NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU Common Lisp User’s Manual

Robert A. MacLachlan, Editor
February 1991

CMU-CS-91-108 z

School of Computer Science
Carnegie Melion University
Pittsburgh, PA 15213

This is a revised version of Technical Report CMU-CS-87-156.

Abstract

CMU Common Lisp is an implementation of Common Lisp that currently runs under Mach, a Berkeley Unix 4.3
binary compatible operating system. CMU Common Lisp is currently supported on MIPS-processor DECstations,
Sparc-based workstations from Sun and the IBM RT PC, and other ports are planned. The largest single part of this
document describes the Python compiler and the programming styles and techniques that the compiler encourages.
The rest of the document describes extensions and the implementation dependent choices made in developing this
implementation of Common Lisp. We have added several extensions, including the proposed error system, a source
level debugger, an interface to Mach system calls, a foreign function call interface, support for interprocess
commurnication and remote procedure call, and other features that provide a good environment for developing Lisp
code.

This research was sponsored by the Defense Advanced Research Projects Agency, Information Science and
Technology Office, under the title Research on Parallel Computing issued by DARPA/CMO under Contract
MDA972-90-C-0035 ARPA Order No. 7330.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. government.

Keywords: Programming environments, Common Lisp, system

interface, debuggers, compilers,
cfficiency, Python

TABLE OF CONTENTS

Table of Contents

1. Introduction
1.1. Obtaining and Running CMU Commeon Lisp under Mach

2. Implementation Dependent Design Choices

2.1, Integers
- 2.2, Floats

2.2.1. IEEE Special Values
2.2,2, Negative Zero
2.2.3. Denormalized Floats
2.2.4. Floating Point Exceptions
2.2.5, Floating Point Rounding Mode
2.2.6. Accessing the Floating Point Modes

2.3. Characters

2.4, Array Initialization

2.5, Packages

2.6. The Editor

2.7. Time Functions

2.8. Garbage Collection

2.9. Describe

2.10. Load

2.11. The Inspector

3. Miscellaneous Extensions to Commeon Lisp

3.1. Unix Interrupts
3.1.1. Default Interrupt Handlers for Lisp
3.1.2. Examples of Signal Handlers

3.2. Saving a Core Image

3.3. Search Lists

3.4. Running Programs from Lisp

3.5. Time Parsing and Formatting

3.6. Lisp Library

4. Error System

" 4.1. Introduction

4.1.1. Purpose
4.1.2, Terminology

4.2, Concepts
4.2.1. Signalling Errors
4.2.2, Trapping Errors
4.2.3. Handling Conditions
4.2.4. Object-Oriented Basis of Condition Handling
4.2.5, Restarts
4.2.6. Named Restarts -
4.2.7. Restart Functions
4.2.8. Contrasting Restarts and Catch/Threw
4.2.9. Generalized Restarts
4.2.10. Serious Conditions
4.2.11. Non-Serious Conditions
4.2.12. Condition Types
4.2.13. Signalling Conditions
4.2.14. Condition Handlers
4.2.15. Printing Conditions

4.3. Signalling Conditions

4.4, Handling Conditions

4.5. Defining and Creating Conditions

4.6. Assertions

Ly

N

TSI E G

CARMEGIE MELLO

LS

H, pa

[
CEeVHL IO LA ABWWW W = -

—
[

jod i ek ok ok ok et
wonentth e

20

ZRARIES
UNIVERSITY
15213-3896

4.7. Case Forms

4.8. Establishing Restarts

4.9, Finding and Manipulating Restarts
4.10. Restart Functions

4.11. Debugging Utilities

4.12. System Defined Types

5. The Debugger

5.1. Introduction
5.2. The Command Loop
5.3. Stack Frames
. 5.3.1. Stack Motion
5.3.2. How Arguments are Printed
5.3.3. Function Names
5.3.4. Funny Frames
5.3.5. Tail Recursion

53.6. Unknown Locations and Interrupts

5.4. Variable Access
5.4.1, Variable Value Availability
5.4.2, Note On Lexical Variable Access
5.5. Source Location Printing
5.5.1. How the Source is Found
5.5.2, Source Location Availability
5.6. Compiler Policy Control
5.7. Exiting Commands
5.8. Information Commands
5.9. Specials
5.10. Function Tracing ‘
5.10.1. Encapsulation Functions

6. The Compiler

6.1. Introduction
6.2. Calling the Compiler
6.3. Compilation Units
6.4. Interpreting Error Messages
6.4.1. The Parts of the Error Message
6.4.2. The Original and Actual Source
6.4.3. The Processing Path
6.4.4. Error Severity
6.4.5. Errors During Macroexpansion
6.4.6. Read Errors
6.4.7. Error Message Variables
6.5. Types in Python
6.5.1. Compile Time Type Errors
6.5.2. Precise Type Checking
6.5.3. Weakened Type Checking
6.6. Getting Existing Programs to Run
6.7. Compiler Policy
6.7.1. The Optimize Declaration
6.8. Open Coding and Inline Expansion

7. Advanced Compiler Use and Efficiency Hints

7.1. Introduction
7.1.1. Types
7.1.2. Optimization
7.1.3. Function Call
7.1.4. Object Representation
7.1.5. Writing Efficient Code

CMU COMMON LISP USER’S GUIDE

TABLE OF CONTENTS

7.2. More About Types in Python
7.2.1. More Types Meaningful
7.2.2. Canonicalization
7.2.3. Member Types
7.2.4, Union Types
7.2.5. The Empty Type
7.2.6. Function Types
7.2.7. The Values Declaration
7.2.8. Structure Types
7.2.9. The Freeze-Type Declaration
7.2.10, Type Restrictions
7.2.11. Style Recommendations
7.3. Type Inference
7.3.1. Variable Type Inference
7.32. Local Function Type Inference
7.3.3. Global Function Type Inference
7.3.4. Operation Specific Type Inference
7.3.5. Dynamic Type Inference
7.3.6. Type Check Optimization
7.4. Optimization
7.4.1. Let Optimization
7.4.2. Constant Folding
7.4.3. Unused Expression Elimination
7.4.4. Control Optimization
7.4.5. Unreachable Code Deletion
7.4.6. Multiple Values Optimization
7.4.7. Source to Source Transformation
7.4.8. Style Recommendations
7.5. Tail Recursion
7.5.1. Tail Recursion Exceptions
7.6. Local Call and Block Compilation
7.6.1. Self-Recursive Calls
7.6.2. Let Calls
7.6.3. Closures
7.6.4. Tail Recursion
7.6.5. Block Compilation
7.6.6. Return Values
7.7. Inline Expansion
7.1.1. Inline Expansion Recording
7.7.2. Semi-Inline Expansion
7.7.3. The Maybe-Inline Declaration
7.8. Object Representation
7.8.1, Think Before You Use a List
7.8.2. Structures
7.8.3. Arrays
7.8.4. Vectors
7.8.5. Bit-Vectors
7.8.6. Hashtables
7.9. Numbers
7.9.1. Descriptors
7.9.2, Non-Descriptor Representations
7.9.3. Yariables
7.9.4. Generic Arithmetic
7.9.5. Fixnums
7.9.6. Word Integers
7.9.7. Floats
7.9.8. Specialized Arrays

iv

7.9.9. Interactions With Local Call
7.9.10. Characters
7.10. General Efficiency Hints
7.10.1. Compile Your Code
7.10.2. Avoid Unnecessary Consing
7.10.3, Complex Argument Syntax
7.10.4. Mapping and Iteration
7.10.5, Trace Files and Disassembly
7.11. Efficiency Notes
7.11.1. Type Uncertainty

7.11.2. Effidency Notes and Type Checking

7.11.3. Representation Efficiency Notes
7.11.4. Verbosity Control
7.12. Profiling
7.12.1. A Note on Timing
7.12.2. Benchmarking Techniques

8. MACH Interface

8.1. Lisp Equivaients for C Routines
8.2. Type Translations

8.2.1. System Area Pointers
8.3. Unix System Calls
8.4, Making Sense of Return Codes
8.5. Packapes
8.6. Useful Variables
8.7. Reading the Command Line

9. Event Dispatching with SYSTEM:SERVE-EVENT

9.1. Object Sets
9.2. The SYSTEM:SERVE-EVENT Function

9.3. Using SYSTEM:SERVE-EVENT with Unix File Descriptors
9.4, Using SYSTEM:SERVE-EVENT with the CLX Interface to X

9.4.1. Without Object Sets
9.4.2. With Object Sets
9.5. A SYSTEM:SERVE-EVENT Example
9.5.1. Without Object Sets
9.5.2. With Object Sets

10. The Alien Facility

10.1. What the Alien Facility Is
10.2, Alien Values

10.3. Alien Types

10.4. Alien Primitives

10.5. Alien Variables

10.6. Alien Stacks

10.7. Alien Operators

10.8. Examples

11. Foreign Function Call Interface

11.1, Introduction

11.2. Loading Unix Object Files

11.3. Defining Foreign Data Types
11,3.1, Defining New C Types
11.3.2, Defining C Arrays
11.3.3. Defining C Records
11.3.4. Defining C Pointers

11.4. Defining Variable Interfaces

11.5. Defining Routine Interfaces

CMU COMMON LISP USER'S GUIDE

112
112
112
112
113
113
114
114
115
115
116
116
117
118
118
119

121

121
122
123
124
125
126
126
126

129

129
130
130
131
131
132
133
133
134 .

139

139
139
139

TABLE OF CONTENTS

11.6. Calling Lisp routines from C
11.7. An Example

12. Interprocess Communication under LISP

12.1. The REMOTE Package
12.1.1. Connecting Servers and Clients
12.1.2, Remote Evaluations
12.1.3. Remote Objects
12.1.4. Host Addresses
12.2. The WIRE Package
12.2.1, Untagged Data
12.2.2, Tagged Data
12.2.3. Making Your Own Wires
12.3. Out-Of-Band Data

Index
Index

CMU COMMON LISP USER’S GUIDE

Chapter 1

Introduction

CMU Common Lisp is a public-domain implementation of Common Lisp developed in the Computer Science
Department of Carnegie Mellon University. CMU Common Lisp is currently supported on MIPS-processor
DECstations, Sparc-based workstations from Sun and the IBM RT PC, and other ports are planned. Currendy, it
runs only under CMU’s Mach operating system. This document describes the implementation based on the Python
compiler. Previous versions of CMU Common Lisp ran on the IBM RT PC and (when known as Spice Lisp) on the
Perq workstation.

This manual contains only implementation-specific information about CMU Common Lisp. Users will also need
a separate manual describing the COMMON LIsP standard. COMMON LISP was initially defined in Common Lisp: The
Language, by Guy L. Steele Jr. COMMON LISP is now undergoing standardization by the X3J13 committee of
ANSI. The X3J13 spec is not yet completed, but a number of clarifications and modification have been approved.
We intend that CMU Common Lisp will eventually adhere to the X3J13 spec, and we have already implemented
many of the changes approved by X3J13.

Until the X3J13 standard is completed, the second edition of Common Lisp: The Language is probably the best
availabie manual for the language and for our implmentation of it. This book has no official role in the
standardization process, but it does include many of the changes adopted since the first edition was completed.

In addition to the fanguage itself, this document describes a number of useful library modules that run in CMU
Common Lisp. Hemlock, an Emacs-like text editor, is included as an integral part of the CMU Common Lisp
environment. Two documents describe Hemlock: the Hemlock User's Manual, and the Hemlock Command
Implementor’ s Manual.

CMU Common Lisp is currently undergoing intensive tuning and development. For the next year or so, new
releases will be appearing frequently. This document will be updated for each major release. Users of CMU
Common Lisp at CMU should watch the Mach, Unix-Announce, Unix-Forum, and Clisp bulletin boards for release
announcements, pointers to updated documentation files, and other information of interest.

1.1. Obtaining and Running CMU Common Lisp under Mach

To man CMU Common Lisp you must have a supported workstation with at least 8 megabytes of memory (the
more the better, especially if you run X.) The Hemlock editor supports the workstation’s high-resolution display
under the X window manager, as well as standard terminals such as the Concept-100 or H-19.

At CMU, there is a misc collection named cs.misc.anucl which should be updated on your machine
regularly by normal sup mechanisms. You can run "1isp"” out of AFS, but you must have an unusually large AFS
cache to do so (20 megabytes or more.) For those outside of CMU, there are several files including "l1isp”,

2 ‘ CMU COMMON LISP USER'S GUIDE

"lisp.core”, "spelldict.bin", etc. that nced to be installed. "lisp" is a C program that loads
"lisp.core" into memory. "lisp" should be put in any bin directory that is normally in your search path.
"lisp" currently expects to find "1lisp.core" in the directory "/usr/misc/.cmucl/Llib/". If Hemlock is
run under the X window system, it needs several files that it expects to find in this this directory. The X inspector
also looks for files in “/usx/misc/.cmucl/1lib/", and expects to find a belp file in the directory
"fusr/misc/.cmucl/doc/".

At CMU, you should put either "/usr/misc/bin" (if you want all the misc executable files) or
"/fusr/misc/.cmucl/bin" (if you want just Common Lisp) in your PATH searchlist. Typing "lisp"” will
start up Lisp with the default core image ("/usr/misc/.lisp/lib/lisp.core") after several seconds. ’

Currently Lisp accepts the following switches:

-core requires an argument that should be the name of a core file. Rather than using the default core
file ("/usr/mise/.1lisp/1ib/lisp.core"), the specified core file is loaded.

-edit specifies to enter Hemlock. A file to edit may be specified by placing the name of the file
between the program name (usually 1isp) and the first switch.

-aval accepts one argument which should be a Lisp form to evaluate during the start up sequence. The
value of the form will not be printed unless 1t is wrapped in a form that does output.

=hinit accepts an argument that should be the name of the hemlock init file to load the first time the

function ed is invoked. The default is to load "hemlock-init . object-type”, or if that does
not exist, "hemlock-init.lisp" from the user’s home directory. If the file is not in the
user’s home directory, the full path must be specified.

-init accepts an argument that should be the name of an init file to load during the normal start up
sequence. The default is to load "init . object-rype” or, if that does not exist, "init .lisp"
from the user’s home directory. If the file is not in the user’s home directory, the full path must
be specified.

-noinit accepts no arguments and specifies that an init file should not be loaded during the normal start

up sequence, Also, this switch suppresses the loading of a hemlock init file when Hemlock is
started up with the —edit switch.

-load accepts an argument which should be the name of a file to load into Lisp before entering Lisp's
read-eval-print loop.

-slave specifies that Lisp should start up as a slave Lisp and try to connect to an editor Lisp. The name
of the editor to connect to must be specified — to find the editor’s name, use the Hemlock
"Accept Slave Connections” command. The name for the editor Lisp is of the form
"machine-name : socket”, where machine-name is the internet host name for the machine and
socket is the decimal number of the socket to connect to.

For more details on the use of the ~edit and -slave switches, see the Hemlock User's Manual.

Arguments to the above switches can be specified in one of two ways: switch=value or switch<space>vaiue. For
example, to start up the saved core file mylisp.core use either of the following two commands:

lisp -core=mylisp.core
lisp -core mylisp.core

Chapter 2

Implementation Dependent Design Choices

Several design choices in Common Lisp are left to the individual implementation. This chapter contains a partial
list of these topics and the choices that are implemented in CMU Common Lisp. As in Common Lisp: The
Language, all symbols and package names are printed in lower case, as a user is likely to type them. Internally, they
are nommnally stored upper case only.

2.1. Integers

The £ixnum type is equivalent to (signed-byte 30). Integers outside this range are represented as a
bignum or a word integer (see section 7.9.6.) Almost all integers that appear in programs can be represented as a
fixnum so integer number consing is rare.)

2.2. Floats

CMU Common Lisp supports two floating point formats: single—~£float and double-float. These are
implemented with IEEE single and double float arithmetic, respectively. short-£loat is a synonym for
single-float, and long-£float is a synonym for double-float. .The initial value of
*read-default-float-format*is single-£float.

Both single-float and double-£loat are represented with a pointer descriptor, so float operations can
cause number consing. Number consing is greatly reduced if programs are written to allow the use of non-descriptor
representations (see section 7.9.)

2.2.1. IEEE Special Values

CMTU Common Lisp supports the IEEE infinity and NaN special values. These non-numeric values will only be
generated when trapping is disabled for some floating point exception (see section 2.2.4}, so users of the default
configuration need not concemn themselves with special values. '

extensions:short-float-positive-infinity [Constant]
extensions:short-float-negative-infinity {Constani]
extensions:single-float-positive-infinity [Constant]
extensions:single-float-negative-infinity [Constant]
extensions:double-flocat-positive-infinity [Constant]
extensions:double-float-negative-infinity [Constant]
extensions:long-float-positive-infinity [Constant]
extensions:long-float-negative-infinity [Constant]

4 CMU COMMON LISP USER'S GUIDE

The values of these constants are the IEEE positive and negative infinity objects for each float format.

extensions:float-infinity-p x ' [Function]
This function retums true if x is an IEEE float infinity (of either sign.) x must be a float.

extensions:float-nan-p x [Function]

extensions:float~trapping-nan-p x [Function]
float-nan~p retums true if x is an IEEE NaN (Not A Number) object. £loat-trapping-nan-p
retumns true only if x is a trapping NaN. With either function, x must be a float.

2.2.2, Negative Zero

The IEEE float format provides for distinct positive and negative zeros. To test the sign on zero (or any other
float), use the COMMON LISP £1loat-sign function. Negative zero prints as ~0 . 0£0 or ~0 . 040.

2.2.3. Denormalized Floats

CMU Common Lisp supports IEEE denormalized floats. Denormatized floats provide a mechanism for gradual
underflow. The COMMON LISP £loat-precision function retums the actual precision of a denormalized float,
which will be less than £loat-digits. Note that in order to generate (or even print) denormalized floats,
trapping must be disabled for the underflow exception (see section 2.24) The CoOMMON LISP
least-positive-formatE£loat constants are denormalized. :

extensions:float-normalized-p x [Function)
This function retums true if x is a denormalized float. x must be a float.

2.2.4. Floating Point Exceptions

The IEEE floating point standard defines several exceptions that occur when the result of a floating point
operation is unclear or undesirable. Exceptions can be ignored, in which case some defanlt action is taken, such as
retuming a special value. When trapping is enabled for an exception, a error is signalled whenever that exception
occurs. These are the possible floating point exceptions:

:underflow This exception occurs when the result of an operation is too small to be represented as a
normalized float in its format. If trapping is enabled, the £loating-point-underflow
condition is signalled. Otherwise, the operation results in a denormatized float or zero.

ioverflow This exception occurs when the result of an operation is too large to be represented as a float in
its format. If trapping is enabled, the £lcating-point-over£flow exception is signalled.
Otherwise, the operation results in the appropriate infinity.

:inexact This exception occurs when the result of a floating point operation is not exact, i.e. the result
was rounded. If trapping is enabled, the extensions:floating-point-inexact
condition is signalled, Otherwise, the rounded result is returned.

rinvalid This exception occurs when the result of an operation is ill-defined, suchas (/ 0.0 0.0). If
trapping is enabled, the extensions: floating-point—-invalid condition is signalled.
Otherwise, a quiet NaN is returned. ’

:divide-by-zerc
This exception occurs when a float is divided by zero. If trapping is enabled, the
divide-by-zero condition is signalled. Otherwise, the appropriate infinity is returned.

IMPLEMENTATION DEPENDENT DESIGN CHOICES 5

2.2.5. Floating Point Rounding Mode
IEEE floating point specifies four possibie rounding modes:

:nearest In this mode, the inexact results are rounded to the nearer of the two possible result values. If
the neither possibility is nearer, then the even alternative is chosen. This form of rounding is
also called "round to even”, and is the form of rounding specified for the COMMON LISP round
function.

:positive-infinity
This mode rounds inexact results to the possible value closer to positive infinity. This is
analogous to the COMMOCN LISP ceiling function.

:negative-infinity
This mode rounds inexact results to the possible value closer to negative infinity. This is
analogous to the COMMON LISF £1oor function.

1 zZero This mode rounds inexact results to the possible value closer to zero. This is analogous to the
COMMON LISP t runcate function.

Warning:

Although the rounding mode can be changed with set-£floating-point-modes, use of any value other
than the default (:nearest) can cause unusual behavior, since it will affect rounding done by Common Lisp
system code as well as rounding in user code. In particular, the unary round function will stop doing round-to-
nearest on floats, and instead do the selected form of rounding.

2.2.6. Accessing the Floating Point Modes

These functions can be used to modify or read the floating point modes:

extensions:set-flocating-point-modes &key :traps :rounding-mode [Function]
:fast-mode :acerued-exceptions
:current-exceptions
get-floating-point-modes [Function)
The keyword arguments to set-floating-point-modes set various modes controlling how
floating point arithmetic is done:

:traps A list of the exception conditions that should cause traps. Possible exceptions are
iunderflow, :overflow, :inexact, :invalid and :divide-by-zero.
Initially all traps except : inexact are enabled. See section 2.2.4.

:rounding-mode
The rounding mede to use when the result is not exact. Possible values are
‘nearest, :positive-infinity, :negative-infinity and :zero,
Initially, the rounding mode is :nearest. See the warning in section 2.2.5 about
use of other rounding modes.

icurrent-exceptions :accrued-exceptions>
Lists of exception keywords used to set the exception flags. The current-exceptions
are the exceptions for the previous operation, so setting it is not very useful. The
accrued-exceptions are a cumuiative record of the exceptions that occurred since the
last time these flags were cleared. Specifying () will clear any accrued exceptions.

: fast-mode Set the hardware's "fast mode" flag, if any. When set, IEEE conformance or
debuggability may be impaired. Some machines may not have this feature, in which
case the value is always nil. No currently supported machines have a fast mode.

If a keyword argument is not supplied, then the assaciated state is not changed.

6 CMU COMMON LISP USER'S GUIDE

get-floating-point-modes retums a list representing the state of the floating point modes. The
list is in the same format as the keyword arguments to set-floating-point-modes, $o apply
could be used with set-floating-point-modes to restore the modes in effect at the time of the
call to get-floating-point-modes.

2.3. Characters

CMU Common Lisp implements characters according to Common Lisp: the Language II. The main difference
from the first version is that character bits and font have been eliminated, and the names of the types have been
changed. base-character is the new equivalent of the old string-char. In this implementation, all
characters are base characters (there are no extended characters.) Character codes range between 0 and 255, using
the ASCII encoding,.

2.4. Array Initialization

If no :initial~-value is specified, arrays are initialized to zero.

2.5. Packages

When CMU Common Lisp is first started up, the default package is the user package. The user package uses
the lisp, extensions, conditions, debug, and clos packages. The symbols exported from these five
‘packages can be referenced without package qualifiers.

Currently, the following packages are defined (abbreviations for the packages are in parenthesis after the full
name):

clos (pcl) ° The clos package contains the code that implements the Common Lisp Object System (CLOS)
specification and exports the symbols as defined in the CLOS specification. The nickname pcl
has been retained for compatibility with earlier versions.

c The c package contains the Common Lisp compiler. User-level compiler extensions are
exported from the extensions package.

conditiocns The conditions package contains the new error system as proposed for Commeon Lisp and
exports several symbols necessary for the new error system.

debug The debug package contains the stack crawling debugger and the low level functions on which
itis built. It exports symbols the user may want to use when debugging a program.

dired The dired package contains support functions for Hemlock's directory editing mode.

extensions {ext)
The extensions packages exports local extensions to Common Lisp that are documented in
this manual. Examples include the save-lisp function and the interface to foreign (C)
functions.

hemlicck (ed) The hemlock package contains all the code to implement Hemlock commands. The hemlock
package currently exports no symbols.

hemlock-internals (hi)
The hemlock-internals package contains code that implements low level primitives and
exports those symbois used to write Hemlock commands.

inspect The inspect package contains the inspector.

.iterate The iterate package contains code used by CLOS and exports a few symbols needed by
CLOS. '

IMPLEMENTATION DEPENDENT DESIGN CHOICES 7

keyword The keyword package contains keywords (e.g., :start). All symbols in the keyword package
are exported and evaluate to themselves (i.e., the value of the symbol is the symbol itself).

lisp The lisp package exports all the symbols defined by Common Lisp: the Language and only
those symbols. Strictly portable Lisp code will depend only on the symbols exported from the
lisp package.

mach The mach package contains code to interface to the Mach operating system. All the standard
: unix system calls (the names are unix-<system call name>} and the Mach specific calls (e.g.,
vm allocate, port aliocate, etc.) are exported from this package.

spell The spell package contains a spelling checker and corrector that is used by Hemlock. It
exports several symbols that allow a user to manipulate the spelling dictionary and to check the
spelling of words.

system (sys) The system package contains functions and information necessary for the system. This
package is used by the lisp package and exports several symbols that are necessary to
interface to system code. For example, the symbols used by the alien facility are exported from
this package.

user The user package is the default package and is where a user’s code and data is placed unless
otherwise specified. The user package exports no symbols.

walker The walker package contains code used by CLOS and exports a few symbols needed by
CLOS.

xlib The x1ib package contains the Common Lisp X interface (CLX) to the X11 protocol. This is
mostly Lisp code with a couple of functions that are defined in C to connect to the server.

xp ‘ The xp package contains a version of Richard C. Waters’s pretty printer written in Common
Lisp.

The 1isp, user and keyword packages are required by CoMMON LIsP.

2.6. The Editor

The ed function invokes the Hemlock editer which is described in Hemlock User's Manua! and Hemlock
Command Implementor’s Manual. Most users at CMU prefer to use Hemlock’s slave Common Lisp mechanism
which provides an interactive buffer for the read~eval~print loop and editor commands for evaluating and
compiling text from a buffer into the slave Common Lisp. Since the editor runs in the Common Lisp, using slaves
keeps users from trashing their editor by developing in the same Common Lisp with Hemlock.

2.7. Time Functions

time form [Macro]
This macro evaluates form, prints some timing and memory allocation information to
trace-output, and retums any values that form retumns.” The timing information includes real
time, user run time, and system run time. The consing information is useful for relattve comparisons, but
for accurate memory allocation reporting, you should compile the call to £ ime in a dummy function and
call the function. '

internal-time—units-per—-second [Constant]
The value of internal-time-units-per-second is 100.

See section 7.12 for more information.

8 CMU COMMON LISP USER'S GUIDE

2.8. Garbage Collection

CMU Common Lisp uses a stop-and-copy garbage collector that compacts the items in dynamic space every time
it rans. Most users cause the system to garbage collect (GC) frequently, long before space is exhausted. With eight
or twelve megabytes of memory, causing GC’s more frequently on less garbage allows the system to GC without
much (if any) paging.

The following functions invoke the garbage collector or control whether automatic garbage collection is in effect:

extensions:gc [Function)
This function runs the garbage collector. If ext:*gc-verbose* is non-nil, then it invokes
ext : *gc-notify-before* before GC'ing and ext : *gc-notify~-after* afterwards.

extenaions:gc-off [Function]
This function inhibits automatic garbage collection. After calling it, the system will not GC unless you
call ext : gc or ext : ge-on.

extensions:gc-on [Function]
This function reinstates automatic garbage collection. If the system would have GC’ed while automatic
GC was inhibited, then this will call ext : ge.

The following variables control the behavior of the garbage collector;

extensions:*hytes-consed-between-gcs* {Variable}
CMU Common Lisp automatically GC’s whenever the amount of memory allocated to dynamic objects
exceeds the value of an intemal variable. After each GC, the system sets this internal variable to the
amount of dynamic space in use at that point plus the value of the variable
ext : *bytes-consed-between-gcs*. The default vaiue is 2000000,

extensions:*gc-verbose* [Variable]
This variable controls whether ext : gc invokes the functions in ext : *gc-notify-before* and
ext:*gc-notify-~after*. If **gc-verbose** is nil, ext:gec foregoes printing any
messages. The default value is T.

extensions:*gc-notify-beforex* [Variable]
This variable’s value is a function that should notify the user that the system is about to GC. It takes one
argument, the amount of dynamic space in use before the GC measured in bytes. The default value of
this variable is a function that prints a message similar to the following:

[GC threshold exceeded with 2,107,124 bytes in use, Commencing GC.]

extensions:*gc-notify-after® [Variable]
This variable’s value is a function that should notify the user when a GC finishes. The function must take
three arguments, the amount of dynamic spaced retained by the GC, the amount of dynamic space freed,
and the new threshold which is the minimum amount of space in use before the next GC will occur, All
values are byte quantities. The default value of this variable is a function that prints a message similar to
the following:

[GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]
[GC will next occur when at least 2,025,680 bytes are in use.]

IMPLEMENTATION DEPENDENT DESIGN CHOICES 9

Note that a garbage collection will not happen at exactly the new threshold printed by the default
ext : *gc-notify-after* function. The system periodically checks whether this threshold has been exceeded,
and only then does a garbage collection.

extensions:*gec-inhibit-hook* [Variable]
This variable’s value is either a function of one argument or nil. When the system has triggered an
automatic GC, if this variable is a function, then the system calls the function with the amount of dynamic
space currently in use (measured in bytes). If the function retums nil, then the GC occurs; otherwise,
the system inhibits automatic GC as if you had called ext:gc-off. The wrter of this hook is
responsible for knowing when automatic GC has been tumned off and for calling or providing a way to
call ext : gc-on. The default value of this variable is nil.

extensions: *before-gc-hooks* [Variable]

extensions:*after-gc-hooks* [Variable]
These variables’ values are lists of functions to call before or after any GC occurs. The system provides
these purely for side-effect, and the functions take no arguments.

2.9. Describe

In addition to the basic function described below, there are a number of switches and other things that can be used
to control describe’s behavior.

describe object &optional stream [Function]
The describe function prints useful information zbout object on stream, which defaults to
standard-output. For any object, describe will print out the type. Then it prints other
information based on the type of object. The types which are presently handled are:

hash-table describe prints the number of entries currently in the hash table and the number of
buckets currently allocated.

function describe prints a list of the function’s name (if any) and its formal parameters. If
the name has function documentation, then it will be printed. If the function is
compiled, then the file where it is defined will be printed as well.

£ixnum describe prints whether the integer is prime or niot.

symbol The symbol’s value, properties. and documentation are printed. If the symbol has a
function definition, then the function is described.

If there is anything interesting to be said about some component of the object, describe will invoke itself
recursively to describe that object. The level of recursion is indicated by indenting output.

extensions: *describe-level* - [Variable)
The maximum level of recursive description allowed. Initially two.

extensions:*describe-indentation* [Variable]
The number of spaces to indent for each level of recursive description, initially three,

extensions:*describe-print-level* [Variable]
extensions:*describe-print-length* [Variable]
The values of *print~level* and *print-length#* during description. Initially two and five.

i0 ’ CMU COMMON LISP USER'S GUIDE

2.10. Load

An extension has been made to 1oad to allow the user to control what happens when the object file is older than
the comresponding source file.

‘extensions:*load-if-source-newer#* [Variable]
The legal values for *load-if-source-newer* and their meanings are:

:load-object The object file is loaded even though the source file is newer. This is the default,

:load-source The source file is loaded instead of the older object file.

:compile The source file is compiled and then the new object file is loaded.

:query TI';e szse; is asked a yes or no question to determine whether the source or object file
is loaded.

If *load-if-source-newer* contains any other value, an error is signalled.

2.11. The Inspector

An inspector that runs under the X window system, version 11, or on a terminal is available in CMU Common
Lisp. '

inspect &optional object {Function]
Inspect calls the inspector on the optional argument object. If object is unsupplied, inspect
immediately retums nil. Otherwise, the behavior of inspect depends on whether Lisp is running under
X,

If X is available, inspect creates an X window and displays object in the window. While inspect is
running and the cursor is in the inspector’s X window, mouse clicks and keyboard input have the
following meaning: '

Left When the left mouse button is clicked over a component object, that object will be
inspected in the current inspector window.

Middle When the middle mouse button is clicked over a component object, inspect is
exited returning the component as the result. All the new inspector windows are
deleted.

Shift Middle When the shift key is depressed and the middle mouse button is clicked over a

component object, inspect exits and returns the component as the result. All the
inspector windows are left displayed on the screen.

Right When the right mouse button is clicked over a component object, that object will be
~ inspected in a new inspector window.,
d, D When either d or D is typed, the current window is deleted. If there are no more

windows, then inspect exits and retumns the original object.

h,H,? When any of h, H, or ? are typed while in an inspector window, a new window with
help information is displayed.

m, M ' When either m or M is typed, a component object may be modified. The cursor
changes to an arrow with an M beside it. Clicking any mouse button while the mouse
is over a component will select that component as the destination for modification. If
m was typed, the source object is also selected by the mouse which is indicated by an
S beside the arrow in the cursor. If M was typed, the source object will be prompted
for on the *query-io* stream. The source object replaces the destinatien object.
While choosing the destination or source with the mouse, the operation can be
aborted by type q or Q.

IMPLEMENTATION DEPENDENT DESIGN CHOICES 11

q,Q
p. P

LR

u, U

When either q or Q is typed, inspect exits and returns the original object. All new
inspector windows are deleted.

When either p or P is typed, inspect exits and returns the original object. All the
inspector windows are left on the screen.

When either 1 or R is typed, the current inspector display is recomputed. This is
necessary to maintain a consistent display for an object that may have changed since
the display was originally computed.

When either u or U is typed, the object of which the current object is a component is
displayed. This is the inverse operation to clicking the left mouse button over a
component cbject. If the window is currently displaying the top level object, nothing
changes.

When the cursor is over a component object, the object is highlighted with a surrounding box.

If X is unavailable, a terminal inspector is invoked. This inspector prints information about and object
and a numbered list of the components of the object. The following commands are available:

<Ii>

q e
h, ?

where <n> means a number comesponding to one of the components of the object.
The inspector changes its focus to be this component. The inspector displays the
components of the this new object.

recomputes the information for the current object.
redisplays the information for the current object.

moves up one level of the objects inspected. As you descend into the components of
an object, a stack of all the objects previously seen is kept. This command pops you
up one level of this stack.

quits the inspector returning the currently inspected object.
displays some help text.

When inspect is eventually exited, it returns a Lisp object.

CMU COMMON LISP USER’S GUIDE

Chapter 3

Miscellaneous Extensions to Common Lisp

The developers of CMU Common Lisp have added several extensions to make the system a better development
environment. This chapter describes these functions, macros, and variables that add to the basic Common Lisp.

3.1. Unix Interrupts

CMU Common Lisp allows access to all the Unix signals that can be generated under Mach. It should be noted
that if this capability is abused, it is possible to completely destroy the running Lisp. The following macros and
functions allow access to the Unix interrupt system. The signal names as specified in section 2 of the Unix
Programmer' s Manua! are exported from the Mach package.

system:with-enabled-interrupts specs &rest body [Macro]
This macro should be called with a list of signal specifications, specs. Each element of specs should be a
list of two elements: the first should be the Unix signal for which a handler should be established, the
second should be a function to be called when the signal is received One or more signal handlers can be
established in this way. with-enabled-~intexrupts establishes the correct signal handlers and
then executes the forms in body. The forms are executed in an unwind-protect so that the state of the
signal handlers will be restored 1o what it was before the with-enabled-interrupts was entered.
A signal handler function specified as NIL will set the Unix signal handler to the default which is
normally either to ignore the signal or to cause a core dump depending on the particular signal.

system:without-interrupts &rest body {Macro]
It is sometimes necessary 10 execute a piece a code that can not be interrupted. This macro the forms in
body with interrupts disabled. Note that the Unix interrupts are not actually disabled, rather they are
gueued until after body has finished executing.

system:with-interrupts &rest body [Macro]
When executing an interrupt handler, the system disables interrupts, as if the handler was wrappedinin a
without-interrupts. The macro with-interrupts can be used to enable interrupts while the
forrns in body are evaluated. This is useful if body is going to enter a break loop or do some long
computation that might need to be interrupted.

system:without-hemlock &rest body [Macro]
For some interrupts, such as SIGTSTP {suspend the Lisp process and retum to the Unix shell) it is
necessary to leave Hemlock and then retumn to it. This macro executes the forms in body after exiting
Hemlock. When body has been executed,-control is returned to Hemlock.

13

14 . : CMU COMMON LISP USER’S GUIDE

system:enable-interrupt signal function [Function]
This function establishes function as the handler for signal. Unless you want to establish a global signal
handler, you should use the macro with-enabled-interrupts to temporarily establish a signal
handler. enable-interxrupt retums the old function assoctated with the signal.

system:ignore-interrupt signal : [Function]
Ignore-interrupt sets the Unix signal mechanism to ignore signa! which means that the Lisp process will
never see the signal. Ignore-interrupt returns the old function associated with the signal or nil if none is
cwrently defined.

system:default-interrupt signal [Function]
Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for signal.
For details on what the default action for a signal is, see section 2 of the Unix Programmer's Manual. Tn
general, it is likely to ignore the signal or to cause a core dump.

3.1.1. Default Interrupt Handlers for Lisp
CMU Common Lisp has several interrupt handlers defined when it starts up, as follows:

SIGINT causes Lisp to enter a break loop. This puts you into the debugger which allows you to look at
the current state of the computation. If you proceed from the break loop, the computation will
proceed from where it was interrupted.

SIGQUIT causes Lisp to do a throw to the top-level. This causes the cumrent computation to be aborted,
and control returned to the top-level read-eval-print loop.

SIGTSTP causes Lisp to suspend execution and return to the Unix shell. If control is returned to Lisp, the
computation will proceed from where it was interrupted.

SIGILL, SIGBUS, SIGSEGV, and SIGFPE
cause Lisp to signal an error,

The SIGINT, SIGQUIT, and SIGTSTP signals can be generated from the keyboard. The characters used to
generate these interrupts are the same as in the shell. Generally, these are control-C for SIGINT, control-\ for
SIGQUIT, and control-Z for SIGTSTP. Depending on what commands are in your login or .cshre files, the
characters used to generate these interrupts may be different. When in the Lisp read-eval-print loop that you get by
just running Lisp, these interrupts can be generated by typing the appropriate character. To generate one of these
interrupts from the keyboard while renning Hemlock depends on how Hemlock is run, as follows:

Under X When running under the X window manager, SIGINT, SIGQUIT, and SIGTSTP are generated
by typing the appropriate control character in the top-level Lisp window.

Terminal When accessing Lisp from a normal terminal (either by telnet or terminal emulation mode under
X), control-\ can be used to generate the SIGINT signal, The other interrupts can not be
signalled directly while in Hemlock, but once in the debugger, they can be signalled by typing
the appropriate character. Note that the "Pause Hemlock" command can be used to pause
the Hemlock process.

When a signal is generated, there may be some delay before it is processed since Lisp cannot be interrupted safely
in an arbitrary place. The computation will continue until a safe point is reached and then the interrupt will be
processed.

Unix signals that correspond to program errors cause the Lisp error system to obtain control. Under normal
circumstances this should not happen, but if it does and you have important work, you should immediately try to
save it.

MISCELLANEQUS EXTENSIONS TC COMMON LISP : 15

3.1.2. Examples of Signal Handlers

The following code is the signal handler used by the Lisp systern for the SIGINT signal.
{(defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
{with-interrupts
{(break "Software Interrupt” t))))

The without-hemlock form is used to make sure that Hemlock is exited before a break loop is entered. The
with-interrupts form is used to enable interrupts because the user may want to generate an interrupt while in
the break loop. Finally, break is called 10 enter a brezk loop, so the user can look at the current state of the
computation. If the user proceeds from the break loop, the computation will be restarted from where it was
interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which suspends a process and returns to
the Unix shell.
{defun ih-sigtstp (sigmal code scp)
(declare (ignore signal code scp))
(without-hemlock
(mach:unix-kill (mach:unix-getpid) mach:sigstop)))

Lisp uses this interrupt handler to catch the SIGTSTP signal because it is necessary to get out of Hemlock in a clean
way before retumning to the shell.

To set up these interrupt handlers, the following is recommended:
{(with-enabled-interrupts ((mach:SIGINT #'ih-sigint)
{mach;:SIGTSTP #’'ih-sigtstp))
<user code to execute with the above signal handlers enabled.>
)

3.2. Saving a Core Image

A mechanism has been provided to save a mnning Lisp core image and to later restore it. This is convenient if
you don’t want to load several files into a Lisp when you first start it up.

extensions:save-lisp file tkey :purify :root-structures :init-function [Function]
:load-init-file :print-herald
:process—command-line
The save-1lisp function saves the state of the currently running Lisp core image in file. The keyword
arguments have the following meaning:

purify If non-NIL (the default), the core image is purified before it is saved. This means
. moving accessible Lisp objects from dynamic space into read-only and static space.
This reduces the amount of work the garbage collector must do when the resulting
core image is being mn. Also, if more than one Lisp is running on the same machine,
this maximizes the amount of memory that can be shared between the two processes.
Objects in read-only and static space ¢an never be reclaimed, even if all pointers to
them are dropped.

:root-structures This should be a list of the main entry points for the resulting core image. The
purification process tries to localize symbols, functions, etc., in the core image so that
paging performance is improved. The default value is NIL which means that Lisp
objects will still be localized but probably not as opumally as they couid be. This
argument has no meaning if :purify is NIL,

rinit-function This is a function which is called when the saved core is resumed. The default

16 . CMU COMMON LISP USER'S GUIDE

function simply aborts to the top-level read-eval-print loop. If the function retumns, it
will be the value of save-1isp.

lpad-init-file If non-NIL, then load an init file; either the one specified on the command line or
"init.fasi-type”, or, if "init.fasl-type" does not exist, “init.lisp" from the
user’s home directory. If the init file is found, it is loaded into the resumed core file
before the read-eval-print loop is entered.

.print-herald If non-NIL, then print out the standard Lisp herald when starting.

:process-command-line
If non-NIL, processes the command line switches and performs the appropriate
actions.

To resume a saved file, type:
lisp -core file

3.3. Search Lists

Search lists make it possible to refer to files using abbreviated names. The general form of a search list definition
is: '
(setf (ext:search-list name) ’ (::r'ia"ecz‘ory1 directory, ..))

name specifies the search list, and must be a string (case insensitive) terminated by a colon (:). The directory; are
strings that specify Unix directories (case sensitive). For example, it is possible to define the search list "code: " as
follows:

(setf {ext:search-list "code:"™) ’ ("/usr/lisp/code/"))

It is now possible to use "code : " as an abbreviation for the directory "/usr/lisp/code/" in all file operations.
For example, you can now specify "code:eval. lisp 1o refer to the file "/usr/lisp/code/eval. lisp”.

To obtain the value of a search-list name, use the function search-list as follows:
(ext :search-list name)
Where name is the name of a search list as described above. If name is not defined as a search-list, nil is returned.
For example, calling ext : search~1list on "code:" as follows:
fext:search~list "code:")
returns the list (" /usc/lisp/code/"),

3.4. Running Programs from Lisp

It is possible to mn programs from Lisﬁ by using the following function.

extensions:run-program program args &key :env :wait :pty :input [Function]
:if-input-does~not-exist
ioutput

Run-program runs program in a child process. Program should be a pathname or string naming the
program. Args should be a list of strings which this passes to program as normmal Unix parameters, For
no arguments, specify args as nil.

The value retumed is either a process structure or nil. The process interface follows the description of
run-program

When you are done using a process, call process-close to reclaim system resources. You only need

MISCELLANEOUS EXTENSIONS TO COMMON LISP ‘ 17

to do this when you supply : st ream for one of :input, -output, or :error, or you supply :pty non-nil.
You can call process-close regardless of whether you must to reclaim resources without penalty if

you feel safer.

run-program accepts the following keyword arguments:

Jeny

swait

-pry

Jinput

This is an a-list mapping keywords and simple-strings. The default is
ext : *environment-list*. If :envis specified, run-program uses the value
given and does not combine the environment passed to Lisp with the one specified.

If non-nil (the default), wait until the child process terminates. If nil, continue
running Lisp while the child process runs.

This should be one of t, nil, or a stream. If specified non-nil, the subprocess
executes under a Unix PTY. If specified as a stream, the system collects all output {0
this pty and writes it to this sweam. If specified as £, the process-pty slot
contains a stream from which you can read the program’s output and to which you
can write input for the program. The defaultis nil,

This specifies how the program gets its input. If specified as a string, it is the name
of a file that contains input for the child process. run-program opens the file as
standard input. If specified as nil (the default), then standard input is the file
"/dew/null”. If specified as t, the program uses the current standard input. This
may cause some confusion if -wait is nil since two processes may use the terminal
at the same time. If specified as : st ream, then the process-input slot contains
an output stream. Anything written to this stream goes to the program as input.
:Input may also be an input stream that already contains all the input for the process.
In this case run-program reads all the input from this stream before retuming, so
this cannot be used to interact with the process.

:if-input-does-not-exist

.output

sif-output-exists

Jerror

:if-error-exists

(status-hook

‘before-execve

This specifies what to do if the input file does not exist. The following values are
valid: nil (the default) causes run-program to return nil without doing
anything; -create creates the named file; and -error signals an error.

This specifies what happens with the program’s output. If specified as a pathname, it
is the name of a file that contains output the program writes to its standard output. If
specified as nil (the default), all output goes to "/dev/null". If specified as ¢,
the program writes to the Lisp process’s standard output. This may cause confusion
if 'wait is nil since two processes may write to the terminal at the same time. If
specified as : stream, then the process—output slot contains an input siream
from which you can read the program’s output.

This specifies what to do if the output file already exists. The following values are
valid: nil causes run-program to retumn nil without doing anything; :error (the
default) signals an error; :supersede overwrites the current file; and :append appends
all output to the file.

This is similar to -output, except the file becomes the program’s standard error.
Additonally, ‘error can be ‘output in which case the program’s error output is routed
to the same place specified for -owrpur. If specified as ::stream, the
process—-error contains a stream similar to the prccess-output slot when
specifying the :ourput argument.

This specifies what to do if the error output file already exists. It accepts the same
values as :if-output-exists.

This specifies a function to call whenever the process changes status. This is
especially useful when specifying :wait as nil. The function takes the process as a
required argument. :

This specifies a function to run in the child process before it becomes the program to
run. This is useful for actions such as authenticating the child process. without
modifying the parent Lisp process.

18 :] CMU COMMON LISP USER'S GUIDE

Except for sharing file descriptors as explained in keyword argument descriptions, run-program
closes all file descriptors in the child process before running the program.

If run-program fails to fork the child process, it retumns nil.
The following functions interface the process retumed by run-program

extensions:process-p thing 7 [Function]
This function retumns t if thing is a process. Otherwise it returns nil

extensions:process-pid process [Function]
This function retums the process ID, an integer, for the process.

extensions:process-status process [Function]
This function returns the current status of process, which is one of : running, : stopped, :exited,
or :signaled

extensions:process—exit-code process. [Function]
This function returns either the exit code for process, if it is :exited, or the termination sngna.l process
ifitis.: signaled The result is undefined for processes that are stll alive.

extensions:process-core-dumped process [Function]
This function retums t if someone used a Unix signal to terminate the process and caused it to dump a
Unix core image.

extensions:process-pty process [Function]
This function retumns either the two-way stream connected to process’s Unix PTY connection or nil if
there is none.

extensions:process~input process [Function]

This function retums either the output stream connected to process’s input or ni.l if there is none.

extensions:process-output process {Function]
This function retums either the input stream connected to process 's output or nil if there is none.

extensions:process-error process [Function]
This function retums either the input stream connected to process’s error output or nil if there is none,

extensions:process-status-hook process ' ' [Function]
This function retums the current function to call whenever process’s status changes. This function takes
the process as a required argument. process-status-hook is set £’able.

extensions:proceas~plist process [Function]
This function returns annotations supplied by users, and itis set £’able. This is available solely for users
to associate information with process without having to build a-lists or hash tables of process structures.

MISCELLANEQUS EXTENSIONS TO COMMON LISP 19

extensions:process-wait process &optional check-for-stopped [Function]
This function waits for process to finish. If check-for-stopped is non-nil, this also returns when process
stops.

extensions:process-kill process signal &optional whom [Function]

This function sends the Unix signal to process. Signal should be the number of the signal or a keyword
with the Unix name (for example, : sigsegv). Whom should be one of the following:

:pid This is the default, and it indicates sending the signal to process only.
:process—group
This indicates sending the signal to process’s group.
:pty-process-group
This indicates sending the signal to the process group currently in the foreground on
the Unix PTY connected to process. This last option is useful if the running program
is a shell, and you wish to signal the program running under the shell, not the shell
itself. If process-pty of process is nil, using this option is an error.

extensions:process-alive-p process [Function]
This function retums t if process’s status is either : running or : stopped.

extensions:process-close process [Function)
This function closes all the streams associated with process. When you are done using a process, call this
to reclaim system resources.

3.5. Time Parsing and Formatting

Functions are provided to allow parsing strings containing time information and printing time in various formats
are available.

extensions:parse-time (time-string &key :error-on-mismatch :default-seconds [Function]
:default-minutes :default-hours
:default-day ...
parse-time accepts a string comntaining a tme (e.g., "Jan 12, 1952") and returns the universal
time if it is successful. If it is unsuccessful and the keyword argument ‘error-on-mismatch is non-nil, it
signals an error. Otherwise it returms nil. The other keyword arguments have the following meaning:

-default-seconds specifies the defauit value for the seconds value if one is not provided by time-string.
The default value is 0.

:default-minutes specifies the default value for the minutes value if one is not provided by time-string.
The default value is 0.

:defauit-hours specifies the default value for the hours value if one is not provided by time-string.
The default vatue is 0.

:default-day specifies the default value for the day value if one is not provided by time-string. The
default value is the current day.

.default-month specifies the default value for the month value if one is not provided by time-string.
The defauit value is the current month.

.default-year specifies the defaunlt value for the year value if one is not provided by time-string.
The default value is the current year.

.default-zone specifies the default value for the time zone value if one is not provided by
time-string. The default value is the current time zone.

20

.default-weekday

CMLU COMMON LISP USER’S GUIDE

specifies the default value for the day of the week if one is not provided by
time-string. The default value is the current day of the week.

Any of the above keywords can be given the value :curremt which means to use the current value ag
determined by a call to the operating system.

extensions:format-universal-time dest universal-time &tkey :timezone [Function]

:style :date-£first
:print-seconds

extensions: format-decoded-time dest seconds minutes hours day month year &key ... [Function]
format-universal-time formats the time. specified by universal-time.
format-decoded-time formats the time specified by seconds, minutes, hours, day, month, and year.
Dest is any destination accepted by the format function. The keyword arguments have the following

meaning:

‘timezone

:style

;date-first
:print-seconds

.print-meridan

.print-timezone
print-seconds

-print-weekday

3.6. Lisp Library

is an integer specifying the hours west of Greenwich :Timzone defaults to the
current time zomne.

specifies the style to use in formating the time, The legal values are:

:short specifies to use a numeric date.

Along specifies to format months and weékdays as words instead of
' numbers.

:abbreviated. is similar to long except the words are abbreviated.

.government is similar to abbreviated, except the date is of the form "day

month year” instead of "month day, year”.

if non-nil (default) will place the date first. Otherwise, the time is placed first.

if non-nil (defanlt) will format the seconds as part of the time. Otherwise, the
seconds will be omitted.

if non-nil (default) will format "AM" or "PM" as part of the time. Otherwise, the
"AM" or "PM" will be omitted.

if non-nil (default) will format the time zone as pant of the time. Otherwise, the
time zone will be omitted,

if non-ni (default) will format the seconds as part of the time. Otherwise, the
seconds will be omitted.

if non-nil (default) will format the weekday as part of date. Otherwise, the weekday
will be omitted.

The CMU Common Lisp project maintains a collection of useful or interesting programs writien by users of our
system. The library is in "/afs/cs/project/clisp/library/". There are two files there users should

read:

CATALOG.TXT This file contains a page for each entry in the library. It contains information such as the author,
portability or dependency issues, how to load the entry, etc.

READ-ME.TXT This file describes the library’s organization and all the possible pieces of information an entry’s
catalog description could contain.

Hemlock has a command "Libraxry Entzy" that displays a list of the current library entries in an editor
buffer, There are mode specific commands that display catalog descriptions and load entries. This is a simple and
convenient way to browse the library.

Chapter 4

Error System

Written by Kent M. Pitman and Bill Chiles

4.1. Introduction

This chapter describes the Common Lisp Condition System, as proposed and accept by the X3J13 subcommittee
on error handling. The design is primarily fixed, but the standards committee is still making changes to complete
and polish it. Most of the work that remains is fully specifying the standard condition types (described below) and
which Common Lisp functions must signal what conditions under what situations. CMU Common Lisp defines the
conditions specified near the end of this chapter, but it does not signal all of them when you might expect.
Therefore, we support a somewhat unsophisticated environment for extremely clever condition handling; however,
you will probably find more functionality and conditions implemented than you'll need.

4.1.1. Purpose

Often we find it useful to describe a function in terms of its behavior in normal situations. For example, we may
say informally that the function + returns the sum of its arguments or that the function read-char returns the next
available character on a given input stream. Sometimes exceptional situations arise which do not fit neatly into such
descriptions. For example, + might receive an argument which is not a number, or read-char might receive a
single argument which was a stream that had no more available characters. This distinction between normal and
exceptional situations is in some sense arbitrary, but is often very useful in practice.

For example, suppose you had a function F which you defined to allow only integer arguments, but you also
guaranteed that the function F would detect and signal an error for non-integer arguments. Such a description is in
fact intemally inconsistent because the behavior is well-defined for non-integers. Yet we would not want this to
force us to have to describe P as a function that accepts any kind of argument (just in case someone calls F only as a
quick way to signal an error, for example). Using our new terminology, we can say clearly that ¥ accepts integers in
the normal situation, and signals an error in exceptional situations. Moreover, we can say that when we refer to the
definition of a function informally, it is acceptabie to speak only of its normal behavior. For example, we can speak
informally about F as a function that accepts only integers without feeling that we are committing some fraud.

Not all exceptional situaticns are errors. For example, a program which is typing out a long line of text may
notice that it is at the end of the line. It is possibie that no real harm will result from continuing to type past the end
of the line because the operating system will simply force a carriage return on the output device and continue typing
on the next line. Even though the system recovers, it may be interesting to establish a protocol whereby that
program can inform its callers of end-of-line exceptions. The controlling program could then opt to deal with these
situations in interesting ways at certain times. It might choose to terminate printing, obtaining an end-of-line
truncation. The point is the printer program can continue to operate correctly even when the controlling program

21

22 CMU COMMON LISP USER'S GUIDE

fails to provide advice about the situation; the situation is not an error.

Mechanisms for dealing with exceptional situations vary widely. When one occurs, a program may attempt to
handle the situation by returning a distinguished vaive, retuming an additional value, setting a variable, calling a
function, performing a special transfer of control, or by stopping the program altogether and entering the debugger.
For the most part, the facilities described in this document do not introduce any fundamentally new way of dealing
with exceptional situations; rather, they encapsulate and formalize useful patterns of data and control flow which
programmers have found useful in dealing with exceptional situations.

A proper conceptual approach to errors should begin with a discussion of the principles of conditions in general
and eventually work its way up to the concept of an error as just one of the many kinds of conditions. However,
given the widespread primitive state of error handling technology, a proper buildup may be as inapprbpriate as
requiring that a beggar leam to cook a gourmet meal before being allowed to eat. As such, this chapter will first
deal with the essentials, error handling, and then later go back and fill in the missing details.

4.1.2. Terminology
Common Lisp: the Language (pp. 5-6) says the following about errors:

When this manual specifies that it **is an error’’ for some situation to occur, this means that:
* No valid Common Lisp program should cause this situation to occur.-

o If the situation occurs, the effects are completely undefined as far as adherence to the Common Lisp
specification is concermned.

* No Common Lisp implementation is required to detect such an error. Of course, implementors are encouraged
to provide for detection of such errors wherever reasonabie.

This is not to say that some particular implementation might not define the effects and results for such a situation; the
point is that no program conforming to the Common Lisp specification may correctly depend on such effects or results,

On the other hand, if it is specified in this manual that in some situation ‘‘an error is signalled"’, this means that:
» If this situation occurs, an error will be signalled (see error and cerreor).

» Valid Common Lisp programs may rely on the fact that an error will be signalled.

 Every Common Lisp implementation is required to detect such an error.

In places where it is stated that so-and-so **must’’ or *‘must not'’ or ‘‘may not'’ be the case, then it *‘is an error'’ if
the stated requirement is not met. For example, if an argument ‘‘must be a symbol®’, then it *‘is an error’’ if the
argument is not a symbol. In all cases where an error is to be signalled, the word *‘signalled’’ is always used explicitly
in this manual.

This has changed for the language standard. We have some new terms and phrases for describing what built in
functions do. A condition is an interesting situation in a program which has been detected and announced. Later we
will allow this term to also refer to objects which programs use to represent such situations. An error is a condition
in which nomal program execution may not continue without some form of intervention, either interactively by the
user or under some sort of program control as described later in this document. Signalling is the process by which a
program formally announces a condition. The signal function is the primitive mechanism that makes such
announcements. Other abstractions, such as error and cerror, are built using signal.

Common Lisp: the Language is ambiguous about the reason why a particular program actiont is an error. There
are two principal reasons why an action may be an error without requiring the signalling of an error;
s Detecting the error might be prohibitively expensive. Consider the following example:
(+ nil 3)

This is an error. It is likely that the designers of Common Lisp believed that this would be an error in
all implementations but that they felt that it might be excessively expensive to detect the problem in

ERROR SYSTEM 23

compiled code on stock hardware, so they did not require that + signal an error.

» Some implementations might implement the behavior as an extension. Consider the following example:
{(loop for x from 1 to 3 do (print =x=))

This is an error because loop is not defined to take atoms in its body. Some implementations offer an
extension which makes this well-defined. In order to leave room for such extensions, Common Lisp:
the Language uses the *‘is an error’’ terminology to keep implementors from being forced to signal an
error in the extended implementations.

This chapter uses the following terminology, which has been accepted by the X3J13’s error handling
subcommittee to become the standard in the next edition of the Common Lisp specification:

o If the signalling of a condition or error i part of a function’s contract for specified situations, this
documentation will say that it ‘*signals’” or *‘must signal’’ that condition or error.

« If the signalling of a condition or error is optional for some important reason, such as performance, this
documentation will say that the program ‘‘might signal’’ that condition or error. In this case, it defines
the operation to be illegal in all implementations, but allowing some implementations to avoid actually
detecting the error,

o If an action is left undefined for the sake of an implementation-dependent extension, this documentation
will say that it *‘is undefined’’ or **has undefined effect.’’ This means that it is not possible to portably
depend upon the effects of that action. A program which has an undefined effect could do anything
including entering the debugger, transfering control, or modifying data in unpredictable ways.

e In the special case where only the retum value of an operation is undefined, but any side-effect and
transfer-of-control behavior is well defined, this documentation will say that it has ‘‘undefined value.”
In this case, the number and nature of the return values is undefined, but the user can reasonably expect
the function to reum. Under this description, there are some though not many, legitimate ways in
which such retumn values can be used. For example, if the function £oo has no side-effects and
undefined value, the expression (1ist (£foo)) is completely well-defined even for portable code,
but the effect of (print (foo)) is not well-defined.

4.2. Concepts

4.2.1. Signalling Errors

Signalling an error in a program is an admission by that program that it does not know how to continue and
requires external intervention. Cnce it signals an error, any decision about how to continue must come from outside
of it.

The simplest way to signal an error is to use the error function with format-style arguments describing the
error. If a piece of code calls erroz, and there are no active handlers (described later), the system enters the
debugger and outputs the error message. For example, you might see an interaction such as the following:

24

* (defun factorial (x)

{cond ((or (not (typep x ‘integer)) (minusp x))

CMU COMMON LISP USER'S GUIDE

(error "~8 is not a valid argument to FACTORIAL." x))

((zerop x) 1)
(t (* x {(factorial (1- x))))))
FACTORIAL
* (factorial 20}
2432902008176640000
* (factorial -1)

Error in function FACTORIAL.)
-1 is not a valid argument to FACTORIAL.

Restarts:
0: Return to Top-Level.

Debug (type H for help)
(FACTORIAL -1)
0]

A call t0 errorx cannot directly retun. Unless a program prepares for special flow of control to override this
behavior, errox enters the debugger, and there will be no option to continue, An implementation’s debugger may
provide commands for interactively returning from individual stack frames, but the user must know what he is
doing. The point is programs are written as if erroxr never retums even though an implementation’s environment
may provide special development features.

A programmer may have a single, well-defined idea of a recovery strategy for an error, in which case he can use
the function cerror. This specifies information to the user about what would happen if the user does continue
from the call to cerroz. For example:

* {defun factorial (x)
(cond ((not (integerp x))

(error "~s is not a valid argument to FACTORIAL."™ x))

{ (minusp =x)
(let ((x-magnitude (- x))}

(cerror "Compute ~(~D!) instead."
"{=~D)! is not defined.™

x-magnitude)

(- (factorial x-magnitude))))
{((zerop x) 1)
(t (* x (factorial (- x 1))))))

FACTCRIAL
* (factorial -3)

Error in function FACTORIAL.
(=3)! is not defined.

Restarts:
0: Compute =-(3!) instead.
1: Return to Top-Level.

Debug (type H for help)
(FACTORIAL ~1)

01 restart 0

-6

ERROR SYSTEM 25

4.2.2, Trapping Errors

By default, error enters the debugger. You can override this behavior in a variety of ways; the simplest and
most general mechanism is to wrap your code in an ignore-errors form. Nommally forms in the body of
ignoxe-errors evaluate sequentially retuming the last value. If the evaluation of this code results in the
signalling of a condition of type error, ignore—~errors immediately returns two values: nil and the signalled
conditdon object (described later). The system does not invoke the debugger or print any error messages. For
example:

* (setqg filename "nosuchfile")

"nosuchfile™

* {ignore—errors (open filename :direction :input))
NIL '
$#<FILE-ERROR.SEA4>

Usually, ignore-errors is undesirable because it handles every possible kind of error. Though some may
argue differently, a program which avoids entering the debugger is not necessarily better than one which does enter
it. Excessive use of ignore-errors keeps the user out of the debugger, but it does little to increase your
program’s reliability; your program may continue running after encountering errors other than those you designed it
to ignore. In general, it is better to deal with the particular errors that you believe could occur, and if an unexpected
error does happen, you will find out about it.

The error system defines ignore-erxrors on a more general facility called handler-case. It allows the
user to specifically deal with types of conditions, including non-erzor conditions, without affecting the signalling
of disjoint or more general kinds of conditions. The following example achieves an equivalent effect to the previous
exampie’s use of ignore-errors:

* (setqg filename "nosuchfile™)

"nosuchfile”

* {(handler-case (open filename :direction :input)
(error {condition) (values nil conditicn)}))

NIL
#<FILE-ERROR.SEA9>

The advantage of handler-case in this scenaric is the ability to specify a more specific condition type than
error. Condition types are explained in detail later, but the following should be a clear example:

* (makunbound ’filename)

FILENAME

* {(handler-case {copenh filename :direction :input)
{(file-error (condition) (values nil conditiocn)})

Error: The wvariable FILENAME is unbound.

Restarts:
l: Retry getting the value of FILENAME.
2: Specify a value of FILENAME to use this time.
3: Specify a value of FILENAME to store and use.
4: Return to Top-Level.

Debug (type H .for help)
0]

4.2.3. Handling Conditions

The basic idea of condition handling involves the signalling of a condition. A piece of code called the signaller
recognizes and announces an exceptional situation using signal, or some function built on it such as error. The
process of signalling includes the search for and invocation of a handler, a piece of code that will attempt to take
care of the situation appropriately. If this process finds a handler, it may either Aandle the situation by performing

26 CMU COMMON LISP USER’S GUIDE

some non-local transfer of control, or it may decline by refusing to perform a non-local transfer of control.
Whenever a handler declines, the search for a willing handler continues.

Since the lexical environment of the signaller might not be available to handlers, the system supports a data
structure called a condition to represent the relevant state of the sitation. Users can also create conditions explicitly
using make-~condition and pass them to a function such as signal, or they can allow the system to create
conditions implicitly by using functions such as signal and exxor. To handle a condition a handler can use any
non-local transfer of control including the following:

e go to atag in a tagbody
s return from ablock

ethrowtoacatch

The system provides abstractions built on these primitives for convenience in exception handling. For example,
handler-bind makes a handler dynamically accessible to a program, and the following creates a handler for a
condition of type arithmetic-error:

(handler~bind ((arithmetic-~error #’this-handler)})
-..bedy...) .
A handler is a function of one argument, a condition. While body executes, if someone signals a condition of the
-~ designated type, and there are no dynamically intervening bandlers, signal invokes the handler on the given
condition. The following is a complete example showing a macro that handles arithmetic-errox's by
returning nil and the condition if the arithmetic could not be computed:
{defmacro without-arithmetic-errors (&body forms)
(let ((tag (gensym}))
‘*{block ,tag
(handler-bind ({(arithmetic=-error
#’ (lambda (cendition)
(return-from ,tag

(values nil condition)}})))
. &body))))

Handlers execute in the dynamic context of the signaller, but the system rebinds the set of available condition
handlers to those that were active at the time the program established the handler. This means that if the handler
signals a condition or calls something that signals one, the handler and any others bound in the same
handler-bind form are inaccessible to the signalling process.

If the system can cnly find handlers that decline, and the condition is signalled via erzox or cerxror, or similar
routines, the system enters the debugger within the dynamic context of the signaller.

4.2.4. Object-Oriented Basis of Condition Handling

The ability of the handler to usefuily bandle an exceptional situation is related to the quality of the information
given to it If we only signalled errors with a string describing the condition, string-equal would be a
handler’s best tool for identifying what bappened, and the information presented to the user would be the same as
the string passed to the handler. It would be ridiculous to try to map what was passed to the error system to
something different to display to the user.

It is fundamentally important to decouple the error message string from the objects which formally represent the
error state. Thus, there is a notion of typed conditions and formal operations on them which make them inspectable
in a structured way. This object-oriented approach to condition handling has the following important advantages
over a text-based approach:

» Conditions are classified according to subtype relationships, making it easy to test for categories of
conditions. .

ERROR SYSTEM 27

» Conditions have named slot values through which parameters are conveyed from the program that
signals the condition to the program that handles it.

» Inheritance of methods (in a loose sense) and slots reduce the amount of explicit specification necessary
to achieve various interesting effects.

This document describes some predefined condition types, and the set of condition types is extensible using
define-condition. The following is an example defining a function of two arguements called divide thatis
patterned after the / function and that does some error checking:

(defun divide (numerator dencminator)
(cond ({or (not {(numberp numerator)) (not (numberp denominator)))
{error " (DIVIDE ’"~S ’~3) - Bad arguments.®”
numerator denominator}))
((zerop denominator)
{(error ’‘divisicon-by-zero
:operator ‘divide
ioperands (list numeratocr denominator)))
(t ...}))
In the first clause, the definition uses erxzor with a string argument, and in the second clause it names a particular
condition type, division-by-zero. In the case of a string argument, the system signals a simple-error
condition type.

The particular kind of error signalled may be important when handlers are actually active. For example,
simple-error inherits from type error, which in tum inherits from type condition. In the other case,
division-by-zero inherits from arithmetic-error, which inherits from error, etc. If a handler existed
for arithmetic-erroxr when some code signals a division-by-zero condition, the system would invoke
that handler; however, if the same code in the same context signals a simple-error condition, the system would
ignore the handler for the arithmetic-error type.

4.2.5. Restarts

The condition system separates the act of signalling an error of a particular type from the means of recovering
from that error in some way. In the divide example in the previous section, signalling an error does not imply a
willingness on the part of the signaller to cooperate in any corrective action. For example, if the user ends up in the
debugger, his only option may be to return to the Lisp top level.

When a program detects an error and calls error, execution cannot continge normally because error never
returns directly. However, the user can write his program to transfer control to other points in the program with
specially established restarts. The simplest restart involves structured transfer of control using a macro called
restart-case. The restart-case form allows the programmer to execute a piece of code in a context
where zero or more restarts are active, and if the program or the user, through the debugger, invokes one of those
restarts, the system transfers control to the corresponding clause in the restart-case form.

The following shows the divide example from the previous section rewritten:

28 CMU COMMON LISP USER'S GUIDE

(defun divide (numerator dencminator)
{loop
(restart-case {return
{cond ((or (not (numberp numerator))
(not (numberp dencminator)))
(error " (DIVIDE “~S5 ’~S) - Bad arguments."
numerator denominator))
{{zerop denominator)
(error ‘division-by-zero
roperator ‘divide
:operands
(list numerator denominator)))
(£ ... 1)
(nil {argl arg2)
ireport .
"Provide new arguments for use by the DIVIDE function."
rinteractive {lambda ()
(list (prompt-for ‘number "Numeratocr: ")
(prompt-for ‘number "Denominator: ")})
{setg numerator argl denominator arg2))
(nil (result)
treport
"Provide a value to return from the DIVIDE function.®
iinteractive
{lambda () (list (prompt=-for ‘number "Result: "))})
(return result)))))

The nil at the head of each clause means that it is an anonymous restart. Anonymous restarts are typically only
invoked from within the debugger. Later sections describe in detail named restarts that programs can call, typically
from handlers, without the need for user intervention. If the arguments to anonymous restarts are required, not
optional, the code must specify the : interactive keyword to provide information concemning how to supply the
arguments in case the user causes its invocation via the debugger.

The : report keyword specifies how to present the restart option to the user, such as in the debugger.
In this example, prompt - £or is immaterial and does what you think.

- The following is a sample interaction that takes advantage of the restarts provided by the revised definition of
divide:
* (+ (divide 3 Q0) 7)

Error in function DIVIDE.
Attempt to divide 3 by 0.

Restarts:
0: Provide new arguments for use by the DIVIDE function.
l: Provide a value to return from the DIVIDE function.
2: Return to Top-Level.

Debug (type H for help}
(DIVIDE 3 9)

0] restart 0

Numerator: 4
Dencminator: 2

9

ERROR SYSTEM 29

4.2.6. Named Restarts

Named restarts are more powerful or convenient than unnamed ones since programs and users can invoke them
without the aid of an interface like the debugger. The following is a degenerate, interesting example:

{restart-case (invoke-restart ffoo 3)
(foo (x)} (+ x 1))

This adds 3 to 1, returning 4, and it is analagous to writing:
(+ {(catch 'something (throw fsomething 3)) 1)

A more practical example below shows a possible portion of Lisp’s symbol-value function that signals an
unbound-variable error:

(restart-case (error "unbound-variable :name wvariable)
{(continue ()
:report (lambda {stream)
(format stream "Retry getting the value of ~35."
variable))
{symbol-value variable))
{(use-value (value)
:report (lambda (stream)
{format stream "Specify a value of ~S tc use this time."
variable))
value)
{(store-value (value)
:report {(lambda (stream)
{format stream "Specify a value of ~8 to store and use."®
variable))
(setf (symbol-value wvariable) value)
value))
With this, users can write a variety of automatic handlers for unbound-variable errors. The following makes
unbound variables evalnate to themselves:
{handler-bind {({unbound-variable
#’ (lambda {condition)
{(if (find-restart ’‘use-value)
{invoke-restart
fuse=-value

(cell-error—-name condition))))))
...body...)

4.2.7. Restart Functions

Some restarts or recovery techniques are common in that programmers find themselves writing very similar
restart cases. It is good style to provide a simpler invocation means than is otherwise used for these. Restart
functions hide the typical use of invoke-restart.

Conventionally the restart function shares the name of the restart name. The systemn defined functions abort,
continue, muffle~warning, store-value, and use~value are restart functions. With use-value, the
handler-bind example at the engd of the previous section that handles unbound-variable erors becomes
much simpler:

{handler-bind ({unbound-variable
#’ {(lambda (condition)

{use-value (cell-error—name condition}))))
...body...}

Textually the example only saves two lines of code, but conceptually the handler doesn’t have to be concerned
with whether the restart is currently active, You don’t want your handler to get an unactive restart error because you
forgot to make sure the restart exists. Use-value takes care of that and simply retuins if the restant is unactive,

30 CMU COMMON LISP USER'S GUIDE

causing the handler to retum indicating that it declines handling the condition.

4.2.8. Contrasting Restarts and Catch/Throw

One important feature restart-case offers which catch/throw does not is the ability to reason about the
available points to which a program transfers control without actually attempting the transfer. Considering the
following, the first form is a poor man’s variation of the second:

{ignore—errors {throw ...))

(if (find-restart ’'something) (invoke-restart * something))
The following two forms are much cleaner than the programming required using ignore-erzors, throw, and
hacks with binding specials to know what context you are in:

(if (and (find-restart ‘something) (find-restart ’something-else})
(invoke-restart ’something))

{(if (and (find-restart ‘something) {(yes-or-no-p "Do something? "))
{invoke-restart ’something))
Simply using ignore-errors and throw forces a transfer of control when it possibly is inconvenient or an
error, and the restart mechanism readily provides a means for inspecting the dynamic context and interacting with
the user. .

Another difference between the restart facility and the catch/throw facility is that a catch with any given tag
completely shadows any outer, pending cat ch with the same tag. Because of the compute-restarts function,
it is possible to see shadowed restarts which can be very useful, such as in the debugger.

4.2.9. Generalized Restarts

Restart-case allows only imperative transfer of control for its associated restarts. The system defines it
using a lower level primitive called restart-bind which does not force transfer of control. Its syntax is as
follows:

{(restart~-bind ((name function . options)) . body)
body executes in a dynamic context where (invoke-restart ‘name) invokes function. The options
are keyword-style and describe information similar to that provided with the :report keyword in
restart-case. A restart-case expands into a call to restart-bind with functions that unconditionally
transfer conirol to a particular body of code, passing along arguments.

Restarts can be useful without transfering control. Consider the following example:

(restart-bind ({nil #’ (lambda () (expunge-directory the-dir))}
:report~function
¥’ (lambda (stream)
(format stream "Expunge ~A."
(directory-namestring the-dir)))))
(cerror "Try this file operation again.”
'directory-full :directory the-dir))

Entering the debugger in this context, the user could perform the expunge, avoiding transfering control from within
the debug context, and then retry the file operation, as in:

ERROR SYSTEM : 31

* (open "foo" :direction :cutput)

Error in function OPEN.
The directory /usr/bovik/ is full.

‘Restarts
0: Try this file cperatiecn again.
1: Expunge /usr/bovik/.
2: Return to Lisp Tocp-Level.

Debug ({(type H for help}

{OPEN "foo" :DIRECTICN :QUTPUT)
0] restart 1

xpunging /usr/bovik/

0] restart O

#<File stream "/usr/bovik/foo">

4.2.10. Serious Conditions

The ignore-errors macro will trap conditions of type error, but since this form is so dangerous for
squelching every kind of error, some conditions are very sericus without being a subtype of error. These are of
type serious-condition, and the system might use this type for situations such as stack overflow or exhausted
storage. The type error is a subtype of sericus-condition, and though it is technically correct to refer to
erTors as serious conditions, we typically reserve that phrase to indicate conditions that are subtypes of
seriocus-condition excluding subtypes of error.

This distinction is necessary to provide for exceptions that don’t fall under the domain of the Common Lisp
language. We assume an implementation uses a stack for function calling, and we know that stacks can overflow;
however, this is not a programming ermmor. In another implementation, the same program might run fine,
Furthermore, if a program is dynamically within an ignore-errors form, and the system runs out of memory or
the stack overflows, the system must stop or take care of this. The conditions simply cannot be ignored.

By convention, programmers prefer the function error over signal to signal conditions of type
serious-condition, as well as those of type exxrox. Itis the use of the function error, and not the type of
the signalled condition, that causes the system to enter the debugger.

4.2.11. Non-Serious Conditions

Some conditions are neither errors nor serious conditions. Programs signal these to give other programs a chance
to intervene, but if none take any action, then computation simply continues normally. For example, an
implementation might choose to signal a non-serious condition called end-o£-1ine when output reaches the last
character position on a line of character output. In such an implementation, the signalling of this condition allows a
convenient way for other programs to do something special in this situation, producing output that is truncated at the
end of a line or simulating a line-wrapping device.

Use signal to signal these types of conditions. If the program uses error to signal 2 non-serious condition,
the system will still enter the debugger if it goes unhandled. The point of signalling a non-serious condition is that it
should not matter if a program continues to execute immediately after the signalling regardless of whether some
other program took any action based on the situation,

4.2.12. Condition Types

Some types of conditions are predefined by the system. All types of conditions are subtypes of condition.
Thatis, (typep ¢ 'condition) istrue if and only if ¢ is 2 condition object.

32 CMU COMMON LISP USER’S GUIDE

Implementations supporting multiple (or non-hierarchical) type inheritance are expressly pemitted to exploit
mutiple inheritance in the tree of condition types as implementation-dependent extensions, as long as such
extensions are compatible with this document.

In order to aveid problems in portable code which run both in systems with multiple type inheritance and systems
without it, the designers wam against assuming subtype relationships specified in this document are mutually
exclusive. In some cases this document does specify disjoint subtypes, but this is not the default. For example,
from the subtype descriptions contained in this document, in all implementations the following must be true:

(typep ¢ ‘control-error) implies (typep c ferreor},
However, the reader must avoid the following assumption:
(typep c "control-errcor) implies (not {(typep ¢ ‘cell-error))

4.2.13. Signalling Conditions

When a program signals a condition, the system tries to locate the most appropriate handier for the condition and
invoke that handler. There are constructs for dynamically establishing handlers. If the process of signalling finds a
suitable bandler, it calls the handler, Sometimes handlers decline by simply retuming without performing a
non-local transfer of control. When this happens, the search for an appropriate handler continues as if the handler
never existed. When signal fails to find a handler to take care of the situation, it retumns nil.

It is worth noting the handler search procedure finds dynamically maore local handlers before it finds those
established dynamicaily earlier in time, regardless of whether the more local handler is more specific than any
earlier bound handler. Therefore, the programmer should take care when binding handlers to very general condition
types since a more specific handler may already be established that is more appropriate. There is no reason to be
overly concemned about this, experience with existing condition systems suggests that this is a reasonable approach
and works adequately in most situations.

4.2.14. Condition Handlers

A handler is a function of one argument, the signalled condition. The handler may inspect the object to see if it
really wants to take care of it. Handlers execute in the dynamic context of the signaller, but the system rebinds the
set of available condition handlers to those that were active at the time the program established the handler. The
intent of this is to prevent infinite recursion due to errors in a condition handler.

After inspecting the condition, the handler should take one of the following actions:
» Decline to handle the condition by simply returning.
» Handle the condition by performing some non-local transfer of control. This may be done either

primitively using go, return, and throw or more abstractly using a function such as abort or
invoke-restart.

* Signal another condition.

s Invoke the interactive debugger.
The latter two items are reaily ways of putting of_f the decision to either handle or decline, in case some other code or
the user wants to get in on the recovery action. Ultimately, all a handler can do is handle or decline to handle a
condition.

4.2.15. Printing Conditions

When *print-escape* is nil, as with princ or the ~A format option, the system invokes the report
method for the condition. This is the means for presenting conditions to users. Some functions,
invoke-debugger, break, and warn, always display the condtion, but users can explicity cause conditions to

ERROR SYSTEM 33

report themselves when desired:

{(defun open-data-file {user-specified-name default-system—name)
(handler-case (open user—specified-name)
{serious—-condition (condition)
{format t "~&0pening ~S failed:~%~A~&Using ~S instead."
user-specified-name condition default-system—-name)
(open default-system—-name)})))

This might print something like the following:

Cpening #. {pathname "/usr/dat/unavailable-data-file"™) failed:
#. (pathname "/usr/dat/unavailable-data-file") is read protected.
Using #. (pathname "/usr/dat/default-objects™) instead.

Some notes about the text presented by report methods:

¢ The message should be a complete sentence, beginning with a capital letter and ending with appropriate
punctuation,

e The message shouid exclude introductory text such as "Exrox:" or "Warning:". Such text will be
added by the routine invoking the report method as appropriate to the context.

e Except where unavoidable, tab characters should be avoided in error messages. Their effect can vary
between implementations and can canse problems even within an implementation because it may output
a variety of space depending on the current printing column when the condition reports.

¢ Single line messages are preferred, but newlines in the middle of long messages are acceptable.

¢ If any program displays messages indented from the prevailing left margin, possibly to make the repont
standout against other text, then that program will take care to insert the indentation into any extra lines
of a multi-line error message. Similarly, any program that prefixes error messages with semicolons so
that they appear to be comments should take care of inserting a semicolon at the beginning of each line
in 2 multi-line error message.

When *print-escape* is non-nil, the object should print in some useful and fairly abbreviated fashion
according to the style of the implementation. The condition may print unreadably, as by read; that is, it may use
"#<" syntax.

4.3. Signalling Conditions

error datum &rest darguments {Function]
This function invokes the signal facility on a condition formed from darum and arguments. If the
condition is unhandled, this calls i nwvoke-debugger on the condition. This function never retumns and
can only be exited by a non-local transfer of control in a handler or by use of a debugger command.

This uses datum and arguments as follows:

o If datum is a condition, then this uses it directly. In this case, it is an error for arguments to
be anything other than nil.

o If datum is a condition type, then this uses the condition resulting from apply’ing
make-condition to datum and arguments.

» If datum is a string, then this uses the condition resulting from the following:
(make-condition ’'simple-error
:format-string datum
:format-arguments arguments)

34 CMU COMMON LISP USER'S GUIDE

cerror continue-format-string datum &rest arguments {Function)
This function invokes the error facility on a condition formed from datum and arguments. If the
condition is unhandled, this calls invoke~-debugger on the condition. While signalling the condition,

and while in the debugger if it is reached, it is possible to continue program execution using the
continue restar.

This uses darum and arguments as follows:

* If datum is a condition, then this uses it directly. In this case, cerror only uses arguments
with continue-format-string, and it will not use arguments to initialize datum in any way.

*If datum is a condition type, then this uses the condition resulting from apply’ing
make-condition to datum and arguments. In this case, cerror uses arguments with
continue-format-string in a call to £ormat and with datum in a call to make-condition,
5o the user must take care to set up the format string commectly. The directive ~* may be
useful in this situation.

» If datum is a string, then this uses the condition resulting from the following;

(make-condition ‘simple-error
:format-~string datum
:format-arguments arguments)

continue-format-string must be a string, and cerror retums nil.

signal datum Srest arguments {Function]

break-on-signals [Variable]
This function invokes the signal facility on a condition formed from datum and arguments. If the
condition is unhandled, signal retums nil.

This uses datum and arguments as follows:

¢ If datum is a condition, then this uses it directly. In this case, it is an error for arguments to
be anything other than nil.

o If darum is a condition type, then this uses the condition resulting from apply’ing
make-condition to datum and arguments.

» If datum is a siring, then this uses the condition resulting from the following:
{make-condition 'simple~condition
: :format-string datum
:format~arguments arguments)

If the following test is true, then this function enters the debugger before beginning the signalling process:
(typep condition *break-on-signals¥)

The user can continue this invocation of the debugger using the continue restart. Note, this is true for

functions and macros that use signal: error, cerror, warn, assert, and check-type.

The condition system provides *break-on-signals* for debugging programs that do signalling.
The user should choose the most restrictive specification that suffices. Setting this flag effectively
violates the modular handling of conditien signailing this system seeks to establish, and the effect may be
unpredictable in some cases since the user may not be aware of the variety or number of calls to signal
large sophisticated programs use.

warn datum &rest arguments [Function]

break-on-warnings [Variable]
This function warns about a situation by signalling a condition of type warning formed from datum and
arguments.

This uses datum and arguments as follows:

ERROR SYSTEM] 35

o If datum is a condition, this uses condition directly. In this case, if the condition is not of
type warning, or arguments is something other than nil, warn signals an ermror of type
type—-error.

o If datum is a condition type, then this uses the conditon resulting from apply’ing
make-condition to datum and arguments. If this is anything other than a subtype of
warning, warn signals a type~error eror.

¢ If datum is a string, then this uses the condition resulting from the following:
{make~condition ’'simple-warning
:format-string datum
:format-arguments agrguments)

If *break-on-warnings¥* is true, then the warn enters the debugger using break before signalling
the warning condition. Because of the use of break, the cont inue restart allows warn to continue
executing normally. This feature is only supported for compatibility with previous condition system
proposals that some implementations implemented. The *break-on-signals* mechanism
supersedes *break-on-warnings* and is more general in comparison. Programmers should write
new code using the *break-on-signals*, and if they want to break on wamings, then they should
set the variable to 'warning. The condition system provides these features for debugging programs
that issue warnings.

The precise mechanism for wamning is as follows:

1.If *break-on~warnings* is true, warn calls break. If the user continues the break
the continue restart, proceed with step 2.

2. Signal the warning condition with an active muffle-warning established. This
allows handlers to cause warn to immediately retum nil without taking any other action.
If the condition goes unhandled, proceed with step 3.

3. Report the condition to *erroxr—output*,

4 Retum nil.

4.4. Handling Conditions

handlez-case form {case}* [Macro]
This macro executes form in a context where various handlers are active as specified by each case. Each
case is of the following form:

(hpe (Ivar]) . body)

Type may be any type specifier. If during the execution of form, the code signals a condition for which
there is an appropriate clause (that is, the condition’s type is a subtype of one of the specified types), and
there is no intervening handler for the condition’s type, then the system transfers control to the body of
the clause. The code in the clause executes in the dynamic context of the signaller, but with respect to
bound handlers, the system alters the context to that immediately prior to establishing the invoked
handler. The code executes also with var bound to the signalled condition. If form runs to a normal
completion, then handler~-case retumns the values resulting from it.

If var is unneeded, it may be omitted. For example, a clause such as:
(type (var) (declare (ignore var)) form)
may be written more easily in the following way:
(type () form)

A clause may have no forms after the argument specification. In this case, if the system transfers control
to this clause, it returns nil.

36 CMU COMMON LISP USER’S GUIDE

The signalling process searches the clauses from top to bottom, as if the textually earlier clauses were
dynamically bound later in time than the textually later clauses. This is analogous to typecase. If
there is a type overlap, signal transfers control to the textually first case by way of invoking the
handler. For purposes of invoking any one handler case, the dynamic context of bound handlers excludes
all handlers established by a single handler-case.

As a special case, the fype can be the symbol :no-error in the last clause. If the user specifies this, it
designates a case that executes if form returns nommally, and the arguments passed to the case are those
returned by form.

Exampies of handler-case:

(handler-case (/ x y)
(division-by-zero () nil))

(handler-case (open *the-file* :direction :input)
(file~error (condition)
(format t "~&Focey: ~A~%" condition)
nil))

{handler-case (some-user-function)
{file-error (condition) condition)
{division-by-zeroc () 0)
{ (or unbound-~variable undefined-function) () ‘unbound)}

{handler-case {intern x y)
{error (condition) condition)
(:no-error (symbol status)
{declare (ignore symbol))
status))

ignore-errors |forms}* {Macro]
This macro executes forms in a context that handles conditions of type error by retumning from this
form twe values: nil and the signaled condition object. If the system does not invoke this handler,
either because no one signaled an error condition or because a tighter bound handier took care of the
erTor, ignore~aerrors retuns any values returned by the last form executed.

This is equivalent to the following:

(handler-case (progn forms)
(error (condition) {values nil condition))})

handler-bind ({ (type handler) }*) [form}* [Macro]
This macro executes its body in a dynamic context where the given handler bindings are in effect. Type
may be any type specifier. Handler should evaluate to a function used to handle conditions of the
associated type(s) during execution of the body. This function takes a required argument that is the
signaled condition. '

The signalling process searches the bindings from top to bottom, as if the textually earlier bindings were
dynamically bound later in time than the textually later bindings. This is consistent with
handler-case which is analogous to typecase. If there is a type overlap, signal finds the earier
binding first. For purposes of invoking any one handler, the dynamic context of bound handlers excludes
all handlers established by a single handler~bind.

If the body executes normally, this returns the values of the last form.

ERROR SYSTEM - . 37

4.5. Defining and Creating Conditions

define-condition name ({parent-rype) [({slot}*) ([option}*] [Macro]
This macro defines a new condition type called name, which is a subtype of the given parent-type.
Except as otherwise noted, the expansion of this macro does not evaluate the arguments.

Objects of this condition type include slots available in objects of parent-rype in addition to the indicated
slots. A slor description has the following form:
{ slot-name | (slot-name) | (slot-name defauit-value) }

The default-value is a form evaluated by make—condition to produce a default value when the caller
leaves the value unspecified. If the description of the siot does not provide a defauit-value, and the user
of make-condition does not specify a value, then the system initializes the slot in an impiementation-
dependent way. It is an error to attempt to access a slot which has not been explicitly initialized and
which has not been given a defauit value.

If the new type and some other type from which it inherits have a slot with the same name,
- define~condition only allocates one slot for the new type. Any specified default overrides any
inherited default.

make-condition accepts keywords (in the keyword package)} with the same name as any slot name
and initializes the corresponding slot in conditions it creates.

Accessors are created according to the same rules used by defstruct, but it is an error to attempt to
assign a condition’s slots with setf. Define-condition interns accessor names into the package
that is currént when it executes.

A valid option is one of the following:

(:documentation doc-string)
Doc-string is a string describing the purpose of the condition type or nil. If this
option is unspecified, define~condition assumes nil. The documentation is
retrievable with (documentation name 'type), where type is the condition
name.

{:conc-name symbol-or-string)
As with defstruct, this sets up automatic prefixing of the names of slot accessors.
The defanlt is to use the name of the new type, name, followed by a hyphen.

(:report exp) If exp is not a literal string, it must be a suitable argument to the function special
form, and when define-condition expands, it evaluates the expression
(function exp) in the current lexical environment. The function takes two
required arguments, a condition and a stream, and the system invokes the function
whenever it prints the condition with *print-escape* bound to nil. See
section 4.2.15. If exp is a literal string, it is a shorthand for the following:
(lambda {condition stream) :

(declare (ignore condition))

(write-string exp stream))
This option inherits from parent-type if not specified.

Here are some examples of defining conditions. This form defines a condition type called
machine-errox which inherits from type exrror:
{(define-condition machine-error (error)
{machine-name)
(:report (lambda (condition stream) .
{(format stream "There is a problem with ~A."
(machine-error-machine-na.me ceondition}))))

The slot machine-name can be accessed with machine—error-machine-name, and

38 CMU COMMON LISP USER’S GUIDE

make-condition will accept 2 :machine-name keyword when creating conditions of type
machine-errcr.

This defines a condition subtype of machine-error to be used when machines are not available:
(define-condition machine-unavailable (machine-error)

0
(:report (lambda (condition stream)
{format stream "The machine ~A is not available."
(machine-error-machine~name condition)))})

The previous comments conceming machine-error apply to machine-unavailable conditions,
and machine-unavailable-machine-name will also access the name of the problermn machine.

This defines a still more specific condition type, a subtype of machine-unavailable, which.
provides a default for the machine-name slot:
(define-condition central-file-server-unavailable
{(machine-unavailabla)
{ (machine-name "cfs.cs.cmu.edu")))

Since this example leaves the :report option unspecified, it inherits the report method for
machine-unavailable conditions.

make-condition type &rest slor-initializations [Function]
This function constructs a condition object of type fype using slot-initializations. This returns the
condition object. Slot-initializations is given as alternating keyword/value pairs. The following example
shows the creation of a condition type peg/hole-mismatch with slots named peg-shape and
hole-shape:
(make-condition ’'peg/hole-mismatch
:peg-shape 'square :rhole-shape ’round)

4.6. Assertions

check-type place typespec &opticnal string [Macro]
This macro signals an error of type type-exror if the contents of place are not of type rypespec. 1If
this signals a condition, bhandlers can wuse the functions type-error-object and
type-error—-expected-type to access the contents of place the desired type itypespec,
respectively. This form only returns if a handler, or the user from the debugger, invokes the
store-value restart.

In this situation store-value takes an argument or prompts the user for it and stores the value in
place, continuing within check-type which starts over possibly signalling an error again. Subforms of
place may evaluate multiple times because of the implicit loop generated. Check-type retumsnil.

Plare must be a generalized variable reference acceptable to set£. Typespec must be a type specifier,
and check~type does not evaluate it. String is a string literal describing type, and if it is unsupplied,
check-type computes a description from fypespec.

The error message will mention piace, its contents, and the desired type.

Here are a couple examples:

ERROR SYSTEM

39

* (getf aardvarks ' (sam harry fred))
{SAM HARRY FRED)
* (check-type aardvarks {(array * (3)))}

The value of AARDVARKS is (SAM HARRY FRED),
which is not of type (ARRAY * (3)).

Restarts:
0: Supply a new value of AARDVARKS.
1: Return to Top-lLevel.

Debug (type H for help)

(LISP::CHECK-TYPE-ERROR AARDVARKS (SAM HARRY FRED)
{ARRAY * (3)) NIL)

0] restart 0O

Type a form to be evaluated:

'# (sam fred harry)

NIL

* aardvarks

(SAM FRED HARRY)

* (setf count ’'foo)

FOO

* (check-type count (integer 0 *) "a positive integex")

The value of COUNT is FOO, which is not a positive integer.

Restarts:
0: Supply a new value of COUNT.
1: Return to Top-Level.

Debug {type H for help)
" {LISP: :CHECK-TYPE-ERROR COUNT FOO
(INTEGER (0 *) "a positive integer")
0] restart 1
*

assert tesi-form Goptional ({place}*) datum {argument}* [Macro]
This macro signals an error if the value of test-form is nil. Using the the cont inue restart allows the
user to alter the values of some variables. If continue does execute, assext starts over, evaluating
test-form and possibly signalling an error again. Assert retums nil,

Test-form is any form. Each place must be a generalized variable reference acceptable to set£.
Assert only evaluates subforms of each place if the continue restart runs, and it may re-evaluate
them each time the assertion fails.

This only evaluates datum and each argument if it signals a condition, and it will re-evaluate them each
time the assertion fails. Assert uses these parameters in the following way:

o If datum is a condition, this uses it directly. In this case, it is an error to specify any
argument. '

o If datum is a condition type, then this uses the condition resulting from apply’ing
make-condition to datum and arguments.

» If datum is a string, then this uses the condition resulting from the following:
(make-condition ’simple-error
:format-string datum-
:format-arguments argumenis)

40 CMU COMMON LISP USER'S GUIDE

» If datum is unsupplied, then this uses a condition of type simple-error constructed with
test-form as data, for example:
{(make-condition ’simple~error
:format-string "The assertion ~S5 failed."
:format~arguments ‘' (test-form))

Here is an example of assert: .
* (setf x (make-array ‘{3 5) :initial-element 3))
#2A((3 3 33 3) (233233 (3333 3))
* (setf y (make-array ' (3 5) :initial-element 7})
$2A((7T 777 (77777 (77777
* (defun matrix-multiply (a b)
(let {(*print-array* nil))
{assert (and (= (array-rank a) (array-rank b) 2)
(= (array-dimension a 1) (array-dimension b 0)))
(a b)
"Cannot multiply ~S by ~5." a b)
{really-matrix-multiply a b))}
MATRIX-MULTIPLY
* (matrix-multiply x y)

Error in function LISP: :ASSERT-ERROR.
Cannot multiply #<Array, rank 2 {B8}> by #<Array, rank 2 {D4}>.

Restarts:
0: Retry assertion with new values for A, B.
l: Return to Top-~Level.

Debug (type H for help)
(LISP::ASSERT-ERROR (AND (= (# #) (# #) 2) (= (# # %) (# &)
(A B)
"Cannot multiply ~S by ~5."
#<Array, rank 2>,..)
0] restart O
The old value of A is }<Array, rank 2>.
Do you want to supply a new value? vy
Type a form to be evaluated:
x
The old value of B is §<Array, rank 2>.
Do you want to supply a new value? y
Type a form te be evaluated:
(make-array ' (5 3) :initial-element 6)
#2A((54 54 54 54 54)
{54 54 54 54 54)
{54 54 54 54 54)
{54 54 54 54 54)
{54 54 54 54 54))

4.7. Case Forms

This section describes case forms similar to case and typecase that signal an error if no branch fires.

ERROR SYSTEM ' ' 41

etypecase keyform { (type {form]*)}* [Macro]
This control construct is similar to typecase, but no explicit otherwise or t clause is permitted. If
no clause fires, this signals an error of type type-error with a message constructed from the clauses.
This erfor cannot be continued. To supply your own error message, use typecase with an
otherwise clause containing a call to error. The name of this function stands for **exhaustive type
case’’ or ‘‘error-checking type case.’’

Here is an example:
* (setq x 1/3)
1/3
* (etypecase x
{integer (* x 4))
{symbol (symbol-value x)))

1/3 fell through ETYPECASE expression.
Wanted one of (SYMBOL INTEGER).

Restarts:
0: Return to Top-Level.

Debug (type H for help)

(LISP::%EVAL (ERROR ‘CONDITIONS: :CASE-FAILURE
:NAME 'ETYPECASE :DATUM ...))

0]

ctypecase keyplace | (type [form]*)]* {Function]
This contrel construct is similar 10 typecase, but no explicit otherwise or t clause is permitted.
The keyplace must be a generalized variable reference acceptable to setf. If no clause fires,
ctypecase signals an emor of type type-error with a message constructed from the clauses. The
user may continue this error using the store-value restart.

In this sitzation store-value takes an argument or prompts the user for it and stores the value in
keyplace, continuing within ctypecase which starts over possibly signalling an error again. Subforms
of keyplace may evaluate multiple times because of the implicit loop generated.

This returns any values retumed by the last form in the selected case. The name of this function is
mnemonic for ‘‘continuable (exhaustive) type case.’’ '

Here is an example:

42 CMU COMMON LISP USER'S GUIDE

* (setq x 1/3)
i/3
* (ctypecase x
{integer (* x 4))
{symbol (symbol-value x)})

1/3 fell through CTYPECASE expression.
Wanted one of (SYMBOL INTEGER).

Restarts:
0: Supply a new value for X.
1. Return to Top-Level.

Debug (type H for help)

(LISP: :CASE-BODY-ERROR CTYPECASE X 1/3 (OR SYMBOL INTEGER)...)
0] restart 0

Type a form to be evaluated:

3.7

3.7 fell through CTYPECASE expression.
Wanted cne of (SYMBOL INTEGER).

Restarts:
0: Supply a new value for X,
1: Return to Top-Level.

Debug (type H for help)

(LISP: :CASE~BODY-ERROR CTYPECASE X 3.699997 (OR SYMBOL INTEGER)...)
0] restart 0O

Type a form to be evaluated:

12

48
*

ecase keyform {case}* [Macro]
This control construct is similar to case, but no explicit otherwise or t clause is permitted. Each
case is of the following form: ,

(1 (keyl key2 ...) | key } forml form2 ...}

If no case fires, this signals an error of type type-error with a message constructed from the cases.
This error cannot be continued. To supply your own error message, use case with an otherwise
clause containing a call to error. The name of this function stands for ‘‘exhaustive case’’ or ‘‘error-
checking case.”’

Here is an example:

ERROR SYSTEM - 43

* {gsetq x 1/3)
1/3
* (ecase x
(alpha (foo))
(cmega (bar))
({zeta phi) (baz))) .
1/3 fell through ECASE expression.
Wanted cone of (ZETA PHI OMEGA ALPHA) .

Restarxts:
0: Return to Top-Level.

Debug {type H for help)

(LISP::%EVAL (ERROR ‘'CONDITIONS: :CASE-FAILURE
:NAME 'ECASE :DATUM ...})

0]

ccasge keyplace {case}* ' ‘ [Macro]
This control construct is similar to case, but no explicit otherwise or t clause is permitted. The
keyplace must be a generalized variable reference acceptable to set£. Each case is of the following
form:
({ (keyl key2 ...) | key } forml formZz ...}
If no clause fires, ccase signals an error of type type—error with a message constructed from the
clauses. The user may continue this error using the store-value restart.

In this situation store-value takes an argument or prompts the user for it and stores the value in
keyplace, continuing within ccase which starts over possibly signalling an error again. Subforms of
keyplace may evaluate multiple times because of the implicit loop generated.

This returns any values retumed by the last form in the selected case. The name of this function is
mnemonic for *‘continuable (exhaustive) case.”’ '

4.8. Establishing Restarts

with-simple-restart (name format-string &rest format-arguments) {form)}* . [Macro]
This macro is shorthand for a common use of restart-case. Name is the name of the restart, and if
this one executes, control returns 10 with-simple-restart retuming the values nil and £. If each
Jorm executes normally, then the values of the last one are returned.

Name may be nil, in which case, this establishes an mmmous Testart.

By way of example, you could define with-simple-restart in the following way:
{(defmacro with-simple-restart ((restart-name format-string
§rest format-arguments)
&body forms)
‘(restart-case (progn ,@forms)
{, restart-name ()
:report (lambda (stream)
(format stream , format-string , Qformat-arguments))

(values nil t))))

Here is an example of its use:

44 CMU COMMON LISP USER’S GUIDE

* {defun read-eval-print-loop (level)

(with-simple-restart (abort "Exit command level ~D." level)
{locp .
{with-simple-restart (abort "Return to command level ~D."
level)
{let ((form (prog2 (fresh-line) (read) (fresh-line))))
(prinl (eval form))))}}))

READ-EVAL-PRINT-LOOP
* (read-eval-print-loop 1)
{+ 'a 3)

Error in function +.
Wrong type argument, A, should have been of type NUMBER,

Restarts:
0: Return to command level 1.
1; Exit command level 1.
2: Return to Top-Level.

Debug (type H for help)

(CONDITIONS: :MAKE-ERROR-TABLE + 0 A NIL)
0] restart 0

{(+ 5 nil)

Error in function +.
Wrong type argument, NIL, should have been of type NUMBER.

Restarts:
0: Return to command level 1,
1: Exit command level 1.
2: Return to Top-lLevel.

Debug (type H for help)

(CONDITIONS: :MAKE~ERROR-TABLE + 0 NIL NIL)
0] restart 1

NIL

T
*

restart-case expression [(case-name arglist [{keyword value}* (form}*) }* [Macro]
This macro evaluates expression in a dynamic context where the clauses have special meanings as points
to which handlers and users may transfer program control. If expression executes normally,
restart-case retums any values remuned by it. If anyone invokes one of the restarts, the system
transfers control to that branch executing each form and returning any values returned by the last such
Jorm.

If there are no forms in a selected clause, restart-case retums nil.

Case-name may be nil or a symbol naming the restart. A case-name may be repeated, in which case
find-restart will find the first such clause that appears textually. The other clauses are accessible
using compute-restarts.

Each arglist is a normal lambda list of locals to be bound during the exécution of its corresponding forms.
These arguments convey any necessary data from a call to invoke-restart to the clause. ‘

Valid keyword/value pairs are as follows:

ERROR SYSTEM ' 45

:interactive exp
By default, invoke-restart-interactively passes no arguments (o a
restart, and all the arguments must be optional to accomodate intcractive restarting,
what typically occurs in the debugger with user intervention. The arguments may be
required if the restart specifies the :interactive keyword, and exp must be a
suitable argument to the function special form. Restart-case evaluates the
expression (function exp) in the current lexical environment. It should return a
function of no arguments that retums a kst of wvalues to which
invoke-restart—-interactively will apply the restart. This function runs in
the dynamic environment available prior to any restart attempt. The interactive
function may use the *query-io* stream.

:report exp If exp is not a literal string, it must be 2 suitable argument to the function special
form, and restart-case evaluates the expression (function exp) in the
current lexical environmeni. The funiction takes one required argument, a stream, and
the system invokes the function whenever it pnnts the restart with
print-escape bound to nil. If exp is a literal string, it is a shorthand for the
following:

{lambda (stream)
(write-string exp stream))

If the system reports a named restart, and it has no report method, the system uses the restart name in
generating default report text. It is an error to define an unnamed restart without any report information
since these are generally only useful interactively, possibly as an option for the user in the debugger.

Here are some examples:

{locp
(restart-case (return {(apply function some-args))
(new-function (new-function)

:report "Use a different function."

:interactive

{(lambda

() (list (prompt-feor 'function "Function: ")})
(setqg function new-function})))

{loop
(restart-case (return (apply function some-args))
(nil (new-functicn)
:report "use a different function.”
:interactive
{lambda {) (list (prompt-for ’function "function: "}))
{setg function new-function))})

{restart-case (a-command-lcop)
{return-from-command-level
0
I report
(lambda (stream)

(format stream "Return from command level ~D." level))
nil))

(loop
(restart-case (another-random-computation)
(continue ()
nil)))

prompt—for is immatenal to this example and does what you think. The first and second examples are
equivalent from the point of view of someone using the interactive debugger, but differ in one important

46 CMU COMMON LISP USER’S GUIDE

aspect for non-interactive handling; a handler can make use of named restarts otber than nil as in the
following piece of code:
(if (find-restart ’‘'new-function)
{invoke~-restart ‘new-function the-replacement))
This works for the first one, but the second one is only callable interactively, such as from the debugger.

Here is a more complete example:
{let ((my-~food ‘milk)
(my-coler ‘greenish-blue})
(do ()
({not (bad-food-color-p my-food my-color)))
{restart-case (error ’‘'bad-food-color
:food my-food :color my-color)
{use-food (new-food)
irxeport "Use another food."
{setq my-food new-£food))
{use-color (new-color)
ireporxt "Use another color."
{setq my-color new-color}))))
;}; Can’t get here until my-food and my-color are compatible.
(list my-food my-colorx))

Handlers written for bad-food~-color emors can use the £find-restart/invoke-restart
idiom to supply a different food for the given color or a different color for the given food. See section
4.2.7 for a discussion of encapsulating this idiom for programmer and user convenience.

restart-bind ({bindingl*) {form}* [Function]
This macro executes each form in a dynamic context where the given restart bindings are in effect. Each
binding is of the following form:

{name function {keyword value}*)

Name may be nil to indicate an anonymous restart, or some other symbol to indicate a named restart,
Function should evaluate to a function that performs the restart. If invoked, this function either transfers
control nen-locally or simply remms, and it takes whatever arguments the programmer desires,
Invoke-restart and invoke-restart-interactively are the only ways to call it, either
from a piece of code or as the result of a debugger command. In the case of interactive invocation, where
the arguments are not supplied, the second function named calls the :interactive-function
option (see below),

The valid keyword/value pairs are:

tinteractive-function form
The form evaluates in the current lexical environment and should retumn a function of
no arguments that returns a list of arguments to which
invoke-restart-interactively applies the restart function. The function
may prompt using *query-io*,

:report~-function form
The form evaluates in the current lexical environment and should retumn a function
that takes a stream as an argument and prints on it a summary of the action that this
restart will take. The system calls this function whenever the restart is printed with
print-escape bound to nil.

This is considered a significantly lower-level primitive than restart-case, and its intended purpose
is that of building higher-level abstractions such as restart-case. It still has uses for inclusion in
general coding, but typically it appears in macros that define other constructs,

ERROR SYSTEM ' 47

4.9. Finding and Manipulating Restarts

compute-restarts [Function]
This function returns a list of the restarts currently active in the dynamic state of a program, see
restart-bind and restart-case. Each restart represents a function that performs some recovery
action, typically a dynamic transfer of control. Restart objects are implementation-dependent, but they
always have dynamic extent relative to the scope of the binding form.

The result of compute-restarts is ordered from more recently established restarts to those first
established in time, All elements of the list are valid, including anonymous restarts, even though some
may have the same name as others and would not be found by £ind-restaxrt because of this.

Portable programs do not rely on whether multiple calls to compute-restarts in the same dynamic
environment share elements or are disjoint {(not eq), and it is an error to modify the resuiting list.

restart-name restart [Function}
This function retums the name of the given restart object. If it is unnamed, this retums nil.

find-restart identifier {Function]
This function searches for a particular restart in the current dynamic environment.

If identifier is a symbol, this returns the most recently established restart with that name. If none is
found, this retums nil.

If identifier is a restaxrt object, this retumns the object if it is cumrently active. If it is inactive, this
retums nil. '

Although anonymous restarts have nil as a name, it is an error to supply the symbol nil for identifier.
If your application seems to require this, consider rewriting it to use compute~restarts.

invoke-restart restart &rest arguments [Function)
This function calls the function associated with restart on arguments. Restart must be a restart object
or the non-nil name of a cumrently valid restartt If the argument is invalid, this signals a
control-errox error. Note, restart functions (see section 4.2.7), such as abort and continue,
call this function, not vice versa.

invoke-restart-interactively restart [Function]
This function invokes the function associated with restart, If restart has an associated interactive method
{sce restart-bind (pagc 46) and restart-case (page 44)), this function cails the method to
provide arguments for restart’s function. Restart must be a restart object or the non-nil name of a
restart that is valid in the current dynamic context. If it is invalid, this function signals an error of type
contrel-error.

If no interactive method is associated with restart, then it is an error for the resrart’s function to require
arguments.

4.10. Restart Functions

48 CMU COMMON LISP USER'S GUIDE

abort [Function]
This function transfers control to the restart named abort, and if none exists, it signals an error of type
control-error. This is generally used to return to previous command levels,

continue [Function]
This function transfers control to the restart named continue, and if none exists, it returns nil. This is
generally used with simple and ebvious restarts, such as in break and cerrocr, whether in user or
system code.

muffle-warning [Function]
This function transfers control to the restart named muf£fle-warning, and if none exists, it signals an
error of type control-error. Warn signals warning conditions in an environment where this
restart causes warn to immediately retum.

'store=-value value [Function}
This function transfers control, passing value, to the restart named store-value, and if none exists, it
retuns nil. Code that signals errors of type cell~error and type-error may establish this restart
for handlers that can supply replacement data to be stored permanently to correct the situation.

use-value value [Function]
This function transfers control, passing value, to the restart named use-value, and if none exists, it
returns nil. Code that signals cell-error ermors may establish this restart for handlers that can
supply a replacement value to be used once only to correct the situation.

4.11. Debugging Utilities

break &optional formai-string &rest format-arguments [Function)
This function prints the message described by format-string and formar-arguments and then enters the
debugger. While in the debugger, there is a continue restart that causes break to retum nil
immediately. If format-string is unsupplied, this generates a default message.

By way of example, break could be defined as follows:
(defun break (&optiocnal {(format-string "Break")
&rest format-arguments)
{with-simple-restart (continue "Return f£from BREAK.")
{invoke-debugger
{make-condition 'simple-condition

:format-string format-string
:format-arguments format-arguments)))

nil)

invoke-debugger condition [Function]

debugger-hcok [Variable]
This function invokes an interactive mechanism for handling condition, which must be a condition
object. This never directly returns; some non-local transfer of control must occur, such as the use of a
restart, aborting to top level, etc.

When the variable *debugger—-hock* is non-nil, it is a function invoke-debugger calls instead
of executing any standard debugger interface. The function takes condition and the value of
debugger-hook as arguments, and if it retums, invoke-debugger enters the standard debugger -
anyway. While executing *debugger~hook*, this variable is nil, so if this interface evaluates code

ERROR SYSTEM 49

on the user’s behalf, it may want to rebind *debuggex-hook* to the second value passed in to handle
recursive errors with the same interface.

4.12. System Defined Types

Restart is the data type used to represent a restart.

A sketch of the condition type hierarchy looks like this:

CONDITION
[
dmmmmm e o s
| I I
| | |
SIMPLE-CONDITION SERIQUS~CONDITION WARNING
| |
| |
| SIMPLE-WARNING
I
I
Fom——= R -
! I
j I
ERRCR STCRAGE~CONLITION
J
[

SIMPLE=-ERROR ARITHMETIC-ERROR CONTROL-ERROR
I I

Typically programs do not directly instantiate conditions of the non-terminal types in the above tree (for example
condition, warning, storage-ceondition, error, arithmetic-error, etc.), the system provides
these primarily for type inclusion purposes.

The design of the condition system permits implementations to support non-portable synonyms for these types, as
well as 10 introduce other types above, below, or between the types shown in this tree as long as the indicated
subtype relationships are not viclated.

The types simple-condition, serious-condition, and warning are pairwise disjoint. The type
error is disjoint from types simple-condition and warning.

The following describes all the predefined condition types:

condition All types of conditions, whether error or non-erroz, must inherit from this type.
warning All types of wamings inherit from this type. This is a subtype of condition.
serious-condition
All serious conditions (conditions serious enough to require interactive intervention if not
handled) inherit from this type. This is a subtype of condition.

error All types of error conditions inberit from this condition. This is a subtype of
seriocus-condition.

simple-condition
Conditions signalled by signal when given a format string as a first argument are of this
type. This is a subtype of condition. The system supports the initialization keywords

50 CMU COMMON LISP USER'S GUIDE

:format-string and : format-arguments for the slots, which can be accessed using
simple-condition-format-string and
simple-condition-format-arguments. If :format-arguments is unsupplied
withmake-condition, the format-arguments slot defaults to nil.
simple-warning

Conditions signalled by warn when given a £ormat string as a first argument are of this type.
This is a subtype of warning. The system supports the initialization keywords
:format-string and : format-arguments for the slots, which can be accessed using
simple-condition~format-string and
simple-condition-format-arguments. If :format-arguments is unsupplied
with make-condition, the format-axrgument s slot defaults to nil. In implementations
supporting multiple inheritance, this type will also be a subtype of simple-condition.

simple-error Conditions signalled by exror and cerror when given a format string as a first argument
are of this type. This is a subtype of error. The system supports the initialization keywords
:format-string and :format-arguments for the slots, which can be accessed using
simple-condition-£format-string and
simple-condition-format-arguments. If :format~arguments is unsupplied
with make-condition, the format-arguments slot defaults to nil. In implementations
supporting multiple inheritance, this type will also be a subtype of simple-conditien,

storage-condition
Conditions related to storage overflow inherit from this type. This is a subtype of
sericus-condition.

type-error Emrors in the transfer of data in a program inherit from this type. This is a subtype of error.
For example, conditions signalled by check-type inherit from this type. The system supports
the initialization keywords :datum and :expected-type for the slots, which can be
accessed using type-error-datum and type-error-expected-type.,

simple-type-error
Coenditions signalled by facilities similar to check-type may use this type. The system
supports the initialization keywords : format-string and : format-arguments for the
slots, which can be accessed using simple-condition-format-string and
simple-conditicon-format-arguments. If :format-arguments is unsupplied
withmake~condition, the format-arguments slot defaults to nil, In implementations
supporting multiple inheritance, this type will also be a subtype of simple-condition.

program-error Errors related to incorrect program syntax statically detectable inherit from this type, regardless
of whether they are statically detected. This is a subtype of error. This is not a subtype of
control-error. The errors resulting from naming a go tag or zeturn-£rom tag which is
not lexically apparent are program errors.

control~errox Emors in the dynamic transfer of control in a program inberit from this type. This is a subtype
of error. This is not a subtype of program-error. The errors resulting from giving
throw a tag which is not active or from giving go or return-£rom a tag which is no longer
dynamically available are control errors.

package-error Errors occurring during operations on packages inherit from this type. This is a subtype of
error. The system supports the initialization keyword : package for the slot, which can be
accessed using package-error-package.

stream-error Errors occurring during input from, output to, or closing a stream inherit from this type. This is
a subtype of erroxr. The system supports the initialization keyword : stream for the siot,
which can be accessed using st ream-error-stream,

end-of-£file The error resulting when reading from a stream with ne more input inherits from this type. This
is a subtype of stream-error.

file-error Errors occurring during an attempt to open a file, or during some low-level transaction with a
file system, inherit from this type. This is a subtype of error. The system suppornts the
initialization keyword :pathname for the slot, which can be accessed using
file-error-pathname.

ERROR SYSTEM 51

cell-error Errors occurring while accessing a location inherit from this type. This is a subtype of erzor.
The system supports the initialization keyword : name for the slot, which can be accessed using
cell-error-name.

unbound-variable

The error resulting from trying to access the value of an unbound variable inherits from this
type. This is a subtype of cell-error.

undefined-function
The error resulting from trying to access the value of an undefined function inherit from this
type. This is a subtype of cell-error.

arithmetic-error
Errors occurring while doing arithmetic type operations inherit from this type. This is a subtype
of exror, The system supports the initdalization keywords ; operation and ; operands for
the slots, which can be accessed using arithmetic-error-operation and
arithmetic-error-operands.

division-by-zero
Errors occurring because of division by zero inherit from this type. This is a subtype of
arithmetic-error.

flecating-point-overflow
Errors occurring because of floating peint overflow inherit from this type. This is a subtype of
arithmetic-error.

floating-point-underflow

Errors occurring because of floating point underflow inherit from this type. This is a subtype of
arithmetic-error.

CMU COMMON LISP USER'S GUIDE

Chapter 5

The Debugger

By Robert MacLachlan

5.1. Introduction

The CMU Common Lisp debugger is unique in its level of support for source-level debugging of compiled code.
Although some other debuggers allow access of variables by name, this seems to be the first Common Lisp
debugger that:

» Tells you when a variable doesn’t have a value because it hasn’t been initialized yet or has already been
deallocated, or
» Can display the precise source location comresponding to a code location in the debugged program.
These features aillow the debugging of compiled code to be made almost indistinguishable from interpreted code
debugging.

The debugger is an interactive command loop that allows a user to examine the function call stack. The debugger
is invoked when:!

¢ A serious-condition is signalled, and it is not handled, or
e error is called, and the condition it signals is not handled, or

» The debugger is explicitly invoked with the COMMON LISP break or debug functions.
When you enter the debugger, it looks something like this:
Error in function CAR.
Wrong type argument, 3, should have been of type LIST.

Restarts:
0: Return to Top-Level.

Debug (type H for help)

(CAR 3)

7]
The first group of lines describe what the error was that put us in the debugger. In this case car was called on 3.
After Rastarts: is alist of all the ways that we can restart execution after this error. In this case, the only option
is to return to top-level. After printing its banner, the debugger prints the current frame and the debugger prompt.

"The debugger cannot be used in Hemlock's eval mode, but can be used in slave Lisps running under Hemlock.

53

54 CMU COMMON LISP USER’S GUIDE

5.2. The Command Loop

The debugger is an interactive read-eval-print loop much like the nommal top-level, but some symbols are
interpreted as debugger commands instead of being evaluated. A debugger command starts with the symbol name
of the command, possibly followed by some arguments on the same line. Some commands prompt for additional
input.

The debugger prompt is "frame] ", where frame is the number of the current frame. Frames are numbered starting
from zero at the top (most recent call), increasing down to the bottom. The current frame is the frame that
commands refer to. The current frame also provides the lexical environment for evaluation of non-command forms.

The package is not significant in debugger commands; any symbol with the name of a debugger command will
work. If you want to show the value of a variable that happens also to be the name of a debugger command, you can
use the "L" command or the debug: var function, or you can wrap the variable in a progn to hide it from the
command loop.

The debugger evaluates forms in the lexical environment of the functions being debugged. The debugger can
only access variables. You can’t go or return-£rom into a function, and you can’t call local functions. Special
variable references are evaluated with their current value (the innermost binding around the debugger invocation) —
you don’t get the value that the special had in the current frame. See section 5.4 for more information on debugger
variable access.

5.3. Stack Frames

A stack frame is the run-time representation of a call to a function; the frame stores the state that a function needs
to remember what it is doing. Frames have:

¢ Variables (see section 5.4), which are the values being operated on, and
» Argumenits to the call (which are really just particularly interesting variables), and

¢ A current location (see section 5.5), which is the place in the program where the function was running
- when it stopped to call another function, or because of an interrupt or error.

5.3.1. Stack Motion

These commands move to a new stack frame and print the name of the function and the values of its arguments in
the style of a Lisp function call:

U Move up to the next higher frame. More recent function calls are considered to be higher on the
stack.

D Move down to the next lower frame,

T Move to the highest frame.

B Move to the lowest frame.

F [n]

Move to the frame with the specified number. Prompts for the number if not supplied.

5.3.2. How Arguments are Printed

A frame is printed to look like a function call, but with the actual argument values in the argument positions. So
the frame for this cail in the source:
(myfun (+ 2 4) ’a)

THE DEBUGGER 55

would look like this:
(MYFUN 7 A)
All keyword and optional arguments are displayed with their actual values; if the corresponding argument was not
supplied, the value will be the default. So this call:
{subseq "foo" 1)
would look like this:
(SUBSEQ "foo" 1 3)
And this call:
(string-upcase "test case")
would look like this:
{(STRING-UPCASE "test case" :START 0 :END NIL)

The arguments to a function ¢all are displayed by accessing the argument variables. Although those variables are
initialized to the actual argument values, they can be set inside the function; in this case the new value will be
displayed.

&rest arguments are handled somewhat differently. The value of the rest argument vaniable is displayed as the

spread-out arguments to the call, so:

(format £ "~A is a ~A." "This" ’'test)
would look like this:

(FORMAT T "~A i3 a ~A." "This" ’'TEST)
Rest arguments cause an exception to the normal display of keyword arguments in functions that have both érest
and &key arguments. In this case, the keyword argument variables are not displayed at all; the rest arg is displayed
instead. So for these functions, only the keywords actually supplied will be shown, and the values displayed will be
the argument values, not values of the (possibly modified} variables.

If the variable for an argument is never referenced by the function, it will be deleted. The variable value is then
unavailable, so the debugger prints <unused-arg> instead of the value. Similarly, if for any of a number of
reasons (described in more detail in section 5.4) the value of the variabie is unavailable or not known to be available,
then <unavailable-arg> will be printed instead of the argument value.

Printing of argument valnes is controlled by *debug-print-level* and *debug-print-length*
{page 62).

5.3.3. Function Names

If a function is defined by defun, labels, or £let, then the debugger will print the actual function name after
the open parenthesis, like:
(STRING-UPCASE "test case" ;START 0 :;END NIL)
{ (SETF AREF) #\a "for" 1)
Otherwise, the function name is a string, and will be printed in quotes:
{"DEFUN MYFUN" BAR)
("DEFMACRO DO" (DQ ((I 0 (1+ I)}) ((= I 13})) NIL)
{"SETQ *GC-NOTIFY-BEFORE*")
This string name is derived from the de £mumble form that encloses or expanded into the lambda, or the outermost
enclosing form if there is no de£mumble.

56 CMU COMMON LISP USER'S GUIDE

5.3.4. Funny Frames

Sometimes the evaluator introduces new functions that are used to implement a user function, but are not directly
specified in the source. The main place this is done is for checking argument type and syntax. Usually these
functions do their thing and then go away, and thus are not seen on the stack in the debugger. But when you get
some sort of error during lambda-list processing, you end up in the debugger on one of these funny frames.

These funny frames are flagged by printing " [keyword] " after the parentheses. For example, this call:
{car 'a 'b)

will look like this:

(CAR 2 A) [:EXTERNAL]
And this call:

(string-upcase "test case" :end)
would look like this:

("DEFUN STRING-UPCASE" "test case" 335544424 1) [:OPTIONAL]

As you can see, these frames have only a vague resemblance to the original call. Fortunately, the error message
displayed when you enter the debugger will usually tell you what problem is (in these cases, too many arguments
and odd keyword arguments.) Also, if you go down the stack to the frame for the calling function, you can display
the original source (see section 5.5.)

With recursive or block compiled functions (see section 7.6.5), an : EXTERNAL frame may appear before the
frame representing the first call to the recursive function or entry to the compiled block. This is a consequence of
the way the compiler does block compilation: there is nothing odd with your program. You will also see
: CLEANUP frames during the execution of unwind-protect cleanup code. Note that inline expansion and
open-coding affect what frames are present in the debugger, see sections 5.6 and 6.8.

5.3.5. Tail Recursion

Both the compiler and the interpreter are "properly tail recursive.”" If a function call is in a tail-recursive position,
the stack frame will be deallocated ar the time of the call, rather than after the call returns. Consider this backtrace:
{BAR ...) ‘
(FOCO ...)
Because of tail recursion, it is not necessarily the case that FOO directly calied BAR. It may be that FOO called some
other function FOO2 which then called BAR tail-recursively, as in this example:
{defun foo ()}

'(éc.:o2 ve)
-)

(defun foo2 (...)
(baz ...))

(defun bar (...)
-}

Usually the elimination of tail-recursive frames makes debugging more pleasant, since theses frames are mostly
uninformative. If there is any doubt about how one function called another, it can usually be eliminated by finding
the source location in the calling frame (section 5.5.)

For a more thorough discussion of tail recursion, see section 7.5.

THE DEBUGGER 57

5.3.6. Unknown Locations and Interrupts

The debugger operates using special debugging information attached to the compiled code. This debug
information tells the debugger what it needs to know about the locations in the code where the debugger can be
invoked. If the debugger somehow encounters a location not described in the debug information, then it is said to be
unknown. If the code location for a frame is unknown, then some variables may be inaccessible, and the source
location cannot be precisely displayed.

There are three reasons why a code location could be unknown:

* There is inadequate debug information due to the value of the debug-info optimization quality. See
section 3.6.

» The debugger was entered becavse of an internupt such as ~C.

» A hardware error such as "bus error” occurred in code that was compiled unsafely due to the value
of the safety optimization quality. See section 6.7.1.

In the last two cases, the values of argument variables are accessible, but may be incorrect. See section 5.4.1 for
more details on when variable values are accessible.

It is possible for an interrupt to happen when a function call or return is in progress. The debugger may then
flame out with some obscure error or insist that the bottom of the stack has been reached, when the real problem is
that the current stack frame can’t be located. If this happens, remm from the interrupt and try again.

5.4.Variable Access

There are three ways to access the current frame’s local variables in the debugger. The simplest is to type the
variable’s name into the debugger’s read-eval-print loop. The debugger will evaluate the variable reference as
though it had appeared inside that frame.

The debugger doesn’t really understand lexical scoping; it has just one namespace for all the varables in a
function. If a symbol is the name of multiple variables in the same function, then the reference appears ambiguous,
even though lexical scoping specifies which value is visible at any given source location. If the scopes of the two
variables are not nested, then the debugger can resolve the ambiguity by observing that only one variable is
accessible. :

When there are ambiguous variables, the evaluator assigns each one a small integer identifier. The debug:vaz
function and the "L" command use this identifier to distinguish between ambiguous variables:

L [prefix] This command prints the name and value of all variables in the current frame whose name has
the specified prefix. prefix may be a string or a symbol. If no prefix is given, then all available
variables are printed. If a variable has a potentially ambiguous name, then the name is printed
with a "#identifier” suffix, where identifier is the small integer used to make the name unique.

debug:var name &optional identifier [Function]
This function retums the value of the variable in the current frame with the specified name. If supplied,
identifier determines which value to retum when there are ambiguous variables.

When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is
significant. If name is an unintemed symbol (gensym), then return the value of the unintermed variable
with the same name. If name is a string, debug: var interprets it as the prefix of a variable name, and
must unambiguously complete to the name of a valid variabie.

This function is useful mainly for accessing the value of uninterned or ambiguous variables, since most
variables can be evaluated directly.

58 CMU COMMON LISP USER'S GUIDE

5.4.1. Variable Value Availability

The value of a variable may be unavailable to the debugger in portions of the program where COMMON LISP says
that the variable is defined. If a variable value is not available, the debugger will not let you read or write that
variable. With one exception, the debugger will never display an incorrect value for a variable. Rather than
displaying incorrect values, the debugger tells you the value is unavailable.

The one exception is this: if you interrupt (e.g., with ~C) or if there is an unexpected hardware error such as "bus
exroxr” (which should only happen in unsafe code), then the values displayed for arguments to the interrupted
frame might be incorrect.? This exception applies only to the interrupted frame: any frame farther down the stack
will be fine,

The value of a variable may be unavailable for these reasons:

e The value of the debug-info optimization quality may have omitted debug information needed to
determine whether the variable is available. Unless a variable is an argument, its value will only be
available when debug~info is at least 2.

* The compiler did lifetime analysis and determined that the value was no longer needed, even though its
scope had not been exited. Lifetime analysis is inhibited when the debug-in£o optimization quality
is 3.

The variable’s name is an uninterned symbol (gensym). To save space, the compiler only dumps debug
information about uninterned variables when the debug-info optimization quality is 3.

¢ The frame’s location is unknown (see section 5.3.6) because the debugger was entered due to an
interrupt or unexpected hardware error. Under these conditions the values of arguments will be
available, but might be incorrect. This is the exception above.

* The variable was optimized out of existence. Variables with no reads are always optimized away, even
in the interpreter. The degree to which the compiler deletes variables will depend on the value of the
compile-speed optimizaton quality, but most source-level optimizations are done under all
compilation policies.

Since it is especially useful to be able to get the arguments to a function, argument variables are treated specially
when the speed optimization quality is less than 3 and the debug-info quality is at least 1. With this
compilation policy, the values of argument variables are almost always available everywhere in the function, even at
unknown locations. For non-argument variables, debug-info must be at least 2 for values to be available, and
even then, values are only available at known locations.

5.4.2. Note On Lexical Variable Access

When the debugger command loop establishes variable bindings for available variables, these variable bindings
have lexical scope and dynamic extent.? You can close over them, but such closures can’t be used as upward
funargs.

You can also set local variables using sei:q, but if the variable was closed over in the original source and never
set, then setting the variable in the debugger may not change the value in all the functions the variable is defined in.
Another risk of setting variables is that you may assign a value of a type that the compiler proved the variable could
never take on. This may result in bad things happening,

2Since the location of an interrupt or hardware error will always be an unknown location (see section 5.3.6), non-argument variable values wiil
never be available in the interrupted frame.

3The variable bindings are actually created using the COMMON Lisp symbol-macro-lat special form.

THE DEBUGGER 59

5.5. Source Location Printing

One of CMU COMMON LISP’s unique capabilities is source level debugging of compiled code. These commands
display the source location for the current frame:

source [context] This command displays the file that the current frame’s function was defined from (if it was
: defined from a file), and then the source form responsible for generating the code that the
current frame was executing. If context is specified, then it is an integer specifying the number

of enclosing levels of list structure to print.

vsource [context] This command is identical to source, except that it uses the global values of *print-level*
and *print-length* instead of the debugger printing control variables
debug-print-level and *debug-~print-length*.

The source form for a location in the code is the innermost list present in the original source that encloses the
form responsible for generating that code. If the actual source form is not a list, then some enclosing list will be
printed. For example, if the source form was a reference to the vanable *scme-random-special¥*, then the
innermost enclosing evaluated form will be printed. Here are some possible enclosing forms:

(let ((a *some-random-special*})

)
(+ *some-randocm-special* ...)

If the code at a location was generated from the expansion of a macro or a source-level compiler optimization,
then the form in the original source that expanded into that code will be printed. Suppose the file
/usy/me/mystuff. lisp looked like this:

{defmacro mymac ()}
" (myfun))

{defun fco ()

(mymac)
-)

If £o0 has called my£un, and is waiting for it to return, then the source would print:
File: /usr/me/mystuff.lisp

(MYMAC) _
Note that the macro use was printed, not the actual function call form, {my£fun).

If enclosing source is printed by giving an argument to source or vsource, then the actual source form is marked
by wrapping it in a list whose first element is # : ***HERE***, In the previous example, source 1 would print:
File: /usr/me/mystuff. lisp

(DEFUN FOO ()
(f:***HERE***
{MYMAC))
-)

5.5.1. How the Source is Found

If the code was defined from Common Lisp by compile or eval, then the source can always be reliably
located. If the code was defined from a £asl file created by compile-£file, then the debugger gets the source
forms it prints by reading them from the original source file. This is a potential problem, since the source file might
have moved or changed since the time it was compiled.

The source file is opened using the t ruename of the source file pathname originally given to the compiler. This

60 CMU COMMON LISP USER'S GUIDE

is an absolute pathname with all logical names and symbolic links expanded. If the file can’t be located using this
name; then the debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was compiled, the debugger prints this
warmning:
File has been modified since compilation:
filename
Using form offset instead of character position.

where filename is the name of the source file. It then proceeds using a robust but not foolproof heuristic for locating
the source. This heuristic works if:

* No top-level forms before the top-level form containing the source have been added or deleted, and

*» The top-level form containing the source has not been modified much. (More precisely, none of the list

forms beginning before the source form have been added or deleted.)

If the heuristic doesn’t work, the displayed source will be wrong, but will probably be near the actual source. If the
"shape"” of the top-level form in the source file is too different from the original form, then an error will be signalled.
When the heuristic is used, the the source location commands are noticeabiy slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro you used in the
code was redefined to expand into something different, or if a read-macro ever returns the same eq list twice. If you
don’t define read macros and don't use #4# in perverted ways, you don’t need to worry about this.

5.5.2. Source Location Availability

Source location information is only available when the debug-in£o optimization quality is at least 2. If source
location information is unavailable, the source commands will give an error message.

If source location information is available, but the -source location is unknown because of an interrupt or
unexpected hardware error (see section 5.3.6), then the command will print;
Unknown location: using block start.
and then proceed to print the source location for the start of the basic block enclosing the code location. It’s a bit
complicated to explain exactly what a basic block is, but here are some properties of the block start location:

» The block start location may be the same as the true location.
» The block start location will never be later in the the program’s flow of control than the true location,

» No conditional control structures (such as i £, cond, or) will intervene between the block start and the
true location (but note that some conditionals present in the original source could be optimized away.)
Function calls do not end basic blocks.

¢ The head of a loop will be the start of a block.

» The programming language concept of "block stnicture” and the COMMON LISP block special form are
totally unrelated to the compiler’s basic block.

In other words, the true location lies between the printed location and the next conditional (but watch out because
the compiler may have changed the program on you.) '

5.6. Compiler Policy Control

The compilation policy specified by optimize declarations affects the behavior seen in the debugger. The
debug-info quality directly affects the debugger by controlling the amount of debugger information dumped.
Other optimization qualities have indirect but observable effects due to changes in the way compilation is done.

Unlike the other optimization qualities (which are compared in relative value to evaluate tradeoffs), the

THE DEBUGGER ' 61

debug-info optimizaton quality is directly translated to a level of debug information. This absolute
interpretation allows the user to count on a particular amount of debug information being available even when the
values of the other gualities are changed during compilation. These are the levels of debug information that
correspond to the values of the debug-info quality:

0 Only the function name and enough information to allow the stack to be parsed.

1 Level O plus all argument variables. Values will only be accessible if the argument variable is
never set and speed is not 3.

2 Level 1 plus all interned local variables, source location information, and lifetime information
that tells the debugger when arguments are available (even when speed is 3 or the argument is
set.} This is the default.

3 Level 2 plus all unintemed variables. In addition, lifetime analysis is disabled {even when
speed is 3), ensuring that all variable values are available at any known location within the
scope of the binding. This has a speed penalty in addition to the obvious space penalty.

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes from the
elimination of argument variable special-casing (see section 5.4.1.) Some degree of speed/debuggability tradeoff is
unavoidable, but the effect is not too drastic when debug-info is at least 2,

In addition 10 inline and notinline declarations, the relative values of the speed and space qualities also
change whether functions are inline expanded (see section 7.7.) If a function is inline expanded, then there will be
no frame to represent the call, and the arguments will be treated like any other local variable. Functions may also be
"semni-inline", in which case there is a frame to represent the call, but the call is to an optimized local version of the
function, not to the original functon,

5.7. Exiting Commands

These commands get you out of the debugger.

q Throw to top level.

restart [#] Invokes the ath restart case as displayed by the exror command. If n is not specified, the
available restart cases are reported.

go Calls cont inue on the condition given to debug. If there is no restart case named continue,
then an error is signaled.

abort Effectively calls abort on the condition given to debug. This is useful for popping debug

command loop levels or aborting to top level, as the case may be.

5.8. Information Commands

Most of these commands print information about the current frame or function, but a few show general
information.

h Displays a synopsis of debugger commands.
P Displays the current function call as it would be displayed by moving to this frame.
PP Displays the current function call using *print-level* and *print-length#* instead of

debug-print-level and *debug-print-length*.
error ' Prints the condition given to invoke-debugger and the active proceed cases.

backtrace (nl - Displays all the frames from the current to the bottom. Only shows n frames if specified. The
printing is controlled by *debug-print -level* and *debug-print-length*.

62 : CMU COMMON LISP USER'S GUIDE

5.9. Specials
These are the special variables that control the debugger action.

extensions:*debug-print-level* [Variable]

extensions:*debug-print-length* (Variable]
print-level and *print-length* are bound to these values during the execution of some
debug commands. When evaluating arbitrary expressions in the debugger, the normal values of
print-level and *print-length#* are in effect. These variables are initially set to 3 and 5,
respectively.

5.10. Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are called. Options
allow conditional printing of the trace information and conditional breakpoints on function entry. Currently, tracing
of set £ functions is not supported.

trace &rest specs [Macro}
Invokes tracing on the specified functions, and pushes their names onto the global list in
traced-function-list. Each spec is either the name of a function, or the form
{(function-name
trace-option-name value
trace-option-name value

.)

If no specs are given, trace remuns the list of all -currently traced functions,
traced-function-list®.

If a function is traced with no options, then each time it is called, a single line containing the name of the
function, the arguments to the call, and the depth of the call will be printed on the stream
trace-output, After it retums, another line will be printed which contains the depth of the call and
all of the return values. The lines are indented to highlight the depth of the calls.

Trace options can cause the normal printout to be suppressed, or cause extra information to be printed.
Each traced function carries its own set of options which is independent of the options given for any other
function. Every time a function is specified in a cail to trace, all of the old options are discarded. The
available options are:

:condition A form to eval before before each call to the function. Trace printout will be
suppressed whenever the form retums nil.

:break A form to eval before each call to the function. If the form returns non nil, then a
breakpoint loop will be entered immediately before the function call.

:break-after Like :break, but the form is evaled and the break loop invoked after the function

call

:break-all A form which should be used as both the : break and the :break-after args.

:wherein A function name or a list of function names. Trace printout for the traced function
will only occur when it is called from within a call to one of the :wherein
functions.

print A list of forms which will be evaluated and printed whenever the function is called.

The values ar¢ printed one per line, and indented to match the other trace output.
This printout will be suppressed whenever the normal trace printout is suppressed.

THE DEBUGGER 63

:print-after Like :print except that the values of the forms are printed whenever the function
exits.

:print-all This is used as the combination of :print and :print-after.

untrace &rest function-names [Macro]
This macroe tums off tracing for the specified functions, and removes their names from
traced-function-list. If no function-names are given, then all currently traced functions are
untraced.

extensions:*traced-function-list* [Variable]
A list of function names maintained and used by trace, untrace, and untrace-all. This list
should contain the names of all functions currently being traced.

extensions:*trace-print-level* [Variable]

extensions:*trace-print-length* [Variable]
These variables control the values of *print-level* and *print-~length* when printing trace
output. The forms printed by the :print options are also affected. *trace-print-level* and
trace-print-length are initially set to nil. When nuil, the global values of
print-level and *print-length* are used.

extensions:*max-trace-indentation* [Variable]
The maximum number of spaces which should be used to indent trace printout. This variable is initially
set to 40,

5.10.1. Encapsulation Functions

The encapsulation functions provide a mechanism for intercepting the arguments and results of a function.
encapsulate changes the function definidon of a symbol, and saves it so that it can be restored later. The new
definition normally calls the original definition. The COMMON LISP £definition function always retumns the
original definition, stripping off any encapsulation. Currently, encapsulation of set £ functions is not supported.

The original definition of the symbol can be restored at any time by the unéncapsulate function.
encapsulate and unencapsulate allow a symbol to be multiply encapsulated in such.a way that different
encapsulations can be completely transparent to each other.

Each encapsulation has a type which may be an arbitrary lisp object. If a symbol has several encapsulations of
different types, then any one of them can be removed without affecting more recent ones. A symbol may have more
than one encapsuiation of the same type, but only the most recent one can be undone.

extensions:encapsulate symbol type body [Function]
Saves the current definition of symbol, and replaces it with a function which retums the result of
evaluating the form, body. Type is an arbitrary lisp object which is the type of encapsuiation.

When the new function is called, the following variables are bound for the evaluation of body:

extensions:argument-list
A list of the arguments to the function.
extensions:basic-definition
The unencapsulated definition of the function.
The unencapsulated definition may be called with the original arguments by including the form
(apply extensions:basic-definition extensions:argument-list)

64 o : CMU COMMON LISP USER'S GUIDE

encapsulate always retums symbol.

extensions:unencapsulate symbol type [Function]
Undoes symbol’s most recent encapsulation of type rype. Type is compared with eq, Encapsulations of
other types are left in place.

extensions:encapsulated-p symbol type {Function]

Returns t if symbol has an encapsulation of type rype. Rewrms nil otherwise. Type is compared with
eq,

Chapter 6

The Compiler

6.1. Introduction

This chapter contains information about the compiler that every CMU Common Lisp user should be familiar with.
Chapter 7 goes into greater depth, describing ways to use more advanced features.

The CMU Common Liép compiler (also known as Python) has many features that are seldom or never supported
by conventional Common Lisp compilers;

e Source level debugging of compiled code (see chapter 5.)
¢ Type error compiler warnings for type ermors detectable at compile time.
= Compiler error messages that provide a good indication of where the error appeared in the source.

e Full run-time checking of all potential type errors, with optimizaton of type checks to minimize the
cost.

* Scheme-like features such as proper tail recursion and extensive source-level optimization,

*» Advanced tuning and optimization features such as comprehensive efficiency notes, flow analysis, and
untagged number representations (see chapter 7.)

6.2. Calling the Compiler
Functions may be compiled using compile, compile-£ile, or compile-£from-stream.

compile name &optional definition [Function]
This function compiles the function whose name is name. If name is nil, the compiled function object
is returned. If definition is supplied, it should be a lambda expression that is to be compiled and then
placed in the function cell of name. As per the proposed X3J13 cleanup "compile-argument-problems”,
definition may also be an interpreted function.

The retum values are as per the proposed X3J13 cleanup "compiler-diagnostics”. The first value is the
function name or function object. The second value is nil if no compiler diagnostics were issued, and t
otherwise. The third value is nil if no compiler diagnostics otber than style wamings were issued. A
non-nil value indicates that there were "serious" compiler diagnostics issued, or that other conditions of
type error or warning (but not style-warning) were signalled during compilation.

65

66 _ : CMU COMMON LISP USER’S GUIDE

compile-£ile inpur-pathname &key :output-£file :error-file {Function]
:trace-file :error-output :load
:block-compile
The CMU Common Lisp compile-£ile is extended through the addition of several new keywords
and an additional interpretation of input-pathname:

input-pathname If this argument is a list of input files, rather than a single input pathname, then all the
source files are compiled into a single object file. In this case, the name of the first
file is used to determine the default output file names. This is especially useful in
combination with block-compile.

output-file This argument specifies the name of the output file. t gives the default name, nil
suppresses the output file.
error-file A listing of all the error output is directed to this file. If there are no errors, then no

error file is produced (and any existing error file is deleted.) € gives "name.erz"
(the default), and nil suppresses the output file.

error-output If £ (the default), then error output is sent to *error~cutput*. If a stream, then
output is sent to that stream instead. If nil, then error output is suppressed. Note
that this error output is in addition to (but the same as) the output placed in the
error-file.

trace-file If true, several of the intermediate representations (including annotated assembly
code) are dumped out to this file. t gives "name.trace". Trace output is off by
defanlt. See section 7.10.5.

load If true, load the resulting output file.

block-compile If true, then the file will be block compiled, resolving function references at compile
time. See section 7.6.5.

The remum values are as per the proposed X3J13 cleanup “compiler-diagnostics”. The first value from
compile-£ile is the truename of the output file, or nil if the file could not be created. The
interpretation of the second and third values is described above for compile,

extensions:compile-from-stream input-stream &key 'error-stream [Function)
:trace-stream
:block-compile
This function is similar (0 compile-£ile, but it takes all its arguments as streams. It reads Common
Lisp code from input-stream until end of file is reached, compiling into the current environment. This
function returns the same two values as the last two values of compile. No output files are produced.

6.3. Compilation Units

CMU Commeon Lisp supports the with-compilation-unit macro added to the language by the proposed
- X3J13 "with-compilation-unit” compiler cleanup. This provides a mechanism for eliminating spuricus undefined
wamings when there are forward references across files.

with-compilation-unit ({key value}*} {form}*) [Macrol
This macro evalnates the forms in an environment that causes warnings for undefined variables, functions
and types to be delayed until all the forms have been evaluated. Only one keyword option is recognized,
which is : force. Any unrecognized options will result in a waming.

If uses of with~compilaticon-unit are dynamically nested, the outermost use will take precedence,
effectively causing the inner uses to bg equivalent to progn. However, when the £oxrce option is true
this shadowing is inhibited; an inner use will print summary wamings for the compilations within the

THE COMPILER 67

inner scope.

Warnings about undefined vaniables, functions and types are delayed until the end of the current compilation unit.
The compiler entry functions (compile, etc.) implicitly use with-compilation—unit, so undefined wamings
will be printed at the end of the compilation uniess there is an enclosing with—compilation-unit. In order
the gain the benefit of this mechanism, you should wrap a single with-compilation=-unit around the calls to
compile-file, ie.:

{with~compilation-unit ()
{compile-file "filel")
{compile-£file "file2")

.e)

Unlike for functions and types, undefined wamings for variables are not suppressed when a definition {e.g.
defvar) appears after the reference (but in the same compilation unit.) This is because doing special declamtions
out of order just doesn’t work — afthough early references will be compiled as special, bindings will be done
lexically.

Undefined wamnings are printed with full source context (see section 6.4), which tremendously simplifies the
problem of finding undefined references that resulted from macroexpansion. After printing detailed information
about the undefined uses of each name, with-compilation-unit also prints summary listings of the names of
all the undefined functions, types and variables.

undefined-warning-limit [Variable]
This variable controls the number of undefined wamings for each distinct name that are printed with full
source context when the compilation unit ends. If there are more undefined references than this, then
they are condensed into a single waming:

Warning: count more uses of undefined function name.
When the value is 0, then the undefined wamings are not broken down by name at all: only the summary
listing of undefined names is printed.

6.4. Interpreting Error Messages

One of Python’s unique features is the level of source location information it provides in error messages. The
erTor messages contain a lot of detail in a terse format, to they may be confusing at first. Emor messages will be
illustrated using this example program:

{(defmacro zog (x)
*{rog (pleg (+ ,x 3))}))

(defun foo (y)
{declare (symbol y))
(zoq ¥))
The main problem with this program is that it is trying to add 3 to a symbol. Note also that the functions roq and
plog aren’t defined anywhere.

6.4.1. The Parts of the Error Message

The compiler will produce this waming:

68

CMU COMMON LISP USER'S GUIDE

File: /usr/me/stuff.lisp

In: DEFUN FOO

(Z0Q ¥)
--> ROQ PLOQ +
=>

Y

Warning: Result is a SYMBOL, not a NUMBER.
In this example we see each of the six possible parts of a compiler error message:

File: /usr/me/stuff.lisp

In: DEFUON FOO

(z0Q Y)

This is the file that the compiler read the relevant code from. The file name is displayed because
it may not be immediately obvious when there is an error during compilation of a large system,
especially when with-compilation-unit is used to delay undefined wamings.

This is the definition or top-level form responsible for the error. It is obtained by taking the first
two elements of the enclosing form whose first element is a symbol beginning with "DEF". If
there is no enclosing defmumble, then the outermost form is used. If there are muitiple
defmumbiles, then they are all printed from the out in, separated by =>’s. In this example, the
problem was in the defun for foo.

This is the original source form responsible for the error. Original source means that the form
directly appeared in the original input to the compiler, i.¢. in the lambda passed to compile or
the top-level form read from the source file. In this example, the expansion of the zoq macro
was responsible for the error.

--> ROQ PLOQ +

=> Y

This is the processing path that the compiler used to produce the errorful code. The processing
path is a representation of the evaluated forms enclosing the actual source that the compiler
encoutered when processing the original source. The path is the first element of each form, or
the form itself if the form is not a list. These forms result from the expansion of macros or
source-to-source transformation done by the compiler. In this example, the enclosing evaluated
forms are the calls 10 roqg, ploq and +. These calls resulted from the expansion of the zeq
Macro.

This is the acrual source responsible for the error. If the actmal source appears in the
explanation, then we print the next enclosing evaluated form, instead of printing the actual
source twice. (This is the form that would otherwise have been the last form of the processing
path.} In this example, the problem is with the evaluation of the reference to the variable y.

Warning: Result is a SYMBOL, not a NUMBER.

This is the explanation the problem. In this example, the problem is that y evaluates to a
symbol, but is in a context where a number is required (the argument to +).

Note that each part of the error message is distinctively marked:
sFile: and In: mark the file and definition, respectively.

e The original source is an indented form with no prefix.

» Each line of the processing path is prefixed with -->.

» The actual source form is indented like the original source, but is marked by a preced.mg ==> line. This
is like the "macroexpands to" notation used in Common L:sp The Language.

¢ The explanation is prefixed with the error severity (see section 6.4.4), either Exror:, Warning:, or

Note:.

Each part of the ertor message is more specific than the preceding one. If consecutive error messages are for
nearby locations, then the front part of the error messages would be the same. In this case, the compiler omits as
much of the second message as in common with the first. For example:

THE COMPILER 69

File: /usr/me/stuff lisp

In: DEFUN FOO
(ZOQ Y)

--> ROQ

=>

(PLOQ (+ Y 3))
Warning: Undefined function: PLOQ

==>
(ROQ (PLOQ (+ Y 3)})

Warning: Undefined function: ROQ
In this example, the file, definition and original source are identical for the two messages, so the compiler cmits
them in the second message. If consecutive messages are entirely identical, then the compiler prints only the first
message, followed by:

[Last message occurs repeals timesl]
where repeats is the number of times the message was given.

If the source was not from a file, then no file line is printed. If the actual source is the same as the original source,
then the processing path and actual source will be omitted. If no forms intervene between the original source and
the actual source, then the processing path will also be omitted.

6.4.2. The Original and Actual Source

The original source displayed will aimost always be a list. If the actual source for an error message is a symbol,
the original source will be the immediately enclosing evaluated list form. So even if the offending symbol does
appear in the original source, the compiler will print the enclosing list and then print the symbol as the actual source -
{as though the symbol were introduced by a macro.)

When the actual source is displayed (and is not a symbol), it will always be code that resulted from the expansion
of a macro or a source-to-source compiler optimization. This is code that did not appear in the original source
program; it was introduced by the compiler,

Keep in mind that when the compiler displays a source form in an error message, it always displays the most
specific (innermost) responsible form. For example, compiling this function:
(defun bar (x)
(let (a)
{declare (fixnum a))
{setg a (foo x))
a)}
Gives this error message:
In: DEFUN BAR
(LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)
Warning: The binding of A is not a FIXNUM:
NIL
This error message is not saying "there’s a problem somewhere in this 1et" -— it is saying that there is a problem
with the let itself. In this example, the problem is that a’s nil initial value is not a fixnum

6.4.3. The Processing Path

The processing path is mainly useful for debugging macros, so if you don’t write macros, you can ignore the
processing path. Consider this example:

70 CMU COMMON LISP USER'S GUIDE

(defun foo (n)
(detimes (i n *undefined*)))
Compiling results in this error message:
In: DEFUN FOO
(DOTIMES (I N *UNDEFINED*))
==> DO BLOCK LET TAGBODY RETURN-FROM
==>
(PROGN *UNDEFINED*)
Warning: Undefined variable: *UNDEFINED*
Note that do appears in the processing path. This is because dot ime s expands into:
(do ((i 0 (1+ i)) (#:91 n))}
((>= i #:g91) *undefinedx)
{declare (type unsigned-byte i)))
The rest of the processing path results from the expansion of do:
{block nil
(let ((i 0) (#:g92 n))
{declare (type unsigned-byte i))
{tagbody {(go #:g93)
#:92 {psetg i (1+ i))
#:93 {(unless (>= i #:gl1) (go #:g92))

{return-from nil (progn *undefined*)))))

In this example, the compiler descended into the block, let, tagbody and return-£rem 1o reach the progn
printed as the actual source. This is a place where the "actual source appears in explanation” rule was applied. The
innermost actual source form was the symbol *unde£ined™* itself, but that also appeared in the explanation, so the
compiler backed cut one level.

6.4.4. Error Severity

There are three levels of compiler error severity:

Error

Warning

Note

This severity is used when the compiler encounters a problem serious enough to prevent normal
processing of a form. Instead of compiling the form, the compiler compiles a call to exror.
Errors are used mainly for signalling syntax errors. If an error happens during macroexpansion,
the compiler will handle it. The compiler also handles and atternpts to proceed from read errors.

Wamnings are used when the compiler can prove that something bad will happen if a portion of
the program is executed, but the compiler can proceed by compiling code that signals an error at
mntime if the problem has not been fixed:

 Violation of type declamations, or
e Function cails that have the wrong number of arguments or malformed keyword
argument lists, or

» Referencing a variable declared ignore, or unrecognized declaration specifiers.

In the language of the COMMON LisSP standard, these are situations where the compiler can
determine that a situation with undefined consequences or that would cause an error to be
signalled would result at runtime.

Notes are used when there is something that seems a bit odd, but that might reasonably appear in
COITeCt programs.

Note that the compiler does not fully conform to the proposed X3I13 “compiler-diagnostics” cleanup. Errors,
wamnings and notes mostly correspond to errors, wamings and style-wamings, but many things that the cleanup
considers to be style-wamings are printed as wamings rather than notes. Also, wamings, style-wamings and most
errors aren’t really signalled using the condition system.)

THE COMPILER 71

6.4.5. Errors During Macroexpansion

The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you want
to debug the error (to debug a macro), you can set *break-on-signals* to errcor. For example, this
definition:

(defun foo {e 1)
(do ((current 1 {(cdr current))
((atom current) nil))
{when (eq (car current) e) (return current))))
gives this error:
In: DEFUN FOQOO

(DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)))
Error: (during macroexpansion)

Error in function LISP: :DO-DO-BODY.
DO step variable is not a symbol: (ATOM CURRENT)

6.4.6. Read Errors

The compiler also handles errors while reading the scurce. For example:
Error: Read error at 2:
"(, /\foo) "

Error in function LISP::COMMA-MACRO.

Comma not inside a backquote.
The "at 2" refers to the character position in the source file at which the error was signalled, which is generaily
immediately after the erroneous text. The next line, " (, /\£fo0) ", is the line in the source that contains the error
file position. The "/\" indicates the error position within that line (in this example, immediately after the offending
comma.)

When in Hemiock (or any other EMACS-like editor), you can go to a character position with
"M~-< C-u position C-£". Note that if the source is from a Hemiock buffer, then the position is relative to the
start of the compiled region or defun, not the file or buffer start.

After printing a read error message, the compiler attempts to recover from the error by backing up to the start of
the enclosing top-level form and reading again with *read-suppress* true. If the compiler can recover from
the error, then it substitutes a call to exrox for the unreadable form and proceeds to compile the rest of the file
normaily.

If there is a read error when the file position is at the end of the file (i.e., an unexpected EOF error), then the error

message looks like this:

Error: Read error in form starting at 14:

" (defun test ()"

Error in function LISP::FLUSH-WHITESPACE.

ECF while reading #<Stream for file "/usr/me/test.lisp">
In this case, "starting at 14" indicates the character position at which the compiler started reading, i.e. the
position before the start of the form that was missing the closing delimiter. The line " (defun test ()" is first
line after the starting position that the compiler thinks might contain the unmatched open delimiter.

6.4.7. Error Message Variables

These variables control the verbosity of emmor messages. See also *undefined-warning-limit#* (page
67), *efficiency-note-limit* and *efficiency-note~cost-threshold* (page 117).

72 CMU COMMON LISP USER’S GUIDE

enclosing-source-cutof£ [Variablel
This vanable specifies the number of enclosing actual source forms that are printed in full, rather than in
the abbreviated processing path format. Increasing the value from its default of 1 allows you to see more
of the guts of the macroexpanded source, which is useful when debugging macros.

error-print-length [Variable]

error-print-level [Variabie]
These variables are the print level and print length used in printing error messages. The default values are
5 and 3. If null, the global values of *print-level* and *print-length* are used.

*gource-context-take~car-£forms» [Variable}
When printing the definition part of an error message, this variable is used to determine whether to take
the car of the first subform if it is a list. The value is a list of the form names for which taking the car
is appropriate, initially defstruct and function.

6.5. Types in Python

A big difference between Python and all other Common Lisp compilers is the approach to type checking and
amount of knowledge about types:

¢ Python treats type declarations much differently that other Lisp compilers do. Python doesn’t blindly
believe type declarations; it considers them assertions about the program that should be checked.

s Python also has a tremendously greater knowledge of the COMMON LISP type system than other
compilers. Support is incomplete only for the not, and and satisfies types.

See also sections 7.2 and 7.3.

6.5.1. Compile Time Type Errors

If the compiler can prove at compile time that some portion of the program cannot be executed without a type
error, then it will give a warning at compile time. It is possible that the offending code would never actually be
executed at run-time due to some higher level consistency constraint unknown to the compiler, so a type warning
doesn’t always indicate an incorrect program. For example, consider this code fragment:

{(defun raz (foo)
(let ((x (case foo
{:this 13)
{:that 9)
{:the-other 42))))
{declare (fixnum x))
(foo x)))
Compilation produces this warning:
In: DEFUN RAZ
(CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))
~-> LET COND IF COND IF COND IF
= .
(COND)
Warning: This is not a FIXNUM:
NIL
In this case, the waming is telling you that if £oo isn’t any of :this, :that or :the-other, then x will be
initialized to nil, which the £ixnum declaration makes illegal. The waming will go away if ecase is used
instead of casa, or if : the-other is changed to t.

This sort of spuricus type waming happens moderately often in the expansion of complex macros and in inline

THE COMPILER 73

functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler can’t always
prove this code is dead (could never be executed), so it compiles the erronecus code (which will always signal an
error if it is executed) and gives a warning.

extensions:required-argument [Function]
This function can be used as the default value for keyword arguments that must always be supplied.
Since it is known by the compiler to never retum, it will avoid any compile-time type warnings that
would result from a default value inconsistent with the declared type. When this function is called, it
signals an error indicating that a required keyword argument was not supplied. This function is also
useful for defstruct slot defaults corresponding to required arguments. See also section 7.2.5.

Although this function is a CMU extension, it is relatively barmless to use it in otherwise portable code,
since you can easily define it yourself:

(defun required-argument ()
(error "A required keyword argument was not supplied."})

Type wamings are inhibited when the extensions:inhibit-warnings optimization quality is 3 (see
section 6,7.) This can be used in a local declaration to inhibit type wamings in a code fragment that has spurious
wamings.

6.5.2. Precise Type Checking

With the default compilation policy, all type assertions* are precisely checked. Precise checking means that the
check is done as though typep had been called with the exact type specifier that appeared in the declaration. In
Python uses policy to determine whether to trust type assertions (see section 6.7). Type assertions from declarations
are indistinguishable from the type assertions on arguments to built-in functions. In Python, adding type
declarations makes code safer,

If a variable is declared to be (integer 3 17), then its value must always always be an integer between 3
and 17. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as
though all the types were intersected producing a single and type specifier.

Argument type declarations are automatically enforced. If you declare the type of a function argument, a type
check will be done when that function is called. In a function call, the called function does the argument type
checking, which means that a more restrictive type assertion in the calling function (2.g., from the) may be lost.

The types of structure slots are also checked. The value of a structure slot must aiways be of the type indicated in
any :type slot option.> Because of precise type checking, the arguments to slot accessors are checked to be the
correct type of structure.

In traditional Common Lisp compilers, not all type assertions are checked, and type checks are not precise.
Traditional compilers blindly trust explicit type declarations, but may check the argument type assertions for built-in
functions. Type checking is not precise, since the argument type checks will be for the most general type legal for
that argument. In many systems, type declarations suppress what little type checking is being done, so adding type
declarations makes code unsafe. This is a2 problem since it discourages writing type declarations during initial
coding. In addition to being more error prone, adding type declarations during tuming also loses all the benefits of

“There are a few circumstances where a type declaration is discarded rather than being used as type assertion. This doesn't affect safety much,
since such discarded declarations are also not belicved 10 be true by the compiler.

The initial value need not be of this type as long as the comresponding argument to the constructor is always supplied, but this will cause a
compile-time type warning unless required-argument is used.

74 ’ CMU COMMON LISP USER'S GUIDE

debugging with checked type assertions.

To gain maximum benefit from Python 8 type checking, you should always declare the types of function
arguments and structure slots as precisely as possible. This often involves the use of or, member and other
list-style type specifiers. Paradoxically, even though adding type declarations introduces type checks, it usually
reduces the overall amount of type checking. This is especially true for structure slot type declarations.

Python uses the safety optimization quality (rather than presence or absence of declarations) to choose one of
three levels of run-time type error checking: see section 6.7.1. See also section 7.2 for more information about types
_ inPython.

6.5.3. Weakened Type Checking

When the value for the speed optimization quality is greater than safety, and safety is not 0, then type
checking is weakened to reduce the speed and space penalty. In structure-intensive code this can double the speed,
yet stil caich most type errors. Weakened type checks prov1de a level of safety similar to that of "safe” code in
other Common Lisp compilers.

A type check is weakened by changing the check to be for some convenient supertype of the asserted type. For
example, (integer 3 17) is changed to fixnum (simple-vector 17) 10 simple-vector, and
structure types are changed to structure. A complex check like:

(or node hunk (member :foo :bar :baz))
will be omitted entirely (i.e., the check is weakened to *) Ifa preclse check can be done for no extra cost, then no
weakening is done.

Although weakened type checking is similar to type checking done by other compilers, it is sometimes safer and
sometimes less safe. Weakened checks are done in the same places is precise checks, so all the preceding discussion
about where checking is done still applies. Weakened checking is sometimes somewhat unsafe because although the
check is weakened, the precise type is still input into type inference. In some contexts this will result in type
inferences not justified by the weakened check, and hence deletdon of some type checks that would be done by
conventional compilers.

For example, if this code was compiled with weakened checks:

{defstruct foo
{a nil :type simple-string))

(defstruct bar
{2 nil :type single-£float))

{defun myfun (x)
(declare (type bar x))
(* (bar-a x) 3.0))
and myfun was passed a f£oo, then no type ermor would be signalled, and we would try to multiply a
simple-vectox as though it were a float (with unpredictable results.) This is because the check for bar was
weakened to st ructure, yet when compiling the call to bar-a, the compiler thinks it knows it has a bar. '

Note that nommally even weakened type checks report the precise type in error messages. For example, if
myfun’s bar check is weakened to st ructure, and the argument is nil, then the error will be:

Type-error in MYFUN:
NIL is not of type BAR

However, there is some speed and space cost for signalling a precise error, so the weakened type is reported if the
apeed optimization quality is 3 or debug-info quality is less than 1.

THE COMPILER 75

Type-error in MYFUN:
NIL is not of type STRUCTURE

See section 6.7.1 for further discussion of the opt imi ze declaration.

6.6. Getting Existing Programs to Run

Since Python does much more comprehensive type checking than other Lisp compilers, Python will detect type
errors in many programs that have been debugged using other compilers. These errors are mostly incorrect
declarations, although compile-time type errors can find actual bugs if parts of the program have never been tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important to initially
compile programs with full type checks and then test this version. After the checking version has been tested, then
you can consider weakened type checks or no checking. This applies even to previously debugged programs.
Python does much more type inference than other Common Lisp compilers, so believing an incorrect declaration
does much more damage,

The most common problem is with variables whose initial value doesn’t match the type declaration. Incorrect
initial values will always be flagged by a compile-time type error, and they are simple to fix once located. Consider
this code fragment:

(prog (foo)
(declare (fixnum £foo))
(setg foo ...)
-}
Here the vanable £oo is given an initial value of nil, but is declared to be a £ixnum Even if it is never read, the
initial value of a variable must match the declared type. There are two ways to fix this problem. Change the
declaration:
(prog (£foo)
(declare (type (or fixnum null) foo})
{setq foo ...}
.ol
or change the initial value:
(prog ((foo 0))
(declare (fixnum £co0))
(setq foo ...)
]
It is generally preferable to change to a legal initial value rather than to weaken the declaration, but sometimes it is
simpler to weaken the declaration than to try to make an initial value of the appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on defmacro arguments. This
probably usually happens when a function is converted into a macro. Consider this macro:
(defmacro my-1+ (x)
(declare (fixnum X))
*(the fixnum (1+ ,x)))
Although legal and well-defined COMMON LISP, this meaning of this definition is almost certainly not what the
writer intended. For example, this call is illegal:
(my-1+ (+ 4 5))
The call is illegal because the argument to the macrois (+ 4 5), which is a 1ist, not a fixnum Because of
macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want to assert
something about the type of the result of evaluating a macro argument, then put a the in the expansion:
(defmacro my-1+ (x)
‘(the fixnum (1+ (the fixnum ,x))))

76 CMU COMMON-LISP USER'S GUIDE

In this case, it would be stylistically preferable to change this macro back to a function and declare it inline. Macros
have no efficiency advantage over inline functions when using Python. See section 7.7.

Some more subtle problems are caused by incorrect declarations that can’t be detected at compile time. Consider
this code:
(do ((pos Q0 (position #\a string ;start (1+ pos))))
{ (null pes))

(declare (fixnum pos))

|
Although pos is almost always a £ixnum, it is nil at the end of the loop. If this example is compiled with full
type checks (the default), then running it will signal a type error at the end of the loop. If compiled without type
checks, the program will go into an infinite loop (or perhaps position will complain because (1+ nil) isn'ta
sensible start.) Why? Because if you compile without type checks, the compiler just quietly believes the type
declaration. Since pos is always a £ixnum, it is never nil, 50 (null pos) is never true, and the loop exit test
is optimized away. Such errors are sometimes flagged by unreachable code notes (section 7.4.5), but it is stiil
important to initially compile any system with full type checks, even if the system works fine when compiled using
other compilers.

In this case, the fix is to weaken the type declaration to (or €ixnum null).® Note that there is usually little
performance penalty for weakening a declaration in this way. Any numeric operations in the body can still assume
the variable is a £ixnum, since nil is not a legal numeric argument. Another possible fix would be to say:

(do ((pes 0 {(position #\a string :start {1+ pos}))))
({(null pos))
{let ((pos pos))
(declare (fixnum pos))
o))
This would be preferable in some circumstances, since it would allow a non-standard representation to be used for
the local pos variable in the 1oop body (see section 7.9.3.)

In summary, remember that alf values that a variable ever has must be of the declared type, and that you should
test using safe code initially.

6.7. Compiler Policy

The policy is what tells the compiler how to compile a program. This is logically (and often textually) distinct
from the program itself. Broad control of policy is provided by the optimize declaration; other declarations and
variables control more specific aspects of compiiation.

6.7.1. The Optimize Declaration

The optimize declaration recognizes six different qualities. The qualities are conceptually independent aspects
of program performance. In reality, increasing one quality tends to have adverse effects on other qualities. The
compiler compares the relative values of qualities when it needs to make a trade-off; i.e., if speed is greater than
safety, then improve speed at the cost of safety.

The default for all qualities (except debug-in£o) is 1. Whenever qualities are equal, ties are broken according
to a broad idea of what a good default environment is supposed to be. Generally this downplays speed,
compile-speed and space in favor of safety and debug-info., Novice and casual users should stick to

SActually, this declaration is totally unnecessary in Python, since it already knows position retums a non-negative £ixnum or nil.

THE COMPILER 77

the default policy. Advanced users often want to improve speed and memory usage at the cost of safety and
debuggability.

if the value for a quality is O or 3, then it may have a special interpretation. A value of 0 means "totally
unimportant”, and a 3 means "ultimately important.” These extreme optimization values enable “heroic"
compilation strategies that are not always desirable and sometimes self-defeating. Specifying more than one quality
as 3 is not desirable, since it doesn’t tell the compiler which quality is most important.

These are the optimization qualities:

speed How fast the program should is run. speed 3 enables some optimizations that hurt
debuggability.

compilation-speed
How fast the compiler should run. Note that increasing this above safety weakens type
checking.

space How much space the compiled code should take up. Inline expansion is mostly inhibited when
space is greater than speed. A value of 0 enables promiscuous inline expansion. Wide use
of a 0 value is not recommended, as it may waste so much space that run time is slowed. See
section 7.7 for a discussion of inline expansion.

debug-info How debuggable the program should be. The quality is treated differently from the other
qualities: each value indicates a particular level of debugger information; it is not compared with
the other qualities. See section 5.6 for more details.

safety How much error checking should be done. If speed, space or compilation-speed is
more important than safety, then type checking is weakened (see section 6.5.3). If safety
if 0, then no run time error checking is done. In addition to suppressing type checks, 0 also

‘ suppresses argument count checking, unbound-symbol checking and array bounds checks.

extensions:inhibit-warnings
This is a CMU extension that determines how little (or how much) diagnostic output should be
printed during compilation. This quality is compared to other qualities to determine whether to
print style ootes and wamings concemning those qualities. If speed is greater than
inhibit-warnings, then notes about how to improve speed will be printed, etc. The
default value is 1, so raising the value for any standard quality above its default enables notes
for that quality. If inhibit~wazrnings is 3, then all notes and most non-serious warnings
are inhibited. This is useful with declare to suppress warnings about unavoidable problems.

| 6.8. Open Coding and Inline Expansion

Since COMMON LIsP forbids the redefinition of standard functions’, the compiler can have special knowledge of
these standard functions embedded in it. This special knowledge is used in various ways (open coding, inline
expansion, source transformation}, but the implications to the user are basicaily the same:

*» Attempts to redefine standard functions may be frustrated, since the function may never be called.
Although it is technicaily illegal to redefine standard functions, users sometimes want to implicitly

redefine these functions when they are debugging using the trace macro. Special-casing of standard
functions can be inhibited using the notinline declaration.

¢ The compiler can have multiple altemate implementations of standard functions that implement
different trade-offs of speed, space and safety. This selection is based on the compiler policy, see
section 6.7.

When a function call is open coded, inline code whose effect is equivalent to the function call is substituted for

Sec the proposed X3113 “lisp-symbol-redefinition” cleanup,

78 CMU COMMON LISP USER'S GUIDE

that function call. When a function call is closed coded, it is usually left as is, aithough it might be tumed into a call
to a different function with different arguments. As an example, if nthcdx were to be open coded, then

(nthedr 4 foobar)
might turn into

(cdr {(cdr (cdr (cdr foobar))))
oreven

(do ((i O (1+ i))

{List foobar (cdr foobar)))
((= i 4) list))

If nth is closed coded, then
{nth = 1)
might stay the same, or tum into something like:
{car (nthedr x 1))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple that they are
always apen-coded. Even when not open-coded, a call to a standard function may be transformed into 2 different
function call (as in the last example) or compiled as static call. Static function call uses a more efficient calling
convention that forbids redefinition.

Chapter 7

Advanced Compiler Use and Efficiency Hints

By Rob Maclachian

7.1. Introduction

In CMU Common Lisp, as is any language on any computer, the path to efficient code starts with good algorithms
and sensible programming techniques, but to avoid inefficiency pitfalls, you need to know some of this
implementation’s quirks and features, This chapter is mostly a fairly long and detailed overview of what
optimizations Python does. Although there are the usual negative suggestions of inefficient features to avoid, the
main emphasis is on describing the things that programmers can count on being efficient.

The optimizations described here can have the effect of speeding up existing programs written in conventional
styles, but the potential for new programming styles that are clearer and less error-prone is at least as significant.
For this reason, several sections end with a discussion of the implications of these optimizations for programming
style.

7.1.1. Types

Python’s support for t)}pes is unusual in three major ways:
* Precise type checking encourages the specific use of type declarations as a form of run-time consistency
checking. This speeds development by localizing type errors and giving more meaningful error

messages. See section 6.5.2. Python produces completely safe code; optimized type checking
maintains reasonable efficiency on conventional hardware (see section 7.3.6.)

» Comprehensive support for the COMMON LISP type system makes complex type specifiers useful.
Using type specifiers such as or and member has both efficiency and robusmess advantages. See
section 7.2.

* Type inference eliminates the need for some declarations, and also aids compile-time detection of type
errors. Given detailed type declarations, type inference can often eliminate type checks and enabie
more efficient object representations and code sequences. Checking all types results in fewer type
checks. See sections 7.3 and 7.9.2.

7.1.2. Optimization

The main barrier to efficient Lisp programs is not that there is no efficient way to code the program in Lisp, but
that it is difficult to arrive at that efficient coding. Common Lisp is a highly complex language, and usually has
many semantically equivalent "reasonable” ways to code a given problem. Tt is desirable to make all of these

79

80 CMU COMMON LISP USER’S GUIDE

equivalent solutions have comparable efficiency so that programmers don’t have to waste time discovering the most
efficient solution.

Source level cptimization increases the number of efficient ways to solve a problem. This effect is much larger
than the increase in the efficiency of the "best” solution. Source level optimization transforms the original program
inte a more efficient (but equivalent) program. Although the optimizer isn’t deing anything the programmer
couldn’t have done, this high-level optimization is important because:

¢ The programmer can code simply and directly, rather than obfuscating code to please the compiler.
» When presented with a choice of similar coding alternatives, the programmer can chose whichever
happens to be most convenient, instead of worrying about which is most efficient.
Source level optimization eliminates the need for macros to optimize their expansion, and also increases the
- effectiveness of inline expansion. See sections 7.4 and 7.7.

Efficient support for a safer programming style is the biggest advantage of source level optimization. Existing
tuned programs typically won't benefit much from source optimization, since their source has already been
optimized by hand. However, even tuned programs tend to run faster under Python because:

* Low level optimization and register allocation provides modest speedups in any program.

¢ Block compilation and inline expansion can reduce function call overhead, but may require some
program restructuring. See sections 7.7 and 7.6

¢ Efficiency notes will point out important type declarations that are often missed even in highly tuned
programs. See section 7.11.

» Existing programs can be compiled safely without prohibitive speed penalty, although they would be
faster and safer with added declarations. See section 7.3.6.

7.1.3. Function Call

The sort of symbolic programs generally written in Common Lisp often favor recursion over iteration, or have
inner loops so complex that they invoive multiple function calls. Such programs spend a larger fraction of their ime
doing function calls than is the nomm in other languages; for this reason Common Lisp implementations strive to
make the general (or full) function call as inexpensive as possible. Python goes beyond this by providing two good
alternatives to full call:

» Local call resolves function references at compile time, allowing better calling sequences and
optimization across function calls. See section 7.6.

 Inline expansion totally eliminates call overhead and allows many context dependent optimizations.
This provides a safe and efficient implementation of operations with function semantics, eliminating the
need for error-prone macro definitions or manual case analysis. Although most COMMON LIsP
implementations support inline expansion, it becomes a more powerful tool with Python’s source level
optimization. See sections 7.4 and 7.7.

Generally, Python provides simple implementations for simple uses of function call, rather than having only a
single calling convention. These features allow a more natural programming style:

» Proper tail recursion. See section 7.5
s Relatively efficient closures.
s A funcall that is as efficient as normal named call.

o Calls to locat functions such as from labela are optimized:
+ Control transfer is a direct jump.

* The closure environment is passed in registers rather than heap allocated.

*» Keyword arguments and multiple values are implemented more efficiently.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 81

See section 7.6.

7.1.4. Object Representation

Sometimes traditional Common Lisp implementation techniques compare so poorly to the techniques used in
other languages that Common Lisp can become an impractical language choice. Termible inefficiencies appear in
number-crunching programs, since Common Lisp numeric operations often involve number-consing and generic
arithmetic. Python supports efficient natural representations for oumbers (and some other types), and allows these
efficient representations to be used in more contexts. Python also provides good efficiency notes that wam when a
crucial declaration is missing.

See section 7.9.2 for more about object representations and numeric types. Also see section 7.11 about efficiency
notes.

7.1.5, Writing Efficient Code
Writing efficient code that works is a complex and prolonged process. It is important not to get so involved in the
pursuit of efficiency that you lose sight of what the original problem demands. Remember that:
¢ The program shouid be commect — it doesn’t matter how quickly you get the wrong answer,

* Both the programmer and the user will make errors, so the program must be robust — it must detect
errors in a way that allows easy correction.

» A small portion of the program will consume most of the resources, with the bulk of the code being
virtually irrelevant to efficiency considerations. Even experienced programmers familiar with the
problem area cannot reliably predict where these "hot spots" will be.,

The best way to get efficient code that is still worth using, is to separate coding from tuning. During coding, you
should:

» Use a coding style that aids correctness and robustness without being incompatible with efficiency.

» Choose appropriate data structures that allow efficient algorithms and object representations (see
section 7.8). Try to make interfaces abstract enough so that you can change to a different representation
if profiling reveals a need.

» Whenever you make an assumption about a function argument or global data structure, add consistency
assertions, either with type declarations or explicit uses of assert, ecasae, etc,

During tuning, you should: '
» Identify the hot spots in the program through profiling (section 7.12.)

* Identify inefficient constructs in the hot spot with efficiency notes, more profiling, or manual inspection
of the source. See sections 7.10 and 7.11.

* Add declarations and consider the application of optimizations. See¢ sections 7.6, 7.7 and 7.9.2.

« If all else fails, consider algorithm or data structure changes. If you did a good job coding, changes will
be easy to introduce.

7.2. More About Types in Python

This section goes into more detail describing what types and declarations are recognized by Python. The area
where Python differs most radically from previous Common Lisp compilers is in its support for types:

e Precise type checking helps to find bugs at run time.
» Compile-time type checking helps to find bugs at compile time.

* Type inference minimizes the need for generic operations, and also increases the efficiency of run time

82 CMU COMMON LISP USER'S GUIDE

type checking and the effectiveness of compile time type checking.

s Support for detailed types provides a wealth of opportunity for operation-specific type inference and
optmization.

7.2.1. More Types Meaningful

CoOMMON LISP has a very powerful type system, but conventional Common Lisp implementations typically only
recognize the small set of types special in that implementation. In these systems, there is an unfortunate paradox: a
declaration for a relatively general type like fixnum will be recognized by the compiler, but a highly specific
declaration such as (integer 3 17) is totally ignored.

This is obviously a problem, since the user has to know how to specify the type of an object in the way the
compiler wants it. A very minimal (but rarely satisfied) criterion for type system support is that it be no worse to
make a specific declaration than to make a general one. Python goes beyond this by exploiting a number of
advantages obtained from detailed type information.

Using more restrictive types in declarations allows the compiler to do better type inference and more compile-
time type checking. Also, when type declarations are considered to be consistency assertions that should be verified
{conditional on policy), then complex types are useful for making more detailed assertions.

Python "understands” the list-style oz, member, function, array and number type specifiers. Understanding
means that:

s If the type contains more information than is used in a particular context, then the extra information is
simply ignored, rather than derailing type inference.

« In many contexts, the extra information from these type specifier is used to good effect. In particular,
type checking in Python is precise, so these complex types can be used in declarations to make
interesting assertions about functions and data structures (see section 6.3.2.) More specific declarations
also aid type inference and reduce the cost for type checking.

For related information, see section 7.9 for numeric types, and section 7.8.3 for array types.

7.2.2. Canonicalization

When given a type specifier, Python will often rewrite it into a different (but equivalent) type. This is the
mechanism that Python uses for detecting type equivalence. For example, in Python’s canonical representation,
these types are equivalent:

{or list (member :end)) <==> (or cons {(member nil :end))
This has two implications for the user:
= The standard symbol type specifiers for atom, null, £ixnum, etc., are in no way magical. The null
type is actually defined to be (member nil), list is (or cons null), and fixnum is
(signed-byte 30}.
s When the compiler prints cut a type, it may not look like the type specifier that originally appeared in
. the program. This is generally not a problem, but it must be taken into consideration when reading
compiler error messages.

7.2.3. Member Types

The member type specifier can be used to represent "symbolic” values, analogous to the enumerated types of
Pascal. For exampie, the second value of £ind-symbel has this type:
(member :internal :external :inherited nil)
Member types are very useful for expressing consistency constraints on data structures, for example:

(defstruct ice-cream
{(flavor :vanilla :type (member :vanilla :chocolate :strawberry)})

ADVANCED COMPILER USE AND EFFICIENCY HINTS 83

~ Member types are also useful in type inference, as the number of members can sometitmes be pared down to one, in
which case the value is a known constant.

7.2.4. Union Types

The ox (union) type specifier is understood, and is meaningfully applied in many contexts. The use of or allows
assertions to be made about types in dynamically typed programs. For example:
(defstruct box
(next nil :type {(or box null))
(top :removed :type (or box-top (member :removed)))) :
The type assertion on the top slot ensures that an error will be signalled when there is an attempt to store an illegal
value (such as : rmoved.) Although somewhat weak, these union type assertions provide a useful input into type
inference, allowing the cost of type checking to be reduced. For example, this loop is safely compiled with no type
checks:
{defun find-box-with-top (box)
(declare (type (or box null) box))
(do ((current box (box-next current)})
{ (null current))
(unless (eq {(box-top current) :removed)
{return current))))

Union types are also useful in type inference for representing types that are partially constrained. For example,
the result of this expression:
(1Lf foo
{logior x y)
{list x vy))
can be expressed as (or integer cons).

7.2.5. The Empty Type

The type nil is also called the empty type, since no object is of type nil. The union of no types, (ok), is also
empty. Python’s interpretation of an expression whose type is nil is that the expression never yields any value, but
rather fails to terminate, or is thrown out of. For example, the type of a call to error or a use of ceturn is nil.
When the type of an expression is empty, compile-time type wamnings about its value are suppressed; presumably
somebody else is signalling an error. See also the function required-argument (page 73).

7.2.6. Function Types

function types are understood in the restrictive sense, specifying:

¢ The argument syntax that the function must be called with. This is information about what argument
counts are acceptiable, and which keyword arguments are recognized. In Python, wamings about
argument syntax are a consequence of function type checking.

* The types of the argument values that the caller must pass. If the compiler can prove that some
argument to a call is of a type disallowed by the called function’s type, then it will give a compile-time
type waming. In addition to being used for compile-time type checking, these type assertions are also
used as output type assertions in code generation. For example, if £oo is declared to have a £ixnum
argument, then the 1+ in (foo (14 x)) is compiled with knowledge that the result must be a
fixnum,

¢ The types the values that will be bound to argument variables in the function’s definition. Declaring a
function’s type with ftype implicitly declares the types of the arguments in the definition. Python
checks for consistency between the definition and the £type declaration. Because of precise type
checking, an error will be signalled when a function is called with an argument of the wrong type.

84 CMU COMMON LISP USER'S GUIDE

» The type of returmn value(s) that the caller can expect. This information is a useful input to type
inference. For example, if a function is declared to retum a £ixnum, then when a call to that function
appears in an expression, the expression will be compiled with knowledge that the call will return a
fixnum

¢ The type of remm value(s) that the definition must reum. The result type in an £ftype declaration is

treated like an implicit the wrapped around the body of the definition. If the definition retums a value

of the wrong type, an error will be signalled. If the compiler can prove that the function retums the

wrong type, then it will give a compile-time waming.
This is consistent with the new interpretation of function types and the ftype declaration in the proposed X3J13
"function-type-argument-type-semantics” cleanup. Note also, that if you don’t explicitly declare the type of a
function using a global £type declaration, then Python will compute a function type from the definition, providing
a degree of inter-routine type inference, see section 7.3.3.

7.2.7. The Values Declaration

CMU Commen Lisp supports the values declaration as an extension to COMMON Lisp, The syntax is
(values fypel typeZ ... typen). This declaration is semantically equivalent to a the form wrapped around
the body of the special form in which the values declaration appears. The advantage of values over the is that
is purely syntactic — it doesn’t introduce more indentation. For example:

(defun foo (x}
{declare {(values single-flcat))

(ecase x
(:this ...)
{«that ...)
{:the-other ...)))
is equivalent to:

(defun foo (x)
{the single-float

{ecase x
(:this ...)
(:that ...)
(:the-other ...})))
and 7
(defun floor {(number &opticnal (divisor 1))
(declare (values integer real))
-)
is equivalent to:

{(defun floor (number &opticnal (divisor 1))
{the (values integer real)
ced))
In addition to being recognized by lambda (and hence by defun), the values declaration is recognized by all
the: other special forms with bodies and declarations: let, let*, labels and £flet. Macros with declarations
usually splice the declarations into one of the above forms, so they will accept this declaration too, but the exact
effect of a values declaration will depend on the macro.

If you declare the types of all arguments to a function, and also declare the return value types with values, you
ave described the type of the function. Python will use this argument and result type information to derive a
funiction type that will then be applied to calls of the function (see section 7.2.6.) This provides a way to declare the
types of functions that is much less syntactically awkward than using the £type declaration with a function

type specifier.

Although the values declaration is non-standard, it is relatively harmless to use it in otherwise portable code,
since any waming in non-CMU implemeniations can be suppressed with the standard declazation

ADVANCED COMPILER USE AND EFFICIENCY HINTS 85

proclamation.

7.2.8. Structure Types

Because of precise type checking, structure types are much better supported by Python than by conventional
compilers: '
* The structure argument to structure accessors is precisely checked — if you call foo-a on a bar, an
error will be signalled.

* The types of slot values are precisely checked — if you pass the wrong type argument to a constructor
or a slot setter, then an error will be signalled.

- This error checking is tremendously useful for detecting bugs in programs that manipuiate complex data structures.

An additional advantage of checking structure types and enforcing slot types is that the compiler can safely
believe slot type declarations. Python effectively moves the type checking from the slot access to the slot setter or
constructor call. This is more efficient since caller of the setter or constructor often knows the type of the value,
entirely eliminating the need to check the value’s type. Consider this example:

(defstruct ccordinate '
(x nil :type single-float)
{(y nil :type single-float))

{defun make-it ()
(make-coordinate 1.0 1.0))

(defun use-it (it)

{(declare (type coordinate it))

(sgrt (expt (coordinate-x it) 2) (expt (coordinate-y it) 2)))
make-it and use-it are compiled with no checking on the types of the float slots, yet use-it can use
single-£float arithmetic with perfect safety. Note that make-coordinate must still check the values of x
and y unless the call is block compiled or inline expanded (see section 7.6.) But even without this advantage, it is
almost always more efficient to check slot values on structure initialization, since slots are usually written once and
read many times.

7.2.9. The Freeze-Type Declaration

The extensions:freeze-type declaration is a CMU extension that enables more efficient compilation of
user-defined types by asserting that the definition is not going to change. This declaration may only be used
globally (with declaim or proclaim). Currently £reeze-type only affects structure type testing done by
typep, typecase, etc. Here is an example:

(declaim (freeze-type foo bar))
This assents that the types £oo and bar and their subtypes are not going to change. This allows more efficient type
testing, since the compiler can open-code a test for all possible subtypes, rather than having to examine the type
hierarchy at run-time.

7.2.10. Type Restrictions

Avoid use of the and, not and satisfies types in declarations, since type inference has problems with them.
When these types do appear in a declaration, they are still checked precisely, but the type information is of limited
use to the compiler. and types are effective as long as the intersection can be canonicalized to a type that doesn’t
use and. For example: '

(and fixnum unsigned-byte) '
is fine, since it is the same as:
{integer 0 mosi-positive-fixnum)

86 ’ CMU COMMON LISP USER’S GUIDE

but this type:
(and symbol (not {(member :end)}))
will not be fully understood by type interference since the and can’t be removed by canonicalization.

Using any of these type specifiers in a type test with typep or typecase is fine, since as tests, these types can
be translated into the and macro, the not function or a call to the satisfies predicate.

7.2.11. Style Recommendations

Python provides good suppert for some currently unconventional ways of using the COMMON LISP type system.
With Python, it is desirable to make declarations as precise as possible, but type inference also makes some
declarations unnecessary. Here are some general guidelines for maximum robustness and efficiency:

e Declare the types of all function arguments and structure slots as precisely as possible (while avoiding

not, and and satisfies). Putin these declarations during initial coding so that type assertions can
find bugs for you during debugging.

¢ Use the member type specifier where there are a small number of possible symbol values, for example:
(member :red :blue :green),

o Use the or type specifier in situations where the type is not certain, but there are only a few
possibilities, for example: (or list vector).

s Declare integer types with the tightest bounds that you can, such as (integer 3 7).

¢ Define deftype or defstruct types before they are used. Definition after use is legal (producing
no "undefined type" warnings), but type tests and structure operations will be compiled much less
efficiently. '

« In addition to declaring the array element type and simpleness, also declare the dimensions if they are
fixed, for example:
{simple—array single-flcoat (1024 1024))
This bounds information allows array indexing for multi-dimensional arrays to be compiled much more
efficiently, and may also allow array bounds checking to be done at compile time. See section 7.8.3.

» Avoid use of the the declaration within expressions. Not only does it clutter the code, but it is also
almost worthless under safe policies. If the need for an output type assertion is revealed by efficiency
notes during tuning, then you can consider the, but it is preferable to constrain the argument types
more, allowing the compiler to prove the desired result type.

« Don’t bother declaring the type of Let or other non-argument variables unless the type is non-obvious.
If you declare function retumn types and structure slot types, then the type of a variable is often obvious
both to the programmer and to the compiler. An important case where the type isn’t obvious, and a
declaration is appropriate, is when the value for a variable is pulled out of untyped structure (e.g., the
result of car), or comes from some weakly typed function, such as read.

» Declarations are sometimes necessary for integer loop variables, since the compiler can’t always prove
that the value is of a good integer type. These declarations are best added during tuning, when an
efficiency note indicates the need.

7.3. Type Inference

Type inference is the process by which the compiler tries to figure out the types of expressions and variables,
given an inevitable lack of complete type information. Although Python does much more type inference than most
Common Lisp compilers, remember that the more precise and comprehensive type declarations are, the more type
inference will be able to do.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 87

7.3.1. Variable Type Inference

The type of a variable is the union of the types of all the definitions. In the degenerate case of a let, the type of
the variable is the type of the initial value. This inferred type is intersected with any declared type, and is then
propagated to all the variable’s references. The types of multiple-value-bind variables are similary inferred
from the types of the individual values of the values form,

If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as though all
the types were intersected producing a single and type specifier. In this example:
(defmacro my-dotimes ((var count) &body body)
*{de ({,var 0 (1+ ,var)))
({>= ,var ,count))
(declare (type (integer 0 *) ,var))
I @deY))

(my~-dotimes (i ...)
(declare (fixnum i))
-)
the two declaratons for i are intersected, so i is known to be a non-negative fixnum,

In practice, this type inference is limited to lets and local functions, since the compiler can’t analyze ail the calls
to a global function. But type inference works well enough on local variables so that it is often unnecessary to
declare the type of local variables. This is especially likely when function result types and structure slot types are
declared. The main areas where type inference breaks down are: '

¢ When the initial value of a variable is a untyped expression, such as {car x), and

s When the type of one of the variable’s definitions is a function of the variable’s current value, as in:
{setqg x (l1+ x))

7.3.2. Local Function Type Inference

The types of arguments to local functions are inferred in the same was as any other local variable; the type is the
union of the argument types across all the calls to the function, intersected with the declared type. If there are any
assignments to the argument variables, the type of the assigned value is unioned in as well.

The result type of a local function is computed in a special way that takes tail recursion (see section 7.5) into
consideration. The result type is the union of all possible retun values that aren't tail-recursive calls. For example,
Python will infer that the result type of this function is integer:

{defun ! (n res)
(declare (integer n res))
(if (zerop n)
res
(! (1- a) (* n res))))
Although this is a rather obvious result, it becomes somewhat less trivial in the presence of mutual tail recursion of
multiple functions. Local function result type inference interacts with the mechanisms for ensuring proper tail
recursion mentioned in section 7.6.6.

7.3.3. Global Function Type Inference

As described in section 7.2.6, a global function type (£type) declaration places implicit type assertions on the
call arguments, and also guarantees the type of the return value. So wherever a call to a declared function appears,
there is no doubt as to the types of the arguments and return value. Furthermore, Python will infer a function type
from the function’s definition if there is no £t ype declaration. Any type declarations on the argument variables are
used as the argument types in the derived function type, and the compiler’s best guess for the result type of the

88 : CMU COMMON LISP USER'S GUIDE

function is used as the result type in the derived function type.

This method of deriving function types from the definition implicitly assumes that functions won't be redefined at
run-time. Consider this exampie:
{defun foo-p (x)
(let ({res (and (consp x) (eq (car x) 'foo)})))
(format £t "It is ~:[not ~;~]foo." res)))

(defun £rob (it)

(if (foo-p it)
{setf (cadr it) ’yow!)

{1+ it})))

Presumably, the programmer really meant to retum res from £oo-p, but he seems to have forgotten. "When he
tries to call do (frob (list ‘foo nil)), £frob will flame out when it tries 10 add to a cons. Realizing his
error, he fixes £oo-p and recompiles it. But when he retries his test case, he is baffled because the error is stiil
there. What happened in this example is that Python proved that the result of £oo-p is null, and then proceeded
to optimize away the set £ in £rob.

Fortunately, in this example, the error is detected at compile time due to notes about unreachable code (see
section 7.4.5.) Still, some users may not want to worry about this sort of problem during incremental development,
so there is a variable to control deriving function types.

extensions:*derive~function-types?* . [Variable]
If true (the defanlt), argument and result type information derived from compilation of defuns is used
when compiling calls to that function. If false, only information from £type proclamations will be used.

7.3.4. Operation Specific Type Inference

Many of the standard COMMON LIsP functions have special type inference procedures that determine the result
type as a function of the argument types. For example, the result type of aref is the array element type. Here are
some other examples of type inferences:

(Jogand x §xFF) ==> (unsigned-byte 8)

(+ (the (integer 0 12) x) (the (integer 0 1) y)) => {integer 0 13)

{(ash (the (unsigned-byte 16} x) =8) .=> {(unsigned-byte 8)

7.3.5. Dynamic Type Inference

Python uses flow analysis to infer types in dynamically typed programs. For example:
(ecase x
(list (length x))
..) :
Here, the compiler knows the argument to Length is a list, because the call to length is only done when x is a
list.

Dynamic type inference has two inputs: explicit conditionals and implicit or explicit type assertions. Flow
analysis propagates these constraints on variable type to any code that can be executed only after passing though the
constraint. Explicit type constraints come from i£s where the test is either a lexical variable or a function of lexical
variables and constants, where the function is either a type predicate, a numeric comparison or eq.

If there is an eq (or eql) test, then the compiler will actually substitute one argument for the other in the true

ADVANCED COMPILER USE AND EFFICIENCY HINTS g9

branch. For example:

(when (eq x :yow!) (return x))
becomes:

(when (eq x :yow!)} (return :yow!))
This substitution is done when one argument is a constant, or one argument has better type information than the
other. This transformation reveals opportunities for constant folding or type-specific optimizations. If the test is
against a constant, then the compiler can prove that the variable is not that constant value in the false branch, or
(not (member :yow!)) inthe example above. This can eliminate redundant tests, for example:

(if (eq x nil)

(if x a b))
is transformed to this:
(if (eqg x nil)
a)
Variables appearing as if tests are interpreted as (not (eq var nil)) tests. The compiler also converts = into
eql where possible. It is difficult to do inference directly on = since it does implicit coercions.

When there is an explicit < or > test on integer variables, the compiler makes inferences about the ranges the
variables can assume in the true and false branches. This is mainly useful when it proves that the values are small
enough in magnitude to allow open-coding of arithmetic operations. For example, in many uses of dot imes with a
fixnum repeat count, the compiler proves that fixnum arithmetic can be used,

Implicit type assertions are quite common, especially if you declare function argument types. Dynamic inference
from implicit type assertions sometimes helps to disambiguate programs to a useful degree, but is most noticeable
when it detects a dynamic type error. For example:

(defun foo (x)
(+ (car x) =x))
results in this warning:
In: DEFUN FCO
{(+ (CAR X) X)
=>
X
Warning: Result is a LIST, not a NUMBER.

Note that Common Lisp’s dynamic type checking semantics make dynamic type inference useful even in
programs that aren't really dynamically typed, for example:
{(+ (car x) (length x))
Here, x presumably always holds a list, but in the absence of a declaration the compiler cannot assume x is a list
simply because list-specific operations are sometimes done on it. The compiler must consider the program to be
dynamically typed until it proves otherwise. Dynamic type inference proves that the argument to length is always
a list because the call 10 1ength is only done after the list-specific cax operation.

The most significant efficiency effect of inference from assertions is usually in type check opumization.

7.3.6. Type Check Optimization

Python backs up its support for precise type checking by minimizing the cost of run-time type checking. This is
done both through type inference and though optimizations of type checking itself.

Type inference often allows the compiler to prove that a value is of the correct type, and thus no type check is
necessary. For example:

90 CMU COMMON LISP USER’S GUIDE

(defstruct foo a b c¢)

(defstruct link
{foo (required-argument) :type foo}
{(next nil :type (or link null}))

{foc-a {link-foo x))
Here, there is no need to check that the result of link-£foo is a £oo, since it always is. Even when some type
checks are necessary, type inference can often reduce the number:
{defun test (x)
{(let {{(a (foc-a x))
(b (foco-b x))
(c (foo-c x)))
<ae))
In this example, only one {foo-p x) check is needed. This applies to a lesser degree in list operations, such as:
{if (eqgl {(car x} 3) {cdr x} ¥y}
Here, we only have to check that x is a list once.

Since Python recognizes explicit type tests, code that explicitly protects itself against type errors has little
introduced overhead due to implicit type checking. For example, this loop compiles with no implicit checks checks
for caz and cdx:

(defun memg (e 1)
(do {(current 1 (cdr current)))
{(atom current) nil)
(when (eq (car current) e) (return current})))}

Python reduces the cost of checks that must be done through an optimization called complementing. A
complemented check for rvpe is simply a check that the value is not of the type (not tfype). This is only
interesting when something is known about the actual type, in which case we can test for the complement of
{(and kinown-type (not mype)), or the difference between the known type and the assertion. An example:

{link-foo (link-next x))
Here, we change the type check for Link-foo from a test for £oo o a test for:

{not (and (or foo null) {(not £foo))')
or more simply (not null). This is probably the most important use of complementing, since the situation is
fairly common, and a null test is much cheaper than a structure type test,

Here is a more complicated example that illustrates the combination of complementing with dynamic type
inference:
{defun find-a (a x)
{declare (type (or link null) x))
{do {(current x (link-next current)))
({null current) nil)
(let ({foo {link-fcoo current)))
(when (eq (foo-a foo) a) (return foo))))))
This loop can be compiled with no type checks. The link test for Link-£oo and link-next is complemented
to (not null}, and then deleted because of the explicit null test. As before, no check is necessary for foo-a,
since the link-foo is always a £oo. This sort of situation shows how precise type checking combined with
precise declarations can actually result in reduced type checking.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 01

7.4. Optimization

This section describes source-level transformations that Python does on programs in an attempt to make them
more efficient. Although source-level optimizations can make existing programs more efficient, the biggest
advantage of this sort of optimization is that it makes it easier to write efficient programs. If a clean, straightforward
implementation is can be transformed into an efficient one, then there is no need for tricky and dangerous hand
optimization. '

7.4.1. Let Optimization

The primary optimization of let variables is to delete them when they are unnecessary. Whenever the value of a
let variable is a constant, a constant vanable or a constant (local) function, the variable is deleted, and references to
the variable are replaced with references to the constant expression. This is useful primarily in the expansion of
macros or inline functions, where argument values are often constant in any given call, but are in general non-
constant expressions that must be bound to preserve order of evaluation. Let variable optimization eliminates the
need for macros to carefully avoid spurious bindings, and also makes inline functions just as efficient as macros.

A particularly interesting class of constant is a local function. Substituting for lexical variables that are bound to a
function can substantially improve the efficiency of functional programming styles, for example:

{(let ({a #' (lambda (x) (zow x)))})
{funcall a 3))

effectively transforms to:
{zow 3)

This transformation is done even when the function is a closure, as in:
(let ((a (let ((y (zug)))

#’ (lambda (x) (zow x ¥}))))
{funcall a 3))

becoming:
(zow 3 (zug))

A constant variable is a lexical variable that is never assigned to, always keeping its initial value. Whenever
possible, avoid setting lexical variables — instead bind a new variable to the new value. Except for loop variables,
it is almost always possible to avoid setting lexical variables. This form:

(let ((x (f x)))
.)
is more efficient than this form:
(setg x (f x))

Setting variables makes the program more difficult to understand, both to the compiler and to the programmer.
Python compiles assignments at least as efficiently as any other Commeon Lisp compiler, but most let optimizations
are only done on constant variables,

Constant variables with only a single use are also optimized away, even when the initial value is not constant.?
For example, this expansion of in¢f:
(let ((#:g93 (+ x 1)))
(setg x #:G3))
becomes:
{setg x (+ = 1))

% - N . .
The source transformation in this example doesn't represent the preservation of evaluation order implicit in the compiler’s internal
representation. Where necessary, the back end will reintreduce temporaries to preserve the semantics.

92 - CMU COMMON LISP USER'S GUIDE

The type semantics of this transformation are more important than the elimination of the variable itself. Consider
what happens when x is declared to be a £ixnum; after the transformation, the compiler can compile the addition
knowing that the result is a £ixnum, whereas before the transformation the addition would have to allow for fixaum
overflow.

Another variable optimization deletes any variable that is never read. This causes the initial value and any
assigned values to be unused, allowing those expressions to be deleted if they have no side-effects.

Note that a let is actually a degenerate case of local call (section 7.6.2), and that let optimization can be done on
calls that weren’t created by a let. Also, local call allows an applicative style of iteration that is totally assignment
free. .

7.4.2. Constant Folding

Constant folding is an optimization that replaces a call of constant arguments with the constant result of that cail.
Constant folding is done on all standard functions for which it is legal. Constant folding of a user defined function
is enabled by the extensions:constant-function proclamation. Inline expansion allows folding of any
constant parts of the definition, and can be done even on functions that have side-effects. ’ '

It is convenient to rely on constant folding when programming, as in this example:
{(defconstant limit 42)

. (defun foo ()
(... (1= limit) ...))
Constant folding is also helpful when writing macros or inline functions, since it usually eliminates the need to write
a macro that special-cases constant arguments. :

7.4.3. Unused Expression Elimination

If the value of any expression is not used, and the expression has no side-effects, then it is deleted. As with
constant folding, this optimization applies most often when cleaning up after inline expansion and other
optimizations. Any function declared an extensions:censtant-function is also subject to unused
expression elimination. ' '

Note that Python will eliminate parts of unused expressions known to be side-effect free, even if there are other
unknown parts. For example: ’
{let ({a (list (foo) (bar}}))
{if ¢t
(zow)
(xraz a)))
becomes:

{(progn (foo) (bar))
(zow)

7.4.4. Control Optimization

The most important optimization of control is recognizing when an if test is known at compile time, then
deleting the i£, the test expression, and the unreachable branch of the i£. This can be considered a special case of
constant folding, although the test doesn't have to be truly constant as long as it is definitely not nil. Note also,
that type inference propagates the result of an i £ test to the true and false branches, see section 7.3.5.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 93

A related if optimization is this transformation:®
(Lf (if a b ¢c) x y)
into:
(if a
(if b x y)
(if c x ¥))
The opportunity for this sort of optimization usually results from a conditional macro. For example:
(if (not a) x y)
is actually implemented as this:
(if (if a nil t) x y)
which is transformed to this:
(if a
{if nil x y)
(if £ x y))
which is then optimized to this:
(if a y x)
Note that due to Python’s intemal representations, the i£—4i £ situation will be recognized even if other forms are
wrapped around the inner i £, like:

(i (let ((g ...})
{loocp

.(;;turn (not g))
<))
x vy)

In Python, all the COMMON LISP macros really are macros, written in terms of i£, block and tagbody, so
user-defined control macros can be just as efficient as the standard ones. Note that compiler emits basic blocks
using a heuristic that minimizes the number of unconditional branches. The code in a tagbody will not be emitted
in the order it appeared in the source, so there is no point in arranging the code to make control drop through to the
target.

7.4.5. Unreachable Code Deletion

Python will delete code whenever it can prove that the code can never be executed. Code becomes unreachable
when:)

¢ An if is optimized away, or
* There is an explicit unconditional control transfer such as go or return-£rom, or

* The last reference to a local function is deleted (or there never was any reference.)

When code that appeared in the original source is deleted, the compiler prints a note to indicate a possible
problem (or at least unnecessary code.) For example:
(defun foo ()
(if ¢t
(write-line "True.")
(write-line "False."))})
will result in this note:

Note that the code for x and ¥ isn't actuaily replicated.

94 ’ CMU COMMON LISP USER'S GUIDE

-In: DEFUN FQOQ
(WRITE~-LINE "False. k")
Note: Deleting unreachable code.

It is important to pay attention to unreachable code notes, since they often indicate a subtle type emor. For
example:
{defstruct foo a b)

{defun lose (x)
{let ((a (foo-a x))
(b (if x (foo-b x) :none)))
cea))
results in this note:
In: DEFUN LOSE
(IF X (FOO-B X) :NONE)
=
:NCNE
Note: Deleting unreachable code.
The :none is unreachable, because type inference knows that the argument to foo-a must be a £oo, and thus
can’t be nil. Presumably the programmer forgot that x could be nil when he wrote the binding for a.

Here is an example with an incomect declaration:

{defun cecount-a {(string)
(do ((pos 0 (position #\a string :start (1l+ pos)))
(count 0 (1+ count)))
{ (null pos) count)
{declare {fixnum pos))))}
This time our note is:
In: DEFUN COUNT-A
(DO ((POS 0 #) (COUNT 0 #))
{ (NULL POS) COUNT)
(DECLARE (FIXNUM POS)))
~-=> BLOCK LET TAGBODY RETURN-FRCM PROGN
>
COUNT
Note: Deleting unreachable code.

The problem here is that pos can never be null since it is declared a £ixnum

It takes some experience with unreachable code notes to be able to tell what they are trying to say. In non-
obvious cases, the best thing to do is to call the function in a way that should cause the unreachable code to be
executed. Either you will get a type error, or you will find that there truly is no way for the code to be executed.

Not all unreachable code results in a note:

* A note is only given when the unreachable code textuaily appears in the original source. This prevents
spurious notes due to the optimization of macros and inline functions, but sometimes also foregoes a
note that would have been useful.

 Since accurate source information is not available for non-list forms, there is an element of heuristic in
determining whether or not to give a note about an atom. Spurious notes may be given when a macro or
inline function defines a variable that is also present in the calling function. Notes about nil and t are
never given, since it is too easy to confuse these constants in expanded code with ones in the original
source.

« Notes are only given about code unreachable due to control flow. There is no note when an expression
is deleted because its value is unused, since this is a common consequence of other optimizations,

ADVANCED COMPILER USE AND EFFICIENCY HINTS 95

Somewhat spurious unreachable code notes can also result when a macro inserts multiple copies of its arguments
in different contexts, for example:

(defmacro t-and-f (var form)
‘{if ,var ,form , form))

(defun foo (x)
{t-and-f x (if x "True." "False.")))
results in these notes:

In: DEFUN FOO
{(IF X "True." "False.")
==>
"False."
Note: Deleting unreachable code.

=
"True."
Note: Deleting unreachable code.
It seems like it has deleted both branches of the i£, but it has really deleted one branch in one copy, and the other
branch in the other copy. Note that these messages are only spurious in not satisfying the intent of the rule that notes
are only given when the deieted code appears in the original source; there is always some code being deleted when a
unreachable code note is printed.

7.4.6. Multiple Values Optimization

Within a function, Python implements uses of multiple values particularly efficiently. Multiple values can be kept
in arbitrary registers, so using multiple values doesn't imply stack manipulation and representation conversion. For
example, this code:

{(let ((a (if x (foo x) u))
(b (if x (baxr x) v)))
ces)
is actually more efficient written this way:
(multiple-value-bind
(a b)
{(if =
(values (foo x) (bar x))
(values u v))

-)

Also, see section 7.6.6 for information on how local call provides efficient support for multiple function return
values.

7.4.7. Source to Source Transformation

The compiler implements a number of operation-specific optimizations as source-to-source transformations. You
will often see unfamiliar code in error messages, for example:
(defun my-zerop () (zerop x))
gives this waming:
In: DEFUN MY-ZEROP

{ZEROP X)
>
(=X 0)

Warning: Undefined variable: X
‘The original zerop has been transformed into a call to =, This transformation is indicated with the same ==> used

96 . CMU COMMON LISP USER'S GUIDE

to mark macro and function inline expansion. Although it can be confusing, display of the transformed source is
important, since warnings are given with respect to the transformed source. This a more ocbscure example:
(defun foo (x) {(legand 1 x)}
gives this efficiency note:
In: DEFUN FQO
(LOGAND 1 X)
=>
(LOGAND C::Y C::X)
Note: Forced to do static-function Two-arg-and (cost 53).
Unable to do inline fixnum arithmetic (cost 1) because:
The first argument is a INTEGER, not a FIXNUM. '
etc,
Here, the compiler commuted the call to logand, introducing temporaries. The note complains that the first
argument is not a £ixnum when in the original call, it was the second argument. To make things more confusing,
the compiler introduced temporaries called ¢: :x and c: 1y that are bound to y and 1, respectively.

You will also notice source-to-source optimizations when efficiency notes are enabled (see section 7.11.) When
the compiler is unable to do a transformation that might be possibie if there was more information, then an
efficiency note is printed. For example, my-zearop above will also give this efficiency note:

In: DEFON FOO

(ZEROP X)
=>
(=X 0)

Note: Unable to optimize because:
Operands might not be the same type, so can’t open code.

7.4.8. Style Recommendations

Source level optimization makes possible a clearer and more relaxed programming style:

« Don't use macros purely to avoid function call. If you want an inline function, write it as a function and
declare it inline. It’s clearer, less error-prone, and works just as well.

* Don’t write macros that try to "optimize" their expansion in trivial ways such as avoiding binding
variables for simple expressions. The compiler does these optimizations too, and is less likely to make
a mistake.

» Make use of local functions (i.e., labels or £lat) and tail-recursion in places where it is clearer,
Local function call is faster than full call.

e Avoid setting local variables when possible. Binding a new let variable is at least as efficient as
setting an existing variable, and is easier to understand, both for the compiler and the programmer,

e Instead of writing similar code over and over again so that it can be hand customized for each use,
define a macro or inline function, and let the compiler do the work.

7.5. Tail Recursion

A call is tail-recursive if nothing has to be done after the the call returns, i.e. when the call returns, the returned
value is immediately returned from the calling function. In this example, the recursive call to my£un is tail-
recursive:

{defun myfun (x)
{if (oddp (random x})
(isgrt x)
(myfun (1- x})))

ADVANCED COMPILER USE AND EFFICIENCY HINTS 97

Tail recursion is interesting because it is form of recursion that can be implemented much more efficiently than
general recursion. In general, a recursive call requires the compiler to allocate storage on the stack at run-time for
every call that has not yet returned. This memory consumption makes recursion unacceptably inefficient for
representing repetitive algorithms having large or unbounded size. Tail recursion is the special case of recursion
that is semantically equivalent to the iteration constructs normally used to represent repetition in programs. Because
tail recursion is equivalent to iteration, tail-recursive programs can be compiled as efficiently as iterative programs.

So why would you want to write a program recursively when you can write it using a loop? Well, the main
answer is that recursion is a more general mechanism, so it can express some solutions simply that are awkward to
write as a loop. Some programmers also feel that recursion is a stylistically preferable way to write loops because it
avoids assigning variables. For example, instead of writing:

(defun funl (x)
something-that-uses-x)

{defun fun2 (y)
something-that-uses-y)

{(de {(x something (fun2 (funl x))))
(nil))
You can write:
{defun funl (x)
{fun2 something-that-uses-x))

(defun fun2 (y)
(funl scmething-~that-uses-y))

(funl something)
The tail-recursive definition is actually more efficient, in addition to being (arguably) clearer. As the number of
functions and the complexity of their call graph increases, the simplicity of using recursion becomes compeling.
Consider the advantages of writing a large finite-state machine with separate tail-recursive functions instead of using
a single huge prog.

It helps to understand how to use tail recursion if you think of a tail-recursive call as a psetq that assigns the
argument values to the called function’s variables, followed by a go to the start of the called function. This makes
clear an inherent efficiency advantage of tail-recursive call: in addition to not having to allocate a stack frame, there
is no need to prepare for the call to return (e.g., by computing a retum PC.)

Is there any disadvantage to tail recursion? Other than an increase in efficiency, the only way you can tell that a
call has been compiled tail-recursively is if you use the debugger. Since a tail-recursive call has no stack frame,
there is no way the debugger can print out the stack frame representing the call. The effect is that backtrace will not
show some calls that would have been displayed in a non-tail-recursive implementation. In practice, this is not as
bad as it sounds — in fact it isn’t really clearly worse, just different. See section 5.3.5 for information about the
debugger implications of tail recursion,

In order to ensure that tail-recursion is preserved in arbitrarily complex calling patterns across separately
compiled functions, the compiler must compile any call in a tail-recursive position as a tail-recursive call. This is
done regardless of whether the program actually exhibits any sort of recursive calling pattern. In this example, the
call to fun2 will always be compiled as a tail-recursive call:

{defun funl (x)
{fun2 x))

So tail recursion doesn’t necessarily have anything to do with recursion as it is normaﬂy thought of.

98 CMU COMMON LISP USER’S GUIDE

See section 7.6.4 for more discussion of using tail recursion to implement loops.

7.5.1. Tail Recursion Exceptions

Although Python is claimed to be "properly” tail-recursive, some might dispute this, since there are situations
where tail recursion is inhibited:

¢ When the call is enclosed by a special binding, or
e When the call is enclosed by a cat.ch or unwind-protect, or

¢ When the call is enclosed by a block or tagbody and the block name or go tag has been closed
over.

These dynamic extent binding forms inhibit 1ail recursion because they allocate stack space to represent the binding.
Shallow-binding implementations of dynamic scoping also require cleanup code to be evaluated when the scope is
exited.

7.6. Local Call and Block Compilation

Python supports two kinds of function call: full call and local cail. Full call is the standard calling convention; its
late binding and generality make Common Lisp what it is, but create unavoidable overheads. When the compiler
can compile the calling function and the called function simultaneously, it can use local call to avoid some of the
overhead of full call. Local call is really a collection of compilation strategies. If some aspect of call overhead is
not needed in a particular local call, then it can be omitted. In some cases, local call can be totally free. Local call
provides two main advantages to the user:

e Local call makes the use of the lexical function binding forms £let and labels much more efficient.
A local call is always faster than a full call, and in many cases is much faster.

» Local call is a natural approach to block compilation, a compilation technique that resolves function
references at compile time. Block compilation speeds function call, but increases compilation times and
prevents functon redefinition.

7.6.1. Self-Recursive Calls

Local call is used when a function defined by de£un calls itself. For example:
(defun fact (n)
(if (zerop n)
1
(* n {(fact (1- n)))}))
This use of local call speeds recursion, but can also complicate debugging, since trace will only show the first call
to f£act, and not the recursive calls. This is because the recursive calls directly jump to the start of the function,
and don’t indirect through the symbol~£function.

7.6.2. Let Calls

Because local call avoids unnecessary call overheads, the compiler internaily uses local call to implement some
macros and special forms that are not normally thought of as involving a function call. For example, this let:
{let ((a {foo))
(b (bax)))
)
is internally represented as though it was macroexpanded into:

ADVANCED COMPILER USE AND EFFICIENCY HINTS 99

(funcall #’ (lambda (a b)
Pas)
{(£00)
(bar))
This implementation is acceptable because the simple cases of local call (equivalent to a let) result in good code.
This doesn’t make let any more efficient, but does make local calls that are semantically the same as let much
more efficient than full calls. For example, these definitions are all the same as far as the compiler is concemed:
{defun foo ()
...some other stuff. ..
{let ({(a something})
...8cme stuff...))

(defun foo ()
{flet ((lccalfun (a)
...scme stuff...})
...50me other stuff, ..
{localfun scmething)))

(defun foo ()
{(let {(funvar #’' (lambda (a)
...s0me stuff. . .)))
...s0me other stuff,,,
(funcall funvar something)))

Although local call is most efficient when the function is called only once, a call doesn’t have to be equivalent to
a let to be more efficient than full call. All local calls avoid the overhead of argument count checking and
keyword argument parsing, and there are a number of other advantages that apply in many common situations. See
also section 7.4.1 for a discussion of the optimizations done on let calls.

7.6.3. Closures

Local call allows for much more efficient use of closures, since the closure environment doesn’t need to be
allocated on the heap, or even stored in memory at all. In this example, there is no penalty for localfun
referencing a and b:

{(defun foo (a b)
(flet ((localfun (=)
(1+ (* a b x))))
(if (= a b)

(localfun (- x)})

(localfun x))))
In local call, the compiler effectively passes closed-over values as extra arguments, so there is no need for you to
"optimize" local function use by explicitly passing in lexically visible values. Closures may also be subject to let
optimization (see section 7.4.1.)

Noie: currently indirect value cells are always allocated on the heap when a variable is both assigned to (with
setq or set£) and closed over, regardless of whether the closure is a local function or not. This is another reason
to avoid setting variables when you don’t have to.

7.6.4. Tail Recursion

Tail-recursive local calls are particularly efficient, since they are in effect an assignment plus a control transfer.
Scheme programmers write loops with tail-recursive local calls, instead of using the imperative go and setq. This
has not caught on in the COMMON LISP community, since conventional Common Lisp compilers don’t implernent
focal call. In Python, users can choose to write loops such as:

100 CMU COMMON LISP USER'S GUIDE

(defun ! (n)
(labels ({locp (n total)
{1f (zerop n)
total

{loop (1- n) (* n total)))))
{loop n 1)))

extensions:iterate name ({ (var initial-value) }*) l|declaration}* [form}* [Macro]
This macro provides syntactic sugar for using labels to do iteration. It creates a local function name
with the specified vars as its arguments and the declarations and forms as its body. This function is then
called with the /nitial-values, and the result of the call is retumn from the macro.

Here is our factorial example rewritten using iterate:
(defun ! (n)
{(iterate lcop
({n n)
{total 1))
{if (zerop n)
total
{locp (1~ n) (* n total)))))
The main advantage of using iterate over do is that iterate naturally allows stepping tc be done
differently depending on conditionals in the body of the loop. iterate can also be used to implement
algorithms that aren’t really iterative by simply doing a non-tail call. For example, the standard recursive
definition of factorial can be written like this:
{iterate fact
((n n))

(if (zerop n)
1
(* n (fact (1- n)})))

7.6.5. Block Compilation

Block compilation allows calls to global functions defined by defun to be compiled as local calls. The function
call can be in a different top-level form than the defun, or even in a different file. Block compilation is enabled by
specifying t for the :block-compile argument 1o compile-£file.

The effect of block compilation can be envisioned by imagining that the compiler turns ail the defuns in the file
into a single 1abels form:
{defun funl ()
)

(defun fun2 ()
(£unl)
)

{defun fun3 (x)
(Lif x
{funl)
{fun2)))
becomes:

ADVANCED COMPILER USE AND EFFICIENCY HINTS 101

(labels ((funl ()
|
{(fun2 ()
(funl)
I
{fun3 (x)
(£ x
(funl}
(fun2))))
(setf (symbol-function ’'funl) #’ funl)
(setf (symbol-function ’"fun2) #’fun2)
(setf (symbol-function ’‘fun3) #’fun2))
Block compilation still installs global definitions of the functions in the symbol-function, and a full call to a
block-compiled function works just as before. Calls between the block compiled functions are local cails, so
changing the global definition of £unl will have no effect on what £un2 does; fun2 will keep calling the oid
funl.

The main problem with block compilation is that the compiler uses large amounts of memory when it is block
compiling, This places an upper limit on the size of file that can be block compiled. It is helpful to break off the
important parts of a program into a file small enough to be block compiled. Unless files are very small, it is
probably impractical to block compile files together by specifying a list of files to compile-£file. Semi-inline
expansion (section 7.7.2) provides another way to extend block compilation across file boundaries.

7.6.6. Return Values

One of the more subtle costs of full call comes from allowing arbitrary numbers of return values. This overhead
can be avoided in local calls to functions that always retum the same nwmnber of values. For efficiency reasons (as
well as stylistic ones), you should write functions so that they always return the same number of values. This may
require passing extra nil arguments to values in some cases, but the result is more efficient, not less so.

When efficiency notes are enabled (section 7.11), and the compiler wants to use known values return, but can't
prove that the function always returns the same number of values, then it will print a note like this:
In: DEFUN GRUE
(DEFUN GRUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# NIL) (T $yHN
Note: Return type not fixed values, so can’t use known return convention:
(VALUES (OR (INTEGER -536870912 -1) NULL) &REST T)

In order to implement proper tail recursion in the presence of known values remm (section 7.5), the compiler
sometimes must prove that multiple functions all return the same number of values. When this can’t be proven, the
compiler will print a note like this:

In: DEFUN BLUE
(DEFUN BLUE (X) (DECLARE (FIXNUM X)) (COND (# #) (¥ #) (# #) (T #)))
Note: Return value count mismatch prevents known return from
these functions:
BLUE
SNOO

You probably won’t see this note very often,

102 CMU COMMON LISP USER'S GUIDE

7.7. Inline Expansion

Python can expand almost any function inline, including functions with keyword arguments. The only
restrictions are that there can’t be a &rest argument, and the keywords in the call to a function with keyword
arguments must be constant. Combined with Python’s source-level optimization, inline expansion can be used for
things that formeriy required macros for efficient implementation. In Python, macros don’t have any efficiency
advantage, so they need only be used where a macro’s syntactic flexibility is required.

Inline expansion is a compiler optimization technique that reduces the overhead of a function call by simply not
doing the cail: instead, the compiler effectively rewrites the program to appear as though the definition of the called
function was inserted at each call site. In Common Lisp, this is straightforwardly expressed by inserting the
lambda comesponding to the original definition:

(proclaim ’ (inline my-1+))
(defun my~1+ (x) (+ x 1)}

(my-1+ someval) => ((lambda (x) (+ x 1)) scmewval)

When the function expanded inkine is large, the program after inline expansion may be substantially larger than
the original program. If the program becomes too large, inline expansion hurts speed rather than helping it, since
hardware resources such as physical memory and cache will be exhausted. Inline expansion is called for:

e When profiling has shown that a relatively simple function is called so often that a large amount of time
ts being wasted in the calling of that function (as opposed to running in that function.) If a function is

. complex, it will take a long time to run relative the time spent in call, so the speed advantage of inline
expansion is diminished at the same time the space cost of inline expansion is increased. Of course, if a
function is rarely called, then the overhead of calling it is also insignificant.

¢ With functions so simple that they take less space to inline expand than would be taken to call the
function (such as my-1+ above.} It would require intimate knowledge of the compiler to be certain
when inline expansion would reduce space, but it is generally safe to inline expand functions whose
definition is a single function call, or a few calls to simple COMMON LISP functions.

In addition to this speed/space radeoff from inline expansion’s avoidance of the call, inline expansion can also
reveal opportunities for optimization. Python's extensive source-level optimization can make use of context
information from the caller to tremendously simplify the code resulting from the inline expansion of a function.

The main form of caller context is local information about the actual argument values: what the argument types
are and whether the arguments are constant. Koowledge about argument types can eliminate run-time type tests
{e.g., for generic arithmetic.) Constant arguments in a call provide opportunities for constant folding optimization
after inline expansion.

A hidden way that constant arguments are often supplied to functions is through the defaulting of unsupplied
optional or keyword arguments. There can be a huge efficiency advantage to inline expanding functions that have
complex keyword-based interfaces, such as this definition of the membex function:

ADVANCED COMPILER USE AND EFFICIENCY HINTS 103

{proclaim ' {inline member))
{(defun member (item list &key
{(key #’ identity)
{test §#’'eql testp)
{test-not nil notp))
(do ((list 1list (cdr 1list)))
{{null list) nil)
(let ({(car {car list)))
(if {(cond (testp
(funcall test item (funcall key car)))
(notp
{(not (funcall test-not item (funcall key cax))})
(t
{funcall test item (funcall key car)}))
(return list)))}))

After inline expansion, this call is simplified to the obvious code:
(member a 1 :key #' foo-a :test #’'char=) =>

{(de {(list list (cdr list)))
((null list) nil)
(let ((car (car list)))
(if (char= item (foo-a car))
(return list)}))))
In this example, there could easily be more than an order of magnitude improvement in speed. In addition to
eliminating the original call to member, inline expansion also allows the calls to char= and foo-a o be
open-coded. We go from a loop with three tests and two calls to a loop with one test and no calls.

See section 7.4 for more discussion of source level optimization.

7.7.1. Inline Expansion Recording

Inline expansion requires that the source for the inline expanded function to be available when calls to the
function are compiled. The compiler doesn’t remember the inline expansion for every function, since that would
take an excessive about of space. Instead, the programmer must tell the compiler to record the infine expansion
before the definition of the inline expanded function is compiled. This is done by globally declaring the function
inline before the function is defined, by using the inline and extensions :maybe-inline (see section
7.1.3) declarations.

In addition to recording the inline expansion of inline functions at the time the function is compiled,
compile-£file also puts the inline expansion in the output file. When the output file is loaded, the inline
expansion is made available for subsequent compilations; there is no need to compile the definition again to record
the inline expansion.

If a function is declared inline, but no expansion is recorded, then the compiler will give an efficiency note like:
Note: MYFUN is declared inline, but has no expansion,

When you get this note, check that the inline declaration and the definition appear before the calls that are to be
inline expanded. '

7.7.2. Semi-Inline Expansion

Python supports semi-inline functions. Semi-inline expansion shares a single copy of a function across all the
calls in a component by converting the inline expansion into a local function (see section 7.6.) This takes up less
space when there are multiple calls, but also provides less opportunity for context dependent optimization. When

104 CMU COMMON LISP USER'S GUIDE

there is only one call, the result is identical to normal inline expansion. Semi-inline expansion is done when the
space optimization guality is 0, and the function has been declared extensions :maybe-inline.

This mechanism of inline expansion combined with local call aiso allows recursive functions to be inline
expanded. If a recumsive function is declared inline, calls will actually be compiled semi-inline. Although
recursive functions are often so complex that there is little advantage to semi-inline expansion, it can still be useful
in the same sort of cases where normal inline expansion is especially advantageous, i.e. functions where the calling
context can help a lot.

7.7.3. The Maybe-Inline Declaration

The extensions :maybe-inline declaration is a CMU Common Lisp extension. It is similar to inline,
but indicates that inline expansion may sometimes be desirable, rather than saying that inline expansion should
almost always be done. When used in a global declaration, extensions :maybe—inline causes the expansion
for the named functions to be recorded, but the functions aren’t actually inline expanded unless space is 0 or the
function is eventually (perhaps locally) declared inline.

Use of the extensions :maybe-inline declaration followed by the defun is preferable to the standard
idiom of:
{proclaim ' (inline myfun))
{(defun myfun {) ...)
(proclaim ‘ (notinline myfun))

;11 Any calls tomy£un here are not inline expanded.

(defun somefun ()

{declare (inline myfun})

;: Calls to myfun here are inline expanded.

cee)
The problem with using notinline in this way is that in COMMON LISP it does more than just suppress inline
expansion, it also forbids the compiler to use any knowledge of my£un until a later inline declaration overrides
the notinline. This prevents compiler wamings about incorrect calls to the function, and also prevents block
compilation.

The extensions :maybe-inline declaration is used like this:
(proclain ' (extensions:maybe-inline myfun))
{(defun myfun () ...)

;7 : Any calls to myfun here are not inline expanded.

(defun somefun (}
(declare (inline myfun))
;7 Calls tomy£un here are inline expanded.
.

{defun somectherfun ()
(declare (optimize {space 0))})
;; Calls tomy£un here are expanded semi-inline.
aes)
In this example, the use of extensions :maybe-inline causes the expansion to be recorded when the defun

for somefun is compiled, and doesn’t waste space through doing inline expansion by default. Unlike

ADVANCED COMPILER USE AND EFFICIENCY HINTS 105

notinline, this declaration still allows the compiler to assume that the known definition really is the one that will
be called when giving compiler wamings, and also allows the compiler to do semi-inline expansion when the policy
is appropriate.

When the goal is merely to control whether inline expansion is done by default, it is preferable to use
extensions :maybe-inline rather than notinline. The notinline declaration should be reserved for
those special occasions when a function may be redefined at run-time, so the compiler must be told that the obvious
definition of a function is not necessarily the one that will be in effect at the time of the call.

7.8. Object Representation

A somewhat subtle aspect of writing efficient COMMON LISP programs is choosing the correct data structures so
that the underlying objects can be implemented efficiently. This is partly because of the need for multple
representations for a given value (see section 7.9.2), but is also due to the sheer number of object types that
CoMMON LISP has built in. The number of possible representations complicates the choice of a good representation
because semantically similar objects may vary in their efficiency depending on how the program operates on them,

7.8.1. Think Before You Use a List

Although Lisp’'s creator seemed to think that it was for LISt Processing, the astute observer may have noticed that
the chapter on list manipulation makes up less that three percent of Common Lisp: the Language I, The langnage
has grown since Lisp 1.5 — new data types supersede lists for many purposes.

7.8.2. Structures

One of the best ways of building complex data structures is to define appropriate structure types using
defstruct. In Python, access of structure slots is always at least as fast as list or vector access, and is usually
faster. In comparison to a list representation of a tuple, structures also have a space advantage.

Even if structures weren’t more efficient than other representations, structure use would still be attractive because
programs that use structures in appropriate ways are much more mamta.mable and robust than programs written
using only lists. For example:

(rplaca {caddr (cadddr x)) (caddr y))
could have been written using structures in this way:

(setf (beverage-flavor (astronaut-beverage x)) {(beverage-flavor y))
The second version is more maintainable because it is easier to understand what it is doing. It is more robust
because structures accesses are type checked. An astronaut will never be confused with a beverage, and the
result of beverage-£lavor is always a flavor. See sections 7.2.8 and 7.2.9 for more information about structure
types. See section 7.3 for a number of examples that make clear the advantages of structure typing.

Note that the structure definition should be compiled before any uses of its accessors or type predicate so that
these function calls can be efficiently open-coded.

7.8.3. Arrays

Arrays are often the most efficient representation for collections of objects because:

¢ Array representations are often the most compact. An array is always more compact than a list
containing the same number of elements.

e Arrays allow fast constant-time access.

® Arrays are easily destructively modified, which can reduce consing.

106 CMU COMMON LISP USER'S GUIDE

& Array element types can be specialized, which reduces both overall size and consing (see section 7.9.8.)

Access of arrays that are not of type simple-array is less efficient, so declarations are appropriate when an
array is of a simple type like simple-string or simple-bit-vector. Armays are almost always simple, but
the compiler may not be able to prove simpleness at every use. The only way to get a non-simple array is 1o use the
:displaced-to, :fill-pointexr or adjustable arguments i0 make-array. If you don’t use these
hairy options, then arrays can always be declared to be simple.

Because of the many specialized array types and the possibility of non-simple arrays, array access is much like
generic arithmetic (section 7.9.4). In order for array accesses to be efficiently compiled, the element type and
simpleness of the array must be known at compile time. If there is inadequate information, the compiler is forced to
call a generic array access routine. You can detect inefficient array accesses by enabling efficiency notes, see
section 7.11.

7.8.4. Yectors

Vectors (cne dimensional arrays) are particularly useful, since in addition to their obvious array-like applications,
they are also well suited to representing sequences. In comparison to a list representation, vectors are faster to
access and take up between two and sixty-four times less space (depending on the element type.) As with arbitrary
arrays, the compiler needs to know that vectors are not complex, so you should use simple-string in preference
to string, eic.

The only advantage that lists have over vectors for representing sequences is that it is easy to change the length of
a list, add to it and remove items from it. Likely signs of archaic, slow lisp code are nth and nthedr, If you are
using these functions you should probably be using a vector.

7.8.5. Bit-Vectors

Another thing that lists have been used for is set manipulation. In applications where there is a known, reasonably
small universe of items bit-vectors can be used to improve performance. This is much less convenient than using
lists, because instead of symbols, each element in the universe must be assigned a numeric index into the bit vector.
Using 2 bit-vector will nearly always be faster, and can be tremendously faster if the number of elements in the set is
not small. The logical operations on simple-bit-vectors are efficient, since they operate on a word at a time.

7.8.6. Hashtables

Hashtables are an efficient and general mechanism for maintaining associations such as the association between
an object and its name. Although hashtables are usually the best way to maintain associations, efficiency and style
considerations sometimes favor the use of an association list (a-list).

assoc is fairly fast when the fesr argument is eq or eql and there are only a few elements, but the time goes up
in proportion with the number of elements. In contrast, the hash-table lookup has a somewhat higher overhead, but
the speed is largely unaffected by the number of entries in the table. For an equal hash-table or alist, hash-tables
have an even greater advantage, since the test is more expensive. Whatever vou do, be sure to use the most
restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in function, they do not do all things
equally well.

o Alists are good for maintaining scoped environments. They were originally invented to implement
scoping in the Lisp interpreter, and are still used for this in Python. With an alist one can non-
destructively change an association simply by consing a new element on the front. This is something
that cannot be done with hash-tables.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 107

» Hashtables are good for maintaining a global association, The value associated with an entry can easily
be changed with set £. With an alist, one has to go through contortions, either zplacd’ing the cons if
the entry exists, or pushing a new one if it doesn’t. The side-effecting nature of hash-table operations is
an advantage here.

Historically, symbol property lists were often used for giobal name associations. Property lists provide an
awkward and error-prone combination of name association and record structure. If you must use the property list,
please store all the related values in a single structure under a single property, rather than using many properties.
This makes access more efficient, and also adds a modicum of typing and abstraction. Se¢ section 7.2 for
information on types in CMU Common Lisp.

7.9. Numbers

Numbers are interesting because numbers are one of the few Common Lisp data types that have direct support in
conventional hardware. If a number can be represented in the way that the hardware expects it, then there is a big
efficiency advantage.

Using hardware representations is problematical in Common Lisp due to dynamic typing (where the type of a
value may be unknown at compile time.) It is possible to compile code for statically typed portions of a Common
Lisp program with efficiency comparable to that obtained in statically typed languages such as C, but not all
Common Lisp implementations succeed. There are two main barriers to efficient numerical code in Common Lisp:

» The compiler must prove that the numerical expression is in fact staticaily typed, and

¢ The compiler must be able to somehow reconcile the conflicting demands of the hardware mandated
number representation with the Common Lisp requirements of dynamic typing and garbage-collecting
dynamic storage allocation.

Because of its type inference (section 7.3) and efficiency notes (section 7.11), Python is better than conventional
Common Lisp compilers at ensuring that numerical expressions are statically typed. Python also goes somewhat
farther than existing compilers in the area of allowing native machine number representations in the presence of
garbage collection.

7.9.1. Descriptors

Common Lisp's dynamic typing requires that it be possible to represent any value with a fixed length object,
known as a descriptor. This fixed-length requirement is implicit in features such as:

s Data types (like simple-vector) that can contain any type of object, and that can be destmcuvely
modified to contain different objects (of possibly different types.)

» Functions that can be called with any type of argument, and that can be redefined at run time.
In order to save space, a descriptor is invariably represented as a single word. Objects that can be directly

represented in the descriptor itself are said to be immediate. Descriptors for objects larger than one word are in
reality pointers to the memory actually containing the object.

Representing objects using pointers has two major disadvantages:

e The memory pointed to must be allocated on the heap, so it must eventually be freed by the garbage

collector. Excessive heap allocation of objects (or “"consing™) is inefficient in several ways. See section
7.10.2,

« Representing an object in memory requires the compiler to emit additional instructions to read the
actual value in from memory, and then to write the value back after operating on it.

The introduction of garbage collection makes things even worse, since the garbage collector must be able to
determine whether a descriptor is an immediate object or a pointer. This requires that a few bits in each descriptor
be dedicated to the garbage collector. The loss of a few bits doesn’t seem like much, but it has a major efficiency

108 CMU COMMON LISP USER’S GUIDE

implication — objects whose natural machine representation is a full word (integers and single-floats) cannot have
an immediate representation. So the compiler is forced to use an unnatural immediate representation (such as
fixnum) or a natural pointer representation {with the attendant consing overhead.)

7.9.2. Non-Descriptor Representations

From the discussion above, we can see that the standard descriptor representation has many problems, the worst
being number consing. Common Lisp compilers try to avoid these descriptor efficiency problems by using
non-descriptor representations. A compiler that uses non-descriptor representations can compile this function so
that it does no number consing:

(defun multby (vec n)
(declare (type (simple-array single-float (*)}) vec)
(single-float n))
(dotimeg (i (length vec))
(setf (aref vec i)
(* n (aref vec 1i)))))

If a descriptor representation were used, each iteration of the loop might cons two floats and do three times as many
memory references.

As its negative definition suggests, the range of possible non-descriptor representations is large. The performance
improvement from non-descriptor representation depends upon both the number of types that have non-descriptor
representations and the number of contexts in which the compiler is forced to use a descriptor representation.

Many Common Lisp compilers support non-descriptor representations for float types such as single-float
and double~£float (section 7.9.7.) Python adds support for full word integers (section 7.9.6), characters (section
7.9.10) and system-area pointers (unconstrained pointers, see section 8.2.1.) Many Common Lisp compilers support
non-descriptor representations for variables (section 7.9.3) and array elements (section 7.9.8.) Python adds support
for non-descriptor arguments and return values in local call (section 7.9.9).

7.9.3. Variables

In order to use a non-descriptor representation for a variable or expression intermediate value, the compiler must
be able to prove that the value is always of a particular type having a non-descriptor representation. Type inference
(section 7.3) often needs some help from user-supplied declarations. The best kind of type declaration is a variable
type declaration placed at the binding point:

(let ((x (car 1)))
(declare (single-float x))
)
Use of the, or of variable declarations not at the binding form is insufficient to allow non-descriptor representation
of the variable — with these declarations it is not certain that all values of the variable are of the right type. It is
sometimes useful to introduce a gratuitous binding that allows the compiler to change to a non-descriptor
representation, like:
(etypecase x
((signed~-byte 32)
(let ((x x))
{(declare (type (signed-byte 32) x))
-2))
)
The declaration on the inner x is necessary here due to a phase ordering problem. Although the compiler will
eventually prove that the outer x is a (signed~byte 32) within that etypecase branch, the inner x would
have been optimized away by that time. Declaring the type makes let optifnization more cautious.

Note that storing a value into a global (or special) variable always forces a descriptor representation.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 109

Wherever possible, you should operate only on local variables, binding any referenced globals to local variables at
the beginning of the function, and doing any global assignments at the end.

Efficiency notes signal use of inefficient representations, so programmer’s needn’t continuousty worry about the
details of representation selection (see section 7.11.3.)

7.9.4. Generic Arithmetic

In COMMON LISP, arithmetic operations are generic.'® The + function can be passed £ixnums, bignums,
ratios, and various kinds of £1oats and complexes, in any combination. In addition to the inherent complexity
of bignum and ratio operations, there is also a lot of overhead in just figuring out which operation to do and
what contagion and canonicalization rules apply. The complexity of generic arithmetic is so great that it is
inconceivable to open code it. Instead, the compiler does a function call to a generic arithmetic routine, consuming
many instructions before the actual computation even starts.

This is ridiculous, since even Common Lisp programs do a lot of arithmetic, and the hardware is capable of doing
operations on small integers and floats with a single instruction. To get acceptable efficiency, the compiler
special-cases uses of generic arithmetic that are directly implemented in the hardware. In order to open code
arithmetic, several constraints must be met:

s All the arguments must be known to be a good type of number.
e The result must be known to be a good type of number.

* Any intermediate values such as the resultof (+ a b) inthecall (+ a b <) mustbe knowntobea
good type of number.

e All the above numbers with good types must be of the same good type. Don't try to mix integers and
floats or different float formats.

The "good types” are (signed-byte 32), (unsigned-byte 32), single-float and double-float.
See sections 7.9.5, 7.9.6 and 7.9.7 for more discussion of good numeric types.

£1loat is not a good type, since it might mean either single-float or double-float. integeris nota
good type, since it might mean bignum. rational is not a good type, since it might mean ratic. Note
however that these types are stll useful in declarations, since type inference may be able to strengthen a weak
declaration into a good one, when it would be at a loss if there was no declaration at all (see section 7.3). The
integer and unsigned-byte (or non-negative integer) types are especially useful in this regard, since they can
often be strengthened to a good integer type.

Arithmetic with complex numbers is inefficient in comparison to float and integer arithmetic. Complex
numbers are always represented with a pointer descriptor (causing consing overhead), and complex arithmetic is
always closed coded using the general generic arithmetic functions. But arithmetic with complex types such as:

(complex float)
(complex fixnum) _
is still faster than bignum or rat io arithmetic, since the implementation is much simpler.

Note: don’t use / to divide integers unless you want the overhead of rational arithmetic. Use truncate even
when you know that the arguments divide evenly.

You don’t need to remember all the rules for how to get open-coded arithmetic, since efficiency notes will tell
you when and where there is a problem — see section 7.11.

0As Steele notes in CLTL I, this is a generic conception of generic, and is not to be confused with the CLOS concept of a generic function.

110 CMU COMMON LISP USER'S GUIDE

7.9.5. Fixnums

A fixnum is a "FIXed precision NUMber'. In modern Common Lisp implementations, fixnums can be
represented with an immediate descriptor, so operating on fixnums requires no consing or memory references.
Clever choice of representations also allows some arithmetic operations to be done on fixnums using hardware
supported word-integer instructions, somewhat reducing the speed penalty for using an unnatural integer
representation.

It is useful to distinguish the £ixnum type from the fixnum representation of integers. In Python, there is
absolutely nothing magical about the £ixnum type in comparison to other finite integer types. £ixnum is
equivalent to (is defined with deftype 1o be) (signed-byte 30). fixnum is simply the largest subset of
integers that can be represented using an immediate fixnum descriptor.

Unlike in other COMMON LISP compilers, it is in no way desirable to use the £ixnum type in declarations in
preference to more restrictive integer types such as bit, (integer -43 7) and (unsigned-byte 8).
Since Python does understand these integer types, it is preferable to use the more restrictive type, as it allows better
type inference (see section 7.3.4.)

The small, efficient fixnum is contrasted with bignum, or "BIG NUMber". This is another descriptor
representation for integers, but this time a pointer representation that allows for arbitrarily large integers. Bignum
operations are less efficient than fixnum operations, both because of the consing and memory reference overheads of
a pointer descriptor, and also because of the inherent complexity of extended precision arithmetic. While fixnum
operations can often be done with a single instruction, bignum operations are so complex that they are always-done
using generic arithmetic.

A crucial point is that the compiler will use generic arithmetic if it can’t prove that all the arguments, intermediate
values, and results are fixnums. With bounded integer types such as £ixnum, the result type proves to be especially
problematical, since these types are not closed under common arithmetic operations such as +, -, * and /. For
example, (1+ (the fixnum x)) does not pecessarily evaluate to a fixnum Bigoums were added to
Common Lisp to get around this problem, but they really just transform the comectness problem "if this add
overflows, you will get the wrong answer" to the efficiency problem "if this add might overflow then your program
will mun slowly (because of generic arithmetic.)"

There is just no getting around the fact that the hardware only directly supports short integers. To get the most
efficient open coding, the compiler must be able to prove that the result is a good integer type. This is an argument
in favor of using more restrictive integer types: (1+ (the fixnum x)) may not always be a £ixnum, but
(1+ (the (unsigned-byte 8) x)) alwaysis. Of course, you can also assert the result type by putting in
lots of the declarations and then compiling with safety 0.

7.9.6. Word Integers

Python is unique in its efficient implementation of arittmetic on full-word integers through non-descriptor
representations and open coding. Arithmetic on any subtype of these types:
{signed-byte 32)
{(unsigned-byte 32)
is reasonably efficient, although subtypes of £ixnum remain somewhat more efficient,

If a word integer must be represented as a descriptor, then the bignum representation is used, with its associated
consing overhead. The support for word integers in no way changes the language semantics, it just makes arithmetic
on small bignums vastly more efficient. It is fine to do arithmetic operations with mixed £ixnum and word integer
operands; just declare the most specific integer type you can, and let the compiler decide what representation to use.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 111

In fact, to most users, the greatest advantage of word integer arithmetic is that it effectively provides a few guard
bits on the fixnum representation. If there are missing assertions on intermediate values in a fixnum expression, the
intermediate resuits can usually be proved to fit in a word. After the whole expression is evaluated, there will often
be a fixnum assertion on the final result, allowing creation of a fixnum result without even checking for overflow.

The remarks in section 7.9.5 about fixnum result type also apply to word integers; you must be careful to give the
compiler encugh information to prove that the result is still a word integer. This time, though, when we blow out of
word integers we land in into generic bignum arithmetic, which is much worse than sleazing from £ixnums to word
integers. Note that mixing (unsigmed-byte 32) arguments with arguments of any signed type (such as
£ ixnum) is a no-no, since the result might not be unsigned.

7.9.7. Floats

Arithmetic on objects of type single-£float and double-float is efficiently implemented using non-
descriptor representations and open coding. As for integer arithmetic, the arguments must be known to be of the
same float type. Unlike for integer arithmetic, the results and intermediate values usually take care of themselves
due to the rules of float contagion, i.e. (1+ (the single-float x)) isalwaysa single-float.

Although they are not specially implemented, short-£fleat and long-float are also acceptable in
declarations, since they are synonyms for the single~£loat and double-float types, respectively. It is
harmless to use list-style float type specifiers such as (single-£loat 0.0 1,0), but Python currently makes
little use of bounds on float types.

When a float must be represented as a descriptor, a pointer representation is used, creating consing overhead. For
this reason, you should try to avoid situations (such as full call and non-specialized data structures) that force a
descriptor representation. See sections 7.9.8 and 7.9.9.

See section 2.2 for information on the extensions to support IEEE floating point,

7.9.8. Specialized Arrays

COMMON LISP supports specialized array element types through the :element-type argument to
make-array. When an amay has a specialized element type, only elements of that type can be stored in the array.
From this restriction comes two major efficiency advantages:

* A specialized array can save space by packing multiple elements into a single word. For example, a
base-char array can bave 4 elements per word, and a bit array can have 32. This space-efficient
representation is possible because it i not necessary to separately indicate the type of each element.

* The elements in a specialized array can be given the same non-descriptor representation as the one used
in registers and on the stack, eliminating the need for representation conversions when reading and
writing array clements. For objects with pointer descriptor representations (such as floats and word
integers) there is also a substantial consing reduction because it is not necessary to allocate a new object
every time an array element is modified

These are the specialized element types currenty supported:
bit
{unsigned-byte 2)
(unsigned-byte 4)
(unsigned-byte B8)
{(unsigned-byte 16)
(unsigned-byte 32)
base-character
single-float
double-£float

112 CMU COMMON LISP USER'S GUIDE

Although a simple-vectoxr can hold any type of object, t should still be considered a specialized array type,
since arrays with element type t are specialized to hold descriptors.

When using non-descriptor representations, it is particularly important to make sure that array accesses are
open-coded, since in addition to the generic operation overhead, efficiency is lost when the array element is
converted to a descriptor so that it can be passed to (or from) the generic access routine. You can detect inefficient
array accesses by enabling efficiency notes, see section 7.11. See also section 7.8.3.

7.9.9. Interactions With Local Call

Local call has many advantages {(see section 7.6); one relevant to our discussion here is that local call extends the
usefulness of non-descriptor representations. If the compiler knows from the argument type that an argument has a
non-descriptor representation, then the argument will be passed in that representation. The easiest way to ensure
that the argument type is known at compile time is to always declare the argument type in the called function, like:

(defun 2+f (x)
(declare (single-float x))
{(+ x 2.0))
The advantages of passing arguments and return values in a non-descriptor representation are the same as for
non-descriptor representations in generai: reduced consing and memory access (see section 7.9.2.) This extends the
applicative programming styles discussed in section 7.6 to numeric code. Also, if source files are kept reasonably
small, block compilation can be used to reduce number consing to a minimurn,

Note that non-descriptor retumn values can only be used with the known return convention (section 7.6.6.) If the
compiler can’t prove that a function always retumns the same number of values, then it must use the unknown values
retum convention, which requires a descriptor representation. Pay attention to the known retum efficiency notes to
avoid number consing,

7.9.10. Characters

Python also uses a non-descriptor representation for characters when convenient. This improves the efficiency of
string manipulation, but is otherwise pretty invisible; characters have an immediate descriptor representation, so
there is not a great penalty for converting a character to a descriptor. Nonetheless, it may sometimes be helpful to
declare character-valued variables as base~character.

7.10. General Efficiency Hints

This section is a summary of various implementation costs and ways to get around them. These hints are
relatively unrelated to the use of the Python compiler, and probably also apply to most other Common Lisp
implementations. In each section, there are references to related in-depth discussion.

7.10.1. Compile Your Code

At this point, the advantages of compiling code relative to running it interpreted probably need not be emphasized
too much, but remember that in CMU Common Lisp, compiled code typically runs hundreds of times faster than
interpreted code. Also, compiled (fasl) files load significantly faster than source files, so it is worthwhile
compiling files which are loaded many times, even if the speed of the functions in the file is unimportant.

Even disregarding the efficiency advantages, compiled code is as good or better than interpreted code. Compiled
code can be debugged at the source level (see chapter 5), and compiled code does more error checking. For these
reasons, the interpreter should be regarded mainly as an interactive command interpreter, rather than as a
programming language implementation.

ADVANCED COMPILER USE AND EFFICIENCY HINTS 113

Do not be concerned about the performance of your program until you see its speed compiled. Some techniques
that make compiled code run faster make interpreted code run slower.

7.10.2. Avoid Unnecessary Consing

Consing is another name for allocation of storage, as done by the cons function (hence its name.) cons is by no
means the only function which conses — so does make-array and many other functions. Arithmetic and function
call can also have hidden consing overheads. Consing hurts performance in the following ways:

¢ Consing reduces memory access locality, increasing paging activity.
¢ Consing takes time just like anything else.

» Any space allocated eventually needs to be reclaimed, either by garbage collection or by starting a new
"1lisp" process.

Consing is not undiluted evil, since programs do things other than consing, and appropriate consing can speed up
the real work. It would certainly save time to allocate a vector of intermediate results that are reused hundreds of
times. Also, if it is necessary to copy a large data structure many times, it may be more efficient to update the data
structure non-destructively; this somewhat increases update overhead, but makes copying trivial.

Note that the remarks in section 7.1.5 about the importance of separating tuning from coding also apply to
consing overhead. The majority of consing will be done by a small portion of the program. The consing hot spots
are even less predictable than the CPU hot spots, so don't waste time and create bugs by doing unnecessary consing
optimization. During initial coding, avoid unnecessary side-effects and cons where it is convenient. If profiling
reveals a consing problem, then go back and fix the hot spots.

See section 7.9.2 for a discussion of how to avoid number consing in Python.

7.10.3. Complex Argument Syntax

Common Lisp has very powerful argument passing mechanisms. Unfortunately, two of the most powerful
mechanisms, rest arguments and keyword arguments, have 2 significant performance penalty:

» With keyword arguments, the called fimction has to parse the supplied keywords by iterating over them
and checking them against the desired keywords.

» With rest arguments, the function must cons a list to hold the arguments. If a function is called many
times or with many arguments, large amounts of memory will be allocated.
Although rest argument consing is worse than keyword parsing, neither problem is serious unless thousands of calls
are made to such a function. The use of keyword arguments is strongly encouraged in functions with many
arguments or with interfaces that are likely to be extended, and rest arguments are often natural in user interface
functions,

Optional arguments have some efficiency advantage over keyword arguments, but their syntactic clumsiness and
lack of extensibility has caused many COMMON LISP programmers to abandon use of optionals except in functions
that have obviously simple and immutable interfaces (such as subseq), or in functions that are only called in a few
places. When defining an interface function to be used by other programmers or users, use of only required and
keyword arguments is recommended.

Parsing of defmacro keyword and rest arguments is done at compile time, so a macro can be used to provide a
convenient syntax with an efficient implementation. If the macro-expanded form contains no keyword or rest
arguments, then it is perfectly acceptable in inner loops.

Keyword argument parsing overhead can also be avoided by use of inline expansion {section 7.7) and block
compilation (section 7.6.5.)

114 ‘ CMU COMMON LISP USER'S GUIDE

Note: the compiler open-codes most heavily used system functions which have keyword or rest arguments, so that
no run-time overhead is involved.

~7.10.4. Mapping and Iteration

One of the traditional Common Lisp programming styles is a highly applicative one, involving the use of mapping
functions and many lists to store intermediate results. To compute the sum of the square-roots of a list of numbers,
one might say:

{apply #'+ (mapcar #’'sqrt list-of-numbers))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons why:
» The creation of lists of intermediate resuits causes much consing (see 7.10.2).

» Each level of application requires another scan down the list. Thus, disregarding other effects, the
above code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same code:
(do ({num list-of-numbers (cdr num))
{(sum 0 (+ (sgrt (car num)) sum)))
((null num) sum))

See sections 7.3.1 and 7.4.1 for a discussion of the interactions of iteration constructs with type inference and
variable optimization. Also, section 7.6.4 discusses an applicative style of iteration,

7.10.5. Trace Files and Disassembly

In order to write efficient code, you need te know the relative costs of different operations. The main reason why
writing efficient Common Lisp code is difficult is that there are so many operations, and the costs of these
operations vary in obscure context-dependent ways. Although efficiency notes point out some problem areas, the
only way to ensure generation of the best code is to look at the assembly code output.

The disassemble function is a convenient way to get the assembly code for a function, but it can be very
difficult to interpret, since the correspondence with the original source code is weak. A better (but more awkward)
option is to use the :trace-file argument to compile~£file to generate a trace file,

A trace file is a dump of the compiler’s internal representations, including annotated assembly code. Each
component in the program gets three pages in the trace file (separated by "~L"):

¢ The implicit-continuation (or IR1) representation of the optimized source. This is a dump of the flow
graph representation used for "source level” optimizations. As you will quickly notice, it is not really
very close to the source. This representation is not very useful to even sophisticated users.

» The Virtual Machine (VM, or IR2) representation of the program. This dump represents the generated
code as sequences of "Virtyal OPerations” (VOPs.) This representation is intermediate between the
source and the assembly code — each VOP comespends fairly directly to some primitive function or
construct, but a given VOP also has a fairly predictable instruction sequence. An operation (such as +)
may bave multiple implementations with different cost and applicability. The choice of a particular
VOP such as +/£ixnum or +/single-£loat represents this choice of implementation. Once you
are familiar with it, the VM representation is probably the most useful for determining what
implementation has been used.

* An assembly listing, annotated with the VOP responsible for generating the instructions. This listing is
useful for figuring out what a VOP does and how it is implemented in a particular context, but its large
size makes it more difficult to read.

Note that trace file generation takes much space and time,' since the trace file is tens of times larger than the

ADVANCED COMPILER USE AND EFFICIENCY HINTS : 115

source file. To avoid huge confusing trace files and much wasted time, it is best to separate the criical program
portion into its own file and then generate the trace file from this small file.

7.11. Efficiency Notes

Efficiency notes are messages that wam the user that the compiler has chosen a relatively inefficient
implementation for some operation. Usually an efficiency note reflects the compiler’s desire for more type
information. If the type of the values concemed is known to the programmer, then additional declarations can be
used to get a more efficient implementation.

Efficiency notes are controlled by the extensions:inhibit-warnings optimization quality (see section
6.7.1.) When speed is greater than extensions:inhibit~warnings, efficiency notes are enabled. Note
that this implicitly enables efficiency notes whenever speed is increased from its defanlt of 1.

Consider this program with an obscure missing declaration:
{(defun eff-note (x y z)
{declare (fixnum x y z})
(the fixnum (+ x y z)))
If compiled with (speed 3) (safety 0), this note is given:
In: DEFUN EFF-NOTE
(+ XY 2)
=D
(+ (+ X ¥) 2)
Note: Forced to do inline (signed-byte 32) arithmetic (cost 3).
Unable to do inline fixnum arithmetic {(cost 2) because:
The first argument is a (INTEGER ~1073741824 1073741822),
not a FIXNUM.
This efficiency note tells us that the result of the intermediate computation (+ x y) is not known to be a £ixnum,
so the addidon of the intermediate sum to z must be done less efficiently. This can be fixed by changing the
definition of ef€-note:
(defun eff-note (x y z)
{(declare (fixnum x y z))
{the fixnum (+ (the fixnum (+ x y)) z)))

7.11.1. Type Uncertainty

The main cause of inefficiency is the compiler’s lack of adequate information about the rypes of function
argument and result values. Many important operations (such as arithmetic) have an inefficient general (generic)
case, but have efficient implementations that can usually be used if there is sufficient argument type information.

Type efficiency notes are given when a value's type is uncertain. There is an important distinction between
values that are not known to be of a good type (uncertain) and values that are known not to be of a good type.
Efficiency notes are given mainly for the first case (uncertain types.) If it is clear to the compiler that that there is
not an efficient implementation for a particular function call, then an efficiency note will only be given if the
extensions:inhibit-warnings optimization quality is O (see section 6.7.1.)

In other words, the default efficiency notes only suggest that you add declarations, not that you change the
semantics of your program so that an efficient implementation will apply. For example, compilation of this form
will not give an efficiency note:

(elt (the list 1) i)
even though a vector access is more efficient than indexing a list.

116 ' CMU COMMON LISP USER'S GUIDE

7.11.2. Efficiency Notes and Type Checking

It is important that the ef£-note example above used (safety 0). When type checking is enablied, you may
get apparently spurious efficiency notes. With (safety 1), the note has this extra line on the end:
The result is a (INTEGER -1610612736 1610612733), not a FIXNUM.
This seems strange, since there is a the declaration on the result of that second addition.

In fact, the inefficiency is real, and is a consequence of Python's treating declarations as assertions to be verified.
The compiler can’t assume that the resuit type declaration is true — it must generate the result and then test whethe
it is of the appropriate type. '

In practice, this means that when you are tuning a program to run without type checks, you should work from the
efficiency notes generated by unsafe compilation. If you want code to run efficiently with type checking, then you
should pay attention to all the efficiency notes that you get during safe compilation. Since user supplied output type
assertions (e.g., from the) are disregarded when selecting operation implementations for safe code, you must
somehow give the compiler information that allows it to prove that the result truly must be of a good type. In our
example, it could be done by constraining the argument types more:

(defun eff-note (x y z)
(declare (type (unsigned-byte 18) x y z})
(+ x y z}) 7
Of course, this declaration is acceptable only if the arguments t0 ef£-note always are (unsigned-byte 18)
integers.

7.11.3. Representation Efficiency Notes |

When operating on values that have non-descriptor representations (see section 7.9.2), there can be a substantial
time and consing penalty for converting to and from descriptor representations. For this reason, the compiler gives
an efficiency note whenever it is forced to do a representation coercion more expensive than
efficiency-note-cost-threshold,

Inefficient representation coercions may be due to type uncertainty, as in this example:
(defun set-flo (x)
{(declare (single-float =x})
{(prog ((var 0.0))
(setg var (gorp)})
(setqg var =x)
(return var)))
which produces this efficiency note:
In: DEFUN SET-FLO
(SETQ VAR X)
Note: Doing float to pointer coercion {cost 13) from X to VAR.
The variable var is not known to always hoid values of type single-£loat, 50 a descriptor representation must
be used for its value. In sort of sitzation, and adding a declaration will eliminate the inefficiency.

Often inefficient representation conversions are not due to type uncertainty — instead, they result evaluating a
non-descriptor expression in a context that requires a descriptor result:

+ Assignment to or initialization of any data structure other than a specialized array (see section 7.9.8), or
s Assignment {0 a special variable, or

¢ Passing as an argument or reiuming as a value in any function call that is not a local call {(see section
7.9.9.)

If such inefficient coercions appear in a "hot spot” in the program, data structures redesign or program
reorganization may be necessary to improve efficiency. See sections 7.6.5, 7.9 and 7.12.

ADVANCED COMPILER USE AND EFFICIENCY HINTS : : 117

Because representation selection is done rather late in compilation, the source context in these efficiency notes is
somewhat vague, making interpretation more difficult. This is a fairly straightforward example:
{defun cf+ (x y)
{declare (single-float x y))
{cons {+ x y)} t))
which gives this efficiency note:
In: DEFUN CF+
(CONS (+ X ¥) T)
Note: Doing float to pointer coercion (cost 13), for:
The first argument of CONS.
The source context form is almost always the form that receives the value being coerced (as it is in the preceding
example), but can also be the source form which generates the coerced value. Compiling this example:
{defun if-cf+ (x y)
{declare (single-float x v))
{cons (if (grue) (+ x y} (snoc)) t))
produces this note:
In: DEFUN IF-CF+
{(+ X Y)
Note: Doing float to pointer coercion (cost 13).

In either case, the note’s text explanation attempts to include additional information about what locations are the
source and destination of the coercion. Here are some example notes:
(IF (GRUE) X (SNOC))
Note: Doing float to pointer ceocercion (cost 13) from X.

{SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.
Note that the return value of a function is also a place to which coercions may have to be done:

{DEFUN F+ (X ¥) (DECLARE (SINGLE-FLOAT X ¥}) (+ X Y¥))
Note: Doing float to peinter coercien (cost 13) to "<return value>".

Sometimes the compiler is unable to determine a name for the source or destination, in which case the source
context is the only clue.

7.11.4. Verbosity Control

These variables control the verbosity of efficiency notes:

efficiency-note-cost-threshold [Variable]
Before printing some efficiency notes, the compiler compares the value of this variable to the difference
in cost between the chosen implementation and the best potential implementation. If the difference is not
greater than this limit, then 0o note is printed, The units are implementation dependent; the initial value
‘suppresses notes about "trivial” inefficiencies. A value of 1 will note any inefficiency.

efficiency-note-limit [Variabie]
When printing some efficiency notes, the compiler reponts possible efficient implementations. The initial
value of 2 prevents excessively long efficiency notes in the common case where there is no type
information, so all implementations are possible.

118 . CMU COMMON LISP USER’S GUIDE

7.12. Profiling

The first step in improving a program’s performance is to profile the activity of the program to find where it
spends its time. The best way to do this is to use the pro£ile library entry (see section 3.6). Hemlock’s "Lisp
Library" command will help you find, describe, and load this tool. Basically, it provides a macro profile for
encapsulating routines for statistics gathering and report-time that prints for each named function the following
information:

* The total CPU time used in the function for all calls to it.

* The total number of bytes consed in the function for all calls to it,
s The total number of calls.

e The average amount of CPU time per call.

The following routines are in the released system:

See time (page 7). This macro executes a form and reports the time to do so and how much it consed. Due to
the nature of the interpreter, you can get more accurate consing information if you put time in a function, compile
it, and then call the function. For things which execute fairly quickly, time them more than once, since there may be
more paging overhead in the first timing. Also, you can put what you are really interested in an iteration form and
time that; then divide the time and bytes consed by the number of iterations for more accurate statistics.

extensions:get-bytes-consed [Function]
This function retumns the number of bytes allocated since the first time you called it. The first time it is
called it returns zero. The above profiling routines use this to report consing information,

7.12.1. A Note on Timing

There are two general kinds of iming information provided by the t ime macro and other profiling utilities: real
time and run time. Real time is elapsed, wall clock time, It will be affected in a fairly obvious way by any other
activity on the machine. The more other processes contending for CPU and memory, the more real time will
increase. This means that real time measurements are difficult to replicate, though this is less true on a dedicated
workstation. The advantage of real time is that it is real. It tells you really how long the program took to run under
the benchmarking conditions. The probiem is that you don’t know exactly what those conditions were,

Run time is the amount of time that the processor supposedly spent running the program, as opposed to waiting
for I/O or running other processes. "User run time” and "system run time" are numbers reported by the Unix kernel,
They are supposed to be a measure of how much time the processor spent running your "user” program (which will
include GC overhead, etc.}, and the amount of time that the kemel spent running "on your behaif",

Ideally, user time should be totally unaffected by benchmarking conditions; in reality user time does depend on
other system activity, though in rather non-obvious ways.

System time will clearly depend on benchmarking conditions. In Lisp benchmarking, paging activity increases
system mn time (but not by as much as it increases real time, since the kernel spends some time waiting for the disk,
and this is not run time, kernel or otherwise.)

In my experience, the biggest trap in interpreting kemel/user run time is to look only at user time.. In reality, it
seems that the sum of kemel and user time is more reproducible. The problem is that as system activity increases,
there is a spuricus decrease in user run time. In effect, as paging, etc., increases, user time leaks into system time.

So, in practice, the only way to get truly reproducible results is to mun with the same competing activity on the

ADVANCED COMPILER USE AND EFFICIENCY HINTS ' 119

system. Try to run on a machine with nobody else logged in, and check with "ps aux" to see if there are any system
processes munching large amounts of CPU or memory. If the ratio between real time and the sum of user and
system time varies much between runs, then you have a problem.

7.12.2, Benchmarking Techniques

Given these imperfect timing tools, how do should you do benchmarking? The answer depends on whether you
are trying to measure improvements in the performance of a single program on the same hardware, or if you are
trying to compare the performance of different programs and/or different hardware.

For the first use {(measuring the effect of program modifications with constant hardware), you should look at both
system+user and real time to understand what effect the change had on CPU use, and on [/O (including paging.) If
you are working on a CPU intensive program, the change in system-+user time will give you a moderately
reproducible measure of performance across a fairly wide range of system conditons. For a CPU intensive
program, you can think of system+user as "how long it would have taken to run if I had my own machine.” So in
the case of comparing CPU intensive programs, system-+user time is relatively real, and reasonable to use.

For programs that spend a substantial amount of their ttme paging, you really can’t predict elapsed time under a
given operating condition without benchmarking in that condition. User or system+user time may be fairly
reproducible, but it is also relatively meaningless, since in a paging or IfO intensive program, the program is
spending its ime waiting, not unning, and system time and user time are both measures of run time. A change that
reduces run time might increase real time by increasing paging.

Another common use for benchmarking is comparing the performance of the same program on different
hardware. You want to know which machine to run your program on. For comparing different machines (operating
systems, etc.), the only way to compare that makes sense is to set up the machines in exactly the way that they will
normally be mun, and then measure real ime. If the program will normally be run along with X, then mun X. If the
program will normally be run on a dedicated workstation, then be sure nobody else is on the benchmarking machine.
If the program will normally be run on a machine with three other Lisp jobs, then run three other Lisp jobs. If the
program will normally be run on a machine with 8meg of memory, then run with 8meg. Here, "normal” means
“normal for that machine”. If you the choice of an unloaded RT or a heavily loaded PMAX, do your benchmarking
on an unloaded RT and a heavily loaded PMAX.

If you have a program you believe to be CPU intensive, then you might be tempted to compare "run” times across
systems, hoping to get a meaningful result even if the benchmarking isn’t done under the expected running
conditon. Don't to this, for two reasons:

¢ The operating systems might not compute run time in the same way.
» Under the real running condition, the program might not be CPU intensive after all.

In the end, only real time means anything — it is the amount of time you have to wait for the result. The only
valid uses for run time are: '

» To develop insight into the program. For example, if run time is much less than elapsed time, then you
are probably spending lots of time paging.

e To evaluate the relative performance of CPU intensive programs in the same environment.

120 : . CMU COMMON LISP USER'S GUIDE

Chapter 8

MACH Interface

By Rob Maclachian, Skef Wholey,
Bill Chiles, and William Lott

CMU Common Lisp attempts to make the full power of the underlying environment available to the Lisp
programmer. This is done using combination of hand-coded interfaces, automatically generated MACH RPC stubs
and foreign function cafls to C libraries. Although the techniques differ, the style of interface is similar. This
chapter provides an overview of the facilities available and general rules for using them, as well as describing
specific features in detail. It is assumed that the reader has a working familiarity with Mach, Unix and X, as well as
access to the standard system documentation.

8.1. Lisp Equivalents for C Routines

The MACH documentation describes the system inmterface in terms of C procedure headers. The corresponding
Lisp function will have a somewhat different interface, since Lisp argument passing conventions and datatypes are
different.

The main difference in the argument passing conventions is that Lisp does not support passing values by
reference. In Lisp, all argument and resuits are passed by value. Interface functions take some fixed number of
arguments and retum some fixed number of values. A given "parameter” in the C specification will appear as an
argument, retumn value, or both, depending on whether it is an In parameter, Out parameter, or In/Qut parameter.
The basic transformation one makes to come up with the Lisp equivalent of a C routine is to remove the Out
parameters from the call, and treat them as extra return values. In/Out parameters appear both as arguments and
return values. Since Out and In/Out parameters are only conventions in C, you must determine the usage from the
documentation.

Thus, the C routine declared as
kern return t lookup (servport, portsname, portsid)

port servport;
char *portsname;
int *portsid; /* out */

{

*portsid = <expression tc compute portsid field>
return (KERN_SUCCESS) ;
}

has as its Lisp equivalent something like

121

122 . CMU COMMON LISP USER'S GUIDE

(defun lookup (ServPort PortsName)

(values‘
success
<expression to compute portsid field>})

An extra twist that complicates this ‘‘translation” process but makes programming easier is this: when the routine
retumns a record value, the components of that record may be retumed as multiple values. This eliminates the need
to extract fields from Alien structures (see below) and frees the programmer from having to explicitly deallocate
such structures.

So, the C routine declared as
void getevent (sexvport, event)
port servport;
keyevent *event; /* out */

keyevent->cmd = <expression tco compute Cmd field>
keyevent->ch = <expression to compute Ch field>
keyevent->region = <expression to ccmpute Region field>
keyevent->y <expression to compute Y field>

keyevent ->x <expression to compute X field>

..

}
would be written like this in Lisp:
(defun getevent (servport)
{values
<expression to compute Cmd field>
<expression to compute Ch field>
<expression to compute Region field>

<expression to compute Y field>
<expression to compute X field>))

Fortunately, CMU Common Lisp programmers rarely have to worry about the nuances of this translation process,
since the names of the arguments and return values are documented in a way so that the describe function (and
the Hemlock Describe Function Call command, invoked with C-M-Shift-A) will list this information.
Since the names of arguments and retumn values are usually descriptive, the information that describe prints is
usually all one needs to write a call to a Matchmaker-generated function. Most programmers use this on-line
documentation nearly all of the time, and thereby avoid the need to handle bulky manuals and perform the
translation from barbarous tongues.

8.2. Type Translations

Lisp data types have very different representations from those used by conventional languages such as C. Since
the system interfaces are designed for conventional languages, Lisp must translate objects to and from the Lisp
representations. Many simple objects have a direct translation: integers, characters, strings and floating point
numbers are translated to the corresponding Lisp object. A number of types, however, are implemented differently
in Lisp for reasons of clarity and efficiency. ‘

Instances of enumerated types are expressed as keywords in Lisp. Thus, an instance of the enumerated type
defined by

MACH INTERFACE 123

Type KeyHowWait = (KeyWaitDiffPos, KeyDontWait, KeyWaitEvent):;
would be written in Lisp as a keyword: ; keywaitdiffpos, (keydontwait, or :keywaitevent.

Records, arrays, and pointer types are implemented with the Alien facility (see page 139.) Access functions are
defined for these types which convert fields of records, elements of arrays, or data referenced by pointers into Lisp
objects (possibly another object to be referenced with another access function):

* A record of type type can be constructed with a function make~type. A field named field of a record of
type type may be accessed with a function fype—field, and set with set £ of that function.

* An array of type rype can be constiucted with a function make-rype; if the array type allows for a
variable upper bound on indices, these bounds may be specified. Elements of such an array may be
accessed with the function rype-re£, and may be set with set £ of that function.

» A pointer of type rype to an object may be dereferenced with a function indirect~iype. To create an
object and get a pointer of type rype to that object, one can cail the function make—type. If the pointer
type references an array of objects, indices may be provided as optional arguments to the indirect
function, and if the array has a vaniable upper bound, it may be specified when calling the constructor
function.

One should dispose of Alien objects created by constructor functions or retumned from remote procedure calls
when they are no longer of any use, freeing the virmal memory associated with that object. Since Aliens contain
pointers to non-Lisp data, the garbage collector cannot do this itseif. If the Alien was created using MACH memory
allocation (e.g. vm_allocate), then the storage should be freed using dispose-alien (page 140). If the
memory was obtained from a foreign function call to a routine that used malloe, then system: free should be
used on the system:alien-sap of the Alien,

8.2.1. System Area Pointers

Note that in some cases an address is represented by a Lisp integer, and in other cases it is represented by a real
pointer. Pointers are usually used when an object in the current address space is being referred 10. The MACH
virtual memory manipulation calls must use integers, since in principle the address could be in any process, and Lisp
cannot abide random pointers. Because these types are represented differently in Lisp, one must explicitly coerce
between these representations.

System Area Pointers (SAPs) provide a mechanism that bypasses the Alien type system and accesses virtual
memory directly. A SAP is a raw byte pointer into the 1isp process address space. SAPs are represented with a
pointer descriptor, so SAP creation can cause consing. However, the compiler uses a non-descriptor representation
for SAPs when possible, so the consing overhead is generally minimal. See section 7.9.2.

system:alien-sap alien [Macro]
The function alien-sap is used to generate a system area pointer (a virtual address that poiats into the
section of Lisp’s address space reserved for Alien objects) from an Alien.

NOTE: Usually a pointer from a system interface function is an Alien, but whenever a pointer is passed in, it must
be passed as a system area pointer. This strange calling convention was adopted to eliminate the necessity of
constructing an Alien value just for the purpose of passing a pointer. The programmer interface is simplified, since
a simple function call can be made in most places without the need to declare a local variable, construct an Alien
value, and deallocate that Alien value (or use alien-bind for those three things).

124 CMU COMMON LISP USER’S GUIDE

system:sap-int sap [Function]}

system:int-sap int ‘ [Function]
The function sap-int is used to generate an integer corresponding to the system area pointer, suitable
for passing to the kernel interfaces (which want all addresses specified as integers). The function
int-sap is used to do the opposite conversion. The integer representation of a SAP is the byte offset of
the SAP from the start of the address space.

system: sap+ sap offset [Function]
This function adds a byte offser to sap, returning a new SAP.

" system:sap-ref-8 sap offset [Function]
system:sap-ref-16 sap offset ‘ . [Function]
system: sap~ref-32 sap offser ' [Function)

These functions return the 8, 16 or 32 bit unsigned integer at o_ﬁ'set from sap. The gffset is scaled by the
integer size, so the offset for sap-re£-16 is in 16 half-words, and the offset for sap-ref£-32 is in 32
bit words. Set £ may be used with the these functions to deposit values into virtual memory.

system:signed-sap-ref-8 sap offser [Function]
system:signed-sap-ref~16 sap offset _ [Function)
system:signed-sap-ref-32 sap offset [Function]

These functions are the same as the above unsigned operations, except that they sign-extend, retumning a
negative number if the high bit is set.

- 8.3. Unix System Calls

You probably won't have much cause 10 use them, but all the Unix systern calls are available. The Unix system
call functions are in the "mach" package. The name of the imterface for a particular system call is the name of the
system call prepended with "unix-". The system usually defines the associated constants without any prefix name.
To find out how 1o use a particular system call, try using describe onit. If that is unhelpful, look at the source in
syscall.lisp or consult your system maintainer.

The Unix system calls indicate an error by retuming nil as the first value and the Unix error number as the
second value. If the call succeeds, then the first value will always be non-nil, often t.

mach:get-unix-error-msg error [Function]
This function returns a string describing the Unix error number error.

Many of the UNIX system calls return file descriptors. Instead of using other UNIX system calls to perform I/O
on them, you can create a stream around them. For this purpose, fd-streams exist.

system:make-fd-stream descripior &key :input :output :element-type [Function]
:buffering :name :file :original
:delete-criginal
This function creates a file descriptor stream using descriptor. If input is non-nil, mput operations are
allowed. If output is non-nil, output operations are allowed. The default is input only.

element-type is the type of the unit of transaction for the stream, which defaults to string-chazr. See
the Common Lisp description of open for valid values.

buffering is the kind of output buffering desired for the stream. Legal values are : none for no buffering,

MACH INTERFACE 125

system:

system:

: 1line for buffering up to each newline, and : £ull for full buffering.

name is a simple-string name to use for descriptive purposes when the system prints an fd-stream. When
printing fd-streams, the system prepends the streams name with "Stream for ". If name is
unspecified, it defaults 1o a string containing file or descriptor, in order of preference.

If the created stream is a file stream, file is the name of the associated file, and this must be a simple-
string. original is simple-string name of a backup file containing the original contents file while writing

file.

When you abort the stream by passing t to close as the second argument, if you supplied both file and
original, close will rename the original name to the file name.

When you close the stream normally, if you supplied original, and delete-original is non-nil, close

deletes original.

fd-stream-p object [Function}]
This function retumns t if object is an fd-stream, and nil if not.

fd-stream-£fd siream [Function]
This returns the file descriptor associated with stream.

8.4. Making Sense of Return Codes

Whenever a remote procedure call returns a Mach error code (such as kern_return_t), it is usually prudent to
check that code to see if the call was successful. To relieve the programmer of the hassle of testing this value
himself, and to centralize the information about the meaning of non-success retum codes, CMU Common Lisp
provides a number of macros and functions.

system:

system:
system:

gr~error function gr &optional context [Function]
Signals a Lisp error, printing a message indicating that the call to the specified function failed, with the
return code gr. If supplied, the context string is printed after the function name and before the string
associated with the gr. For example:

* (gr-error 'nukegarbage 3 "lost big")

Error in function GR-ERROR:

NUKEGARBAGE lost big, no space.

Proceed cases:

0: Return to Top-Level.

Debug (type H for help)

{(Signal #<Conditions:Simple-Error.5FDE0>)

0]
gr-call function &rest args [Macro]
gr-call* function &rest args [Macro]

These macros can be used to call a function and astomatically check the GeneralReturn code and signal
an appropriate error in case of non-successful return. gr-call retums nil if no error occurs, while
gr—-call* retumns the second value of the function called.

* {gr-call mach:port_allocate *task-self*)

NIL
*x

126 CMU COMMON LISP USER’S GUIDE

system:gzr-bind ({var}*) (function [arg}*) {[form}* [Macro]
This macro can be used much like multiple-value-bind to bind the vars to return values resulting
from calling the function with the given args. The first retum value is not bound to a variable, but is
checked as a GeperaiRetum code, as in gr-call.
* {(gr-bind (port list port list cnt)
) (mach?port select *t;sk—self*)
(format t "The po-;t count is ~§." port_list_cnt)
port list)
The port_'cou.nt is 0.

#Qliep value>
”*

8.5. Packages

The functions and constants that make up each Matchmaker-generated interface usually reside in their own
package, and the public symbols of that package are exported. Thus, one usually uses the package for an interface
one wishes to use. A program that used the Mach kernel, the CLX interface to the X window manager, and the
Message Name server might begin with:

;;; —-*- Package: Hack -*-
;;: A silly graphics hack.
;;: Written by Joe Schmoe,

{(in-package "HACK" :use ' ("LISP" "XLIB" "MACH" "MSGN"))

Note that all of the standard interfaces are built into the CMU Common Lisp core image, and one doesn’t need to
load any other files to use these facilities. Here is a list of the packages that hold the built-in interfaces.

MACH Holds the MACH interface and the Unix system calls.

XLIP Holds the CLX interface to the X window manager version [1. See the CLX documentation for
details.

8.6. Useful Variables

The information passed to the process in its starfup message is available in the values of global variables.

system: *nameserverport* i [Variable]
Port to the message name server. '

system: *task-self* [Variable}
system: *task-datax* ' [Variable]
system:*task-notify* [Variable]

The initial ports for the Lisp process.

8.7. Reading the Command Line

The shell parses the command line with which Lisp is invoked, and passes a data structure containing the parsed
information to Lisp. This information is then extracted from that data structure and put into a set of Lisp data
structures.

MACH INTERFACE 127

extensions:*command-line-strings* [Variablel
extensions:*command-line-utility-name#* [Variable]
extensions:*command-line-words* [Variable]
extensions:*command-line-switches¥* [Variable]

The value of *command-line-words* is a list of strings that make up the command line, one word
per string. The first word on the command line, i.e. the name of the program invoked (usually "1isp™)
is stored in *command-line-utility-name* The value of *command-line-switches*isa
list of command-line-switch structures, with a structure for each word on the command line
starting with a hyphen. All the command line words between the program name and the first switch are
stored in *command-line-words*. ‘

The following functions may be used to examine command-line—-switch structures.

extensions:cmd-switch-name switch [Function]
Returns the name of the switch, less the preceding hyphen and trailing equal sign (if any).

extensions:cmd-switch-value switch [Function]
Returns the value designated using an embedded equal sign, if any. If the switch has no equal sign, then
this is null.

extensions:cmd~switch-words swiich [Function)

Retums a list of the words between this switch and the next switch or the end of the command line.

28

CMU COMMON LISP USER'S GUIDE.

Chapter 9

Event Dispatching with SYSTEM:SERVE-EVENT

By Bill Chiles and Rob Maclachlan

It is common to have multiple activities simultanecusly operating in the same Lisp process. Furthermore, Lisp
programmers tend to expect a flexible development environment. It must be possible to load and modify application
programs without requiring meodifications to other running programs. CMU Common Lisp achieves this by having
a central scheduling mechanism based on an event-driven, object-oriented paradigm.

An event is some interesting happening that should cause the Lisp process to wake up and do something. These
events include X events and activity on Unix file descriptors. The object-oriented mechanism is only available with
the first two, and it is optional with X events as described later in this chapter. In an X event, the window ID is the
object capability and the X event type is the operation code. The Unix file descriptor input mechanism simply
consists of an association list of a handler to call when input shows up on a particular file descriptor.

9.1. Object Sets

An object set is a collection of objects that have the same implementation for each operation. Externally the
object is represented by the object capability and the operation is represented by the operation code. Within Lisp,
the object is represented by an arbitrary Lisp object, and the implementation for the operation is represented by an
arbitrary Lisp functon. The object set mechanism maintains this translaton from the extemal to the internal
representation,

system:make-cbject-set name &optional default-handler [Function]
This function makes a new object set. Name is a string used only for purposes of identifying the object
set when it is printed. Defauit-handler is the function used as a handler when an undefined operation
occurs on an object in the set. You can define operations with the serve-operation functions exported
the "EXTENSIONS" package for X events (see section 9.4). Objects are added with
system:add-xwindow-object. Initially the abject set has no objects and no defined operations.

system:object~set~operation object-set operation-code [Function)
This function retums the handler function that is the implementation of the operation comesponding to
operation-code in object-set. When set with set £, the setter function establishes the new handler. The
serve-operation functions exporied from the "EXTENSIONS" package for X events (see section 9.4)
call this on behalf of the user when anncuncing a new operation for an object set.

129

130 - CMU COMMON LISP USER’S GUIDE

system:add-xwindow-cbject window object object-set (Function)]
These functions add port or window to object-set. Object is an arbitrary Lisp object that is associated
with the port or window capability. Window is a CLX window. When an event occurs,
system: serve-event passes object as an argument to the handier function.

9.2. The SYSTEM:SERVE-EVENT Function

The system:serve-event function is the standard way for an application to wait for something to happen.
For example, the Lisp system calls system: serve-event when it wants input from X or a terminal stream. The
idea behind system: serve-event is that it knows the appropriate action to take when any interesting event
happens. If an application calls system: serve-event when it is idle, then any other applications with pending
events can run. This allows several applications to run "at the same time" without interference, even though there is
only one thread of control. Note that if an application is waiting for input of any kind, then other applications will
get events.

system:serve-event &optional timeout [Function]
This function waits for an event to happen and then dispatches to the correct handler function. If
specified, timeout is the number of seconds to wait before timing out. A time out of zero seconds is legal
and causes system:serve-event to poll for any events immediately available for processing.
system:serve-event retums t if it serviced at least one event, and nil otherwise. Depending on
the application, when system: serve-event returns t, you might want to call it repeatedly with a
timeout of zero until it retarns nil.

If input is available on any designated file descripter, then this calls the appropriate handler function
supplied by system: add-fd-handlexr.

Since events for many different applications may arrive simultaneously, an application waiting for a
specific event must loop on system: serve-event until the desired event happens. Since programs
such as Hemlock call system:serve-event for input, applications such as Matchmaker servers
usuaily do not need to call system: serve-event at all; Hemlock allows other apphcauon s handlers
to run when it goes into an input wait, :

system:serve-all-events &optional timeout [Function]
This function is similar to system: serve-event, except it serves all the pending events rather than
just one. It retumns t if it serviced at least one event, and nil otherwise.

9.3. Using SYSTEM:SERVE-EVENT with Unix File Descriptors

Object sets are not available for use with file descriptors, as there are only two operations possible on file
descriptors: input and output. Instead, a handler for either input or output can be registered with
system: serve-event for a specific file descriptor. Whenever any input shows up, or output is possibie on this
file descriptor, the function associated with the handler for that descriptor is funcalled with the descriptor as it’s
single argument,

system:add~£fd-handler fddirection function {Function]
This function installs and returns a new handler for the file descriptor fd. Direction can be either
:input if the system should invoke the handler when input is available or :output if the system
should invoke the handler when output is possible. This returns a unique object representing the handler,
and this is a suitable argument for system: remove-fd-handlex Function must take one argument,

EVENT DISPATCHING WITH SYSTEM:SERVE-EVENT 131

the file descriptor.

system:remove-£d-handler handler [Function]
This function removes handler, that add-£d-handier must have previously returned.

system:with-fd-handler (directionfd function) (form}* [Macro]
This macro executes the supplied forms with a handler installed using fd, direction, and function. See
system:add-fd-handler.

system:wait-until-£fd-usable directionfd &optional timeout : [Function]
This function waits for up to rimeout seconds for fd to become usable for direction (either : input or
:output). If timeout is nil or unspecified, this waits forever.

system:invalidate-descriptor fd [Function]
This function removes all handlers associated with fd. This should only be used in drastic cases (such as
I/O errors, but not necessarily EOF), Nommally, you should use remove-£fd-handler to remove the
specific handler.

- 9.4. Using SYSTEM:SERVE-EVENT with the CLX Interface to X

Remember from section 9.1, an object set is a collection of objects, CLX windows in this case, with some set of
operations, event keywords, with comesponding implementations, the same handler functions. Since X allows
multiple display connections from a given process, you can avoid using object sets if every window in an application
or display connection behaves the same. If a particular X application on a single display connection has windows
that want to handle certain events differently, then using object sets is a convenient way to organize this since you
need some way to map the window/event combination to the appropriate functionality.

The following is a discussion of functions exported from the "EXTENSIONS" package that facilitate handling
CLX events through system: serve-event. The first two routines are useful regardless of whether you use
system:serve-event:

ext :open-clx-display &optional siring _ [Function]
This function parses string for an X display specification including display and screen numbers. String
defaults to the following:

{cdr (assoc :display ext:*environment-list* :test #'eq))
If any field in the display specification is missing, this signals an error. ext :open-clx-display
returns the CLX display and screen.

ext:flush-display-events display _ [Function]
This function flushes all the events in display’s event queue including the current event, in case the user
calls this from within an event handler.

9.4.1. Without Object Sets

Since most applications that use CLX, can avoid the complexity of object sets, these routines are described in a
separate section. The routines described in the next section that use the object set mechanism are based on these
interfaces,

132) CMU COMMON LISP USER’S GUIDE

ext:enable-clx-event-handling display handler [Function]
This function causes system: serve-event to notice when there is input on display’s connection 10
the X11 server. When this happens, system: serve—event invokes handler on display in a dynamic
context with an error handier bound that flushes all events from display and retums. By retuming, the
error handler declines to handle the error, but it will have cleared all events; thus, entering the debugger
will not result in infinite errors due to streams that wait via system: serve~event for input. Calling
this repeatedly on the same display establishes handler as a new handler, replacing any previous one for
display.

ext :disable-clx-event-handling display [Function]
This function undoes the effect of ext : enable-clx-event-handling.

ext :with-clx-event-handling (display handler) {form}* [Macro}
This macro evaluates each form in a context where system:serve-event invokes handler on
display whenever there is input on display’s connection to the X server. This destroys any previously
established handler for display.

9.4.2, With Object Sets

This section discusses the use of object sets and system:serve-event to handle CLX events. This is
necessary when a single X application has distinct windows that want to handle the same events in different ways.
Basically, you need some way of asking for a given window which way you want to handle some event because this
event is handled differently depending on the window. Object sets provide this feature.

For each CLX eveni-key symbol-name XXX (for example, key-press), there is a function serve-XXX of two
arguments, an object set and a function. The serve-XXX function establishes the function as the handler for the
: XXX event in the object set. Recall from section 9.1, system: add-xwindow-cbject associates some Lisp
object with a CLX window in an object set. When system: serve-event notices activity on a window, it calls
the function given 0 ext:enable-clx-event-handling. If this funcdon is
ext :object-set-event-handler, it calls the function given to serve-XXX, passing the object given to
system:add-xwindow-object and the event's slots as well as a couple other arguments described below.

To use object sets in this way:
1. Create an object set.

2. Define some operations on it using the serve-XXX functions.

3. Add an object for every window on which you receive requests. This can be the CLX window itself or
some structure more meaningful to your application.

4. Call system: serve-event to service an X event.

ext :ocbject-set~event-handler display [Functionr)
This function is a suitable argument to ext:enable-clx-event-handling. The actual event
handlers defined for particular events within a given object set must take an argument for every slot in the
appropriate event. In addition to the event slots, ext : object-set-event-handler passes the
following arguments:

» The object, as established by system:add-xwindow-cbject, on which the event
occurred. . .

» event-key, see x1ib:event-case.

* send-event-p, sece x1ib:event -case.
Describing any ext : serve-even!-key-name function, where event-key-name is an event-key symbol-

EVENT DISPATCHING WITH SYSTEM:SERVE-EVENT 133

name (for example, ext : serve-key-press), indicates exactly what all the arguments are in their
comrect order.

When creating an object set for use with ext:object-set-event-handlexr, specify
ext :default-clx-event-handler as the default handler for events in that object set. If no
default handler is specified, and the system invokes the default default handler, it will cause an error since
this function takes arguments suitable for handling port messages.

9.5. A SYSTEM:SERVE-EVENT Example

This section contains two examples using system: serve-avent. The first one does not use object sets, and
the second, slightly more complicated one does.

9.5.1. Without Object Sets

This example defines an input handler for a CLX display connection. It only recognizes :key-press events.
The body of the example loops over system: serve—event to getinput,
{in-package "SERVER-EXAMPLE")

{defun my-input-handler {display)
(xlib:event-case (display :timeout 0)
(:key-press (event-window code state)}
(format t "KEY-PRESSED (Window = ~D) = ~35, ~%"
(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext :translate-character display code state))
;; Make XLIB:EVENT-CASE discard the event.
t)))

134 CMU COMMON LISP USER'S GUIDE

(defun sexrver-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."
(let* ({display {ext:open-clx-display))
{screen (display-default-screen display))
{black (screen-black-pixel screen))
{(white (screen-white-pixel screen))
{(window (create-window :parent (screen-root screen)
:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press))))
;i Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect
(progn
;; Enable event handling on the display.
{ext :enable-clx-event-handling display # my-input-handler)
;; Map the windows to the screen.
{map-window window)
;7 Make sure we send all our requests.
{display-force~ocutput display)
;: Call serve-event for 100,000 events or immediate timecuts.
(dotimes (i 100000) (system:serve-event))) '
;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
;; Get rid of the window.
(destroy-window window)
}: Pick off any events the X server has already gqueued for our
;; windows, sc we don’t choke since SYSTEM:SERVE~EVENT is no longer
;; prepared to handle events for us.
{(locp
{(unless (deleting-window-drop-event *display* window)
(return)))
;; Close the display.
(xlib:close-display display))))

{(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."
(xlib:display-finish-ocutput display)
{({let {((result nil))
(xlib:process-event
display :timecut 0
:handler #’ (lambda (&key event-window Zallow-other-keys)
(if (eq event-window win)
{setf result t)
nil)))
result))

9.5.2. With Object Sets

This example involves more work, but you get a little more for your effort. It defines two objects, input-box
and slider, and establishes a : key-press handler. for each object, key-pressed and slider-pressed
We have two object sets because we handle events on the windows manifesting these objects differently, but the
events come over the same display connection.

EVENT DISPATCHING WITH SYSTEM:SERVE-EVENT 135

{(in-package "SERVER-EXAMPLE")

{defstruct (input-box (:print-function print-input-box)
{:constructor make-input-box (display window)))

"Our program knows about input-boxes, and it doesn’t care how they
are inplemented.”
display ; The CLX display on which my input-box is displayed.
window) ; The CLX window in which the user types.

(defun print-input-box (object stream n)
(declare (ignore n))
{format stream "#<Input-Box ~S>" (input-box-display cbject}))

{(defvar *input-box-windows*
(system:make-object-set "Input Box Windows"
#’'eaxt :default-clx-event-handler))

{defun key-pressed (input-box event-key event-window root child
same-screen-p X y root-x root-y modifiers time
key~-code send-event-p)

"This is our :key-press event handler."
(declare (ignore event-key roct child same-screen-p x y
root-x root-y time send-event-p))
{(format t "KEY-PRESSED (Window = ~D) = ~35,~%"
(2lib:window-id event-window)
}; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display input-box)
key-code modifiers)})

{ext ; serve-key-press *input-box-windows* #’'key-pressed)

136 CMU COMMON LISP USER'S GUIDE

(defstruct (slider (:print-function print-slider)
{:include input-box)
(:constructor ¥make-slider
(display window window-width max)))
"Our program knows about sliders too, and these provide input values
zero to max."
bits-per-value ; bits per discrete value up to max.
max) ; End value for slider.
{defun print-slider (cobject stream n)
(declare (ignore n}))
(format stream "#<Slider ~S5 O0..~D>"
{input-box-display cbject)
{(1- (slider-max cbject))))
{defun make-slider (display window max)
{*make-slider display window
(truncate (xlib:drawable-width window) max)
maxj))

(defvar *slider-windows*
(system:make-object-set "Slider Windows"
#’ ext :default-clx-event-handler))

(defun slider-pressed (slider event-key event~window root child
same-~gcreen-p X y root-x root-y medifiers time
key-code send-event-p)

"This is our 'key-press event handler for sliders. Probably this is
a mouse thing, but for simplicity here we take a character typed."
{declare (ignore event-key root child same-screen-p x y
root-x root-y time send-event-p))
{format t "KEY-PRESSED (Window = ~D) = ~8 ==> ~D, ~%"
{(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext :translate-character (input-box-display slider)
key-code modifiers)
(truncate x (slider-bits-per-value slider))))

{ext :serve-key-press *slider-windows* §/slider-pressed)

EVENT DISPATCHING WITH SYSTEM:SERVE-EVENT

(defun server-example ()

137

"An example of using the SYSTEM:SERVE-EVENT functien and object sets to

handle CLX events.,"”
(let* ({(display (ext:open-clx-display)}
{screen (display-default-screen display})
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(iwindow (create-window :parent (screen-root screen)
:x 0 :y 0 :width 200 :height 200
:background white :border black
:horder-width 2
:event-mask
(x1lib:make-event-mask :key-press)))
(swindow {create-window :parent (screen-rocot screen)
:x 0 :y 300 :width 200 :height 50
:backgrocund white :border black
:border-width 2
revent-mask
(xlib:make-event-mask :key-press)))
(input-box (make-input-box display iwindow})
(slider (make-slider display swindow 15)))
;: Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect
(progn
;; Enable event handling on the display.
(ext ;enable-clx-event-handling display
_ #’ ext :object-set-event-handler)
;; Add the windows to the appropriate object sets,
(system:add-xwindow-object iwindow input-box
input-box-windows)
(system:add-xwindow-cbject swindow slider
: *slider-windows¥*)
;; Map the windows to the screen.
(map-window iwindow)
{map-window swindow)
;; Make sure we send all our requests.
(display-force-cutput display)
;: Call server for 100,000 events or immediate timecuts.
{(dotimes (i 100000) (system:serve-event)))
;; Disable event handling on this display.
(ext :disable-clx-event-handling display)
(delete-window iwindow display)
{(delete-window swindow display)
;; Close the display.
(xlib:close-display display})))

138 CMU COMMON LISF USER'S GUIDE

{defun delete-window (window display)
;; Remove the windows from the object sets before destroying them.
(system: remove-xwindow-object window)
;; Destroy the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
:; windows, 30 we don’'t choke since SYSTEM:SERVE-EVENT is no longer
;: prepared to handle events for us.
{locp
(unless (deleting-window-drop-event display window)
(return))))

{defun deleting-window-drop~event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil.™
{(xlib:display-£finish-output display)
{let ((result nil))
{xlib:process-event
display :timeocut 0
:handler #’' (lambda (&key event-window &allow-other-keys)
(if (eq event-window win)
{setf result t)
nil)))
result))

Chapter 10

The Alien Facility

By Rob Maclachlan

10.1. What the Alien Facility Is

Aliens provide a mechanism in Lisp for manipulating objects which are foreign to the Lisp environment. Aliens
are used in the foreign function calling interface, matchmaker interfaces to the Mach specific system calls and the
name server, and to call Unix system calls. The Alien functions and macros described in this chapter allow Lisp
objects to be converted from the Lisp representation to other representations as expected in C code or IPC messages
and vice versa.

10.2. Alien Values

Objects in messages are manipulated via typed pointers to the data involved. These typed pointers are called Alien
values. An Alien value is a Lisp object which consists of three components:

address The address of the object pointed to. This is a word address, which may in general be a ratio,
since objects need not be word aligned.

size The size in bits of the object pointed to. This information is used to make sure that accesses to
the object fall within it.

type The Alien type of the object pointed to. Since Alien values have a type, functions that use them

can check that their arguments are of the correct type.

10.3. Alien Types

Alien types are tags attached to Alien values that may be checked to assure that they are not used inappropriately.
When types are compared the comparison is done with the Lisp equal function. Types are typically represented by
symbols or lists of symbols such as the following:

string

(directory-entry type-£file)

(signed-byte 7)

string-char
A convention which is encouraged, but not enforced, is that an ordinary type is represented by a symbol, and a type
with some subtype information, such as a discriminated union is represented as a list of the main type and the

139

140

CMU COMMON LISP USER'S GUIDE

subtype information,

10.4. Alien Primitives

This section describes the defined Alien primitives. Some of these primitives are intended to be used only in code
generated by matchmaker, while others might be used by mere mortals.

system

system
system
system

system

gsystem

system

system

system

:make-alien fype size &optional address [Function)
Make an Alien object of type rype that is size bits long. address may be either a number, : static or
:dynamic. If address is a number, then that becomes the returned alien’s address. If address is
:static or : dynamic then storage is allocated to hold the data. Aliens that are allocated statically are
packed as many as will fit on a page, resulting in increased storage efficiency, but disallowing the
deallocation of the storage. Since static aliens are allocated contiguously, the save function can arange
to save their contents, permitting initialization of such Aliens to be done only once. Dynamic Aliens are
allocated on page boundaries, and may be deallocated using dispose-alien,

:alien-type alien [Function}
talien-size glien [Function]
talien-address alien [Function]

These functions return the type, size and address of alien, respectively.

:alien-sap alien [Function)]
This function returns the address of alien as a system-area-pointer. If the address is not an integer, an
error will be signaled, since it cannot be represented as a system-area-pointer.

:copy~alien alien [Function]
Copy the storage pointed to by alien and return a new Alien value that describes it.

:alien-assign fo-alien from-alien (Function]
Copies the bits in from-alien into to-alien. The alien values must be of the same size and type.

:dispose-alien glien ' {Function]
Release any storage associated with alien. Any reference to alien afterward may lose horribly.

:alien-access alien &optional lisp-type [Function)
alien-access returns the object described by alien as a Lisp object of type lisp-type. An error is
signalled if the type of alien cannot be converted to the given lisp-rype. For most lisp-types the
corresponding Alien type is identical. If the Lisp type is uniquely detenmined by the type of the alien
then lisp-type need not be supplied.

lisp-type must be one of the following types:

(unsigned-~byte n)
An unsigned integer » bits wide, as in Common Lisp.

{(signed-byte n)
A signed integer n bits wide.

boolean A one bit value, represented in Lisp as € or nil.

{system:enumeration name)
Access a value of the enumeration name. Enumerations are defined by the macro
defenumeration (page 141).

THE ALIEN FACILITY 141

string-char An eight-bit ASCII character.

simple-string The corresponding Alien type is system:perq-string which is a Perq Pascal
string (a string whose first byte is a count of the remaining characters). A second
Alien type system:null-terminated-string has been defined which allows
passing and receiving C style strings.

system:port A Mach IPC port.

single-£float double-float
There are two alien types one for single-£loat and one for double-£float.

system:system-area-pointer
Return as a system-area-pointer the long-word described by alien. It is an error for

the address not to be in the system area. This lisp type may also be used with the
alien alien type.

If alien~access is set with set £ then the inverse type conversion is done, and the alien set to the
new value. When setting, additional types are available:

{(system:pointer fype)
rype may be any unboxed Lisp type such as simple-string,
simple-bit-vector and (simple-array (unsigned-byte 8)).
When an object of such a type is stored the address of the first data word is stored in
the corresponding location.

{system:alien type [size])
This lisp type is used to access a pointer as an alien value. When read, an alien value
created out of the pointer, rype and size is retumed. When set, the address of the alien
values is written. When read, the size must be specified, when set it is ignored.

system:defenumeration name {[element}* | { (element value) }*}* [Macro]j
Define an enumeration type for use with alien-access. The enumeration may be used with the
enumeration Alien type by specifying its name. Each successive element is assigned a numeric value,
starting at zero. Each element must be a keyword symbol. Example:
(defenumeration era :stone-age :medieval :now :space-age)

(setf (alien-access (language-era (alien-value pascal)}
(enumeration era))
:stone-age)

The numeric value for an element may be specified by using a list of the keyword and the numeric value.
If the value is specified for any element then it must be specified for all. Each value must be an integer.
{(defenumeration silly (:a -32) (:b 15) (:c 1000000))

10.5. Alien Variables

An Alien variable is a symbol that has an Alien value associated with it. An Alien variable is not a Lisp variable
-- in order to obtain the value of an Alien variable, the special form alien-value must be used. The reason for
using Alien variables as opposed to Lisp variables is that various additional information ¢an be associated with the
Alien variable which may permit code which refers to it to be compiled more efficienty.

system:alien-value name . [Special form]
Retum the value of the Alien variable name.

142 - CMU COMMON LISP USER'S GUIDE

system:alien-bind ({ (name value type [aligned]) }*) [form}* [Special form]
Alien-bind defines a local Alien variable name having the specified Alien value. Bindings are done
serially, as by let*. If aligned is supplied and is non-nil, then the value is asserted to be word aligned.
Hopefully this feature will be replaced with something less silly.

system:defalien name type size [address] - {Macrol
Defines name as an Alien variable, creating a value from rype, size and address as for make-alien
(page 140). Name and rype are not evaluated. Since the alien-value for a defalien created variable is kept
in the value cell of the symbol it is not necessary (but legal) to use alien-value to obtain the value.

10.6. Alien Stacks

For some purposes it is useful to have stack allocation of Alien values. Alien stacks are used by Matchmaker to
receive messages into, since a software interrupt may cause an interface to be entered recursively.

system:define-alien-stack name type size [Macrol
Defines a stack of static Aliens having the specified rype and size. The stack has no maximum size, since
new Aliens are allocated whenever they are needed.

system:with-stack-alien (var name) {form}* [Special form]
Binds the Alien variable var to an Alien value from the Alien stack with the specified name during the
evaluation of the forms.

10.7. Alien Operators

An Alien operator is a function which retums an Alien value. When an Alien operator is defined via the
defoperator macro, the type of the result and all of the Alien valued arguments is specified. If an argument to
an Alien operator is not the of the cormrect type an error is signalled. Because of the way an Alien operator is
specified, it can be compiled much more efficiently than a function that does the same thing.

system:defoperator (name resuli-type) ({{arg arg-type) | arg}*) [doc-string] body iMacro]
. This macro defines name as an Alien operator returning a value of type result-type. Doc-string, if
supplied, becomes the function documentation for the function created.

The args to the operator are similar to the binding specifiers to alien-bind (page 142). If the type of
the argument is specified, then the argument must be an Alien value of the specified type, otherwise it
may be any Lisp value.

Defoperator is similar to the complex form of defset £ or defmacro in that the body is evaluated
at compile time, the resuit of the evaluation being the desired code. When the body is evaluated, Lisp
variables having the arpuments’ names are bound to markers which must appear in the resuiting code
where a reference to that argument is desired. Normally the form which results from the evaluation of the
body consists solely of combinations of alien-index and alien-indirect on arguments and
simple numeric functions thereof.

system:alien-index alien offset size [Function}
This function indexes into alien by offset bits and wtums an Alien value size bits long. It is an error for
the field so selected not to fit inside glien. Nomally this function is used only within the definition of an
Alien operator, so the type of the resulting value is nil to indicate that it has no particular type

THE ALIEN FACILITY 143

system:alien—indirect alien size [Function]

This function takes a word at the place described by alien and treats them as a pointer, returning a new
Alien value which describes the piece of memory pointed to by that pointer which is size bits long. It is
an error for alien not to describe a piece of storage suitable for use as a pointer. Like alien-index,
this is normally only used within the definition of an Alien operator, and its result type is nil.

system:long-words n : [Function]
system:words n : [Function]
system:bytes n : {Function)
system:bits »n {Function)

These functions are equivalent to multiplication by thirty-two, sixteen, eight and one respectively. They
also assert their argument to be an integer. Use of these function in the definition of Alien operators can
make the definition clearer, and give additional information that can be used to produce better compiled
code.

10.8. Examples

This C declaration might be translated inte the following Alien operator definitions:

struct foo {

}:

int a;
strxuct foo *b{100]:;

struct foo £

<==>

- .
£

This operator selects the A field from a Foo. The type of the
resulting Alien is (signed-byte 32), which is what a C int is,

It takes one argument called Foo which is an Alien value of type
Foo. Since A is the first field in the record, we index into

the Alien by zexo bits. The size of the result is thirty-two bits,
or one long-word. Alien-Value must be used on the parameter,
since it is an Alien variable,

(defoperator (foo-a (signed-byte 16)) {(foo foo})
‘(alien-index (alien-value ,foo) 0 (long-words 1)))

ror

.
’

N
¥

This operator extracts the B field from a Foo. The result type is
(ref (array (ref foo) 100)), indicating that it is a pointer to an
array of peinters to foos. Note the use of list Alien types to
indicate subtype information, but remember that this is merely a
convention. The B field is one long-word into the record, and since
it is a pointer, it is thirty-two bits, or one long-word long.

{defoperator (foo-b (ref (array (ref foo) 100))) ((foo £fo0))
‘{alien-index (alien-value ,foo) (long-words 1} (long-words 1)))

;;:; This operator dereferences a pointer to an (array (ref fco) 100). The

rr
rr

rr

’

r

v

size of the resulting Alien is one hundred long-words, since the array
contains one hundred thirty-two bit pointers

{defoperator (deref—array—ref—foo—lbo (array (ref foo) 100))

144 CMU COMMON LISP USER'S GUIDE

{(ra (ref {array (ref foo) 100))))
‘{alien-indirect (alien-value ,ra) (long-words 100)))

;7! Index intoc an (array (ref foo) 100). Here we have a non-alien-valued
;;; parameter I, which is the index into the array.
{defoperator (index-array-ref-foo-100 {ref foo))
({a (array (ref foo) 100)) i)
‘{alien-index (alien-value ,a) (long-words ,i) (long-words 1)))

;7 Dereference a pointer to a foo. A foo is two long-words.
(defoperator (deref-£foo £foo0) ((xfoo (ref foo)))
‘*{alien-indirect (alien-value ,rfoo) (long-words 2)))

;7; Define F as an Alien variable, whose type is foo and is three words
;:;; long. Storage to hold the £foo will be allocated.

(defalien £ foo (long-words 2))

With this definition, the following C expression could be translated in this way:
£.b[7].a

<==>

(alien-access

{foc-a {(deref-foo (index-array-ref-foo-100
{deref-array-ref=-£foo=100 (fco-b (alien-value £)))
EARRD, :

If instead of getting the A out of the seventh foo, we wanted a vector containing the first F.A foos in the array
F.B, we could do this:

;; Find how many foos to use by getting the A field.
(let* {((num (alien-access (foo-a (alien-value £))))
{(result (make-array num)))
;; Bind the Alien value for the array so we don’'t have to keep
;: recomputing it.
{(alien-bind ((a (deref-array-ref-f£foo-100 {(foo-b (alien-value £))))
(array (ref foo) 100))
;; Loop over the f£irst N elements and stash them in the result vector.
{dotimes (i num)
(setf (svref result i)
(deref-foo (index-array-ref-foo-100 (alien-value a) i))))
result))

Chapter 11

Foreign Function Call Interface

By David B. McDonald

11.1. Introduction

The foreign function call interface allows a Lisp program to call functions written in other languages. The current
implementation of the foreign function call interface assumes a C calling convention and thus routines written in any
language that adheres to this convention may be called from Lisp. Several functions and macros are made availabie
to load object files into the currently running Lisp, to define data structures to be passed to or received from foreign
routines, and to define the interface to a foreign function.

The foreign function call interface relies heavily on the primitives provided by the alien facility. If you intend to
use the full power of the foreign function call interface, you will need to become familiar with the facilities provided
by aliens. See the previous chapter for details.

Lisp sets up various interrupt handling routines and other enviromment information when it first starts up and
expects these to be in place at all times. The C functions called by Lisp should either not change the environment,
especially the interrupt entry points, or should make sure that these entry points are restored when the C function
retumns to Lisp. If a C function makes changes without restoring things to the way they were when the C function
was entered, there is no telling what will happen.

11.2. Loading Unix Object Files

There is a single function that loads in ope or more Unix object files into the currenty running Lisp.

extensions:load-foreign files Goptional libraries linker base-file env [Function]
Load-foreign loads a list of Unix object files into the currently running Lisp. Files should be a simple-
string specifying the name of a single Unix object file or a list of such strings. Libraries should be a list
of simple-strings specifying libraries in a format that 1d, the Unix linker, expects. The default value for
libraries is ’("-Ic") (i.e., the standard C library). Linker should specify the Unix linker to use when
linking the object files. The default is "/fust/cs/bin/ld". Base-file is the file to use for the initial symbol
table information. The default is the Lisp start up code ("/usr/misc/.cmucl/bin/lisp™). Env should be a list
of simple strings in the format of Unix environment variables (i.e., "A=B", where A is an environment
variable and B is its value).The default value for env is the environment information available at the time
Lisp was inveked. Unless you are certain that you want to change this, you should just use the default.

Load-foreign runs a Unix linker (default "fusr/cs/bin/ld") on the files and libraries (in the order given to

145

146 CMU COMMON LISP USER'S GUIDE

load-foreign) creating an absolute Unix object file. This object file is then loaded into a memory at the
correct location. All the external symbois that define either routines or variables are placed in a hash
table for use by the macros that define interfaces to foreign routines. Note that load-foreign must be run
before the any references to foreign functions or variables are made.

11.3. Defining Foreign Data Types

There are several data types that are pre-defined and can be used directly for defining interfaces to routines.
There are also facilities for defining more complicated data stuctures such as arrays, structures, and pointers.

The following table gives a list of the pre-defined data types and the corresponding Lisp data type provided by the
foreign function interface:

C Data Type Lisp Data Type
int or long (signed-byte 32)
unsigned int or long (unsigned-byts 32)
shont (signed-byte 16)
unsigned short (unsigned-byte 16).
char (signed-byte 8)
unsigned char (unsigned-byte 8)
float short-float

double long-float
procedure pointer system:c-procedure

If you need to know how many bits are being used to represent a particular data structure, you can use the
following function.

extensions:c-sizeof c-fype 7 [Function]
C-sizeof accepts a C type specification and retumns the number of bits needed to represent it. For
example, (c~sizeof 'int) remrms 32.

11.3.1. Defining New C Types

extensions:def-c-type name spec [Macro]
Def-C-Type defines the symbol name to be a C type as specified by spec. Spec can either be a previously
defined C type, or an alien type such as (signed-byte 32) or (system:null-terminated-string 256). This
mechanism provides a short hand for referring to a particular type in other definitions.

For example, int above is defined by the following call to def-c-type:
(def-c-type int (signed-byte 32))

11.3.2. Defining C Arrays

extensions:def-c-array nrame element-type &optional size [Macro]
Def-C-array defines a C amay type with name name. Element-type specifies the type of each element of
the array. The optional parameter size specifies the number of elements in the array.

Def-C-array creates the following functions and forms that can be used to manipulate a C array:

make-name This function is used to allocate an array. Note that def-c-array does not actually
create any storage for the array. You must use this routine to do that. If the size

FOREIGN FUNCTION CALL INTERFACE 147

parameter is specified in the call to def-c-amray, then make-name accepts no
arguments and returmns an alien value of the appropriate size. Otherwise, it accepts
one argument which should be the number of elements desired for this particular
instantiation of the array. In either case, an alien value is returned and can be used to
refer to the storage for the array.

name-ref This setfable form allows you to refer to a particular element of an array. It accepts
two arguments an alien value such as returned by make-name and an index. It picks
up the correct element out of the array and returns it as the value. You can use setf on
this form to set an element of an array.

For example, it is possible define an array type, create an instance of it, and set the first element of the newly
created instance with the following code:
(def~c-array arr int 10)
(setq x (make-arr))
{(setf (alien-access (arr-ref x 0)) 10)

11.3.3. Defining C Records

extensions:def-c-record name { (sname stype) |* [Macro}
Def-c-record defines a C record. This macre actually defines twa C types Name is the name of the record
and *Name is the name of the pointer to the record. This is useful for record structures that have pointers
to themselves as one or more of the slots. Following the rame of the record are a list of (sname stype)
pairs. These are the name and the type of a slot, respectively. As with def-c-array, def-c-record does not
allocate any storage to hold data. It just defines the type. It also defines the function make-ngme which
can be used to create an instance of the record. This will allocate storage to hold the record and return an
alien value that refers to that particular record. For each field in the record, a setfable operator (named
" name-sname) is created, so that it is possible to reference and set particular fields of a record.

As an example, the following C structure definition and lisp def-c-record define equivalent data structures:

struct c-struct {

short =, y?

char a, b;

int z;

c—-struct *n;
bi)

4

{(def-c-record c=-struct

(x short)

{(y short)

{a char)

(b char)

{z int)

{(n *c¢c-struct))

To create an instance of c-struct and assign values to fields, the following code could be used:
(setqg c3 (make-c-struct))

{setf (alien-access (c-struct-x cs}) 20)
{setf (alien-access (c-struct-a cs}) 5)
(setf (alien-access (c-struct-n cs} ‘alien) cs)

148 CMU COMMON LISP USER'S GUIDE

11.3.4. Defining C Pointers

C allows one to have pointers to other C-types. This can be done using the def-c-pointer macro as follows:

extensions:def-c-pointer name to [Macro]
Def-c-pointer defines name to be a C type that is a pointer to the C type specified by to.

For example, it is possible to define a pointer to an int by the the following:
(def-c—pointer *int int)

11.4. Defining Variable Interfaces
It is sometimes necessary to be able to refer to a global C variable. The macro def-c-variable allows this.

extensions:def-c-variable name rype [Macro]
Def-c-variable makes global C variables accessible from Lisp. Name should be a simple-string with the
exact capitalization of the C variable to which you want to be able to refer (C is case sensitive and so
must be the name provided). This macro creates a Lisp symbol with name (uppercased) whose value is
an alien value with type type that can be used to access the global C variable.

For example, it is often necessary to read the global C variable ermo to determine why a particular function call
failed. It is possible to define ermo and make it accessible from Lisp by the following:
(def-c~variable "errno™ int)
Now it is possible to get the value of the C variable ermo by doing the following:
(alien-access errno)

11.5. Defining Routine Interfaces

There is a single macro that defines the interface to a C function. Note that all the types that it uses must be
defined before you define the interface, otherwise errors will occur.

extensions:def-c-routine name rtype &rest spec (Macro]
Def-c-routine defines a Lisp function that interfaces to a C routine. Name should be a simple string with
the exact capitalization of the C function (since C is case sensitive) or a list of two elements. The first
element should be a simple-string as above and the second should be a symbol which is used as the Lisp
name of the function. If this second form is not used, a symbol with name uppercased is used as the name
of the Lisp function.

Rtype is the type of the return value and should be one of the builtin C-types or a user defined one. The
special type extensions:void can be used if the C routine returns no useful value as its standard return
value. Currently, double floats can not be retumed by C functions. If the function returns a pointer and
the result coming back is C NULL (0), then the function will return NIL. Also, if the result is a C String,
then a Lisp string is returned instead of the alien value pointing to the C string.

Spec is bound to a list of the rest of the forms in the call to def-c-routine. Each element of this list should
have the following form:

{aname atype [amode] [options])*)
Where gname should be a symbol and is used as the name of the argument. Afype should be a symbol
that is associated with a C type. If you are passing floating point numbers to a C routine, you should

FOREIGN FUNCTION CALL INTERFACE ' 149

declare the type of the parameter as a long-float or double. This is because C passes all floating point
parameters as double floats. The routine may be called with any type of number, since it will be coerced
to a long-float before being passed on to C. Options is cumrently ignored. Amode should be ope of the

following:

:in

out

:copy

in-out

This specifies that the argument is passed by value. This is the default. No value for
this argument is returned by the Lisp function when this mode is used.

The type of the argument must be a pointer to a fixed sized object (such as a record or
fixed size array). An object of the correct size is allocated and passed to the C routine
by reference. When the C routine finishes, the contents of this object are returned as
one of the values to the calling function. If the object returned is a record or array, it
will be copied to a new alien value which will be retumed.

This is similar to :in, but the argument is copied to a pre-allocated object and a
pointer to this abject is passed to the C routine.

A combination of :copy and :out. The argument is copied to a pre-allocated object
and a pointer to this object is passed to the C routine. On remum, a new alien value is
allocated for the object and returned as a multiple value.

For example, the C function cfoo with the following calling conventions:

cfoo (a, i)
char a;
int i;
{
/* Body of cfoo.
}

*/

can be described by the following call to def-c-routine:
(def-c-routine {("cfoo" lfoo) (veoid)

(a char)
(L int))

11.6. Calling Lisp routines from C

There is currently a mechanism for calling Common Lisp functions from C, but it is rather restricted, and is
scheduled for replacement. If you need to call Common Lisp functions from C, contact us and we will let you know
what capabilities are available in the system you have.

11.7. An Example

This section presents a complete example of an interface to a somewhat complicated C function. This example
should give a fairly good idea of how to get the effect you want for almost any kind of C function.

Suppose you have the following C function which you want to be able to call from Lisp in the file cfun.c:

150 CMU COMMON LISP USER'S GUIDE

struct cfunr {
int =x;
char *s;

}:

struct cfunr *cfun (i, s, ¥, a)
int i;
char *s;
struct cfunr *r;
int a[l0};
{ int 3;
struct cfunr *r2;

printf ("i %d\n", 1i);

printf("s $s\n", s):

printf("r=->x = %d\n", r->x);

printf ("r=->s = %s\n", r->s);

for (3 = 0; j < 10; Jj++) printf(®a[%d] = %d.\n", 3j, aljl);
r2 = (struct cfunr *) malloc {sizeof{struct cfunr));

r2=->x = i + 5;

r2->s = "A C string®;

return(r2);

(]

}:

It is possible to call this function from Lisp using the file cfun lisp whose contents is:
;;; =—%*= Package:. test-c-call; Mode: Lisp -*-
(in-package "TEST-C-CALL" :use ' ("LISP" "SYSTEM" "EXTENSIONS"})

;;7 Define c-string as a null-terminated string of up to 256 characters.
(def-c~type c-string (null-terminated-string 256))

;/; Define a *c-string to be a pointer to a c-string.
(def-c-pointer *c-string c-stzring)

:+; Define the record cfunr in Lisp.
(def-g-recoxrd cfunr

(x int} _

(s *¢-string)})

;7; Define the C array ar to have 10 elements of type int.
(def-c-array ar int 10)

::; Define the C type pointer to the array above.
(def-c-pointer *ar ar)

FOREIGN FUNCTION CALL INTERFACE

;;; Load in the C object file with the function definition.
{load~-foreign "cfun.o")

;;; Define the Lisp function interface to the C routine. It returns a
;;; peinter to a record of type cfunr. It accepts four parameters: i,
;;; an int; s, a pointer to a string; r, a pointer to a cfunr record;
;;; and a, a pointer to the array defined above.
(def-c~-routine "cfun" (*cfunr)

(i int)

(s *c-string)

(r *cfunr)

(a *ar))

;+; A function which sets up the parameters to the C function and
;:;: actually calls it.
{(defun call-cfun ()
(let ((arr (make-ar)} ; Make an array.
(rec (make-cfunr)}) ; Make a record.
(alien-bind ((a arxr ar t)
(r rec cfunr t))
{dotimes (i 10) . ; Fill array.
{setf (alien-access (ar-ref {(alien-value a) i)) i))
(setf (alien-access (cfunr-x (alien-value r))} 20)
(setf (alien-access (cfunr-s (alien~value r)) 'pointer)
"A Lisp String")
(let ((rec2 (cfun 5 "Another Lisp String”
(alien-sap {(alien-value r))
(alien-sap (alien-value a)))})))
(format t "Returned from C function.~%")
(alien-bind ((r2 rec2 cfunr t))
{let ((cs (alien-access (cfunr-s (alien-value r2)) ‘alien)))
(alien-bind ({8 cs (null-terminated-string 256) t))
{values (alien-access (cfunr-x {alien-value r2))}
(alien-access (alien-value =))}))))}))

To execute the above example, it is necessary to compile the ¢ routine as follows:
ce —¢ cfun.c

Once this has been done, you should start up lisp, and do the following:

151

152

CMU COMMON LISP USER'S GUIDE

lisp
777 Lisp should start up with its normal prompt.

;7 Next compile the lisp file

* (compile-file "cfun.lisp")

Error output from cfun.lisp 17-Mar-87 17:09:57.

Compiled on 18-Mar-87 17:33:16 by CLC version M1.6 (16-Mar-87).

INDIRECT-*C-STRING compiled.
MAKE-CFUNR cocmpiled.
INDIRECT-*CFUNR compiled.
CFUNR-X compiled.
CFUNR-S5 compiled.
MAKE-AR compiled.
AR-REF compiled.
INDIRECT-*AR compiled.
CFUN compiled.
Warning in CALL-CFUN:

Could not show 32 bit store to be word-aligmed:
(AR-REF A I)
CALL~-CFUN compiled.

Finished compilation of file "/usr/dbm/cfun.lisp"”.
0 Exrors, 1 Waznings.
Elapsed time 0:00:10, run time 0:00:09.

;;7 Now load the file:

* (load "cfun")

;7 Lisp prints out the following information:
[Leading foreign files (¢fun.o)

[Running ld ... done.]

[Reading Unix object £file ..., done.]

[Leading symbol table information ... done.]
done,]

T

FOREIGN FUNCTION CALL INTERFACE 153

;:: Now call the routine that sets up the parameters and calls the C
;7: funetion.

* (test-c-call::call-cfun)

The C routine prints the following information to standard output.

.
rr

i=25 .
s = Another Lisp string
r->x = 20

r->s = A Lisp string
af[0] = 0.

a[l] = 1.

af2] = 2.

‘al3] = 3.

afd] = 4.

a{5] = 5.

af6] = 6.

a{7] = 7.

al8] = 8.

af9] = 9,

;;; Lisp prints out the following information.

Returned from C function.

;;; Return values from the call to test-c-call::call-cfun.

10 '

"A C string"”

*
If any .of the foreign functions do output, they should not be called from within Hemlock. Depending on the
situation, various strange behavior occurs. On the console, you will see no output; under X, the output goes to the
window in which Lisp was started; on a terminal, the output will be placed in the current buffer but will not be
recognized by Hemlock. This means it will overwrite information already in the window and be overwritten by
Hemlock. This will not have any impact on the contents of the buffer, since the output is coming from a source that
Hemlock does not know about.

154 CMU COMMON LISP USER'S GUIDE

Chapter 12

Interprocess Communication under LISP

Written by William Lott and Bill Chiles

CMU Common Lisp offers a facility for interprocess communication (IPC) on top of using Unix system calls and
the complications of that level of IPC. There is a simple remote-procedure-call (RPC) package build on top of
TCP/IP sockets. ‘

12.1. The REMOTE Package

The "REMOTE" package provides simple RPC facility including interfaces for creating servers, connecting to
already existing servers, and calling functions in other Lisp processes. The routines for establishing a connection
between two processes, create-request-serxrver and connect-to-remcte-server, fetum wire
structures. A wire maintains the current state of a connection, and all the RPC forms require a wire to indicate
where to send requests.

12.1.1. Connecting Servers and Clients

Before a client can connect to a server, it must know the network address on which the server accepts
connections. Network addresses consist of a host address or name, and a port oumber. Host addresses are either a
string of the form "VANCOUVER.SLISP.CS.CMU.EDU" or a 32 bit unsigned integer. Port numbers are 16 bit
unsigned integers. Note: port in this context has nothing to do with Mach ports and message passing.

When a process wants to receive connection requests (that is, become a server), it first picks an integer to use as
the port. Only one server (Lisp or otherwise) can use a given port number on a given machine at any particular time.
* This can be an iterative process to find a free port: picking an integer and calling create-request-server.
This function signais an error if the chosen port is unusable. You will probably want to write a loop using
handler-case, caiching conditions of type error, since this function does not signal more specific conditions.

wire:create-request-sexver port &optional on-connect [Function]
create-request-server sets up the current Lisp to accept connections on the given port. If port is
unavailable for any reason, this signals an error. When a client connects to this port, the acceptance
mechanism makes a wire structure and invokes the on-connect function. Invoking this function has a
couple purposes, and on-connect may be nil in which case the system foregoes invoking any fanction at
connect time,

The on-connect funciion is both a hook that allows you access to the wire created by the acceptance
mechanism, and it confirms the connection. This function takes two arguments, the wire and the host
address of the connecting process. See the section on host addresses below. When on-connect is nil,
the request server allows all connections. When it is non-nil, the function retums two values, whether

155

156 CMU COMMON LISP USER’S GUIDE

to accept the connection and a function the system should call when the connection terminates. Either
value may be nil, but when the first value is nil, the acceptance mechanism destroys the wire.

create-request-server retums an object that destroy-request-server uses to terminate a
conpection.

wire:destroy-request-server server ' [Function]
destroy-request-server takes the result of create-request-server and terminates that
server. Any existing connections remain intact, but all additional connection attempts will fail.

wire:connect-to-remote-server host port &optional on-death [Function]
connect-to-remote-server allempis (o connect to a remote server at the given port on host and
retuns a wire structure if it is successful. If on-death is non-nil, it is a function the system invokes
when this connection terminates.

12.1.2. Remote Evaluations

After the server and client have connected, they each have a wire allowing function evaluation in the other
‘process. This RPC mechanism has three flavors: for side-effect only, for a single value, and for multiple values.

Only a limited number of data types can be sent across wires as arguments for remote function calls and as return
values: integers inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section 12.1.3). The
system sends symbols as two strings, the package name and the symbol name, and if the package doesn’t exist
remotely, the remote process signals an error. The system ignores other slots of symbols. Lists may be any tree of
the above valid data types. To send other data types you must represent them in terms of these supported types. For
exampie, you could use prinl-to-string locally, send the string, and use read-from-string remotely.

wire:remote wire {call-specs}* : [Macro]
The remote macro ammanges for the process at the other end of wire to invoke each of the functions in
the call-specs. To make sure the sysiem sends the remote evaluation requests over the wire, you must
call wire-£force-output.

Each of call-specs looks like a function call texmally, but it has some odd constraints and semantics. The
function position of the form must be the symbolic name of a function. remote evaluates each of the
argument subforms for each of the call-specs locally in the current context, sending these values as the
arguments for the functions.

Consider the following example:

{defun write-remote-string (str)
(declare (simple-string str)}
(wire:remote wire
{(write-string stz)))
The value of stx in the local process is passed over the wire with a request t0 invoke write~string
on the value. The system does not expect to remotely evaluate st.r for a value in the remote process.

wire:wire-force~-output wire [Function}
wire-force~-output flushes all intemal buffers associated with wire, sending the remote requests.
This is necessary after a call to zemote.)

INTERPROCESS COMMUNICATION UNDER LISP : 157

wire:remote-value wire call-spec ') [Macro]

' The remote-value macro is similar to the remote macro. remote-value only takes one

call-spec, and it returns the value returned by the function call in the remote process. The value must be a

valid type the system can send over a wire, and there is no need to call w:.re-force—output in
conjunction with this interface.

If client unwinds past the call t0 remote-value, the server continues running, but the system ignores
the value the server sends back.

If the server unwinds past the remotely requested call, instead of returmning normally, remote-value
retums two values, nil and £. Otherwise this returns the result of the remote evaluation and nil.

wire:remote-value~bind wire ({variable}*) remote-form (local-forms|* [Macro]
remote-value-bind is similar to multiple-value-bind except the values bound come from
remote-form’s evaluation in the remote process. The local-forms execute in an implicit progn.

If the client unwinds past the call to remote-value=-bind, the server continues runming, but the
system ignores the values the server sends back. :

If the server unwinds past the remotely requested cail, instead of retumning normally, the local-forms
never execute, and remote-value-bind retumns nil.

12.1.3. Remote Objects

The wire mechanism only directly supports a limited number of data types for transmission as arguments for
remote function calls and as return values: integers inclusively less than 32 bits in length, symbols, lists.
Sometimes it is useful to allow remote processes to refer to local data structures without allowing the remote process
to operate on the data. We have remote-objects 1o support this without the need to represent the data structure in
terms of the above data types, to send the representation to the remote process, to decode the representation, to later
encode it again, and to send it back along the wire.

You can convert any Lisp object intc a remote-object. When you send a remote-object along a wire, the system
simply sends a unique token for it. In the remote process, the system looks up the token and returns a remote-object
for the token. When the remote process needs to refer to the original Lisp object as an argument to a remote call
back or as a retum value, it uses the remote-object it has which the system converts to the unique token, sending that
along the wire to the originating process. Upon receipt in the first process, the system converts the token back to the
same (eq) remote-object.

wire:make-remote-cbject object [Function]
 make-remote-object returns a remote-object that has object as its value. The remote-object can be
passed across wires just like the directly supported wire data types.

wire:remote-object-p object (Function]
The function remote-object -p returns t if object is a remote object and nil otherwise.

wire:remote-object-local-p remote ' [Function]
The function remote-cbject-local-p retums t if remore refers to an object in the local process.
This is can only occur if the local process created remote with make-remote~cbject.

158 CMU COMMON LISP USER'S GUIDE

wire:remote-object-eq objl objl {Function]
The function remote-cbject-eq returns t if objl and ob;2 refer to the same (eq) lisp object,
regardless of which process created the remote-objects.

wire:remote-object~value remote [Function]

This function returns the original object used to create the given remote object. It is an error if some
other process originally created the remote-object.

wire: forget-remote-translation object [Function]
This function removes the information and storage necessary to translate remote-objects back into object,
so the next ge can reclaim the memory. You should use this when you no longer expect to receive
references to object. If some remote process does send a reference to object, remote-object-value
signais an error.

12.1.4, Host Addresses

The operating system maintains a database of all the valid host addresses. You can use this database to convert
between host names and addresses and vice-versa.

ext:locokup-host-entry host [Function]
lookup-host-entry searches the database for the given host and retums a host-entry structure for it.
If it fails to find host in the database, it retums nil. Host is either the address (as an integer) or the name

{(as a string) of the desired host.
ext :host-entry-name host-entry) [Function)
ext:host-entry-aliases host-entry {Function]
ext thost-entry~addr-list host-eniry : [Function)
ext :host-entry-addr host-entry [Function]

host-entry-name, host-entry-aliases, and host-entry-addr-list each return the
indicated slot from the host-entry structure. host-entry-addr retumns the primary (first) address
from the list retumed by host -entry-addr-list. :

12.2. The WIRE Package

The "WIRE" package provides for sending data along wires. The "REMOTE" package sits on top of this
package.

All data sent with a given cutput routine must be read in the remote process with the complementary fetching
routine. For example, if you send so a string with wire-cutput-~string, the remote process must know to use
wire-get-string. To avoid rigid data transfers and complicated code, the interface supports sending tagged
data. With tagged data, the system sends a tag announcing the type of the next data, and the remote system takes
care of fetching the appropnate type.

When using interfaces at the wire level instead of the RPC level, the remote process must read everything sent by
these routines. If the remote process leaves any input on the wire, it will later mistake the data for an RPC request
causing unknown lossage. '

INTERPROCESS COMMUNICATION UNDER LISP ' 159 .

12.2.1. Untagged Data

When using these routines both ends of the wire know exactly what types are coming and going and in what
order. This data is restricted to the following types:

» § bit unsigned bytes.

s 32 bit unsigned bytes.

+ 32 bit integers.

= simple-strings less than 65535 in length.

wire:wire-output-byte wire byte : ' [Function]
wire.wire-get-byte wire . (Function] -
wire:wire-output-number wire number [Function]
wire:wire—get-number wire &optional signed {Function]
wire:wire-output-string wire siring [Function]
wire:wire—-get-string wire) [Function)

These functions either output or input an object of the spectﬁed data type. When you use any of these
output routines to send data across the wire, you must use the corresponding input routine interpret the
data. ‘

12.2.2. Tagged Data

When using these routines, the system automatically transmits and interprets the tags for you, so both ends can
figure out what kind of data transfers occur. Sending tagged data allows a greater variety of data types: integers
inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section 12.1.3). The system sends
symbols as two strings, the package name and the symbol name, and if the package doesn’t exist remotely, the
remote process signals an error. The system ignores other slots of symbols. Lists may be any tree of the above valid
data types. To send other data types you must represent them in terms of these supported types. For example, you
could use prinl-to-stringlocally, send the string, and use read-from~string remotely.

wire:wire-output-object wire object &optional cache-it [Function]
wire:wire-get-object wire [Function]
The function wire-ocutput-object sexds object over wire preceded by a tag indicating its type.

If cache-it is non-nil, this function only sends object the first time it gets object. Each end of the wire
associates a token with object, similar to remote-objects, allowing you to send the object more efficiently
ot successive transmissions. Cache-it defaults to £ for symbols and nil for other types. Since the RPC
level requires function names, a high-level protocol based on a set of function calls saves time in sending
the functions’ names repeatedly. '

The function wire-get-object reads the results of wire-output-object and returns that
object.

12.2.3. Making Your Own Wires

You can create wires manually in addition to the "REMOTE" package's interface creating them for you. To
create a wire, you need a Unix file descriptor. If you are unfamiliar with Unix file descriptors, see secton 2 of the
Unix manual pages.

160 CMU COMMON LISP USER'S GUIDE

wire:make-wire descriptor [Function]
The function make-wire creates a new wire when supplied with the file descriptor to use for the
underlying I/O operations. ' :

wire:wire-p object {Function]

This function retums t if object is indeed a wire, nil otherwise.

wire:wire-£d wire [Function)
This function retums the file descriptor used by the wire.

12.3. Out-Of-Band Data

The TCP/IP protocol allows users to send data asyncronusly, otherwise known as out-of-band data. When using
this feature, the operating system interrupts the receiving process if this process has chosen to be notified about
out-of-band data. The receiver can grab this input without affecting any information currently queued on the socket.
Therefore, you can use this without interfering with any current activity due to other wire and remote interfaces.

Unfortunately, most implementations of TCP/IP are broken, so use of out-of-band data is limited for safety
reasons. You can only reliably send one character at a time.

This routines in this section provide 2 mechanism for establishing handlers for out-of-band characters and for
sending them out-of-band. These all take a Unix file descriptor instead of a wire, but you can fetch a wire’s file
descriptor with wire-£d.

wire:add-ocb~handlexr fd char handler [Function]
The function add~ocob-handler arranges for handler to be called whenever char shows up as out-of-
band data on the file descriptor fd.

wire:remove~-cob-handler fdchar [Function)]
This function removes the handler for the character char on the file descriptor fd.

wire:remove-all-cob-handlers fd [Function]
This function removes all handlers for the file descriptor fd,

wire:send-character~out-of-band fdchar [Function)
This function Sends the character char down the file descriptor fd out-of-band.

INTERPROCESS COMMUNICATION UNDER LISP

Index

CMU COMMON LISP USER'S GUIDE

Index

abort function 48
racerued-axceptions keyword

for set-floating-point-modea 35
actual source 69
add-fd-handlar function 130
add-ocb-handlar function 160
add-xwindow-object funciion 130
advising 63
aftar-go-hocks variable 9
alien-access function 140
alisn-addrass function 140
alien-assign function 140
alian~bind special form 142, 142
alian-indax function 142
alian-indirect function 143
alien-sap function 140
alien-sap macro 123
alien-size function 140
alien-type function 140
alien-value specialform 141
aliens 122
argument syntax, efficiency 113
arithmetic type inference 88
arithmetic, generic 109
arithmatic-error condition 31
arithmetic-error-cparands function 51
arithmetic-arror-oparation function 51
array types, specialized [l1
arrays, efficiency of 105
assembly listing 114
assert macro 3%
availablility of debug variables 58

before-gec-hooks variable 9
benchmarking techniques 119
bignums 110
bit-vectors, cfficiency of 106
bits function 143
block compilation 100
block compilation, debugger implications 56
block, basic 60
block, start location 60
:block-compile keyword

for compila-file 66

for compile-from-straam 66
break function 43
break-on-signals variable 34
break-on-warnings variable 34
:buffering keyword

for make-fd-stream 124
bytes function 143
bytes-consed-between—-gcs variable 8

a-sizeof function 146

call, inline [02

call, local 9%

call, numeric operands 112
canonicalization of types 82
ccase macro 43

cell-error condition 51
cell-arrcr-nama function 50
carrox function 34

characters 112

chack-type macro 38

cleanup, stack frame kind 56
closures 99

cmd-switch-name function 127
cmd-switch-value function 127

163

cmd-switch-words function 127
command-line-atringa variable 127
command-line-switches variable 127
command-line-utility-name variable 127

. *command-line-words* variable 127

compatibility other Lisps 75
compilation units 66
compilation, block 100
compilation, why to 112
compilation-speed optimization quality 77
compila. function 65
compile time type errors 72
compile-file function 66
compile-from-styeam function 66
compiler error messages 67
compiler error severity 70
compiler policy 76
compiling 63
complemented type checks 50
compute-rastarts function 47
condition condition 49
conditional type inference 88
connect-to-remotae-server function 156
consing 113, 118
consing, overhead of 107
constant folding 92
constant-function declaration 92
continuations, implicit representation 114
continue function 48
control optimization 92
control-arror condition 50
copy-alien function 140
CPU time, interpretation of (18
cresate-requaest-sarver function 155
ctypacasa function 41
{ourrent -axcepticnas keyword

for set-flocating-point-modea 5

:date-firast keyword

for format-universal-time 20
dead code elimination 92, 93
debug variables 57
debug-info optimization quality 58, 60, 77
dabug-print-langth variable 55, 62
dabug-print-leval variable 62
debugger 53
debugger-hook variable 48
declarations, optimize 76
def-c-array macro 146
daf-c-pointer macro 148
def-c-record macro 147
def-c-routine macro 148
def-c-type macro 146
def-c-variabla macro 148
defalien macro 142
:default-day ... keyword

for parse-time 19
:dafault-hours keyword

for parse-time 19
default-intarrupt function 14
:dafault-minutea keyword

for parae-time 19
:default-seconds keyword

for parse-tima 19
dafenumeration macro 140, 141
define-alien~-stack macro 142
define-condition macro 37
dafoperator macro 142

164

defstruct types 85
:delete-original keyword

for make-fd~stream 124
derivation of types 86
derive-function-types variable 88
describe function 9
daescribe-indentation variable 9
describe-level variable 9
describa-print-length variable 9
dascribe-print-level variable 9
descriptor representations, forcing of 116
descriptors, object 107
destroy-request-server function 156
disable-clx-svaent-handling function 132
dispose-alien function 123,140
division-by~zaero coendition 51
double-~float-negative-infinity constant 3
double-flcat-positive-infinity constant 3
dynamic type inference 88

scase macro 42
efficiency note verbosity 117
cfficiency notes 115
efficiency notes for representation 116
cfficiency of argument syntax 113
efficiency of numeric variables 108
efficiency of objects 105
efficiency, general hiis 112
afficisncy-note-cost-threshold variable
117

afficiency-nota-limit variable 117
cfficient memory use 113
efficient type checking 116
:elamant-type keyword

for make-fd-stream 124
empty type, the 83
enable~clx-event-handling function 132
snable-interrupt fumnction 14
encapsulate function 63
ancapsulated-p function 64
encapsulation 63
anclosing-source-cuteff variable 72
and-of-file condition S50
eniry points, external 56
:anv keyword

for run-program 16
equivalence of types 82
arror function 33
error message verbosity 71
error messages, compiler 67
error condition 49
:axror-£file keyword

for compile-~-£ila 66
rarror-on-mismateh keyword

for parse-time 19
rerror-output keywerd

for compile-£ile 66
arror-print-length variable 72
arror-print-level¥ variable 72
;error-stream keyword

for compile~from-stream 66
emrors, result type of 83
errors, run-time 57
atypecasae macre 41
cvaluation, debugger 54, 58
existing programs, torun 75
expansion, inline 102
external entry points 56
external, stack frame kind 56

71,

CMU COMMON LISP USER’'S MANUAL

:fast-mode keyword

for set-floating-point-modes 5
fd-astream-£fd function 125
fd-stream-p function 125
:fila keyword

for make-fd-stream 124
fila-arror condition 50
file-error-pathname function 50
find-reatart function 47
fixnums 110
float-infinity-p function 4
float-nan-p function 4
float-normalized-p function 4
flocat-trapping-nan~p function 4
floating point efficiency 111!
floating-point-overflow condition 51
floating-peint-underflew condition 51
flush-display-evaenta function 131
folding, constant 92
forget-ramota-tranalation function 158
format-dacoded-time function 20
format-universal-time function 20
frames, stack 54
free, C function 123
freeze-type declaration 85
function cail, inline 102
function call, local 98
function type inference 87
function types 83
function, names 355
functions, tracing 62

garbage collection 113

gc function 8
gc-inhibit~hook variable 9
gc-notify-after variable 8
gc-notify-before variable 8
ge~off function 8

gc=-on function 8

*gc-verbose® variable 8§

generic arithmetic 109
get-bytas-consed function 118
gat-fleating-point-modes function 5
get-unix-error-msg function 124
gr-bind macro 126

gr-call macro 125

gr-call* macro 125

gr-error function 125

handler~bind macro 36
handlar-case macro 35

hash-tables, efficiency of 106
host-entry-addr function 158
host-entry-addr-list function 158
host-entry-aliases function 158
host-entry-name function 158

:if-input-doss-not-axist keyword

for run-program 16
ignore~arrors macro 36
ignere-intarxupt function 14
implicit continuation representation (IR1) 114
inference of types 86
inhibit-wamings optimization quality 77
rinit-functien keyword

for save-lisp 15
inline expansion 61, 77, 102
:input keyword

for makea-£fd-stream 124

for run-program 16

INDEX

inspect function 10

int-sap funciion 124
intarnal-time-unita-per-second constant 7
interpretation of run time 118

interrupts 13, 57

invalidate-dascriptor function 131
invoke-debugger furction 48
invoke-restart function 47
invoke-restart-interactivaely function 47
itarate macro 100

keyword argument efficiency 113

let optimization 91
listing files, trace 114
lists, efficiency of 105
:load keyword

for compile-£fila 66
load-foreign function 145
*load-if-gsource-nawar® variable 10
:load-init-file keyword

for save-lisp 15
localcall 98
local call return values 101
local call type inference 87
local call, numeric operands 112
locations, unknown 57
long-float-negative-infinity constant 3
long-float-positive-infinity constant 3
long-words function 143
lookup-host-sntry function 158

macroexpansion 69

macroexpansion, errors during 71
make-alien function 140, 142
make~gondition function 38
make-fd-stream function 124
make-cbject-set function 129
make-reancte-chbject function 157
make-wire function 160
malloc, C function 123

mapping, efficiency of 114
max-trace-indentation variable 63
maybe-inlinc declaration 104

member types 82

memory allocation 113
muffle-warning function 48
maltiple value optimization 93

:name keyword

for make~-fd-stream 124
names, function 55
*namesarverport® variable 126
NIL type 83
non-descriptor representations 108, 116
notes, efficiency [15
numbers in local call 112
numenc operation efficiency 109
numeric type inference 88
numeric types 107

object representation 108, 107

object representation efficiency notes 116

object sets 129
objoct-uat-cv.nt'-.h'andler function 132
object-pet-cperation function 129
opan-clx-display function 131
open-coding 77

operation specific type inference 88

optirnization 91

165

optimization, control 92
optimization, functioncall 102
optimization, let 91
optimization, multiple value 95
optimization, type check 89, 116
optimize declaration 60, 76
optional, stack frame kind 56
or (union) types 83
roriginal keyword

for make-fd-stream 124
original source 69
routput ... keyword

for run-program 16
:output keyword

for make-fd-stream 124
;output-file keyword

for compile~-file 66

package-arror condition 50
package-error-package function 50
parse-time function 19
pointers 123
policy, compiler 76
policy, debugger 60
precise type checking 73
iprint-herald keyword

for save-lisp 15
:print-secends ... keyword

for format-universal-time 20
procaess-alive-p function 1%
process-cloae function 19
iprocess-command-line keyword

for save-lisp 15
process-cora-dumped function 18
process-arrcer function 18
procass-axit-cede function 18
process~-input function 18
process-kill function 19
process-cutput function 18
process-p function 18
procass~-pid function 18
procaess-plist function 18
process-pty function 18
proceass-status function 18
process-status-hoock function 18
procass-wait function 19
processing path 69
profiling 118
program-arror condition 350
:pty keyword

for run-program 16
purify keyword

for aave-lisp 15

read errors, compiler 71

recording of inline expansions 103

recursion 96

recursion, self 98

recursion, tail 56, 99

remcote macro 156
remote-object-aq function 158
ramsta-object-local-p function 157
remota-objact-p function 157
ramcte-cbject-value function 158
ramcta-value macro 157
remote-value-bind macro 157
remove~all-ccb-handlers function 160
remove-fd-handler function 131
remcove-occb-handlar function 160
representation efficiency notes 116

166 CMU COMMON LISP USER’S MANUAL

representation, object 105, 107 time parsing 19
required-argqument function 73,83 :timazone keyword
rest argument efficiency [13 for format-univarsal-tima 20
restart-bind function 46,47 timing 118
restart-case macro 44,47 trace files 114
restart-name function 47 trace macro 62
rewrn values, local call 101 itrace-file keyword
iroot-structures keyword for compile~£fila 66
for save~lisp 15 *trace-print-length* variable 63
: rounding-mode keyword *traca-print-level* variable 63
for set-floating-peint-modes § itrace—-stream keyword
run time, imterpretation of 118 for compila-from-stream 66
run-program function 16 *traced-function~-list* variable 63
tracing 62
safety oplimization quality 77 transformation, source-to-source 95
sap+ function 124 :trapa keyword
sap-int function 124 for sat-floating-point-modes §
aap-ref-16 function 124 tuning 115, 118
sap-ref-32 function 124 . type check optimization 89
sap-ref-8 function 124 type checking and efficiency 116
save-lisp furction 15 type checking, precise 73
search-list 16 type checking, weakened 74
semi-inline expansion 61 type declarations, variable 108
seand-character-cut-cf-band function 160 type equivaience 82
seriocus-cendition condition 49 type crrors at compile time 72
serve-all-avants function 130 type inference 86
sexrve-event function 130 type inference, dynamic 88
sat-floating-point-modes function § type system compatibility 75
severity of compiler errors 70 type uncertainty 115
short-float~nagative-infinity constant 3 type-error condition 50
short-float-positive-infinity constant 3 type-arror-datum function 50
" signal funcuion 34 type-error-sxpected-type function 50
signed-sap-ref-16 function 124 types 122
signed-sap-ref-32 function 124 Types in Python 72, 81
signed-sap-ref-8 function 124 types, function 83
simple-condition condition 49 types, numeric 107
simple-condition-format-arguments function 49, types, restrictions on 85
50 types, specialized array 111
simpla-condition-format-string function 49,50 types, stucture 85
simple-error condition 50
aimple-type~arror condition 50 unbound-variable condition 351
simple-warning condition 50 uncertainty of types 115
single-float-negative-infinity constamt 3 undefined warnings 67
single-float-positive-infinity constant 3 undefined-functien condition 51
source location printing, debugger 59 *undefined-warning-limit* variable 67,71
source-contaxt-take-car-forms variable 72 unencapsulate function 64
source-to-source transformation 69, 95 union (or) types 83
space optimization gquality 77 unix interrupts 13
specialized array types 111 unknown code locations 57
speed optimization quality 77 unrcachable code deletion 93
stack frames 54 - untrace macro 63
stack numbers 108, 116 unused expression elimination 92
static functions 77 use-valua function 48
storage-condition condition 350
store—-valua function 48 validity of debug variables 58
atream-error condition S50 values declaration 34
stream-error-stream function 50 var function 57
strings 112 . variables, debugger access 57
structure types 85 variables, non-descriptor 108
structures, efficiency of 105 ‘ vectors, efficiency of 106
:atyle keyword verbosity of efficiency notes 117
for format-universal-time 20 verbosity of error messages 71
style recommendations 86, 96 Virtual Machine (VM, or [R2) representation 114
tai} recursion 56, 96, 99 :wait keyword
task-data variable 126 for run-program 16
tagk-notify variable 126 wait-until-fd-usabla function 131
task-self variable 126 warn function 34
time formatting 19 warning condition 49

time macro 7,118 weakened type checking 74

INDEX

wire-£fd function 160
wire-force-output function 156
wire-get-byte function 159
wira-get-number function 159
wire-get-object function 159
wire-get-string function 15%
wire-cutput-byte function 159
wire-cutput-number function 159
wire-cutput-object function 159
wire-ocutput-atring function 159
wire-p function 160
with-clx-event-handling macre 132
with-compilation~unit macro 66
with-enabled-interrupts macro 13
with-fd-handler macro 131
with-interrupts macro 13
with-simple-restart macro 43
with-stack-alien special form 142
without-hemlock macro 13
without-interrupts macro 13
word integers 110

words function 143

CMU COMMON LISP USER’S MANUAL

