NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

BEE: A Basis for Distributed Event Environments
(Reference Manual)

Bemd Bruegge

3 November 1990
CMU-CS-90-180 2

School of Computer Science
Camegie Mellon University
Piusburgh, PA 15213

Abstract

BEE is a portable platform for building heterogenous distributed event environments. An important feature
is the dynamic connection of client programs to monitoring tools which facilitates flexible monitoring of
network programs at runtime. It also supports user defined event classes which can be used by
implementors to build complex event systems as well as by application programmers who need to write
customized monitors.

We first introduce the event processing model used by BEE and present the user’s view, describing the
instrumentation of network programs and a set of standard event interpreters providing graphical views
based on X11. Some performance measurement results are given to demonstrate the cost associated with
BEE. The rest of the document describes the functional specification of BEE.

BEE has been implemented for a variety of platforms, communication systems and languages, 1t is
currently available on NECTAR, a network of workstations connected by optical fibers with a maximal
throughput of 100 Mbit/sec and on UNIX. The UNIX implementation has been ported to several machine
architectures (Sun, Vax and Cray-YMP), supporting the instrumentation of C and Ada programs.

This research was supported in part by the Defense Advanced Research Projects Agency, DARPA/ISTO, under the
title "Research on Parailel Computing,” ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDA972-90-C-0035: and in part by the National Science Foundation and the Defense Advanced Research Projects
Agency under Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives. The
views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, NSF, CNRI or the U.S. Government,

Keywords: Network monitoring, Real-time systems, Distributed monitoring, Performance monitoring,
Distributed systems.

Table of Contents
1 Introduction
2 BEE’s Event Processing Model
3 Efficiency in Event Processing
3.1 Efficiency by Parallelism: Design Choices
3.2 Efficiency by Filtering
4 Event Configurations
4.1 The Dynamics of Event Reconfigurations
5 Portability
6 Bee’s Cost
6.1 Sensor Implementation
6.2 Performance Analysis of BEE
7 Using Bee
7.1 Instrumenting the Client
7.2 Environment Variables
7.3 Bee Views
7.4 Bee’s Default Event Interpreters
7.4.1 Frequency Counter
7.4.2 Time Profiler
7.4.3 Load Meter
7.4.4 Event Filer
7.4.5 Remote Printer
7.4.6 Tracer
7.5 Customized Event Interpreters
8 Functional Specification
8.1 Event Sensors
8.1.1 Language Independent Sensors
8.1.2 C Language Sensors
8.2 Event Sensor Functions
8.3 Event Initialization Functions
8.4 Event Naming Functions
8.5 Event Generator Functions
8.6 Event Handler Functions
8.7 Event Interpreter Functions
8.8 Event Service Functions
8.9 Event Interpreter Control Functions
8.10 Miscellaneous Functions
9 Event Protocol
9.1 Event Class
9.2 Event Attributes

WUy U L B B G L)t £ £ b b b Er o

9.3 Event Record

9.4 Event Table

9.5 Client Server and EI Server Port

9.6 Event Interpreter 5.

9.7 Message Types 3¢

9.8 Event Network Format Lt
9.8.1 Events 5:
9.8.2 Event Interpreter Requests 3¢
9.8.3 Client Repiies 7

9.9 Event Access Functions 58
9.9.1 General Access Functions 58
9.9.2 E_INIT Access Functions 58
9.9.3 E_EVERY And E_FINAL Access Functions 39
9.9.4 E REGISTRATION And E_DEATH Access Functions 59
9.9.5 E_DESCRIPTOR Access Functions 59

9.10 Event Network Format 59
9.10.1 Events, Requests and Replies 60
9.10.2 Event File Format 61

9.11 Protocol Interface 61

URIVERSITY 1LIBDATES
CARNBGIE (ARLLOM LJNIVEIF

ke
- P = o
PITTSDURGH, 94

R

1]

I. BEE Summary

1.1 Event Sensors
L1.1 Language Independent Sensors
1.1.2 C Language Sensors

L.2 Event Sensor Functions

1.3 Event Initialization Functions

1.4 Event Naming Functions

L5 Event Generator Functions

L6 Event Handler Functions

1.7 Event Interpreter Functions

L8 Event Service Functions

L9 Event Interpreter Control Functions

L10 Miscellaneous Functions

1.11 Event Protocol Functions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22;

List of Figures

BEE's Event Processing Model

Parallelizatien of BEE with 3 Event Interpreters

Basic BEE Architecture

Local Event Interpreter Configuration

Shared Memory Configuraticn

Multiple views of a client

Monitoring a distributed client (shared memory)

Network monitoring of multipie clients

Multiple view configuration with central event interpreter
Distributed monitoring system with local event interpreters
Bee’s Client Overhead as a Function of the Event Rate (NECTAR)
Client Overhead for Multiple View Configurations (NECTAR)
Client Overhead for Multiple Client Configurations (NECTAR)
Uninstrumented Client Routines
Instrumented Client Routines
Histogram view of a Frequency Counter
Piechart view of a Time Profiier
Linegraph view of a Load Meter
Execution Summary of a Frequency Counter
Execution Summary of a Time Profiler
A user defined event interpreter MY_EI
Attaching MY _EI with filter "foo" to a client

Pt ek
ek SN DG OO I W

B b e bk e
Co =RV =~ SR |

o]

| 36 S I 0 I 3 B o
NSt R

1 Introduction

With the advance of paraliel machines application programmers take a new ook at their programs to achieve
performance improvements by parallelization. However, with the parallelization comes a higher level of complexity
because the program is now distributed over many processors and the computation is no longer as visible as on a
single processor. Many new questions arise: Are some of the processors idle, should the load on the processors be
balanced better? What are the bandwidth requirements on the communicarion subsystem, what is the cost of
communication, how are the processes communicating with each other? Can we use the monitoring information
dynamically to improve the performance of the program? With these questions comes the need for new monitoring,
debugging and performance evaluation tools.

Instead of providing a multiplicity of different monitoring tools, we believe it is more desirable to provide a
common basis on which these tools can be built. REE is a platform for event processing on top of which users can
build moniters, debuggers and performance evaluation tools. We identify a small set of functions common to event
processing and call this set the evenr kernel. An important part of the event kernel is the definition of an event
protocol, which specifies the format of events exchanged between client program and event processing system. The
event protocol makes the event kernel highly portable for different communication protocols.

BEE views the execution of a distributed system as the generator of streams of events (3]. In general, event based
systems increase the execution time of the client program because of the overhead spent in event generation. They
are also space inefficient because of the number of events to be stored and runtime inefficient because of the
slowness of many existing I/O devices. For exampie, networks such as Ethernet are too slow to support remote event
processing with reasonable event latency (the time between generation and interpretation of the event).

To reduce the execution overhead, event based systems usually provide filrers to prevemt the crearion and/or
interpretation of unnecessary events [18]. Another way 10 reduce the overhead is to delay the event interpretation to
a postprocessing phase. This is used in many monitoring systems, for example [12, 21], but it is unacceptable for
monitoring problems where the information is needed at runtime [4]. Event processing systems providing runtime
monitoring ofien separate event generation and analsis by sending events to remote monitors, which may also
combine event streams from different nodes [7, 10, 15, 16].

Most of the existing event processing systems provide a rather static connection of the client to the event
processing system. However, when monitoring distributed programs, desired event interpretations can often onty be
formulated at execution time. BEE tries to provide a higher degree of flexibility: Users are abie to customize the
monitoring process by connecting client programs and monitoring tools at runtime. This flexibility allows the
definition of user defined views that can be dynamically modified during the execution.

The document is organized as follows. In Section 2 we present the notational framework of BEE followed by a
description of the event processing stages and a discussion of how they can be parallelized in Section 3. Section 4
demonstrates how BEE can be used to build a wide spectrum of event processing systems, ranging from simple
single process systems to distributed event systems providing multiple views of the execution. BEE was designed
with several portability goals in mind and Section 5 portrays some of the portability problems encountered during
the implementation. Section 6 discusses the cost introduced by event sensors and evaluates the runtime performance
of BEE.

BEE is currently available on NECTAR [2] and on UNIX. Section 7 describes how to use BEE under NECTAR, in
particular how to instrument a client program, how to start event interpreters and how to connect clients with event
interpreters and to build customized event interpreters. Section 8 contains the functional specification of the évent
kemel and Section 9 is a description of the underlying event protocol. Appendix I contains a summary of the

ta

INTRODUCTION

functional specification.

I would like to acknowledge the contribution of several people who participated in the design and implementation
of BEE at various stages. Peter Steenkiste provided many comments during the initial design. Johannes Mann from
Siemens Corporation wrote BEE's X library interface and provided the first generation of X based event interpreters
in C++. Frank Walzer from Siemens Corporation improved the performance of the event interpreters and performed
the measurements under NECTAR. Marco Gubitoso and Hiroshi Nishikawa were the first application users and
provided many valuable comments. Mike Browne ported BEE to TCP/IP. Mario Barbacci from the Software
Engineering Institute encouraged BEE’s port to the Vax and contributed the language interface for Ada. Jim Lewis
from the Pittsburgh Supercomputing Center helped to measure BEE's performance on the Cray-YMP.

2 BEE’s Event Processing Model

A (atomic) event E is a 7-uple (Class, Attribute, Node, Process, Thread, Timestamp, E_ID, Variant). Class
partitions the event space into equivalence classes. The Attribute indicates whether the event is an activation
{E_ACT), a termination (E_TERM), a point (E_POINT), an aggregate event {E_AGGREGATE) or a probe (E_PROBE).
Events attributes denote the activation and termination of an event range, respectively, events of type E_POINT
denote a interesting point in the execution of the client. Event aggregates denote the accumulation of several atomic
events. Node, Process and Thread identify the location where the event occurred. Node identifies the workstation,
Process is the client name assigned by the operating system and Thread provides a unique identification for threads
in multithreaded applications.

Timestamp is the value of a clock when the event occurred. In general, events from different nodes do not have
access to the same clock and sorting event streams generated by clients on different nodes is a significant problem.
BEE provides a function that ailows to sort time stamps but it assumes constant communication delay and the
absence of clock drift. Practical schemes for synchronizing clocks at different locations are inherendy approximate
due 1o the unpredictability of communication delays [8]. The resolution of timestamps is another problem [15]. The
Cray clock provides nanosecond resolution, but for portability reasons, time stamps in BEE have only microsecond
resolution.

The event descriptor E_ID identifies the event sensor that caused the occurrence of the event. BEE supports
predefined event classes such as the execution of a procedure, as well as user-defined events to mark important
milestones in the execution of the application. Variant contains data that depend on the specific event class. For
example, the event class E_PROCEDURE has an additional field denoting the name of the procedure that miggered the
event!.

Event processing in BEE is based on four activities operating on events: event sensing, event generation, event
handling and event interpretation (figure 1).

Events are detected by evenr sensors {18] which are inserted into the client program. The implementadon of
event sensors depends on the event class. If the instrumentation of a client with event sensors requires more space
than the uninstrumented client, the sensor is invasive, otherwise noninvasive. For example, a break instruction is
noninvasive if it is done by code replacement. BEE is an invasive environment, because event Sensors are mMacros
inserted by the programmer and expanded by a preprocessor (See Section 8.2.).

The event generator collects the components of the event, that is the class, attribute, . timestamp and class

1See Section 9.3, page 52 for a detailed deseription of the event compaments.

INTRODUCTION 3

Event
Generator

Figure 1: BEE's Event Processing Model
dependent variants and sends it to the event handler.

The event handier manages the event table, which is an array of the defined event classes. Each event class can be
associated with an ordered list of event interpreters. For an event of a given class, the event handler scans the list
and sends the event to each attached event interpreter.

An event interpreter consists of five components EI = (V, 1. E, F, P). N is the name of the service under which the
event interpreter is known in the petwork. The Init functionIis called immediately after the event interpreter is
attached to the client program. The Every function E is called whenever the client generates an event and the
Predicate function P evaluates to TRUE. The Final function F is called when the client terminates or when the
event interpreter is detached from the client.

The client server allows event interpreters and other programs to request information about the client program, as
well as to alter the execution and the state of the client. At startup, each client program creates a unique port called
the client server porr. Requests that are sent to this port are handled by the client server, which executes in the same
address space as the client program. BEE supports different types of requests, The client server can be used to
retrieve the names of variabies defined in the client program; this allows events to use a concise representation for
names, and to have the event interpreter retrieve naming information from the client, when needed. The
functionality provided by the client server is similar to that provided by pt race in UNIX.

Monitoring plays an important role when developing netwark programs, but it is not always possible to know in
advance what aspect of the execution should be monitored. The network monitoring environment must therefore
aliow the user to change the monitoring setup during execution, in fact, it should be able to provide feedback
information back to the client program (4]. The client server allows users to change the flow and use of events
during execution: the user can send requests to the client server port to activate or deactivate event classes, change
the frequency of event generation, or to add event interpreters that give the user a different view of the application.

When the client server is started, it enters its client server port in a global name server (see figure 1). Event
interpreters and other programs can remrieve the port identifier based on the name of the client at any dme during
program execution. If the runtime system supports multiple threads, the client server is a separate thread in the
client program. If threads are not availabie, it is implemented as an interrupt handler where each event interpreter
causes an interrupt of the client execution.

4 INTRODUCTION

The execution of a client with one or more attached event interpreters is called an even: configuration. Because
event interpreters can be attached dynamically to a client, the character of an event configuration depends on the
time when the event interpreters are attached to the client. We distinguish two event configurations: If the client
starts up first and the event interpreter is attached later, we call this an unplanned event configuration otherwise the
event configuration is planned. BEE supports both types of event configurations.

3 Efficiency in Event Processing

The performance of an event processing system can be characterized by client overhead and event latency. Client
overhead, also called monitoring perturbance, is the additional cost experienced by the client in terms of space and
execution time as a result of the instrumentation. Client overhead is mainiy a function of the event rate and the cost
to assemble and pass events to the event processing system before the client can proceed its execution. The
assembly can be more or less expensive depending on the underlying operating system. For example, in UNIX it
takes a system call to get the current time for the timestamp, whereas on NECTAR the me is available in a register.
An event processing systern with low impact on the execution time of the client and few demands on memory
resources has a high client efficiency.

Event latency is the average response time of the event interpreter once an event sensor is encountered. The event
latency is a function of three parameters: the cost per event, the network latency of the underlying communication
system and the event service time, which is the time used by the event interpreter to process the event.

Given a fixed event rate and event service time, client overbead and event latency are inverse to each other: the
smaller the client overhead, the larger the event latency. To select the best combination of client overhead and event
latency, BEE event interpreters can be attached in various ways to client programs. In a local event interpreter.
Init, Every and Final are functions located in the address space of the client program. A local event
interpreter provides the lowest possibie event latency at the cost of high client overhead. At the other end of the
spectrum is the remote event interpreter, which executes on a separate computation node. If a client is connected to
a remote event interpreter, Init, Every and Final are remote procedure calls. A remote event interpreter
provides lower client overhead at the expense of increased event latency.

To choose an overhead/latency combination between the ends of this spectrum, a local and remote event
interpreter can work together as follows: The Every function of the local event interpreter accumulates individual
client events. When a specified threshold is reached, the local event interpreter calls its Final function, which
sends the avents as an aggregate event 10 the Every function of the remote event interpreter.

BEE achieves event efficiency by parallelism in the event processing model itself and by filtering. In section 3.1
we describe how the event processing stages in the model could be parallelized and how it is actually done in BEE.
In section 3.2 we describe how filtars minimize the number of events that actually have to be gooerated or sent to an
event interpreter.

3.1 Efficiency by Parallelisin: Design Choices

Distributed systems provide the programmer with the challenge to detect parallelism in applications and achieve
faster run times by mapping the application code onto many processors. In the following we discuss possible ways
to achieve parallelism in an event processing system itself and present the radonale for the paralielization used in
BEE. Candidates for parallelism are the four activities event sensing, event generation, event handling and event
interpretation.

To collect detailed sensor information, with minimal impact on the application, other researchers have

INTRODUCTION 5

implemented hardware or hybrid monitors {9, 13, 14, 22]. This approach is not taken in BEE for portability reasons.
Without adequate bardware support for event sensing it is too expensive to separate this activity from event
generation. BEE therefore places event sensing and event generation in the same process.

Event generation and event handling can be separate processes communicating via an event handler buffer. The
generator drops the event into the event buffer from where it is received by the event handler. Again, without
hardware support this decomposition is not advisable on a single processor, because it introduces only scheduling
overhead. If the target machine is a multiprocessor with shared memory, event generator and event handler can be
tasks executing on different processors accessing the event buffer in shared memory. A distributed impiementation
with two different nodes should not be attempted if the communication subsystem cannot keep up with the event
generation rate. In the current implementation of BEE, event generation and event handling are handled by the same
process, but in the NECTAR implementation we are looking into a separation where the event handler is placed on the
CAB coprocassor.

Event interpreters are ideal candidates for separate processes. Often they provide a graphics user interface for
visualization which requires a high computation rate impacting the client efficiency if done on the client processor.
The separation has another advantage: The event interpreter can be written in a language different from the client
language. Usually the client program has to be as efficient as possible, whereas event interpreters need to be
interactive, flexible and aliow for rapid prototyping. Whenever an event occurs, the event handler sends the event as
a message to the event interpreter via the EJ buffer. If a computation requires multiple views, the event handler sends
the message containing the event to all attached event interpreters. Figure 2 shows a decomposition for a single
client with 3 attached event interpreters using separate processes for handling and interpretation of events.

S vent
Elllffel' terpreter
Event E
Event Event Handler vent Event
Sensor Generatoy Buffer Handler Bhfrer > Interpreter

£ﬁ-e,. Event
Interprete

Figure 2: Parallelization of BEE with 3 Evemt Interpreters

3.2 Efficiency by Filtering

Event filters reduce the communication bandwidth imposed by the event processing facility. The challenge is
how to avoid too much computation on the client side to determine whether an event should be filtered: Filters
increase event efficiency, but filter computations decrease it. The right balance of filters and filter computation is a
matter of experimentation and can often only be decided by the user. BEE therefore provides filters for each event
activity whose use can be controlled by the user.

At the event sensing stage, event sensors can be passive, dormant or active. Ideally, passive sensors shouid no
influence the behavior of the client program. A dormant event sensor is similar to an event probe [18). The event

6 INTRODUCTION

generator is called only when the sensor is encountered the first tme. From then on its value must be requested by
the event interpreter. When an active sensor is encountered, the event generator is always called. Thus BEE’s event
sensors support sampling as well as tracing of client programs [11]. The state of event sensors can be changed with
the two functions Event_Sensor_Control() and Event_Sensor_Filter({). The first one enables or
disables event sensors, the latter can change active sensors into passive filters whose name is not a substring of a
specified string called the global sensor fiiter.

To filter events at the generation stage, BEE provides two kinds of event tabies: a sysiem wide event table and task
specific event tables. The system event table is created at client startup dme and initialized with the predefined
event classes. Whenever a pew client task is created, a task event table can be instantiated which inherits the
currently defined event classes from the system event table. Filtering by task specific event tables is controlied with
the function Event_Table_Inheritance (). If event table inheritance is disabled, all events are processed via
the systemn event table. If it is enabled, events are processed on a task basis: If the event is generated inside a task, it
is generated in the context of the associated task event table, otherwise the system event table is used. It is also
possible to turn off event handling for individual tasks. If no event interpreter is associated with the current event
table, no event is generated. This permits selective filtering of events on a task specific basis.

The event handler filter can selectively drop events or accumulate a number of events before sending them to the
event inferpreter. For example, an event handler filter can accumulate the events geoerated in a certain time, or send
only the latest event generated in the last n seconds. The predicate function of an event interpreter also provides
filtering at the event handler level. If the function evaluates to FALSE, the event will not be sent to the event
interpreter.

Very expressive event detection languages with powerful filters such as [5] can be used 10 provide filtering at the
event interpreter level. An example is a distributed composite event, where the event interpreter waits for the
encounter of a certain event before disabling another one. Another possibility to filter events is abstraction, for
example by combining lower level events to higher level events before presenting them to the user {3]. Facilities
like these shouid be placed in remote event interpreters, because they require resources that significantly decrease
the client efficiency. In fact, they often require knowledge from several clients and cannot be placed into the
address space of a single client.

EVENT CONFIGURATTIONS 7

4 Event Configurations

BEE is a platform for building distributed environme:its. In the following we show how BEE can be used to build a
wide spectrum of event processing systems, ranging from simple single process debuggers to distributed event
systems providing multiple views of the execution.

Event table E—’Cl Event client table =

Client Code

$

EI requests

Client Server

Client replies

Client("Te}l"\)‘ Eve

Test_378 34 @ Name Server

CLIENT Domain BEE Domain

Figure 3: Basic BEE Architecture

Figure 3 shows the basic event configuration of a client "Test " connected to an event interpreter "EI", each of
them executing in their own address space. At startup of the client the Clienr Server is created. The Ef Server is
created when the event interpreter starts up. The client server as well as the EI server register themselves with the
(global) name server using the Event_Enter_ Serwvice(} function. The name entered by the client server
uniquely identifies the client by its name and process id and the node id on which it is executing.

If the event configuration is planned, the client calls Event_Lookup_Service ("EI™, "BEE") which
looks up the EZ server port of "EI™ in the name server domain "BEE". The first event the client sends is a message
of type E_REGISTRATION to the event imterpreter, which enters the client into its Evens client table. This is followed
an event message of type E_INTT, which causes a call to the Init ()} function of the event interpreter. From then o,
any event generated in the client is sent to the Every () function of the event interpreter, provided "EI™ is
enabled, attached to the event class and its predicate function evaluates to TRUE, When the client detaches from the
event imerpreter, it sends an event message of type E_LFINALQ to the EI Server which calls the Final () function of
the event interpreter. All this communication takes Place on the connection labeled Events in figure 3 using a
reliable message protocol.

Requests issued by the event interpreter are sent on a different connection and use 2 request/response protocol.
These EI requests are sent to the client server port and are served by the associated client server. Provided with the
EI request is a reply port to which the client server sends its Client replies. For example, if the event configuration
is unplanned, the EI server gets in touch with the name server to locate the dlient server with
Event Lookup_Service ("Test_378_34", P“CLIENT") which returns the client server port. It then

8 EVENT CONFIGURATIONS

attaches to the client with Event Set Client Port () and sends the request
Event_Lookup_Interpreter ("EI ", "BEE")}.

The functionality described above supports the construction of arbitrary complex event configurations. In the
following we show the most important configurations that can be built with BEE. In the figures a rectangle indicates
a process (an address space), circles indicate modules or threads, in particular a circle marked C is an instrumented
client and a circle marked EI is an event interpreter. Arrows between the circles indicate communication paths used
by the event kernel.

Client (C)

Event Interpreter (EI)

Event Kernel (EK)

Figure 4: Local Event Interpreter Configuration

In the simplest BEE configuration, the event interpreter and the client share the same address space (see figure 4)
and the event interpreter functions are called directly by the client. This architecture is used in many early
debuggers. If the local event interpreter is a separate thread such as in figure 5, it models the architecture used by
the PARASIGHT debugger [1].

/ N

Figure 3: Shared Memory Configuration

Figure 6 shows a client connected to several event interpreters, each of them tapping on the same event stream,
but providing different views of the behavior {17, 19]. The different event interpreters can either be on the same
node or on different nodes.

EVENT CONFIGURATIONS 9

()
&)
(=)

Figure 6;: Multiple views of a client

4

O,

A BEE configuration that could be used to implement a distributed debugger for shared memory applications is

shown in figure 7. An event interpreter is connected to several clients each of them creating event streams. Because
all clients have access to the same clock, the event streams can easily be totally ordered.

Oy L0,

Figure 7: Monitoring a distributed client (shared memory)

10 EVENT CONFIGURATIONS

Several clients executing in separate address spaces can also be attached to an event interpreter as shown in figure
8. This configuration is very important in a network environment since users want (0 get an overview of the
activities in the entire system. An example is measuring the load on the network nodes for dynamic load balancing
purposes. This configuration is frequently used by NECTAR applications.

Figure 8: Network monitoring of multipie clients

For efficiency reasons, it is sometimes advisabie to reserve a separate node in the system just for event
interpretation. In this case it is possible to reduce the client overhead by having the client send the events to a central
event interpreter which then regenerates the (filtered) events, causing them to be sent to other attached event
interpreters (see figure 9). This 2-stage event handling reduces the communication bandwidth requirements but it
increases the event latency.

Figure 9: Muliiple view configuration with central event interpreter

Figure 10 shows an event configuration with a central event interpreter and local event processing activities at
each of the nodes. This configuration is used in Ogle, Schwan and Snodgrass’s system [16]: Each node uses a
"resident monitor” (local event interpreter) which collects and analyzes the monitoring information about processes
executing on that node. The resident monitors report to a central monitor {(remote event interpreter) executing on a
petwork node with access to a monitoring data base.

EVENT CONFIGURATIONS 11

Figure 10: Distributed monitoring system with local event interpreters

4.1 The Dynamics of Event Reconfigurations

Because BEE permits the connection between a client and an event interpreter at runtime, it is possible that a
service under a certain name has already been entered with the name server. The lookup_mode parameter in the
event kemnel fanction Event_Enter_Interpreter(} specifies what to do in this case. The ‘replace’ mode
states that the new service replaces the existing one. This mode is useful for debugging of event interpreters. Once
an event interpreter is debugged, it should be entered into the name server with the ‘error-if-exists’ mode, In this
mode, the event kernel issues an error message if an event interpreter is trying to enter an already existing service,

BEE also deals with the case where the client or the event interpreter finish the execution in an abnormal way. In
the following we discuss both of these cases and their implication on the name server consistency.
Client Death

When the client finishes execution in an orderly way, it sends a E_CLIENT_DEATH message to the event interpreter
and the event interpreter deletes it from the event client table. However, if the client terminates abnormally and the
message is not sent, the event interpreter must be notified in a different way. In the socket implementation, the
event interpreter is waiting on a read (). If the read {) returns with an abnormal result, the event kemel on the
event interpreter side assumes that the connection is no longer open, assembles a fake death message and passes it
up to the event interpreter. In the Nectar implementation, the event interpreter issues a status call on the client
server port at regular umes. If the port no longer exists, it assumes that the client has been terminated abnormally.

In the case of an abnormal client death, the name of the client event server must zlso be deleted from the name
server domain. It cannot be assumed that the client can do this. The event interpreter therefore asks the name server
10 delete the name of the client server (which was passed to it in the client registration message).

As far as the event sensors registered on the behalf of the client are concemed, the event interpreter has two
choices. In the first choice, event sensors are kept around. This is useful for muitiple client runs, where the user
wants to compare the results of several runs, The other choice is to delete the sensors from the event interpreter
tables and - if a grapical display is used - from the window the next ime the display is updated.

Event Interpreter Death

An abnormal event interpreter death is more problematic, Again, the name of its service must be deleted from the
name server domain, but no client should have the right to do this. Another issue is how the client recognizes that 3
connection is dead. The NECTAR implementation currently does not provide a solution to this problem. In the
socket implementation the write operation returning abnormally indicates a dead connection.

12 EVENT CONFIGURATIONS

There are two choices what to do when the client discovers a dead connection. One possibility is to no longer
send events to the service. Another one is to reestablish the connection with the event interpreter. This involves two
problems: First, the client must lookup the service at the name server again. QOuce the new connection is established.
the second problem arises: Events must from now on be sent to the new service, but in general a lot of menitoring
information has already been sent to the old one which is no longer available.

It is not clear for what kind of event interpreters a client should try to set up 2 new connection. In fact, it is not
clear whether this is useful at all. If at all, a client should try to reestablish the connection to event interpreters that
keep only minimal state. Event interpreters with minimal state are load meters, load balancers and debuggers.

If client reconnectivity is allowed the event interpreter must be prepared to get events in an unexpected way and
send requests to the client server to get the missing information. There are some useful cases, where reconnectivity
is desirable. For example, when replacing a buggy debugger by a better version, the client might have run for a long
time and the lost state might consist of a few breakpoints which can easily be redefined. Event interpreters
measuring network loads are also candidates for reconnectivity. Event interpreters with exiensive state such
frequency counters or time profilers should not be considered. When a time profiler dies, it makes no sense 10
reestablish the connection, because the times collected up to the point of failure are lost. Reconnection would lead
to inconsistency if the client has already sent the activation of an event range before the failure. In this case the
client shouid be restarted. In the current version of BEE, the death of an event interpreter is recognized, all
connections from the client to that event interpreter are deleted, a waming message is printed and the client
continues its execuiion.

Name Server Consistency

Because of the possibility of crashing clients and event interpreters, the name server might offer services which
no longer not exist. Before actuaily giving out a service as the result of a request, the name server therefore sends a
message to the client server port (which is passed as a parameter of the name server enter request). Only if the event
client server is answering, does the name server assume that the program can be made part of an event configuraton.
Otherwise the service is deleted from the name server domain.

5 Portability

With the easy scalability of networks, it is almost inevitable that nodes become heterogenous even if the network
is initially configured as a set of homogenous nodes. Furthermore, with the advance of high-speed networks, new
protocols are constantly being developed that utilize the available bandwidth better than existing protocois. Finally,
the separation of event generation and interpretation encourages the programmer to write client and event
interpreters in different languages employing different compilers, runtime systems and operating systems. In fact,
the client program itself can be a network program written in several languages. Several pontability/efficiency
tradeoffs were made in BEE which are discussed in the following.

Exchanging data between heterogenous nodes is a well known problem because architectures differ in their
storage byte order of data as well as in their word size. In "little endian” architectures such as Vax computers,
numbers are stored in byte swapped order, in "big endian” architures such as Cray machines and Sun workstations,
the address of an integer is the address of the high-order byte of the integer. Even though TCP/IP defines a nerwork
order for 32 bit integers, network programs assuming a particular byte size for data are not portable, because on a
Cray, for example, integers can be 24, 48 and 64 byte quantities.

To allow the exchange of event messages between client and event interpreters understood by all host machines,
BEE’s event protocol contains an exchange standard consisting of several message formats: an Ascii format and a set
of host formats. In the Ascii Format all the components of an event message are represented as text. This format is

PORTABILITY 13

highiy portable and used when exchanging messages between heterogenous nodes, for archiving events and for
BEE’s event replay facility. The host formats are an attempt to strike a balance between porntability and efficiency. If
a chient and an event interpreter are compiled by the same compiler and execute on the same machine they can
exchange messages in the same host format. To determine whether both parties can indeed share a format, the event
protocol contains a negotiation part when the client attempts to connect to the event interpreter. As a result of the
negotiation the client knows which format it can use. This information is stored in the event table maintained by the
event handler, because on the client side it is the only event processing stage thar needs to have access to this
knowledge once the connection is established.

For ponability reasons, the event protocol specifies the exact layout of the Ascii format, but none of the host
formats. Host formats are determined de facto by the compiler’s allocation strategy for structures. Being in a host
format means only that the event message is represented as a binary structure. Currently BEE supports 3 host
formats for Sun, Vax and Cray, but new host formats can be added easily.

The event protocel is connection oriented, because we can safely assume that a client wants to send more than one
message to an event interpreter. However, with the advance of high-speed communication systems communication
protocols might quickly become obsolete and need to be replaced by versions that are more efficient for the new
generation of networks. BEE’s use of communication system primitives is compietely encapsulated in a small set of
functions defined in the event protocol (See Section 1.11). Only these functions need to be reimplemented when Bee
is ported to another communication subsystem and this can be done very quickly. Originally Bee was implemented
on Nectarine {20}, the communication interface to NECTAR. The port to TCP/IP using Berkeley sockets took less than
a week, clearly demonstrating Bee’s high communication system pontability.

Another problem is the ability of the event interpreter to send requests to the client server while the client
application is running. This fearure is important for getting needed information from the client as well as for
efficiency reasons, because a dormant event sensor causes much less overbead on the client program than an active
one. Operating systems provide different primitives for 2 process trying to asynchronously connect to another
program. Several efficiency/portability tradeoffs are possible and two schemes have been implemented in BEE. In
the first scheme the client server is implemented as a thread waiting on a receive () and event interpreters send
client requests by sending a message to a port owned by the thread. The client server thread serves the request,
sends the reply back to the event interpreter via a reply port indicated in the request and waits on receive ()
again. This scheme is very well suited for multiprocessor architectures, because event interpreter requests can be
handled by the client server simultaneously while the client application thread executes undisturbed on another
Processor.

In the second scheme, the client server is implemented as an interrupt handler. In this implementation the event
interpreter request causes a signal which imerrupts the client program and invokes an event client signal handler.
The event client signal handler then figures out from which port the signal came from and calls an event kemel
function that processes the request. On a multiprocessor, the interrupt handler is cleariy less efficient than the thread
implementation, but many runtime systems do not support muitiple threads and on a single processor architecture an
interrupt might cause less overhead than a thread context switch. The current version of BEE uses SIGIO as signal 1o
the client server, which can cause portability problems if this signal is intercepted by the client program.

14 PERFORMANCE EVALUATION

6 Bee’s Cost

BEE is an invasive event environment: it introduces overhead in terms of space and runtime. A major design goal
of BEE was to keep the overhead as minimal as possible so that client programs can always be executed with
instrumentation. Remote event interpreters provide one way to keep the overhead small, because the event
interpretation is taking place on a different host. The other key to client efficiency is an efficient implementation of
event sensors. Assuming no hardware support, we looked at several event sensor implementations discussed in
Section 6.12. Section 6.2 is an experimental evaluation of BEE’s performance.

6.1 Sensor Implementation
A very simple implementation of an event sensor name checks only if event processing is enabled and if yes,
generates the event:

$define BEGIN (name)
if (Bvent_on) { \
Event_Generate(E_PROCEDURE, E_ACT, "name"); \

PN
{

This is not a good sensor implementation: Events are generated for all event sensors whenever Event_on is
TRUE which provides only very coarse filtering. Anotber disadvantage is that Event_Generate is called with
three parameters.

We can decrease the calling overhead by associating a unique event sensor ID _eid_ with each event sensor and
pass the ID instead of the name. To speed up event sensors even more, we define event generators for each
predefined event class. Thus the event class and event qualifier do not have to be passed for predefined events. This
results in the function Event_Activate Procedure which takes only the _eid_ as parameter. Each event
sensor ID is a static variable initialized to 0°. The first time the sensor is encountered, the name generator
Event_Register Name is calied which generates the unique ID and enters the name into a sensor name table.
Once the sensor is registered, only the function Event _Activate_Procedure has to be called.

$define BEGIN (name) \

{\
static Event_id t _eid = 0; \
if (Event_on) { \
if (_eid_ == 0} Event_ﬂRegister_Name("name",E‘._PROCEDURE,&_eid_): AN
Event Activate Procedure(_eid); \
[N

{

This sensor implementation calls the event generator for each event sensor if event processing is enabied, so the
runtime overhead is still considerable.

If we assume that _eid_ <« O indicates a passive event sensor - and by changing the semantics of
Event_Register_Name lo call Event_Generate itselfl when an event is registered - we can use the
following definition:

2The discussion is in terms of the activation and termination of the predefined event class E_PROCEDURE (See Section 8.1.2) and uses macro
definitions in C.

3This is a special feature of C (comparable to Algol's own with initialization) and is not availabie in other languages.

PERFORMANCE EVALUATION 15

fdefine BEGIN (name) \

{\

static Event_id ¢t _eid = 0; \

if {{_eid_ >= 0) && Event on) { \
if (Ceid_ == 0) Event Register Name ("name",E_PROCEDURE,&_eid); \
if (:éid: > 0} Event_Activate*Procedure(_gid_); \
A

{

Note that in C, the conditional expression ((_eid_ >= 0) && Event_on) evaluates already to FALSE if the sensor
is passive. If the sensor is active, the event is generated. Otherwise the sensor is assumed to be uninitialized: the
name of the sensor is registered and the event is generated. Thus Event _Generate is called oniy for active event
$ensors.

Another runtime optimization can be done by introducing ~ a registration function
Event Register_Procedure for the predefined event class E_PROCEDURE:
#define BEGIN (nama) \
{\
static Event_id t _aid_ = 0; \
if ({_eid_ >= 0) & Event on} { \
if (_eid_ > Q) Event_ﬁctivate_?rocedure(_eid_): \
else \
Event_Register Procedure ("name", &_eid) A
P
{

This macro is used for procedure sensors in the implementation of BEE. It requires the evaluation of one boolean
variable for passive event sensors and three booleans pius a procedure call for active event sensors,

Note that without changing the C compiler, it is not possible for BEE to know when a routine is exited. Thus in the
case of £ PROCEDURE events, the return statements must be replaced by event sensors indicating the termination of

the event range. BEE therefore provides two macros RET and RETURN for the termination of event ranges:
#define RET \
if ((_eid_ > 0) ss& Event_en) { \
Event_Terminate_Procedure(_eid_); AN
return; \
} else ©\
return

#define RETURN (v) \
if ({_eid_ > 0} && Event _on) { \
Event_Terminate_?zocedure(_eid_); \
retura (v); \
} mlse \
return (v}
The END macro is syntactic sugar needed to close the compound statement opened by the BEGIN sensor:

#define END{name) \
PN
}

6.2 Performance Analysis of BEE

The performance analysis of any event processing system depends critically on the application and its
instrumentation but there is currently no set of parallel benchmarks that cover a wide spectrum of applications. We
characterize BEE’s performance in terms of three parameters: the event rate, the runtime overhead experienced by
the client and the event latency.

1. The even: rate is the number of events that can be generated per time unit by an instrumented client
program. The event rate depends on several parameters, including the event frequency, event density,
event size and event interpreter service time. The performance of a runtime monitoring tool is also

16 PERFORMANCE EVALUATION

influenced by additional parameters such as the cost of queueing X events for graphics based event
interpreters.

2. The client overhead is the additional runtime needed to execute a client program instrumented for
event processing compared with an uninstrumented program. More precisely, client overhead contains
the execution time for the following activities: Encountering the event sensor, calling the event
generator to assemble the event fields, calling the event handler to traverse the lList of artached event
interpreters and calling the Every funcdon. If a local event interpreter is attached, the client overhead
also measures the time to execute an empty Every function. In the case of a remote event interpreter,
the client overhead includes the time of a nonblocking send of the event message. The client overhead
depends mainly on the event rate, but it is of course a function of many other parameters as well. If
remote event interpreters are attached, the client overhead is also a function of network parameters
such as buffer size, retransmission rates and acknowledgement failures.

3. The event latency measures the time from when an event sensor is encountered to the point when it is
interpreted by the event interpreter. Event latency is an important metric to characterize the real-time
capability of the event system.

Given the lack of a good benchmark we have used the following event configuration: An instrumented client
executing a loop that generates events at a constant rate of EGR event/sec and an event interpreter processing EIR
events/sec with an event service time of EST per event. The execution time is then compared with the execution time
of the same but uninstrumented client. The instrumented client generates events as fast as possible, and the event
interpreter is ‘‘empty”’, that is, its Every function consists of an empty body.

The maximum event rate was computed by N/Ty,, where N is the number of generated events and Tgy the
measured execution time of the benchmark attached to an event interpreter. The client overhead was computed with
the formula (Tg; « T)/N where Ty is defined as above and T is the execution time of the benchmark with event
processing turned off. The event latency was determined in three separate experiments, adding up the tmes
obtained from each of these measurements:

1. The first experiment measures the time spent in the client program from the point when an event
sensor is encountered. This is the same as the client overhead.

2. The second experiment measured the latency of a message between two host nodes across the network.
We repeatedly sent an event message to another host which simply echoed it back to the sender. After
measuring the round trip time for the message for a large number (1,000,000) we divided it by two to
obtain the latency of the network.

3. In the third experiment we measured the time it took an event interpreter to receive an event, interpret
it and be ready for the pext incoming event. The event interpreter used in the experiment was the
empty interpreter described above.

The client program generated 100,000 events for two different classes, the predefined event E_PROCEDURE (48
bytes on a Sun) and a user defined event (128 bytes). The event rate was controlled by changing the inter-event time
via a program variable. The programs were compiled with an optimizing C compiler and the measurements were
performed on the NECTAR prototype with ooe HUB using only Sund/330 workstations as Nectar nodes. The
numbers reported below should only be used when comparing BEE with other event processing systems.

For the empty client attached to a local (empty) event interpreter, the maximum event rate was 52,789 events/sec
for E_PROCEDURE events and 28855 events/sec for the user defined event. The minimal client overhead was
measured with 18 psec for predefined PROCEDURE events and 34 usec the user defined event.

For an empty client attached to an remote event interpreter the client overhead for the E_PROCEDURE event was
151 psec. The reason for this low overhead is that all of the protocol processing for communication: over the NECTAR
network is done on the CAB communication processor, in parallel with the execution of the application on the host.
The event latency was measured with 285 usec/event. The maximum event rate between two Sun4/330 nodes was

PERFORMANCE EVALUATION 17

measured with 6544 events/sec for E_PROCEDURE and 5733 events/sec for the user defined event. The event raie is
limited by the VME bus that connects the host and the CAB [6].

The performance of BEE across heterogenous machines is influenced by the additional task of converting events
into Ascii format before sending them and converting them back before interpreting them. If one has the choice,
event interpreters should be placed on slower nodes. The event rate is higher if the sending host is faster than the
receiving node: For example, for a Sun/Vax combination, the maximum event rate is 1070 events/sec if the client is
on a Sun compared with 269 events/sec if the client runs on a Vax,

In the following we show the client overhead as a function of the event rate for various event configurations
where the event rate is increased by the decreasing the time between eveats in the client. Figure 11 shows the client
overhead of a single client on NECTAR connected to single event interpreters for different combinations of event
rates and cvent service times. The event size in these measurements was 160 bytes. Each point in the graph
represents a measurement. Each line connects ail the measurements for a specific event interpreter. EI1, EIS and EI8

100000.00 —
[fnl
5 1000000 2— o gy ' 7
Ny - Eis : T
3 1000.0¢ ~ -« Ei8
2 < Timer
§ 100.00 2 Counter
s 10,00 ~—{ & Losaer
K]
(& 1.00
0-10 T L] F]Tll(i T L] LI L h T T yTrTT
10.00 100.00 1000.00 10000.C0
Event rate [events/sec]

Figure 11: Bee's Client Overhead as a Function of the Event Rate (NECTAR)

represent event interpreters with event service times of 30 psec, 100 psec and 300 psec, respectively. For EIl, the
client can generate events at the maximum event rate. In the case of the event interpreters EIS and EIS we encounter
sawration at lower event rates because of their higher event service times. When saturation is encountered some of
the lines go "backward", that is, different client overheads seem to be caused by the same event rate. The reason for
this is, of course, that the inter-event time and not the event rate is the true independent variable in the
measurements. A smaller inter-event time increases the number of message retransmissions due to timeouts, which
in turn increases the client overhead.

To summarize the resuits of figure 11, we can see that the client overhead of BEE is less than 1% for event rates up
to 80 events/sec, and 10% for about 800 events/sec for 160 byte events. It depends on the application, whether these
event rates are acceptable. If the client generates more than 1500 events/sec, BEE's performance degrades
significantly. This includes the performance of BEE’s default event interpreters time profiler (Timer), frequency
counter (Counter) and load meter (Loader). Note that these measurements were taken from a client using no event

18 PERFORMANCE EVALUATION

aggregration. The client overhead can be reduced further if the client program collects events before sending them
as an aggregate 1o the event interpreter. Another possibility is the use of dormant event sensors which are polled by
the event interpreter. If the event interpreter is X based, the overhead can aiso be reduced by increasing the screen
update rate and update time of the event interpreter.

Figure 12 measures the performance of BEE configurations in which the client is connected to several event
interpreters residing on different network nodes (For the experiment we used identical empty event interpreters). It

100000.00
10000.00 |
z b
3 100000 -
'E *5
$ 10000 .e
2
3 10.00
Q
1.00
0-10 I 'l_'l'll'lli L) T LELLELELE T T T hawll
100.00 1000.00 10000.00
BEEV2.5 30 Event rate [events/sec]

Figure 12: Client Overhead for Multiple View Configurations (NECTAR)

shows a slight increase in the client overhead when more event interpreters are connected. The reason is that, in the
current version of BEE, a client sends a separate event message (o each of the attached event interpreters. The use of
broadcast or multicast messages might decrease the client overhead for large numbers of connected event
interpreters, but this is currently an unresolved question.

The last experiment measured the performance of BEE configurations in which a single event interpreier is
connected to several clients each of them sending event messages. Such configurations are useful for the
implementation of distributed debuggers and load meters. Figure 13 shows that BEE’s performance is largely
independent of the number of attached clients for individual client event rates up to 1000 events/sec.

PERFORMANCE EVALUATION

10000.00

1000.00

1oo‘m [EPRI S 1

10.00

CHent overhead [%]

1.00

0-10 I L 1 LI Ll T lllllli 1 I LI LS

10.00 . 100.00 1000.00
Event rate [events/sec]

Figure 13: Client Overhead for Multiple Client Configurations (NECTAR)

10000.00

19

20 USING BEE

7 Using Bee

BEE provides macros for the simpie and fast instrumentarion of clients with predefined event interpreters. The use
of these macros for the C programmer is explained in Section 7.1. Section 7.2 describes the environment for
executing instrumented client programs and event interpreters in under NECTAR and UNIX. Section 7.3 describes the
views that can be associated with event interpreters and in Section 7.4 we discuss the defauit event interpreters
provided with BEE. Section 7.5 explains how 1o write a customized event interpreter if none of the predefined evemt
interpreters satisfies the needs of the user.

7.1 Instrumenting the Client
The interface to the event kernel is contained in the file bee.h which has to be included in the client program:
#include <bee.h>

To instrument routines written in C (see fignre 14) with E_PROCEDURE eveats, the routine bodies must be enclosed
with the BEGIN/END sensors described in section 8.2, page 30 replacing the usual curly brackets. If the routine is a
procedure, a RET must be placed right before the END macro. If it is a function, each return (value} statement
must be replaced by a RETURN (value) macro. Examples of instrumented ciient C routines are shown in figure
1s.

void foo ()

{
}

/* uninstrumented procedure */

int bar ()
{
int n;
/*
* uninstrumented function
*/
return{n);

Figure 14: Uninstrumented Client Routines

void foo ()
BEGIN (foo)
/™
* instrumented procedure
*/
RET;
END (feoo)

int bar ()

BEGIN (bar)
int n;
/*
* instrumented function
=/
RETURN (n1) ;

END (bar)

Figure 15: Instrumented Client Routines

Inside the client, event interpreters are located with Event _Lookup_Interpreter functions (see Section
8.7). For example, to connect to the default frequency counter "bee_countex™ and report the frequency of all
routines whose names start with "foo”, insert the following code fragment at appropriate places in the client

USING BEE 21

program:
#include <bee, h>

int Counter;

Counter = Event Lookup Remote Interpreter("bee counter”,
E_PROCEDURE, "foo"});
/*
* Code section calling "foe*" routines
*/

Event_Detach_Interpreter (Counter);

The following example shows three things: 1) the definition of 2 user defined event E_SYSTEM of type float
with a size of 4 bytes, 2) the generation of an event of the oewly defined event class, and 3) the attachment to an
event interpreter service "bee_load":

long value:
Event_;lass_; E_SYSTEM;

E_SYSTEM = Event_Regi:tar_Class("E_SYSTEM", "%£", 4);

value = ., ., ;
EVENT (sensorl, E_SYSTEM, E_POINT, &value);

El = Event_Lockup_Remote_Interp:eter("bee_load",E_SYSTEM,""};

If it is desirable to have all events interpreted by the event interpreter "service™, the client code should contain the
following statement:
Event Lockup_Remcte_Interpreter (<service>, E_ALL,""};

The following NECTAR example shows, how to get a frequency count for client procedures executed on Nectar
node 0x5504:
int Countex;
if (Nectar _id == 0x35504) |

Counter = Event_Lookup_Remote_Interpreter("bee_counter“,
E_PROCEDURE, " "} ;

It is easy to see, how this example can be generalized to do selective tracing for certain tasks or processes.

7.2 Environment Variables
Instrumented client programs and event interpreters can only be executed if the global name server has been
started. The environment variable BEE_NS_HOST must contain the location of the name server.

BEE'S X based event interpreters read the location of the display from the environment variable DISPLAY unless it
is passed as a parameter to the command line (see section 7.5).

The environment variable BEE_ARCH has to contain the architecture of the machine on which the client or event
interpreter is running, which must be one of the following values: sun, vax or cray.

If the environment variable BEE_REPLAY is set to the name of an event trace file, the event interpreter reads events
from this file instead of waiting for event messages. BEE's replay facility is quite useful when developing a new

22 USING BEE

event interpreter, because it can tested independent from the communication system.

Clients and event interpreters can be started as regular Unix programs. On NECTAR, the start_appl faciliry
4 allows the user to start event configurations without having to know the location or the command interface of
default event interpreters.

7.3 Bee Views

The interpretation of the incoming event stream is called a BEE view and we distinguish textual and graphical
views. A textual BEE view presents the events in a typescript window or file and incoming events are printed
textually. The typescript view is useful for small monitoring tasks, but it is not very belpful for monitoring the
performance of network programs. Even if the event streams are condensed it is often impossible for the user to
understand the behavior of the client from textual information. One of the reason is that the partial event streams
coming from each of the nodes are not separated.

Graphical views condense the incoming events and allow to comprehend much more complex situations. They
are built on top of the X library and impose a higher event latency than textual BEE views. A graphical view reacts
to client events triggered by event sensors as well as to X events.

A graphical view creates a graphical area inside an X window (or widget) when the event interpreter receives an
Init event messages from the client. Hints for the X window, such as position, width and height can be provided
by the client with the event kemel function Event_Window (). After its creation, the view is updated either as the
result of a BEE event message or an X event. The update frequency for Every event messages is controlled by the
event kemel functions Event _Update_Rate () and Event_Update_Time (). A BEE view is also updated
when the user resizes or uncovers the X window associated with the view. Finally, a BEE view is always updated
when the event interpreter receives a Final event from a client.

BEE provides three predefined graphical views: histogram, piechart, and linegraph. In the histogram view, the
output is presented in a coordinate system where horizontal columas starting at the y axis represent event sensors
encountered in the client program®. The curmrent event sensor values are shown along the x axis. An event sensor is
displayed only if it is actually encountered during the execution. Layout hints for the coordinate system associated
with the histogram view can be set with the event kemel function Event Histogram View () described in
Section 8.9, page 45. If a sensor value exceeds the current maximum value on the x axis, the histogram is redrawn
with a larger x axis limit and the event sensor columns are automatically resized.

The histogram view is very useful for visualizing frequency counts or time profiles. Figure 16 shows a histogram
based frequency counter taking events from a client which executed the following program fragment before
coonecting to the event interpreter:

axis_type_t =x_axis_type = LINEAR;
azis_type_t. y_axis_type = LINEAR NO_NUMBERS;
long x_limit = 1000000 , y_limit = 0;

Event_Window ("Counter”, 765, 573, 375, 320, BLUE, STEELBLUE};
Event_Histogram View("Frequency Coun", " Calls®, ™"
x_axis_type, y_axis_type, x_limit, y_ limit);

*For a description of start_appl we refer to the man page start_appl(1).

3The histogram view is horizontal so that cvent sensor names can be read casily.

USING BEE 23

The ume stamp of the latest event received by the event interpreter is called EI Time. It is the client’s timestamp
corrected by the event interpreter offset determined at startup tme (see Section 1) and is usually shown at the top of
the window below the title bar.

Event Time: 167 EE Fraquency Coun

innermost T T2,
nested _ BT, 00
Foobar A 7503,)

oo — THOT, M

' + " wlalls
000 ZBOG.00 BO00.00 TS00.00 10000,00

Figure 16: Histogram view of a Frequency Counter

A piechart view is presented as a sectored circle in the X window, where each sector represents an event sensor.
The size of the sector represents the current value of the sensor. If a new sensor is added, all sectors in the circle are
recomputed and resized. Sectors are shown only for sensors actually encountered during the execution. The sum of
all displayed sensor values always add up to 100%. Event sensor values below a certain threshold are not displaved,
but are lumped together in a black painted sector. Figure 17 shows the piechart view of 2 time profiler taldng events
from the same client used in the previous figure.

The linegraph view presents event sensor values as functions over time. The client has many choices for the
layout of a linegraph which can be set with the event kemel function Event_Linegraph View () described in
Section 8.9, 46. The y axis displays either absolute sensor values or their percentage in relation to the total sum of
event sensor values. Percentages are computationally cheaper than sensor values, because in the former case the y
axis never needs to be rescaled. It is also possible to specify how the curves are shown in relation to each other. In
the stacked mode, each sensor line serves as the x axis of the next sensor line, with the exception of the first sensor
which uses the x axis of the coordinate system as base line. In the unstacked mode, all event sensor values are
drawn with respect to the x axis of the coordinate system.

The linegraph view is useful for the visualization of load balancing algorithms. Figure 18 shows a load meter
taking events from a client instrumented with predefined and user dafined event sensors using a stacked linegraph
view. Before connecting to the event interpreter, the client issued the event kemel cail:

axis_type t x_axis_type = LINEAR;
axis_type t Y_axis type = PERCENT;
Event_Linegraph View("Load Meter", “secs" PR

x_axis_type, y_axis type,
1000000, 100, 20, TRUE) ;

24 USING BEE

110,74
..-———'M.‘__'
- - . e ; toa
-~ a ~ 3
o . b Foobar
~, e
™~ 7 ¢ rested
£ \\ e i
\\ f \“ 4 innermost
i " -~ A

Figure 17: Piechart view of a Time Profiler

Note that, in addition to the event sensors of type E_PROCEDURE displayed in the previous figures, figure 18 also
shows the values of user defined event sensors called SensorA, SensorB, SensorC and pinot®. The current sensor
values are represented in a menu shown at the right of the coordinate system. The correspondence between lines and
sensor values is positional: The lowest menu entry belongs to the lowest function in the coordinate system. If sensor
lines are too close to be distinguishable, the user can resize the X window and the linegraph is redrawn in the larger
window.

7.4 Bee’s Default Event Interpreters

BEE provides a small set of predefined event interpreters which are described in this section. Default event
interpreters are quite flexible monitoring tools, because the definition of their service is user definable, and they can
be started up with any of the three views described in Section 7.3.

7.4.1 Frequency Counter

BEE's frequency counter counts tbe number of routine calls in a client program. The frequency counter can be
executed locally or remotely. The local event interpreter functions are called Bee Counter Init (),
Bee Counter Every () and Bee_Counter_Final (), respectively. The name of the remote service is
"bee_counter”.

The frequency counter is availabie for all the views described in section 7.3.

The typescript view frequency counter prints a summary of the execution profile upon the execution of the
client program or when the event interpreter is detached. An example of an execution profile obtained with a local
frequency counter is shown in figure 19:

®In the lincgraph view, the lines may accumulate 10 more than 100% because of rounding crrors during the conversion of percentages of type
* float into values of type int.

USING BEE

- Event Time: 133,72 vlient: bes_test,und

Sersor(:0,40%

4 — SerrsorP:0,297
Sensoris0,232
404 pinot ;0,20%
innermost:24, 732
b nested: 24, 73N
foobar:24,732
207 foo:24,73%

uzec

0
118,00 12300 123,00 133.00 132,00

Figure 18: Linegraph view of a Load Meter

[main] Name Frequency

[main] ===c—c e e

[main] foo 2020

[main] foobar 2000

imain] nested 2000

{main] innermost 2000

[main] bar 10

[main]

Figure 19: Execution Summary of a Frequency Counter
7.4.2 Time Profiler

BEE’s time profiler measures the time spent in event ranges of the instrumented client pregram. The time profiler
can be executed locally or remotely, The local event interpreter functions are called Bee_Timer Init (),
Bee_Timer Every () and Bee_Timer Final(), respectively. The name of the remote service is
"bee timer".

If event sensors are nested, the time reported for the inner event range is not counted in the outer event range. For

example, in the code fragment:

EVENT (T1, E__PROCEDURE, E_ACT, 0)
<Time_A>

EVENT (T2, E_P ROCEDURE, E_ACT, 0)
<Time_B>

EVENT (T2, E_PROCEDURE, E_TERM, 0)
<Time C>]

EVENT(T1, E_PROCEDURE, E_TERM, 0)

the timing distribution will be reported as follows:

Tl Time A + Time C

T2

'I'ime_B

The typescript view time profiler prints a summary of the execution profile upon the execution of the client

26 USING BEE

program or when the event interpreter is detached. For each encountered sensor range it prints the average time
spent in the range, its variance, the total time and the percentage. An example of an execution profile obtained with
a remote time profiler counter is shown in figure 20:

[bee_timer] Name Mean Variance Cum.Time Percent
[bee_timer] ———===rrommo s oSS S — S SSSms e m ST
(bee_timer] innermost 0.000173 0.000000 0.001735 0.02
{bee_timer] nested 0.002934 0.0Q00Q0%° 5.867842 75.06
[bee_timer] foobar 0.0003247 0.000000 0.694601 g8.88
[bee_timerj £oo 0.000452 0.000000 §.903031 11.55
[bee_timer) bar 0.000174 0.000000 0.350514 4.48
[bee_timer) mTmosmsssoooosmosssss
[pee_ timex] ' 7.817723 100.00

Figure 20: Execution Summary of a Time Profiler

When the Final() function is executed, the time profile summary is appended to a file
~/<client_program name>.times in the user’s home directory independent of the viewing mode.

7.43 Load Meter
BEE’s load meter reports the load of event sensors in an instrumented client at a user defined rate or time and is
available only in a X based version. The name of the defauit service is "bee_load™".

The histogram view of the load meter displays the latest values for each event sensor. The linegraph and piechart
view report the load as follows: First they compute the sum of the latest values of each sensor and then they display
each sensor value as a percentage of the total sum. Note that this is only an approximation of the aciual load,
especially if some of the clients do not send their events as regularly as others. This can happen, for example, when
a client is swapped out by the operating system right before sending its event.

7.4.4 Event Filer

BEE's event filer records all incoming event messages in an event file. The event file can be then used for replay
or postmortem monitoring and for testing and debugging of customized event interpreters (see Section 7.5}. The
name of the remote service is "bee_filer". The event file format is described in Section 9.10.

7.4.5 Remote Printer

BEE provides a remote printing service "bee_print_msg". If the event kemel function
Zvent_Remote_Print () has enabled remote printing, the output of PRINT_MSG macros inserted in the client
program is sent to the event interpreter instead of being printed in the client’s typescript window. The service can
collect and/or filter prints statements originating in any of the network nodes. Its main application is for debugging
of network programs when higher level tools are not available.

7.4.6 Tracer
BEE’s tracer traces the entry and exit of event ranges in instrumented client progiam. The tracer can be executed
locally or remotely. The local evemt interpreter functions are called Bee_Tracer Init (},

Bee Tracer_ Every () and Bee_Tracer Final(}, respectively. The name of the remote service is
"bee_tracer".

USING BEE 27

7.5 Customized Event Interpreters

Bee is extensible. If the none of the predefined event interpreters can aid in monitoring the computation as desired
by the user, it is possible to write 2 customized event interpreter. In this case, the user has to provide the definition of
the three functions Init (}, Every (), Final () and a call to Event_Enter_ Interpreter () which enters
the event interpreter with the global name server.”.

Figure 21 shows the definition of an event interpreter called MY_EI providing the service "custom_service".
When connected to a client, it prints out "Hello world” whenever an event occurs.

#include <bee. h>

Event return t MY EI Init (E)
Event _t E;

{

}

return(E_SUCCESS) ;

Event_return t MY EI Every (E)
Event_t £;
{
printf("Hello world\n");
return(E_SUCCESS) ;
}

Event_ return t MY EI Final (E)
Event~t E;

{
return (E_SUCCESS) ;

1

int MY EIX (E_Class, Filter)
Event_class_t E_Class; char * Filter;
{

Event_Enter Interpreter("custom_service",
MY_EI Init, MY EI_Every, MY_EI_Final,

E_Class, Filter,
E_REPLACE, E_KEEP SENSORS) ;

Figure 21: A user defined event interpreter MY _EI

To attach the event interpreter to a client and print out the string only for procedures whose name start with "foo”,
we add the following code fragment to the client:

#include <bee.h>
int My Event Interpreter;

My Event_ Interpreter = MY EI(E_PROCEDURE, "foo");
Figure 22: Autaching MY_EI with filter "foo" to a client

The user interface of a customized event interpreter shouid follow the interface of default event interpreters which

o cass the programming job, a tcmplate for the definition of an empty event intsrpreter is available in the sub-directory
$BEE_DIR/bee_template.c. It is aiso 2 good idea 10 look at the existing default interpreters and see if it is possible to medify them to get the
desired funclionality.

28 USING BEE

expect three command line arguments: View, Service and Display. The first argument View specifies how the
event information is to be displayed and can be typescript, hist, pie or line. The second argument
Service is the name of the service by which the event interpreter is known in the network. It is entered into the BEE
domain of the name server with Event_ Enter Service() (which is called by
Event_Enter Interpreter{)). The same event interpreter can be started with different service names. This
permits multiple instances of event interpreters listening to different clients. For example, a load meter could be
instantiated twice, once as a work meter with service name "work" showing the work performed on various nodes as
well as a throughput meter with service name "throughput” showing the current communication bandwidth used by
client programs. The optional third argument Display is X specific and used by the event interpreter to display of
the results. Display must be specified in the well known X format host:server:screen.

8 Functional Specification
The event kenel is a set of functions to instrument chient programs and build event interpreters. In this section we
first give an overview of the event kernel functionality, followed by a detailed discussion of each its functions®,

BEE provides event sensors for the predefined event classes E_EVENT and E_PROCEDURE as well as a generai event
sensor for user defined event classes. An event sensor can be in one of four states: uninitialized, active, passive or
domant. An uninitialized sensor is made active by calling Event_Register_ Name () when the sensor is
encountered the first time during the execution. An active sensor is passed to the event generator for further
processing whenever the sensor is encountered. A passive sensor is not passed to the event generator. A dormant
sensor does not generate events; its value must be queried by an event interpreter request.

Event sensor functions can be used to control the client overhead caunsed by event sensors. For example, the
function Event _Sensor_Filter () changes a set of active sensors into passive sensors and vice versa.

Event Initialization functions are called at the startup and finish of a client or thread. The functions
Event_Initialize{) and Event_Finalize() are called at the beginning and end of the execution. The
functions Event Create_Table () and Event_Cleanup_Table () are called at the creation and deletion of
threads.

The Event naming functions define new names of event sensors and event classes. At initialization ume, BEE
enters the predefined event classes into the event table in Event _Initialize () using these fupctions. They
can also be called by users to define new event classes.

The Event generator functions assembie the component of an event and hands it over to the Event handler
functions which in tum dispatch the events to associated event interpreters. Handler functions also provide the
enabling/disabling of event classes. Event interpreter functions permit the disabling/enabling of event interpreters.

Event service functions make event interpreters and clients known to the name server, The communication
between client and event interpreters using service functions is via BEE ports. In NECTAR, a BEE port is equivalent to
a Nectarine port [20] and in the UNIX implementation it is a socket. Each client server is accessible by its client
server port. An event interpreter issuing remote event kemel commands has to connect to the client server first.
This is done by calling Event_Lookup_Service () to obtain the client server port followed by a call to
Event___Attach_Client_Port ().

*For pragmatic reasons we have chosen use C as specification language. Beemuse C does not have a package corkept, each event kemel
function is prefixed with the string Event _. Event kernel constants are written in upper case and prefixed with E_.

FUNCTICNAL SPECIFICATION 29

Event interpreter control functions give the client the posstbility to provide the event interpreter with hints
concerning screen update rate, layout and window information.,

A major part of the event kerne} is the event protocol, govemning the exchange of information between clients and
event interpreters. The Event protocol functions provide the functional interface of the event protocol and are
described in Section 9.

8.1 Event Sensors

BEE provides invasive event sensors for the instrumentation of client programs. For efficiency reasons they are
impiemented using features such as inline expansion and variables with static extent. Because not all programming
languages provide these features, BEE offers a collection of event sensors from which the programmer has to select
the appropriate ones. Section 8.1.1 describes sensors that can be used for the instrumentation of program wiiiten in
any language. Section 8.1.2 describes sensors that should be used for the instrumentation of C programs.

8.1.1 Language Independent Sensors

Event_Sensor
An event sensor for a user defined event class (with EID parameter).

INTERFACE:

Event Sensor (Name, Class, Attr, Variant, EID)
char * Name;
Event_class t Class:
Event attribute_t Attr;
peinter t Variant;
int * EID;
PARAMETERS:

Name Event sensor name.

Class Event class.

Attr Event attribute.

Variant Pointer to event data field.

EID Event id.

RETURNS: Nothing.

NOTES: For user defined events, the size and layout of Variant must be entered by
Event Register_Class (}. The variant fields have to be filled by the client program. The
value of EID is set the first time the event sensor is called and it must not be changed by the
client program.

8.1.2 C Language Sensors

C provides static variables (similar to ALGOL's own} which can be initialized at declaration time. This feature is
used in the definition of the sensors EVENT, BEGIN, END, BEGIN_EVENT, END_EVENT, and POINT_EVENT
hiding the existence of the EID. This results in a slightly more efficient sensor implementation compared with
sensors that require the EID as parameter.

EVENT_SENSOR
An event sensor for a user defined event class (with EID parameter).

INTERFACE:

RETURNS:
NOTES:

EVENT

FUNCTIONAL SPECIFICATION

EVENT SENSOR (Name, Class, Attrx, Variant, EID}
char * Name;

Event_class_t Class;

Event _attribute_ t Attr;

peinter_ t Variant;

int * EID;
Name Event sensor name.
Class Event class.
Attr Event atribute.
Variant Pointer to event data field.
EID Event id.
Nothing.

For user defined events, the size and layout of Variant must be entered by
Event_Register_Class(). The variant fields have to be filled by the client program. £ID
must be declared in the client program; its value is set the first time the event sensor is called
and it must not be changed by the client program.

An event sensor for a user defined event class.

INTERFACE:

RETURNS:
NOTES:

EVENT (Name, Class, Attr, Variant)
char * Name;

Event_class_t Class;
Event_attribute_t Attr;

pointer t Variant;

Name Event sensor name.

Class ‘ Event class.

Attr Event attribute.

Variant Pointer to event data field.
Nothing,

EVENT is a macro that hides the existence of the EID from the user. For user defined events,
the size and layout of Variant must be entered by Event Register_Class(). The
variant fields have to be filled by the client program.

BEGIN_PROCEDURE
An event sensor for the activation of an event range of class E_PROCEDURE.

INTERFACE:

RETURNS:
NOTES:

BEGIN_PROCEDURE (Sensor_ Name)
char * Sensor _Name;

Sensor_Name Event sensor name.
Nothing.

The macro BEGIN can be used instead of BEGIN_PROCEDURE, but in this case a string
constant is expected as parameter.

FUNCTIONAL SPECIFICATION 31

END_PROCEDURE
An event sensor for the termination of an event range of class E_PROCEDURE,
INTERFACE:
END_PROCEDURE (Sensor__Na.me)
char * Sensor_Name;
PARAMETERS:
Sensor_Name Event sensor name. -
RETURNS: Nothing,
NOTES: The macro END can be used instead of END_PROCEDURE, but in this case a string constant is
expected as parameter.
BEGIN_EVENT
An event sensor for the activation of an event range of class E_EVENT.
INTERFACE:
BEGIN_EVENT (Sensor_Name)
char * Sensor Name;
PARAMETERS:
Sensor_Name Event sensor name.
RETURNS: Nothing.
END_EVENT
An event sensor for the termination of an event range of class E_EVENT.
INTERFACE:
END_EVENT{Sensor_Name)
char * Sensor_ Name;
PARAMETERS:
Sensor_Name Event sensor name.
RETURNS: Nothing,

POINT_EVENT
Generate the an event point of event class E_EVENT.

INTERFACE:
POINT_EVENT (Sensor_Name)
char * Sensor_ Name;
PARAMETERS:
Sensor_Name Event sensor name.
RETURNS: Nothing.

8.2 Event Sensor Functions
Event_Sensor_Max
Maximum number of event sensors allowed in client program.
INTERFACE:
Event_Sensor_Max ()
PARAMETERS: none:
RETURNS: Maximum number of event sensors.

32 FUNCTIONAL SPECIFICATION

Event_Sensor_Control
Disable/enabie all event sensors of a given event class.

INTERFACE:
Event_Sensor_ Control (Class, Flag)
event_class_t Class;
boolean_t Flag;
PARAMETERS:
Class Event class.
Flag If TRUE, tum on all event sensors for event class Class, otherwise tum off all
cvent sensors for event class Class.
RETURNS: Nothing.
NOTES: Event_Sensor_Control(<class>, FALSE) for all predefined event classes <class> is called

by Event_Initialize().

Event_Sensor_Filter
A filter to be applied to all event sensors of an ¢vent class.

INTERFACE:
Event_return_t Event_Sensor_Filter(Class, F)
Event_class_t Class;
char * F;
PARAMETERS:

Class Event class to which the filter applies.

F Value of the new global sensor filter. All currentty registered event sensor
names are compared with F and if F is not 2 substring of the event sensor
name, the sensor is made passive. The initial value of the global sensor
filter is ("7").

RETURNS: Nothing.
NOTES: Currently BEE supports only one event sensor filter for all event classes, that is, the event class

parameter is ignored. Any uninitialized sensor encountered after the installadon of the new
filter, whose name is not a substring of the global sensor filter, is also made passive.

8.3 Event Initialization Functions
Event_Initialize
Initialize the event processing facility for client.

INTERFACE:
Event_return_t Event_Initialize (Client)
char * name of client;
PARAMETERS:
Client Pathname of the client.
RETURNS:
NOTES: Under NECTAR, Event Initialize() is automatically called by the function

Nectar_ Init ().Under UNIX Event_Intialize({) is called by Unix_ZInit (}.Bothof
these functions are not part of BEE.

Event_Finalize

FUNCTIONAL SPECIFICATION 33

Wrap up event related activities in client program.

INTERFACE:
Event_return_t Event Finalize (Name of client)
char * Name_of client;

PARAMETERS:

Name_of client Pathname of the client.

RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.

NOTES: Event_Finalize () scans the event table(s) associated with the client and executes the final
action for all event interpreters attached to enabled event classes. Local event interpreters are
called to execute their Final () function, remote event interpreters receive an E_FINAL
message. Remote event interpreters send an acknowledgement E_KILL back to the client after
receiving the final message to indicate that they do not need to communicate with the event
client server any lopger. Afier receiving the acknowledgements from all attached event
interpreters, Event Finalize () broadcasts a CLIENT_DEATH messages, frees the memory
allocated for the event tables, kills the event client server and exits the client. This protocol
ensures that the client is alive for post mortem requests by event interpreters.

Event_Create_Table

Allocate an event table (system or task event table).
INTERFACE:
Event return t Event_Create_Table (ET, ENT)
pointer_t ET;
pointer_t ENT;
PARAMETERS:
ET Pointer to event table,
ENT Pointer to event nesting table.
RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.
NCTES: This function is always called by Event Initialize () to allocate the system event table

and system event nesting table. The event nesting table keeps track of event sensor ranges that
have been activated but not yet terminated. Event nesting tables are useful for debugging of the
client instrumentation event ranges and they are needed by the the time profiler to compute the
tmes spent in an event range. If event table inheritance is enabled {see Section 8.10), this
function is also called whenever a task is created. In NECTAR, the two arguments ET and ENT
point to fields in the Nectarine task control block. A task event table inherits all event classes
from the system event table, but it does not inherit the associated event interpreters,

Event_Cleanup_Table
Deallocate an event table (system or task event table),

INTERFACE:

PARAMETERS:

RETURNS:
NOTES:

Event_return t Event_Cleanup_Table (ET, ENT)
Event_table t ET;
Event_nest_table t ENT;

ET Pointer to event table.
ENT Pointer to event nesting table.
Nothing,

Deletes the event table and event nesting table of a task. In Nectar, this function is automatically

34 FUNCTIONAL SPECIFICATION

called by N _Kill Self(), whenever a Nectarine task is finished.
Event Cleanup_Table() is also be called by Event Finalize () when the client
finishes execution on a node. In this case it deallocates the system event table.

8.4 Event Naming Functions

Event_Client_Name
Return name of client program.

INTERFACE:
char * Event_Client_Name ()
PARAMETERS: None.
RETURNS: The name of the attached client.
NOTES: If the process is attached to a remote client, request the name from the client server, otherwise

do a local lookup.

Event_Class_Name
Return name of event class.

INTERFACE:
char * Event_Class_Name {Class)
Event class_t Class;
PARAMETERS:
Class Event class descriptor.
RETURNS: The name of a predefined or user defined event class if it exists, "" if none exists.
NOTES: If the process is attached to a remote client, request the name from the client server, otherwise
do a iocal lookup.

Event_Class_ID
Return the eveant class descriptor of a predefined or user eveat class.

INTERFACE:
Event_class_t Event_Class_ID (Name)
char * Name;
PARAMETERS:
Name Name of event class.
RETURNS: The event table index of the event class or -1 if Name is not known.
NOTES: If the process is attached to a remote client, request the class from the client server, otherwise
do a local lookup.

Event_Register_Class
Define a new event class Name with a variant part of Size bytes.

INTERFACE:
Event_class_t Event_Register_Class(Name, Type, Size)
char * Name;
char * Type;
int Size;
PARAMETERS:
Name Name of event class.

Type Type descriptor of event variant, A type descriptor is has the same syntax as

FUNCTIONAL SPECIFICATION 35

the control string used by orint£ () and scanf {} i C's O facility,
Type contains the conversion specifications for each of the fields in the
event variant and no other information.

Size Size of event variant. Depending on the compiler’s allocation strategy, the
size of the event variant might be larger than than the sum of the sizes of the
fields of the event variant.

RETURNS: Event class descriptor.

NOTES: 1) The event variant descriptor is sent to a remote event interpreter as event message of type
E_DESCRIPTOR immediately after the attacmeht of the client, if the event interpreter interprets
this event class. 2) The following code fragments shows the definition of a user defined event
E_SYSTEM of type integer with a data area of 4 bytes and attachment to an event interpreter
"bee_load":

Event_class_t E_SYSTEM;
E_SYSTEM = Event_Register_Class("E_SYSTEM", "%d", 4);:
EI = Event_Lookup_Bemote_Interpreter("bee_load", E_SYSTEM, "");
To generate an event of the newly defined event class, use the event sensor EVENT:
int value;
EVENT (sensor_name, E_SYSTEM, E POINT, &value);
Event Register_Name
Enter name of event sensor into BEE’s internal tables and retumn its event sensor descriptor.
INTERFACE:
Event_id t Event Register Name {Name, E_id)
char * Name;
Event_id_t * E_id;
PARAMETERS:
Name Name of event sensor.
E_id Client process unique event sensor id assigned by event kermel.
RETURNS:
NOTES: If the event sensor is active, Event_Register_ Name calls Event Generate.

Event_Sensor_Name
Return name of event sensor given an event sensor descriptor.

INTERFACE:

RETURNS:

char * Event Sensor_Name (E_id)
int E_id;

E_id Client process unique event sensor id.

8.5 Event Generator Functions

Event_Generate

Event_Generate is called by an active event sensor,

INTERFACE:

36 FUNCTIONAL SPECIFICATION

void Event Generate (Class, Attr, EID, Variant)
Event_class_t ¢lass;
Event_attribute_t attr;
Event_id t EID;
pointer_t variant;

PARAMETERS:
Class Name of Event class.
Attr Attribute (see section 9.2, 51).
EID Event id.
Variant Pointer {o event variant.
RETURNS: Nothing.
NOTES: Event_Generate selects the appropriate event table (system or task event table), collects the

components of the event and calls the event handler (see Event _Handle). Event processing is
disabled during the generation of an event.

Event_Repenerate
Event_Regenerate passes an event message to the event handler without modifying the dmestamp.

INTERFACE:
void Event Regenerate (IN E)
Event_t E;
PARAMETERS:
E Event message.
RETURNS: Nothing.
NOTES: Event_Regenerate () is useful for multiple view monitoring of systems where a high

communication bandwidth is not available. A single remote event interpreter receives event
messages from one or more clients, filters them and passes them on to the artached (local) event
interpreters.

8.6 Event Handler Functions

Event_Handle
Dispatch the event to all attached event interpreters.

INTERFACE:
Event return_t Event_Handle (IN E)
Event_t E;
PARAMETERS:
E Event (assembled by event generator).
RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.
NOTES: Event_Handle is called by Event _Generate only if the event ciass for the generated

event is enabled and if at least one event interpreter is attached. If the event table is active and if
the event class is enabled, the event message of type E_EVERY is dispatched to all event
interpreters registered for this event class.

Event_Handle_Rate
Event handler dispatch rate.

INTERFACE:

FUNCTIONAL SPECIFICATION 37

Event _return_t Event_ Handle Rate(Class,
- - - NrOfEvents,

Accumulation Mode,
Dispatch Mode)

Event_class_t Class;

long NrxOfEvents;

Event__accumulation__t Accumulaticn_Mode:

Event dispatch_t Dispatch_Mode;

Class Event class.
NrOfEvents Dispatch the (aggregate) event every NrOfEvents events.

Accumulation_Mode
Specifies how to accumulate events if event handier does not immediately
dispaich events.

E_LATEST: Store only latest event.
E_ADD: Add new event value to aggregate event.

E_MEAN: Compute mean of all evem values siored in event
handler.

Dispatch_Mode A threshold for the event handler that specifies when to dispatch events.
Possible values are:
E_HANDLE_IMM: Immediately dispatch encountered event.

E_HANDLE_BY_TIME;
Dispatch event aggregate every N secs.

E_HANDLE BY_EVENT:
Dispatch event aggregate every N events.
RETURNS: E_SUCCESS if successful, E_FAILURE atherwise.

NOTES: Event_Handle_Rate allows the client program to influence the event client overhead by
bundling events in the event handler before they are sent to the attached event interpreters.
Default value: When a new event class C is entered into the event table, the event kernel calis
Event Handle_ Rate (C, E_LATEST, E_HANDLE IMM). '

Event_Enable
Enable the event class in the current event table.

INTERFACE:
Event_ zeturn t Event_Enable (IN Class)
Event_class_t Class;
PARAMETERS:
Class Event class.
RETURNS: » E_SUCCESS if succesful, E_FAILURE if Class is unknown. If the call fails and
Event_Verbose() is on, an error message is printed.
Event_Delete
Delete a user defined event class from BEE's intemnal tables.
INTERFACE:
Event_return_t Event Delete{IN Class)
Event_class t Class;
PARAMETERS:

Class Event class.

FUNCTIONAL SPECIFICATION

RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.

Event_Disable

Disables an event-class in the event table.
INTERFACE:
Event_return_t Event_Disable (IN Class)
Event class_t Class;
PARAMETERS:
Class Event class.
RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.

8.7 Event Interpreter Functions

Event_Enter_Interpreter
Enter event interpreler into name server domain.

INTERFACE:

Event_Enter_ Interpreter (Name,
Init,Every,Final,
Class, Filter,
Enter_ Mode, Client_Death_Mode)

char * Name;

Event_return_t (* Init) {);

Event_return_t (* Every) ();

Event return_t (* Final) ();

Event_class_t Class;

char * Filter;

Event_ lockup mode_ t Enter_Mode;

Event_client _death mode_t Client Death Mode;

Name Pathname of the executable of the client program.

Imit

Pointer to the init function which must be defined as follows:

Event_return_t Init (Event)
Event_t Event;

Every Pointer to the every function which must be defined as foliows:

Event_return_t Every(Event):
Event_t Event;

Final Name of the final function which must be defined as follows:
Event_return_t Final (Event)
Event_t Event;

Class The event class to be interpreted.

Filter A string used for filtering events at event handling time. If the event name
contains Filtexr as an initial substring, the event is handled, otherwise it is
not handled.

Enter_Mode What to do if the service already exists in the name server (The enumerated

type Event _lookup_mode_t is described in Section 8.8, page 42).

Client_Death_Mode

What to do with client sensors when the client dies:

E_DELETE_SENSORS Delete all information about client in event sensor array.
E_KEEP_SENSCRS Keep event sensor information about client,

RETURNS:

NOTES:

FUNCTIGNAL SPECIFICATION 39

If the call is successful, there is no return. The message

"Event interpreter ready."

appears on the output and the EI server waits in an endless loop for events from registered
clieots or event interpreters. If the message

"Event interpreter not ready."

appears, the EI server could not be started up, usually for one of the following reasons:

* Another event interpreter with the same name was already entered in the BEE
domain.

s The name server timed out.

The pair <Name, EI server port> is entered into the name server domain BEE and the interpreter
is started as a server waiting for messages from clients. Clients connect to the service with
Event_Lockup_Interpreter ().

Event_Lookup_Interpreter
Look up event interpreter.

INTERFACE:

int Event_Lookup_ Interpreter (Service,
Init, Every, Final,
Clasz, Filter, Location)
char * Service;
Event_return_t (* Init) ()
Event return_t (* Every) ({
Event_return t (* Final) (
Event_class_t Class;
char * Filter;
EI_location_t Location;

Service Service name of event interpreter.

Pointer to the init function which must be defined as follows:
Event_returnq; Init (E)

Event_t E;
Every Pointer to the every function which must be defined as follows:
Event return_t Every(E);
Event_t E;
Final Name of the final function which must be defined as follows:
Event return_t Final (E)
Event_t E;

Class The event class to be interpreted.

Filter A string used for filtering events at event handling time. If the event name
contains Filter as an initial substring, the event is handled, otherwise it is
not handled.

Location Location of the event interpreter, Can be either E_LOCAL or E_REMOTE.

If the location is E_LOQCAL, the Init (), Every(} and Final ()
functions must be defined in the client’s name space. If the location is
E_REMOTE, the client tries to connect to an event interpreter with the
service name Service who provides three functions Inix (), Every (} and
Final()® The event interpreter does not have to be started up when

°In the remote case the names do not have to be identical.

40

RETURNS:

NOTES:

FUNCTIONAL SPECIFICATION

Event Lookup_Interpreter isexecuted.

If successful, it retarns a client process unique id of the event interpreter. to be used as parameter
in other event interpreter functons. I[f unsuccessful, it returns NO_EI_ID. A lookup is
unsuccessful, if the event interpreter cannot be found or if the event class is unknown. If the call
fails and event verbosity is on, an error message is printed.

Event_Lookup_Interpreter() connects the client program to a local or remote cvent
interpreter. If the event interpreter is local, the Init (), Every () and Final () functions
must be defined in the chient program. If the event interpreter is remote, it is looked up under
Service in the name server domain BEE. If the remote event interpreter cannot be found after
several attempts, the client proceeds without connection. The number of connection attempts can
be controlled with Event _Lookup_Retry ().

Event_Lookup_Remote Interpreter

INTERFACE:

RETURNS:

NOTES:

int Event_Lookup_Remote_Interpreter (Service,

Class,
Filter)
char * Service;
Event_class_t Class;
char * Filter;
Service Service name of event interpreter.
Class The event class to be interpreted.
Filter A string used for filtering events at event handling time. If the event name
contains Filter as an initial substring, the event is handled, otherwise it is
not handled. :

A cliemt process unique id of the event interpreter, to be passed as parameter to other event
interpreter functions.
Event _Lookup_Remote_Interpreter () is a macro for

Event_ Lookup_Interpreter(Name, 0,0,0, Class, Filter, E_REMOTE};

Event_Disable Interpreter
Disable an event interpreter.

INTERFACE:
Event_return_t Event_Disable_ Interpreter (EI_ID)
int EI_ID;
PARAMETERS:
EI_ID Event Interpreter Descriptor.
RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.
NOTES: Stop sending events to event interpreter until it is enabled again.
Event_Enable_Interpreter
Enable an event interpreter.
INTERFACE:

RETURNS:

Event_return t Event_Enable Interpreter (EX_ID}
int EI_ID;

EI_ID Event Interpreter Descriptor.
E_SUCCESS if successful, E_FAILURE otherwise.

FUNCTIONAL SPECIFICATION 41

NOTES: Resume sending events to event interpreter if it is attached to the client.

Event_Detach Interpreter
Remove event interpreter from client.

INTERFACE:
Event_return t Event_Detach_Interpreter (EI_ID)
int EI_ID;
PARAMETERS:
EI_ID Event Interpreter Descriptor.
RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.
NOTES: Execute the Final () function of an event interpreter for all event classes it has been antached

to and delete it from the current event table.

8.8 Event Service Functions
Event name service functions make BEE services known to the name server.

Event_EI_Server
Start the EI server.
INTERFACE:
void Event EI_Server(EI)
Event_interpreter t EI;
PARAMETERS:
EI A record containing the path name of the executable and the Init (),
Every () and Final () functions of the service.
RETURNS: Event _EI Server () does not remum.
DIAGNOSTICS:
"Event interpreter ready."
The EI server is running and waiting for commands from other clients or event interpreters.
"Event interpreter not ready."
The EI server could not be started up. (Often this means that the name server is not running).
NOTES: Event EI Server () assumes that the name server is rumning. Event EI_Server () is

called by Event _Enter_Interpreter ().

Event_Client_Server
Start the client server.

INTERFACE:
void Event_Client_Server ()
PARAMETERS: None.
RETURNS: Nothing.
DIAGNOSTICS: In verbose mode, one of the following messsages is printad:

"Client server ready."
The client server is running and waiting for requests from other clients or event interpreters.
"Client server not ready."

The client server cannot be started up. This usually means that the global name server is not

42 FUNCTIONAL SPECTFICATION

ninning.

NOTES: The name of the event client server is the concatenation of the string "Client_Server ", the name
of the client executable and the hexadecimal numbers of the node id and process id. On UNDX,
the node id is the intemet address of the host, on NECTAR it is the NECTAR node id. On NECTAR.
the cliemt server s a thread forked off by N_Create_appl{).
Event_Client Server () assumes that the name server is running.

Event_Enter Service
Make a service known to the name server and retum its BEE port.

INTERFACE:
BEE port_t Event_Enter_ Service(S, D, Mode)
char * 5;
char * D;
Event_lookup_meode t Mode;
PARAMETERS:
S Name of the service to be entered into the name server.
D Name sarver domain. Must be either "BEE" or "CLIENT".
Mode What 1o do if service already exists.
E_REPLACE Replace existing service in Bee domain.
E_ERROR_IF_EXISTS
Retum illegal port NO_BEE_PORT if service exists.
E_ERROR_IF_NOT_EXISTS
Retum illegal port NO_BEE_PORT if service does not
exist.
RETURNS: A local port to the service,
NOTES: Event interpreter services must be registered in the name server domain "BEE", client servers

must be registered in the domain "CLIENT".

Event_Lookup_Service
Look for service S in name server domain D.

INTERFACE:
BEE_gl_pert_t Event_Lookup_Service(S, D)
char * 3;
char * D;
PARAMETERS:
S Name of the service to be looked up.
D Name server domain, which must be either "BEE" or "CLIENT".
RETURNS: A global port to the service. The port is either a client server port (domain "CLIENT") or an EI
server port (domain "BEE").
NOTES: The pame of the service is only known if it was registered previously with

Event Enter Service().
Event_Attach_Client_Port
Attach event interpreter to a client specified by a port.

INTERFACE:

Event_Attach Client_Port (Fort)
BEE_port Port;

PARAMETERS:
Port The event server port of the client to be controlled.

FUNCTIONAL SPECIFICATION 43

RETURNS: E_SUCCESS if successful, E_FAILURE otherwise.

8.9 Event Interpreter Control Functions

These functions are issued by the client to provide hints or to control the behavior of attached event Interpreters.
Event_Replay

Read evenis from a file.

INTERFACE:

void Event Replay (File)
char * File; -

PARAMETERS:

File Name of an event file. The evemt file is generally produced by the event
filer, but it can also be prepared manuaily by the programmer as long as it
conforms to the event file format described in Section 9.10, page 59.

RETURNS: Nothing.

NOTES: Event Replay (} replays a set of events produced in an earlier execution and therefore must
be called before Event_Enter_Enterpreter(). This is automatically dope if the
environment variable BEE_REPLAY is set to the name of the event file.

Event_Update_Rate

Set the event interpreter update rate.
INTERFACE:
void Event_Update Rate (Nr)
int Nr;
PARAMETERS:
Nr Update the event interpreter window associated with the client every at least
every Nr events, Default vaiue: 1,
RETURNS: Nothing.
NOTES: Event _Update_Rate() can be called any ime. However, when an event interpreter is

looked up, the value of the update time for this event interpreter is determined by the latest
Event_Update Rate ()} call

Event_Update_Time
Set the time between event interpreter window updates.

INTERFACE:
void Event_Update_Time (Time)
int Time;
PARAMETERS:
Time Update the screen every Time seconds. Default value: 3.
RETURNS: Nothing.
NOTES: Event Update_Time () can be called any time. When an event interpreter is looked up, the

value of the update tme for this event interpreter is determined by the latest
Event_Update Time () cail
Event_Sample Time
Time interval for sampling event probes in the ciient.
INTERFACE:
‘ void Event_Sample Time (Time)
int Time;

PARAMETERS:

RETURNS:
NOTES:

Event_Display

FUNCTIONAL SPECIFICATION

Time Sample the client event probes every Time seconds. Default: No sampling.
Nothing.

Event_Sample_Time () can be called any time. When an event interpreter is looked up. the
value of the sample time for this event interpreter is determined by the latest
Event Sample_Time () call.

Name of the workstation to be used for display.

INTERFACE:

PARAMETERS:

NOTES:

Event_Window

void Event_Display (Name)

char * Name:;

Name Name of display to be used by event interpreter when opening windows.
For the X window manager, N has to be in the format host:server:screen.

Event_Display () can be called any time. Name is passed as a hint to the Init function of
the event mterpreter Event_Display () therefore has to be called by the client before the
event interpreter is looked up. The event interpreter will use the hint if it bas not yet opened a
window, otherwise the hint will be ignored.

Window configuration hints for event interpreter.

INTERFACE:

RETURNS:

void Event_Window (Window_name,
Upper_left x,
Upper_left_v,
Width,
Height,
Text_color,
Line color)

char * Window_name;

int Upper left_x;

int Upper_left_y.

int Width;

int Height;

int Text_celer

int Line_color;

Window_name Name of window and icon used by event interpreter. Default value: "Event
E1".

Upper_left_x Upper left x coordinate of window body. Default value: 1.

Upper_left v Upper left y coordinate of window body. Defanlt value: 1.

Width Width of window. Default value: 400.

Height Height of window. Default value: 300.

Text_color Color of text in the window. Text_color is not used if the screen is black-
and-white. Default value: BLUE.

Line_color Color of lines in the window. Line_color is not used if the screen is

black-and-white. Default value: STEELBLUE.
Nothing.

NOTES:

Event_Font

FUNCTIONAL SPECIFICATION 45

If BEE is running under X, the upper left position specifies the position of the body of the
window, not the position of the titlebar. The window information is made available to the event
interpreter when the Init ¢} function is called. Event _Windeow () therefore has 1o be called
by the client before the event interpreter is looked up. BEE's available colors are defined in
SBEE_DIR/bee_color.h.

Name of type font for text.

INTERFACE:

RETURNS:
NOTES:

void Event_Font (F)
char * F;

F Name of the type font used by event interpreter when displaying text in the
X window.

Nothing.

The font information is made available to the event interpreter when the Init () function is
called. Event _Font () therefore has to be called by the client before the event interpreter is
looked up. BEE has its own ideas about typefonts and linewidth when the window gets very
small. It selects a 5x8 type font and also restricts the smailest window to a size depending on
the view: The smallest linegraph view is a rectangle of 300x100 pixels, the smallest piechart
view is a quadrant of 100x100 pixeis,

Event_Histogram_View
Set the layout information for the histogram view.

INTERFACE:

void Event_ Histogram View(Title,
X_axis name,
Y_axis_name,
X _axis_ type,
Y_axis_type,
X axis limit,
Y axis_limit)

char * Title;

char * X_axis_name;

char * Y axis_name;

axis_type_t X_axis_type;

axis_type_t Y_axis_type;

long X_axis_limit;

long ¥_axis limit;

Title Title of view. Defaylt value: "Event Profile”.
X_axis_name String attached to lower right comer of the view. Default value: ™.
Y_axis_name String attached to upper left corner of the view. Default value: ™,

X axis type, Y_axis_type
For histogram views the axis type can be one of the following vaiues:

LINEAR NC NUMBERS Linear axis with no markers
LINEAR Linear axis with numbersd markers.
LINEAR2 Linear axis with unnumberad markers.
LOGARITHMIC Logarithmic axis with numbers.

X _axis_limit Maximum sensor value allowed for display. Sensor values larger than

X_axis_limit are represented by smaller columns.
Y_axis_limit Maximum number of event sensors. If the client enters more than

46

RETURNS: Nothing.

FUNCTIONAL SPECTFICATION

Y_axis_limit, only the Y_axis_limit most recenty updated sensors are
shown. This parameter is 1gnored in version BEE 2.7 and earlier versions.

NOTES: The layout information is made available to the event interpreter when the Init () function is
called. Event_Histogram View () therefore has to be called by the client before the event
interpreter is looked up. BEE changes to a small typefont if the histogram window is small or if
the number of sensors becomes so large that their name positions overlap each other in the

current type font.
Event_Linegraph_View

Set the layout information for the linegraph view.

void Event_Linegraph View(Title,

INTERFACE:
char *
char *
char *
axis_type
axis_type
long
long
int
boclean_t
PARAMETERS:

Title
X_axis_name

Y _axis_name

X axis_ name,
Y axis_ name,
x_arls_type,
Y axis_type,
X_limit,
Y limit,
Sliding_window,
Stack_curves)

Title;

X_axis name;

Y axis _name;

& X _axis type,
T Y_arzs_type,

X limit;

Y limit:
Sl:.d:.ng window;
Stack_curves;

Title of view. Default value: "Event Profile”.
String attached to lower right comner of the view. Defauit value: ™"
String attached to upper left comer of the view. Default value: ™"

X_axis_type, Y_axis_type

X_limit

Y_limit

Sliding_window
Stack_curves

The y axis type should be one of the following:

LINEAR Linear axis with numbered markers showing absolute
sensor values.

PERCENT Axis with number markered showing percentages from
0 to 100. Sensor values at each time point aiways add
up to 100%.

The x axis currently always displays time in seconds. Thus the x axis type
should be LINEAR or LINEAR2.

Maximum timestamp value (in secs). When an event with a time siamp
larger than X _limit is encountered, the x axis is not rescaled.

Maximum event sensor value. When an event sensor value larger than
Y_limit is encountered, the y axis is not rescaled. (Y_limit is ignored if
Y_axis_type is set to PERCENT).

Time range (in seconds) shown at the X axis.

If TRUE, each sensor line serves as the x axis of the next sensor line, with
the exception of the first sensor which uses the x axis of the coordinate
system as base line, If FALSE, all event sensor values are drawn with

RETURNS:
NOTES:

FUNCTIONAL SPECIFICATION 47

respect 1o the X axis of the coordinate sysiem.

Nothing.

¢ If the number of event sensors is large, rounding errors occur in the linegraph
window: The sum of all event sensor values will be displayed as greater than 100%.

* The layout information is made available to the event interpreter when the Init ()
function is calied. Event_Linegraph_View () therefore has to be called by
the client before the event interpreter is looked up. The initial time at the origin is
determined by the time stamp of the first incoming event. If it is between 0 and
Time_Window, the time at origin starts with 0, otherwise it is chosen such that the
eévent sensor value can immediately be displayed without rescaling the x axis.

¢A client timestamp is always converted into event interpreter time by
Event_Virtual _Client_Time () (See Section 8.10, 47) . When the event
time advances past the time at the end of the x axis, the x axis is shifted. The size of
the shift depends on the new eveat time. If it is less than the last encountered event
time plus Sliding_window, the X axis is shifted 3/4 to the left, otherwise the
time at the origin is computed in the same way as when the first time stamp was
encountered. Because the incoming event streams are only partially ordered, there
is also the possibility of old events, that is, events whose timestamp is older than the
time at the origin. Old events are not displayed by the linegraph view (the user is
notified of old events if event verbosity is on).

* When event sensor values are encountered that exceed the current top value at the y
axis, the y axis is rescaled. If possible, the new value is chosen such that the y scale
markers are a multiple of 10.

* Event sensor values can only be positive.

8.10 Miscellaneous Functions
Event_Virtual Client_Time
Convert the time stamp of client event to event interpreter time.

INTERFACE:

PARAMETERS:

RETURNS:
NOTES:

void Event_virtual_Client_Time (E) ;
Event_t E;

E Client event.
Nothing.

When a client from a remote node initially attaches to an event interpreter, BEE computes the
difference between the time in the client’s timestamp and the time of the event interpreter’s
clock (See Event_Get_Time Delta()) and Event_Virtual Client Time ()
corrects E’s time stamp by this difference. Of course, this method is only an approximation and
it assumes a constant communication delay as well as the absence of clock drift. If the
application is running for a very long time, clock drift becomes an issue and the offset berween
the clocks on different nodes will have to be recalculated periodically with

Event_Get Time Delta.

Event_Get_Time_Delta
Compute the difference between the timestamp in event E and the current clock.

INTERFACE:

boolean t Event_Get_Time Delta(E, Delta);
Event_t E;
int * Delta;

48

RETURNS:
NOTES:

FUNCTIONAL SPECIFICATION

None.
TRUE if the time stamp is older than the clock, otherwise FALSE.

The computed Deita is subsequently used by Event Virtual Client Time().
Event_Get_Time Delta () is automatically called by the EI server when a client initially
attaches to an event interpreter.

Event_Table_Inheritance
Set the inheritance mode for event tables.

INTERFACE:

RETURNS:
NOTES:

void Event_Table Inheritance (Flag);
boolean_t Flag;

Flag If TRUE, create a task event table whenever a task is created. The initial
tabie is an exact copy of the system event table, but only the event classes
are inherited, not the attached event interpreter lists. Events generated in a
task are handled by the task event table, and not by by the system event
table. If Flag = FALSE, the system event table is used for all events. The
defanlt value is Flag = FALSE.

Nothing.

In NECTAR, Event_Table_Inheritance (TRUE} cannot be called in a Nectarine task. If
Event_Table_Inheritance (FALSE) is called in a task, all events generated in that task
are from then on handied by the system event table.

Event_Remote_Print
Redirect the output of PRINT MSG macros.

INTERFACE:

RETURNS:
NOTES:

void Event_Remote_Print (Flaqg)
becolean_t Flag;

Flag If TRUE, PRINT_MSG () macros send the string to be printed to the event
interpreter service "bee_print_msg". If FALSE, PRINT_MSG{} prints
the string into the active typescript window.

Nothing.

Remote printing is only possible if print messages are not filtered and if the call to
PRINT MSG () is issued outside the event kernel. Remote printing generates event points of
type E_STRING.

Event_Init_Debug_Switches
Debugging switches used for debugging of the event kernel,

INTERFACE:

PARAMETERS:
RETURNS:
NOTES:

void Event_Init_Debug_Swit ches ()
None.

" Nothing.

The following debug switches are known:

EH_DEBUG Debug event handler functions.
E_SERVER_DEBUG Debug message traffic between client and event interpreters.

FUNCTIONAL SPECIFICATION 49

Event_Version

Print BEE's version number.
INTERFACE:

void Event _Version ()

PARAMETERS: None.
RETURNS: Nothing,
Event_Protocol_Version

Retum version number of event protocol.
INTERFACE:

int Event_Protocol Version ()
PARAMETERS: None.

RETURNS: Protocol number of event protocol.
NOTES: The event protocol version is changed whenever the event protecol implementation is changed.
Event_Verbose
Control verbosity when executing event kemel functions.
INTERFACE:

void Event Verbose (Flag)
booclean t Flag:

PARAMETERS:
Flag If TRUE, various event kernel functions are executed verbose. If FALSE, event
kernel functions are executed silently.
RETURNS: Nothing,
Event_Lookup_Retry
Number of retries when looking up an event interpreter.
INTERFACE:
veid Event_Lookup Retry (Retry)
int Retry;
PARAMETERS:
Retry Retry determines the aumber of times a client program to retry afier an
unsuccessful lookup of a remote event interpreter. -1 means forever. The
default value is 1.
RETURNS: Nothing.
NOTES: See Event_Lookup_Remote_Interpreter ().
Event_Buffer_Size
Size of event buffers allocated by the event kernel.
INTERFACE:
void Event_Buffer Size (Nr_of_events)
int Nr_of events;
PARAMETERS:

Nr_of_events Maximum number of events that can be be stored in the event buffer. The
default value is EVENT_BUFFER_SIZE (currently set to 100).

50 FUNCTIONAL SPECIFICATION

RETURNS: Nothing.
NOTES: In verbose mode (see Event_Verbose ()), the new event buffer size and the size of ope
event are printed on standard output.

EVENT PROTOCOL 51

9 Event Protocol

BEE can be seen as a remote procedure call mechanism with filters optimized for the purpose of event processing.
In this secdon we deal with the lowest level of BEE, its event protocol. Sections 9.1 to 9.6 describe the internal
representation of event records and event interpreters. Section 9.7 expiains the types of messages that can be
exchanged between clients and event interpreters. Section 9.8 describes the event network format used for
exchanging events between heterogenous machines and for archiving events and Section 9.9 lists the access
functions defined on event messages.

9.1 Event Class
Bee offers a small set of predefined event classes. In addition, it provides the user with the ability to define user
defined classes. The predefined event classes are:

typedef enum event_class |
E_PROCEDURE,
E_EVENT,
} Event_predefined class_t;

E_PROCEDURE This event class is generated with the BEGINEND sensors defined in secton £.2. Because this
event class does not contain an event variant, the name of the event sensor is piggybacked in the
event variant. To reduce the client overhead and network traffic, this is done only the first dme
the sensor encountered.

E_EVENT A general event range class with no variant part. Generated by the BEGIN_EVENT/END_EVENT
sensors defined in section 8.2,

Another event class, E_STRING is predefined by BEE, but only entered into the event table if the client is attached
to the remote print service:

E_STRING An event with z string in the variant part. Generated if remote printing is on (see section 8.10).

The constant E_CLASSMAX denotes the maximum number of predefined and userdefined event classes.

9.2 Event Attributes
typedef enum event attribute

{E_ACT,
E_TERM,
E_POINT,
E_AGGREGATE,
E_NAME,
E_PROBE} Event_attribute_t;
E_ACT The activation of an event range.
E_TERM The termination of an event range.
E_PQINT An event point.
E_AGGREGATE An aggregate event.
E_NAME The name of an event sensor (contained in the variant part).

E_PROBE An event probe.

52

EVENT PROTOCOL

9.3 Event Record
The predefined data type Event_record_t is declared as follows:

#define E_DATA LEN <implementation dependent>/* Maximum event variant size */

typedef struct Time val
loeng seconds:
long ticks; /*

* On a Unix host node, a tick is egqual
* £o a microsecond. On the Nectar CAB, a tick
* is equal to 960 nanoseconds.

*/

} * Time_val &

typedef int Event_class_t; /* Unique identifier for event class */

typedef int Event_id_%; /* Unique identifier for avent sensor */

typedef struct Event record {

struct Time val TS; /* Timastamp in seconds, milliseconds */
Event_id _t EID; /* Event sensor descriptor (Process unique) */
Event_class_t Claas; /* Event class */
Bventa_ttribute_t Attrz; /* Event attribute =/
Event_neode_t NodelD: /* Node descriptor (Network unique) */
Event node_t ProcessiD: /* Process descriptor (Node unique} */
Event_thread t ThreadID; /* Thread Id in process (Process unique) */
unien { /* Event class apecific variant */

char String[E_DATA_LEN]:/* String in E_STRING event */

char Data[E_DATA_LEN]; /* For user defined events x/

} Variant;
} * Event_;eccrd_t:

The fields of an event record are:

TS

EID

Class
Attribute

NodelID

ProcessID

ThreadID
Variant

The time stamp describes the time of the event when it was generated on the client side. The
time is expressed in elapsed seconds and microseconds since 00:00 GMT, Japuary 1, 1970 (zero
hour). The resolution of the system clock is hardware dependent; the time may be updated
continnously or in ticks. On NECTAR, the time is read from a register on the CAB and provides a
resolution of 1 ps. The Cray clock has nanosecond resclution, but for portability reasons, BEE
rounds Cray time stamps to microseconds. Under UNIX, the time stamp is never correct enough
that one should believe the microsecond values. On Sun-<4 systems the clock resolution is 1
msec. The clock of a VAX 3100 has a resolution of 10 msec and oo Sun-3 systems it is 20
msec.

The event sensor descriptor or event id. Event id’s are small integers assigned by the event
kemel and are urique on a process basis.

A small integer describing the class of the event (See section 9.1).

A small integer describing the attribute of the event. Possible values are described in section
9.2

The node id of a host on which the process is running. It is unique for each node in the network.
BEE' TCP/IP implementation uses the internet address of the host as node id.

The process id of a client process. It is unique for each workstaton, however different
workstations can assign the same process id to different client programs generating events.

A small integer used to distinguish multiple threads in one client process.

The data dependent part of an event depends on the Class as well as on the Attribute fieid. For
example, if the attribute is E_NAME, the variant contains the name of the event sensor. When an
event sensor of type E_PROCEDURE is encountered the first time, the variant also contains the
name of the sensor, that is, the name is "piggybacked" on the first event with the attribute E_ACT.
In the case of an user defined event, the type of the variant is described by an event message of
type E_DESCRIPTOR (See Section 9.8.1).

EVENT PROTOCOL 53

9.4 Event Table
The event table is an array of E_CLASSMAX event associations, where the value of E_CLASSMAX is implementation
dependent. An event association describes an event class and the event interpretess attached to it,

typedef struct event_association {
Event _class_t Class;
char Name[E_NAME LEN];
boolean t Enabled; /* TRUE: generate events for class */
Event interpreter_list & EI; /* List of event interpreters */
}oo* Event_association_t H

BEE supports two kinds of event tables: system and task event tables. The system event table is generated at client
Startup time and contains the event associations for the predefined event classes. Task event tabies are associated
with threads or Nectarine tasks and are generated at thread/task creation time. They inherit the event classes defined
in the system event table at that time. Whenever an event is generated the event handler selects the appropriated
event table and scans the event associations for associated evem interpreters. The creation of task event tables can
be suppressed with Event _Table Inheritance (). In this case all event sensors are processed in the context
of the system event tabie.

9.5 Client Server and EI Server Port
BEE knows about two types of event servers. The client server is created for each client program and is accessible
via the client server port event _client_port. The client server accepts event kemel requests from remote
event interpreters via the EI server port event_server_ port. The El server is a module or thread started by
Event Enter_Interpreter (). The El server accepts events from attached clients. Amachment is done with
Event_Lookup_Interpreter () by requesting the EI server port from the name server given the name of the
event interpreter service.
#define BEE port t <implementation dependent> /* Node unique port */
#define BEE gl port_t <implementation dependent> /* Network unique port */

BEE_gl_port t event_client port; /* Client server pert
of current client*/
BEE_gl _port_t event_server port; /* EI server port */

9.6 Event Interpreter
An event interpreter is represented internally as:

/*
* Event Interpreter Lookup moda
*/
typedaf enum event loockup_mode {
E_REPLACE, /* Replace existing service in Bee domain */
E_ERROR_IF_EXISTS, /* Raise error if service exists */
E_ERROR_IF NOT_EXISTS /* Raise errer if service does not exiat */
} Event_loockup mode_t;
/n—
* Client death mode
*/
typedef enum event_plient_death_mode {
E _DELETE SENSORS, /* Dalete all information about client in
event sensor array */
E_KEEP_SENSCRS /* Keep event sensor information about client */

} Event_client*death_mode_t;

54 EVENT PROTOCOL

typedef struct Event_interpreter |
char Name [MAXPATHLEN]:
Event_return_t (* Init) ():
Event_return_t (* Every) (}:
Event_return_t (* Final) ();
char Filter {E_NAME LEN];
Event_lookup_mode_t EI_lookup_mode;
Event_client_death mode ¢ Client_death_mode;
} * Event_interpreter_t;

Name is the path name of the executable client program. Init, Every, Final are pointers to functions with the
following interface:
Event_return t Init(E) Event_t E;

Event return t Every(E) Event_t E;

Event_return t Final(E) Event_t E;

The string Filter is used by the event handier to send only those events to attached event interpreters whose event
sensor names have Filter as a prefix. The EI_lookup_mode specifies what to do if the service exists or does not
exist in the name server domain. And Client_Death_mode specifies what to do with the accumulated event sensor
information in the case of a client death.

9.7 Message Types

In BEE’s event processing model, the communication between client and event interpreters is bi-directional.
Messages sent from the client to the event interpreter are called events and the delivery of an event is guaranteed by
the underlying communication system. In the NECTAR implementation of BEE, events are sent with NECTARINE'S
reliable message protocol, in the UNIX implementation they are sent with sockets using TCP/IP. The connection
between client and event interpreter for events is done with the Event_Lookup_Interpreter() and
Event_Enter_Interpreter () functions via the name server. Events are described in section 9.8.1,

Communication between event interpreter and client is done by a request-response protocol which is always
initiated by the event interpreter. Messages sent from the event interpreter to the client are called event interpreter
requests {or simply requests). The event interpreter issues the request to the client and indicates a reply port. The
client then executes the corresponding event kernel function and sends a reply message containing the return result
to the indicated reply port. The event kemel function Event_Attach_Client_Port () attaches an event
interpreter to a particular client If the event configuration is planped, the client server port is made known to the
event interpreter with the INIT event. In an unpianned event configuration, the client server port can be determined
with Event_Lookup_Service (). Event interpreter requests and client replies are described in section 9.8.2
and section 9.8.3, respectively.

9.8 Event Network Format
The event network format specifies the format of messages exchanged between clients and event interpreters.
Network Format_t is an enumerated type, but for portability reasons, it is of type string. Currently the
foliowing values are known:
#define E RESERVED_FORMAT "O" /* Indicates illegal network format x/

#define E:ASCII_FORMAT *1* /% Message is in ASCII format. x/
#cdefine E_SUN_FCRMAT "2m /% Message in native Sun format */
$define E_VAX FORMAT n3nw /% Message in native Vax format */
$define E_CRAY FORMAT ngr /% Massage in native Cray format */

typedef char Event_petwork_format_t[4];

Ln
n

EVENT PROTOCOL

9.8.1 Events
The general format of an event is
typedef enum E_client_cmd {

E INIT, /* Initialization message */
E EVERY, /* Every message */
E_FINAL, /* Final message */
E_REGISTRATION, /* Client registration */
E_DEATH, /* Client death */
E_REQUEST, /* Bvent interpreter regquest */
E REPLY, /* Client reply */
E_DESCRIPTOR /* Type descriptor of event variant */

} E_client_cmd_t;

typedef struct Event msg ({
Event network_format_t Format;
E_client_cmd_t Cmd;
struct Event_reccrd Event;
union |
Event_init_t Init;
Event client_t EventServer:
} data;
I * Event_t ;

The contents of the data field depends on the value of Cmd of the event message:

E_INIT Sent to an event interpreter immediately after the client registration message has been sent.
Contains client's recommendation about desired layout and update frequency of event
information. The Event_init_t structure is defined as follows:

typedef struct bee display info {

char Title_name[E_TITLEﬁNAME]; /* graph title */
char Xazxis name (E_XAXIS NAME]; /* name of x-axis */
char Yaxis—hame[E_YAXIs:NAME]; /* name of y-axis */
char Xaxis_unit[E_XAXIS_UNIT]; /* unit of x-axis, */
axis type_t Xaxis type; /* type of zaxis */
long Xaxis limit; /* Maximum x value */
long Yaxis limit: /* Mazimum y value */
long X _init; /* Initial z-axis value. */
long Y init; /* Initial y-axis value. */
int Sample_Time; /* Time batween samples */
int Update_Rate; /* display update rate */
int Update_Time; /* display update time */
long Sliding_window; /* width of = axis in sacs */
boolean t Stacking_mods; /* TRUE:use baseline of
previous sensor*/
int Text_color; /* Color used for tex */
int Line colox /* Color used for lines */

} bee_disslay_info_t;

typedef struct bee_window_infc {

char Display[E_DISPLAY_NAME]; /* X display */
int Upper_left _x;

int Upper_lef:t y;

int Windeow width;

int Window height;

char Window_name{E_WIN_NAME]; /* name of X-window */
char Font_pame[E_FONT_NAME]; /* Font to be used by EI */
} bee_yindaw_info_t;

typedef struct event_init (
bee_yindow_info_; Window:
bee_display info t Display;
} Event_init t ; T T

E_FINAL Sent to any active event interpreter when client calls Event Death_Interpreter (). The

36

E_REGISTRATION

E_DEATH

E_DESCRIPTOR

EVENT PROTOCOL

E_FINAL message is of type Event_msg (defined in Section 9.8.1, page 55) with an empty
data field.

This event type is sent 1o the event interpreter when client creates a connection as the resuit of a
Event_Lookup_Interpretex() cal. In the Event_record field only Class is
initialized. The variant part of the E_REGISTRATION message is defined as follows:

typedef struct event_client {

boolean t Active; /* client has a valid event
client server port */
char c1ient_pame[E_pAXPATHLEN];/* Name of client’s runfile*/
Event_id_t Node; /* Node id of client */
long Process; /* Process id of client */
long Thread; /* Thread of client */
Event_machine_t Machine; /* Processer type on which
client executes. */
BEE_gl_port_t Port; /* Event client server port*/
BEE _port_t Reply port; /* Reply port for requests */
long Nr_of conns; /* Open client connectiens */
struct Time_val Time_delta; /* Differance between EI time
and client time */
bealean t Client_time_ahead; /* TRUE: (Cliant time-EI time)
>=» O, FALSE otherwise. */

} Event_client_t;

Only the fields Name, Node and Port are filled by the client, the other fields are filled by the
El server. Time_Delta is the difference between the local event interpreter time and the tme
stamp of the registration messsage. It is added to all event time stamps generated by the client
to convert client time to EI ime. BEE assumes that clocks on different hosts do not have the
same time, but do not drift in relation to each other during the client run.

Sent to attached event interpreter when the client calls Event _Delete_Interpreter () Or
sent to any attached event interpreter when the client dies or finishes execution {(only, of course,
if the client’s death can be diagnosed). The E_CLIENT_DEATH message is of type Event_msg
(defined in Section 9.8.1, page 55) with an empty data field.

For each user defined class, 2 message of type E_DESCRIPTOR is sent to the artached event
inerpreter when Event_Lookup_Interpreter () is called. The Class field in the
Event record describes the event class. The variant part of the &_DESCRIPTOR message
contains the type descriptor describing the layout of the user defined event:

typedef struct event_variant descriptor {

Typedescriptor{E _MAXPATHLEN];

} Event_variant_descriptor_t ;
The type descriptor uses the control string syntax from C’s I/O facility. For example, the type
descriptor "%d%d%£%d%s” describes an event variant consisting of two integers, a floating
point number, another integer and a string.

9.8.2 Event Interpreter Reguests
The format of an EI request is:

typedef struct event EI_request {
Event_network_format_t Format;
E_EI_cmd_t Cmd;
ilong ID;
} * Event EI_ reguest t;

Only a subset of the event kernel functions are available as requests. The possible requests are:

EVENT PROTOCOL 57

typedef enum E_EI omd {
E_CLASS_NAME,
E_ENABLE_CLASS,
E_DISABLE_CLASS,
E_DETACH_INTERPRETER,
E_DISABLE_INTERPRETER,
E_DELETE_INTERPRETER,
E_ENABLE INTERPRETER,
E_KILL,
E_SENSOR_NAME,
E_DESCRIPTOR,
E_VERBOSE,
E_VERSION

} E_EI_cmd_t;

E_CLASS.NAME Get print name of event class. The ID field contains the event class id.

E_ENABLE CLASS Enable processing of events of the specified class which is contained in the ID feld of the
message. - :

E_DISABLE_CLASS Disable processing of events of a specified class which is contained in the ID field of the
message..

E_DETACH_INTERPRETER
Detach event interpreter. The ID field of the message contains the event interpreter descriptor.

E_DISABLE_INTERPRETER
Disable event interpreter. The ID field contains the event interpreter descriptor.

E_DELETE _INTERPRETER
Delete event interpreter. The ID field contains the event interpreter descriptor.

E_ENABLE_INTERPRETER
Enable event interpreter. The ID field contains the event interpreter descriptor,

EXILL Acknowledgement by the event interpreter that it no longer wants 10 communicate with the
client server. This message is only sent by the event interpreter after it received a E_FINAL
message. The client attached to event interpreters cannot exit before having received an E KILL
message.

E_SENSOR_NAME Get print name of event sensor, The ID field contains the event sensor id.
E_DESCRIPTOR Get type descriptor for user defined event class. The ID field contains the event class id.

E_VERBOSE Control event processing verbesity in client.
E_VERSION Get BEE and protocol version,
9.8.3 Client Repiies

The format of a client reply is:

typedef struct event_client_reply {
Event _network_format_t Format;
Event_return t Returna code;
char Infol[E_ MAXPATHLEN);
}o* Event_client_reply t;

The Return_code field indicates success (E_SUCCESS) or failure (E_FANURE) of the request. In the case of a
lookup, the Info field contains the name of the event class or event sensor. If the EI request was E_VERSION, Info
contains BEE’s version number and the protocol version separated by a blank space.

58 EVENT PROTOCOL

9.9 Event Access Functions
Event access functions permit to access individual fields in an event. In the following we describe functions that
access the general fields as well as variant fields that depend on the event class.

9.9.1 General Access Functions
First we describe event access functions that are defined for all event messages:
(int) E_Type(E) Type of event E. The type is any scalar defined by E_client _cmd t or
E_EI_cmd_t.

(pointer_t) E_Timestamp(E)
Pointer to time stamp of event E. In BEE 2.6, time stamps are not unique. The
time is read from the CAB clock, a 32 bit integer with a micro second resolution
which wraps around approximately every hour.

(long) E_Seconds(E)
Seconds in time stamp of event.

(long) E_Ticks(E) Ticks in time stamp of event. On a Unix host node, a tick is equal to a
microsecond. On a Nectar CAB, a tick is equal to 960 nanoseconds.

(int) E_Class(E) Event class of event.

(int) E_Process_Id(E}
Process id of event. If the event occurred in a Unix process, it is the Unix
process number of the client, if the event occurred on a Cab, it is the Nectar id of
the CAB processor.

(int) E_Thread_Id(E)
Thread id in which the event occurred. In NECTAR, the Nectarine Task id in
which the event occurred.

9.92 E_INIT Access Functions
For events of type E_INIT the following functions are defined:
(char *) EI_Window_Name(E)
Name of event interpreter(El})’s X window.

(int} EI_Upper_Left_X(E)
Upper left x coordinate of EI's X window (not the titlebar!).

(int) EI_Upper_Left_Y(E)
Upper left y coordinate of EI's X window (not the title bar).

(int) EI_Height(E) Height of EI's X window.
(int) EI_Width(E) Width of EI's X window.

(char *) EI_Title(E)
Main title to be used by EL

(char *) EI_Xaxis(E)
Title to be attached to X axis.

(char *) EI_Yaxis(E)
Title to be attached to Y axis.

(int) EI_Xunit(E) Number of sub units on X axis.

(int) EI_Yunit(E) Number of sub units on Y axis.

EI_Xtype(E) Scale of X axis: Linear or logarithmic.
El_Ytype(E) Scale of Y axis: Linear, percent or 1ogarithn1ic.

(long) EI_Xlimit(E)
Maximum x value.

EVENT PROTOCOL 59

(long) EI_Ylimit(E)
Maximum y valae.
(int) EI_Sample_Time(E)
Time interval for sampling event probes.
(int) EI_Update Rate(E)
Maximum number of events between view updates.

(int) EI_Update_Time(E)
Time interval between view updates.

(inet) EI Time_Window(E)
Range to be used when displaying time.

(int) EI_Text_Color(E)
Color of texmal information such as sensor names, main ttle, etc. Colors
known by BEE are defined in bee_color.h.

(int) EI_Line_Color(E)
Color to be used for histogram columns, piécharts sectors and other lines.
Colors known by BEE are defined in bee_color.h.

9.93 E_EVERY And E_FINAL Access Functions
The following event access functions are defined on events of type E_EVERY and E_FINAL:
(int) E_Qual(E) Denotes whether the event an event point, or the activation or termination of an
event range,
(int) E_Id(E) Event sensor descriptor (unique only at process level),

(long) E_Long_Value(E)
Value contained in variant of E.

(char *) E_String_Value(E)
Pointer to a string contained in variant of E.

{pointer_t) E_Pointer_Value(E)
Pointer 10 an untyped value contained in variant of E.

9.3.4 E_REGISTRATION And E_DEATH Access Functions
For events of type E_REGISTRATION and E_DEATH we have:

(char *) E_Client_Name(E)
Name of client.

E_Client_Process(E)
Process Id of Client.
E_Client_Port(E) BEE port of client server.

8.9.5 E_DESCRIPTOR Access Functions

(char *) E_Descriptor(E)
Type descriptor for event class.

9.10 Event Network Format

The event protocol offers severat message formats: an Ascii format and a set of host formats. In the Ascii format
ali the components of an event message are represented as text. If a client and an event interpreter are compiled by
the same compiler and execute on machines of the same architecture they can exchange messages in host format.
To determine whether boths parties can indeed share the same format, the event protocol contains a negotiation
phase when the client connects to the event interpreter. As a resuit of the negotiation the client knows which

60 EVENT PROTOCOL

message format it can use.

For portability reasons, the event protocol describes only the Ascii format, but none of the host formats, Host
formats are determined de facto by the compiler’s allocation strategy for structures. Currently BEE supports host
formats for Sun, Vax and Cray. New host formats can be added relatively easy by defining new scalars for the
enumerated type Event Network Format_t and by providing conversion routines between the new format
and the Ascii format. The Ascii format is used by various parts of BEE, such as the event filer, BEE’s event replay
facility and by the event kemel when exchanging events, requests and replies between heterogenous hosts.

9.10.1 Events, Requests and Replies

#define EVENT_ASCII_MSG_SIZE 511
typedef struct Event Ascii_msg {
Event _network format_t Format;
char Event_Message [EVENT_ASCII_MSG__SIZE] :
} * Event_Ascii_t;

E_INIT
The format of Event_Message for an event message of type E_INTT is:
(0 (<WindowFields>) (<DisplayFields>) (<EventRecord>})
The <EventRecord> fields are described in Section 9.3. <WindowFields> contains entries for each of the
fields in bee window_info_t, and <DisplayFields> contains entries for each of the fields in
bee_display_info_t described in Section 9.8.1. The corresponding type descriptor is

(3d (%3 %d %d %d %d) \
{%2 %s %s %d %d %$d %d %d %d %d %d %d %d %d %d) \
(#d %d %d %x %d 3d %d.%d))

E_EVERY and E_FINAL
The format of Event_Message for event messages of type E_EVERY and E_FINAL, respectively, is:
(1 (<EventRecord>))}

{2 (<EvantRecord>))
The fields of <Event Record> are described in section 9.3. The corresponding type descriptor is
(%d (%d %d %d %x %d %d %d.%d %s))}
E_REGISTRATION and E_DEATH
The format of Event_Message for event messages of type E_REGISTRATION and E_DEATH, respectively, is:
{3 (ClientName Node Port}) (<EventRecord>))

{4 (ClientName Node Port) {(<EventRecozxd>})
ClientName is the full path name of the executable runfile. Node is a unique identification of the workstation on
which the client is running. Poct is the client’s client server port. The fields of <EventRecord> are described
in section 9.3. The corresponding type descriptor is

(%d (%s %x %d %d %z %d) (%d %d %d %x %d %d %d.%d))
E_DESCRIPTOR
The fo:mat of event entries of type E_DESCRIPTOR is

{7 (Typea)} (<EventRecord>))
Type cannot contain any blanks. The event class in EventRecord contains the event class for Type. The
corresponding type descriptor is

(%ad (%=) (%d %d %d %3z %d %d %d.%d))

9.10.2 Event File Format
An event file consists of a header and a list entries in Ascii format:

EVENT PROTOCOL 61

{Bee_Version Protocol_Version)
(Cmd Ewvent)

{Cmd Event)

The header describes the Bee version and the event protocol version of the event interpreter that created the event
file. Each of the entries (Cmd Event) describe an event generated by a client, a request initated by a event
interpreter or a client reply. Entries in an event file are only partally ordered by the timestamps of the generating
clients. Event files can be automatically produced by attaching the event interpreter "bee_filer" !, but they can also
edited manually. An exampie of an event file is shown below:

(BEE2.8:25=0ct~=1990 0}
(test 5506 BOO2fadc 2205 0 0) (1 1 2 16559 83002fade 2205 0 4.945444)
(Profile #ecs Percent 0 0 0 0 0 51 20 1 0O 0) A\

(3
(0

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(7
(7
(1
(1
(1
(1
(1
(1
(1
(1
(1
(2
(4

(counter 0 C 100 200)
(1 0 0 14473 8002fade

(1
(1
(1
(1
(9
(9

oOCoOoCoOCo

H O OoOrOo

14473
14473
14473
14473
16559
16559

8002fade
8002 fadc
8002fade
8002fade
8002fadc
8002 fadec

2205
2205
2205
2205
2205
2205

2205 0 5.0 })

0 5.0 foo }))

0 6.0)}

0 13.510071 })

0 13.510447 1))

0 27.858328 bar))
0 27.858715))

(10 0 O 16559 8002fadc 2205 0 27.858328 hello })
(10 0 1 1655% 8002fadc 2205 0 27.858715))

(3 0 0 16559 B80C2fadc 2205 0 27.862600)}

(10 O O 16559 8002fadec 2205 6 27.862005 })

{10 0 1 16559 8002fadc 2205 0 27.862389))

1 16559 3002fadc 2205 0 27.863000))

(5 4 2 16559 8002fadc
(6 4 2 16559 8002fadce

(% 0
(£}
(%£)
(5
(5
(6
(6
(7
(7
(5
(6
(7

Wl Wy e Wb Wk

NRNRNNMNBNDNDD N

16359
18558
16559
16559
165583
16559
16559
le559
16559

8002£fade
8002fade
8002£ade
8002fade
8002£fadc
8002fadec
B002fadc
8002fade
8002 fade

2205
2205
2205
2205
2205
2205
2205
2205
2205

2205 0 28.743550))
2205 0 29.743552))
29.743554 Sensceri)}
29.743735 30 1))
29.743920 SensorB })
29.744077 40.45))
29.744262 SensorC))
29.744420 40))
193.883695 25 1))
193.883943 35.34)
193.884256 45))

SOoOO0OQ0O0OOOO0O0

(-1 1 2 16559 8002fadc 2205 0 194.884256 IR
{test 5506 8002fade 2205 0 0) (-1 1 2 16559 8002fadc 2205 © 194.884256)}

9.11 Protocol Interface
The following functions describe the interface of the event protocol.

Event_Send_Init

Send message E of type E_INTT reliably to event interpreter at port Port.
INTERFACE:

PARAMETERS:

void Event Send_Init (Port, E)
Bee_gl_port Port;
Event_; E;

Port of remote event interpreter.

'“Note that the event filer currently stores only event messages, but not cvent fequesls or cvent responses. Thus BEE is not able to replay the
complete cvent related behavior of a client from the event file of an event filer.

62 EVENT PROTOCOL

E Init Message
RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Send_Every
Send message E of type E_EVERY reliably to event interpreter at port Port.

INTERFACE:
void Event_Send Every(Port, E)
Bee_ gl _port Port;
Event_t E;
PARAMETERS:
Port Port of remote event interpreter.
E Every Message
RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Send_Final
Send message E of type E_FINAL reliably to event interpreter at port Port.

INTERFACE:
void Event Send Final (Port, E)
Bee_gl port Port;
Event_t E;
PARAMETERS:
Port Port of remote event interpreter.
E Final Message
RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Send_Registration
Send message E of type E_REGISTRATION reliably to event interpreter at port Port.

INTERFACE:
void Event Send Registration(Port, E)
Bee_gl_port Port;
Event_t BE;
PARAMETERS:
Port Port of remote event interpreter.
E Registration Message
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Send_Client_Death
Send message E of type E_DEATH reliably 1o event interpreter at port Port.

INTERFACE:
void Event_Send_Client_ Death (Port, E)
Bee_gl_port Port;
Event_t E;

PARAMETERS:

Port Port of remote event interpreter.

EVENT PROTOCOL 63

E Client Death Message
RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if event nterpreter is unreachable.

Event_Send_Descriptor
Send message E of rype E_DESCRIPTOR reliably to event interpreter at port Port.

INTERFACE:
void Event Send Descriptor (Port, E)
Bee_ gl port Port;
Event_t E;
PARAMETERS:
Port Port of remote event interpreter.
E Type Descriptor Message
RETURNS: Nothing,
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Receive_Msg
Receive an event message E on port Port, report size of message in Size.

INTERFACE:
void Event_Receive_Msg {Size, Port, E)
int Size;
Bee_gl_ port Pocrt:
Event_t E;
PARAMETERS:
Size Size of received event message.
Port Port of remote event interpreter.
E Event Message
RETURNS: Nothing,
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachabie.

Event_Send_Request
Send a Request to the client server at Port, waiting for an answer on ReplyPort.

INTERFACE:
void Event_Send_Request (Port, Request, ReplyPort)
Bee gl port Port;
Event_EI_request_t Request;
Bee_gl port ReplyPort;
PARAMETERS:
Port Clieat server port.
Request Event interpreter request.
ReplyPort Port on which event interpreter expects the reply from the client.
RETURNS: Nothing,

NOTES: Event_connect_error is set to E_FAILURE if client is unreachable.

64 EVENT PROTOCOL

Event_Receive_Request

Receive a Request at port Port, size of received message is placed in Size using the ReplyID specified when
sending the request.
INTERFACE:

void Event_Receive_Request(Size, Port, Reguest, ReplyID)
int Size;

Bee gl port Port;

Event EI_request_t Request;

Bee_ gl port ReplylD;

Size Size of received message.
Port Event interpreter port.
Request Event interpreter request.
ReplyPort Port or ID on which event interpreter expects the reply from the client.
RETURNS: Nothing,
NOTES: Event_connect_error is set to E_FAILURE if client is unreachabie.
Event_Send_Reply
Send a reply Item to event interpreter identified by ReplyID.

INTERFACE:
void Event_Send Reply(ReplyID, Item)
Event EI regquest_t Item;
Bee_gl port ReplyID;
PARAMETERS:
Item Request to be sent.
ReplyID ID - sent with request- on which event interpreter expects the reply from the
client.
RETURNS: Nothing.
NCTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Receive_Reply
Receive a reply Item from a client server request on port Port, size of received message is placed in Size.

INTERFACE:
void Event_Receive Reply{Size, Port, Item)int Size;
Bee_ gl _port Port;
Event_client_reply Item;
PARAMETERS:
Size Size of received message.
Port Event interpreter port.
Item Reply received from client.
RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if client is unreachable.

Event_Host_To_Ascii
Convert avent message from host format to Ascii format.

INTERFACE:

EVENT PROTOCOL 65

void Event_Host_To Ascii(E, CE)
Event ¢ E;
Event_ascii t CE;

PARAMETERS:
E Onginal event message,
CE Converted event message.
RETURNS: - Nothing.
NOTES: This function is automatically called by the send functions of the svent protocol if the event

interpreter is located on a heterogenous node.

Event_Ascii_To_Host
Convert event message from Ascii format into format used by host.

INTERFACE:
void Event_Ascii_To_Host {E, CE)
Event_Ascii_t CE;
Event_t E;
PARAMETERS:
E Original event message in Ascii format.
CE Converted event message in host format.
RETURNS: Nothing.
NOTES: This function is automatically called by the receive functions of the event protocol if the

received message is in Ascii format.

66

EVENT KERNEL SUMMARY

EVENT KERNEL SUMMARY 6’
I. BEE Summary

1.1 Event Sensors

L1.1 Language Independent Sensors

Event_Sensor(Name, Class, Attr, Variant, EID)
Event sensor for a user defined event class (with EID parameter).

L.1.2 C Language Sensors

EVENT_SENSOR(Name, Class, Attr, Variant, EID)
Event sensor for a user defined event class (with EID parameter),

EVENT(Name, Class, Attr, Variant)
Event sensor for a user defined event class.

BEGIN_PROCEDURE(Name)

Activation of an event range of class £_PROCEDURE.
END_PROCEDURE(Name)

Termination of an event range of class E_PROCEDURE.

BEGIN_EVENT(Name)
Activation of an event range of class E_EVENT.

END_EVENT{(Name)
Termination of an event range of class E_EVENT.

POINT_EVENT(Sensor_Name)
Event point of event class E_EVENT.

1.2 Event Sensor Functions
Event_Sensor_Max()
Maximum number of event sensors allowed in client program.

Event_Sensor_Control{C, Flag)
Disable/enable all event sensors of a given event class C.

Event_Sensor_Filter(C, Filter)
Define global filter Filter to be applied to all event sensors of event class C.

1.3 Event Initialization Functions
Event_Initialize (C)

Initialize the event processing facility for client C.
Event_Finalize (C)

To be called before the client finishes its execution on a node.

Event_Create_Table (ET, ENT)
Allocate an event table (system or task event table).

Event_Cleanup__Tabie (ET, ENT)
Deallocate a event table (system or task event table).

68 EVENT KERNEL SUMMARY

I.4 Event Naming Functions
Event_class_t Event_Register_Class(Name, Type, Size)
Define a new event class Name with a variant part of type Type occupying Size bytes.

Event_Client_Name()
Rerum name of client program.

Event_Class Name{C)
Retum name of event class C.

Event_Class_ID(Name)
Retum the event class descriptor of a predefined or user event class.

Event_Register Name(Name, EID)
Enter name Name of event sensor into symbol table and return its event sensor descriptor EID.

Event_Sensor_Name(EID)
Return name of event sensor given an event sensor descriptor EID.

1.5 Event Generator Functions

void Event_Generate(Class, Attr, EID, Variant)
Event_Generate assembles the components event sensor EID, class Class, attribute Attr and
event class specific information Variant into an event message and passes it to the event
handler.

Event_Regenerate (E)
Event_Regeneraie passes an event message to the event handler without modifying the
timestamp.

1.6 Event Handler Functions

Event_Handle (E) Determine list of attached event interpreters for event E and pass E to their Every function.
Event_Enable (C) Enable the event class C in the current event tabie.

Event_Delete(C) Delete the event class C from the current event table,

Event_Disable(C) Disable the event class C.

L7 Event Interpreter Functions
Event_Delete_Interpreter (EI_ID)
Delete event interpreter EI_ID from the EI table.

Event_Detach_Interpreter (EI_ID)
Execute the Final () function of an event interpreter for all event classes it has been attached
to and delete it from the current event table.

Event_Disable_Interpreter (EI_ID)
Disable event interpreter EI_ID.

Event_Enable_Interpreter (E1_ID)
Enable event interpreter EI_ID.

1.8 Event Service Functions

Event_Enter_Interpreter(S, L, E, F, Class, Filter, Enter_Mode, Client_Death_Mode)
Enter event interpreter with service name N into name server domain.

Event_Lookup_Interpreter(S, L E, F, C, Filter, Location)

EVENT KERNEL SUMMARY 69

Look up event interpreter at global name server.

Event_Enter_Service(S, Enter_Mode, D}
Make BEE service S known to the global name server in the domain b{D)) and return its BEE port.
Enter_Mode specifies what to do if the service already exists.

Event_Lookup_Service(S, D)
Lookup service S in the BEE name server domain D.

Event_Attach_Client_Port(Port)
Antach event interpreter to a client specified by its client server port Port.

1.9 Event Interpreter Control Functions

Event_Replay(F) Read events from an event file F.

Event_Update_Rate(Nr)
Set the event interpreter update rate.

Event_Update_Time(Time)
Set maximum time between event interpreter window updates.

Event_Display(N) The name N of the workstation to be used by event interpreters for display.
Event_Window(N, X, Y, W,H, T, L)

Window configuration hints for event interpreter.
Eveat_Font(F) Name of type font for text.

Event_l-listogram_View(Title, Xname, Yname, Xtype, Ytype, Xlimit, Ylimit)
Layout information for the histogram view.

Event_Linegraph_View(Title, Xname, Yname, Xtype, Ytype, Xlimit, Sliding_Window, Ylimit)
Layout information for the line graph view,

I.10 Miscellaneous Functions
Event_Virtual_Client_Time(E)
Convert the time stamp of client event E to event Interpreter time.

Event_Get_Time_Delta(E, Delta}

Compute the difference between the umestamp in event E and the current clock.
Event_Table_Inheritance(Flag)

Enable/disable the inheritance mode for event tables.
Event_Remote_Print (Flag)

Redirect the output of PRINT_MSG macros to event interpreter "bee_print_msg".
Event_Init_Debug_Switches()

Set event kernel debug switches.
Event_Version () Print BEE’s version number.
Event_Verbose (Flag)

Enable/disable verbosity when executing event kernel functions.
Event_Lookup_Retry (Retry)

Set the number of retries when looking up an event interpreter service,

Event_Buffer_Size (Nr_of_events)
Size of event buffers allocated by the event kernel.

70 EVENT KERNEL SUMMARY

1.11 Event Protocol Functions

Event_Send_Init(Port, E)

Send init message E reliably to event interpreter at port Port.
Event_Send Every(Port, E)

Send every message E reliably to event interpreter at port Port.
Event_Send_Final(Port, E)

Send final message E reliably to event interpreter at port Port.
Event_Send_Registration(Port, E)

Send client registration message E reliably to event interpreter at port Port.
Event_Send_Client_Death(Port, E)

Send client death message E reliably to event interpreter at port Port.
Event_Send_Descriptor{Port, E)

Send type descriptor message E reliably to event interpreter at port Port.
Event_Send_Request(Port, Request, ReplyPort)

Send a Request to the client server at Port, waiting for an answer on ReplyPort.
Event_Send_Reply(ReplyID, Item)

Send a reply Item to event interpreter identified by ReplyID.
Event_Receive_Msg(size, Port, E)

Receive an event message E on port Port, report size of message in Size.
Event_Receiv'e_Reqnest(Size, Port, Request, ReplyID)

Receive a Request at port Port, size of received message is placed in Size.
Event_Receive_Reply(Size, Port, Item)

Receive a reply Item from a client server request on port Port, size of received message is

placed in Size.

{1

(2]

(3]

4]

{51

(6]

i

[8]

91

(10]

[11]

(12]

[13)

71

References

Ziya Aral and Ilya Germer.

High-Level Debugging in Parasight.

In Workshop on Paraile! and Distributed Debugging, pages 151-160. ACM, Madison Wisconsin, May.
1988.

Also published in SIGPLAN Notices, Volume 24, Number 1. January 1989,

Emmanuel A, Amould, Francois J. Bitz, Eric C. Cooper, H. T. Kung, Robert D. Sansom and Peter

A. Steenkiste.

The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers.

In Proceedings of the Third Internationai C onference on Architectural Support for Programming Languages
and Operating Systems, pages 205-216. ACM/IEEE, Boston, April, 1989.

Peter Bates.

Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior,

In Workshop on Parailel and Distributed Debugging, pages 11-22. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1. January 1989, '

Thomas E. Bihari and Karsten Schwan.
Dynamic Adaptation of Real-Time Software for Reliable Performance.
Technical Report OSU-CISRC-5/88-TR 17, Ohio State University, May, 1988.

Bernd Bruegge and Peter Hibbard.
Generalized Path Expressions - A High Level Debugging Mechanism.
Journal of Systems and Software 3:265-276. 1983.

Eric C. Cooper, Peter A. Steenkiste, Robert D. Sansom, and Brian D. Zill.

Protocol Impiementation on the Nectar Communication Processor.

In Proceedings of the SIGCOMM '90 Symposium on Communications Architectures and Protocols, pages .
ACM, Philadelphia, September, 1990.

Also published as CMU Technical Report CMU-CS-90-153.

I1.P Elshoff.

A Distributed Debugger for Amoeba.

In Workshop on Parallel and Distributed Debugging, pages 1-10. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989,

Riccardo Guesella and Stefano Zatti. _
The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.2BSD.
[EEE Transactions on Software Engineering 15(7):847-853, July, 1989.

Dieter Haban and Dieter Wibranietz.
A Hybrid Monitor for Behavior and Performance Analysis of Distributed Systems.
{EEE Transactions on Software Lngineering 16(2):197-211, February, 1990.

Jeffrey Joyce, Greg Lomow, Konrad Slind and Brian Unger.
Monitoring Distributed Programs.
ACM Transactions on Computer Systems 5(2):121-150, May, 1987.

Michael J. Kaelbling and David M. Ogle.
Minimizing Monitoring Costs: Choosing between Tracing and Sampling.
In 23rd International Hawaii Conference on System Sciences, pages 314-320. January, 1990,

Ted Lehr, Zary Segall, Dalibor Vrsalovic, Eddie Caplan, Alan Chung, and Charles Fineman.
Visualizing Performance Debugging.
{EEE Computer 22(10):38-52, October, 1989.

Allen D. Malony, Daniel A. Reed, David C. Rudolph.

Integrating Performance, Data Collection, Analysis and Visualization.
Performance Instrumentation and Visualization.

ACM Press, 1990, pages 73-97.

Edited by Margaret Simmons, Rebecca Koskela,

(14]

(15]

(16]

(17}

(18]

(19]

(20]

(21]

(22]

Russell D. McLaren and William A. Rogers.

Instrumentation and Performance Monitoring of Distributed Systems.

In Proceedings of the Fifth Distributed Memory Computing Conference, pages 1180-1186. IEEE, April,
1990.

Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy
Torzewski.

IPS-2: The Second Generation of a Paralle! Program Measurement System.

IEEE Transactions on Parallel and Distributed Systems 1(2):206-217, April, 1950.

David M. Ogle, Karsten Schwan, and Richard Snodgrass.
The Dynamic Monitoring of Real-Time Distributed and Parailel Systems.
Technical Report GIT-1C$-90/23, Georgia Institute of Technology, May, 1990.

S. P. Reiss, E. Golin and R. Rubin.
Prototyping Graphical Languages with GARDEN.
In IEEE Conference on Visual Languages. IEEE, 1986.

Richard Snodgrass.
A Relational Approach to Monitoring Complex Systems.
ACM Transactions on Computer Systems 6(2):157-196, May, 1988.

David Socha, Mary L. Bailey and David Notkin.

Voyeur: Graphical Views of Parallel Programs.

In Workshop on Parallel and Distributed Debugging, pages 206-213. ACM, Madison Wisconsin, May,
1988.

Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

Peter Steenkiste.

Nectarine - A Nectar Interface.

1988.

Camegie Mellon University, Interal document.

H. Tokuda, M. Kotera, C. MErcer.

A Real-Time Monitor for a Distributed Real-Time Operating System.

In Workshop on Parallel and Distributed Debugging, pages 68-77. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

W.W.Wilcke, D.G.Shea, R.C.Booth, D H.Brown, M.E.Giampapa, L.Huisman, G.R. Irwin, E.Ma,

T.T.Murakami, F.T.Tong, P.R.Varker and D.J. Zukowslkd.

The IBM Victor Multiprocessor Project.

In Proceedings of the First Conference on Hypercube Multiprocessors. 1EEE, Monterey, California, March,
1989.

BEGIN_EVENT 31
BEGIN_ TPROCEDURE 30

END_EVENT 31

END_PROCEDURE 31

EVENT senscr 30
Event_Ascii_To_Host 65
Event Attach Cl:.ent Port 42
Event_| Buffer Size 49

Event_ Class ID 34

Event Class Name 34

Event Cleanup Table 33
Event_Client_Name 34

Event Cllent “server 41
Event Create " Table 33

Event Delete 37

Event Detach Interpreter 41
Event D;sable 38

Event Dlsable _Interpreter 40
Event Dlsplay 44

Event EI_Sample Time 43
Event EI _Server 41

Event EI Update Time 43
Event Enable 37

Event Enable _Interpreter 40
Event “Enter Interpreter 38
Event_Enter_Serv;ce 42
Event Finalize 33
Event_Font 43

Event Generate 35

Event Get Time_Delta 47
Event Handle 36

Event Handle _Rate 36

Event HLstogram View 45
Event_Host_To_Ascii 64
Event_ TInitialize 32

Event_ TInit _Debug_Switches 48
Event Llnegraph View 46
Event Lookup_Interpreter 39

Event Lookup_Remote_Interpreter 40

Event _Lookup_Retry a9
Event_Lookup_Service 42
Event Name 35

Event Protocol Version 49
Event Receive Msg 63
Event Receive Reply 64
Event Receive_Request 64
Event_regenerate 36
Event_Register_Class 34
Event_ Register_ Name 35
Event_Remote_ Print 48
Event_Replay 43
Event_Send Client_Death 62
Event Send Descr;ptor 63
Event_Send Every 62

BEE Functionality

Event_Send_Final 62

Event _ Send Init 61

Event_ “send _Registration 62
Event Send _Reply 64

Event_ “Send _Request 63
Event_ “sensor 29

Event _ Sensor Control 32
Event_ SenSOr “Filter 32
Event_ Sensor “Max 31

Event_’ Table Inheritance 48
Event Update Rate 43
Event_Verbose 49

Event Versxon 49

Event_ V;rtual Client_Time 47
Event_wlndow 44

POINT_EVENT 31

User defined events 34

73

