type T = A l l ' a . A l l ' b . 'a -> NS -> 'a ;
type T = A l l ' a . (A l l ' b . , a - > N S - > , a)

> type F = A l l ' a . A l l ' b . NS -> 'b -> ' b ;
type F = A l l ' a . (A l l ' b . NS->'b->'b)

> type Bool = T \ /F ;
type Bool = T \ / F

> observe T ~ ' f n b => " t t " c ;

> observe F == ' f n b => " f f ;

> t t = \ V a . W b . \ x : ' a . \ y :NS. x;
t t : T
va l t t = t t

> f f = \ V a . W b . \x :NS. \ y : ' b . y;
f f : F
va l f f = f f

The type of the boolean-not function is its truth table:

> bnot « \m:T,F.
> W a . W b .
> \ x : N S , ' a . \ y : N S , ' b .
> n C'b] ['a] y x;
bnot : T->F / \ F->T
va l bnot = <inter>

> bnot t t ;
i t : F
va l i t = f f

4 EXAMPLES 23

Without the ; 4f or :' construct, the best typing we can obtain for boolean-or is:

> bor = \m:T,F. \n:T,F.
> m [T] [Bool] t t n;
bor : T->T->T A T->F->T / \ F->T->Bool A F->F->Bool
val bor » <inter>

Using "for," we obtain a more refined type for boolean-or:

> bor = for 'a in T,F.
> for 'b in T,F.
> \m:'a. \ n : ' b .
> m [T] C'b] t t n;
bor : T->T->T A T->F->T / \ F->T->T / \ F->F->F
val bor = <inter>

> bor ff t t ;
i t : T
val i t = t t

> bor ff f f;
i t : F
val i t = ff

4.5 Bi t String Addi t ion

Another example, interesting mainly because it uses iteration at higher types to implement a double
recursion, is the addition of binary numerals in standard form. The idea for this example is due to
Freeman and Pfenning [18].

Binary numerals (bit strings) may be characterized by the following inductive type definition:

indtype Bi t s tr = e I z (Bi t s tr) I o(Bits tr)

That is, a bit string is either empty, or has a low order bit that is either z (zero) or o (one) followed
by a bit string. For example, e, z(e), and z(z(z(z(e)))) all represent zero; z(o(o(e))) represents
six.

Standard-form binary numerals may be defined by the following inductive type definitions:

indtype E = e
indtype NE = o(e) I z(NE) I o(NE)

That is, an empty standard-form numeral is just the token e. A nonempty standard-form numeral
has a low-order bit that is either z (zero) or o (one), followed by a nonmempty numeral. For
example, z(o(e)) is in standard form, but z(e) is not.

These types can be encoded in A(V, A,V) as follows:

> type Bi t s tr = All ' e . All 'n.
> 'e -> (, e - > ' n / \ , n - > ' n) -> ('e->'n/ \ 'n->*n) -> C'eX/'n);
type Bi t s tr =

All ' e . (All 'n. ' e -> (' e -> 'n / \ 'n -> 'n) -> (' e -> 'n / \ 'n ->>n) ->(' e \ /»n))

4 EXAMPLES 24

> type E = All >e. All >n. >e -> (>n->'n) -> ('e -> 'nA'n->'n) -> 'e;
type E = All ' e . (All >n. , e - > (, n - > , n) - > (, e - > , i i / \ , i i - > > n) - > , e)

> type NE = All ' e . All 'n. >e -> (, n - > , n) -> (, e - > , n / \ , n - > , n) -> 'n;
type NE = All ' e . (All >n. , e - > (, n - > , n) - > (, e - > > n / \ > n - > , n) - > , n)

> type Std = E\/NE;
type Std = E X/ NE

> check Std <= Bi t s tr ;
Yes.

> i n s t a l l 'fun b i t s t r^tos tr b =
> b () () "e"
> (fn s => , , z (, , ~s~ , ') , ,)
> C(fn s => , , o (, , * s ^ , ,) , ,) , (fn s => " o (, , A s A , ,) , ,)] ; c ;

> observe E ~ ' b i t s t r . t o s t r ' ;

> observe NE — ' b i t s t r . t o s t r ' ;

> s td .e = W e . W n . \ e : ' e . \ z : , n - > , n . \ o : , e - > , n / \ , n - > , n . e;
s td .e : E
val s td . e = e

> s td .z = \n:E,NE.
> W e . W n . \ e : ' e . \ z : , n - > , n . \ o : , e - > , n / \ , n - > , n .
> z (n C'e] ['n] e z o) ;
s td . z : NE -> NE
val s td .z = <fn>

> s td .o = \n:E,NE.
> W e . W n . \ e : ' e . \ z : ' n - > ' n . \ o : , e - > , n / \ , n - > , n .
> o (n ['e] [>n] e z o) ;
s td .o : E->NE A NE->NE
val s td .o = <inter>

The successor function on bit strings in standard form can be defined by the following recursive
program scheme:

std.succ e = o e
std.succ (z b) = o b
std.succ (o b) = z (std.succ b)

Note that if the input to this scheme happens to be in standard form, then the output will be too.
To implement this scheme in terms of iterators, we need to use iteration over pairs. The first

projection of the result of the iteration is the original numeral; the second projection is the successor
(in standard form).

4 EXAMPLES

> type ExE = Al l >r. (E->E->'r) -> ' r ;
type ExE = A l l ' r . (E->E->'r) -> 'r

> type ExNE * A l l *r. (E->NE->'r) -> »r;
type ExNE = A l l ' r . (E->NE->'r) -> 'r

> type NExE = Al l 'r . (NE->E->'r) -> 'r;
type NExE = Al l 'r . (NE->E->'r) -> 'r

> type NExNE = Al l >r. (NE->NE->'r) -> 'r;
type NExNE = A l l >r. (NE->NE->'r) -> 'r

> s td .pair = for 'pi in E,NE.
> for 'p2 in E,NE.
> \ p l : ' p l . \ p 2 : ' p 2 .
> W r . \ f : ' p l - > ' p 2 - > ' r .
> f pl p2;
s td .pair : E->E->ExE A E->NE->ExNE / \ NE->E->NExE / \ NE->NE->NExNE
val s td .pair = <inter>

> s t d . f s t = f o r 'pl i n E,NE.
> \p : (A l l ' r . O p l - > N S - > ' r) - > ' r) .
> P C'pl] (\ p l : ' p l . \p2:NS. p l) ;
s t d . f s t : (A l l ' r . (E->NS->'r) -> 'r) ->E / \ (A l l ' r . (NE->NS->'r)->>r)->NE
v a l s t d . f s t = <inter>

> s t d . s n d = f o r 'p2 i n E,NE.
> \ p : (A l l ' r . (N S - > ' p 2 - > ' r) - > ' r) .
> P C'p2] (\ p l : N S . \ P 2 : ' p 2 . p2) ;
s t d . s n d : (A l l ' r . (NS->E->'r) -> 'r) ->E / \ (Al l ' r . (NS->NE->'r)->'r)->NE
va l s t d . s n d = <inter>

> s t d . s u c c =
> \n:E,NE.
> s t d . s n d
> (n [ExNE] [NExNE]
> (s t d . p a i r s t d . e (s t d . o s t d . e))
> (\p:NExNE. s t d . p a i r (s t d . z (s t d . f s t p)) (s t d . o (s t d . f s t p)))
> (\p:ExNE,NExNE. s t d . p a i r (s t d . o (s t d . f s t p)) (s t d . z (s t d . s n d p)))) ;
s t d . s u c c : E->NE / \ NE->NE
va l s t d . s u c c = <inter>

> zero a s t d . e ;
zero : E
va l zero = e

> one = s t d . s u c c z e r o ;

4 EXAMPLES

std.add e
std.add m

n
e = m

std.add (z m)
std.add (o m)
std.add (z m)
std.add (o m)

(z n) = z (std.add in n)
(z n) = o (std.add m n)
(o n) s o (std.add m n)
(o n) = z (std.add (std.add (o e) m) n)

To implement this scheme in terms of iterators, we need to use iteration at higher types: .15

> std.add = for 'm in E,NE.
> Xmi'm.
> m [E->E/\NE->NE] [E->NEANE->NE]
> (\n:E,NE. n)
> (for 'n in E,NE.
> \addm':E->NEANE->NE. \ n : ' n .
> n [NE] [NE]
> (s td .z (addm* s t d . e))
> (Xaddm'n*:NE. s td . z addm'n')
> (Xaddm'n' :NE. s td .o addm'n'))
> (for 'n in E,NE.
> \addm':E->EANE->NE,E->NEANE->NE. \ n : ' n .
> n [NE] [NE]
> (s td .o (adding s td . e))
> (Xaddm'n':E,NE. s td .o addm'n')
> (Xaddm'n':E,NE. s td . z (std.succ addm'n')));
std.add : E->E->E / \ E->NE->NE A NE->E->NE / \ NE->NE->NE

1 5 The code generation and execution phases for this example are omitted; with the present naive implementation
of the code generator they consume too much memory.

one : NE
val one = o(e)

> two * std.succ one;
two : NE
val two = z (o (e))

> three = std.succ two;
three : NE
val three = o(o(e))

> four s s td.succ three;
four : NE
val four - z (z (o (e)))

Addition on bit strings can be defined by the following doubly recursive scheme:

file:///addm'
file:///addm'

4 EXAMPLES

4 . 6 FINITARY QUANTIFICATION AND TYPECHECKING EFFICIENCY

This section demonstrates how the finitary polymorphism OF the for CONSTRUCT MAY BE USED to
improve the efficiency of typechecking over simpler languages, like Forsythe, ALLOWING INTERSECTION
types but omitting for.

To make the example read more like Forsythe, we'll work in terms OF TWO ;4BUILT-IN" PRIMITIVE
types, integer and real:

> observe int — 'fn i : i n t -> makestring i c ;

> observe real ™ 'fn r:real => makestring r';

> zero : int == ' 0 ' ;
zero : int

> succ : int ->int == 'fn x => x+1';
succ : int -> int

> plustwo = \ x : i n t . succ (succ x) ;
plustwo : int -> int
val plustwo = <fn>

> two = plustwo zero;
two : int
val two = 2

To introduce a primitive inclusion between the types int and real we need TO tell the BACK-END
how to generate code for transforming from int to real:

> prim int <= real == ' r e a l ' ;

Now we can define a successor function that works for both integers and reals:

> irsucc : int ->int A real->real
> == '[R.c (fn (x: int) => x+1), R.c (fn (x:real) => x + 1 . 0)] ' ;
irsucc : int ->int / \ real->real

> irplustwo = \ x : i n t , r e a l , irsucc irsucc x;
irplustwo : NS
val irplustwo = <nonsense>

> irtwo « irplustwo zero;
irtwo : NS
val irtwo = <nonsense>

Similarly, the plus function operates on both integers and reals:

> plus : int ->int ->int A real->real->real
> ~ '[R.c (fn (x: int) => fn (y: int) => x+y),
> R.c (fn (x:real) => fn (y .real) => x+y)] ' ;

4 EXAMPLES

p l u s : i n t - > i n t - > i n t / \ r e a l - > r e a l - > r e a l

> d o u b l e « \ x : i n t , r e a l , p l u s x x ;
d o u b l e : i n t - > i n t / \ r e a l - > r e a l
v a l d o u b l e = < i n t e r >

W e c a n r e a l i z e a s u b s t a n t i a l g a i n i n t y p e c h e c k i n g e f f i c i ency fo r f u n c t i o n s l i k e " p l u s " b y u s i n g

t h e f o r c o n s t r u c t e x p l i c i t l y i n s t e a d o f a n n o t a t i n g e a c h b o u n d v a r i a b l e w i t h b o t h i n t a n d r e a l .

H e r e , t h e b o d y o f t h e p o l y n o m i a l f u n c t i o n " p o l y " is t y p e c h e c k e d o n l y t w i c e , i n s t e a d of 16 t i m e s a s

w o u l d b e n e c e s s a r y i n F o r s y t h e :

> p o l y = f o r ' a i n i n t , r e a l .
> \ w : ' a . \ x : ' a . \ y : ' a . \ z : ' a .
> p l u s (d o u b l e x) (p l u s (p l u s w y) z) ;
p o l y : i n t - > i n t - > i n t - > i n t - > i n t A r e a l - > r e a l - > r e a l - > r e a l - > r e a l
v a l p o l y = < i n t e r >

4.7 Default Parameters

A c o m p l e t e l y d i f f e r e n t e x a m p l e o f t h e p r a c t i c a l u t i l i t y o f i n t e r s e c t i o n t y p e s c o m e s f r o m t h e i r
a b i l i t y t o e x p r e s s p r o c e d u r e s w i t h d e f a u l t p a r a m e t e r s . F o r e x a m p l e , w e c a n g i v e t h e t y p e
s t r i n g - > i n t - > (s t r i n g A c h a r - > s t r i n g) t o a b u i l t - i n f u n c t i o n t h a t t a k e s a s t r i n g s a n d
a n i n t e g e r i a n d r e t u r n s both t h e s t r i n g s p a d d e d w i t h e n o u g h b l a n k s t o m a k e i t s l e n g t h i and a
f u n c t i o n t h a t g i v e n a c h a r a c t e r c r e t u r n s s p a d d e d w i t h e n o u g h c ' s t o m a k e i t s l e n g t h i . T h e r e s u l t
o f a p p l y i n g p a d t o s a n d i c a n e i t h e r b e u s e d d i r e c t l y a s a s t r i n g (b y a p p l y i n g a p r n t f u n c t i o n t o
i t , f o r e x a m p l e) o r f u r t h e r a p p l i e d t o a c h a r a c t e r c .

T o i m p l e m e n t t h i s s c h e m e , w e d e f i n e t h e f o l l o w i n g p r i m i t i v e s :

> i n s t a l l ' f u n d u p l c 0
> I d u p l c n * c ~ (d u p l c (n - 1)) ;
> f u n p r i m p a d s t r s i c » s ~ (d u p l c (m a x (0 , i - (s i z e s)))) ; c ;

> p a d : s t r i n g - > i n t - > (s t r i n g A c h a r - > s t r i n g)
> == ' [R . c (f n s => f n i => p r i m p a d s t r s i " ") ,
> R .c (f n s s > f n i => f n c p r i m p a d s t r s i c)] ' ;

p a d : s t r i n g - > i n t - > s t r i n g A s t r i n g - > i n t - > c h a r - > s t r i n g

> p r n t : s t r i n g - > u n i t « ' f n s => p r t (» \ » » - s - " N A n ") ' ;

p r n t : s t r i n g - > u n i t

> b l a n k : c h a r == ' " " ' ;

b l a n k : c h a r

> d o t : c h a r == c " . " ' ;

d o t : c h a r

> m e s g : s t r i n g == " ' h e l l o ' " ;
m e s g : s t r i n g

5 ALTERNATIVES 29

> ten : in t — ' 10' ;
t en : i n t

Now we can use pad and prnt as described above:

> prnt (pad mesg ten) ;
i t : unit
"hello
val i t = <prim>

> prnt (pad mesg ten dot);
i t : unit
"hello "
val i t = <prim>

In fact, this notion can be supported as a general language feature by supplying one built-i
constant that is used to build functions with default parameters

> default : All 'a. All 'b. ('a -> >b) -> 'a -> (, b / \ , a - > , b)
> == '[R.c (fn () => fn () => fn f => fn v => f v) ,
> R.c (fn () => fn () => fn 1 •> fn v => f)] ' ;
default :

(All 'a . (All 'b. (, a - > , b) - > , a - > , b))
A (All 'a. (All 'b. (, a - > , b) - > , a - > , a - > , b))

> myprimpad : s tr ing -> int -> char -> string
> == 'primpadstr';
myprimpad : s tr ing -> int -> char -> string

> mypad - \ s : s t r i n g . \ l : i n t . default [char] [string] (myprimpad s 1) blank;
mypad : s tr ing->int->str ing A string->int->char->string
val mypad » <inter>

5 A l t e r n a t i v e s

This section discusses some choices in the formulation of the type system given in Section 3.

5.1 Pr imit ive Inclusions

The type system of Forsythe is parameterized by a set of primitive types with a primitive preorder
structure that is inherited by the preorder on the set of all type expressions:

Pl <prim P2 { a ^
(Sub -Pr im

The types and subtyping rules of A(V, A, V) can be extended straightforwardly to include this
notion of primitive types. In fact, the prototype compiler described in Section 4 implements this
extension already.

5 ALTERNATIVES 30

5.2 B o u n d e d Quantification

A primary design choice for a calculus combining polymorphism with intersection types is between
ordinary and bounded quantification. It would seem at first that bounded quantification would be
more appropriate, since it explicitly takes the subtype structure into account. But in a calculus
with intersection types, bounds on quantifiers do not actually add much power, since every well-
typed expression in a calculus with bounded quantification and intersections (call it A(V<,A,V))
can be translated into a well-typed expression in A(V,A,V) by rewriting bounded quantifiers as
ordinary ones and moving the bounds into the body of the quantified expression:16

Aa < a . e —• Aa. [crAa/a]e
Va < <7. r —• Va. [crAa/a]r.

Nevertheless, there is at least one compelling reason for studying a system with bounded quan
tification in preference to one with ordinary quantification only: the treatment of primitive types.

Experience leads us to expect that when we take the step from a first-order calculus to one with
impredicative quantification, the primitive types that were the base case of the first-order system
will no longer be needed, since their role can be played equally well by type variables. But this
is not the case here: if our quantifiers do not mention bounds, then there is no way to introduce
subtyping assumptions among the variables representing primitive types, and we lose the effect of
the SUB-PRIM rule.

5.3 T h e U N I O N - E Rule

The union elimination rule used in earlier sections of this report includes an explicit syntactic
marker, case, to guide the typechecker in applying the rule. The rule can also be formulated with
no syntactic marker

T h e in V[n.-*n] for all z, I\ x : r t h e ' e r
- — J U N I O N - E)

T f- [e/x]e' e r
leaving it up to the typechecker to determine when it ought to be applied during the derivation of
a minimal type for an expression.

Of course, this rule presents severe difficulties for a typechecking procedure for A(A, V,p). Be
cause the syntactic forms of e and e' are unconstrained in the conclusion, U N I O N - E can potentially
be applied to any term e', choosing any subset of the occurrences of any subterm e. Worse yet,
both versions share the difficulty that every term e has an infinite number of union types and any
e with a type strictly less than NS has an infinite number of inequivalent union types.

Nevertheless, the more "implicit" form of the rule seems somewhat more elegant; it may prefer
able for more theoretical investigations of union types.

5.4 Encoding Un ion T y p e s

In a type system with intersection types and polymorphism, union types can be encoded using the
following translation:

crVr =f Va.((7—•a) A (r—•a) —• a.

This allows us to achieve the effect of expressions like
1 6 John Mitchell showed me this translation.

6 FUTURE WORK

> \ f :a ->c / \b ->c . \ x : a \ / b . f x;
i t : (a->c/\b->c)->a->c / \ (a->c/\b->c)->b->c

by writing:

> \ f : a ->c / \b ->c . \ x : (A l l >x. (a - > , x / \ b - > , x) - > , x) . x [c] f;
i t : (a->c/\b->c) -> (All >x. (a - > > x / \ b - > , x) - > , x) -> c

This encoding is not entirely satisfactory, however; for example, it does not validate the rule

a < crVr.

6 F u t u r e W o r k

The preliminary work presented here suggests a number of paths for future research. In fact, several
novel type systems can be formed by combinating subsets of the various features described here:

Meets only Meets and joins

No quantification A(A,/>)
[Forsythe] A(A,V,p)

Ordinary quantification A(V,A,/>) A(V,A,V,/>)
[this report]

Bounded quantification A(V<,A)
[33]

A(V<,A,v)

Among the five novel calculi in the table, A(V, A) appears the most tractable. The tract ability of
A(V<, A) is still open; a prototype implementation of this calculus17 would be an excellent next step
toward understanding the role of bounded quantification and its interaction with intersection types.
The simplest union calculus, A(A,V,p), provides an important case for studying the semantics of
union types, but from a practical perspective A(V,A,V,/>) is not very much harder to implement
and appears to be much more expressive. The bottom corner, A(V<,A, V), though it undoubtedly
holds many fascinating surprises, should probably be saved for last.

Besides detailed investigation of the proof theory and semantics of the more tractable calculi
above, there are several issues to be pursued:

Higher-order Polymorphism Some of the examples in Section 4 — especially those involving
pairs — could have been expressed more elegantly using higher-order polymorphism. The
extension from second-order to higher-order polymorphism, at least for quantifiers without
bounds, appears to be unproblematic

Records The Forsythe language includes an elegant treatment of "extensible records" based on
intersection types. Unfortunately, the approach used to add records to the core type system of
Forsythe cannot be generalized to calculi with polymorphism: the Forsythe record extension
operator must be able to examine the type of the record being extended and remove all
instances of the field at which it is being extended. When the type of the record being
extended can involve type variables, this is no longer possible.

rNow underway.

7 ACKNOWLEDGEMENTS 32

A treatment of extensible records based on a notion of "constrained quantification" [21, 22]
seems promising, but interactions between record types and intersection types may present
problems.

Pragmatics of Compilation In addition to the usual problems of establishing decidability for
the type systems discussed here, there are some serious efficiency issues that must be ad
dressed before any claims can be made that they form a foundation for practical programming
languages. In particular, the compilation scheme used in the prototype compiler described
here, where intersection types are interpreted as cartesian products at runtime, leads to an
enormous explosion of object code if implemented naively, since a A-abstraction that is given
an intersection type with fifteen conjuncts will be compiled in fifteen separate versions. The
union elimination rule causes similar problems.

Programing applications The examples presented here serve to demonstrate that the combi
nation of intersection types, union types, and polymorphism gives rise to intriguing and en
tertaining programming examples. The question of its importance in practice remains open,
pending the development of larger examples that illustrate concrete benefits at acceptable
cost.

7 A c k n o w l e d g e m e n t s

I am grateful for productive discussions with Franco Barbanera, Luca Cardelli, Manfred Droste,
Andrzej Filinski, Tim Freeman, Robert Harper, Nevin Heintze, Susumu Hayashi, Frank Pfenning,
Didier Remy, and John Reynolds.

A S UMMARY OF R ULES 33

A S u m m a r y o f R u l e s

A . l Subtyping

A.2 Typing

T <T

cr <9 0 < T

a < r

<7\—<72 5; T\-*T2

a <T

Va.cr < Va.r

for all i, cr < T{

cr < A[n..rn]

for all i, <J{ < r

V[^l-^n] < T

Ti < \/[Ti..Tn]

/\[<T->T1..<J-+Tn] < (T-+/\[Ti..Tn]

/\[<Tl-+T ..<7 n-*r] < Vkl-^n]-*^"

AtVa.rL.Va.rn] < Va.A[ri . .r n]

U = [V[n, l" r l ,m 1] -V[^n,l . -Tn f m n]]
I = [A[n,j! - r W t j w] 1 1 < j j < mx]

V i < Au
I s [A (r u . . r i) m i] . . A [r n i l . . r n , m n]]
U = [V [r W l . . r n J J l l < i t - < m t]

AU < VI

r h 8 6 (7 a < T

r f- e € r

Ti, x : r, T 2 H x € r

r, x : a h e € r

T I- Xx:a. e € cr—>r

r h f € <7-+T r h e € (7

r h f e € r
T h e € r a g FTV(r)

T h Aa. e € Va. r
T h e 6 Va .r

r h e[<r] € [<r/a]r

(S u b - R e f l)

(S u b - T r a n s)

(S u b - A r r o w)

(S u b - A l l)

(S u b - I n t e r - G)

(S u b - I n t e r - L B)

(S u b - U n i o n - L)

(S u b - U n i o n - U B)

(S u b - D i s t - A I)

(S u b - D i s t - A U)

(S u b - D i s t - Q I)

(S u b - D i s t - I U)

(S u b - D i s t - U I)

(Subsumpt ion)

(V a r)

(A r r o w - I)

(A r r o w - E)

(A l l - I)

(A l l - E)

http://AtVa.rL.Va.rn

A S UMMARY OF R ULES 3 4

FOR AIL I, T H 9 6 T{

r h E € A[n..RN]

r H 8 IN V[r i-- r n] FOR AIL I, T, x : RT- H E' € R
r H case e of x => e' € r

r h [(Tt/aje E RT-

r H f o r O: IN <T\„an. E € RT-

I I n t e r - D

(U n i o n - E)

(F o r)

REFERENCES 3 5

References
[1] F. Barbanera and M. Dezani-Ciancaglini. Intersection and union types (preliminary version).

Manuscript.

[2] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the com
pleteness of type assignment. Journal of Symbolic Logic, 48(4):931-940, 1983.

[3] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance and
explicit coercion. In Fourth Annual IEEE Symposium on Logic in Computer Science, pages
112-129, Pacific Grove. CA, June 1989.

[4] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[5] Luca Cardelli. Structural subtyping and the notion of power type. In Proceedings of the loth
ACM Symposium on Principles of Programming Languages, pages 70-79, San Diego. CA.
January 1988.

[6] Luca Cardelli. Typeful programming. Research Report 45, Digital Equipment Corporation.
Systems Research Center, Palo Alto, California, February 1989.

[7] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest: (Extended abstract). In
ACM Conference on Lisp and Functional Programming, pages 30-43, Nice, France, June 1990.
Extended version available as DEC SRC Research Report 55, Feb. 1990.

[8] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor
phism. Computing Surveys, 17(4), December 1985.

[9] Felice Cardone. Relational semantics for recursive types and bounded quantification. In Pro
ceedings of the Sixteenth International Colloquium on Automata, Languages, and Program
ming, volume 372 of Lecture Notes in Computer Science, pages 164-178, Stresa, Italy, July
1989. Springer-Verlag.

[10] Felice Cardone and Mario Coppo. Two extensions of curry's type inference system. In
Odifreddi, editor, Logic For Computer Science. Academic Press, 1990.

[11] Robert Cartwright and Mike Fagan. Soft typing. Submitted to PLDI '91, xNovember 1990.

[12] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

[13] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of basic functionality theory
for A-calculus. Notre-Dame Journal of Formal Logic, 21:685-693, 1980.

[14] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and lambda cal
culus semantics. In To E. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 535-560, New York, 1980. Academic Press.

[15] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 27:45-58, 1981.

REFERENCES 36

[16] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption. Technical report. LIENS
and University of Pisa, 1989.

[17] Mike Fagan. Soft Typing: An Approach to Type Checking for Dynamically Typed Languages.
PhD thesis, Rice University, December 1990.

[18] Tim Freeman and Frank Pfenning. Refinement types for ML. Submitted to PLDI '91, Novem
ber 1990.

[19] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures de I'arithmetique
d'ordre superieur. PhD thesis, Universite Paris VII, 1972.

[20] Michael J. Gordon, Robin Milner, and Christopher P. Wads worth. Edinburgh LCF. Springer-
Verlag LNCS 78, 1979.

[21] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsumption. Technical
Report CMU-CS-90-102, School of Computer Science, Carnegie Mellon University, Feburary
1990.

[22] Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation.
Technical Report CMU-CS-90-157, Carnegie Mellon University, August 1990. To appear in
POPL '91.

[23] Susumu Hayashi. Lecture on Union Types at the Logical Foundations meeting, Antibes, May
1990.

[24] Susumu Hayashi. Personal communication, December 1990.

[25] Susumu Hayashi and Yukihide Takayama. Extended projection method with Kreisel-Troelstra
readability. Submitted to Information and Computation, 1990.

[26] Bart Jacobs, Ines Margaria, and Maddalena Zacchi. Expansion and conversion models in the
lambda calculus from filters with polymorphic types. Manuscript, March 1989.

[27] Daniel Leivant. Discrete polymorphism (summary). In Proceedings of the 1990 ACM Confer
ence on Lisp and Functional Programming, pages 288-297, 1990.

[28] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic
types. Information and Control, 71:95-130, 1986.

[29] Spiro Michaylov and Frank Pfenning. Compiling the polymorphic A-calculus. Ergo Report
89-088, School of Computer Science, Carnegie Mellon University, November 1989.

[30] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, 1990.

[31] Frank Pfenning and Peter Lee. Metacircularity in the polymorphic lamb da-calculus. The
oretical Computer Science, 1990. To appear. A preliminary version appeared in TAPSOFT
'89, Proceedings of the International Joint Conference on Theory and Practice in Software
Development, Barcelona, Spain, pages 345-359, Springer-Verlag LNCS 352, March 1989.

REFERENCES

[32] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus of
Constructions. In M. Main, A. Melton, M. Mislove, and D . Schmidt, editors. Proceedings of
the Fifth Conference on the Mathematical Foundations of Programming Semantics, Tulane
University, New Orleans, Louisiana, pages 209-228. Springer-Verlag LNCS 442, March 1989.
Also available as Ergo Report 88-069, School of Computer Science, Carnegie Mellon University.

[33] Benjamin Pierce. Bounded quantification and intersection types. Thesis proposal (unpub
lished), September 1989.

[34] Benjamin Pierce. A decision procedure for the subtype relation on intersection types with
bounded variables. Technical Report CMU-CS-89-169, School of Computer Science, Carnegie
Mellon University, September 1989.

[35] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed
lamb da-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, March 1989.

[36] John Reynolds. Towards a theory of type structure. In Proc. Collogue sur la Programmation,
pages 408-425, New York, 1974. Springer-Verlag LNCS 19.

[37] John Reynolds. Three approaches to type structure. In Mathematical Foundations of Software
Development. Springer-Verlag, 1985. Lecture Notes in Computer Science No. 185.

[38] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[39] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended type theory.
Theoretical Computer Science, 28:151-169, 1984.

