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Abstract 

Type systems based on intersection types have been studied extensively in recent years, both as tools 
for the analysis of the pure A-calculus and, more recently, as the basis for practical programming 
languages. The dual notion, union types, also appears to have practical interest. For example, 
by refining types ordinarily considered as atomic, union types allow a restricted form of abstract 
interpretation to be performed during typechecking. The addition of second-order polymorphic 
types further increases the power of the type system, allowing interesting variants of many common 
datatypes to be encoded in the "pure" fragment with no type or term constants. 

This report summarizes a preliminary investigation of the expressiveness of a programming language 
combining intersection types, union types, and polymorphism. 
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1 INTRODUCTION 1 

1 I n t r o d u c t i o n 

This report describes the preliminary results of an investigation of a typed A-calculus combining 
intersection types, union types, and second-order polymorphism. Although the proof-theoretic a n d 
model-theoretic properties of this calculus have not yet been investigated in detail, a number of 
interesting observations can be made about its expressive power. Specifically, the report presents: 

1. A formulation of the notion of union types in a programming-language setting. 

2 . Encodings of several common inductive datatypes showing how intersections, unions, a n d 
polymorphic types together allow a restricted form of abstract interpretation t o b e p e r f o r m e d 
b y the typechecker. 

3. A novel treatment of finitary polymorphism in terms of an explicit finitary quantifier. 

4. A comparison of two different ways of combining polymorphism and intersection types, with 
one formulation, based on ordinary universal quantification, worked out in detail. The prin­
cipal alternative, based on bounded quantification, is discussed in Section 5.2 and in more 
detail in [33]. 

The remainder of the report is organized as follows. Section 2 sketches some background to the 
research described here and outlines related work by others. Section 3 defines a calculus A(V, A , V) 
with intersection types, union types, and polymorphic types, gives typing rules for expressions, 
and illustrates these rules with some small examples. Section 4 presents several larger examples. 
Section 5 discusses alternatives in the definition of the calculus. Section 6 outlines paths for future 
research. 

2 Background and R e l a t e d Work 

The work described in this report builds on previous studies of two well-known calculi: the inter­
section type discipline and the polymorphic A-calculus. 

2 . 1 Intersection Types 
Intersection types in the pure A-calculus have been extensively studied by researchers at the uni­
versity of Turin and elsewhere [14, 13, 15, 2, 39, 26, 10]. More recently, Reynolds has showed 
how intersection types can be used as the basis for the type system of a practical programming 
language, called Forsythe [38]. The core Forsythe type system can be viewed as consisting of the 
following components: 

1. a collection of primitive types and, for each pair of types a and tau, a function type a—r. 
as in the simply typed lambda calculus [12]; 

2. a preorder (the "subtype relation") on the primitive types, which is extended to a preorder 
on the entire set of type expressions; 

3. a rule of "subsumption" stating that the type of a term may be promoted to any supertype: 

4. a type constructor A (intersection) yielding meets in the subtype ordering, along with appro­
priate subtyping laws for distributing intersections and arrows and a typing rule for intro­
ducing intersection types. U N I V E R S I T Y L I B R A R I E S 

C A R N E G I E M E L L O N U N I V E R S I T Y 
P I T T S B U R G H , P A 1 5 2 1 3 - 3 8 9 0 
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The calculi discussed in this report retain this basic structure, extending it with 

1. a type constructor V (union) yielding joins in the type preorder, with appropriate distributive 
laws and typing rules; and 

2. second-order polymorphism. 

A few ideas mentioned in this report are directly applicable to Forsythe itself: the notion of 
finitary polymorphism (Sections 2.4 and 4.6) and the observation that the Forsythe type system 
can express types for procedures with default parameters (Section 4.7). 

2 . 2 Un ion T y p e s 

The dual notion, union types, is a very natural one, and appears to have occurred to a number 
of researchers working independently in surprisingly disparate contexts. The idea arises in several 
different ways: 

1. as the dual of intersection types [1, 18, 38, and this report]; 

2. from logical or semantic considerations [25]; 

3. as a generalization of disjoint unions or variant records [11, 17], 

Intuitively, union types stand in the same relation to disjoint union types (also called sum 
types or variant records) as ordinary set-theoretic union does to set-theoretic disjoint union.1 Op­
erationally: 

1. The injections in l : r x -* (TI + T2) and inr : r 2 —• (T\ + r 2) are replaced by implicit coercions 
represented by the subtyping laws T\ < (rxVr2) and r2 < ( t , i V t 2 ) . 

2. Whereas each element of T\ + r2 contains a tag indicating which of the two summands it 
comes from, elements of the union type TI\/T2 are untagged: the only operations that can be 
applied to values of type TiVr2 are those that make sense for both T\ and r 2. 

These differences can also be seen by comparing the usual elimination rule for disjoint union 
types with the rule proposed here for union types: 

T h e i n r x + r2 f o r a l l z, T , x : r t- h e t- € r 

T h ( c a s e e o f i n l ( x ) => Qi | i n r ( x ) => e 2 ) € r 

r h e i n T i V r 2 f o r a l l i , I \ x : r t- h e ' e r 

; D i s j - U n i o n - E ) 

( U n i o n - E ) 
T h ( c a s e e o f x =» e ' ) € r 

The formulation of union types used in this report is described in detail in Section 3. The rest 
of this subsection describes related formulations by other researchers. 

In the report on the Forsythe language [38], Reynolds describes an attempt to add ordinary 
sum types (disjoint unions) to the language. The attempt was eventualy abandoned because sums 
interacted badly with the "generalized conditional" construct to produce a failure of confluence for 
the operational semantics. 

^ o r e formally, unions should probably be interpreted in a category-theoretic model as pushouts, by analogy with 
Reynolds' interpretation of intersections in Forsythe as pullbacks [38]. The details of the construction are problematic. 
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MacQueen, Plotkin. and Sethi, in their work on ideal models of polymorphic types [281, intro­
duce a notion of union types with a rule for union elimination that is essentially the same as the 
alternative form of the U n i o n - E rule given in Section 5.3: 

r h e in TiVr2 for all z, T, x : rt- h e' e r 
( U n i o n - E 1 ) 

(The metanotation [e/x]e' denotes the capture-avoiding substitution of e for free occurrences of 
x in e'.) Their system does not include an explicit notion of subtyping or a rule of subsumption. 
so its proof-theoretic properties involving intersections and unions are simpler than those for the 
other systems discussed here. 

Barbanera and Dezani-Ciancaglini [1], working in a Curry-style type assignment system, have 
studied a formulation of union types much more similar to the one presented here. However, their 
system includes two distributivity axioms not present in the one described in this report: 

a A (rlyr2) < (<rAri) V (<tAt 2) 

(<rVri) A (<rVr2) < a V {TxI\T2) 

Formal properties of this system are proved using a notion of large basis and a different formulation 
of the union elimination rule: 

f, e : j h e' e r f h 86(7 
T h e ' e r 

Barbanera and Dezani-Ciancaglini's long-term interests in union types are directed toward an 
investigaton of infinitary union types, along the lines suggested by Leivant's work on infinitary 
intersections [27]. In their paper they present several intruguing examples of encodings of algebraic 
datatypes, including the Berarducci numerals, which can be shown to have no uniform type in the 
second-order polymorphic A-calculus. 

Fagan and Cartwright [11, 17] have developed an extension of the ML type system [20, 30] that 
includes both recursive types and a notion of "true union" of disjoint types. This is not quite the 
same as the union types described in this report, since for Fagan and Cartwright <rVr is defined 
only when a and r have different outermost type constructors. Their system has a decidable type 
reconstruction problem but lacks principal types. 

Freeman and Pfenning [18] describe a type system incorporating a variant of intersection and 
union types with the restriction that all conjuncts and disjuncts must have the same functionality. 
They propose a variant of Standard ML where an ML type is derived for an expression e and then 
refined by performing an abstract interpretation of e with respect to the finite lattice of restricted 
intersection and union types lying beneath it. 2 

Hayashi and Takayama [23, 25] propose a logic with a new existential quantifier whose read­
ability interpretation has the same form as a union type. The elimination form for this quantifier 
is rather limited, however [24]. 

2 The notion of union types used by Freeman and Pfenning was inspired by an early draft of the present report. 
Conversely, the idea of using intersection and union types to perform a restricted form of abstract interpretation 
during typechecking, used in several of the examples in Section 4, is based on early descriptions of their work. 
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2.3 P o l y m o r p h i s m 

The second-order polymorphic A-calculus was originally developed by Girard [19] and Reynolds [36] 
and has since been a topic of significant research from both theoretical and pragmatic perspectives. 
For present purposes, two lines of work are particularly relevant: 

1. Methods for encoding inductive datatype definitions as types in the pure polymorphic A-
calculus [4, 31, 32, 35, 36, 37]. These encodings form the basis for most of the examples 
presented here. 

2. Type systems combining polymorphism with an order structure on the set of types. 

The first calculus to combine polymorphism and subtyping was Cardelli and Wegners Bounded 
Fun [8]. Bounded Fun has been studied fairly extensively in its own right [3, 9] and has been incor­
porated into various proposals for programming languages with subtyping and polymorphism [5. 6]. 

Curien and Ghelli [16] have studied a minimal formulation of a second-order A-calculus with 
bounded quantification called F< ("F-sub"), containing only pure type and term constructors. 
Cardelli and others have extended the usual encodings of common inductive dataypes to encodings 
in F< [7] that take account of the order structure on types in interesting ways; these encodings 
have much in common with the examples shown in Section 4. 

One of the goals of this report is to formulate a type system combining polymorphism with 
intersection types. As far as I know, this combination has not yet been satisfactorily achieved in a 
programming-language context, though some preliminary work along these lines appears in [33, 34]; 
a more theoretical analysis of the combination has been carried out by Jacobs, Margaria, and 
Zacchi [26]. 

2.4 Finitary P o l y m o r p h i s m 

Because the type reconstruction problem for the usual formulation of intersection types is undecid-
able, a programming language incorporating intersections in its type system must use explicit type 
annotations to make the typechecking problem tractable. The solution adopted in Forsythe is to 
require type annotations on A-abstractions as usual in explicitly typed A-calculi, but to allow any 
finite number of types, rather than just one, to be mentioned as possible domains for the function 
described by the abstraction. The body of the abstraction is typechecked once for each given type 
and the results conjoined to form the final type of the abstraction. This maintains the decidability 
of typechecking, while allowing "finitely polymorphic" types to be derived for A-abstractions. 

The present report proposes a refinement of this scheme, where A-abstractions are annotated 
with exactly one type and a new for construct is introduced to provide finitary polymorphism. 
Separating the two mechanisms (functional abstraction vs. typechecking an under a finite set of 
assumptions) has two advantages: 

1. In calculi with (ordinary or bounded) universal polymorphism in addition to intersection 
types, a typing assumption may need to be mentioned explicitly as part of a type argument 
to a polymorphic function. The for construct provides a name (a type variable) for the 
assumptions it introduces. See Section 4.4. 

2. Even in the fragment without the universal quantifier, the explicit for construct may improve 
typechecking efficiency. See Section 4.6. 
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3 S y n t a x 

This section introduces the notational conventions used in the rest of the report and defines the 
concrete syntax and typing rules of A(V, A, V), a polymorphic A-calculus with intersection and union 
types. 

3.1 Notat iona l Convent ions 

The metavariables <r, r, 0, 0, and range over types; a and 0 range over a denumerable set of 
type variables; e, f, and b range over terms; x ranges over a denumerable set of variables. 

The notation r t , r 2, . . . , rn represents a finite sequence of types indexed by the set { 1 n } . 
where n > 0. To save space in formulas, r 1 ? r 2, . . . , r n is normally shortened to T\..rn. When the 
set that an index variable ranges over is clear from context, it is usually omitted. It is occasionally 
convenient to use a "sequence comprehension" notation to denote a finite sequence of types. For 
example, 

MWuTi] 11 < i < 3] = A[Vki ,n] , V K r 2 ] , V f o , ^ ] ] . 
The sets of types and typed terms are denned by the following abstract grammars:3 

r ::= a 

I A[Tl~Tn} 
I V[n..rn] 
| Va.r 

e ::= x 
| Ax:r. e 
| e e' 
| Aa. q 

i « w 
| for a in 7i..r n. e 
| case x = ei of e 2 

A context is a finite sequence of pairs x : r of a variable and a type, with no variable mentioned 
twice. The metavariable T ranges over contexts. The set of variables in T is written dom(T). 

FV(e) is the set of variables free in e. F T V ( r ) is the set of type variables free in r. FTV(T) is 
the set of type variables free in T, that is, 

F T V ( r ) = (J F T V ( t v ) . 
xt:rt-<=r 

Terms and types are identified up to renaming of bound (term and type) variables. When e 
and e' are the same modulo renaming of bound variables, we write 9 = 9 ' . 

When a term 9 is substituted for a variable x in another term 9 ' , written [e/x]e7, the bound 
variables of e ; are first renamed to be different from the free variables of e. Similarly, when a type r 
is substituted for a type variable a in r7, the bound variables of r' are first renamed to be different 
from the free variables of r. 

3 To reduce the number of cases in the grammar and inference rules, intersection and union are formulated as 
rc-ary type constructors rather than giving a binary and a miliary constructor for each. 
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The following abbreviations for common intersection and union types are useful for making 
complicated expressions more readable: 

NS S A[] 
aAr = /\[cr, T] 

VOID = V[] 
<JVT = \J[<T,T]. 

The "nonsense" type NS is a maximal element in the type preorder; VOID is a minimal element. 
The expression "aAr" may be read as u<7 intersect r," "cr meet r," or "cr and r." The expression 
"crVr" may be read as "<r union r," "cr join r," or "cr or r." 

Sessions with the prototype compiler for A(V, A, V) are set in a typewriter font using only Ascii 
symbols. The mathematical symbols used in the more formal A-calculus notation are transliterated 
as follows: 

Ascii 
s , t <T, T 

'a , >b a, 0 
S 

A A, A 
\ / V, v 
All 'a . t Va. r 
\ x : s . e Ax:<7. e 
W'a . e Aa. e 
<- < 

3.2 T h e S u b t y p e Relat ion 

We define a preorder < on the set of type expressions, where a < r asserts that every value in 
type a is also in type r, or, operationally, that a term of type a may safely be used in any context 
where a term of type r is expected. When cr < r we say that a is a subtype of r and that r is a 
supertype of a . When a and r inhabit the same equivalence class in the subtype preorder (cr < r 
and r < a), we say that a and r are equivalent and write <J~T. 

The rules in this section and the following one are summarized in Appendix A. 

The first two rules state that < is a preorder. 

T <r (Sub-Refl) 

<T < 9 9 < T ™ x 
— = = — (Sub-Trans) 

The subtyping rule for arrow types is covariant on the right hand side and contravariant on the 
left, as usual. 

Ti < <J\ (72 < r2 (Sub-Arrow) 

V is covariant in its body type. 
- (Sub-All) 

Va.cr < Va.r 
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A [ r i - - r n ] is a greatest lower bound of r t . .r n . 

for all i, a < rt-
( S u b - I n t e r - G ) 

^ < Atn-Tn] 

A[n»Tn] < T{ ( S u b - I n t e r - l b ; 

V [ r i - * r n ] is a least upper bound of Ti..rn. 

for all i, <7t- < r 
— 7 r — ( S U B - U N I O N - L ) 

\J[<T\..(Tn\ < T 

n < y[ri..rn] ( S u b - U n i o n - U B ) 

Arrows may be distributed over intersections on the right hand side and over unions of the 
left hand side. When an arrow is distributed over a union, the union changes to an intersection. 
Similarly, quantifiers distribute over intersections. (These rules and the two distributive laws below 
are actually equivalences; the other directions may be derived from the laws for A and V. ) 

A [ ( 7 ^ r 1 . . ( T - r n ] < <7->/\[Ti..Tn] ( S u b - D i s t - A I ) 

l\[<T\-+T..<TN-+T] < V f c l - ^ n ] — T ( S U B - D l S T - A U ) 

A[Va.r 1..Va.r n] < Va.A[n..r n] ( S u b - D i s t - Q I ) 

Finally,4 intersections and unions distribute with each other. 

u = [V[n , i - r i ,m 1 ] . .V[^na . .T n , m n ] ] 
I = [Mrhji ~TnJn] 1 1 <ji < mi] 

V I < Au 
1 = [A[n,i~Thmi}..f\[Tnyl..rnymn]] 

U 5 [ V l r i ^ . . ^ ] 1 1 < j ^ m , - ] 

Au < V i 

( S u b - D i s t - I U : 

( S u b - D i s t - U I I 

These laws may be used to transform type expressions into a "canonical form" where arrows and 
quantifiers have been pushed inward as far as possible, intersections distributed over unions, and 
most redundant conjuncts and disjuncts dropped. (For efficiency in the normalization procedure, 
redundant conjuncts and disjuncts are not guaranteed to be dropped; a simple heuristic discovers 
most situations where they may be.) For example:5 

4There is one other plausible distributive law, relating quantifiers and arrows: 

a i F T V ( n ) 
^—^r: 7 (SUB-DlST-QA) 

Since its status is less clear than the other rules and it appears somewhat tricky to implement, it is omitted from the 
present formulation. 

5 In sessions with the prototype compiler, lines of input typed by the user are preceded by an angle bracket. 
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> n o r m a l i z e t l A N S A t l ; 

N o r m a l f o r m : t l 

> n o r m a l i z e ( s l \ / s 2 ) - > ( t l / \ t 2 ) ; 

N o r m a l f o r m : s l - > t l A s 2 - > t l / \ s l - > t 2 / \ s 2 - > t 2 

> n o r m a l i z e t l \ / ( t 2 / \ t 3 ) ; 
N o r m a l f o r m : ( t l \ / t 2 ) / \ ( t l \ / t 3 ) 

> n o r m a l i z e s - > ( t l / \ t 2 ) ; 

N o r m a l f o r m : s - > t l A s - > t 2 

> n o r m a l i z e s - > N S ; 

N o r m a l f o r m : NS 

> n o r m a l i z e VOID - > t ; 

N o r m a l f o r m : NS 

> n o r m a l i z e A l l ' a . , a - > ( t l / \ t 2 ) ; 

N o r m a l f o r m : ( A l l ' a . ' a - > t l ) A ( A l l ' a . * a - > t 2 ) 

> n o r m a l i z e A l l ' a . N S ; 

N o r m a l f o r m : NS 

> n o r m a l i z e s - > ( t l \ / ( t 2 / \ t 3 ) ) ; 

N o r m a l f o r m : s - > ( t l \ / t 2 ) A s - > ( t l \ / t 3 ) 

> n o r m a l i z e ( s l / \ ( s 2 \ / s 3 ) ) - > t ; 

N o r m a l f o r m : ( s l A s 2 ) - > t A ( s l / \ s 3 ) - > t 

3.3 Wel l -Typed Terms 

W e c a n n o w d e f i n e t h e s e t o f we l l t y p e d A(V, A, V) t e r m s . 

T h e S u b s u m p t i o n r i d e s t a t e s t h a t a t y p e t h a t h a s b e e n d e r i v e d f o r a t e r m m a y b e p r o m o t e d , 

a s d e s i r e d , t o a n y s u p e r t y p e . 
r h e € c r c r < r 

— ( S u b s u m p t i o n ) 
r h e € r 

(The claim that this rule is valid essentially amounts to asserting that the subtype relation is 
correctly defined.) 

The intersection introduction rule states that if all of the types Ti„rn have been derived for an 
expression e , then A [ r i - r n ] m a y ^ s o be derived. 

for alii, T h e € r t 

( I N T E R - I ) 
r h e € A[n-.rn] 

No elimination rule will be needed for intersection types; its effect is already provided by the 
S u b s u m p t i o n rule. For the same reason, no introduction rule is needed for union types. 
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THE RULES FOR TYPING VARIABLES, ABSTRACTIONS, AND APPLICATIONS ARE THE USUAL ONES. 

R 1 ? x : r, T 2 h x e r ( Var 

T, x : <7 h a € r 
T h Ax:<7. 9 € <r—*r 

T h f €(7—r R h 9€<7 

( A r r o w - I ) 

( A r r o w - E ) 
T H f 9 € R 

To apply the A r r o w - E rule, the rule of Subsumption may need to be applied to the types of the 
function f and/or the argument e so that the type of e precisely matches the domain type of f:° 
> \ f : s l - > t . \ x : s l / \ S 2 . f x; 
i t : ( s l -> t ) -> ( s l / \ S 2 ) -> t 

If f has an intersection type, A r r o w - E may be applied more than once to give different types for 
(f x), which may then be conjoined using Inter - I : 7 

> \ f : s l - > t l / \ S 2 - > T 2 . \ x : s l / \ S 2 . f x; 
i t : 

( s l - > t l / \ S 2 - > T 2 ) - > ( s l / \ S 2 ) - > t l 
A ( s l - > t l / \ S 2 - > T 2 ) - > ( s l / \ S 2 ) - > T 2 

If f has an intersection type, some of whose conjuncts are not arrow types, then the application 
rule is not used for these conjuncts. In the result type of the application (f x), these applications 
simply disappear: 

> \ f : s l / \ S 2 - > t . \ x : S 2 . f x; 
i t : ( s l / \ S 2 - > t ) -> S2 -> t 

Similarly, if x has an intersection type, some of whose conjuncts are not subtypes of any domain 
type of f, the A r r o w - E rule fails to apply for these conjuncts and they disappear in the result 
type: 

> \ f : s l - > t . \ x : s l / \ S 2 . f x; 
i t : ( s l -> t ) -> ( s l / \ S 2 ) -> t 

Together, these observations illustrate some of the power of the conjunctive typing discipline by 
allowing a restricted form of self-application: 

> \ f : s / \ s - > t . f f; 
i t : ( s / \ s - > t ) -> t 

If f and x fail to have any supertypes to which the Union-E rule is applicable, the minimal type 
of the application is NS: 

6 To reduce clutter in some of the examples, primitive (-built-in") types like s i are used in place of type variables 
Ineir formal treatment is discussed in Section 5 .1. 

By convention, when an "anonymous" term is presented to the compiler's read-eval-print loop, it is assigned the 
name i t so that it can be referred to again. 

7Arrow binds more tightly than intersection or union. 
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> \ f : s l . \ x : s 2 . f x; 
i t : NS 

Indeed, every A(V, A, V) term has type NS. The NS type in this calculus (as in Forsythe) corresponds 
both to complete lack of information about a term's runtime behavior and to typechecking failure. 

The rules for type abstractions and applications are standard. 

r H e € T a * F T V ( r ) 
— ( A L L - i ) T h Aa. e € Va. r 

T h e € Va.r ( A l l - E ) 
T h Q[<T] e [<r/a]r 

Similar observations to the ones above for the Union-E also apply to A l l - E : 

> ( W a . \ x : ' a . x ) [s] ; 

i t : s - > s 

> \f: ( A l l 'a . , a - > , a ) . \ x : s . f [s] x ; 
i t : ( A l l 'a . 'a->'a) -> s -> s 

> f : ( A l l 'a . > a - > ( t l / \ t 2 ) ) ; 
f : ( A l l ' a . * a - > t l ) / \ ( A l l ' a . * a - > t 2 ) 

> f Cs] ; 
i t : s ->t l / \ s - > t 2 

> f : ( A l l 'a . ' a - > ( t l / \ t 2 ) ) A s->t; 
f : ( A l l ' a . ' a - > t l ) / \ ( A l l ' a . ' a - > t 2 ) / \ s - > t 

> f [u] ; 
i t : u->tl / \ u - > t 2 

> \ x : s . f x ; 

i t : s -> t 

The union elimination rule is probably the most novel element of the calculi investigated in this 
report. 

T h e in V[ri..rw] for all i, T, x : n h e / 6 r / T T m t a m 

T h case 8 of x e' € r 
Operationally, the rule reads as follows: if an expression e has type V[ ri-- rn]> a ^d if ey is an 

expression with a free variable x , such that e7 has type r under the assumption that x has type rx 

for every i, then case x = e of e7 has type r as well. 
For example, if 

> f : s l - > t A s 2 - > t ; 
f : s l - > t A s 2 - > t 

and 
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> e : s l \ / S 2 ; 
e : s i \ / S 2 

then the value of e will certainly have either type s i or type S2; in both cases, supplying it AS AN 
argument to f will yield a a result of type t: 

> case x=e of f x; 
i t : t 

To make typechecking more efficient, the syntactic marker "case" is used to indicate where ANION 
elimination may be applied: 

> \ f : s l - > s l - > t / \ S 2 - > S 2 - > t . \ e : s l \ / S 2 . case x=e of f x x; 
i t : 

( s l - > s l - > t / \ S 2 - > S 2 - > t ) - > s l - > t 
A ( s l - > s l - > T A S 2 - > S 2 - > t ) - > S 2 - > t 

> \ f : s l - > s l - > T A S 2 - > S 2 - > t . \ e : s l \ / S 2 . f e e ; 
i t : NS 

The rule can also be formulated without the case, placing on the typechecker the burden of choosing 
the correct points to apply union elimination. (See Section 5.3.) 

Since A-abstractions may be annotated only with a single domain type, the constructs described 
so far do not allow the "finitary polymorphism" of functions with intersection types to be inherited 
by function definitions that use them. For example, assume we have a type int and a type real 
such that int < r e a l 8 

> prim int <= real ; 

and a plus function that maps pairs of integers to an integer and pairs of reals to a real: 

> plus : int -> int -> intAreal ->rea l ->rea l ; 
plus : int ->int ->int A real->real->real 

Then 

> \ x : i n t . plus x x; 
i t : int -> int 

> \ x : r e a l . plus x x; 
i t : real -> real 

> \ x : i n t / \ r e a l . plus x x; 
i t : int -> int 

> \ x : i n t \ / r e a l . plus x x; 
i t : int->real A real->real 

Again, the specification of a subtype relation on primitive types falls outside the calculus defined in this section 
though it is supported by the prototype compiler. See Section 5.1. 
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To allow the type int—• int A real-^real to be derived for this function, it is necessary to 
typecheck the body twice — once under the assumption that x : int and once under the assumption 
that x : real . The for construct is used for this purpose: 

r

 F *~ [ < T i / a ] * 6 T ' ( F o r ) 
i r for a in a\..on. e € rt-

Using F o r , our function definition can be typechecked twice and the results conjoined using 
I n t e r - I to obtain the desired type: 

> for 'a in i n t , r e a l . \ x : ' a . plus x x; 
i t : int ->int A real->real 

For notational convenience, when a $. FTV(e) we write 

Ax:ri..rn.e = f for a in Ti..rn. Ax:a.e. 

as in Forsythe: 

> \ x : i n t , r e a l , plus x x; 
i t : int->int A real->real 

4 E x a m p l e s 

To make the foregoing definitions more concrete and demonstrate some of the expressive power of 
A(V, A, V) , we now develop several larger examples. The interactions shown are reproduced exactly 
from sessions with a prototype compiler implemented in Standard ML. 

The compiler itself is not discussed in detail in this report, beyond a rough sketch of its internals 
in Section 4.1.1. The focus in the work described here has been on the examples that could be 
expressed rather than the compiler technology necessary to support their translation. In particular, 
the completeness of the algorithms used in the typechecker have not been proved complete. 

4.1 T h e Compi ler 

We begin by sketching the architecture and some of the features of the compiler. 

4.1.1 Internals 
The high-level flow of information through the compiler is as follows: 

1. An expression typed by the user is parsed into an abstract syntax tree. 

2. The abstract syntax tree is passed to the typechecker, which returns a data structure rep­
resenting a proof of a (purportedly) minimal typing for this term in the inference system 
described in Section 3. 

3. Because it was coded for simplicity rather than efficiency, the typing derivations returned by 
the typechecker can be quite large. A simple proof-normalization procedure transforms the 
original derivation into an equivalent but more compact derivation. 
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4. Object code for the expression is produced by walking over the optimized typing derivation 
and generating a Standard ML program, which is then passed to the Standard ML compiler ro 
be translated to native code and executed. (Standard ML makes a convenient target language 
in this case because the prototype compiler itself is implemented in SML. The only hitch is 
that, since the type system of A(V,A, V) is more flexible than that of SML, instances of an 
unsafe "typecast" operator must be sprinkled through the SML object code to discourage the 
SML typechecker.) 

The present compilation scheme translates values of intersection types into expressions whose 
result is a list with the same number of elements as the original type had conjuncts. Union 
types are translated into variant records. 

5. The result is printed, along with its type. 

4.1.2 Type abbreviations 

The keyword type introduces an abbreviation for a common type expression. 

> type Polyld = All 'a. 'a -> 'a; , 
type Polyld = All 'a. 'a -> 'a 

When a type involving the abbreviation is presented to the parser, it is immediately expanded. 
All internal processing is in terms of the expansion: 

> \pid:Polyld. pid [ i n t ] ; 
i t : Polyld -> int -> int 
val i t = <fn> 

Finally, when the top-level read-eval-print loop is about to print a type, it checks whether any 
subexpressions are equal (modulo renaming of bound type variables) to the right hand side of 
previously introduced type abbreviations. If so, it prints the names of the abbreviations in place 
of the subexpressions themselves: 

> \ V a . \ x : ' a . x; 
i t : Polyld 
val i t = <typefn> 

4.1.3 Observing results 

The final feature of the compiler that is important for present purposes is the facility for printing 
the results of computations on encodings of algebraic datatypes.9 

For example, the usual encoding of booleans in the polymorphic A-calculus is: 

> type Bool = All ' t . ' t -> ' t -> »t; 
type Bool = All ' t . ' t -> ' t -> ' t 

The boolean values t t and ff are then defined as: 

9 A similar facility is discussed by Michayiov and Pfenning [29]. 
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> t t = W t . \x : ' t . \y: ' t . x; 
t t : BOOL 
VAL TT = <TYPEFN> 

> FF = W t . \ X : ' T . \ Y : ' T . Y; 
FF : BOOL 
VAL FF = <TYPEFN> 

The default result-printing mechanism is only able to display the fact that these values are both 
type functions. However, we can install a special-purpose printing function for a specified type, 
providing an SML function to be applied to a runtime result of this type to coerce it into a string:10 

> i n s t a l l 'FUN B.TO.STR b = b () "TT" " F F " ; ' ; 

> OBSERVE BOOL == ' B . T O . S T R * ; 

> ( \X:BOOL. X) TT; 
IT : BOOL 
VAL IT = TT 

In some of the examples below, where the results that would be printed are uninteresting, the 
code generation and execution phases are omitted. 

4.2 Church ar i thmet ic 

Our first programming example shows a variant OF Church's encoding of natural numbers where 
the type ZERO, whose only member is the encoding OF the number ZERO, is distinguished from the 
type POS, whose members are all the positive natural numbers. 

4.2.1 Type definitions 

For comparison, recall that Church numerals are encoded in the ordinary polymorphic A-calculus 
as elements of the following type: 

> TYPE ORIGNAT = ALL ' T . O t - V T ) - > ' T - > ' T ; 
TYPE ORIGNAT = ALL ' T . ( , T - > , T ) - > ' T - > 't 

To print an element of NAT, we apply it to the integer successor function and the integer 0. 

> INSTALL 'FUN PRT.ORIGNAT ( N : U N I T - > U N I T - > ( I N T - > I N T ) - > I N T - > I N T ) = 
> MAKESTRING (N ( ) ( ) (FN I = > I + L ) 0 ) ; ' ; 

> OBSERVE ORIG ~ 'PRT.ORIGNAT' ; 

Then the first few natural numbers are encoded as follows. 

1 0 The first argument passed to b in the body of the printing function is a placeholder for the type parameter 
expected by values of type Bool. The code generation phase of the compiler erases all type information except the 
positions of type abstractions and applications. 
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> origzero = W t . \ s : ' t - > ' t . \ z : ' t . z; 
origzero : QrigNat 
val origzero = <typefn> 

> origone = W t . \ S : , t - > , t . \ z : ' t . S z; 
origone : OrigNat 
val origone - <typefn> 

> origtwo = W t . \ s : , t - > , t . \ z : ' t . S (S z) ; 
origtwo : OrigNat 
val origtwo = <typefn> 

Operationally, THE type argument 't to an element e element OF type QrigNat NAMES THE TYPE of 
THE result of the n-fold iteration of the argument S over the argument z, where n IS THE NUMBER 
coded by e. 

Since we intend to distinguish zero from all other natural numbers, our encoding HERE NEEDS to 
take two type arguments — one for the result type of a 0-fold iteration of S over z (that IS, z itself) 
and one for the result type of an n-fold iteration of S over z, for some n > 1. Also, THE function 
s must map elements of 'z to elements of 'p (on the first iteration, when it is applied TO THE BASE 
element z) and elements of 'p to elements of 'p (for successive iterations). 

> type Zero = All >z. All 'p. / \ C , z - > , p , , p - > , p ] -> 'z -> 'z; 
type Zero = All 'z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , z - > , z ) 

> type POS = All ' z . All 'p. / \ C , z - > , p , , p - > , p ] -> 'z -> 'p; 
type POS = All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , z - > , p ) 

Now, the type of all natural numbers is just the union of Zero and POS: 

> type Nat * Zero \ /POS; 
type Nat = Zero \ / POS 

Again, to print elements of Zero and POS, we apply them to the integer successor function AND 
the integer 0. 

> i n s t a l l 'fun prt.Nat (n :un i t ->uni t ->( ( in t -> int ) l i s t ) -> int -> int ) = 
makestring (n () () [(fn i=> i+ l ) , ( fn i=>i+l) ] 0 ) ; ' ; > 

> observe Zero ~ 'prt .Nat'; 

> observe Pos == c prt_Nat'; 

Aside from their types, elements of Nat are precisely the same as the corresponding elements 
of OrigNat. 

> zero = W z . W p . \ s : / \ [>z-> 'p ,>p->'p] . \ z : ' z . z; 
zero : Zero 
val zero = 0 

> ONE = \ \ > z . W p . \ s : / \ [ ' z - > ' p , ' p - > ' p ] . \ z : ' z . S z; 
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one : P o s 

val one = 1 

> t w o = W z . \ V p . \ s : / \ [ , z - > ^ p , , p - > J p ] . \ z : ' z . s ( s z) ; 
t w o : P o s 

v a l t w o = 2 

4 . 2 . 2 B a s i c a r i t h m e t i c f u n c t i o n s 

The successor function for ordinary church numerals takes a numeral n as argument and returns a 
new numeral that iterates n times and then once more. 

> o r i g s u c c * \ n : 0 r i g N a t . W t . \ s : ' t - > ' t . \ z : ' t . s ( n C ' t ] s z ) ; 

o r i g s u c c : O r i g N a t - > O r i g N a t 

Successor for our new encoding is exactly the same, except that we explicitly allow for the 
argument n to be either Z e r o or P o s and check the body separately for each case. 

> s u c c = \ n : Z e r o , P o s . 
> W ' z . \ V p . \ s : / \ [ ' z - > ' p , ' p - > ' p ] . \ z : ' z . 
> s ( n C ' z ] C ' p ] s z ) ; 
s u c c : Z e r o - > P o s A P o s - > P o s 

> o n e s s u c c z e r o ; 

o n e : P o s 

Addition o f original-style church numerals m and n is defined by iterating the successor function 
m times, using n as the starting value instead o f z e r o . 

> o r i g p l u s = \ m : O r i g N a t . \ n : O r i g N a t . m [ O r i g N a t ] o r i g s u c c n; 

o r i g p l u s : O r i g N a t - > O r i g N a t - > O r i g N a t 

Again, addition of numerals is exactly the same, except that we need to be more careful about 
the types. As for s u c c , we allow the types o f both m and n to be either Z e r o or P o s , checking the 
body separately in each case. Here, though, we need to use the f o r construct explicitly so that 
we have a name for the type o f n : this type will be passed as the result type of a 0-fold iteration 
of s u c c over n — that is, the result o f a p p l y i n g m to s u c c and n in the case that m happens to be 
z e r o . When m has type P o s , the result type o f the iteration is always P o s . 

> p l u s = f o r ' m i n Z e r o , P o s . 

> f o r ' n i n Z e r o , P o s . 

> \ m : ' m . \ n : ' n . 

> m C ' n ] [ P o s ] s u c c n ; 

p l u s : Z e r o - > Z e r o - > Z e r o A Z e r o - > P o s - > P o s A P o s - > Z e r o - > P o s A P o s - > P o s - > P o s 

Multiplication and exponentiation of our numerals can be defined in the same way. 

> m u l t = f o r ' m i n Z e r o , P o s . 

> f o r 'n i n Z e r o , P o s . 
> \m:}m. X n r ' n . 

> m [ Z e r o ] [ * n ] ( p l u s n ) z e r o ; 

m u l t : 
Z e r o - > Z e r o - > Z e r o A Z e r o - > P o s - > Z e r o A P o s - > Z e r o - > Z e r o A P o s - > P o s - > P o s 
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> exp = for 'm in Zero,Pos. 
> for } n in Zero,Pos. 
> \m:'m. \n:*n. 
> n [Pos] C'm] (mult m) one; 

exp : Zero->Zero->Pos A Zero->Pos->Zero / \ Pos->Zero->Pos / \ Pos->Pos->Pos 

4.2.3 Predecessor 
Defining the predecessor function on Church's original encoding was a significant feat in the earl 
days of A-calculus.11 First, we need pairing functions for numerals: 

> type OrigNatPair = All 'r . (OrigNat->QrigNat->*r) -> 'r; 
type OrigNatPair = All 'r . (OrigNat->OrigNat->'r) -> 'r 

> origpair = \pl:OrigNat. \p2:OrigNat. 
> W r . \f:(OrigNat->OrigNat->'r). 
> f pi p2; 
origpair : OrigNat t> OrigNat -> OrigNatPair 

> or igfs t = \p:OrigNatPair. p [OrigNat] (\pl:OrigNat. \p2:0rigNat. p i ) ; 
or igfs t : OrigNatPair -> OrigNat 

> origsnd » \p:OrigNatPair. p [OrigNat] (\pl:OrigNat. \p2:OrigNat. p2); 
origsnd : OrigNatPair -> OrigNat 

Then predecessor is defined by an iteration that starts with the pair (zero,zero) and returns, 
as the result of the nth iteration, the pair (n,pred n): 

> origpred = \n:OrigNat. 
> origsnd (n [OrigNatPair] 
> (\p.-OrigNatPair. origpair 
> (origsucc (or igfs t p)) 
> (or igfs t p)) 
> (origpair origzero origzero)) ; 
origpred : OrigNat -> OrigNat 

For our new encoding, we need three separate pair types: 1 2 

> type ZeroZeroPr = All *r. (Zero->Zero-> , r)-> , r; 
type ZeroZeroPr = All ' r . (Zero->Zero-> ,r) -> »r 

> type PosZeroPr = All 'r . (Pos->Zero->'r)->'r; 
type PosZeroPr = All ' r . (Pos->Zero->*r) -> 'r 

nReaders unfamiliar with this encoding may find the more expository presentations in [35, 37] helpful. 

rU W ! W e r e 7 ° r k i n g * a c a J c u l u s w i t h higher-order polymorphism (see Section 6), Pair itself would be a tvpe 
constructor and we would simply apply it to pairs of types as needed. Here we're forced to write out Pair(a,^ for 
each a and 3 where it's needed. 1 u r 
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> TYPE POSPOSPR = ALL ' R . ( P O S - > P O S - > ' R ) - > ' R ; 
TYPE POSPOSPR = ALL ' R . ( P O S - > P O S - > ' R ) - > 'R 

> PAIR 
> 

FOR ' P I IN ZERO,POS. 

> 
FOR ' P 2 IN ZERO,POS. 

\ P L : ' P L . \ P 2 : ' P 2 

> 
> W ' R . \ F : ' P L - > ' P 2 - > ' R . 

F P I P 2 ; 
PAIR 

ZERO->ZERO->ZEROZEROPR 
/ \ ZERO->POS->(ALL ' R . ( Z E R O - > P O S - > ' R ) - > ' R ) 
A POS->ZERO->POSZEROPR 
/ \ POS->POS->POSPOSPR 

> FST = FOR ' P I IN ZERO,POS. 
> \ P : (ALL ' R . C P L - > N S - > ' R ) - > ' R ) . 
> P [ ' P I ] ( \ P L : ' P L . \ P 2 : N S . P I ) ; 
FST : (ALL ' R . ( Z E R O - > N S - > ' R ) - > ' R ) - > Z E R O / \ (ALL ' R . ( P O S - > N S - > ' R ) - > ' R ) - > P o s 

> SND = FOR ' P 2 IN ZERO,POS. 
> \ P : (ALL ' R . ( N S - > ' P 2 - > ' R ) - > ' R ) . 
> P C ' P 2 ] ( \ P L : N S . \ P 2 : ' P 2 . P 2 ) ; 
SND : (ALL ' R . ( N S - > Z E R O - > ' R ) - > ' R ) - > Z E R O / \ (ALL ' R . ( N S - > P O S - > ' R ) - > ' R ) - > P O S 

Now we can have enough types to express the predecessor function in the same style as above. 

> PRED = \ N : P O S . 
> SND (N [ZEROZEROPR] [POSPOSPR\/POSZEROPR] 
> (\P:ZEROZEROPR,POSPOSPR\/POSZEROPR. 
> PAIR (SUCC (FST P ) ) (FST P ) ) 
> (PAIR ZERO Z E R O ) ) ; 
PRED : POS - > (POS\ /ZERO) 

The most interesting feature of this example is that it's the first use we've seen of a union type — 
one of the few that I know of— where the union is essential, that is, where the union cannot be 
transformed into an intersection by applying the S U B - D I S T - A U law and where the function cannot 
be given an appropriate type without using unions. 

4 . 2 . 4 TESTING FOR ZERO 

Our PRED function has intentionally been defined so that applying it to a numeral that is not known 
to be positive fails. 

> F S \X :NAT. PRED X; 
F : NS 

Using a technique similar to that used for PRED, we can define a NATCASE function that takes 
a natural number n, a function (like PRED) that expects only positive arguments, and a default 
argument to be returned when n is ZERO and applies the function to n if possible. 
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> type ZERONATPR = ALL ' r . (ZERO->NAT -> ' r ) -> ' r ; 
type ZERONATPR = ALL } r . (ZERO->ZERO -> 'r / \ZERO->POS -> 'r ) -> 'r 

> TYPE POSNATPR = ALL >R. ( P O S - > N A T - > ' R ) - > ' R ; 
TYPE POSNATPR = ALL ' R . ( P O S - > Z E R O - > * R / \ P O S - > P O S - > ' R ) - > 'R 

> PAIRN = FOR ' P I IN ZERO,POS. 
> \ P L : ' P L . \p2 :NAT. 
> W r . \ F : ' P L - > N A T - > ' r . 
> F P I p2; 
PAIRN : 

ZERO->ZERO->ZERONATPR 
/ \ ZERO->POS->ZERONATPR 
/ \ POS->ZERO->POSNATPR 
/ \ POS->POS->POSNATPR 

> FSTN = FOR ' P I IN ZERO,POS. 
> \ P : (ALL ' R . ( , P L - > N S - > , R ) - > , R ) . 
> P C p l ] ( \ p l : ' p l . \ P 2 : N S . P I ) ; 
FSTN : 

(ALL ' R . ( Z E R O - > N S - > , R ) - > , R ) - > Z E R O / \ (ALL >R. ( P O S - > N S - > ' R ) - > ' R ) - > P O S 

> SNDN = \ P : (ALL >R. ( N S - > N A T - > ' R ) - > ' R ) . 
> P [NAT] ( \ p l : N S . \ P 2 : N A T . P 2 ) ; 
SNDN : (ALL ' R . ( N S - > Z E R O - > ' R / \ N S - > P O S - > ' R ) - > J R ) - > NAT 

> NATCASE = \ N : Z E R O , P O S . 
> \SCASE:POS->NAT. \ZCASE:NAT. 
> SNDN (N [ZERONATPR] [POSNATPR] 
> (\P:ZERONATPR,POSNATPR. 
> PAIRN (SUCC (FSTN P ) ) 
> (SCASE (SUCC (FSTN P ) ) ) ) 
> (PAIRN ZERO ZCASE) ) ; 
NATCASE : 

ZERO->(POS->NAT)->ZERO->NAT 
/ \ ZERO->(POS->NAT)->POS->NAT 
/ \ POS->(POS->NAT)->ZERO->NAT 
/ \ POS->(POS->NAT)->POS->NAT 

> F = \ X : N A T . NATCASE X PRED ZERO; 
F : ZERO->NAT / \ POS->NAT 

4.3 Church Ar i thmet i c (Al ternate Form) 

There is another way of encoding the basic arithmetic functions on Church numerals: 

> ORIGPLUS' = \M:ORIGNAT. \N:ORIGNAT. 
> \ \ ' T . \ S : , T - > , T . \ Z : ' T . 
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> m C't] s (n C't] s z) ; 
origplus' : OrigNat -> OrigNat -> OrigNat 

> ORIGMULT' » \M:ORIGNAT. \n:ORIGNAT. 
> W t . \ S : ' T - > ' T . 
> M C 'T] (N C 'T] s ) ; 
ORIGMULT' : ORIGNAT - > ORIGNAT - > ORIGNAT 

> origexp' 
> 

\M:OrigNat. \n:OrigNat. 

> 
Wt. 

n C ' T - > ' T ] (M C ' T ] ) ; 
ORIGEXP' : ORIGNAT - > ORIGNAT - > ORIGNAT 

This version of the arithmetic functions is interesting to try to emulate on our new encoding; 
the solution involves some fairly tricky use of the FOR construct. Also, the exponential function in 
this encoding requires iteration at higher types, which provides another good test of the limits of 
this encoding.1 3 

We need to use a slightly more refined formulation for ZERO here. 

> TYPE ZERO = ALL ' Z . ALL ' P . NS - > ' Z - > ' Z ; 
TYPE ZERO = ALL ' Z . (ALL ' P . N S - > ' Z - > ' Z ) 

> TYPE POS » ALL ' Z . ALL ' P . A [ , Z - > , P , ' P - > ' P ] - > ' Z - > ' P ; 
TYPE POS = ALL ' Z . (ALL ' P . ( , Z - > ' P / \ , P - > , P ) - > , Z - > ' P ) 

> TYPE NAT = ZERO\ /POS; 
TYPE NAT » ZERO \ / POS 

> INSTALL 'FUN PRT.NAT ( N : U N I T - > U N I T - > ( ( I N T - > I N T ) L I S T ) - > I N T - > I N T ) = 

> MAKESTRING (N ( ) ( ) [ ( F N I * > I + L ) , ( F N I = > I + D ] 0 ) ; ' ; 

> OBSERVE ZERO == ' P R T . N A T ' ; 

> OBSERVE POS == ' P R T . N A T ' ; 

The novel feature of the PLUS 7 function on our new encoding is the use of the FOR construct in 
the second line from the end to "guess" the result type of the iteration when M is ZERO. What we 
want to write, intuitively, is "If n has type ZERO then apply M to 'Z , otherwise apply M to 'p." But, 
of course, this falls far outside of what can be expressed in a type system of this kind. What is 
surprising is that it can be simulated by guessing: we simply try applying M to both 'Z and 'p in 
turn. One choice is the one that we "should" have made, and it yields the desired result type. The 
other choice is wrong, yields an ill-typed application in the last line, and drops out of the result. 
> PLUS' S \M:ZERO,POS. \ N : Z E R O , P O S . 
> W ' Z . W ' p . 

1 3 I t may provide an even better test of the limits of the encoder. It took me several hours to figure out how to 
type this version of the exponential function. 



4 EXAMPLES 

> \ s : (»z\ / 'p)->'p,NS. 
> \ z : ' z . 
> for 'g in ' z , ' p . 
> m C'g] C'p] s (n C'z] CJp] s z ) ; 
plus' : 

Zero->Zero->(All 'z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , z - > , z ) ) 
/ \ Zero->Zero->Zero 
/ \ Zero->Pos->Pos 
/ \ Pos->Zero->Pos 
A Pos->Pos->Pos 

The typing that the typechecker discovers for this function is actually slightly better than we need 
the first conjunct is a proper subtype of Zero->Zero->Zero.1 4 

The cases for multiplication and exponentiation are similar, but slightly more complicated. 

> mult* = \m:Zero,Pos. \n:Zero,Pos. 
> W z . W p . 
> \ s : (>z\ / 'p)->'p,NS. 
> for 'gl in ' z , ' p . 
> m C'z] C g l ] 
> (for 'g2 in ' z , ' p . 
> (n [>g2] ['pj s ) ) ; 
mult 1 : 

Zero->Zero->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , z - > , z ) ) 
/ \ Zero->Zero->Zero 
A Zero->Pos->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , z - > , z ) ) 
/ \ Zero->Pos->Zero 
/ \ Pos->Zero->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > ' z - > , z ) ) 
/ \ Pos->Zero->Zero 
/ \ Pos->Pos->Pos 

> exp' = \m:Zero,Pos. \n:Zero,Pos. 
> W z . W p . 
> for 'n in NS, , z - > , p / \ , p - > , p . for 'm in ' z ^ p . 
> n ['n] [ , z-> , m/\ , m-> , m] 
> (for ' g l , ' g 2 in ' z , ' p . 
> m C'gl] C'g2]); 
exp' : 

Zero->Zero->Pos 
/ \ Zero->Zero->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > ' p - > , p ) ) 
/ \ Zero->Pos->Zero 
/ \ Pos->Zero->Pos 
/ \ Pos->Zero->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , p - > , p ) ) 
/ \ Pos->Pos->Pos 
/ \ Pos->Pos->(All ' z . (All 'p. ( , z - > , p / \ , p - > , p ) - > , p - > , p ) ) 

1 4 This means, of course, that the second conjunct can be dropped without changing the type. The type simplifi­
cation heuristic presently used in the compiler misses this case. P 
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The diagonalization of this formulation of the exponential function is particularly interesting, 
since it involves a polymorphic self-application. 

> d i a g ' = \ n : Z e r o , P o s . exp' n n; 
d i a g ' : 

Zero->Pos 
A Zero->(Al l ' z . ( A l l 'p. ( , z - > , p / \ , p - > , p ) - > , p - > , p ) ) 
/ \ Pos->Pos 

/ \ P o s - > ( A l l ' z . (A l l 'p. ( , z - > ' p / \ , p - > , p ) - > , p - > , p ) ) 

4.4 Church Booleans 
We can play a similar game with operations on booleans, using a Church-like encoding that dis­
tinguishes "true" booleans from "false" booleans. 
> type T = A l l ' a . A l l ' b . 'a -> NS -> 'a ; 
type T = A l l ' a . ( A l l ' b . , a - > N S - > , a ) 

> type F = A l l ' a . A l l ' b . NS -> 'b -> ' b ; 
type F = A l l ' a . ( A l l ' b . NS->'b->'b) 

> type Bool = T \ /F ; 
type Bool = T \ / F 

> observe T ~ ' f n b => " t t " c ; 

> observe F == ' f n b => " f f ; 

> t t = \ V a . W b . \ x : ' a . \ y :NS. x; 
t t : T 
va l t t = t t 

> f f = \ V a . W b . \x :NS. \ y : ' b . y; 
f f : F 
va l f f = f f 

The type of the boolean-not function is its truth table: 

> bnot « \m:T,F. 
> W a . W b . 
> \ x : N S , ' a . \ y : N S , ' b . 
> n C'b] [ 'a] y x; 
bnot : T->F / \ F->T 
va l bnot = <inter> 

> bnot t t ; 
i t : F 
va l i t = f f 
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Without the ; 4f or :' construct, the best typing we can obtain for boolean-or is: 

> bor = \m:T,F. \n:T,F. 
> m [T] [Bool] t t n; 
bor : T->T->T A T->F->T / \ F->T->Bool A F->F->Bool 
val bor » <inter> 

Using "for," we obtain a more refined type for boolean-or: 

> bor = for 'a in T,F. 
> for 'b in T,F. 
> \m:'a. \ n : ' b . 
> m [T] C'b] t t n; 
bor : T->T->T A T->F->T / \ F->T->T / \ F->F->F 
val bor = <inter> 

> bor ff t t ; 
i t : T 
val i t = t t 

> bor ff f f; 
i t : F 
val i t = ff 

4.5 Bi t String Addi t ion 

Another example, interesting mainly because it uses iteration at higher types to implement a double 
recursion, is the addition of binary numerals in standard form. The idea for this example is due to 
Freeman and Pfenning [18]. 

Binary numerals (bit strings) may be characterized by the following inductive type definition: 

indtype Bi t s tr = e I z (Bi t s tr ) I o(Bits tr) 

That is, a bit string is either empty, or has a low order bit that is either z (zero) or o (one) followed 
by a bit string. For example, e, z(e), and z(z(z(z(e)))) all represent zero; z(o(o(e))) represents 
six. 

Standard-form binary numerals may be defined by the following inductive type definitions: 

indtype E = e 
indtype NE = o(e) I z(NE) I o(NE) 

That is, an empty standard-form numeral is just the token e. A nonempty standard-form numeral 
has a low-order bit that is either z (zero) or o (one), followed by a nonmempty numeral. For 
example, z(o(e)) is in standard form, but z(e) is not. 

These types can be encoded in A(V, A,V) as follows: 

> type Bi t s tr = All ' e . All 'n. 
> 'e -> ( , e - > ' n / \ , n - > ' n ) -> ( 'e->'n/ \ 'n->*n) -> C'eX/'n); 
type Bi t s tr = 

All ' e . (All 'n. ' e -> ( ' e -> 'n / \ 'n -> 'n ) -> ( ' e -> 'n / \ 'n ->>n) ->( ' e \ /»n) ) 
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> type E = All >e. All >n. >e -> (>n->'n) -> ( 'e -> 'nA'n->'n) -> 'e; 
type E = All ' e . (All >n. , e - > ( , n - > , n ) - > ( , e - > , i i / \ , i i - > > n ) - > , e ) 

> type NE = All ' e . All 'n. >e -> ( , n - > , n ) -> ( , e - > , n / \ , n - > , n ) -> 'n; 
type NE = All ' e . (All >n. , e - > ( , n - > , n ) - > ( , e - > > n / \ > n - > , n ) - > , n ) 

> type Std = E\/NE; 
type Std = E X/ NE 

> check Std <= Bi t s tr ; 
Yes. 

> i n s t a l l 'fun b i t s t r^tos tr b = 
> b () () "e" 
> (fn s => , , z ( , , ~s~ , ' ) , , ) 
> C(fn s => , , o ( , , * s ^ , , ) , , ) , ( fn s => " o ( , , A s A , , ) , , ) ] ; c ; 

> observe E ~ ' b i t s t r . t o s t r ' ; 

> observe NE — ' b i t s t r . t o s t r ' ; 

> s td .e = W e . W n . \ e : ' e . \ z : , n - > , n . \ o : , e - > , n / \ , n - > , n . e; 
s td .e : E 
val s td . e = e 

> s td .z = \n:E,NE. 
> W e . W n . \ e : ' e . \ z : , n - > , n . \ o : , e - > , n / \ , n - > , n . 
> z (n C'e] ['n] e z o ) ; 
s td . z : NE -> NE 
val s td .z = <fn> 

> s td .o = \n:E,NE. 
> W e . W n . \ e : ' e . \ z : ' n - > ' n . \ o : , e - > , n / \ , n - > , n . 
> o (n ['e] [>n] e z o ) ; 
s td .o : E->NE A NE->NE 
val s td .o = <inter> 

The successor function on bit strings in standard form can be defined by the following recursive 
program scheme: 

std.succ e = o e 
std.succ (z b) = o b 
std.succ (o b) = z (std.succ b) 

Note that if the input to this scheme happens to be in standard form, then the output will be too. 
To implement this scheme in terms of iterators, we need to use iteration over pairs. The first 

projection of the result of the iteration is the original numeral; the second projection is the successor 
(in standard form). 



4 EXAMPLES 

> type ExE = Al l >r. (E->E->'r) -> ' r ; 
type ExE = A l l ' r . (E->E->'r) -> 'r 

> type ExNE * A l l *r. (E->NE->'r) -> »r; 
type ExNE = A l l ' r . (E->NE->'r) -> 'r 

> type NExE = Al l 'r . (NE->E->'r) -> 'r; 
type NExE = Al l 'r . (NE->E->'r) -> 'r 

> type NExNE = Al l >r. (NE->NE->'r) -> 'r; 
type NExNE = A l l >r. (NE->NE->'r) -> 'r 

> s td .pair = for 'pi in E,NE. 
> for 'p2 in E,NE. 
> \ p l : ' p l . \ p 2 : ' p 2 . 
> W r . \ f : ' p l - > ' p 2 - > ' r . 
> f pl p2; 
s td .pair : E->E->ExE A E->NE->ExNE / \ NE->E->NExE / \ NE->NE->NExNE 
val s td .pair = <inter> 

> s t d . f s t = f o r 'pl i n E,NE. 
> \p : ( A l l ' r . O p l - > N S - > ' r ) - > ' r ) . 
> P C'pl] ( \ p l : ' p l . \p2:NS. p l ) ; 
s t d . f s t : ( A l l ' r . (E->NS->'r ) -> 'r ) ->E / \ (A l l ' r . (NE->NS->'r)->>r)->NE 
v a l s t d . f s t = <inter> 

> s t d . s n d = f o r 'p2 i n E,NE. 
> \ p : ( A l l ' r . ( N S - > ' p 2 - > ' r ) - > ' r ) . 
> P C'p2] ( \ p l : N S . \ P 2 : ' p 2 . p2) ; 
s t d . s n d : (A l l ' r . (NS->E->'r ) -> 'r ) ->E / \ (Al l ' r . (NS->NE->'r)->'r)->NE 
va l s t d . s n d = <inter> 

> s t d . s u c c = 
> \n:E,NE. 
> s t d . s n d 
> (n [ExNE] [NExNE] 
> ( s t d . p a i r s t d . e ( s t d . o s t d . e ) ) 
> (\p:NExNE. s t d . p a i r ( s t d . z ( s t d . f s t p ) ) ( s t d . o ( s t d . f s t p ) ) ) 
> (\p:ExNE,NExNE. s t d . p a i r ( s t d . o ( s t d . f s t p ) ) ( s t d . z ( s t d . s n d p ) ) ) ) ; 
s t d . s u c c : E->NE / \ NE->NE 
va l s t d . s u c c = <inter> 

> zero a s t d . e ; 
zero : E 
va l zero = e 

> one = s t d . s u c c z e r o ; 
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std.add e 
std.add m 

n 
e = m 

std.add (z m) 
std.add (o m) 
std.add (z m) 
std.add (o m) 

(z n) = z (std.add in n) 
(z n) = o (std.add m n) 
(o n) s o (std.add m n) 
(o n) = z (std.add (std.add (o e) m) n) 

To implement this scheme in terms of iterators, we need to use iteration at higher types: .15 

> std.add = for 'm in E,NE. 
> Xmi'm. 
> m [E->E/\NE->NE] [E->NEANE->NE] 
> (\n:E,NE. n) 
> (for 'n in E,NE. 
> \addm':E->NEANE->NE. \ n : ' n . 
> n [NE] [NE] 
> ( s td .z (addm* s t d . e ) ) 
> (Xaddm'n*:NE. s td . z addm'n') 
> (Xaddm'n' :NE. s td .o addm'n')) 
> (for 'n in E,NE. 
> \addm':E->EANE->NE,E->NEANE->NE. \ n : ' n . 
> n [NE] [NE] 
> (s td .o (adding s td . e ) ) 
> (Xaddm'n':E,NE. s td .o addm'n') 
> (Xaddm'n':E,NE. s td . z (std.succ addm'n'))); 
std.add : E->E->E / \ E->NE->NE A NE->E->NE / \ NE->NE->NE 

1 5 The code generation and execution phases for this example are omitted; with the present naive implementation 
of the code generator they consume too much memory. 

one : NE 
val one = o(e) 

> two * std.succ one; 
two : NE 
val two = z (o (e ) ) 

> three = std.succ two; 
three : NE 
val three = o(o(e) ) 

> four s s td.succ three; 
four : NE 
val four - z ( z ( o ( e ) ) ) 

Addition on bit strings can be defined by the following doubly recursive scheme: 

file:///addm'
file:///addm'
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4 . 6 FINITARY QUANTIFICATION AND TYPECHECKING EFFICIENCY 

This section demonstrates how the finitary polymorphism OF the for CONSTRUCT MAY BE USED to 
improve the efficiency of typechecking over simpler languages, like Forsythe, ALLOWING INTERSECTION 
types but omitting for. 

To make the example read more like Forsythe, we'll work in terms OF TWO ;4BUILT-IN" PRIMITIVE 
types, integer and real: 

> observe int — 'fn i : i n t -> makestring i c ; 

> observe real ™ 'fn r:real => makestring r'; 

> zero : int == ' 0 ' ; 
zero : int 

> succ : int ->int == 'fn x => x+1'; 
succ : int -> int 

> plustwo = \ x : i n t . succ (succ x) ; 
plustwo : int -> int 
val plustwo = <fn> 

> two = plustwo zero; 
two : int 
val two = 2 

To introduce a primitive inclusion between the types int and real we need TO tell the BACK-END 
how to generate code for transforming from int to real: 

> prim int <= real == ' r e a l ' ; 

Now we can define a successor function that works for both integers and reals: 

> irsucc : int ->int A real->real 
> == '[R.c (fn (x: int) => x+1), R.c (fn (x:real) => x + 1 . 0 ) ] ' ; 
irsucc : int ->int / \ real->real 

> irplustwo = \ x : i n t , r e a l , irsucc irsucc x; 
irplustwo : NS 
val irplustwo = <nonsense> 

> irtwo « irplustwo zero; 
irtwo : NS 
val irtwo = <nonsense> 

Similarly, the plus function operates on both integers and reals: 

> plus : int ->int ->int A real->real->real 
> ~ '[R.c (fn (x: int ) => fn (y: int) => x+y), 
> R.c (fn (x:real) => fn (y .real ) => x+y)] ' ; 
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p l u s : i n t - > i n t - > i n t / \ r e a l - > r e a l - > r e a l 

> d o u b l e « \ x : i n t , r e a l , p l u s x x ; 
d o u b l e : i n t - > i n t / \ r e a l - > r e a l 
v a l d o u b l e = < i n t e r > 

W e c a n r e a l i z e a s u b s t a n t i a l g a i n i n t y p e c h e c k i n g e f f i c i ency fo r f u n c t i o n s l i k e " p l u s " b y u s i n g 

t h e f o r c o n s t r u c t e x p l i c i t l y i n s t e a d o f a n n o t a t i n g e a c h b o u n d v a r i a b l e w i t h b o t h i n t a n d r e a l . 

H e r e , t h e b o d y o f t h e p o l y n o m i a l f u n c t i o n " p o l y " is t y p e c h e c k e d o n l y t w i c e , i n s t e a d of 16 t i m e s a s 

w o u l d b e n e c e s s a r y i n F o r s y t h e : 

> p o l y = f o r ' a i n i n t , r e a l . 
> \ w : ' a . \ x : ' a . \ y : ' a . \ z : ' a . 
> p l u s ( d o u b l e x ) ( p l u s ( p l u s w y ) z ) ; 
p o l y : i n t - > i n t - > i n t - > i n t - > i n t A r e a l - > r e a l - > r e a l - > r e a l - > r e a l 
v a l p o l y = < i n t e r > 

4.7 Default Parameters 

A c o m p l e t e l y d i f f e r e n t e x a m p l e o f t h e p r a c t i c a l u t i l i t y o f i n t e r s e c t i o n t y p e s c o m e s f r o m t h e i r 
a b i l i t y t o e x p r e s s p r o c e d u r e s w i t h d e f a u l t p a r a m e t e r s . F o r e x a m p l e , w e c a n g i v e t h e t y p e 
s t r i n g - > i n t - > ( s t r i n g A c h a r - > s t r i n g ) t o a b u i l t - i n f u n c t i o n t h a t t a k e s a s t r i n g s a n d 
a n i n t e g e r i a n d r e t u r n s both t h e s t r i n g s p a d d e d w i t h e n o u g h b l a n k s t o m a k e i t s l e n g t h i and a 
f u n c t i o n t h a t g i v e n a c h a r a c t e r c r e t u r n s s p a d d e d w i t h e n o u g h c ' s t o m a k e i t s l e n g t h i . T h e r e s u l t 
o f a p p l y i n g p a d t o s a n d i c a n e i t h e r b e u s e d d i r e c t l y a s a s t r i n g ( b y a p p l y i n g a p r n t f u n c t i o n t o 
i t , f o r e x a m p l e ) o r f u r t h e r a p p l i e d t o a c h a r a c t e r c . 

T o i m p l e m e n t t h i s s c h e m e , w e d e f i n e t h e f o l l o w i n g p r i m i t i v e s : 

> i n s t a l l ' f u n d u p l c 0 
> I d u p l c n * c ~ ( d u p l c ( n - 1 ) ) ; 
> f u n p r i m p a d s t r s i c » s ~ ( d u p l c ( m a x ( 0 , i - ( s i z e s ) ) ) ) ; c ; 

> p a d : s t r i n g - > i n t - > ( s t r i n g A c h a r - > s t r i n g ) 
> == ' [ R . c ( f n s => f n i => p r i m p a d s t r s i " " ) , 
> R .c ( f n s s > f n i => f n c p r i m p a d s t r s i c ) ] ' ; 

p a d : s t r i n g - > i n t - > s t r i n g A s t r i n g - > i n t - > c h a r - > s t r i n g 

> p r n t : s t r i n g - > u n i t « ' f n s => p r t ( » \ » » - s - " N A n " ) ' ; 

p r n t : s t r i n g - > u n i t 

> b l a n k : c h a r == ' " " ' ; 

b l a n k : c h a r 

> d o t : c h a r == c " . " ' ; 

d o t : c h a r 

> m e s g : s t r i n g == " ' h e l l o ' " ; 
m e s g : s t r i n g 
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> ten : in t — ' 10' ; 
t en : i n t 

Now we can use pad and prnt as described above: 

> prnt (pad mesg ten) ; 
i t : unit 
"hello 
val i t = <prim> 

> prnt (pad mesg ten dot); 
i t : unit 
"hello " 
val i t = <prim> 

In fact, this notion can be supported as a general language feature by supplying one built-i 
constant that is used to build functions with default parameters 

> default : All 'a. All 'b. ( 'a -> >b) -> 'a -> ( , b / \ , a - > , b ) 
> == '[R.c (fn () => fn () => fn f => fn v => f v ) , 
> R.c (fn () => fn () => fn 1 •> fn v => f ) ] ' ; 
default : 

(All 'a . (All 'b. ( , a - > , b ) - > , a - > , b ) ) 
A (All 'a. (All 'b. ( , a - > , b ) - > , a - > , a - > , b ) ) 

> myprimpad : s tr ing -> int -> char -> string 
> == 'primpadstr'; 
myprimpad : s tr ing -> int -> char -> string 

> mypad - \ s : s t r i n g . \ l : i n t . default [char] [string] (myprimpad s 1) blank; 
mypad : s tr ing->int->str ing A string->int->char->string 
val mypad » <inter> 

5 A l t e r n a t i v e s 

This section discusses some choices in the formulation of the type system given in Section 3. 

5.1 Pr imit ive Inclusions 

The type system of Forsythe is parameterized by a set of primitive types with a primitive preorder 
structure that is inherited by the preorder on the set of all type expressions: 

Pl <prim P2 { a ^ 
(Sub -Pr im 

The types and subtyping rules of A(V, A, V) can be extended straightforwardly to include this 
notion of primitive types. In fact, the prototype compiler described in Section 4 implements this 
extension already. 
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5.2 B o u n d e d Quantification 

A primary design choice for a calculus combining polymorphism with intersection types is between 
ordinary and bounded quantification. It would seem at first that bounded quantification would be 
more appropriate, since it explicitly takes the subtype structure into account. But in a calculus 
with intersection types, bounds on quantifiers do not actually add much power, since every well-
typed expression in a calculus with bounded quantification and intersections (call it A(V<,A,V)) 
can be translated into a well-typed expression in A(V,A,V) by rewriting bounded quantifiers as 
ordinary ones and moving the bounds into the body of the quantified expression:16 

Aa < a . e —• Aa. [crAa/a]e 
Va < <7. r —• Va. [crAa/a]r. 

Nevertheless, there is at least one compelling reason for studying a system with bounded quan­
tification in preference to one with ordinary quantification only: the treatment of primitive types. 

Experience leads us to expect that when we take the step from a first-order calculus to one with 
impredicative quantification, the primitive types that were the base case of the first-order system 
will no longer be needed, since their role can be played equally well by type variables. But this 
is not the case here: if our quantifiers do not mention bounds, then there is no way to introduce 
subtyping assumptions among the variables representing primitive types, and we lose the effect of 
the SUB-PRIM rule. 

5.3 T h e U N I O N - E Rule 

The union elimination rule used in earlier sections of this report includes an explicit syntactic 
marker, case, to guide the typechecker in applying the rule. The rule can also be formulated with 
no syntactic marker 

T h e in V[n.-*n] for all z, I\ x : r t h e ' e r 
- — J U N I O N - E ) 

T f- [e/x]e' e r 
leaving it up to the typechecker to determine when it ought to be applied during the derivation of 
a minimal type for an expression. 

Of course, this rule presents severe difficulties for a typechecking procedure for A(A, V,p). Be­
cause the syntactic forms of e and e' are unconstrained in the conclusion, U N I O N - E can potentially 
be applied to any term e', choosing any subset of the occurrences of any subterm e. Worse yet, 
both versions share the difficulty that every term e has an infinite number of union types and any 
e with a type strictly less than NS has an infinite number of inequivalent union types. 

Nevertheless, the more "implicit" form of the rule seems somewhat more elegant; it may prefer­
able for more theoretical investigations of union types. 

5.4 Encoding Un ion T y p e s 

In a type system with intersection types and polymorphism, union types can be encoded using the 
following translation: 

crVr =f Va.((7—•a) A (r—•a) —• a. 

This allows us to achieve the effect of expressions like 
1 6 John Mitchell showed me this translation. 
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> \ f :a ->c / \b ->c . \ x : a \ / b . f x; 
i t : (a->c/\b->c)->a->c / \ (a->c/\b->c)->b->c 

by writing: 

> \ f : a ->c / \b ->c . \ x : ( A l l >x. ( a - > , x / \ b - > , x ) - > , x ) . x [c] f; 
i t : (a->c/\b->c) -> (All >x. ( a - > > x / \ b - > , x ) - > , x ) -> c 

This encoding is not entirely satisfactory, however; for example, it does not validate the rule 

a < crVr. 

6 F u t u r e W o r k 

The preliminary work presented here suggests a number of paths for future research. In fact, several 
novel type systems can be formed by combinating subsets of the various features described here: 

Meets only Meets and joins 

No quantification A(A,/>) 
[Forsythe] A(A,V,p) 

Ordinary quantification A(V,A,/>) A(V,A,V,/>) 
[this report] 

Bounded quantification A(V<,A) 
[33] 

A(V<,A,v) 

Among the five novel calculi in the table, A(V, A) appears the most tractable. The tract ability of 
A(V<, A) is still open; a prototype implementation of this calculus17 would be an excellent next step 
toward understanding the role of bounded quantification and its interaction with intersection types. 
The simplest union calculus, A(A,V,p), provides an important case for studying the semantics of 
union types, but from a practical perspective A(V,A,V,/>) is not very much harder to implement 
and appears to be much more expressive. The bottom corner, A(V<,A, V), though it undoubtedly 
holds many fascinating surprises, should probably be saved for last. 

Besides detailed investigation of the proof theory and semantics of the more tractable calculi 
above, there are several issues to be pursued: 

Higher-order Polymorphism Some of the examples in Section 4 — especially those involving 
pairs — could have been expressed more elegantly using higher-order polymorphism. The 
extension from second-order to higher-order polymorphism, at least for quantifiers without 
bounds, appears to be unproblematic 

Records The Forsythe language includes an elegant treatment of "extensible records" based on 
intersection types. Unfortunately, the approach used to add records to the core type system of 
Forsythe cannot be generalized to calculi with polymorphism: the Forsythe record extension 
operator must be able to examine the type of the record being extended and remove all 
instances of the field at which it is being extended. When the type of the record being 
extended can involve type variables, this is no longer possible. 

rNow underway. 
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A treatment of extensible records based on a notion of "constrained quantification" [21, 22] 
seems promising, but interactions between record types and intersection types may present 
problems. 

Pragmatics of Compilation In addition to the usual problems of establishing decidability for 
the type systems discussed here, there are some serious efficiency issues that must be ad­
dressed before any claims can be made that they form a foundation for practical programming 
languages. In particular, the compilation scheme used in the prototype compiler described 
here, where intersection types are interpreted as cartesian products at runtime, leads to an 
enormous explosion of object code if implemented naively, since a A-abstraction that is given 
an intersection type with fifteen conjuncts will be compiled in fifteen separate versions. The 
union elimination rule causes similar problems. 

Programing applications The examples presented here serve to demonstrate that the combi­
nation of intersection types, union types, and polymorphism gives rise to intriguing and en­
tertaining programming examples. The question of its importance in practice remains open, 
pending the development of larger examples that illustrate concrete benefits at acceptable 
cost. 
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A . l Subtyping 

A.2 Typing 

T <T 

cr <9 0 < T 

a < r 

<7\—<72 5; T\-*T2 

a <T 

Va.cr < Va.r 

for all i, cr < T{ 

cr < A[n..rn] 

for all i, <J{ < r 

V[^l-^n] < T 

Ti < \/[Ti..Tn] 

/\[<T->T1..<J-+Tn] < (T-+/\[Ti..Tn] 

/\[<Tl-+T ..<7 n-*r] < Vkl-^n]-*^" 

AtVa.rL.Va.rn] < Va.A[ri . .r n ] 
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I = [A[n,j! - r W t j w ] 1 1 < j j < mx] 

V i < Au 
I s [ A ( r u . . r i ) m i ] . . A [ r n i l . . r n , m n ] ] 
U = [ V [ r W l . . r n J J l l < i t - < m t ] 

AU < VI 

r h 8 6 ( 7 a < T 

r f- e € r 

Ti, x : r, T 2 H x € r 

r, x : a h e € r 

T I- Xx:a. e € cr—>r 

r h f € <7-+T r h e € (7 

r h f e € r 
T h e € r a g FTV(r) 

T h Aa. e € Va. r 
T h e 6 Va .r 

r h e[<r] € [<r/a]r 
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( S u b - D i s t - A I ) 
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( S u b - D i s t - Q I ) 

( S u b - D i s t - I U ) 

( S u b - D i s t - U I ) 

(Subsumpt ion) 
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( A r r o w - I ) 

( A r r o w - E ) 

( A l l - I ) 

( A l l - E ) 
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FOR AIL I, T H 9 6 T{ 

r h E € A[n..RN] 

r H 8 IN V[ r i-- r n] FOR AIL I, T, x : RT- H E' € R 
r H case e of x => e' € r 

r h [(Tt/aje E RT-

r H f o r O: IN <T\„an. E € RT-

I I n t e r - D 

( U n i o n - E ) 

( F o r ) 
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