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Abstract 

Atomic transactions have become a widely accepted mechanism for coping with failures and concurrency 
in reliable distributed systems. Much recent work has focused on concurrency control algorithms, in 
particular on techniques for exploiting type-specific properties of data objects to enhance concurrency. One 
class of concurrency control algorithms that appears particularly promising are "hybrid" schemes in which 
transactions are assigned timestamps as they commit. Although these algorithms have received extensive 
theoretical analysis, they have not been implemented because they require non-trivial systems support. In this 
paper, we describe the first implementation of transaction commit timestamps, as provided in Avalon/C++, 
a high-level language for reliable distributed computing. We focus on the run-time data structures and 
algorithms needed to achieve a practical implementation of transaction commit timestamps. 
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1. Introduction 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is the 
organization of computations as sequential processes called transactions. Transactions are atomic, that is. 
serializable, transaction-consistent, and persistent. They are used in the database world to achieve data 
consistency in the presence of failures and concurrency, and also for reliable computations in distributed 
systems. Systems and languages employing transactions include Argus [LS83], Clouds [McK84], and 
Camelot [SBD+86]. 

Early work in transaction synchronization considered only untyped objects: operations were either left 
uninterpreted, or were treated simply as reads or writes. Experience has shown, however, that such an 
approach provides an inadequate level of concurrency for many non-database applications [LS83, WL85]. 
More recent work has focused on algorithms that enhance concurrency by exploiting properties of typed 
objects such as queues, directories, or counters [BGL81], [Kor83], [SS84], [Wei84a]. 

In Avalon/C++, the idea behind synchronization constructs is simply that each atomic object synchronizes 
access to itself, ensuring that transactions which access the object do so in the order in which they commit. 
Knowledge of the commit order comes from the commit timestamps; every Avalon transaction is assigned 
a timestamp generated by a logical clock [Lam78] when it commits. 1 

As an example of commit timestamp synchronization, consider this history where three transactions, X, 
Y, and Z operate on a queue object. Note that OkO means that the queue operation completed. 

Begin X 
Enqueue(1) X 

Begin Y 
Enqueue(2) Y 
Ok()X 
Ok() Y 

Commit(3:00) Y 
Commit(3:15)X 
Begin Z 

Dequeue() Z 
Ok(2) Z 
Dequeue () Z 
Ok(1)Z 

Commit(3:30) Z 

This history is not permitted by concurrency control mechanisms based on commutativity (such as 
read/write-locking). Since the Enqueue operation does not commute, X and Y do not commute, and so the 
history is not serializable in both the orders X-Y-Z and Y-X-Z. However, if we take into consideration the 
commit times of transactions, shown above as arguments to the Commit operation, then the above history 
need only be serializable in the order Y-X-Z. Thus, whereas read/write-locking does not allow concurrent 
Enqueues, knowledge of commit orders does. 

Commit timestamp serialization has been used in a number of algorithms for highly concurrent queues, 
directories, etc. [DHW88], and its theoretical implications have been explored elsewhere [HW88], [Her85], 

These commit timestamps should not be confused with the timestamps used in multiversion protocols such as Reed's [Ree83], 
in which transactions are serialized in a statically predefined order. 



[Wei84b]. 

In this paper, we describe the implementation and support for the t r a n s - i d class, a language level 
construct which permits the programmer to test transaction serialization order at run-time. 

This construct has been implemented as part of Avalon/C++ [DHW88], which is a set of extensions to 
C++ [Str86] intended to support reliable distributed computing. Avalon/C++ is built on top of the Camelot 
transaction processing system [SBD*86]. 

Although the synchronization primitives described here are essentially language independent, our pre­
sentation assumes some familiarity with C++. 

Terminology 
Transactions in Avalon/C++ may be nested. A subtransaction's commit is dependent on that of its parent; 

aborting a parent will cause a committed child's effects to be rolled back. A transaction's effects become 
permanent only when it commits at the top level. We use standard tree terminology when discussing nested 
transactions: a transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors 
and descendants. A transaction is considered its own ancestor or descendant. 

2. Programmer's View 

A trans J d object is an identifier for a transaction, and its class operations can be used to test the transaction's 
serialization ordering at run-time. Below is the class definition of trans Jd . 

class trans_id { 
// internal representation 

public: 
trans_id(int = UNIQUE); // constructor 
~trans__id () ; // destructor 
trans_id&=(trans_id&) // assignment 
bool operator==(trans_id&) ; // equality 
bool operator<(trans_id&) ; // serialized before? 
bool operator>(trans_id&) ; // serialized after? 
bool done(trans_id&); // committed to top level? 
friend descendant(trans_id&, trans_id&); 

// is the first a descendant of the second? 
}; 

A trans i d is usually created by calling its constructor: 

trans_id& t = * (new trans__id() ) ; 

The constructor creates and commits a dummy child (transaction) of the current transaction, and returns 
the child's trans J d to the parent. This allows a transaction to generate multiple trans Jds ordered in the 
serialization order of the operations that created them. The trans J d is typically used as a tag on the operation 
[DHW88]. 

On other hand, a call to 

trans id& t = * (new transid(CURRENT)) ; 
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does not create a dummy subtransaction. Instead, it returns a trans i d for the calling transaction of the 
operation. Trans i d ' s created in this way within the same transaction are identical. 

When one trans i d is assigned to another, as in 

t l = t 2 

the original value of tl is lost, and tl becomes identical to t2. 

The system's current knowledge about the transaction serialization ordering can be tested by the over­
loaded operators : and >. For example, if the expression: 

t l < t 2 

evaluates to true, then if both transactions commit to the top level, tl will be serialized before t2. Note that 
because the relative serialization ordering of active transactions is unknown, induces a partial order on 
transids; with one exception, while tl and t2 are active, both tl < t2 and t2 tl will evaluate to false. 
The exception is when tl is a descendant of t2, in which case tl < t2 is true, since the descendant always 
commits before the ancestor. If either transaction aborts, then the expression is vacuously true. Thus, as 
active transactions eventually commit, they become comparable. 

The d o n e operation tests whether a transaction has committed to the top level. This operation is primarily 
used to discard unneeded recovery information within the Avalon object. To test whether one transaction is 
a descendant of another in the transaction tree, the following expression may be evaluated 

t r a n s _ i d : : d e s c e n d a n t ( t l , t 2 ) 

If the expression evaluates to true, then tl is a descendant of t2. 

Examples of the use of transid objects can be found in the Avalon manual [WHC +89]. 

3. Implementation 

3 .1. Overview 

To support the transid class operations, (e.g. to answer the question t l < t 2 ?) the Avalon run-time 
system must keep track of the timestamps of all active and committed transactions. Transaction families may 
span multiple hosts, and transids for each transaction may be passed in messages to processes on different 
hosts. Thus this timestamp information has to be globally shared, highly available, long-lived and persistent 
(survive site crashes). To achieve these properties, the Avalon system maintains the timestamp information 
in the recoverable storage of the TidServer at each site. This server is implemented as a Camelot server, 
using Camelot recoverable storage. 

So, when a transid class operation is called, (as in t l < t 2 ) a remote procedure call is made to the 
local TidServer. If 1 1 or t 2 represents a remote transaction then the local TidServer may call TidServers at 
other sites. 

Having a single network-wide server would be expensive in terms of network traffic and availability, and 
having one server per Avalon application would require more inter-server communication. Since we expect 
most transactions to touch objects on the same site, this arrangement minimizes both remote and local traffic. 
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Thus the class function definitions, which are compiled into each Avalon program that uses trans_id 
objects, are little more than stubs for calling the TidServer. The following sections describe the organization 
and operation of the TidServer. 

Terminology 

At a particular site S, a local transaction is one that began on S, and a remote transaction is one that 
began elsewhere. A local trans Jd is one whose creation and deletion is controlled by a process on site S, and 
a remote trans Jd is one controlled by a remote process. For transmission, the sites sending and receiving a 
transJd are respectively called the source and destination, and the site where the transaction originated is 
its home. In general, local and remote trans Jds may either point to local or remote transactions. Also, any 
combination of the home, source, and destination sites may in fact be the same site. 

3.2. Data Structures 

The TidServer at each site S keeps track of all transactions that start locally, using a tree data structure, 
where each node represents a transaction, and each transaction has links to its children and to its parent. This 
tree structure with upward links facilitates timestamp comparisons and garbage collection. For fast random 
lookup, the nodes are actually hashed into a table called the LTable. 

Each node is a record with fields and links as shown: 

parent 

sibling 

first local child 

identifier 

timestamp 

aborted 

# local transids 

destination sites 

remote children 

other nodes in the tree 

The record is created when the transaction begins. If the transaction commits, the timestamp is written. 
If the transaction is aborted, the "aborted" field is set to Une for that record and that of all its descendants. 
The space for the record is reclaimed later in garbage collection. The field "destination sites" is a list of sites 
that may want to read the timestamp of this transaction, and the field "remote children" is a list of children 
identifiers plus the sites on which they reside. 
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The TidServer also caches information about remote transactions in a hash table called the RTable. When 
a local process acquires a trans Jd for a remote transaction, (say, by receiving.it as an argument in a message) 
then a record for that transaction is created in the RTable, if one does not already exist. 

Each record in the RTable contains (1) the home site of the transaction; (2) a list of source sites, i.e., those 
sites which have passed to this site a trans Jd of this transaction; (3) a list of destination sites, i.e., those sites 
to which this trans Jd has been passsed; and (4) the count of local trans Jd 's for this transaction. 

Note that there is no need to maintain the complete ancestry of the remote transaction. However, the 
timestamps of its ancestors could be cached (when they become known) but this was not implemented. 

The TidServer provides four groups of operations (see list in Appendix). The first group is called at 
transaction "events". As transactions begin, commit or abort, a new node is created in the transaction tree, 
the timestamps are written or records of aborted transactions marked. The second group is called when 
trans Jd 's are created, destroyed, or used. Reference counts in the transaction records are incremented or 
decremented; timestamps are compared. The third group handles the transmission of trans Jds; ensuring that 
local and remote reference counts are properly maintained. The fourth group performs garbage collection 
on data within the TidServer. What happens in the first group of operations is fairly straightforward. The 
other operations are discussed in detail in the next few sections. 

3.2.1. Trans Jd operations 

Creation 
When a trans J d object is created at site S, the class constructor calls the makeref function in the TidServer 

at S, which in turn increments the reference count for the transaction. The record for the transaction is in 
the LTable if the transaction is local and in the RTable if it is remote. 

If the transaction is remote, then makeref also calls makeref-remote operation of the TidServer at the home 
site of the transaction. The home site records that the site S may look at the timestamp of this transaction, 
i.e., appending S to the list of destination sites. The diagram below illustrates the calls to and between 
TidServers when a remote trans J d for transaction X is created at site B. The home site of the transaction X 
is A. 

s i t e A SiteB 

(TO 
1. \ Q 
Makeref \ 

f TidServer "N 
LTable 
X, 1 remote, dest B 
RTable 

\(empty) j 

2. 
Makeref_remote 

f TidServer ""N 
LTable 
(empty) 
RTable 

^X, 1 local, sre A J 

f TidServer "N 
LTable 
X, 1 remote, dest B 
RTable 

\(empty) j 

f TidServer ""N 
LTable 
(empty) 
RTable 

^X, 1 local, sre A J 

When trans-ids are destroyed, either by being popped from the stack or by an explicit call to delete, 
C++ calls a special destructor operation provided by the class. This in turn calls the TidScrver's breakrdf 
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operation, which decrements the transaction's local count, in the LTable or RTable depending on whether 
the transaction is local or remote. 

Comparison 
When two trans-ids are compared, as in the expression tl t2, the overloaded operator invokes the 

compare function of the TidServer. The TidServer searches the tree of transaction records, checks and 
compares timestamps, and returns the value of the expression. 

Conceptually, the timestamp of a transaction is a concatenation of the timestamps of its ancestors, 
beginning with the top level. Suppose we are evaluating tl < t2, where tl is a trans J d for transaction X and 
t2 is a trans Jd for transaction Y. The timestamps of X and Y would be the same from the root down to the 
least common ancestor. 

If the commit time of X' is less than the commit time of Y \ or if X' is committed but Y' is not, then X either 
has or will have an earlier commit timestamp than Y, and the comparison returns true. Otherwise it returns 
false. Also, if any transaction between X and X' is uncommitted, then the serialization order is not known, 
and the comparison also returns false. 

In the implementation, locating the least common ancestor is potentially expensive, since the ancestors of 
X and Y could be remote. We believe that the least common ancestor tends to be near the transactions being 
compared, so rather than looking from the root downwards, we start with the transactions being compared, 
and then go up one level at the time, checking at each step to see if the next one up is the least common 
ancestor. If any one of the transactions on the hierarchy is remote, we make a remote call to the TidServer 
at the remote site to obtain its timestamp. 

The trans J d operations d e s c e n d a n t and d o n e both call the TidServer operations of the same name, 
and read the heirachy information. If the heirarchy crosses site boundaries, a call to a remote TidServer will 
be required. 

3 3 . Transmission of Trans Jds 

When a trans Jd is sent as an argument in an RPC, the Avalon run-time system packages and unpackages the 
trans J d object appropriately. On both the sender and receiver sites, the TidServers are called to update their 
state. At the sender, the packaging routine calls transmitref. When the trans Jd arrives at the destination, the 
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unpackaging routine calls receiveref. 

Below we illustrate a typical transmission of a trans i d from site A to B. Suppose transaction X starts on 
site A and a trans i d object has already been created on site A for transaction X. This is a local trans Jd of a 
local transaction. 

Site A 

0 
f appft 

TidServer 
LTable 
X, 1 local, 0 remote 
RTable 
(empty) 

Site B 

( a t t a ) 

TidServer 
LTable 
(empty) 
RTable 
(empty; 

Suppose that an RPC is now made to a server on site B, and one of the arguments of this RPC is the trans J d 
for X: 

Site A 

' TidServer 
LTable 
X, 1 local, 0 remote 
RTable 
(empty) 

2. 
RPC(transJd) 

Site B 

Receivers 

TidServer 
LTable 
(empty) 
RTable 
(empty) 

Transmitrefon site A records that there is a remote site, B, which has a trans J d for this transaction. Receiveref 
on B records the existence of transaction X, that there is now one trans J d on B for X, and that this trans J d 
came from A. If another site C sends a trans Jd for X to B, B's TidServer would increment the local count 
(in its RTable) for X, and append C to the list of source sites. 
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Site A Site B 

0 

TidServer ^ \ 
LTable 
X, 1 local, 1 remote, dest B 
RTable 

\̂ (empty) J 

TidServer ^ \ 
LTable 
(empty) 
RTable 

Î X, 1 local, 0 remote, src AJ 

Since either the source or the destination site may also be the home site of the transaction, the full algorithm 
must consider four cases as shown below: 

| src = home src = home 
dest = home I case 1 case 4 
dest = home | case 2 case 3 

The example above is case 2, where the source is the home site and the destination is not. The other 
common case is case 1, where both destination and source are the home site. The complete algorithm is 
given in the Appendix, 

This scheme works correctly in the presence of site crashes. First of all, Camelot guarantees that the 
TidServer's data survives crashes. Moreover, the transmitter always records the fact that some site wants 
the timestamp data before sending the trans Jd , and the receiver always records that it received the trans J d 
before making the object available to the application program. In the example above, when the application 
program can finally request timestamp data using the trans Jd , B's TidServer knows where to find it, and A's 
TidServer has not yet discarded the timestamp data, because it knows of a remote site that wants the data. 

However, if transmitnef has already completed, but the transmission of the trans J d object fails, then we 
have a dangling reference. The transmitting site thinks that the receiving site is a remote reference, when 
in fact it is not. This does not lead to incorrect programming results, but it will cause garbage to build up. 
A routine that checks on remote references to very old timestamp data can correct this problem, but has not 
yet been implemented. 
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3.4. Garbage Collection 

Reference Counting 

The commit timestamp for a transaction cannot be discarded as long as a trans _id object for that transaction 
(or any of its descendants) exists anywhere in the system. Since trans i d s are potentially long-lived objects, 
the space used for timestamp data is unbounded without some kind of reference counting scheme. This 
problem is difficult due to the distributed nature of Avalon applications. 

A local and remote trans Jd may point to either local or remote transactions, giving rise to four types of 
reference counts at each site S: 

Local trans Jd Remote trans Jd 
(Object lives at S) (Object lives elsewhere) 

Local transaction Local count in LTable Remote count in LTable 
(began at S) | 

Remote transaction j Local count in RTable j Remote count in RTable 
(began elsewhere) j j 

These reference counts are managed by several operations in the TidServer as listed here: 

Type of Reference Count Incremented by Decremented by 
Local count in LTable 

Remote count in LTable 

Local count in RTable 

Remote count in RTable 

makeref 
receiveref 
makeref -remote 
transmitref 
makeref 
receiveref 
transmitref 

breakref 

j an .breakremo te 

breakref 

jan.breakremote 

Of the six operations, only jan J?reakremote requires an extra call over the network. (This operation 
informs a remote server that the caller has no more references to a particular transaction.) All others are calls 
to the local TidServer. The remote count is the number of sites where remote trans Jds live (i.e. the length 
of the list of destination sites) rather than the number of trans Jds themselves, so that this number (and thus 
the number of calls to janJ>reakremote) is kept low. For example, if there are three (remote) trans Jds on 
site B pointing to a transaction on site A, then jan-breakremote is called only once, when all three trans Jds 
have been destroyed. 

In the previous two sections, we saw how the creation and transmission of trans Jds results in reference 
counts being incremented. If the programmer is careful to destroy every trans J d object created, both types 
of local counts will eventually go down to zero by breakref. Ensuring that the remote counts go to zero is 
the responsibility of the garbage collection operations described below. 

Triggering garbage collection 
The TidServer at each site performs its own garbage collection as follows. Whenever a record for a 

transaction is created, a counter is checked to see if it has reached GARBAGE-LIMIT. If it has not, the 
counter is incremented; otherwise janitor routine is called. The counter is reset to zero if janitor executes 
successfully. Our current implementation sets GARBAGE-LIMIT to the size of the hash table. (Recall that 
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both the LTable and RTable are hashed.) We chose this number because the efficiency of searching the table 
drops only when the bucket length grows. If the hash function is ideal, then the bucket length will be exactly 
1 when we trigger garbage collection. 

The Jani tor 

The janitor operation runs as a top-level transaction at each site. It tries to obtain an exclusive lock on 
all data in the server. If it fails, it returns with an error code, and will be called again soon. Once it acquires 
the lock, the operation scans sequentially through the hash table, inspecting each record to see if it can be 
discarded. 

A local transaction's record is discardable if the transaction is aborted or if the transaction has no children 
and no local or remote references (local count is zero, destination list is empty). A remote transaction's 
record is discardable if there are no local trans Jds for it, and there are no destination sites either. The space 
for the record is deallocated. 

In addition, if a discardable record is in the RTable (i.e., for a remote transaction), a server call 
(janJ?reakremote) is queued for the TidServer at the home site of the transaction. Also, if a discard­
able record is for a local transaction with a remote parent, ih&njanjremovechild is queued for the TidServer 
at the parent's home site. 

In each pass, only leaf transactions are garbage collected, since a transaction's timestamp may be needed 
to compare descendants' trans Jds . This scheme, while simple and efficient, may leave some garbage 
uncollected. The simplest way to reduce the likelihood of missing discardable records is to make several 
passes. We believe that most transaction trees are flat (transactions are rarely nested very deeply) so that 
only a few passes are necessary. Our current implementation makes three. 

When all records have been checked, we release the exclusive lock and make the server calls which have 
been queued. The complete janitor routine can be found in the Appendix. 

Cycles of Remote Counts 
Note that it is possible to produce a cycle of remote reference counts. For instance, site A passes a 

transJd (of a transaction, say X) to site B, which then passes it to site C, which in turn passes it to site A. 
Each of these sites think that another site is interested in the timestamp of transaction X and therefore do not 
garbage collect the storage for this transaction's record in the RTable. 

To break cycles, we should look at very old transaction records in the RTable once in a very long while 
and try to shorten the chain of references. In the example above, we would, at site B, decide that we want 
to garbage collect the space of transaction X, we would send a messages to A telling it that C is a remote 
reference to transaction X, and send a message to C telling it to note that A (instead of B) is the source 
of transaction X. The algorithm has to consider cases where for each transaction, there are multiple source 
sites and destination sites. Pseudo code for routines to break cycles has been written, but has not been 
implemented. 

3.5. Locking and Deadlock Avoidance 

The TidServer is multithreaded, operations can be called simuitanously, and each operation runs as a lazy 
top level transaction [DHW88]. 
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For integrity of the tree structure, write access has to be exclusive. Therefore, there is a single lock tor 
all data in each TidServer which every operation must obtain before proceeding. 

Some TidServer operations require calls to other TidServers, which gives rise to the possibility of 
deadlock. In the diagram below, for example, two sites A and B are both registering a remote child 
transaction, where the transaction at A has a parent at B and the transaction at B has a parent at A. 

fTidServer • 
• 

B 

TidServer 

• 

Both register operations need to lock the data at both A and B, and will probably attempt to obtain these 
locks in the opposite order, so causing a cyclical wait. Besides register, the following calls may also cause 
remote calls: remove (to propagate transaction abort downwards), makeref, compare, done, descendant, and 
janitor. 

For makeref and register, we compare the node addresses of the remote site and the local site, and obtain 
the lock with the lower address first. 

For compare, done and descendant, data is not written, merely read. Locking is required only to ensure 
that the links are not in a inconsistent state (eg. with dangling pointers). So, at each site, the lock is first 
acquired, data read, then the lock is dropped immediately. 

In remove, we mark the local records, then spawn new top level transactions to call remote TidServers to 
mark remote descendants aborted. These new transactions run as separate threads. Remove then commits 
without waiting for these to complete. The solution for janitor is similar. Local records garbage collected, 
and remote routines i.e. janjremovechild and janJyreakremote are called as separate top level transactions, 
and do not have to complete for the local janitor operation to commit. In both cases, we avoid waiting for 
locks at other sites when we're holding the lock at the local site. 

The semantics for remove and janitor may seem a little strange. Since no one checks to see if the remote 
calls abort, it may be that the local and remote site will be inconsistent. In the case of remove operation, if 
higher levels are marked aborted but this marking is not propagated to the lower level, then a comparison of 
trans Jds t l < t2 may report more pessimistic serialization orders. Done will not report wrong answers since 
the marking of aborted transactions (in remove) begins at the top and propagates downward. However, the 
TidServer loses memory space gradually, since the lower levels of records might not be garbage collected. 
In the case of the janitor operation, the situation is similar. No incorrect results are ever reported, but the 
TidServer may lose memory space slowly, if the remote top level transactions fail. A scheme to examine 
very old transaction records can remedy this, but has not been implemented. 
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Much of this complication would go away if all records of a transaction family resided in the same 
site, but we believe that transaction families exhibit locality, i.e., if a transaction at site A had a remote 
subtransaction at site B, then furthur descendants would be also be at site B, so that to maintain all timestamp 
information at site A would require many more remote server calls from B to A. 

4. Performance 

We first measured the costs of the local trans i d class operations as well some of the underlying Camelot 
primitives. Then, since application programs that need high degrees of concurrency may benefit from highly 
concurrent queues, we next examined the performance of our implementation of a FIFO queue which uses 
trans i d s . 

4.1. Cost of Primitives 

We used an IBM RT/APC with 12 Mb of memory, a Sun 3/60 with 16 Mb, a //Vax-3 with 16 Mb, and 
a Decstation 5000 (pmax) with 24 Mb, all running Camelot version 83. In measuring, we repeated each 
operation between 200 to 1000 times, and divided the total time taken by the number of repetitions. All 
numbers shown are in milliseconds. Note: t, t l and t2 are objects of class trans i d . 

Operation IBM RT Sun3 /'Vax Pmax 
Avalon primitives ! 
Transaction Begin and Commit with trans-id support 56 73 96 28 I 

t = new trans-idO 10 10 13 4.1 ! 
delete t 8 8.5 11 3.3 1 

tl < t2 11 12 16 5.6 ! 
descendant (tl, t2) 11 11 16 5.3 ! 
Camelot primitives 
Transaction Begin and Commit 6.0 6.5 8.7 2.4 ; 
Server Call (null) 9.1 9.7 13 4.6 1 
Server Call (write) 19 21 31 9.0 I 

The cost of an Avalon transaction with trans i d support is that of a Camelot transaction plus two calls to 
the TidServer, the first to create the transaction record, the second to write the timestamp, plus computation 
within the server. Creation, deletion and comparison of trans i d s each costs one call to the TidServer. Note 
that, with the exception of the Decstation 5000, the performance on all machines is comparable. 

Because we were not able to isolate and sufficiently control a network, the remote operations were not 
measured. However, we made two observations of our environment. First, a "ping" takes anywhere from 15 
ms to 200 ms between RT's on a token ring. Second, using the same two machines at a trial run, a complete 
Avalon transaction which wrote on a remote array server took about 350 ms, and a transaction which wrote 
on a remote queue server took about 4600 ms. 
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4.2. The Concurrent Queue 

We next examined the operation of a concurrent queue. In this Avalon subatomic [DHW881 object, the 
class operations explicitly use the commit order of transactions to obtain concurrency. Enqueues can always 
proceed, and an element can be dequeued if it is comparable with (committed with respect to) all the other 
elements in the queue, and if the last dequeuer is committed with respect to the current dequeuer. The 
concurrent queue is described more fully in [HW87]. 

We first measured the static costs of the queue. For comparison, we also measured the operation of a 
simple array, an object of the class atomic [DHW88], which uses read and write locks to control access to 
each element of the array. These measurements were performed on an RT (see previous section). 

Operations time in ms 
Enqueue 212 ; 
Dequeue 276 

! Transaction(Enq,Deq) 701 ; 
Transaction(Enq,Deq,abort) 937 j 
Write array element 28 j 
Read array element 10 j 
Transaction(Write,Read) 179 I 
Transaction(Write,Read,abort) 412 j 

An enqueue operation involves two levels of server calls. The enqueuer first calls the queue server, which 
in turn calls the TidServer's makeref operation to obtain a trans J d object to associate with the element to be 
enqueued. 

Queue User 

.enqueue 

Queue Server 

.makeref 

TidServer 

Within the queue server, short term locks are used (in the when construct) to start a subtransaction and 
modify the queue data, thus avoiding the conventional read/write locking. Therefore the cost for an enqueue 
operation is that of a server call, a write-(sub)transaction at the queue server, plus calls to the TidServer to 
create a trans J d object. In addition, the enqueue operation also attempts to place the elements in commit 
order, and so calls the TidServer's compare operation. In the worse case, as many comparisons as elements 
tentatively queued are needed. Each comparison costs a call to the TidServer, unless the comparison is 
between elements whose enqueuers are operations within the same transaction, in which case the order is 
already known. 

Similarly, a dequeuer first calls the queue server, which in turn calls the TidServer, obtaining a dequeuer's 
trans-id to associate with the object. More calls are made to the TidServer to compare the commit timestamps 
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of the elements in the queue, since the element to be dequeued is the one with the earliest timestamp. Also 
the current dequeuer has to have a later timestamp than the previous dequeuer. Again, in the worst case, as 
many comparisons as elements in the queue are needed. Thus, the cost of a dequeue operation is that of a 
server call, a write-(sub)transaction, plus multiple calls to the TidServer. 

Part of the overhead of the queue is the time spent in the commit procedure and the abort procedure. 
These procedures are called whenever a transaction commits or aborts, respectively. The commit procedure 
checks to see if the last dequeuer is a descendant (using the trans J d class operation) of the committing 
transaction. If it is, then the pool of tentatively dequeued elements can be discarded. This descendant 
operation costs one call to the TidServer. 

In the abort procedure, elements which have been tentatively dequeued by descendants of the aborting 
transaction are put back into the queue. Thus the procedure costs as many calls to the TidServer as there are 
active dequeuers. 

It is difficult to measure in isolatation the cost of a single commit or abort procedure, so the table above 
shows the costs of an Avalon transaction containing an enqueue followed by a dequeue operation, and then 
either a commit or abort. The cost of a Read and Write in the array object is basically the cost of a server 
call (to the array server) with a read (or write) operation, plus the cost of obtaining a lock. In the absence of 
contention, the cost of obtaining the lock is negligible compared to the cost of the server call. 

In the next table, we show how the cost of a transaction using the queue depends on the number of 
other elements tentatively enqueued. The transaction performs first an enqueue operation, then a dequeue 
operation and then commits. 

TransactionQEnqueue, Dequeue) 
Number of tentatively queued elements 2 4 8 16 
Time in ms 930 1091 1491 | 2155 

From the two tables above, we see that the overheads in our implementation of the subatomic queue are 
quite high, and in addition, that the overhead increases with the number of elements in the queue. 

Given these overheads, we should consider using this subatomic queue only when an application requires 
high concurrency and/or when the duration of the transaction is long. 

Consider using an (initially empty) array in producer-consumer fashion. If we use read and write locks, 
writers cannot be concurrent. With a subatomic queue however, all writers (enqueuers) can proceed, although 
readers (dequeuers) have to wait until the enqueuers commit with respect to each other. So we expect this 
concurrent queue to have an advantage when there are many enqueuers and few dequeuers. We also expect 
an advantage over read/write locking when the write transactions are long, since it implies that the writer 
will hold an exclusive lock for a long time, thus stalling other transactions. 

In our experiment (see code fragment below), we used one reader, and varied the number of writers, n 
(2,4 and 8). A writer (or enqueuer) is a transaction that first writes (or enqueues), performs the independent 
operations, and then commits. The reader (or dequeuer) is a transaction that reads (or dequeues) and 
then commits. We varied the length of the writer (enqueuing) transaction by varying the time taken in 
"independent operations". These are operations that touch objects without any contention with other coarms 
(transactions in the costart set). All transactions (the coarms) of a the costart statement are executed 
concurrently [WHC+89]. 
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costart ; 
transaction(write/enqueue;.. .independent operations...); / /1 

transaction(write/enqueue;.. .independent operations...); // n 
transaction (read/dequeue); 

In the table below, we show the execution time for the array and queue implementations of the costart, with 
potential concurrency increasing as we go across, and length of each write/enqueuing transaction increasing 
as we go downwards. We used a simple counting loop to simulate the independent operations. Execution 
of the loop took 170 ms, therefore the values in the leftmost column of the table below are multiples of 170 
ms. So the entry marked with an asterix ( r ) , for example, is the time taken for two enqueuing transactions 
and one dequeuing transaction, where each enqueuing transaction also performs 1020 ms worth of other 
operations, and where all transactions try to proceed concurrently. Note that these numbers were obtained 
by simulating the concurrent transactions on a uniprocessor (an RT). 

Other operations 
: (in multiples of 170 ms) 

2 writers 4 writers 8 writers Other operations 
: (in multiples of 170 ms) Array Queue Array Queue Array Queue ' 
; 680 1625 - 3139 _ -
1 850 1925 2318 3749 4305 7608 9625 i 

1020 2362 2513* 4491 4335 9050 9143 J 
1190 2542 2881 - - 10044 9727 \ 
1360 2895 2928 - _ _ _ 

1530 - 3088 - -
! 

With two writers, a write transaction should be about 1190 ms or more to justify the cost of the queue. 
We see that as the number of writers increases from 2 to 4, the length of the transaction need not be so long 
to compensate for the overheads. As we go from 4 to 8 writers, even longer transactions are required since 
queue operations are more expensive when there are more active enqueuers. 

Our implementation of Avalon constructs and objects freely used what were assumed to be cheap 
primitives: transactions, recoverable memory and server calls. An effort to tune or optimize for performance 
would have to consider these costs more seriously. However, our the implementation is neither tuned nor 
optimized. Therefore, the reader should not take our measurements as indicative of worse-case or average-
case performance. Rather they represent data points useful for comparison purposes in future work. 

5. Final Remarks 

This paper describes our implementation of t r a n s - i d s , a new programming language construct for im­
plementing atomic data types. We believe this construct raises interesting issues in several areas. As 
a programming language construct, trans-ids present a simple but powerful interface to the programmer, 
and we have worked out a number of example data types that rely on trans Jds to achieve a high level 
of concurrency [DHW88]. As a concurrency control mechanism, it can be shown formally that commit-
timestamp serialization permits strictly more concurrency than certain conventional techniques based on 
strict two-phase locking [HW88]. 
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This paper is concerned with a third area of interest: implementation. This is the first implementation 
of a general mechanism for commit-timestamp serialization. The goals of the implementation were to 
minimize message traffic and keep the volume of long-lived data to a manageable level. We faced several 
interesting problems such as the placement (across processes and sites) of distributed timestamp information, 
the management of remote references, which types of cross boundary links to maintain, and the garbage 
collection of these data structures with minimal disruption. We found that maintaining timestamp in 
recoverable storage means using a Camelot server, which results in an overhead of a server call (and thus 
a context switch) for any update or read. Currently our implementation of distributed garbage collection is 
not perfect; memory may leak when the network is unreliable, and cycles may occur. 

Therefore, to really assess our decisions in placement we need to profile the varied use of trans i d s , 
especially in distributed applications. We also need to monitor the reliability of the network. In an 
extremely unreliable network, the imperfect garbage collection may cause the TidServer to lose memory in 
large quantities, so it might be necessary to stop the whole system to garbage collect once in a while. 

In conclusion, we hope to see an increasing use of trans-ids and timestamp ordering for concurrency 
control, particularly in applications that can benefit from high levels of concurrency. 
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Appendix 

TidServer Interface 

1. Transaction management 

register (X : transaction-name, Xparent : transaction-name) 
Creates a record for transaction X. Called when X begins, 

child (X : transaction-name, Xchild : transaction-name, Xlevel : integer) 
Updates a local transaction's record to show that a remote child exists. Called when a local 
transaction becomes the parent of a remote subtransaction. 

stamp (X : transaction-name, Xts : timestamp) 
Records Xts as the commit time of transaction X. Called when X commits, 

remove (X : transaction-name) 
Recursively sets the 'aborted' flag on the record of X and on the records of X's descendants. 
This makes the records available for garbage collection. Called when X is aborted. 

2. Trans Jd class operations 

makeref (X : transaction-name) 
Called from the transJd constructor. Increments the reference count of local transJd's for 
transaction X. 

makeref-remote (X : transaction-name, S : site-name) 
Called from the trans Jd constructor. Increments the reference count of remote transJd's trans­
action X. 

breakref (X : transaction-name) 
Called by the transJd destructor. Decrements the count of transJd's that refer to transaction X. 

copyref (X : transaction-name, Y : transaction-name) 
Called when a transJd is assigned to another. Decrements the reference count of transaction 
X, and increments the reference count of transaction Y. 

compare (X : transaction-name, Y : transaction-name, result : boolean) 
Compares the timestamps of X and Y. Returns true if X serializes before Y, otherwise returns 
false. Called by the transJd operators < and >. 

yield (X : transaction-name, Xparent : transaction-name, Xdepth : integer, Xts : timestamp, Xvalid : 
boolean) 
Returns the timestamp, the depth and name of the parent of transaction X. requested by one 
TidServer of another. Also resets Valid' if the transaction has aborted. Called by one TidServer 
to another. 

done (X : transaction-name), descendant^ : transaction-name, Y : transaction-name) 
These are called by the transJd member functions of the same name. 

3. TransJd transmission. Transmitref and receiveref are called by the routines that package and un-
package arguments in a remote procedure call. 

transmitref (X : transaction-name, Dest : site-name) 
Writes in the record of transaction X that a transJd is to be transmitted to site Dest. 

receiveref (X : transaction-name, Src : site-name) 
Writes in the record of transaction X that a transJd has been received from site Src. 
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Algorithms for Transmission of t r a n s _id 

Case 1: Source = Home, Destination = Home 
Transmitref (X : transaction-name, dest: destination-site-name) 

Do nothing 

Receiveref (X : transaction-name, src : source-site-name) 
Get record of X from LTable 
Increment local count 

Case 2: Source = Home, Destination = Home 
Transmitref (X : transaction-name, dest: destination-site-name) 

Get record of X from LTable 
If dest is not in dest-list 

Append dest on dest-list 
Increment remote count 

Receiveref (X : transaction-name, src : source-site-name) 
If there is a record for X in RTable 

If src is not on src-list 
Increment local count 
Put src on src-list 

else Do nothing 
else 

Mmake a record for X in RTable 
Put src on src-list 
Set local = 1 

Case 3: Source * Home, Destination = Home 
Transmitref (X : transaction-name, dest: destination-site-name) 

Get record of X from RTable 
If dest isn't in dest-list, 

Put dest on dest-list 
Increase remote count 

Receiveref (X : transaction-name, src : source-site-name) 
If there is a record for X in RTable 

If src is not on src-list 
Put src on src-list 
Increment local count 

else Do nothing 
else 

Make an record for X in RTable 
Put src on src-list 
Set local = 1 

Case 4: Source # Home, Destination = Home 
Transmitref (X : transaction-name, dest: destination-site-name) 

Do nothing 

Receiveref (X : transaction-name, src : source-site-name) 
Get record of X from LTable 
Increase local count 
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Algorithms for Garbage Collection 

Janitor() : 
Get exclusive lock on both tables 
For each local transaction X (a record in the Liable) 

If X is active, do nothing. 

If X is aborted 
remove the record, free storage 
for visit all child recursively 

If X is committed 
If X has no children and there are no local 

or remote trans-id's for X 
then 

Remove X as child of parent(X) 
If the parent(X) is local, 
then remove self from sibling list of parents 
else 

queue a server call to home site of parent(X) 
(jan_removechild(parent(X), X)) 

Remove record of X 

For each remote transaction X (a record in the RTable): 
If both local count and remote count are zero 
then 

For each node on the list of source sites 
queue a server call to the node to strike out this-site as a destination 

(jan -breakremote(X, this-site)) 
Remove record of X 

Release exclusive lock 
Make the server calls that have been queued 

Jan_removechild (P : transaction-name, C : transaction-name) : 
Check that P is remote 
Get record of P from LTable 
Remove C from P's list of children 

Jan_breakremote (X : transaction-name, N : site-name) : 
Check that N is different from the this-site 
Get record of X from LTable 
Decrement the count of remote sites 
Remove the nodeJd from the destination list 
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