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1 I n t r o d u c t i o n 

Experienced algorithm designers rely heavily on a set of building blocks and on the tools 
needed to put the blocks together into an algorithm. The understanding of these basic 
blocks and tools is therefore critical to the understanding of algorithms. Many of the 
blocks and tools needed for parallel algorithms extend from sequential algorithms, such as 
dynamic-programming and divide-and-conquer, but others axe new. 

This paper introduces one of the simplest and most useful building blocks for parallel 
algorithms: the all-prefix-sums operation. The paper defines the operation, shows how to 
implement it on a P-RAM and illustrates many applications of the operation. In addition 
to being a useful building block, the all-prefix-sums operation is a good example of a 
computation tha t seems inherently sequential, but for which there is an efficient parallel 
algorithm. The operation is defined as follows: 

Def in i t i on : The all-prefix-sums operation takes a binary associative operator ©, and an 
ordered set of n elements 

[ a 0 , a i , . . . , a n _ i ] , 

and returns the ordered set 

[ a o , ( a o © a i ) , . « , ( a o © a i © - © ^ n - i ) ] . 

For example, if © is addition, then the all-prefix-sums operation on the ordered set 

[3 1 7 0 4 1 6 3], 

would return 

[3 4 11 11 14 16 22 25]. 

The uses of the all-prefix-sums operation are extensive. Here is a list of some of them: 

1. To lexically compare strings of characters. For example, t o determine tha t " s t r a t e g y 1 1 

should appear before " s t r a t i f i c a t i o n " in a dictionary (see Problem 2). 

2. To add multi precision numbers. These are numbers tha t cannot be represented in a 
single machine word (see Problem 3). 

3. To evaluate polynomials (see Problem 6). 

4. To solve recurrences. For example, to solve the recurrences 
X{ = a t x t _ x + b{X{-2 and X{ = a t + 6»/£t-i (see Section 4) . 

5. To implement radix sort (see Section 3). 

1This paper was originally written as a chapter to a book so all the citations appear at the end. 
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p r o c all-prefix-sums-Array(Out, I n ) p r o c all-prefix-sums-List (Out , I n ) 

i *- 0 i 4 - 0 
siim <— l n [ 0 ] sum *— I n [ 0 ] . v a l u e 
Out[0] <— sum Out[0] 4 - sum 
w h i l e ( i < l e n g t h ) w h i l e ( I n [ i ] . p o i n t e r ^ End-of-List) 

i ^ i + 1 i I n [ i ] . p o i n t e r 
sum <— sum + I n [ i ] sum <— sum • I n [ i ] . v a l u e 

O u t [ i ] <— sum 0 u t [ i ] <— sum 

Figure 1: Sequential algorithms for calculating the all-prefix-sums operation with operator + 
on an array and on a linked-list. In the list version, each element of I n consists of two fields: a 
value ( . v a l u e ) , and a pointer to the next position in the list ( . p o i n t e r ) . 

6. To implement quicksort (see Section 5.1). 

7. To solve tridiagonal linear systems (see Problem 12). 

8. To delete marked elements from an array (see Section 3). 

9. To dynamically allocate processors (see Section 6) . 

10. To perform lexical analysis. For example, to parse a program into tokens. 

11. To search for regular expressions. For example, to implement the UNIX g r e p pro­
gram. 

12. To implement some tree operations. For example, to find the depth of every vertex 
in a tree. 

13. To label components in two dimensional images. 

In fact, all-prefix-sums operations using addition, minimum and maximum are so useful 
in practice tha t they have been included as primitive instructions in some machines. Re­
searchers have also suggested tha t a subclass of the all-prefix-sums operation be added to 
the P-RAM model as a "unit t ime" primitive since this class theoretically can run as fast 
as a memory access of the shared memory in the P-RAM. 

Before describing the implementation we must consider how the definition of the all-
prefix-sums operation relates to the P-RAM model. The definition states tha t the operation 
takes an ordered set, but does not specify how the ordered set is laid out in memory. One 
way to lay out the elements is in contiguous locations of an array; another way is to use a 
linked-list with pointers from each element to the next. It turns out tha t both forms of the 
operation have uses. In the examples listed above, the component labeling and some of the 
tree operations require the linked-list version, while the other examples can use the array 
version. 
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Sequentially, both versions are easy to compute (see Figure 1). The array version steps 
down the array, adding each element into a sum and writing the sum back, while the linked-
list version follows the pointers while keeping the running sum and writing it back. The 
algorithms in Figure 1 for both versions are inherently sequential: to calculate a value at 
any step, the result of the previous step is needed. The algorithms therefore require 0 ( n ) 
t ime. To execute the all-prefix-sums operation in parallel, the algorithms must be changed 
significantly. 

The remainder of this paper is just concerned with the array all-prefix-sums operation. 
We will henceforth use the term scan for this operat ion. 2 

Def in i t ion : The scan operation is an array all-prefix-sums operation. 

Sometimes it is useful for each element of the result array to contain the sum of all the 
previous elements, but not the element itself. We call such an operation, a prescan. 

Def in i t ion : The prescan operation takes a binary associative operator © with identity I, 
and an array of n elements 

[ a 0 , a i , . . . , a n - i ] , 

and returns the array 

[ J , a o , ( a 0 © a i ) , . . . , ( a 0 © a i © . . .© a n _ 2 ) ] . 

A prescan can be generated from a scan by shifting the array right by one and inserting 
the identity. Similarly, the scan can be generated from the prescan by shifting left, and 
inserting at the end the sum of the last element of the prescan and the last element of the 
original array. 

2 Implementation 

This section describes an algorithm for executing the scan operation. For p processors 
and an array of length n on an EREW P-RAM, the algorithm has a time complexity 
of 0(n/p + lgp) . The algorithm is simple and well suited for direct implementation in 
hardware. 

Before describing the scan operation, we consider a simpler problem, tha t of generating 
only the final element of the scan. We call this the reduce operation. 

De f in i t i on : The reduce operation takes a binary associative operator © with identity i, 
and an ordered set [ao,fli, . . . , a n _ i ] of n elements, and returns the value a o © a i © . . . © a n _ i . 

Again we consider only the case where the ordered set is kept in an array. A balanced binary 
tree can be used to implement the reduce operation by laying the tree over the values, and 
using © to sum pairs at each vertex (see Figure 2a). The correctness of the result relies 

2 The term scan comes from the computer language APL. 
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sum[v] = sum[L[v]] + sum[R[v]] 

(a) Executing a +-reduce on a tree. 

for d from 0 t o (lg n) - 1 
in pa ra l l e l for i from 0 t o n - 1 b y 2 < i + 1 

a[i + 2 d + 1 - 1] 4 - a[i + 2d - 1] + a[i + 2 d + 1 - 1] 

Step Array in Memory 

0 № m m № S E m 
1 [3 s 7 0 4 [5] 6 
2 [3 4 7 [TO 4 5 6 
3 [ 3 4 7 11 4 5 6 

mi 

i 
] 

(b) Executing a -(--reduce on a P-RAM. 

Figure 2: An example of the reduce operation when 0 is integer addition. The boxes in (b) 
show the locations that are modified on each step. The length of the array is n and must be a 
power of two. The final result will reside in a[n - 1]. 
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in parallel for each processor 
sum[i] <- o[{n/p)i) 
f o r j from 1 t o n/p 

t 

a\m[i] «- sum[t] + a[(n/p)i + j] 
r e s u l t <- +-reduce(sum) 

[ 4 7 1 0 5 2 .6 4 8 1 9 5 Ì 
processor 0 processor 1 processor 2 processor 3 

Processor Sums = [12 7 
Total Sum = 52 

18 15] 

Figure 3: The +-reduce operation with more elements than processors. We assume that n/p 
is an integer. 

on © being associative. The operator, however, does not need to be commutative since 
the order of the operands is maintained. On an E R E W P-RAM, each level of the tree can 
be executed in parallel, so the implementation can step from the leaves to the root of the 
tree (see Figure 2b); we call this an up-sweep. Since the tree is of depth f lgn] , and one 
processor is needed for every pair of elements, the algorithm requires O( lgn ) time and n / 2 
processors. 

If we assume a fixed number of processors p , with n > p , then each processor can sum 
an n/p section of the array to generate a processor sum; the tree technique can then be 
used to reduce the processor sums (see Figure 3). The time taken to generate the processor 
sums is \n/p], so the total t ime required on an EREW P-RAM is: 

Tn (n ,p ) = \n/p] + flgp] = 0(n/p + ]gp). (1) 

When n/p > Igp the complexity is 0(n/p). This time is an optimal speedup over the 
sequential algorithm given in Figure 1. 

We now return to the scan operation. We actually show how to implement the prescan 
operation; the scan is then determined by shifting the result and put t ing the sum at the 
end. If we look at the tree generated by the reduce operation, it contains many partial 
sums over regions of the array. It turns out tha t these partial sums can be used to generate 
all the prefix sums. This requires executing another sweep of the tree with one step per 
level, but this time starting at the root and going to the leaves (a down-sweep). Initially, 
the identity element is inserted at the root of the tree. On each step, each vertex at the 
current level passes to its left child its own value, and it passes to its right son, © applied 
to the value from the left child from the up-sweep and its own value (see Figure 4a) . 

Let us consider why the down-sweep works. We say tha t vertex x precedes vertex y if x 
appears before y in the preorder traversal of the tree (depth first, from left to right). 

5 



Up Sweep Down Sweep 

sum[v] = sum[L[v]] + sum[R[v]] prescan[L[v]] = prescan[v] 
prescan[R[v]] = sum[L[v]] + prescan[v] 

(a) Executing a +-prescan on a tree. 

p r o c e d u r e down-sweep (A) 
a[n - 1] 0 
for d f r o m (lg n) - 1 d o w n t o 0 

in pa ra l l e l for * f rom 0 t o n — 1 b y 2 r f + 1 

t *- a[i + 2d - 1] % Save i n t empora ry 
a[i + 2d - 1] *- a[i + 2d+1 - 1] % Se t l e f t c h i l d 
a[i + 2d+1 -l]*-t + a[i + 2d+1 - 1] % Set r i g h t c h i l d 

Step Array in Memory 

0 [HI m m GO s El m (3] 
up 1 [ 3 m 7 m 4 6 m i up 

2 [ 3 4 7 EI] 4 5 6 ESI 
3 [ 3 4 7 i i 4 5 6 d u i 

clear 4 [ 3 4 7 i i 4 5 6 

down 5 [ 3 4 7 m 4 5 6 EH] 
6 [ 3 1 7 a 4 ED 6 EU] 
7 № ID m EH EU EI] EH 

(b) Executing a +-prescan on a P-RAM. 

Figure 4: A parallel prescan on a tree using integer addition as the associative operator 0 . 
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T h e o r e m 1 After a complete down-sweep, each vertex of the tree contains the sum of all 
the leaf values that precede it. 

Proof: The proof is inductive from the root: we show tha t if a parent has the correct sum, 
both children must have the correct sum. The root has no elements preceding it, so its 
value is correctly the identity element. 

Consider Figure 5. The left child of any vertex has exactly the same leaves preceding 
it as the vertex itself ( the leaves in region A in the figure). This is because the preorder 
traversal always visits the left child of a vertex immediately after the vertex. By the 
induction hypothesis, the parent has the correct sum, so it need only copy this sum to the 
left child. 

The right child of any vertex has two sets of leaves preceding it , the leaves preceding 
the parent (region A), and the leaves at or below the left child (region B). Therefore, by 
adding the parent 's down-sweep value, which is correct by the induction hypothesis, and the 
left-child's up-sweep value, the right-child will contain the sum of all the leaves preceding 
it. • 

Since the leaf values that precede any leaf are the values to the left of it in the scan 
order, the values at the leaves are the results of a left-to-right prescan. To implement the 
prescan on an E R E W P-RAM, the partial sums at each vertex must be kept during the 
up-sweep so they can be used during the down-sweep. We must therefore be careful not to 
overwrite them. In fact, this was the motivation for putt ing the sums on the right during 
the reduce in Figure 2b. Figure 4b shows the P-RAM code for the down-sweep. Each step 
can execute in parallel, so the running time is 2 fig n ] . 

If we assume a fixed number of processors p , with n > p , we can use a similar method to 
that in the reduce operation to generate an optimal algorithm. Each processor first sums 
an n/p section of the array to generate a processor sum, the tree technique is then used 
to prescan the processor sums. The results of the prescan of the processor sums are used 
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[ 4 7 1 0 5 2 6 4 8 1 9 5 ] 
processor 0 processor 1 processor 2 processor 3 

Sum = [12 7 18 15] 
+-prescan = [0 12 19 37] 

[0 4 11 12 12 17 19 25 29 37 38 47] 
processor 0 processor 1 processor 2 processor 3 

Figure 6: A +-prescan with more elements than processors. 

as an offset for each processor to prescan within its n/p section (see Figure 6). The time 
complexity of the algorithm is: 

Ts(n,p) = 2(\n/p] + ( lgpl) = 0(n/p + lgn) (2) 

which is the same order as the reduce operation and is also an optimal speedup over the 
sequential version when n/p > \gp. 

This section described how to implement the scan (prescan) operation. The rest of the 
paper discusses its applications. 

3 Line-of-Sight and Radix-Sort 
As an example of the use of a scan operation, consider a simple line-of-sight problem. The 
line-of-sight problem is: given a terrain map in the form of a grid of altitudes and an 
observation point X on the grid, find which points are visible along a ray originating at the 
observation point (see Figure 7). 

A point on a ray is visible if and only if no other point between it and the observation 
point has a greater vertical angle. To find if any previous point has a greater angle, the 
altitude of each point along the ray is placed in a vector ( the altitude vector). These 
altitudes are then converted to angles and placed in the angle vector (see Figure 7). A 
prescan using the operator maximum (max-prescan) is then executed on the angle vector, 
which returns to each point the maximum previous angle. To test for visibility each point 
only needs to compare its angle to the result of the max-prescan. This can be generalized to 
finding all visible points on the grid. For n points on a ray, the complexity of the algorithm 
is the complexity of the scan, Ts(n,p) = 0(n/p + l g n ) on an EREW P-RAM. 

We now consider another example, a radix sort algorithm. The algorithm loops over 
the bits of the keys, start ing at the lowest bit, executing a split operation on each iteration 
(assume all keys have the same number of bits). The split operation packs the keys with a 
0 in the corresponding bit to the bot tom of a vector, and packs the keys with a 1 in the bit 
to the top of the same vector. It maintains the order within both groups. The sort works 
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p r o c e d u r e l ine-of-sight(al t i tude) 
in p a r a l l e l for e a c h i n d e x i 

angled*] <— a r c t a n ( s c a l e x ( a l t i t u d e [ « ] - a l t i t u d e [ 0 ] ) / t ) 
m a x - p r e v i o u s - a n g l e <— m a x - p r e s c a n ( a n g l e ) 
in pa ra l l e l for e a c h i n d e x i 

if ( a n g l e [ i ] > m a x - p r e v i o u s - a n g l e [ i ] ) 
r e s u l t [z] <— " v i s i b l e " 

e lse 
r e s u l t [ i ] n o t " v i s i b l e " 

600 

1001 '  

Altitude Vector 

Angle Vector 

m i l i u m n m n 

Max-Scan of Angle Vector 

I A l t i t u d e M a p R a y Vectors 

Figure 7: The line-of-sight algorithm for a single ray. The X marks the observation point. The 
visible points are shaded. A point on the ray is visible if no previous point has a greater angle. 
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p r o c e d u r e split-radix-sort (A, n u m b e r - o f - b i t s ) 
for i from 0 t o ( n u m b e r - o f - b i t s - 1) 

A 4 - split (A, A<t>) 

A = [5 7 3 1 4 2 7 2] 

A<0> -- [1 1 1 1 0 0 1 0] 
A <- split(A, A<0)) = s [4 2 2 5 7 3 1 7] 

A( l ) = [0 1 1 0 1 1 0 1] 
A «- split(A, A ( l » = = [4 5 1 2 2 7 3 7] 

A(2> = [1 1 0 0 0 1 0 1] 
A «- split(A, A ( 2 » = = [1 2 2 3 4 5 7 7] 

Figure 8: An example of the split radix sort on a vector containing three bit values. The A(n) 
notation signifies extracting the nth bit of each element of the vector A. The split operation 
packs elements with a 0 flag to the bottom and with a 1 flag to the top. 

because each split operation sorts the keys with respect to the current bit (0 down, 1 up) 
and maintains the sorted order of all the lower bits since we iterate from the bot tom bit 
up. Figure 8 shows an example of the sort. 

We now consider how the split operation can be implemented using a scan. The basic 
idea is to determine a new index for each element and then permute the elements to these 
new indices using an exclusive write. To determine the new indices for elements with a 0 in 
the bit, we invert the flags and execute a prescan with integer addition. To determine the 
new indices of elements with a 1 in the bit, we execute a +-scan in reverse order (starting 
at the top of the vector) and subtract the results from the length of the vector n. Figure 9 
shows an example of the split operation along with code to implement it . 

Since the split operation just requires two scan operations, a few steps of exclusive 
memory accesses, and a few parallel arithmetic operations, it has the same asymptotic 
complexity as the scan: 0(n/p + lgp) on an E R E W P-RAM. 3 If we assume tha t n keys are 
each O( lgn) bits long, then the overall algorithm runs in time: 

0 ( ( - + lg p) lg n) = 0 ( - lg n + lg n lg p). 
p p 

4 Recurrence Equations 
This section shows how various recurrence equations can be solved using the scan operation. 
A recurrence is a set of equations of the form 

Xi = fi(xi-.1,Xi-2y--,Xi-m), m<i<n (3) 
3 On an CREW P-RAM we can use the scan described in [6] to get a time of 0(n/p + \gp/ lglg/0-
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p r o c e d u r e split (A, F l a g s ) 
I-down *- -t-prescanC not ( F l a g s ) ) 
I - u p n - + - s c a n ( r e v e r s e - o r d e r ( F l a g s ) ) 
in p a r a l l e l for e a c h i n d e x i 

if (Flags[i]> 
Index[i] <— I-up[t] 

e l se 
Index[t] «— I-down[i] 

r e s u l t <— permute(A, Index) 

A 
Flags 

I-down = 
I-up =r 

Index = 

permute(A, Index) = 

[ 5 7 3 1 4 2 7 
[ 1 1 1 1 0 0 1 

[ 0 0 0 0 l m 2 
[ 1 ® m (U 6 6 0 
[ 3 4 5 6 0 i 7 

[ 4 2 2 5 7 3 1 

2 ] 
0 ] 

m i 
7 ] 
2 ] 
7 ] 

Figure 9: The spl.t operation packs the elements with an F in the corresponding flag position 
to the bottom of a vector, and packs the elements with a T to the top of the same vector 
The permute writes each element of A to the index specified by the corresponding position i in 
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along with a set of initial values Xq» • * • 7 2?m—1 • 

The scan operation is the special case of a recurrence of the form 

*• = i a° i = 0 (4) 

where © is any binary associative operator. This section shows how to reduce a more 
general class of recurrences to equation (4), and therefore how to use the scan algorithm 
discussed in Section 2 to solve these recurrences in parallel. 

4 . 1 F i r s t - O r d e r R e c u r r e n c e s 

We initially consider first-order recurrences of the following form 

(5) f h ¿ = 0 
r* " \ (xi-i ® a,-) ®b{ 0 < i < n, 

where the a, 's and 6,'s are sets of n arbitrary constants (not necessarily scalars) and © and 
® are arbitrary binary operators tha t satisfy three restrictions: 

1. © is associative (i.e. (a © b) © c = a © (6 © c)). 

2. ® is semiassociative (i.e. there exists a binary associative operator © such tha t 
( a ® 6 ) ® c = a ® ( 6 © c ) ) . 

3. ® distributes over © (i.e. a ® (b © c) == (a ® 6) © (a ® c)). 

The operator 0 is called the companion operator of ®. If ® is fully associative, then 0 and 
® are equivalent. 

We now show how (5) can be reduced to (4). Consider the set of pairs 

c t = [ a t - , 6 t ] (6) 

and define a new binary operator • as follows: 

d • Cj = [Ci,a 0 Cjta, (Cijb ® CJFA) © Cjfi] (7) 

where CJ>A and ctf& are the first and second elements of ct-, respectively. 
Given the conditions on the operators © and ®, the operator • is associative as we show 

below: 

(Ci • CJ) • C* = [CT',A 0 CJ,A, (C*\6 ® CJ,A) © CJ,&] • Ck 

= [(C,',A 0 CJ,A) 0 CFC,0, (((c t ' , 6 ® Cj,a) © CJ,6) ® CFC,A) 0 C*T6] 

= [CTTA 0 (Cj,a 0 <*,A), ((c»\6 ® CjiQ) ® CJFC,A) © ( ( c i j 6 ® C*,A) © C ^ ) ] 

= fc,A © (CJ,A © C*,A), (C,\6 ® (CJ,A 0 <*,A)) © ((CJ,& ® CFC,A) © <*,&)] 

= CT' • [CJ,A © CFC.A, (CJ,6 ® CJFCTA) © CFC,&] 

= c t • (CJ • c/T) 
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We now define the ordered set s{ = fo, * , ] , where the V i obey the recurrence 

I Jfc-i © a,' 0 < i < n, 

and the x{ are from (5). Using (5), (6) and (8) we obtain: 

5 o = [yo,x0] 

= [a0y b0] 

Si = 0 < i < n 

co 

[K»*t] 

= [w-i © «i» © at) © 6t] 

= [ifc-l © Ci, a, ( « t - l © C.\a) 0 Ctt6] 

= • C t. 
Since • is associative, we have reduced (5) to (4). The results xt- are just the second values 
of S{ ( the s^b). This allows us to use the scan algorithm of Section 2 with operator • to 
solve any recurrence of the form (5) on an E R E W P-RAM in time: 

(T® + T 0 + Te)Ts(n,p) = 2 ( T 0 + T 0 + T@)(n/p + \gp) (9) 

where T®, and T© are the times taken by 0 , ® and © (• makes one call to each). If 
all tha t is needed is the final value x n _ i , then we can use a reduce instead of scan with the 
operator • , and the running time is: 

(T© + T 0 + Te)TR(n,p) = ( T 0 + T® + T e ) ( n / p + lgp) (10) 

which is asymptotically a factor of 2 faster than (9). 
Applications of first-order linear recurrences include various time-varying linear sys­

tems, the backsubstitution phase of tridiagonal linear-systems solvers, and evaluation of 
polynomials. 

4 . 2 H i g h e r O r d e r R e c u r r e n c e s 

We now consider the more general order m recurrences of the form: 

J b i 0<i<m 
1 (Sf-i © at\i) © • • • © (*i-m © Oi\m) © bi m<i<n 

where © and <g> are binary operators with the same three restrictions as in (5): © is 
associative, ® is semiassociative, and ® distributes over ©. 

To convert this equation into the form (5), we define the following vector of variables: 

Si = [ Xi x t -_ m +i ]. (12) 
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a ~ = [5 1 3 4 3 9 2 
C

O
 

' 

f = [1 0 1 0 0 0 1 0] 

segmented +-scan = = [5 6 3 7 10 19 2 8] 
6] segmented max-scan = = [5 5 3 4 4 9 2 
8] 
6] 

Figure 10: The segmented scan operations restart at the beginning of each segment, 
vector / contains flags that mark the beginning of the segments. 

Using (11) we can write (12) as: 

Si = [Xi. Xi-m ]®(v) 

1 

0 

0 
0 

0 

1 

0 
0 

0 ] 

= (Si-1 ^ « ) ©(«) B< 
(13) 

where ®( v) is vector-matrix multiply and ®( v) is vector addition. If we use matrix-matrix 
multiply as the companion operator of ®( v ) , then (13) is in the form (5). The time taken 
for solving equations of the form (11) on an E R E W P-RAM is therefore: 

(Tm®m(m) + T v 0 m ( m ) + Tvev(m))Ts(n,p) = 0({n/p + l g p ) T m 0 m ( m ) ) (14) 

where Tm®m(m) is the time taken by an m ® m matrix multiply. The sequential complexity 
for solving the equations is O ( n m ) , so the parallel complexity is optimal in n when nfp > 
lgp , but is not optimal in m—the parallel algorithm performs a factor of 0 ( T M ® M ( M ) / M ) 
more work than the sequential algorithm. 

Applications of the recurrence (11) include solving recurrences of the form X{ = a,- + 
bi/xi-i (see problem 10), and generating the first n Fibonacci numbers xo = x\ = 1, X{ = 
X i - i + x t-_2 (see problem 11). 

5 Segmented Scans 
This section shows how the array operated on by a scan can be broken into segments with 
flags so tha t the scan star ts again at each segment boundary (see Figure 10). Each of 
these scans takes two arrays of values: a data array and a flag array. The segmented scan 
operations present a convenient way to execute a scan independently over many sets of 
values. The next section shows how the segmented scans can be used to execute a parallel 
quicksort, by keeping each recursive call in a separate segment, and using a segmented 
+-scan to execute a split within each segment. 
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The segmented scans satisfy the recurrence: 

!

a 0 » = 0 

\ ? « i frl »<•<» <15) 

where © is the original associative scan operator. If © has an identity 7$ , then (15) can be 
written as: 

x = i a° i = ° (16) 
\ x , fi) 8 a, 0 < t < n v 1 

where x s is denned as: 

fZl <17> 
This is in the form (5) and xs is semiassociative with logical o r as the companion operator 
(see Problem 9). Since we have reduced (15) to the form (5), we can use the technique 
described in Section 4.1 to execute the segmented scans in time 

(Toi + TXt+Te)Ts(n,p) . (18) 

This t ime complexity is only a small constant factor greater than the unsegmented 
version since o r and x , are trivial operators. 

5 . 1 E x a m p l e : Q u i c k s o r t 

To illustrate the use of segmented scans, we consider a parallel version of quicksort. Similar 
to the s tandard sequential version, the parallel version picks one of the keys as a pivot value, 
splits the keys into three sets—keys lesser, equal and greater than the pivot—and recurses 
on each se t . 4 The parallel algorithm has an expected time complexity of 0(Ts(n,p) l g n ) = 
0 ( * l g n + l g 2 n ) . 

The basic intuition of the parallel version is to keep each subset in its own segment, 
and to pick pivot values and split the keys independently within each segment. Figure 11 
shows pseudocode for the parallel quicksort and gives an example. The steps of the sort 
are outlined as follows: 

1. Check if the keys are sorted and exit the routine if they are. 

Each processor checks to see if the previous processor has a lesser or equal value. We 
execute a reduce with logical a n d to check if all the elements are in order. 

4 We do not need to recursively sort the keys equal to the pivot, but the algorithm as described below 
does. 
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procedure quicksort (keys) 
seg-flags[0] <— 1 
while not-sorted(keys) 

pivots «— seg-copy(keys, seg-flags) 
f «— pivots <=> keys 
keys seg-split(keys, f, seg-flags) 
seg-flags <— new-seg-flags(keys, pivots, seg-flags) 

Key = [6.4 9.2 3.4 1.6 8.7 4.1 
Seg-Flags = [1 0 0 0 0 0 

Pivots = [6.4 6.4 6.4 6.4 6.4 6.4 
F = [ = > < < > < 
Key <— split(Key, F) = [3.4 1.6 4.1 3.4 6.4 9.2 
Seg-Flags = [1 0 0 0 1 1 
Pivots = [3.4 3.4 3.4 3.4 6.4 9.2 
F = [ = < > = = = 
Key - split(Key, F) = [1.6 3.4 3.4 4.1 6.4 8.7 
Seg-Flags = [1 1 0 1 1 1 

9.2 
0 

6.4 
> 

8.7 
0 

9.2 
< 

9.2 
1 

3.4] 
0] 

6.4] 
<] 

9.2] 
0] 

9.2] 
=] 

9.2] 
0] 

Figure 11: An example of parallel quicksort. On each step, within each segment, we distribute 
the pivot, test whether each element is equal-to, less-than or greater-than the pivot, split into 
three groups, and generate a new set of segment flags. The operation <=> returns one of three 
values depending on whether the first argument is less than, equal to or greater than the second. 
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2. Within each segment, pick a pivot and distribute it to the other elements. 

If we pick the first element as a pivot, we can use a segmented scan with the binary 
operator copy, which returns the first of its two arguments: 

a «- copy(a,6) . 

This has the effect of copying the first element of each segment across the segment. 
The algorithm could also pick a random element within each segment (see Prob­
lem 15). 

3. Within each segment, compare each element with the pivot and split based on the 
result of the comparison. 

For the split, we can use a version of the split operation described in Section 3 which 
splits into three sets instead of two, and which is segmented. To implement such a 
segmented split, we can use a segmented version of the +-scan operation to generate 
indices relative to the beginning of each segment, and we can use a segmented copy-
scan to copy the offset of the beginning of each segment across the segment. We then 
add the offset to the segment indices to generate the location to which we permute 
each element. 

4. Within each segment, insert additional segment flags to separate the split values. 

Knowing the pivot value, each element can determine if it is at the beginning of the 
segment by looking at the previous element. 

5. Return to step 1. 

Each iteration of this sort requires a constant number of calls to the scans and to the 
primitives of the P-RAM. If we select pivots randomly within each segment, quicksort is 
expected to complete in O( lgn) iterations, and therefore has an expected running time of 

The technique of recursively breaking segments into subsegments and operating inde­
pendently within each segment can be used for many other divide-and-conquer algorithms, 
such as mergesort. 

6 Allocating Processors 

Consider the following problem: given a set of processors, each containing an integer, 
allocate tha t integer number of new processors t o each initial processor. Such allocation 
is necessary in the parallel line-drawing routine described in Section 6.1. In this line-
drawing routine, each processor calculates the number of pixels in the line and dynamically 
allocates a processor for each pixel. Allocating new elements is also useful for the branching 
part of many branch-and-bound algorithms. Consider, for example, a brute force chess-
playing algorithm tha t executes a fixed-depth search of possible moves to determine the 
best next move. We can test or search the moves in parallel by placing each possible move 
in a separate processor. Since the algorithm dynamically decides how many next moves 
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V 
A 
Hpointers «- +-prescan(A) 

= [vi v2 v 3 ] 
= [4 1 3 ] 
= [0 4 5] 

Segment-flag = [1 
distribute (V, Hpointers) 
index(Hpointers) = [0 

= [Vi Vi V\ V\ V2 V 3 V 3 V 3 ] 

2] 0 0 1 

Figure 12: An example of processor allocation. The vector A specifies how many new elements 
each position needs. We can allocate a segment to each position by applying a +-prescan to 
A and using the result as pointers to the beginning of each segment. We can then distribute 
the values of V to the new elements with a permute to the beginning of the segment and a 
segmented copy-scan across the segment. 

to generate (depending on the position), we need to dynamically allocate new processing 

elements. 
More formally, given a length / vector A with integer elements a j , allocation is the task 

of creating a new vector B of length 

Z = 5> (19) 
t ' = 0 

with a t elements of B assigned to each position i of A. By assigned to , we mean that there 
must be some method for distributing a value at position i of a vector t o the at- elements 
which are assigned to tha t position. Since there is a one-to-one correspondence between 
elements of a vector and processors, the original vector requires / processors and the new 
vector requires L processors. Typically, an algorithm does not operate on the two vectors 
at the same t ime, so tha t we can use the same processors for both . 

Allocation can be implemented by assigning a contiguous segment of elements to each 
position i of A. To allocate segments we execute a +-prescan on the vector A tha t returns a 
pointer to the s tar t of each segment (see Figure 12). We can then generate the appropriate 
segment flags by writing a flag to the index specified by the pointer. To distribute values 
from each position i to its segment, we write the values to the beginning of the segments 
and use a segmented copy-scan operation to copy the values across the segment. Allocation 
and distribution each require one call to a scan and therefore have complexity Ts(l,p) and 
Ts(Ljp) respectively. 

Once a segment has been allocated for each initial element, it is often necessary to 
generate indices within each segment. We call this the index operation, and it can be 
implemented with a segmented + -p re scan . 
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6.1 Example: Line Drawing 

As an example of how allocation is used, consider line drawing. The line-drawing problem 
is: given a set of pairs of points (((x0yy0) : ( * o , î / o ) > , . . . , ( ( a : n - i , y n - i ) : ( x n - i , y n - i ) » , 
generate all the locations of pixels tha t lie between on of the pairs of points. Figure 13 
illustrates an example. The routine we discuss returns a vector of (x ,y ) pairs that specify 
the position of each pixel along every line. If a pixel appears in more than one line, it 
will appear more than once in the vector. The routine generates the same set of pixels as 
generated by the simple digital differential analyzer sequential technique. 

The basic idea of the routine is for each line to allocate a processor for each pixel in 
the line, and then for each allocated pixel to determine, in parallel, its final position in 
the grid. Figure 13 shows the code. To allocate a processor for each pixel, each line must 
first determine the number of pixels in the line. This number can be calculated by taking 
the maximum of the x and y differences of the line's endpoints. Each line now allocates a 
segment of processors for its pixels, and distributes one endpoint along with the per-pixel 
x and y increments across the segment. We now have one processor for each pixel and 
one segment for each line. We can view the position of a processor in its segment as the 
position of a pixel in its line. Based on the endpoint the slope and the position in the line 
(determined with a index operation), each pixel can determine its final (x ,y ) location in 
the grid. 

This routine has the same complexity as a scan T$(m,p)J where m is the total number 
of pixels. To actually place the points on a grid, rather than just generating their position, 
we would need to permute a flag to a position based on the location of the point. In general, 
this will require the simplest form of concurrent-write (one of the values gets writ ten), since 
a pixel might appear in more than one line. 

Exercises 

1 Modify the algorithm in Figure 4 to execute a scan instead of a prescan. 

2 Use the scan operation to compare two strings of length n in 0(n/p + \gp) time on an 
E R E W P-RAM. 

3 Given two vectors of bits tha t represent nonnegative integers, show how a prescan can 
be used to add the two numbers (return a vector of bits tha t represents the sum of the two 
numbers) . 

4 Trace the steps of the split-radix sort on the vector 

[2 11 4 5 9 6 15 3]. 

5 Show that subtraction is semiassociative and find its companion operator. 

6 Write a recurrence equation of the form (5) tha t evaluates a polynomial 

y = bxxn~l + b2xn'2 + • • • + 6 n - i * + bn 
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p r o c e d u r e l i n e - d r a w ( x , y) 
in pa ra l l e l for e a c h l ine i 

% de te rmine t h e l e n g t h of t h e l i n e 
l e n g t h [ t ] <- maximum(|p2W-x - Pili].x\9 \P2IH-J - P i W - y | ) 

X de t e rmine t h e x and y i nc r emen t s 
AtQ.x «- ( f t ü t l . x - P iCf l .x ) / l e n g t h [ i ] 
A [ t ] . y <- (p2W - y - P iCf l .y ) / l e n g t h [ f ] 

X d i s t r i b u t e v a l u e s and g e n e r a t e index 
p[ <- d i s t r i b u t e ( p i , l e n g t h s ) 
A ' «- d i s t r i b u t e ( A , l e n g t h s ) 
index <— i n d e x ( l e n g t h s ) 

in pa ra l l e l for e a c h p ixe l j 
X de t e rmine t h e f i n a l p o s i t i o n 
r e s u l t [ 7 ] . x 4 — p j l j l . x + round ( index [ j ] x A ' [ j ] . x ) 
r e s u l t [ j ] . y P i C i l . y • round ( index [ j ] x A ' [ j ] . y ) 

Figure 13: The pixels generated by a line drawing routine. In this example the endpomts are 
((11,2) : (23,14)), ((2,13) : (13,8)), and ((16,4) : (31,4)). The algorithm allocates 12, 11 
and 16 pixels respectively for the three lines. 
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for a given x. 

7 Show tha t if <g> has an inverse, the recurrence of the form (5) can be solved with some 
local operations (not involving communication among processors) and two scan operations 
(using ® and © as the operators) . 

8 Prove that vector-matrix multiply is semiassociative. 

9 Prove tha t the operator x , defined in (17) is semiassociative. 

10 Show how the recurrence x(i) = a(i) + b(i)/x(i — 1), where + is numeric addition and 
/ is division, can be converted into the form (11) with two terms (m = 2). 

11 Use a scan to generate the first n Fibonacci numbers. 

12 Show how to solve a tridiagonal linear-system using the recurrences in Section 4. Is 
the algorithm asymptotically optimal? 

13 In the language Common Lisp, the % character means tha t what follows the character 
up to the end of the line is a comment. Use the scan operation to mark all the comment 
characters (everything between a % and an end-of-line). 

14 Trace the steps of the parallel quicksort on the vector 

[27 11 51 5 49 36 15 23]. 

15 Describe how quicksort is changed so tha t it selects a random element within each 
segment for a pivot. 

16 Design an algorithm tha t given the radius and number of sides on a regular polygon, 
determines all the pixels tha t outline the polygon. 

Notes 

The all-prefix-sums operation has been around for centuries as the recurrence xf- = a t-+x t-_i. 
A parallel circuit to execute the scan operation was first suggested by Ofman in 1963 [15] 
for the addition of binary numbers. A parallel implementation of scans on a perfect shuffle 
network was later suggested by Stone [17] for polynomial evaluation. The optimal algorithm 
discussed in Section 2 is a slight variation of algorithms suggested by Kogge and Stone [10] 
and by Stone [19] in the context of recurrence equations. 

Ladner and Fischer first showed an efficient general-purpose circuit for implementing the 
scan operation [11]. Brent and Kung, in the context of binary addition, first showed an effi­
cient VLSI layout for a scan circuit [4]. More recent work on implementing scan operations 
in parallel include the work of Fich [7] and of Lakshmivarahan, Yang and Dhall [12], which 
give improvements over the circuit of Ladner and Fischer, and of Lubachevsky and Green-
berg [13], which demonstrates the implementation of the scan operation on asynchronous 
machines. Blelloch suggested tha t certain scan operations be included in the P-RAM model 
as primitives and shows how this affects the complexity of various algorithms [1]. 
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The line-of-sight and radix-sort algorithms are discussed by Blelloch [2, 3]. The parallel 
solution of recurrence problems was first discussed by Karp, Miller and Winograd [9], and 
parallel algorithms to solve them are given by Kogge and Stone [10], Stone [18, 19] and 
Chen and Kuck [5]. Hyafil and Kung [8] show tha t the complexity (10) is a lower bound. 

Schwartz [16] and, independently, Mago [14] first suggested the segmented versions of 
the scans. Blelloch suggested many uses of these scans including the quicksort algorithm 
and the line-drawing algorithm presented in Sections 5.1 and 6.1 [2]. 

Acknowledgments 
I would like to thank Siddhartha Chatterjee, Jonathan Hardwick and Jay Sipelstein for 
reading over drafts of this paper and helping to clean it up. 

References 
[1] Guy E. Blelloch. Scans as Primitive Parallel Operations. IEEE Transactions on 

Computers, C-38(ll):1526-1538, November 1989. 

[2] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge, 
MA, 1990. 

[3] Guy E. Blelloch and James J . Little. Parallel Solutions to Geometric Problems on 
the Scan Model of Computation. In Proceedings International Conference on Parallel 
Processing, pages Vol 3: 218-222, August 1988. 

[4] R. P . Brent and H. T . Kung. The Chip Complexity of Binary Arithmetic. In Proceed­
ings ACM Symposium on Theory of Computing, pages 190-200,1980. 

[5] Shyh-Ching Chen and David J . Kuck. Time and Parallel Processor Bounds for Linear 
Recurrence Systems. IEEE Transactions on Computers, C-24(7), July 1975. 

[6] Richard Cole and Uzi Vishkin. Faster optimal parallel prefix sums and list ranking. 
Information and Computation, 81(3):334-352, June 1989. 

[7] Faith E. Fich. New Bounds for Parallel Prefix Circuits. In Proceedings ACM Sympo­
sium on Theory of Computing, pages 100-109, April 1983. 

[8] L. Hyafil and H. T . Kung. The Complexity of Parallel Evaluation of Linear Recur­
rences. Journal of the Association for Computing Machinery, 24(3):513-521, July 
1977. 

[9] R. H. Karp, R. E. Miller, and S. Winograd. The Organization of Computations for 
Uniform Recurrence Equations. Journal of the Association for Computing Machinery, 
14:563-590,1967. 

22 



[10] Peter M. Kogge and Harold S. Stone. A Parallel Algorithm for the Efficient Solution 
of a General Class of Recurrence Equations. IEEE Transactions on Computers, C-
22(8):786-793, August 1973. 

[11] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation. Journal of 
the Association for Computing Machinery, 27(4):831-838, October 1980. 

[12] S. Lakshmivarahan, C. M. Yang, and S. K Dhall. Optimal Parallel Prefix Circuits 
with (size + depth) = 2n - n and [logn] < depth < |"21ogn] - 3. In Proceedings 
International Conference on Parallel Processing, pages 58-65, August 1987. 

[13] Boris D. Lubachevsky and Albert G. Greenberg. Simple, Efficient Asynchronous Paral­
lel Prefix Algorithms. In Proceedings International Conference on Parallel Processing, 
pages 66-69, August 1987. 

[14] G. A. Mago. A network of computers to execute reduction languages. International 
Journal of Computer and Information Sciences, 1979. 

[15] Yu. Ofman. On the Algorithmic Complexity of Discrete Functions. Soviet Physics 
Doklady, 7(7):589-591, January 1963. 

[16] Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages 
and Systems, 2(4):484-521, October 1980. 

[17] Harold S. Stone. Parallel Processsing with the Perfect Shuffle. IEEE Transactions on 
Computers, C-20(2):153-161, 1971. 

[18] Harold S. Stone. An Efficient Parallel Algorithm for the Solution of a Tridiagonal 
Linear System of Equations. Journal of the Association for Computing Machinery, 
20(l) :27-38, January 1973. 

[19] Harold S. Stone. Parallel Tridiagonal Equation Solvers. ACM Transactions on Math-
ematical Software, l(4):289-307, December 1975. 

23 


