
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Implementation of Commit Timestamps in Avalon

Maurice P. Herlihy Su-Yuen Ling Jeannette M. Wing

January 28, 1991

CMU-CS-91-107-

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Atomic transactions have become a widely accepted mechanism for coping with failures and concurrency
in reliable distributed systems. Much recent work has focused on concurrency control algorithms, in
particular on techniques for exploiting type-specific properties of data objects to enhance concurrency. One
class of concurrency control algorithms that appears particularly promising are "hybrid" schemes in which
transactions are assigned timestamps as they commit. Although these algorithms have received extensive
theoretical analysis, they have not been implemented because they require non-trivial systems support. In this
paper, we describe the first implementation of transaction commit timestamps, as provided in Avalon/C++,
a high-level language for reliable distributed computing. We focus on the run-time data structures and
algorithms needed to achieve a practical implementation of transaction commit timestamps.

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems Division
(AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.

Keywords: Distributed computing, reliable computing, concurrent programming structures, hybrid
atomicity, run-time environments, Avalon.

1. Introduction

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is the
organization of computations as sequential processes called transactions. Transactions are atomic, that is.
serializable, transaction-consistent, and persistent. They are used in the database world to achieve data
consistency in the presence of failures and concurrency, and also for reliable computations in distributed
systems. Systems and languages employing transactions include Argus [LS83], Clouds [McK84], and
Camelot [SBD+86].

Early work in transaction synchronization considered only untyped objects: operations were either left
uninterpreted, or were treated simply as reads or writes. Experience has shown, however, that such an
approach provides an inadequate level of concurrency for many non-database applications [LS83, WL85].
More recent work has focused on algorithms that enhance concurrency by exploiting properties of typed
objects such as queues, directories, or counters [BGL81], [Kor83], [SS84], [Wei84a].

In Avalon/C++, the idea behind synchronization constructs is simply that each atomic object synchronizes
access to itself, ensuring that transactions which access the object do so in the order in which they commit.
Knowledge of the commit order comes from the commit timestamps; every Avalon transaction is assigned
a timestamp generated by a logical clock [Lam78] when it commits. 1

As an example of commit timestamp synchronization, consider this history where three transactions, X,
Y, and Z operate on a queue object. Note that OkO means that the queue operation completed.

Begin X
Enqueue(1) X

Begin Y
Enqueue(2) Y
Ok()X
Ok() Y

Commit(3:00) Y
Commit(3:15)X
Begin Z

Dequeue() Z
Ok(2) Z
Dequeue () Z
Ok(1)Z

Commit(3:30) Z

This history is not permitted by concurrency control mechanisms based on commutativity (such as
read/write-locking). Since the Enqueue operation does not commute, X and Y do not commute, and so the
history is not serializable in both the orders X-Y-Z and Y-X-Z. However, if we take into consideration the
commit times of transactions, shown above as arguments to the Commit operation, then the above history
need only be serializable in the order Y-X-Z. Thus, whereas read/write-locking does not allow concurrent
Enqueues, knowledge of commit orders does.

Commit timestamp serialization has been used in a number of algorithms for highly concurrent queues,
directories, etc. [DHW88], and its theoretical implications have been explored elsewhere [HW88], [Her85],

These commit timestamps should not be confused with the timestamps used in multiversion protocols such as Reed's [Ree83],
in which transactions are serialized in a statically predefined order.

[Wei84b].

In this paper, we describe the implementation and support for the t r a n s - i d class, a language level
construct which permits the programmer to test transaction serialization order at run-time.

This construct has been implemented as part of Avalon/C++ [DHW88], which is a set of extensions to
C++ [Str86] intended to support reliable distributed computing. Avalon/C++ is built on top of the Camelot
transaction processing system [SBD*86].

Although the synchronization primitives described here are essentially language independent, our pre­
sentation assumes some familiarity with C++.

Terminology
Transactions in Avalon/C++ may be nested. A subtransaction's commit is dependent on that of its parent;

aborting a parent will cause a committed child's effects to be rolled back. A transaction's effects become
permanent only when it commits at the top level. We use standard tree terminology when discussing nested
transactions: a transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors
and descendants. A transaction is considered its own ancestor or descendant.

2. Programmer's View

A trans J d object is an identifier for a transaction, and its class operations can be used to test the transaction's
serialization ordering at run-time. Below is the class definition of trans Jd .

class trans_id {
// internal representation

public:
trans_id(int = UNIQUE); // constructor
~trans__id () ; // destructor
trans_id&=(trans_id&) // assignment
bool operator==(trans_id&) ; // equality
bool operator<(trans_id&) ; // serialized before?
bool operator>(trans_id&) ; // serialized after?
bool done(trans_id&); // committed to top level?
friend descendant(trans_id&, trans_id&);

// is the first a descendant of the second?
};

A trans i d is usually created by calling its constructor:

trans_id& t = * (new trans__id()) ;

The constructor creates and commits a dummy child (transaction) of the current transaction, and returns
the child's trans J d to the parent. This allows a transaction to generate multiple trans Jds ordered in the
serialization order of the operations that created them. The trans J d is typically used as a tag on the operation
[DHW88].

On other hand, a call to

trans id& t = * (new transid(CURRENT)) ;

2

does not create a dummy subtransaction. Instead, it returns a trans i d for the calling transaction of the
operation. Trans i d ' s created in this way within the same transaction are identical.

When one trans i d is assigned to another, as in

t l = t 2

the original value of tl is lost, and tl becomes identical to t2.

The system's current knowledge about the transaction serialization ordering can be tested by the over­
loaded operators : and >. For example, if the expression:

t l < t 2

evaluates to true, then if both transactions commit to the top level, tl will be serialized before t2. Note that
because the relative serialization ordering of active transactions is unknown, induces a partial order on
transids; with one exception, while tl and t2 are active, both tl < t2 and t2 tl will evaluate to false.
The exception is when tl is a descendant of t2, in which case tl < t2 is true, since the descendant always
commits before the ancestor. If either transaction aborts, then the expression is vacuously true. Thus, as
active transactions eventually commit, they become comparable.

The d o n e operation tests whether a transaction has committed to the top level. This operation is primarily
used to discard unneeded recovery information within the Avalon object. To test whether one transaction is
a descendant of another in the transaction tree, the following expression may be evaluated

t r a n s _ i d : : d e s c e n d a n t (t l , t 2)

If the expression evaluates to true, then tl is a descendant of t2.

Examples of the use of transid objects can be found in the Avalon manual [WHC +89].

3. Implementation

3 .1. Overview

To support the transid class operations, (e.g. to answer the question t l < t 2 ?) the Avalon run-time
system must keep track of the timestamps of all active and committed transactions. Transaction families may
span multiple hosts, and transids for each transaction may be passed in messages to processes on different
hosts. Thus this timestamp information has to be globally shared, highly available, long-lived and persistent
(survive site crashes). To achieve these properties, the Avalon system maintains the timestamp information
in the recoverable storage of the TidServer at each site. This server is implemented as a Camelot server,
using Camelot recoverable storage.

So, when a transid class operation is called, (as in t l < t 2) a remote procedure call is made to the
local TidServer. If 1 1 or t 2 represents a remote transaction then the local TidServer may call TidServers at
other sites.

Having a single network-wide server would be expensive in terms of network traffic and availability, and
having one server per Avalon application would require more inter-server communication. Since we expect
most transactions to touch objects on the same site, this arrangement minimizes both remote and local traffic.

3

Thus the class function definitions, which are compiled into each Avalon program that uses trans_id
objects, are little more than stubs for calling the TidServer. The following sections describe the organization
and operation of the TidServer.

Terminology

At a particular site S, a local transaction is one that began on S, and a remote transaction is one that
began elsewhere. A local trans Jd is one whose creation and deletion is controlled by a process on site S, and
a remote trans Jd is one controlled by a remote process. For transmission, the sites sending and receiving a
transJd are respectively called the source and destination, and the site where the transaction originated is
its home. In general, local and remote trans Jds may either point to local or remote transactions. Also, any
combination of the home, source, and destination sites may in fact be the same site.

3.2. Data Structures

The TidServer at each site S keeps track of all transactions that start locally, using a tree data structure,
where each node represents a transaction, and each transaction has links to its children and to its parent. This
tree structure with upward links facilitates timestamp comparisons and garbage collection. For fast random
lookup, the nodes are actually hashed into a table called the LTable.

Each node is a record with fields and links as shown:

parent

sibling

first local child

identifier

timestamp

aborted

local transids

destination sites

remote children

other nodes in the tree

The record is created when the transaction begins. If the transaction commits, the timestamp is written.
If the transaction is aborted, the "aborted" field is set to Une for that record and that of all its descendants.
The space for the record is reclaimed later in garbage collection. The field "destination sites" is a list of sites
that may want to read the timestamp of this transaction, and the field "remote children" is a list of children
identifiers plus the sites on which they reside.

4

The TidServer also caches information about remote transactions in a hash table called the RTable. When
a local process acquires a trans Jd for a remote transaction, (say, by receiving.it as an argument in a message)
then a record for that transaction is created in the RTable, if one does not already exist.

Each record in the RTable contains (1) the home site of the transaction; (2) a list of source sites, i.e., those
sites which have passed to this site a trans Jd of this transaction; (3) a list of destination sites, i.e., those sites
to which this trans Jd has been passsed; and (4) the count of local trans Jd 's for this transaction.

Note that there is no need to maintain the complete ancestry of the remote transaction. However, the
timestamps of its ancestors could be cached (when they become known) but this was not implemented.

The TidServer provides four groups of operations (see list in Appendix). The first group is called at
transaction "events". As transactions begin, commit or abort, a new node is created in the transaction tree,
the timestamps are written or records of aborted transactions marked. The second group is called when
trans Jd 's are created, destroyed, or used. Reference counts in the transaction records are incremented or
decremented; timestamps are compared. The third group handles the transmission of trans Jds; ensuring that
local and remote reference counts are properly maintained. The fourth group performs garbage collection
on data within the TidServer. What happens in the first group of operations is fairly straightforward. The
other operations are discussed in detail in the next few sections.

3.2.1. Trans Jd operations

Creation
When a trans J d object is created at site S, the class constructor calls the makeref function in the TidServer

at S, which in turn increments the reference count for the transaction. The record for the transaction is in
the LTable if the transaction is local and in the RTable if it is remote.

If the transaction is remote, then makeref also calls makeref-remote operation of the TidServer at the home
site of the transaction. The home site records that the site S may look at the timestamp of this transaction,
i.e., appending S to the list of destination sites. The diagram below illustrates the calls to and between
TidServers when a remote trans J d for transaction X is created at site B. The home site of the transaction X
is A.

s i t e A SiteB

(TO
1. \ Q
Makeref \

f TidServer "N
LTable
X, 1 remote, dest B
RTable

\(empty) j

2.
Makeref_remote

f TidServer ""N
LTable
(empty)
RTable

^X, 1 local, sre A J

f TidServer "N
LTable
X, 1 remote, dest B
RTable

\(empty) j

f TidServer ""N
LTable
(empty)
RTable

^X, 1 local, sre A J

When trans-ids are destroyed, either by being popped from the stack or by an explicit call to delete,
C++ calls a special destructor operation provided by the class. This in turn calls the TidScrver's breakrdf

http://receiving.it

operation, which decrements the transaction's local count, in the LTable or RTable depending on whether
the transaction is local or remote.

Comparison
When two trans-ids are compared, as in the expression tl t2, the overloaded operator invokes the

compare function of the TidServer. The TidServer searches the tree of transaction records, checks and
compares timestamps, and returns the value of the expression.

Conceptually, the timestamp of a transaction is a concatenation of the timestamps of its ancestors,
beginning with the top level. Suppose we are evaluating tl < t2, where tl is a trans J d for transaction X and
t2 is a trans Jd for transaction Y. The timestamps of X and Y would be the same from the root down to the
least common ancestor.

If the commit time of X' is less than the commit time of Y \ or if X' is committed but Y' is not, then X either
has or will have an earlier commit timestamp than Y, and the comparison returns true. Otherwise it returns
false. Also, if any transaction between X and X' is uncommitted, then the serialization order is not known,
and the comparison also returns false.

In the implementation, locating the least common ancestor is potentially expensive, since the ancestors of
X and Y could be remote. We believe that the least common ancestor tends to be near the transactions being
compared, so rather than looking from the root downwards, we start with the transactions being compared,
and then go up one level at the time, checking at each step to see if the next one up is the least common
ancestor. If any one of the transactions on the hierarchy is remote, we make a remote call to the TidServer
at the remote site to obtain its timestamp.

The trans J d operations d e s c e n d a n t and d o n e both call the TidServer operations of the same name,
and read the heirachy information. If the heirarchy crosses site boundaries, a call to a remote TidServer will
be required.

3 3 . Transmission of Trans Jds

When a trans Jd is sent as an argument in an RPC, the Avalon run-time system packages and unpackages the
trans J d object appropriately. On both the sender and receiver sites, the TidServers are called to update their
state. At the sender, the packaging routine calls transmitref. When the trans Jd arrives at the destination, the

6

unpackaging routine calls receiveref.

Below we illustrate a typical transmission of a trans i d from site A to B. Suppose transaction X starts on
site A and a trans i d object has already been created on site A for transaction X. This is a local trans Jd of a
local transaction.

Site A

0
f appft

TidServer
LTable
X, 1 local, 0 remote
RTable
(empty)

Site B

(a t t a)

TidServer
LTable
(empty)
RTable
(empty;

Suppose that an RPC is now made to a server on site B, and one of the arguments of this RPC is the trans J d
for X:

Site A

' TidServer
LTable
X, 1 local, 0 remote
RTable
(empty)

2.
RPC(transJd)

Site B

Receivers

TidServer
LTable
(empty)
RTable
(empty)

Transmitrefon site A records that there is a remote site, B, which has a trans J d for this transaction. Receiveref
on B records the existence of transaction X, that there is now one trans J d on B for X, and that this trans J d
came from A. If another site C sends a trans Jd for X to B, B's TidServer would increment the local count
(in its RTable) for X, and append C to the list of source sites.

7

Site A Site B

0

TidServer ^ \
LTable
X, 1 local, 1 remote, dest B
RTable

\̂ (empty) J

TidServer ^ \
LTable
(empty)
RTable

Î X, 1 local, 0 remote, src AJ

Since either the source or the destination site may also be the home site of the transaction, the full algorithm
must consider four cases as shown below:

| src = home src = home
dest = home I case 1 case 4
dest = home | case 2 case 3

The example above is case 2, where the source is the home site and the destination is not. The other
common case is case 1, where both destination and source are the home site. The complete algorithm is
given in the Appendix,

This scheme works correctly in the presence of site crashes. First of all, Camelot guarantees that the
TidServer's data survives crashes. Moreover, the transmitter always records the fact that some site wants
the timestamp data before sending the trans Jd , and the receiver always records that it received the trans J d
before making the object available to the application program. In the example above, when the application
program can finally request timestamp data using the trans Jd , B's TidServer knows where to find it, and A's
TidServer has not yet discarded the timestamp data, because it knows of a remote site that wants the data.

However, if transmitnef has already completed, but the transmission of the trans J d object fails, then we
have a dangling reference. The transmitting site thinks that the receiving site is a remote reference, when
in fact it is not. This does not lead to incorrect programming results, but it will cause garbage to build up.
A routine that checks on remote references to very old timestamp data can correct this problem, but has not
yet been implemented.

8

3.4. Garbage Collection

Reference Counting

The commit timestamp for a transaction cannot be discarded as long as a trans _id object for that transaction
(or any of its descendants) exists anywhere in the system. Since trans i d s are potentially long-lived objects,
the space used for timestamp data is unbounded without some kind of reference counting scheme. This
problem is difficult due to the distributed nature of Avalon applications.

A local and remote trans Jd may point to either local or remote transactions, giving rise to four types of
reference counts at each site S:

Local trans Jd Remote trans Jd
(Object lives at S) (Object lives elsewhere)

Local transaction Local count in LTable Remote count in LTable
(began at S) |

Remote transaction j Local count in RTable j Remote count in RTable
(began elsewhere) j j

These reference counts are managed by several operations in the TidServer as listed here:

Type of Reference Count Incremented by Decremented by
Local count in LTable

Remote count in LTable

Local count in RTable

Remote count in RTable

makeref
receiveref
makeref -remote
transmitref
makeref
receiveref
transmitref

breakref

j an .breakremo te

breakref

jan.breakremote

Of the six operations, only jan J?reakremote requires an extra call over the network. (This operation
informs a remote server that the caller has no more references to a particular transaction.) All others are calls
to the local TidServer. The remote count is the number of sites where remote trans Jds live (i.e. the length
of the list of destination sites) rather than the number of trans Jds themselves, so that this number (and thus
the number of calls to janJ>reakremote) is kept low. For example, if there are three (remote) trans Jds on
site B pointing to a transaction on site A, then jan-breakremote is called only once, when all three trans Jds
have been destroyed.

In the previous two sections, we saw how the creation and transmission of trans Jds results in reference
counts being incremented. If the programmer is careful to destroy every trans J d object created, both types
of local counts will eventually go down to zero by breakref. Ensuring that the remote counts go to zero is
the responsibility of the garbage collection operations described below.

Triggering garbage collection
The TidServer at each site performs its own garbage collection as follows. Whenever a record for a

transaction is created, a counter is checked to see if it has reached GARBAGE-LIMIT. If it has not, the
counter is incremented; otherwise janitor routine is called. The counter is reset to zero if janitor executes
successfully. Our current implementation sets GARBAGE-LIMIT to the size of the hash table. (Recall that

9

both the LTable and RTable are hashed.) We chose this number because the efficiency of searching the table
drops only when the bucket length grows. If the hash function is ideal, then the bucket length will be exactly
1 when we trigger garbage collection.

The Jani tor

The janitor operation runs as a top-level transaction at each site. It tries to obtain an exclusive lock on
all data in the server. If it fails, it returns with an error code, and will be called again soon. Once it acquires
the lock, the operation scans sequentially through the hash table, inspecting each record to see if it can be
discarded.

A local transaction's record is discardable if the transaction is aborted or if the transaction has no children
and no local or remote references (local count is zero, destination list is empty). A remote transaction's
record is discardable if there are no local trans Jds for it, and there are no destination sites either. The space
for the record is deallocated.

In addition, if a discardable record is in the RTable (i.e., for a remote transaction), a server call
(janJ?reakremote) is queued for the TidServer at the home site of the transaction. Also, if a discard­
able record is for a local transaction with a remote parent, ih&njanjremovechild is queued for the TidServer
at the parent's home site.

In each pass, only leaf transactions are garbage collected, since a transaction's timestamp may be needed
to compare descendants' trans Jds . This scheme, while simple and efficient, may leave some garbage
uncollected. The simplest way to reduce the likelihood of missing discardable records is to make several
passes. We believe that most transaction trees are flat (transactions are rarely nested very deeply) so that
only a few passes are necessary. Our current implementation makes three.

When all records have been checked, we release the exclusive lock and make the server calls which have
been queued. The complete janitor routine can be found in the Appendix.

Cycles of Remote Counts
Note that it is possible to produce a cycle of remote reference counts. For instance, site A passes a

transJd (of a transaction, say X) to site B, which then passes it to site C, which in turn passes it to site A.
Each of these sites think that another site is interested in the timestamp of transaction X and therefore do not
garbage collect the storage for this transaction's record in the RTable.

To break cycles, we should look at very old transaction records in the RTable once in a very long while
and try to shorten the chain of references. In the example above, we would, at site B, decide that we want
to garbage collect the space of transaction X, we would send a messages to A telling it that C is a remote
reference to transaction X, and send a message to C telling it to note that A (instead of B) is the source
of transaction X. The algorithm has to consider cases where for each transaction, there are multiple source
sites and destination sites. Pseudo code for routines to break cycles has been written, but has not been
implemented.

3.5. Locking and Deadlock Avoidance

The TidServer is multithreaded, operations can be called simuitanously, and each operation runs as a lazy
top level transaction [DHW88].

10

For integrity of the tree structure, write access has to be exclusive. Therefore, there is a single lock tor
all data in each TidServer which every operation must obtain before proceeding.

Some TidServer operations require calls to other TidServers, which gives rise to the possibility of
deadlock. In the diagram below, for example, two sites A and B are both registering a remote child
transaction, where the transaction at A has a parent at B and the transaction at B has a parent at A.

fTidServer •
•

B

TidServer

•

Both register operations need to lock the data at both A and B, and will probably attempt to obtain these
locks in the opposite order, so causing a cyclical wait. Besides register, the following calls may also cause
remote calls: remove (to propagate transaction abort downwards), makeref, compare, done, descendant, and
janitor.

For makeref and register, we compare the node addresses of the remote site and the local site, and obtain
the lock with the lower address first.

For compare, done and descendant, data is not written, merely read. Locking is required only to ensure
that the links are not in a inconsistent state (eg. with dangling pointers). So, at each site, the lock is first
acquired, data read, then the lock is dropped immediately.

In remove, we mark the local records, then spawn new top level transactions to call remote TidServers to
mark remote descendants aborted. These new transactions run as separate threads. Remove then commits
without waiting for these to complete. The solution for janitor is similar. Local records garbage collected,
and remote routines i.e. janjremovechild and janJyreakremote are called as separate top level transactions,
and do not have to complete for the local janitor operation to commit. In both cases, we avoid waiting for
locks at other sites when we're holding the lock at the local site.

The semantics for remove and janitor may seem a little strange. Since no one checks to see if the remote
calls abort, it may be that the local and remote site will be inconsistent. In the case of remove operation, if
higher levels are marked aborted but this marking is not propagated to the lower level, then a comparison of
trans Jds t l < t2 may report more pessimistic serialization orders. Done will not report wrong answers since
the marking of aborted transactions (in remove) begins at the top and propagates downward. However, the
TidServer loses memory space gradually, since the lower levels of records might not be garbage collected.
In the case of the janitor operation, the situation is similar. No incorrect results are ever reported, but the
TidServer may lose memory space slowly, if the remote top level transactions fail. A scheme to examine
very old transaction records can remedy this, but has not been implemented.

11

Much of this complication would go away if all records of a transaction family resided in the same
site, but we believe that transaction families exhibit locality, i.e., if a transaction at site A had a remote
subtransaction at site B, then furthur descendants would be also be at site B, so that to maintain all timestamp
information at site A would require many more remote server calls from B to A.

4. Performance

We first measured the costs of the local trans i d class operations as well some of the underlying Camelot
primitives. Then, since application programs that need high degrees of concurrency may benefit from highly
concurrent queues, we next examined the performance of our implementation of a FIFO queue which uses
trans i d s .

4.1. Cost of Primitives

We used an IBM RT/APC with 12 Mb of memory, a Sun 3/60 with 16 Mb, a //Vax-3 with 16 Mb, and
a Decstation 5000 (pmax) with 24 Mb, all running Camelot version 83. In measuring, we repeated each
operation between 200 to 1000 times, and divided the total time taken by the number of repetitions. All
numbers shown are in milliseconds. Note: t, t l and t2 are objects of class trans i d .

Operation IBM RT Sun3 /'Vax Pmax
Avalon primitives !
Transaction Begin and Commit with trans-id support 56 73 96 28 I

t = new trans-idO 10 10 13 4.1 !
delete t 8 8.5 11 3.3 1

tl < t2 11 12 16 5.6 !
descendant (tl, t2) 11 11 16 5.3 !
Camelot primitives
Transaction Begin and Commit 6.0 6.5 8.7 2.4 ;
Server Call (null) 9.1 9.7 13 4.6 1
Server Call (write) 19 21 31 9.0 I

The cost of an Avalon transaction with trans i d support is that of a Camelot transaction plus two calls to
the TidServer, the first to create the transaction record, the second to write the timestamp, plus computation
within the server. Creation, deletion and comparison of trans i d s each costs one call to the TidServer. Note
that, with the exception of the Decstation 5000, the performance on all machines is comparable.

Because we were not able to isolate and sufficiently control a network, the remote operations were not
measured. However, we made two observations of our environment. First, a "ping" takes anywhere from 15
ms to 200 ms between RT's on a token ring. Second, using the same two machines at a trial run, a complete
Avalon transaction which wrote on a remote array server took about 350 ms, and a transaction which wrote
on a remote queue server took about 4600 ms.

12

4.2. The Concurrent Queue

We next examined the operation of a concurrent queue. In this Avalon subatomic [DHW881 object, the
class operations explicitly use the commit order of transactions to obtain concurrency. Enqueues can always
proceed, and an element can be dequeued if it is comparable with (committed with respect to) all the other
elements in the queue, and if the last dequeuer is committed with respect to the current dequeuer. The
concurrent queue is described more fully in [HW87].

We first measured the static costs of the queue. For comparison, we also measured the operation of a
simple array, an object of the class atomic [DHW88], which uses read and write locks to control access to
each element of the array. These measurements were performed on an RT (see previous section).

Operations time in ms
Enqueue 212 ;
Dequeue 276

! Transaction(Enq,Deq) 701 ;
Transaction(Enq,Deq,abort) 937 j
Write array element 28 j
Read array element 10 j
Transaction(Write,Read) 179 I
Transaction(Write,Read,abort) 412 j

An enqueue operation involves two levels of server calls. The enqueuer first calls the queue server, which
in turn calls the TidServer's makeref operation to obtain a trans J d object to associate with the element to be
enqueued.

Queue User

.enqueue

Queue Server

.makeref

TidServer

Within the queue server, short term locks are used (in the when construct) to start a subtransaction and
modify the queue data, thus avoiding the conventional read/write locking. Therefore the cost for an enqueue
operation is that of a server call, a write-(sub)transaction at the queue server, plus calls to the TidServer to
create a trans J d object. In addition, the enqueue operation also attempts to place the elements in commit
order, and so calls the TidServer's compare operation. In the worse case, as many comparisons as elements
tentatively queued are needed. Each comparison costs a call to the TidServer, unless the comparison is
between elements whose enqueuers are operations within the same transaction, in which case the order is
already known.

Similarly, a dequeuer first calls the queue server, which in turn calls the TidServer, obtaining a dequeuer's
trans-id to associate with the object. More calls are made to the TidServer to compare the commit timestamps

13

of the elements in the queue, since the element to be dequeued is the one with the earliest timestamp. Also
the current dequeuer has to have a later timestamp than the previous dequeuer. Again, in the worst case, as
many comparisons as elements in the queue are needed. Thus, the cost of a dequeue operation is that of a
server call, a write-(sub)transaction, plus multiple calls to the TidServer.

Part of the overhead of the queue is the time spent in the commit procedure and the abort procedure.
These procedures are called whenever a transaction commits or aborts, respectively. The commit procedure
checks to see if the last dequeuer is a descendant (using the trans J d class operation) of the committing
transaction. If it is, then the pool of tentatively dequeued elements can be discarded. This descendant
operation costs one call to the TidServer.

In the abort procedure, elements which have been tentatively dequeued by descendants of the aborting
transaction are put back into the queue. Thus the procedure costs as many calls to the TidServer as there are
active dequeuers.

It is difficult to measure in isolatation the cost of a single commit or abort procedure, so the table above
shows the costs of an Avalon transaction containing an enqueue followed by a dequeue operation, and then
either a commit or abort. The cost of a Read and Write in the array object is basically the cost of a server
call (to the array server) with a read (or write) operation, plus the cost of obtaining a lock. In the absence of
contention, the cost of obtaining the lock is negligible compared to the cost of the server call.

In the next table, we show how the cost of a transaction using the queue depends on the number of
other elements tentatively enqueued. The transaction performs first an enqueue operation, then a dequeue
operation and then commits.

TransactionQEnqueue, Dequeue)
Number of tentatively queued elements 2 4 8 16
Time in ms 930 1091 1491 | 2155

From the two tables above, we see that the overheads in our implementation of the subatomic queue are
quite high, and in addition, that the overhead increases with the number of elements in the queue.

Given these overheads, we should consider using this subatomic queue only when an application requires
high concurrency and/or when the duration of the transaction is long.

Consider using an (initially empty) array in producer-consumer fashion. If we use read and write locks,
writers cannot be concurrent. With a subatomic queue however, all writers (enqueuers) can proceed, although
readers (dequeuers) have to wait until the enqueuers commit with respect to each other. So we expect this
concurrent queue to have an advantage when there are many enqueuers and few dequeuers. We also expect
an advantage over read/write locking when the write transactions are long, since it implies that the writer
will hold an exclusive lock for a long time, thus stalling other transactions.

In our experiment (see code fragment below), we used one reader, and varied the number of writers, n
(2,4 and 8). A writer (or enqueuer) is a transaction that first writes (or enqueues), performs the independent
operations, and then commits. The reader (or dequeuer) is a transaction that reads (or dequeues) and
then commits. We varied the length of the writer (enqueuing) transaction by varying the time taken in
"independent operations". These are operations that touch objects without any contention with other coarms
(transactions in the costart set). All transactions (the coarms) of a the costart statement are executed
concurrently [WHC+89].

14

costart ;
transaction(write/enqueue;.. .independent operations...); / /1

transaction(write/enqueue;.. .independent operations...); // n
transaction (read/dequeue);

In the table below, we show the execution time for the array and queue implementations of the costart, with
potential concurrency increasing as we go across, and length of each write/enqueuing transaction increasing
as we go downwards. We used a simple counting loop to simulate the independent operations. Execution
of the loop took 170 ms, therefore the values in the leftmost column of the table below are multiples of 170
ms. So the entry marked with an asterix (r) , for example, is the time taken for two enqueuing transactions
and one dequeuing transaction, where each enqueuing transaction also performs 1020 ms worth of other
operations, and where all transactions try to proceed concurrently. Note that these numbers were obtained
by simulating the concurrent transactions on a uniprocessor (an RT).

Other operations
: (in multiples of 170 ms)

2 writers 4 writers 8 writers Other operations
: (in multiples of 170 ms) Array Queue Array Queue Array Queue '
; 680 1625 - 3139 _ -
1 850 1925 2318 3749 4305 7608 9625 i

1020 2362 2513* 4491 4335 9050 9143 J
1190 2542 2881 - - 10044 9727 \
1360 2895 2928 - _ _ _

1530 - 3088 - -
!

With two writers, a write transaction should be about 1190 ms or more to justify the cost of the queue.
We see that as the number of writers increases from 2 to 4, the length of the transaction need not be so long
to compensate for the overheads. As we go from 4 to 8 writers, even longer transactions are required since
queue operations are more expensive when there are more active enqueuers.

Our implementation of Avalon constructs and objects freely used what were assumed to be cheap
primitives: transactions, recoverable memory and server calls. An effort to tune or optimize for performance
would have to consider these costs more seriously. However, our the implementation is neither tuned nor
optimized. Therefore, the reader should not take our measurements as indicative of worse-case or average-
case performance. Rather they represent data points useful for comparison purposes in future work.

5. Final Remarks

This paper describes our implementation of t r a n s - i d s , a new programming language construct for im­
plementing atomic data types. We believe this construct raises interesting issues in several areas. As
a programming language construct, trans-ids present a simple but powerful interface to the programmer,
and we have worked out a number of example data types that rely on trans Jds to achieve a high level
of concurrency [DHW88]. As a concurrency control mechanism, it can be shown formally that commit-
timestamp serialization permits strictly more concurrency than certain conventional techniques based on
strict two-phase locking [HW88].

15

This paper is concerned with a third area of interest: implementation. This is the first implementation
of a general mechanism for commit-timestamp serialization. The goals of the implementation were to
minimize message traffic and keep the volume of long-lived data to a manageable level. We faced several
interesting problems such as the placement (across processes and sites) of distributed timestamp information,
the management of remote references, which types of cross boundary links to maintain, and the garbage
collection of these data structures with minimal disruption. We found that maintaining timestamp in
recoverable storage means using a Camelot server, which results in an overhead of a server call (and thus
a context switch) for any update or read. Currently our implementation of distributed garbage collection is
not perfect; memory may leak when the network is unreliable, and cycles may occur.

Therefore, to really assess our decisions in placement we need to profile the varied use of trans i d s ,
especially in distributed applications. We also need to monitor the reliability of the network. In an
extremely unreliable network, the imperfect garbage collection may cause the TidServer to lose memory in
large quantities, so it might be necessary to stop the whole system to garbage collect once in a while.

In conclusion, we hope to see an increasing use of trans-ids and timestamp ordering for concurrency
control, particularly in applications that can benefit from high levels of concurrency.

Acknowledgments

We thank Alfred Spector and the rest of the Camelot group for providing the basis for the Avalon work.
We thank David Detlefs, Stewart Clamen, Richard Lerner, and Karen Kietzke for their contributions to
Avalon/C++ and letting us run timing experiments on their machines.

16

References

[BGL81] RA. Bernstein, N. Goodman, and M.Y. Lai. Two-part proof schema for database concurrency
control. In Proc. Fifth Berkeley Workshop on Distributed Data Management and Computer
networks, February 1981.

[CD88] Eric C. Cooper and Richard P. Draves. C threads. Technical Report CMU-CS-88-154, CMU,
1988.

[DHW88] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery
properties in Avalon/C++. IEEE Computer, December 1988.

[Her85] M.P. Herlihy. Comparing how atomicity mechanisms support replication. In Fourth ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), August 1985.
Reprinted in Operating Systems Review 20(3), and CMU-CS-85-123.

[HW87] Maurice P. Herliy and Jeannette M. Wing. Reasoning about atomic objects. Technical Report
CMU-CS-87-176, CMU, 1987.

[HW88] M.P. Herlihy and W.E. Weihl. Hybrid concurrency control for abstract data types. In Seventh
ACM-SIGMOD-SIGACT Symposium on Principles of Database Systems (PODS), pages 2 0 1 -
210, March 1988.

[Kor83] H.F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1), January 1983.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

[LS83] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed
programs. ACM Transactions on Programming Language and Systems, 5(3):382—404, July
1983.

[McK84] M.S. McKendry. Clouds: A fault-tolerant distributed operating system. IEEE Tech. Com.
Distributed Processing Newsletter, 2(6), June 1984.

[Ree83] D.P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on Computer
Systems, l (l) :3 -23 , February 1983.

[SBD+86] A.Z. Spector, J.J. Bloch, D.S. Daniels, R.P. Draves, D. Duchamp, J.L. Eppinger, S.G. Menees,
and D.S. Thompson. The Camelot project. Database Engineering, 9(4), December 1986. Also
available as Technical Report CMU-CS-86-166, Carnegie Mellon University, November 1986.

[SS84] P. Schwarz and A. Spector. Synchronizing shared abstract types. ACM Transactions on Com­
puter Systems, 2(3):223-250, August 1984.

[Str86] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[Wei84a] W.E. Weihl. Specification and implementation of atomic data types. PhD thesis, MIT, 1984.
Available as Technical Report MIT/LCS/TR-314.

[Wei84b] W.E. Weihl. Specification and implementation of atomic data types. PhD thesis, MIT, 1984.
Available as Technical Report MIT/LCS/TR-314.

17

[WHCT89] J. M. Wing, M. Herlihy, S. Clamen, D. Detlefs, K. Kietzke, R. Lerner, and S. Ling. The
Avalon/C++ programming language. Technical Report CMU-CS-88-209R-2, CMU, 1989.

[WL85] W. E. Weihl and B. Liskov. Implementation of resilient, atomic data types. ACM Transactions
on Programming Language and Systems, 7(2):244—269, April 1985.

18

Appendix

TidServer Interface

1. Transaction management

register (X : transaction-name, Xparent : transaction-name)
Creates a record for transaction X. Called when X begins,

child (X : transaction-name, Xchild : transaction-name, Xlevel : integer)
Updates a local transaction's record to show that a remote child exists. Called when a local
transaction becomes the parent of a remote subtransaction.

stamp (X : transaction-name, Xts : timestamp)
Records Xts as the commit time of transaction X. Called when X commits,

remove (X : transaction-name)
Recursively sets the 'aborted' flag on the record of X and on the records of X's descendants.
This makes the records available for garbage collection. Called when X is aborted.

2. Trans Jd class operations

makeref (X : transaction-name)
Called from the transJd constructor. Increments the reference count of local transJd's for
transaction X.

makeref-remote (X : transaction-name, S : site-name)
Called from the trans Jd constructor. Increments the reference count of remote transJd's trans­
action X.

breakref (X : transaction-name)
Called by the transJd destructor. Decrements the count of transJd's that refer to transaction X.

copyref (X : transaction-name, Y : transaction-name)
Called when a transJd is assigned to another. Decrements the reference count of transaction
X, and increments the reference count of transaction Y.

compare (X : transaction-name, Y : transaction-name, result : boolean)
Compares the timestamps of X and Y. Returns true if X serializes before Y, otherwise returns
false. Called by the transJd operators < and >.

yield (X : transaction-name, Xparent : transaction-name, Xdepth : integer, Xts : timestamp, Xvalid :
boolean)
Returns the timestamp, the depth and name of the parent of transaction X. requested by one
TidServer of another. Also resets Valid' if the transaction has aborted. Called by one TidServer
to another.

done (X : transaction-name), descendant^ : transaction-name, Y : transaction-name)
These are called by the transJd member functions of the same name.

3. TransJd transmission. Transmitref and receiveref are called by the routines that package and un-
package arguments in a remote procedure call.

transmitref (X : transaction-name, Dest : site-name)
Writes in the record of transaction X that a transJd is to be transmitted to site Dest.

receiveref (X : transaction-name, Src : site-name)
Writes in the record of transaction X that a transJd has been received from site Src.

19

Algorithms for Transmission of t r a n s _id

Case 1: Source = Home, Destination = Home
Transmitref (X : transaction-name, dest: destination-site-name)

Do nothing

Receiveref (X : transaction-name, src : source-site-name)
Get record of X from LTable
Increment local count

Case 2: Source = Home, Destination = Home
Transmitref (X : transaction-name, dest: destination-site-name)

Get record of X from LTable
If dest is not in dest-list

Append dest on dest-list
Increment remote count

Receiveref (X : transaction-name, src : source-site-name)
If there is a record for X in RTable

If src is not on src-list
Increment local count
Put src on src-list

else Do nothing
else

Mmake a record for X in RTable
Put src on src-list
Set local = 1

Case 3: Source * Home, Destination = Home
Transmitref (X : transaction-name, dest: destination-site-name)

Get record of X from RTable
If dest isn't in dest-list,

Put dest on dest-list
Increase remote count

Receiveref (X : transaction-name, src : source-site-name)
If there is a record for X in RTable

If src is not on src-list
Put src on src-list
Increment local count

else Do nothing
else

Make an record for X in RTable
Put src on src-list
Set local = 1

Case 4: Source # Home, Destination = Home
Transmitref (X : transaction-name, dest: destination-site-name)

Do nothing

Receiveref (X : transaction-name, src : source-site-name)
Get record of X from LTable
Increase local count

20

Algorithms for Garbage Collection

Janitor() :
Get exclusive lock on both tables
For each local transaction X (a record in the Liable)

If X is active, do nothing.

If X is aborted
remove the record, free storage
for visit all child recursively

If X is committed
If X has no children and there are no local

or remote trans-id's for X
then

Remove X as child of parent(X)
If the parent(X) is local,
then remove self from sibling list of parents
else

queue a server call to home site of parent(X)
(jan_removechild(parent(X), X))

Remove record of X

For each remote transaction X (a record in the RTable):
If both local count and remote count are zero
then

For each node on the list of source sites
queue a server call to the node to strike out this-site as a destination

(jan -breakremote(X, this-site))
Remove record of X

Release exclusive lock
Make the server calls that have been queued

Jan_removechild (P : transaction-name, C : transaction-name) :
Check that P is remote
Get record of P from LTable
Remove C from P's list of children

Jan_breakremote (X : transaction-name, N : site-name) :
Check that N is different from the this-site
Get record of X from LTable
Decrement the count of remote sites
Remove the nodeJd from the destination list

21

