
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

BEE: A Basis for Distributed Event Environments
(Reference Manual)

Bemd Bruegge

3 November 1990
CMU-CS-90-18(b

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

BEE is a portable platform for building heterogenous distributed event environments. An important feature
is the dynamic connection of client programs to monitoring tools which facilitates flexible monitoring of
network programs at runtime. It also supports user defined event classes which can be used by
implementors to build complex event systems as well as by application programmers who need to write
customized monitors.

We first introduce the event processing model used by BEE and present the user's view, describing the
instrumentation of network programs and a set of standard event interpreters providing graphical views
based on X I 1 . Some performance measurement results are given to demonstrate the cost associated with
BEE. The rest of the document describes the functional specification of BEE.

BEE has been implemented for a variety of platforms, communication systems and languages. It is
currently available on NECTAR, a network of workstations connected by optical fibers with a maximal
throughput of 100 Mbit/sec and on UNIX. The UNIX implementation has been ported to several machine
architectures (Sun, Vax and Cray-YMP), supporting the instrumentation of C and Ada programs.

This research was supported in part by the Defense Advanced Research Projects Agency, DARPA/ISTO, under the
title "Research on Parallel Computing," ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDA972-90-C-0035; and in part by the National Science Foundation and the Defense Advanced Research Projects
Agency under Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives. The
views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, NSF, CNRI or the U.S. Government.

Keywords: Network monitoring, Real-time systems, Distributed monitoring, Performance monitoring,

Distributed systems.

T a b l e of C o n t e n t s
1 Introduction
2 BEE's Event Processing Model
3 Efficiency in Event Processing

3.1 Efficiency by Parallelism: Design Choices
3.2 Efficiency by Filtering

4 Event Configurations
4.1 The Dynamics of Event Reconfigurations

5 Portability
6 Bee's Cost

6.1 Sensor Implementation
6.2 Performance Analysis of BEE

7 Using Bee
7.1 Instrumenting the Client
7.2 Environment Variables
7.3 Bee Views
7.4 Bee's Default Event Interpreters

7.4.1 Frequency Counter
7.4.2 Time Profiler
7.4.3 Load Meter
7.4.4 Event Filer
7.4.5 Remote Printer
7.4.6 Tracer

7.5 Customized Event Interpreters
8 Functional Specification

8.1 Event Sensors
8.1.1 Language Independent Sensors
8.1.2 C Language Sensors

8.2 Event Sensor Functions
8 J Event Initialization Functions
8.4 Event Naming Functions
8.5 Event Generator Functions
8.6 Event Handler Functions
8.7 Event Interpreter Functions
8.8 Event Service Functions
8.9 Event Interpreter Control Functions
8.10 Miscellaneous Functions

9 Event Protocol
9.1 Event Class
9.2 Event Attributes
9.3 Event Record
9.4 Event Table
9 3 Client Server and EI Server Port
9.6 Event Interpreter
9.7 Message Types
9.8 Event Network Format

9.8.1 Events
9.8.2 Event Interpreter Requests
9.8.3 Client Replies

9.9 Event Access Functions
9.9.1 General Access Functions
9.9.2 EJ.NIT Access Functions
9.9.3 E EVERY And E FINAL Access Functions
9.9.4 E'REGISTRATION And E_DEATH Access Functions
9.9.5 E_DESCRIPTOR Access Functions

9.10 Event Network Format
9.10.1 Events, Requests and Replies
9.10.2 Event File Format

9.11 Protocol Interface

u n j v e
c a r n e g i ?

PITTS Fs UP

I . BEE S u m m a r y
LI Event Sensors

L1.1 Language Independent Sensors
L1.2 C Language Sensors

1.2 Event Sensor Functions
13 Event Initialization Functions
1.4 Event Naming Functions
L5 Event Generator Functions
L6 Event Handler Functions
1.7 Event Interpreter Functions
L8 Event Service Functions
L9 Event Interpreter Control Functions
L10 Miscellaneous Functions
L l l Event Protocol Functions

iii

L i s t of F i g u r e s
Figure 1: BEE's Event Processing Model 3
Figure 2: Paralleiization of BEE with 3 Event Interpreters 5
Figure 3 : Basic BEE Architecture 7
Figure 4: Local Event Interpreter Configuration 8
Figure 5: Shared Memory Configuration 8
Figure 6: Multiple views of a client 9
Figure 7: Monitoring a distributed client (shared memory) 9
Figure 8: Network monitoring of multiple clients 10
Figure 9: Multiple view configuration with central event interpreter 10
Figure 10: Distributed monitoring system with local event interpreters 11
Figure 11: Bee's Client Overhead as a Function of the Event Rate (NECTAR) 17
Figure 12: Client Overhead for Multiple View Configurations (NECTAR) 18
Figure 13: Client Overhead for Multiple Client Configurations (NECTAR) 19
Figure 14: Uninstrumented Client Routines 20
Figure 15: Instrumented Client Routines 20
Figure 16: Histogram view of a Frequency Counter 23
Figure 17: Piechart view of a Time Profiler 24
Figure 18: Linegraph view of a Load Meter 25
Figure 19: Execution Summary of a Frequency Counter 25
Figure 20: Execution Summary of a Time Profiler 26
Figure 2 1 : A user defined event interpreter MY EI 27
Figure 22: Attaching MYJEI with filter "foo" to a client 27

1 I n t r o d u c t i o n
With the advance of parallel machines application programmers take a new look at their programs to achieve

performance improvements by parallelization. However, with the parallelization comes a higher level of complexity
because the program is now distributed over many processors and the computation is no longer as visible as on a
single processor. Many new questions arise: Are some of the processors idle, should the load on the processors be
balanced better? What are the bandwidth requirements on the communication subsystem, what is the cost of
communication, how are the processes communicating with each other? Can we use the monitoring information
dynamically to improve the performance of the program? With these questions comes the need for new monitoring,
debugging and performance evaluation tools.

Instead of providing a multiplicity of different monitoring tools, we believe it is more desirable to provide a
common basis on which these tools can be built. B E E is a platform for event processing on top of which users can
build monitors, debuggers and performance evaluation tools. We identify a small set of functions common to event
processing and call this set the event kernel. An important part of the event kernel is the definition of an event
protocol, which specifies the format of events exchanged between client program and event processing system. The
event protocol makes the event kernel highly portable for different communication protocols.

BEE views the execution of a distributed system as the generator of streams of events [3]. In general, event based
systems increase the execution time of the client program because of the overhead spent in event generation. They
are also space inefficient because of the number of events to be stored and runtime inefficient because of the
slowness of many existing I/O devices. For example, networks such as Ethernet are too slow to support remote event
processing with reasonable event latency (the time between generation and interpretation of the event).

To reduce the execution overhead, event based systems usually provide filters to prevent the creation and/or
interpretation of unnecessary events [18]. Another way to reduce the overhead is to delay the event interpretation to
a postprocessing phase. This is used in many monitoring systems, for example [12,21], but it is unacceptable for
monitoring problems where the information is needed at runtime [4]. Event processing systems providing runtime
monitoring often separate event generation and analsis by sending events to remote monitors, which may also
combine event streams from different nodes [7,10,15, 16].

Most of the existing event processing systems provide a rather static connection of the client to the event
processing system. However, when monitoring distributed programs, desired event interpretations can often only be
formulated at execution time. BEE tries to provide a higher degree of flexibility: Users are able to customize the
monitoring process by connecting client programs and monitoring tools at runtime. This flexibility allows the
definition of user defined views that can be dynamically modified during the execution.

The document is organized as follows. In Section 2 we present the notational framework of B E E followed by a
description of the event processing stages and a discussion of how they can be parallelized in Section 3. Section 4
demonstrates how B E E can be used to build a wide spectrum of event processing systems, ranging from simple
single process systems to distributed event systems providing multiple views of the execution. B E E was designed
with several portability goals in mind and Section 5 portrays some of the portability problems encountered during
the implementation. Section 6 discusses the cost introduced by event sensors and evaluates the runtime performance
of BEE.

BEE is currently available on NECTAR [2] and on U N I X . Section 7 describes how to use BEE under NECTAR , in
particular how to instrument a client program, how to start event interpreters and how to connect clients with event
interpreters and to build customized event interpreters. Section 8 contains the functional specification of the event
kernel and Section 9 is a description of the underlying event protocol. Appendix I contains a summary of the

INTRODUCTION

functional specification.

I would like to acknowledge the contribution of several people who participated in the design and implementation
of B E E at various stages. Peter Steenkiste provided many comments during the initial design. Johannes Mann from
Siemens Corporation wrote BEE'S X library interface and provided the first generation of X based event interpreters
in C++. Frank Walzer from Siemens Corporation improved the performance of the event interpreters and performed
the measurements under NECTAR. Marco Gubitoso and Hiroshi Nishikawa were the first application users and
provided many valuable comments. Mike Browne ported B E E to TCP/IP. Mario Barbacci from the Software
Engineering Institute encouraged BEE'S port to the Vax and contributed the language interface for Ada. Jim Lewis
from the Pittsburgh Supercomputing Center helped to measure BEE'S performance on the Cray- YMP.

2 BEE 9s Event Process ing M o d e l
A (atomic) event E is a 7-tuple (Class, Attribute, Node, Process, Thread, Timestamp, E_ID, Variant). Class

partitions the event space into equivalence classes. The Attribute indicates whether the event is an activation
(E . A C T) , a termination (E J T E R M) , a point (E . P O I N T) , an aggregate event (E _ A G G R E G A T E) or a probe (E . P R O B E) .

Events attributes denote the activation and termination of an event range, respectively, events of type E . P O I N T

denote a interesting point in the execution of the client Event aggregates denote the accumulation of several atomic
events. Node, Process and Thread identify the location where the event occurred. Node identifies the workstation.
Process is the client name assigned by the operating system and Thread provides a unique identification for threads
in multithreaded applications.

Timestamp is the value of a clock when the event occurred. In general, events from different nodes do not have
access to the same clock and sorting event streams generated by clients on different nodes is a significant problem.
B E E provides a function that allows to sort time stamps but it assumes constant communication delay and the
absence of clock drift Practical schemes for synchronizing clocks at different locations are inherently approximate
due to the unpredictability of communication delays [8]. The resolution of timestamps is another problem [15]. The
Cray clock provides nanosecond resolution, but for portability reasons, time stamps in B E E have only microsecond
resolution.

The event descriptor E_ID identifies the event sensor that caused the occurrence of the event. BEE supports
predefined event classes such as the execution of a procedure, as well as user-defined events to mark important
milestones in the execution of the application. Variant contains data that depend on the specific event class. For
example, the event class E . P R O C E D U R E has an additional field denoting the name of the procedure that triggered the
event1.

Event processing in B E E is based on four activities operating on events: event sensing, event generation, event
handling and event interpretation (figure 1).

Events are detected by event sensors [18] which are inserted into the client program. The implementation of
event sensors depends on the event class. If the instrumentation of a client with event sensors requires more space
than the uninstmmented client, the sensor is invasive, otherwise noninvasive. For example, a break instruction is
noninvasive if it is done by code replacement B E E is an invasive environment, because event sensors are macros
inserted by the programmer and expanded by a preprocessor (See Section 8.2.).

The event generator collects the components of the event, that is the class, attribute,-timestamp and class

Sec Section 9.3, page 52 for a detailed description of the event components.

INTRODUCTION 3

Figure 1: BEE ' s Event Processing Model
dependent variants and sends it to the event handler.

The event handler manages the event table, which is an array of the defined event classes. Each event class can be
associated with an ordered list of event interpreters. For an event of a given class, the event handler scans the list
and sends the event to each attached event interpreter.

An event interpreter consists of five components EI = (N, I, E , F, P). N is the name of the service under which the
event interpreter is known in the network. The I n i t function I is called immediately after the event interpreter is
attached to the client program. The Every function E is called whenever the client generates an event and the
Predicate function P evaluates to TRUE. The F i n a l function F is called when the client terminates or when the
event interpreter is detached from the client

The client server allows event interpreters and other programs to request information about the client program, as
well as to alter the execution and the state of the client. At startup, each client program creates a unique port called
the client server port. Requests that are sent to this port are handled by the client server, which executes in the same
address space as the client program. BEE supports different types of requests. The client server can be used to
retrieve the names of variables defined in the client program; this allows events to use a concise representation for
names, and to have the event interpreter retrieve naming information from the client, when needed. The
functionality provided by the client server is similar to that provided by p t r a c e in UNIX.

Monitoring plays an important role when developing network programs, but it is not always possible to know in
advance what aspect of the execution should be monitored. The network monitoring environment must therefore
allow the user to change the monitoring setup during execution, in fact, it should be able to provide feedback
information back to the client program [4]. The client server allows users to change the flow and use of events
during execution: the user can send requests to the client server port to activate or deactivate event classes, change
the frequency of event generation, or to add event interpreters that give the user a different view of the application.

When the client server is started, it enters its client server port in a global name server (see figure 1). Event
interpreters and other programs can retrieve the port identifier based on the name of the client at any time during
program execution. If the runtime system supports multiple threads, the client server is a separate thread in the
client program. If threads are not available, it is implemented as an interrupt handler where each event interpreter
causes an interrupt of the client execution.

4 INTRODUCTION

The execution of a client with one or more attached event interpreters is called an event configuration. Because
event interpreters can be attached dynamically to a client, the character of an event configuration depends on the
time when the event interpreters are attached to the client. We distinguish two event configurations: If the client
starts up first and the event interpreter is attached later, we call this an unplanned event configuration otherwise the
event configuration is planned. B E E supports both types of event configurations.

3 Efficiency in Even t Process ing
The performance of an event processing system can be characterized by client overhead and event latency. Client

overhead, also called monitoring perturbance, is the additional cost experienced by the client in terms of space and
execution time as a result of the instrumentation. Client overhead is mainly a function of the event rate and the cost
to assemble and pass events to the event processing system before the client can proceed its execution. The
assembly can be more or less expensive depending on the underlying operating system. For example, in U N I X it
takes a system call to get the current time for the timestamp, whereas on N E C T A R the time is available in a register.
An event processing system with low impact on the execution time of the client and few demands on memory
resources has a high client efficiency.

Event latency is the average response time of the event interpreter once an event sensor is encountered. The event
latency is a function of three parameters: the cost per event, the network latency of the underlying communication
system and the event service time, which is the time used by the event interpreter to process the event.

Given a fixed event rate and event service time, client overhead and event latency are inverse to each other: the
smaller the client overhead, the larger the event latency. To select the best combination of client overhead and event
latency, B E E event interpreters can be attached in various ways to client programs. In a local event interpreter,
I n i t . Every and F i n a l are functions located in the address space of the client program. A local event
interpreter provides the lowest possible event latency at the cost of high client overhead. At the other end of the
spectrum is the remote event interpreter, which executes on a separate computation node. If a client is connected to
a remote event interpreter, I n i t , Eve ry and F i n a l are remote procedure calls. A remote event interpreter
provides lower client overhead at the expense of increased event latency.

To choose an overhead/latency combination between the ends of this spectrum, a local and remote event
interpreter can work together as follows: The Every function of the local event interpreter accumulates individual
client events. When a specified threshold is reached, the local event interpreter calls its F i n a l function, which
sends the events as an aggregate event to the Every function of the remote event interpreter.

B E E achieves event efficiency by parallelism in the event processing model itself and by filtering. In section 3.1
we describe how the event processing stages in the model could be parallelized and how it is actually done in B E E .
In section 3.2 we describe how filters minimize the number of events that actually have to be generated or sent to an
event interpreter.

3.1 Efficiency by Parallelism: Design Choices
Distributed systems provide the programmer with the challenge to detect parallelism in applications and achieve

faster ran times by mapping the application code onto many processors. In the following we discuss possible ways
to achieve parallelism in an event processing system itself and present the rationale for the parallelization used in
BEE. Candidates for parallelism are the four activities event sensing, event generation, event handling and event
interpretation.

To collect detailed sensor information, with minimal impact on the application, other researchers have

INTRODUCTION 5

implemented hardware or hybrid monitors [9, 13, 14, 22]. This approach is not taken in BEE for portability reasons.
Without adequate hardware support for event sensing it is too expensive to separate this activity from event
generation. B E E therefore places event sensing and event generation in the same process.

Event generation and event handling can be separate processes communicating via an event handler buffer. The
generator drops the event into the event buffer from where it is received by the event handler. Again, without
hardware support this decomposition is not advisable on a single processor, because it introduces only scheduling
overhead. If the target machine is a multiprocessor with shared memory, event generator and event handler can be
tasks executing on different processors accessing the event buffer in shared memory. A distributed implementation
with two different nodes should not be attempted if the communication subsystem cannot keep up with the event
generation rate. In the current implementation of B E E , event generation and event handling are handled by the same
process, but in the NECTAR implementation we are looking into a separation where the event handler is placed on the
CAB coprocessor.

Event interpreters are ideal candidates for separate processes. Often they provide a graphics user interface for
visualization which requires a high computation rate impacting the client efficiency if done on the client processor.
The separation has another advantage: The event interpreter can be written in a language different from the client
language. Usually the client program has to be as efficient as possible, whereas event interpreters need to be
interactive, flexible and allow for rapid prototyping. Whenever an event occurs, the event handler sends the event as
a message to the event interpreter via the EI buffer. If a computation requires multiple views, the event handler sends
the message containing the event to all attached event interpreters. Figure 2 shows a decomposition for a single
client with 3 attached event interpreters using separate processes for handling and interpretation of events.

Figure 2: Parallelization of BEE with 3 Event Interpreters

3.2 Efficiency by Filtering
Event filters reduce the communication bandwidth imposed by the event processing facility. The challenge is

how to avoid too much computation on the client side to determine whether an event should be filtered: Filters
increase event efficiency, but filter computations decrease i t The right balance of filters and filter computation is a
matter of experimentation and can often only be decided by the user. BEE therefore provides filters for each event
activity whose use can be controlled by the user.

At the event sensing stage, event sensors can be passive, dormant or active. Ideally, passive sensors should no
influence the behavior of the client program. A dormant event sensor is similar to an event probe [18]. The event

6 INTRODUCTION

generator is called only when the sensor is encountered the first time. From then on its value must be requested by
the event interpreter. When an active sensor is encountered, the event generator is always called. Thus BEE'S event
sensors support sampling as well as tracing of client programs [11]. The state of event sensors can be changed with
the two functions E v e n t _ S e n s o r _ C o n t r o l () and E v e n t _ S e n s o r _ F i l t e r () . The first one enables or
disables event sensors, the latter can change active sensors into passive filters whose name is not a substring of a
specified string called the global sensor filter.

To filter events at the generation stage, B E E provides two kinds of event tables: a system wide event table and task
specific event tables. The system event table is created at client startup time and initialized with the predefined
event classes. Whenever a new client task is created, a task event table can be instantiated which inherits the
currendy defined event classes from the system event table. Filtering by task specific event tables is controlled with
the function Event J T a b l e _ I n h e r i t a n c e () . If event table inheritance is disabled, all events are processed via
the system event table. If it is enabled, events are processed on a task basis: If the event is generated inside a task, it
is generated in the context of the associated task event table, otherwise the system event table is used. It is also
possible to turn off event handling for individual tasks. If no event interpreter is associated with the current event
table, no event is generated. This permits selective filtering of events on a task specific basis.

The event handler filter can selectively drop events or accumulate a number of events before sending them to the
event interpreter. For example, an event handler filter can accumulate the events generated in a certain time, or send
only the latest event generated in the last n seconds. The predicate function of an event interpreter also provides
filtering at the event handler level. If the function evaluates to FALSE , the event will not be sent to the event
interpreter.

Very expressive event detection languages with powerful filters such as [5] can be used to provide filtering at the
event interpreter level. An example is a distributed composite event, where the event interpreter waits for the
encounter of a certain event before disabling another one. Another possibility to filter events is abstraction, for
example by combining lower level events to higher level events before presenting them to the user [3], Facilities
like these should be placed in remote event interpreters, because they require resources that significantly decrease
the client efficiency. In fact, they often require knowledge from several clients and cannot be placed into the
address space of a single client.

EVENT CONFIGURATIONS 7

4 Even t Conf igura t ions
BEE is a platform for building distributed environments. In the following we show how BEE can be used to build a

wide spectrum of event processing systems, ranging from simple single process debuggers to distributed event
systems providing multiple views of the execution.

Event table p ^ " * 0 Event client table •

V Client Code y

f InitO >̂
(EveryO)
\ ^ FinalO J

Client Server Port
E v e n t s ^

A ^ EI Server Pfcrt
EI requests (EI Server J

Client replies) Reply Port/
/ < — y

a i e n t (" T e & ") Evejrt I n t e r p r e t e r (" E I ")

^ ^ ^ ^

CLIENT Domain B E E Domain

N a m e Server

Figure 3: Basic BEE Architecture

Figure 3 shows the basic event configuration of a client " T e s t " connected to an event interpreter "EI" , each of
them executing in their own address space. At startup of the client the Client Server is created. The EI Server is
created when the event interpreter starts up. The client server as well as the EI server register themselves with the
(global) name server using the E v e n t _ E n t e r _ S e r v i c e () function. The name entered by the client server
uniquely identifies the client by its name and process id and the node id on which it is executing.

If the event configuration is planned, the client calls Even t_Lookup_Serv ice ("EI" , "BEE") which
looks up the EI server port of " E I " in the name server domain "BEE". The first event the client sends is a message
of type EJIEGISTRATION to the event interpreter, which enters the client into its Event client table. This is followed
an event message of type EJNIT, which causes a call to the I n i t () function of the event interpreter. From then on,
any event generated in the client is sent to the E v e r y O function of the event interpreter, provided " E I " is
enabled, attached to the event class and its predicate function evaluates to TRUE. When the client detaches from the
event interpreter, it sends an event message of type E.FINALO to the EI Server which calls the F i n a l () function of
the event interpreter. All this communication takes place on the connection labeled Events in figure 3 using a
reliable message protocol.

Requests issued by the event interpreter are sent on a different connection and use a request/response protocol.
These EI requests are sent to the client server port and are served by the associated client server. Provided with the
EI request is a reply port to which the client server sends its Client replies. For example, if the event configuration
is unplanned, the EI server gets in touch with the name server to locate the client server with
Even t_Lookup_Serv ice ("Tes t_378_34" , "CLIENT") which returns the client server port. It then

8 E V E N T CONFIGURATIONS

attaches to the client with E v e n t _ S e t _ C l i e n t _ P o r t () and sends the request
E v e n t _ L o o k u p _ I n t e r p r e t e r (n E I n , "BEE").

The functionality described above supports the construction of arbitrary complex event configurations. In the
following we show the most important configurations that can be built with BEE. In the figures a rectangle indicates
a process (an address space), circles indicate modules or threads, in particular a circle marked C is an instrumented
client and a circle marked EI is an event interpreter. Arrows between the circles indicate communication paths used
by the event kernel.

Cl ien t (C)

Even t I n t e r p r e t e r (EI)

E v e n t K e r n e l (EK)

Figure 4: Local Event Interpreter Configuration

In the simplest BEE configuration, the event interpreter and the client share the same address space (see figure 4)
and the event interpreter functions are called directly by the client This architecture is used in many early
debuggers. If the local event interpreter is a separate thread such as in figure 5, it models the architecture used by
the PARASIGHT debugger [1].

Figure 5: Shared Memory Configuration

Figure 6 shows a client connected to several event interpreters, each of them tapping on the same event stream,
but providing different views of the behavior [17,19]. The different event interpreters can either be on the same
node or on different nodes.

E V E N T CONFIGURATIONS 9

© © © ©
©

Figure 6: Multiple views of a client
A B E E configuration that could be used to implement a distributed debugger for shared memory applications is

shown in figure 7. An event interpreter is connected to several clients each of them creating event streams. Because
all clients have access to the same clock, the event streams can easily be totally ordered.

Figure 7: Monitoring a distributed client (shared memory)

1 0 E V E N T CONFIGURATIONS

Several clients executing in separate address spaces can also be attached to an event interpreter as shown in figure
8 . This configuration is very important in a network environment since users want to get an overview of the
activities in the entire system. An example is measuring the load on the network nodes for dynamic load balancing
purposes. This configuration is frequently used by N E C T A R applications.

©
0 2̂J 0

i © r
Figure 8: Network monitoring of multiple clients

For efficiency reasons, it is sometimes advisable to reserve a separate node in the system just for event
interpretation. In this case it is possible to reduce the client overhead by having the client send the events to a central
event interpreter which then regenerates the (filtered) events, causing them to be sent to other attached event
interpreters (see figure 9). This 2-stage event handling reduces the communication bandwidth requirements but it
increases the event latency.

Figure 9: Multiple view configuration with central event interpreter
Figure 10 shows an event configuration with a central event interpreter and local event processing activities at

each of the nodes. This configuration is used in Ogle, Schwan and Snodgrass's system [16]: Each node uses a
"resident monitor'1 (local event interpreter) which collects and analyzes the monitoring information about processes
executing on that node. The resident monitors report to a central monitor (remote event interpreter) executing on a
network node with access to a monitoring data base.

E V E N T CONFIGURATIONS 11

® ®

Figure 10: Distributed monitoring system with local event interpreters

4.1 The Dynamics of Event Reconfigurations
Because B E E permits the connection between a client and an event interpreter at runtime, it is possible that a

service under a certain name has already been entered with the name server. The lookup_mode parameter in the
event kernel function E v e n t _ E n t e r _ I n t e r p r e t e r () specifies what to do in this case. The 'replace* mode
states that the new service replaces the existing one. This mode is useful for debugging of event interpreters. Once
an event interpreter is debugged, it should be entered into the name server with the 'error-if-exists' mode. In this
mode, the event kernel issues an error message if an event interpreter is trying to enter an already existing service.

BEE also deals with the case where the client or the event interpreter finish the execution in an abnormal way. In
the following we discuss both of these cases and their implication on the name server consistency.
Client Death

When the client finishes execution in an orderly way, it sends a E . C U E N T . D E A T H message to the event interpreter
and the event interpreter deletes it from the event client table. However, if the client terminates abnormally and the
message is not sent, the event interpreter must be notified in a different way. In the socket implementation, the
event interpreter is waiting on a r e a d () . If the r e a d () returns with an abnormal result, the event kernel on the
event interpreter side assumes that the connection is no longer open, assembles a fake death message and passes it
up to the event interpreter. In the Nectar implementation, the event interpreter issues a status call on the client
server port at regular times. If the port no longer exists, it assumes that the client has been terminated abnormally.

In the case of an abnormal client death, the name of the client event server must also be deleted from the name
server domain. It cannot be assumed that the client can do this. The event interpreter therefore asks the name server
to delete the name of the client server (which was passed to it in the client registration message).

As far as the event sensors registered on the behalf of the client are concerned, the event interpreter has two
choices. In the first choice, event sensors are kept around. This is useful for multiple client runs, where the user
wants to compare the results of several runs. The other choice is to delete the sensors from the event interpreter
tables and - if a grapical display is used - from the window the next time the display is updated.
Event Interpreter Death

An abnormal event interpreter death is more problematic. Again, the name of its service must be deleted from the
name server domain, but no client should have the right to do this. Another issue is how the client recognizes that a
connection is dead. The N E C T A R implementation currently does not provide a solution to this problem. In the
socket implementation the w r i t e operation returning abnormally indicates a dead connection.

12 E V E N T CONFIGURATIONS

There are two choices what to do when the client discovers a dead connection. One possibility is to no longer
send events to the service. Another one is to reestablish the connection with the event interpreter. This involves two
problems: First, the client must lookup the service at the name server again. Once the new connection is established,
the second problem arises: Events must from now on be sent to the new service, but in general a lot of monitoring
information has already been sent to the old one which is no longer available.

It is not clear for what kind of event interpreters a client should try to set up a new connection. In fact, it is not
clear whether this is useful at all. If at all, a client should try to reestablish the connection to event interpreters that
keep only minimal state. Event interpreters with minimal state are load meters, load balancers and debuggers.

If client reconnectivity is allowed the event interpreter must be prepared to get events in an unexpected way and
send requests to the client server to get the missing information. There are some useful cases, where reconnectivity
is desirable. For example, when replacing a buggy debugger by a better version, the client might have run for a long
time and the lost state might consist of a few breakpoints which can easily be redefined. Event interpreters
measuring network loads are also candidates for reconnectivity. Event interpreters with extensive state such
frequency counters or time profilers should not be considered. When a time profiler dies, it makes no sense to
reestablish the connection, because the times collected up to the point of failure are lost Reconnection would lead
to inconsistency if the client has already sent the activation of an event range before the failure. In this case the
client should be restarted. In the current version of BEE, the death of an event interpreter is recognized, all
connections from the client to that event interpreter are deleted, a warning message is printed and the client
continues its execution.
Name Server Consistency

Because of the possibility of crashing clients and event interpreters, the name server might offer services which
no longer not exist Before actually giving out a service as the result of a request, the name server therefore sends a
message to the client server port (which is passed as a parameter of the name server enter request). Only if the event
client server is answering, does the name server assume that the program can be made part of an event configuration.
Otherwise the service is deleted from the name server domain.

5 Por tab i l i ty
With the easy scalability of networks, it is almost inevitable that nodes become heterogenous even if the network

is initially configured as a set of homogenous nodes. Furthermore, with the advance of high-speed networks, new
protocols are constandy being developed that utilize the available bandwidth better than existing protocols. Finally,
the separation of event generation and interpretation encourages the programmer to write client and event
interpreters in different languages employing different compilers, runtime systems and operating systems. In fact,
the client program itself can be a network program written in several languages. Several portability/efficiency
tradeoffs were made in B E E which are discussed in the following.

Exchanging data between heterogenous nodes is a well known problem because architectures differ in their
storage byte order of data as well as in their word size. In "little endian" architectures such as Vax computers,
numbers are stored in byte swapped order, in "big endian" architures such as Cray machines and Sun workstations,
the address of an integer is the address of the high-order byte of the integer. Even though TCP/IP defines a network
order for 32 bit integers, network programs assuming a particular byte size for data are not portable, because on a
Cray, for example, integers can be 24,48 and 64 byte quantities.

To allow the exchange of event messages between client and event interpreters understood by all host machines,
BEE'S event protocol contains an exchange standard consisting of several message formats: an Ascii format and a set
of host formats. In the Ascii Format all the components of an event message are represented as text. This format is

PORTABILITY 13

highly portable and used when exchanging messages between heterogenous nodes, for archiving events and for
BEE ' s event replay facility. The host formats are an attempt to strike a balance between portability and efficiency. If
a client and an event interpreter are compiled by the same compiler and execute on the same machine they can
exchange messages in the same host format. To determine whether both parties can indeed share a format, the event
protocol contains a negotiation part when the client attempts to connect to the event interpreter. As a result of the
negotiation the client knows which format it can use. This information is stored in the event table maintained by the
event handler, because on the client side it is the only event processing stage that needs to have access to this
knowledge once the connection is established.

For portability reasons, the event protocol specifies the exact layout of the Ascii format, but none of the host
formats. Host formats are determined de facto by the compiler's allocation strategy for structures. Being in a host
format means only that the event message is represented as a binary structure. Currently BEE supports 3 host
formats for Sun, Vax and Cray, but new host formats can be added easily.

The event protocol is connection oriented, because we can safely assume that a client wants to send more than one
message to an event interpreter. However, with the advance of high-speed communication systems communication
protocols might quickly become obsolete and need to be replaced by versions that are more efficient for the new
generation of networks. BEE ' s use of communication system primitives is completely encapsulated in a small set of
functions defined in the event protocol (See Section 1.11). Only these functions need to be reimplemented when Bee
is ported to another communication subsystem and this can be done very quickly. Originally Bee was implemented
on Nectarine [20], the communication interface to NECTAR. The port to TCP/IP using Berkeley sockets took less than
a week, clearly demonstrating Bee's high communication system portability.

Another problem is the ability of the event interpreter to send requests to the client server while the client
application is running. This feature is important for getting needed information from the client as well as for
efficiency reasons, because a dormant event sensor causes much less overhead on the client program than an active
one. Operating systems provide different primitives for a process trying to asynchronously connect to another
program. Several efficiency/portability tradeoffs are possible and two schemes have been implemented in B E E . In
the first scheme the client server is implemented as a thread waiting on a r e c e i v e () and event interpreters send
client requests by sending a message to a port owned by the thread. The client server thread serves the request,
sends the reply back to the event interpreter via a reply port indicated in the request and waits on r e c e i v e ()
again. This scheme is very well suited for multiprocessor architectures, because event interpreter requests can be
handled by the client server simultaneously while the client application thread executes undisturbed on another
processor.

In the second scheme, the client server is implemented as an interrupt handler. In this implementation the event
interpreter request causes a signal which interrupts the client program and invokes an event client signal handler.
The event client signal handler then figures out from which port the signal came from and calls an event kernel
function that processes the request On a multiprocessor, the interrupt handler is clearly less efficient than the thread
implementation, but many runtime systems do not support multiple threads and on a single processor architecture an
interrupt might cause less overhead than a thread context switch. The current version of B E E uses SIGIO as signal to
the client server, which can cause portability problems if this signal is intercepted by the client program.

14 PERFORMANCE E V A L U A T I O N

6 Bee ' s Cost
BEE is an invasive event environment: it introduces overhead in terms of space and runtime. A major design goal

of BEE was to keep the overhead as minimal as possible so that client programs can always be executed with
instrumentation. Remote event interpreters provide one way to keep the overhead small, because the event
interpretation is taking place on a different host. The other key to client efficiency is an efficient implementation of
event sensors. Assuming no hardware support, we looked at several event sensor implementations discussed in
Section 6.1 2 . Section 6.2 is an experimental evaluation of BEE'S performance.

6.1 Sensor Implementation
A VERY SIMPLE IMPLEMENTATION OF AN EVENT SENSOR N A M E CHECKS ONLY IF EVENT PROCESSING IS ENABLED AND IF YES,

GENERATES THE EVENT:
• D E F I N E B E G I N (N A M E)

I F (E V E N T _ O N) { \
E V E N T _ G E N E R A T E (E _ P R O C E D U R E , E _ A C T , " N A M E ") ; \

} \
{

THIS IS NOT A GOOD SENSOR IMPLEMENTATION: EVENTS ARE GENERATED FOR ALL EVENT SENSORS WHENEVER E V E N T _ O N IS

T R U E WHICH PROVIDES ONLY VERY COARSE FILTERING. ANOTHER DISADVANTAGE IS THAT E V E N T _ G E N E R A T E IS CALLED WITH

THREE PARAMETERS.

W E CAN DECREASE THE CALLING OVERHEAD BY ASSOCIATING A UNIQUE EVENT SENSOR ID _ E I D _ WITH EACH EVENT SENSOR AND

PASS THE ID INSTEAD OF THE NAME. T O SPEED UP EVENT SENSORS EVEN MORE, WE DEFINE EVENT GENERATORS FOR EACH

PREDEFINED EVENT CLASS. THUS THE EVENT CLASS AND EVENT QUALIFIER DO NOT HAVE TO BE PASSED FOR PREDEFINED EVENTS. THIS

RESULTS IN THE FUNCTION E V E N T _ A C T I V A T E _ P R O C E D U R E WHICH TAKES ONLY THE _ E I D _ AS PARAMETER. EACH EVENT

SENSOR ID IS A STATIC VARIABLE INITIALIZED TO 0 3 . THE FIRST TIME THE SENSOR IS ENCOUNTERED, THE NAME GENERATOR

E V E N T _ R E G I S T E R _ N A M E IS CALLED WHICH GENERATES THE UNIQUE ID AND ENTERS THE NAME INTO A SENSOR NAME TABLE.

ONCE THE SENSOR IS REGISTERED, ONLY THE FUNCTION E V E N T _ A C T I V A T E _ P R O C E D U R E HAS TO BE CALLED.

• D E F I N E B E G I N (N A M E) \
{ \

S T A T I C EVENT__ID__T _ _ E I D _ = 0 ; \
I F (E V E N T _ O N) { \

I F (_ E I D _ _ = = 0) E V E N T _ R E G I S T E R _ N A M E (" N A M E " , E J P R O C E D U R E , & _ E I D _) ; \
E V E N T _ A C T I V A T E _ P R O C E D U R E (_ « I D _ J ; \

} \
{

THIS SENSOR IMPLEMENTATION CALLS THE EVENT GENERATOR FOR EACH EVENT SENSOR IF EVENT PROCESSING IS ENABLED, SO THE

RUNTIME OVERHEAD IS STILL CONSIDERABLE.

IF WE ASSUME THAT _ E I D _ < 0 INDICATES A PASSIVE EVENT SENSOR - AND BY CHANGING THE SEMANTICS OF

E V E N T _ R E G I S T E R _ N A M E TO CALL E V E N T _ G E N E R A T E ITSELF WHEN AN EVENT IS REGISTERED - WE CAN USE THE

FOLLOWING DEFINITION:

2THE DISCUSSION IS IN TERMS OF THE ACTIVATION AND TERMINATION OF THE PREDEFINED EVENT CLASS E.PROCEDURE (SEE SECTION 8.1.2) AND USES MACRO

DEFINITIONS IN C.

^ I S IS A SPECIAL FEATURE OF C (COMPARABLE TO ALGOL'S OWN WITH INITIALIZATION) AND IS NOT AVAILABLE IN OTHER LANGUAGES.

PERFORMANCE EVALUATION 15

d̂efine BEGIN(name) \
{ \
static Event_id_t _eid_ =0/ \
if ((_eid_ >= 0) && Event̂ on) { \
if (_eid_ — 0) Event_Register_Name("name", E_PROCEDURE,&_eid_); \
if (_eid_ > 0) Event_Activate_Procedure(_eid_); \
} \

{

Note that in C, the conditional expression ((_eid_ >= 0) && Event_on) evaluates already to FALSE if the sensor
is passive. If the sensor is active, the event is generated. Otherwise the sensor is assumed to be uninitialized: the
name of the sensor is registered and the event is generated. Thus Event_Generat e is called only for active event
sensors.

Another runtime optimization can be done by introducing a registration function
Event_Register_Procedure for the predefined event class E.PROCEDURE:

#define BEGIN(name) \
{ \

static Event_id_t _eid_ » 0; \
if (<_«id_ >» 0) && Event_on) { \

if (_«id_ > 0) Event_Activate_Procedure (_eid_J / \
else \

Event Register Procedure("name", &_eid_) ; \
{

This macro is used for procedure sensors in the implementation of BEE. It requires the evaluation of one boolean
variable for passive event sensors and three booleans plus a procedure call for active event sensors.

Note that without changing the C compiler, it is not possible for BEE to know when a routine is exited. Thus in the
case of E_PROCEDURE events, the return statements must be replaced by event sensors indicating the termination of
the event range. BEE therefore provides two macros RET and RETURN for the tennination of event ranges:

#define RET \
if ((_eid_ > 0) && Event_on) { \

Event_Terminate_Procedure (_eid_) ; \ return; \ } else \
return

#define RETURN(v) \
if ((_eid_ > 0) && Event_on) { \

Event_JTerminate_J?rocedure (_eid_) ; \ return (v); \ } else \
return (v)

The E N D macro is syntactic sugar needed to close the compound statement opened by the BEGIN sensor:
fdefine END(name) \

} \
}

6.2 Performance Analysis of BEE

The performance analysis of any event processing system depends critically on the application and its
instrumentation but there is currently no set of parallel benchmarks that cover a wide spectrum of applications. We
characterize BEE's performance in terms of three parameters: the event rate, the runtime overhead experienced by
the client and the event latency.

1. The event rate is the number of events that can be generated per time unit by an instrumented client
program. The event rate depends on several parameters, including the event frequency, event density,
event size and event interpreter service time. The performance of a runtime monitoring tool is also

16 P E R F O R M A N C E E V A L U A T I O N

influenced by additional parameters such as the cost of queueing X events for graphics based event
interpreters.

2. The client overhead is the additional runtime needed to execute a client program instrumented for
event processing compared with an uninstrumented program. More precisely, client overhead contains
the execution time for the following activities: Encountering the event sensor, calling the event
generator to assemble the event fields, calling the event handler to traverse the list of attached event
interpreters and calling the Every function. If a local event interpreter is attached, the client overhead
also measures the time to execute an empty Every function. In the case of a remote event interpreter,
the client overhead includes the time of a nonblocking send of the event message. The client overhead
depends mainly on the event rate, but it is of course a function of many other parameters as well. If
remote event interpreters are attached, the client overhead is also a function of network parameters
such as buffer size, retransmission rates and acknowledgement failures.

3. The event latency measures the time from when an event sensor is encountered to the point when it is
interpreted by the event interpreter. Event latency is an important metric to characterize the real-time
capability of the event system.

Given the lack of a good benchmark we have used the following event configuration: An instrumented client
executing a loop that generates events at a constant rate of EGR event/sec and an event interpreter processing EIR
events/sec with an event service time of EST per event. The execution time is then compared with the execution time
of the same but uninstrumented client The instrumented client generates events as fast as possible, and the event
interpreter is "empty", that is, its Every function consists of an empty body.

The maximum event rate was computed by N/Tgj, where N is the number of generated events and Tgj the
measured execution time of the benchmark attached to an event interpreter. The client overhead was computed with
the formula (T £ I - T)/N where T E I is defined as above and T is the execution time of the benchmark with event
processing turned off. The event latency was determined in three separate experiments, adding up the times
obtained from each of these measurements:

1. The first experiment measures the time spent in the client program from the point when an event
sensor is encountered. This is the same as the client overhead.

2. The second experiment measured the latency of a message between two host nodes across the network.
We repeatedly sent an event message to another host which simply echoed it back to the sender. After
measuring the round trip time for the message for a large number (1,000,000) we divided it by two to
obtain the latency of the network.

3. In the third experiment we measured the time it took an event interpreter to receive an event, interpret
it and be ready for the next incoming event The event interpreter used in the experiment was the
empty interpreter described above.

The client program generated 100,000 events for two different classes, the predefined event E . P R O C E D U R E (48
bytes on a Sun) and a user defined event (128 bytes). The event rate was controlled by changing the inter-event time
via a program variable. The programs were compiled with an optimizing C compiler and the measurements were
performed on the NECTAR prototype with one HUB using only Sun4/330 workstations as Nectar nodes. The
numbers reported below should only be used when comparing BEE with other event processing systems.

For the empty client attached to a local (empty) event interpreter, the maximum event rate was 52,789 events/sec
for E_PROCEDURE events and 28855 events/sec for the user defined event. The minimal client overhead was
measured with 18 jisec for predefined P R O C E D U R E events and 34 usee the user defined event.

For an empty client attached to an remote event interpreter the client overhead for the E_PROCEDURE event was
151 usee. The reason for this low overhead is that all of the protocol processing for communication over the N E C T A R

network is done on the CAB communication processor, in parallel with the execution of the application on the host.
The event latency was measured with 285 usec/event. The maximum event rate between two Sun4/330 nodes was

P E R F O R M A N C E E V A L U A T I O N 17

measured with 6544 events/sec for E . P R O C E D U R E and 5733 events/sec for the user defined event. The event rate is
limited by the VME bus that connects the host and the CAB [6].

The performance of B E E across heterogenous machines is influenced by the additional task of converting events
into Ascii format before sending them and converting them back before interpreting them. If one has the choice,
event interpreters should be placed on slower nodes. The event rate is higher if the sending host is faster than the
receiving node: For example, for a Sun/Vax combination, the maximum event rate is 1070 events/sec if the client is
on a Sun compared with 269 events/sec if the client runs on a Vax.

In the following we show the client overhead as a function of the event rate for various event configurations
where the event rate is increased by the decreasing the time between events in the client Figure 11 shows the client
overhead of a single client on N E C T A R connected to single event interpreters for different combinations of event
rates and event service times. The event size in these measurements was 160 bytes. Each point in the graph
represents a measurement. Each line connects all the measurements for a specific event interpreter. ELL, EI5 and EIS

I

1 0 . 0 0

[BEEV2.5 04 -10-90 I

1 0 0 0 0 . 0 0

Evmnt Mm [wents/stc]

Figure 11: Bee's Client Overhead as a Function of the Event Rate (N E C T A R)

represent event interpreters with event service times of 30 usee, 100 (isec and 300 jisec, respectively. For ELL, the
client can generate events at the maximum event rate. In the case of the event interpreters EI5 and EI8 we encounter
saturation at lower event rates because of their higher event service times. When saturation is encountered some of
the lines go "backward", that is, different client overheads seem to be caused by the same event rate. The reason for
this is, of course, that the inter-event time and not the event rate is the true independent variable in the
measurements. A smaller inter-event time increases the number of message retransmissions due to timeouts, which
in turn increases the client overhead.

To summarize die results of figure 11, we can see that the client overhead of B E E is less than 1% for event rates up
to 80 events/sec, and 10% for about 800 events/sec for 160 byte events. It depends on the application, whether these
event rates are acceptable. If the client generates more than 1500 events/sec, B E E ' S performance degrades
significantly. This includes the performance of B E E ' s default event interpreters time profiler (Timer), frequency
counter (Counter) and load meter (Loader). Note that these measurements were taken from a client using no event

18 P E R F O R M A N C E E V A L U A T I O N

aggregration. The client overhead can be reduced further if the client program collects events before sending them
as an aggregate to the event interpreter. Another possibility is the use of dormant event sensors which are polled by
the event interpreter. If the event interpreter is X based, the overhead can also be reduced by increasing the screen
update rate and update time of the event interpreter.

Figure 12 measures the performance of B E E configurations in which the client is connected to several event
interpreters residing on different network nodes (For the experiment we used identical empty event interpreters). It

0.10 -J 1—i i i i 1111 i—i i i i 1111 1—II ' M n j
10.00 100.00 1000.00 10000.00

|BEEv2.S04-ia5o| Evnt rmf [tvntM/stc]

Figure 12: Client Overhead for Multiple View Configurations (N E C T A R)

shows a slight increase in the client overhead when move event interpreters are connected. The reason is that, in the
current version of B E E , a client sends a separate event message to each of the attached event interpreters. The use of
broadcast or multicast messages might decrease the client overhead for large numbers of connected event
interpreters, but this is currently an unresolved question.

The last experiment measured the performance of B E E configurations in which a single event interpreter is
connected to several clients each of them sending event messages. Such configurations are useful for the
implementation of distributed debuggers and load meters. Figure 13 shows that B E E ' S performance is largely
independent of the number of attached clients for individual client event rates up to 1000 events/sec.

P E R F O R M A N C E E V A L U A T I O N

Q - 1 ° | I 1—I I I I 111 I 1 I I I I 111 1 1—I—I I I 11J

1 0 . 0 0 1 0 0 . 0 0 1 0 0 0 . 0 0 1 0 0 0 0

I B E E V 2 . S 0 4 - 1 0 - 9 0] Evnt raf [*vnts/s*c]

Figure 13: Client Overhead for Multiple Client Configurations (NECTAR)

20 U S I N G BEE

7 Using Bee
BEE provides macros for the simple and fast instrumentation of clients with predefined event interpreters. The use

of these macros for the C programmer is explained in Section 7.1. Section 7.2 describes the environment for
executing instrumented client programs and event interpreters in under N E C T A R and U N I X . Section 7.3 describes the
views that can be associated with event interpreters and in Section 7.4 we discuss the default event interpreters
provided with BEE. Section 7.5 explains how to write a customized event interpreter if none of the predefined event
interpreters satisfies the needs of the user.

7.1 Instrumenting the Client
The interface to the event kernel is contained in the file been which has to be included in the client program:

i n c l u d e < b e e . h >

To instrument routines written in C (see figure 14) with E.PROCEDURE events, the routine bodies must be enclosed
with the BEGIN/END sensors described in section 8.2, page 30 replacing the usual curly brackets. If the routine is a
procedure, a RET must be placed right before the END macro. If it is a function, each r e t u r n (va lue) statement
must be replaced by a RETURN (va lue) macro. Examples of instrumented client C routines are shown in figure
15.

v o i d foo ()
{

/ * u n i n s t r u m e n t e d p r o c e d u r e * /
}

i n t b a r ()
{

i n t n ;
/ *

* u n i n s t r u m e n t e d f u n c t i o n
* /

r e t u r n (n) ;
}

Figure 14: Uninstrumented Client Routines

v o i d foo ()
BEGIN(foo)

/ *
* i n s t r u m e n t e d p r o c e d u r e
* /

RET;
END (foo)

i n t b a r ()
BEGIN(bar)

i n t n ;
/ *

* i n s t r u m e n t e d f u n c t i o n
* /

RETURN(n);
END(bar)

Figure 15: Instrumented Client Routines

Inside the client, event interpreters are located with E v e n t _ L o o k u p _ I n t e r p r e t e r functions (see Section
8.7). For example, to connect to the default frequency counter n b e e _ c o u n t e r " and report the frequency of all
routines whose names start with "foo", insert the following code fragment at appropriate places in the client

USING B E E 21

program:
I N C L U D E < B E E . h >

I N T C O U N T E R ;

C O U N T E R = E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (" B E E ^ C O U N T E R " ,

E P R O C E D U R E , N F O O N) ;

/*
* C O D E S E C T I O N C A L L I N G " F O O * N R O U T I N E S

* /

E V E N T _ D E T A C H _ I N T E R P R E T E R (C O U N T E R) ;

The following example shows three things: 1) the definition of a user defined event E . S Y S T E M of TYPE F L O A T

with a size of 4 bytes, 2) the generation of an event of the newly defined event class, and 3) THE attachment to an
event interpreter service "bee_load":

LONG V A L U E ;
E V E N T _ C L A S S _ T E S Y S T E M ;

E _ S Y S T E M * E V E N T _ R E G I S T E R _ C L A S S (" E _ S Y S T E M " , " % F " , 4) ;

VALUE * . . . ;

E V E N T (S E N S O R 1 , E _ S Y S T E M , E _ P O I N T , L V A L U E) ;

E I » E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (" B E E _ L O A D " , E S Y S T E M , H H) ;

If it is desirable to have all events interpreted by the event interpreter "service", the client code should contain the
following statement:

E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (< S E R V I C E > , E _ A L L , N N) ;

The following N E C T A R example shows, how to get a frequency count for client procedures executed on Nectar
node 0x5504:

I N T C O U N T E R ;

I F (N E C T A R _ I D = = 0 X 5 5 0 4) {

C O U N T E R = E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (1 1 B E E N C O U N T E R " ,

E _ P R O C E D U R E , " ") ;
}

It is easy to see, how this example can be generalized to do selective tracing for certain tasks or processes.

12 Environment Variables
Instrumented client programs and event interpreters can only be executed if the global name server has been

started. The environment variable B E E _ N S _ H O S T must contain the location of the name server.

BEE'S X based event interpreters read the location of the display from the environment variable D I S P L A Y unless it
is passed as a parameter to the command line (see section 7.5).

The environment variable B E E _ A R C H has to contain the architecture of the machine on which the client or event
interpreter is running, which must be one of the following values: S U N , V A X or c r ay .

If the environment variable B E E . R E P L A Y is set to the name of an event trace file, the event interpreter *eads
from this file instead of waiting for event messages, BEE'S replay facility is quite useful when developing

events
a new

22 USING BEE

event interpreter, because it can tested independent from the communication system.

Clients and event interpreters can be started as regular Unix programs. On NECTAR, the s t a r t _ a p p l facility
4 allows the user to start event configurations without having to know the location or the command interface of
default event interpreters.

73 Bee Views
The interpretation of the incoming event stream is called a BEE view and we distinguish textual and graphical

views. A textual BEE view presents the events in a typescript window or file and incoming events are printed
textually. The typescript view is useful for small monitoring tasks, but it is not very helpful for monitoring the
performance of network programs. Even if the event streams are condensed it is often impossible for the user to
understand the behavior of the client from textual information. One of the reason is that the partial event streams
coming from each of the nodes are not separated.

Graphical views condense the incoming events and allow to comprehend much more complex situations. They
are built on top of the X library and impose a higher event latency than textual BEE views. A graphical view reacts
to client events triggered by event sensors as well as to X events.

A graphical view creates a graphical area inside an X window (or widget) when the event interpreter receives an
I n i t event messages from the client. Hints for the X window, such as position, width and height can be provided
by the client with the event kernel function Event_Window () . After its creation, the view is updated either as the
result of a BEE event message or an X event. The update frequency for Every event messages is controlled by the
event kernel functions Even t_Upda te_Ra te () and Event_Update_Time () . A BEE view is also updated
when the user resizes or uncovers the X window associated with the view. Finally, a BEE view is always updated
when the event interpreter receives a F i n a l event from a client

BEE provides three predefined graphical views: histogram, piechart, and line graph. In the histogram view, the
output is presented in a coordinate system where horizontal columns starting at the y axis represent event sensors
encountered in the client program5. The current event sensor values are shown along the x axis. An event sensor is
displayed only if it is actually encountered during the execution. Layout hints for the coordinate system associated
with the histogram view can be set with the event kernel function Event_His togram_View () described in
Section 8.9, page 45. If a sensor value exceeds the current maximum value on the x axis, the histogram is redrawn
with a larger x axis limit and the event sensor columns are automatically resized.

The histogram view is very useful for visualizing frequency counts or time profiles. Figure 16 shows a histogram
based frequency counter taking events from a client which executed the following program fragment before
connecting to the event interpreter

a x i s _ t y p e _ t x _ a x i s _ t y p e = LINEAR;
a x i s _ t y p e _ t . y _ a x i s _ t y p e » LINEAR__NO_NUMBERS ;
l o n g x _ l i m i t - 1000000 , y _ l i m i t - 0 ;

Event_Window (" C o u n t e r " , 765 , 513, 315, 320, BLUE, STEELBLUE)i;
Even t_His togram_View(" F r e q u e n c y Coun", " C a l l s " , " " ,

x _ a x i s _ t y p e , y _ a x i s _ t y p e , x _ l i m i t , y _ l i m i t) ;

4For a description of start_appl we refer to the man page start_appl(1).
5The histogram view is horizontal so that event sensor names can be read easily.

U S I N G BEE 23

The time stamp of the latest event received by the event interpreter is called EI Time. It is the client's timestamp
corrected by the event interpreter offset determined at startup time (see Section 1) and is usually shown at the top of
the window below the title bar.

Event Time: 167.66 Frequency Coun
innermost p H H H B H M B i 7502.

nested • • • • • • • • • • • • • 1 1 7 5 0 3 . 0 0

footer ! • • • • • • • • • • • • • • 7505.00

! • • • • • • • • • • • • • • 7503.

1 H 1 1 ^Calls
0.00 2500.00 5000.00 7 5 0 0 . 0 0 1 0 0 0 0 . 0 0

Figure 16: Histogram view of a Frequency Counter

A piechart view is presented as a sectored circle in the X window, where each sector represents an event sensor.
The size of the sector represents the current value of the sensor. If a new sensor is added, all sectors in the circle are
recomputed and resized. Sectors are shown only for sensors actually encountered during the execution. The sum of
all displayed sensor values always add up to 100%. Event sensor values below a certain threshold are not displayed,
but are lumped together in a black painted sector. Figure 17 shows the piechart view of a time profiler taking events
from the same client used in the previous figure.

The linegraph view presents event sensor values as functions over time. The client has many choices for the
layout of a linegraph which can be set with the event kernel function Event_Linegraph_View () described in
Section 8.9, 46. The y axis displays either absolute sensor values or their percentage in relation to the total sum of
event sensor values. Percentages are computationally cheaper than sensor values, because in the former case the y
axis never needs to be rescaled. It is also possible to specify how the curves are shown in relation to each other. In
the stacked mode, each sensor line serves as the x axis of the next sensor line, with the exception of the first sensor
which uses the x axis of the coordinate system as base line. In the unstacked mode, all event sensor values are
drawn with respect to the x axis of the coordinate system.

The linegraph view is useful for the visualization of load balancing algorithms. Figure 18 shows a load meter
taking events from a client instrumented with predefined and user defined event sensors using a stacked linegraph
view. Before connecting to the event interpreter, the client issued the event kernel call:

a x i s _ t y p e _ t x _ a x i s _ t y p e * LINEAR;
ax is_ type__t y _ a x i s _ t y p e = PERCENT;
Even t_Linegraph_View("Load M e t e r " , " s e e s " , " " ,

x _ a x i s _ t y p e , y_axis__type ,
1000000 ,100 ,20 ,TRUE) ;

24 USING BEE

1 1 0 . 7 4

Figure 17: Piechart view of a Time Profiler

Note that, in addition to the event sensors of type E . P R O G E D U R E displayed in the previous figures, figure 18 also
shows the values of user defined event sensors called Sensor A, SensorB, SensorC and pinot 6. The current sensor
values are represented in a menu shown at the right of the coordinate system. The correspondence between lines and
sensor values is positional: The lowest menu entry belongs to the lowest function in the coordinate system. If sensor
lines are too close to be distinguishable, the user can resize the X window and the linegraph is redrawn in the larger
window.

7.4 Bee's Default Event Interpreters
B E E provides a small set of predefined event interpreters which are described in this section. Default event

interpreters are quite flexible monitoring tools, because the definition of their service is user definable, and they can
be started up with any of the three views described in Section 7.3.

7.4.1 Frequency Counter
BEE ' s frequency counter counts the number of routine calls in a client program. The frequency counter can be

executed locally or remotely. The local event interpreter functions are called B e e _ C o u n t e r _ l n i t () ,
Bee_Counte r_Every () and B e e _ C o u n t e r _ F i n a l () , respectively. The name of the remote service is
n b e e _ c o u n t e r n .

The frequency counter is available for all the views described in section 7.3.

The t y p e s c r i p t v iew frequency counter prints a summary of the execution profile upon the execution of the
client program or when the event interpreter is detached. An example of an execution profile obtained with a local
frequency counter is shown in figure 19:

6 IN THE LINEGRAPH VIEW, THE LINES MAY ACCUMULATE TO MORE THAN 100% BECAUSE OF ROUNDING ERRORS DURING THE CONVERSION OF PERCENTAGES OF TYPE
* FLOAT INTO VALUES OF TYPE INT

U S I N G B E E 25

Client: bee.test.sur>4

60

40-

20-

113.00 123.00 123.00 133.00 133.00

SensorC:0.402
Sensor£:0.25Z
SensorA:0.232
pinot:0.202
innernKDSt:24.732
nested:24.732
footer:24.732
foo:24.73Z

usee

Figure 18: Linegraph view of a Load Meter
[main] Name Frequency
[main]
[main] foo 2020
[main] f o o b a r 2000
[main] n e s t e d 2000
[main] i n n e r m o s t 2000
[main] b a r 10
[main]

Figure 19: Execution Summary of a Frequency Counter

7A3, Time Profiler
BEE'S time profiler measures the time spent in event ranges of the instrumented client program. The time profiler

can be executed locally or remotely. The local event interpreter functions are called B e e _ T i m e r _ l n i t () ,
Bee_Timer_Every () and Bee_Timer_Fina l () , respectively. The name of the remote service is
n b e e _ t i m e r n .

If event sensors are nested, the time reported for the inner event range is not counted in the outer event range. For
example, in the code fragment:

EVENT(Tl, E_PROCEDURE, E_ACT, 0)
<Time_A>
EVENT(T2, E_PROCEDURE, E_ACT, 0)
<Time_B>
EVENT (T2, E_PROCEDURE, E_TERM, 0)
<Time_C>
EVENT (T l , E_PROCEDURE, E_TERM, 0)

the timing distribution will be reported as follows:

T l Time_A + Time_C
T2 Time_B

The t y p e s c r i p t v iew time profiler prints a summary of the execution profile upon the execution of the client

26 U S I N G BEE

program or when the event interpreter is detached. For each encountered sensor range it prints the average time
spent in the range, its variance, the total time and the percentage. An example of an execution profile obtained with
a remote time profiler counter is shown in figure 20:

[bee
[bee]
[bee
[bee"

t i m e r]
t i m e r]
t i m e r]
t i m e r]

[b e e _ t i m e r]
[b e e _ t i m e r]
[b e e _ t i m e r]
[b e e _ t i m e r]
[bee t i m e r]

Name

i n n e r m o s t
n e s t e d
fooba r
foo
b a r

Mean V a r i a n c e Cum.Time

0 .000173
0 .002934
0 .000347
0 .000452
0 .000174

0 .000000
0 .000009
0 .000000
0 .000000
0 .000000

0 .001735
5 .867842
0 .694601
0 .903031
0 .350514

7 .817723

P e r c e n t

0 .02
7 5 . 0 6
8 .88
1 1 . 5 5
4 . 4 8

100 .00

Figure 20: Execution Summary of a Time Profiler

When the F i n a l () function is executed, the time profile summary is appended to a
~ / < c l i e n t _ p r o g r a m _ n a m e > . t i m e s in the user's home directory independent of the viewing mode.

file

7.4.3 Load Meter
BEE'S load meter reports the load of event sensors in an instrumented client at a user defined rate or time and is

available only in a X based version. The name of the default service is " b e e _ l o a d " .

The histogram view of the load meter displays the latest values for each event sensor. The linegraph and piechart
view report the load as follows: First they compute the sum of the latest values of each sensor and then they display
each sensor value as a percentage of the total sum. Note that this is only an approximation of the actual load,
especially if some of the clients do not send their events as regularly as others. This can happen, for example, when
a client is swapped out by the operating system right before sending its event

7.4.4 Event Filer
BEE ' s event filer records all incoming event messages in an event file. The event file can be then used for replay

or postmortem monitoring and for testing and debugging of customized event interpreters (see Section 7.5). The
name of the remote service is "bee f i l e r " . The event file format is described in Section 9.10.

7.4£ Remote Printer
BEE provides a remote printing service " b e e _ p r i n t _ m s g " . If the event kernel function

E v e n t _ R e m o t e J P r i n t () has enabled remote printing, the output of PRJNT.MSG macros inserted in the client
program is sent to the event interpreter instead of being printed in the client's typescript window. The service can
collect and/or filter prints statements originating in any of the network nodes. Its main application is for debugging
of network programs when higher level tools are not available.

7.4.6 Tracer
BEE's tracer traces the entry and exit of event ranges in instrumented client program. The tracer can be executed

locally or remotely. The local event interpreter functions are called B e e _ T r a c e r _ I n i t () ,
Bee_Trace r_Every () and B e e _ T r a c e r _ F i n a l () , respectively. The name of the remote service is
"bee t r a c e r " .

U S I N G BEE 27

7.5 Customized Event Interpreters
Bee is extensible. If the none of the predefined event interpreters can aid in monitoring the computation as desired

by the user, it is possible to write a customized event interpreter. In this case, the user has to provide the definition of
the three functions I n i t () , Every () , F i n a l () and a call to E v e n t _ E n t e r _ I n t e r p r e t e r () which enters
the event interpreter with the global name server.7.

Figure 21 shows the definition of an event interpreter called MY_EI providing the service "custom_serviceM.
When connected to a client, it prints out "Hello world" whenever an event occurs.

i n c l u d e <bee .h>

E v e n t _ r e t u r n _ t MY_EI_Init (E)
E v e n t _ t E;
{

return(E_SUCCESS) ;
}

E v e n t e r e t u r n _ t MY_EI_Every (E)
E v e n t _ t E;

{
p r i n t f (" H e l l o w o r l d \ n n) ;
re turn(E_SUCCESS);

}

E v e n t _ r e t u r n _ t MY_EI_Final (E)
E v e n t _ t E;
{

return(E_SUCCESS) ;
}

i n t MY_EI (E_Class , F i l t e r)
E v e n t _ c l a s s _ t E _ C l a s s ; c h a r * F i l t e r ;
{

E v e n t _ E n t e r _ I n t e r p r e t e r (w c u s t o m _ s e r v i c e w

/

MY_EI_Ini t , MY_EI_Every, M¥_EI_Fina l ,
E_Clas s , F i l t e r ,
E_REPLACE, E_KEEP_SENSORS) ;

) ;
}

Figure 21: A user defined event interpreter MY_EI

To attach the event interpreter to a client and print out the string only for procedures whose name start with "foo",
we add the following code fragment to the client:

i n c l u d e <bee .h>

i n t M y _ E v e n t _ I n t e r p r e t e r ;

M y _ E v e n t _ I n t e r p r e t e r - MY_EI(E_PROCEDURE, " f o o ") ;

Figure 22: Attaching MY_EI with filter "foo" to a client

The user interface of a customized event interpreter should follow the interface of default event interpreters which

mS^t^S^^^ " f °, r f d C f m i t i 0 n ° f ^ e V C n t i n t C r P r e t C r i s a v a i l a b l c i n ^ sub-directory
' U W * ° 3 ^ , d C a " l 0 ° k 3 1 C X l S t i n g d c f a U , t i n t C T P r e t C r e ™* ~ i f * i s » modify them to get Z

28 USING BEE

expect three command line arguments: View. Service and Display. The first argument View specifies how the
event information is to be displayed and can be t y p e s c r i p t , h i s t , p i e o r l i n e . The second argument
Service is the name of the service by which the event interpreter is known in the network. It is entered into the BEE
domain of the name server with E v e n t _ E n t e r _ S e r v i c e () (which is called by
E v e n t _ E n t e r _ I n t e r p r e t e r ()). The same event interpreter can be started with different service names. This
permits multiple instances of event interpreters listening to different clients. For example, a load meter could be
instantiated twice, once as a work meter with service name "work" showing the work performed on various nodes as
well as a throughput meter with service name "throughput" showing the current communication bandwidth used by
client programs. The optional third argument Display is X specific and used by the event interpreter to display of
the results. Display must be specified in the well known X format host:server:screen.

8 Func t iona l Specification
The event kernel is a set of functions to instrument client programs and build event interpreters. In this section we

first give an overview of the event kernel functionality, followed by a detailed discussion of each its functions8.

BEE provides event sensors for the predefined event classes EJEVENT and E_PROCEDURE as well as a general event
sensor for user defined event classes. An event sensor can be in one of four states: uninitialized, active, passive or
dormant. An uninitialized sensor is made active by calling Even t_Regis te r_Name () when the sensor is
encountered the first time during the execution. An active sensor is passed to the event generator for further
processing whenever the sensor is encountered. A passive sensor is not passed to the event generator. A dormant
sensor does not generate events; its value must be queried by an event interpreter request

Event sensor functions can be used to control the client overhead caused by event sensors. For example, the
function E v e n t _ S e n s o r _ F i l t e r () changes a set of active sensors into passive sensors and vice versa.

Event Initialization functions are called at the startup and finish of a client or thread. The functions
E v e n t _ I n i t i a l i z e () and E v e n t _ F i n a l i z e () are called at the beginning and end of the execution. The
functions E v e n t _ C r e a t e _ T a b l e () and Even t_Cleanup j T a b l e () are called at the creation and deletion of
threads.

The Event naming functions define new names of event sensors and event classes. At initialization time, BEE
enters the predefined event classes into the event table in E v e n t _ l n i t i a l i z e () using these functions. They
can also be called by users to define new event classes.

The Event generator functions assemble the component of an event and hands it over to the Event handler
functions which in turn dispatch the events to associated event interpreters. Handler functions also provide the
enabling/disabling of event classes. Event interpreter functions permit the disabling/enabling of event interpreters.

Event service functions make event interpreters and clients known to the name server. The communication
between client and event interpreters using service functions is via BEE ports. In NECTAR, a BEE port is equivalent to
a Nectarine port [20] and in the UNIX implementation it is a socket Each client server is accessible by its client
server port An event interpreter issuing remote event kernel commands has to connect to the client server first.
This is done by calling Even t_Lookup_Se rv i ce () to obtain the client server port followed by a call to
Event A t t a c h _ C l i e n t _ P o r t () .

8For pragmatic reasons we have chosen use C as specification language. Because C does not have a package concept, each event kernel
function is prefixed with the string Event_. Event kernel constants are written in upper case and prefixed with E_.

F U N C T I O N A L SPECIFICATION 29

Event interpreter control functions give the client the possibility to provide the event interpreter with hints
concerning screen update rate, layout and window information.

A major part of the event kernel is the event protocol, governing the exchange of information between clients and
event interpreters. The Event protocol functions provide the functional interface of the event protocol and are
described in Section 9.

8.1 Event Sensors
BEE provides invasive event sensors for the instrumentation of client programs. For efficiency reasons they are

implemented using features such as inline expansion and variables with static extent. Because not all programming
languages provide these features, BEE offers a collection of event sensors from which the programmer has to select
the appropriate ones. Section 8.1.1 describes sensors that can be used for the instrumentation of program written in
any language. Section 8.1.2 describes sensors that should be used for the instrumentation of C programs.

8.1.1 Language Independent Sensors
Event_Sensor

An event sensor for a user defined event class (with EE) parameter).
INTERFACE:

Event_Sensor (Name, C l a s s , A t t r , V a r i a n t , EID)
c h a r * Name;
E v e n t _ c l a s s _ t C l a s s ;
E v e n t _ a t t r i b u t e _ t A t t r ;
p o i n t e r _ t V a r i a n t ;
i n t * EID;

PARAMETERS:

Name
Class
Attr
Variant
EID

Event sensor name.
Event class.
Event attribute.
Pointer to event data field.
Event id.

RETURNS: Nothing.

NOTES: For user defined events, the size and layout of V a r i a n t must be entered by
E v e n t _ R e g i s t e r _ C l a s s () . The variant fields have to be filled by the client program. The
value of EID is set the first time the event sensor is called and it must not be changed by the
client program.

8.1.2 C Language Sensors

C provides static variables (similar to ALGOL'S own) which can be initialized at declaration time. This feature is
used in the definition of the sensors E V E N T , B E G I N , E N D , B E G I N _ E V E N T , E N D _ E V E N T , and P O I N T _ E V E N T

hiding the existence of the EID. This results in a slightly more efficient sensor implementation compared with
sensors that require the EID as parameter.
EVENT_SENSOR

An event sensor for a user defined event class (with EID parameter).
INTERFACE:

30 FUNCTIONAL SPECIFICATION

EVENT_SENSOR(Name, C l a s s , A t t r , V a r i a n t , EID)
c h a r * Name;
E v e n t _ c l a s s _ t C l a s s ;
E v e n t _ a t t r i b u t e _ t A t t r ;
p o i n t e r _ t V a r i a n t ;
i n t * EID;

PARAMETERS:

RETURNS:
NOTES:

Name Event sensor name.
Class Event class.
Attr Event attribute.
Variant Pointer to event data field.
EID Event id.

Nothing.
For user defined events, the size and layout of V a r i a n t must be entered by
E v e n t _ R e g i s t e r _ C l a s s () . The variant fields have to be filled by the client program. EID
must be declared in the client program; its value is set the first time the event sensor is called
and it must not be changed by the client program.

EVENT
An event sensor for a user defined event class.

INTERFACE:
EVENT(Name, C l a s s , A t t r , V a r i a n t)
c h a r * Name;
E v e n t _ c l a s s _ t C l a s s ;
E v e n t _ a t t r i b u t e _ t A t t r ;
p o i n t e r _ t V a r i a n t ;

PARAMETERS:

RETURNS:
NOTES:

Name
Class
Attr
Variant

Event sensor name.
Event class.
Event attribute.
Pointer to event data field.

Nothing.
EVENT is a macro that hides the existence of the EED from the user. For user defined events,
the size and layout of V a r i a n t must be entered by E v e n t _ R e g i s t e r _ C l a s s () . The
variant fields have to be filled by the client program.

BEGIN_PROCEDURE
An event sensor for the activation of an event range of class E.PROCEDURE.

INTERFACE:
BEGIN_PROCEDURE(Sensor_Name)
c h a r * S e n s o r Name;

PARAMETERS:

RETURNS:
NOTES:

Sensor Name Event sensor name.

Nothing.
The macro BEGIN can be used instead of BEGIN_J? ROCEDURE, but in this case a string
constant is expected as parameter.

F U N C T I O N A L SPECIFICATION 31

END_PROCEDURE
A N event sensor FOR the termination OF an event range OF CLASS E . P R O C E D U R E .

INTERFACE:

E N D _ P R O C E D U R E (S E N S O R J A M E)
C H A R * S E N S O R _ N A M E ;

PARAMETERS:

Sensor_Name Event sensor name.

RETURNS: Nothing.

NOTES: The macro E N D can be used instead of E N D _ P R O C E D U R E , but in this CASE a string constant IS
expected as parameter.

BEGIN_EVENT
An event sensor for the activation of an event range of class E . E V E N T .

INTERFACE:

B E G I N _ E V E N T (S E N S O R _ N A M E)
C H A R * S E N S O R _ N A M E ;

PARAMETERS:

Sensor_Name Event sensor name.

RETURNS: Nothing.

ENDJEVENT
An event sensor for the termination of an event range of class E . E V E N T .

INTERFACE:

E N D _ E V E N T (S E N S O R J A M E)
C H A R * S E N S O R _ N A M E ;

PARAMETERS:

Sensor_Name Event sensor name.

RETURNS: Nothing.

POINT_EVENT
Generate the AN event point OF event class E J 5 V E N T .

INTERFACE:

P O I N T J S V E N T (S E N S O R _ N A M E)
C H A R * S E N S O R _ N A M E ;

PARAMETERS:

Sensor_Name Event sensor name.
R E T U R N S : Nothing.

8.2 Event Sensor Functions
Event_Sensor_Max

Maximum number of event sensors allowed in client program.
INTERFACE:

E V E N T _ S E N S O R _ M A X ()

PARAMETERS: none:

R E T U R N S : Maximum number OF event sensors.

32 FUNCTIONAL SPECIFICATION

Event_Sensor_Control
Disable/enable all event sensors of a given event class.

INTERFACE:
E v e n t _ S e n s o r _ C o n t r o l (C l a s s , F lag)
e v e n t _ c l a s s _ t C l a s s ;
b o o l e a n _ t F l a g ;

PARAMETERS:
Class
Flag

Event class.
If TRUE, turn on all event sensors for event class Class, otherwise turn off all
event sensors for event class Class.

RETURNS: Nothing.
NOTES: Event_Sensor_Control(<class>, FALSE) for all predefined event classes < c l a s s > is called

by Event_Initialize().

Event_Sensor_Filter
A filter to be applied to all event sensors of an event class.

INTERFACE:
E v e n t _ r e t u r n _ t E v e n t _ S e n s o r _ F i l t e r (C l a s s , F)

E v e n t _ c l a s s _ t C l a s s ;
c h a r * F ;

PARAMETERS:

RETURNS:
NOTES:

Class Event class to which the filter applies.
F Value of the new global sensor filter. All currendy registered event sensor

names are compared with F and if F is not a substring of the event sensor
name, the sensor is made passive. The initial value of the global sensor
filter is H ") .

Nothing.
Currendy BEE supports only one event sensor filter for all event classes, that is, the event class

parameter is ignored. Any uninitialized sensor encountered after the installation of the new
filter, whose name is not a substring of the global sensor filter, is also made passive.

8 3 Event Initialization Functions
Event_Initialize

Initialize the event processing facility for client.

INTERFACE:
E v e n t _ r e t u r n _ t E v e n t _ I n i t i a l i z e (C l i e n t)
c h a r * n a m e o f c l i e n t ;

PARAMETERS:

Client Pathname of the client

RETURNS:
NOTES: Under NECTAR, E v e n t _ I n i t i a l i z e () is automatically called by the function

N e c t a r _ I n i t () . Under UNIX E v e n t _ I n t i a l i z e () is called by U n i x _ I n i t () . Both of
these functions are not part of BEE.

FUNCTIONAL SPECIFICATION 33

Event_Finaiize
Wrap up event related activities in client program.

INTERFACE:

E v e n t _ r e t u r n _ t Event J T i n a l i z e (Name_of_c l ien t)
c h a r * Name of c l i e n t ;

PARAMETERS:

Name_of_dient Pathname of the client

RETURNS: E_SUCCESS if successful, E_FATLURE otherwise.

NOTES: E v e n t _ F i n a l i z e () scans the event table(s) associated with the client and executes the final
action for all event interpreters attached to enabled event classes. Local event interpreters are
called to execute their F i n a l () function, remote event interpreters receive an E_FINAL
message. Remote event interpreters send an acknowledgement E_KILL back to the client after
receiving the final message to indicate that they do not need to communicate with the event
client server any longer. After receiving the acknowledgements from all attached event
interpreters, E v e n t _ F i n a l i z e O broadcasts a CUENT.DEATH messages, frees the memory
allocated for the event tables, kills the event client server and exits the client. This protocol
ensures that the client is alive for post mortem requests by event interpreters.

Event_Create_Table
Allocate an event table (system or task event table).

INTERFACE:

E v e n t _ r e t u r n _ t E v e n t _ C r e a t e _ T a b l e (ET, ENT)
p o i n t e r _ t ET;
p o i n t e r _ t ENT;

PARAMETERS:

RETURNS:
NOTES:

ET
ENT

Pointer to event table.
Pointer to event nesting table.

E_SUCCESS if successful, EJFAILURE otherwise.

This function is always called by E v e n t _ I n i t i a l i z e () to allocate the system event table
and system event nesting table. The event nesting table keeps track of event sensor ranges that
have been activated but not yet terminated. Event nesting tables are useful for debugging of the
client instrumentation event ranges and they are needed by the the time profiler to compute the
times spent in an event range. If event table inheritance is enabled (see Section 8.10), this
function is also called whenever a task is created. In NECTAR, the two arguments ET and ENT
point to fields in the Nectarine task control block. A task event table inherits all event classes
from the system event table, but it does not inherit the associated event interpreters.

Event_Cleanup_Table
Deallocate an event table (system or task event table).

INTERFACE:

E v e n t _ r e t u r n _ t Even t_Cleanup Tab le (ET, ENT)
E v e n t _ t a b l e s t ET;
E v e n t _ n e s t t a b l e t ENT;

PARAMETERS:

RETURNS:
NOTES:

Pointer to event table.
Pointer to event nesting table.

ET
ENT

Nothing.

Deletes the event table and event nesting table of a task. In Nectar, this function is automatically

34 FUNCTIONAL SPECIFICATION

called by N _ K i l l _ S e l f () , whenever a Nectarine task is finished.
Event C l eanup_Tab le () is also be called by E v e n t _ F i n a l i z e () when the client
finishes execution on a node. In this case it deallocates the system event table.

8.4 Event Naming Functions
Event_Client_Name

Return name of client program.

INTERFACE:
c h a r * Even t_Cl ien t_Name()

PARAMETERS: None.
RETURNS: The name of the attached client
NOTES: If the process is attached to a remote client, request the name from the client server, otherwise

do a local lookup.

Event_Class_Name
Return name of event class.

INTERFACE-
c h a r * Even t_Class_Name(Class)
E v e n t _ c l a s s _ t C l a s s ;

PARAMETERS:

Class Event class descriptor.

RETURNS: The name of a predefined or user defined event class if it exists, , m if none exists.

NOTES: If the process is attached to a remote client, request the name from the client server, otherwise
do a local lookup.

Event_Class_ID
Return the event class descriptor of a predefined or user event class.

INTERFACE:
E v e n t _ c l a s s _ t Even t_Cla s s_ ID (Name)
c h a r * Name;

PARAMETERS:

Name Name of event class.

RETURNS: The event table index of the event class or -1 if Name is not known.
NOTES: If the process is attached to a remote client, request the class from the client server, otherwise

do a local lookup.

Event_Register_Class
Define a new event class Name with a variant part of Size bytes.

INTERFACE:

PARAMETERS:

E v e n t _ c l a s s _ t E v e n t _ R e g i s t e r _ C l a s s (Name, Type, S i z e)
c h a r * Name;
c h a r * Type;
i n t S i z e ;

Name Name of event class.
Type Type descriptor of event variant. A type descriptor is has the same syntax as

F U N C T I O N A L SPECIFICATION 35

the control string used BY P R I N T F () and S C A N F () IN C S I / O facility.
Type contains the conversion specifications for each OF the fields IN the
event variant and no other information.

Size Size of event variant. Depending on the compiler's allocation strategy, the
size of the event variant might be larger than than the sum OF the sizes OF the
fields of the event variant

RETURNS: Event class descriptor.

NOTES: 1) The event variant descriptor is sent to a remote event interpreter as event message OF type
E . D E S C R I P T O R immediately after the attacmeht of the client, if the event interpreter interprets
this event class. 2) The following code fragments shows the definition of a user defined event
E . S Y S T E M of type integer with a data area of 4 bytes and attachment to an event interpreter
"beejoad":

E V E N T _ C L A S S _ T E _ S Y S T E M ;

E _ S Y S T E M * E V E N T _ R E G I S T E R _ C L A S S (" E _ S Y S T E M " , " % D ' \ 4) ;

E I * E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (" B E E _ L O A D " , E _ S Y S T E M , " ") ;

To generate an event of the newly defined event class, use the event sensor EVENT:
I N T V A L U E ;

E V E N T (S E N S O R _ N A M E , E _ S Y S T E M , E _ P O I N T , S V A L U E) ;

Event_Register_Name
Enter name of event sensor into BEE ' s internal tables and return its event sensor descriptor.

INTERFACE:

E V E N T _ I D _ _ T E V E N T _ R E G I S T E R _ N A M E (N A M E , E _ I D)
C H A R * N A M E ;

PARAMETERS:

RETURNS:

E V E N T _ I D _ T * E _ I D ;

Name Name of event sensor.

* L i d Client process unique event sensor id assigned by event kernel.

NOTES: If THE event sensor IS ACTIVE, E V E N T _ R E G I S T ER__NAME CALLS E V E N T _ G E N E R A T E .

Event_Sensor_Name
Return name of event sensor given an event sensor descriptor.

INTERFACE:

C H A R * E V E N T _ S E N S O R _ N A M E (E _ I D)
I N T E _ I D ;

PARAMETERS:

E_id Client process unique event sensor id.
RETURNS:

8.5 Event Generator Functions
Event_Generate

Event_Generate is called by an active event sensor.
INTERFACE:

36 FUNCTIONAL SPECIFICATION

v o i d E v e n t _ G e n e r a t e (C l a s s , A t t r , EID, V a r i a n t)
E v e n t _ c l a s s _ t c l a s s ;
E v e n t _ a t t r i b u t e _ t a t t r ;
E v e n t _ i d _ t EID;
p o i n t e r _ t v a r i a n t ;

PARAMETERS:
Class
Attr
EID
Variant

Name of Event class.
Attribute (see section 9.2,51).
Event id.
Pointer to event variant

RETURNS:
NOTES:

Nothing.
Event G e n e r a t e selects the appropriate event table (system or task event table), collects the
components of the event and calls the event handler (see Event_Handle) . Event processing is
disabled during the generation of an event

Event_Regenerate
Event_Regenerate passes an event message to the event handler without modifying the timestamp.

INTERFACE:

PARAMETERS:

RETURNS:
NOTES:

v o i d E v e n t _ R e g e n e r a t e (IN E)
Event t E;

E Event message.

Nothing.
E v e n t _ R e g e n e r a t e () is useful for multiple view monitoring of systems where a high
communication bandwidth is not available. A single remote event interpreter receives event
messages from one or more clients, filters them and passes them on to the attached (local) event
interpreters.

8.6 Event Handler Functions
Event_Handle

Dispatch the event to all attached event interpreters.

INTERFACE:
E v e n t _ r e t u r n _ t Even t_Hand le (IN E)

Event t E;

PARAMETERS:

RETURNS:
NOTES:

E Event (assembled by event generator).

E_SUCCESS if successful, EJFAILURE otherwise.
Event_Handle is called by E v e n t _ G e n e r a t e only if the event class for the generated
event is enabled and if at least one event interpreter is attached. If the event table is active and if
the event class is enabled, the event message of type E.EVERY is dispatched to all event
interpreters registered for this event class.

Event_Handle_Rate
Event handler dispatch rate.

INTERFACE:

F U N C T I O N A L SPECIFICATION 37

PARAMETERS:

RETURNS:

NOTES:

E V E N T _ R E T U R N _ T E V E N T _ H A N D L E _ R A T E (C L A S S ,
N R O F E V E N T S ,
AC C U M U 1 A T I ON_MODE,
D I S P A T C H _ M O D E)

E V E N T _ C L A S S _ T C L A S S ;
LONG N R O F E V E N T S ;
E V E N T _ A C C U M U L A T I O N _ T A C C U M U L A T I O N J M O D E ;
E V E N T _ D I S P A T C H _ T D I S P A T C H _ M O D E ;

Class Event class.
NrOfEvents Dispatch the (aggregate) event every NrOfEvents events.
AccumuIation_Mode

Specifies how to accumulate events if event handler does not immediately
dispatch events.

E . L A T E S T : Store only latest event
E . A D D : Add new event value to aggregate event
E . M E A N : Compute mean of all event values stored in event

handler.

Dispatch_Mode A threshold for the event handler that specifies when to dispatch events.
Possible values are:

E _ H A N D L E _ I M M : Immediately dispatch encountered event.
E_HANDLE_BY_TIME:

Dispatch event aggregate every N sees.
E_HANDLE_B Y _ E V E N T :

Dispatch event aggregate every N events.
E.SUCCESS if successful, E_FAILURE otherwise.

E V E N T _ H A N D L E _ R A T E allows THE client program TO influence THE EVENT client overhead BY
bundling EVENTS in THE event handler before THEY ARE SENT TO THE attached EVENT interpreters.
Default value: When a NEW EVENT CLASS C is entered INTO THE EVENT table, the EVENT KERNEL CALLS
E V E N T _ H A N D L E _ R A T E (C , E _ L A T E S T , E _ _ H A N D L E _ _ I M M) .

Event_Enable
Enable the event CLASS IN the current EVENT TABLE.

INTERFACE-

PARAMETERS:

RETURNS:

E V E N T _ R E T U R N J : E V E N T _ E N A B L E (I N C L A S S)
E V E N T _ C L A S S _ T C L A S S ;

Class Event class.

, E.SUCCESS if succesful, E_FAILURE if Class is unknown. If the call fails and
Event_VerboseO is on, an error message is printed.

EventJDelete
Delete a user defined event class from BEE'S internal tables.

INTERFACE:

PARAMETERS:

E V E N T _ R E T U R N _ T E V E N T _ D E L E T E (I N C L A S S)
E V E N T _ C L A S S _ T C L A S S ;

Class Event class.

38 FUNCTIONAL SPECIFICATION

RETURNS: E_SUCCESS if successful, E_FAJLURE otherwise.

Event_Disable
Disables an event class in the event table.

INTERFACE:
E v e n t _ r e t u r n _ t E v e n t _ D i s a b l e (IN C l a s s)
E v e n t _ c l a s s _ t C l a s s ;

PARAMETERS:

Class Event class.

RETURNS: E_SUCCESS if successful, EJFAILURE otherwise.

8,7 Event Interpreter Functions
Event_Enter_Interpreter

Enter event interpreter into name server domain.

INTERFACE:

PARAMETERS:

{* I n i t) () ;
(* Every) () ;
(* F i n a l) () ;

E v e n t _ E n t e r _ I n t e r p r e t e r (N a m e ,
I n i t , E v e r y , F i n a l ,
C l a s s , F i l t e r ,
Enter_Mode, C l ien t_Dea th_Mode)

c h a r * Name;
Even t_ r e t u r n _ t
E v e n t _ r e t u r n _ t
E v e n t _ r e t u r n _ t
E v e n t _ c l a s s _ t C l a s s ;
c h a r * F i l t e r ;
Event_lookup_mode_t Enter_Mode;
Event c l i e n t d e a t h m o d e t C l i en t_Dea th_Mode ;

Name Pathname of the executable of the client program.
Init Pointer to the init function which must be defined as follows:

E v e n t _ r e t u r n _ t I n i t (Event)
E v e n t _ t E v e n t ;

Every Pointer to the every function which must be defined as follows:
E v e n t _ r e t u r n _ t E v e r y (E v e n t) ;
E v e n t _ t E v e n t ;

Final Name of the final function which must be defined as follows:
E v e n t _ r e t u r n _ t F i n a l (E v e n t)

E v e n t _ t E v e n t ;
Class The event class to be interpreted.
Filter A string used for filtering events at event handling time. If the event name

contains F i l t e r as an initial substring, the event is handled, otherwise it is
not handled.

Enter_Mode What to do if the service already exists in the name server (The enumerated
type Event_ lookup_mode_t is described in Section 8.8, page 42).

Client_Death_Mode
What to do with client sensors when the client dies:
E_DELETE_SENSORS Delete all information about client in event sensor array.
E_KEEP_SENSORS Keep event sensor information about client.

F U N C T I O N A L SPECIFICATION 39

If the call is successful, there is no return. The message

"Event i n t e r p r e t e r r e a d y . "

appears on the output and the EI server waits in an endless loop for events from registered
clients or event interpreters. If the message

"Event i n t e r p r e t e r n o t r e a d y . "

appears, the EI server could not be started up, usually for one of the following reasons:
• Another event interpreter with the same name was already entered in the BEE

domain.

• The name server timed out

The pair <Name, EI server port> is entered into the name server domain BEE and the interpreter
is started as a server waiting for messages from clients. Clients connect to the service with
E v e n t _ L o o k u p _ I n t e r p r e t e r () .

Event_Lookup_Interpreter
Look up event interpreter.

INTERFACE:
i n t E v e n t _ L o o k u p _ I n t e r p r e t e r (S e r v i c e ,

I n i t , Eve ry , F i n a l ,
C l a s s , F i l t e r , L o c a t i o n)

c h a r * S e r v i c e ;
E v e n t _ r e t u r n _ t (* I n i t) () ;
E v e n t _ r e t u r n _ t (* Every) () ;
E v e n t _ r e t u r n _ t (* F i n a l) () ;
E v e n t _ c l a s s _ t C l a s s ;
c h a r * F i l t e r ;
E I _ l o c a t i o n _ t L o c a t i o n ;

PARAMETERS:

Service name of event interpreter.
Pointer to the init function which must be defined as follows:

Even t__re tu rn_ t I n i t (E)
E v e n t _ t E;

Pointer to the every function which must be defined as follows:
Even t_ re tu rn__ t E v e r y (E) ;
E v e n t _ t E;

Name of the final function which must be defined as follows:
Even t_ re tu rn__ t F i n a l (E)
E v e n t _ t E;

The event class to be interpreted.

A string used for filtering events at event handling time. If the event name
contains F i l t e r as an initial substring, the event is handled, otherwise it is
not handled.

Location of the event interpreter. Can be either E_LOCAL or EJIEMOTE.
If the location is E_LOCAL, the I n i t () , Every () and F i n a l ()
functions must be defined in the client's name space. If the location is
E_REMOTE, the client tries to connect to an event interpreter with the
service name Service who provides three functions I n i t () , Every () and
F i n a l () 9 . The event interpreter does not have to be started up when

'in the remote case the names do not have to be identical.

RETURNS:

NOTES:

Service
Init

Every

Final

Class
Filter

Location

40 FUNCTIONAL SPECIFICATION

RETURNS:

NOTES:

E V E N T _ L O O K U P _ I N T E R P R E T E R IS executed.

IF successful, IT returns a client process unique ID OF the event interpreter, TO BE USED AS parameter
in other event interpreter functions. If unsuccessful, it returns NO_EI_ED. A LOOKUP IS

unsuccessful, IF the event interpreter cannot BE found or IF the event class IS UNKNOWN. IF THE CALL

fails and event verbosity IS on, an error message IS printed.
E V E N T _ L O O K U P _ I N T E R P R E T E R () connects the client program TO a local or REMOTE EVENT

interpreter. If the event interpreter IS local, the I N I T () , E V E R Y () and F I N A L () functions
must be defined in the client program. If the event interpreter is remote, IT IS looked UP under
Service in the name server domain BEE. If the remote event interpreter cannot be found after
several attempts, the client proceeds without connection. The number of connection attempts can
be controlled with E V E N T _ L O O K U P _ R E T R Y () .

Event_Lookup_Remote_Interpreter

I N T E R F A C E

PARAMETERS:

RETURNS:

NOTES:

I N T E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R (S E R V I C E ,
C L A S S ,
F I L T E R)

C H A R * S E R V I C E ;
E V E N T _ C L A S S _ T C L A S S ;
C H A R * F I L T E R ;

Service Service name of event interpreter.
Class The event class to be interpreted.
Filter A string used for filtering events at event handling time. If the event NAME

contains F I L T E R as an initial substring, the event is handled, otherwise it is
not handled.

A client process unique id of the event interpreter, to be passed as parameter to other event
interpreter functions.
E V E N T _ L O O K U P _ R E M O T E _ I N T E R P R E T E R () is a macro FOR

E V E N T _ L O O K U P _ I N T E R P R E T E R (N A M E , 0 , 0 , 0 , C L A S S , F I L T E R , E _ R E M O T E) ;

Event_Disable_Interpreter
Disable an event interpreter.

I N T E R F A C E

PARAMETERS:

RETURNS:

NOTES:

E V E N T _ R E T U R N _ T E V E N T _ D I S A B L E _ I N T E R P R E T E R (E I _ I D)

I N T E I I D ;

EI JO) Event Interpreter Descriptor.

E_SUCCESS if successful, E_FAILURE otherwise.
Stop sending events to event interpreter until it is enabled again.

Event_Enable_Interpreter
Enable an event interpreter.

I N T E R F A C E

PARAMETERS:

R E T U R N S :

E V E N T _ R E T U R N _ T E V E N T _ E N A B L E _ I N T E R P R E T E R (E I _ I D)

I N T E I I D ;

EI_ID Event Interpreter Descriptor.

E_SUCCESS if successful, EJFAILURE otherwise.

F U N C T I O N A L SPECIFICATION 4 1

NOTES: Resume sending events to event interpreter if it is attached to the client.
Event_Detach_Interpreter

Remove event interpreter from client.
INTERFACE:

E V E N T _ R E T U R N _ T E V E N T _ D E T A C H _ I N T E R P R E T E R (E I _ I D)
I N T E I _ I D ;

PARAMETERS:

El JO) Event Interpreter Descriptor.

RETURNS: E_SUCCESS if successful, EJFAILURE otherwise.
NOTES: Execute the F i n a l () function of an event interpreter for all event classes it has been attached

to and delete it from the current event table.

8.8 Event Service Functions
Event name service functions make B E E services known to the name server.

Event_EI_Server
Start the EI server.

INTERFACE:

PARAMETERS:

RETURNS:

DIAGNOSTICS:

V O I D E V E N T _ E I _ S E R V E R (E I)
E V E N T _ I N T E R P R E T E R _ T E I ;

EI A record containing the path name of the executable and the I N I T () ,
E V E R Y () and F I N A L () functions of the service.

E V E N T _ E I _ S E R V E R () DOES NOT RETURN.

NOTES:

"Event i n t e r p r e t e r r e a d y . "

THE E I SERVER IS RUNNING AND WAITING FOR COMMANDS FROM OTHER CLIENTS OR EVENT INTERPRETERS.

" E V E N T I N T E R P R E T E R N O T R E A D Y . "

T H E E I SERVER COULD NOT BE STARTED UP. (OFTEN THIS MEANS THAT THE NAME SERVER IS NOT RUNNING).

E V E N T _ E I _ S E R V E R () assumes THAT THE NAME SERVER IS running. E V E N T _ E I _ S E R V E R () IS
called by E V E N T _ E N T E ^ I N T E R P R E T E R () . .

Event_Client_Server
Start the client server.

INTERFACE:

V O I D E V E N T _ C L I E N T _ S E R V E R ()

None.
Nothing.

I N VERBOSE M O D E , one of THE FOLLOWING messsages IS PRINTED:

" C l i e n t s e r v e r R E A D Y . "

THE CLIENT SERVER IS running AND WAITING FOR REQUESTS FROM other CLIENTS OR EVENT INTERPRETERS.

" C l i e n t s e r v e r n o t r e a d y . "

THE CLIENT SERVER cannot BE STARTED UP. This usually means THAT THE global NAME SERVER IS NOT

PARAMETERS

R E T U R N S :

D I A G N O S T I C S

42 FUNCTIONAL SPECIFICATION

running.
NOTES: The name of the event client server is the concatenation of the string "Client_ServerJ\ the name

of the client executable and the hexadecimal numbers of the node id and process id. On UNIX,
the node id is the internet address of the host, on NECTAR it is the N E C T A R node id. On NECTAR,

the client server is a thread forked off by N_Crea te_Appl () . '
E v e n t _ C l i e n t _ S e r v e r () assumes that the name server is running.

Event_Enter_Service
Make a service known to the name server and return its B E E port.

I N T E R F A C E

BEE_port_t E v e n t _ E n t e r _ S e r v i c e (S, D , Mode)
c h a r * S;
c h a r * D ;
Event_lookup_mode_t Mode;

PARAMETERS:

S Name of the service to be entered into the name server.
D Name server domain. Must be either "BEE" or "CLIENT1.
Mode What to do if service already exists.

E_REPLACE Replace existing service in Bee domain.
E_ERROR_IF_EXISTS

Return illegal port N O . B E E . P O R T if service exists.
E_ERROR_IF_NOT_EXISTS

Return illegal port NO_BEE_PORT if service does not
exist.

RETURNS: A local port to the service.
NOTES: Event interpreter services must be registered in the name server domain "BEE", client servers

must be registered in the domain "CLIENT".

Event_Lookup_Service
Look for service S in name server domain D.

INTERFACE

PARAMETERS:

BEE_gl_por t_ t Even t_Lookup_Se rv i ce (S, D)
c h a r * S;
c h a r * D ;

S Name of the service to be looked up.
D Name server domain, which must be either "BEE" or "CLIENT".

RETURNS: A global port to the service. The port is either a client server port (domain "CLIENT") or an EI
server port (domain "BEE").

NOTES: The name of the service is only known if it was registered previously with
E v e n t _ E n t e r _ S e r v i c e () .

EventjVttadi_ClientJPort
Attach event interpreter to a client specified by a port

I N T E R F A C E

E v e n t _ A t t a c h _ C l i e n t _ P o r t (P o r t)
BEE_port P o r t ;

Port The event server port of the client to be controlled.
PARAMETERS:

FUNCTIONAL SPECIFICATION 43

RETURNS: E.SUCCESS if successful, EJFAILURE otherwise.

8.9 Event Interpreter Control Functions
These functions are issued by the client to provide hints or to control the behavior of attached event interpreters.

Event_Replay
Read events from a file.

INTERFACE:

PARAMETERS:

RETURNS:
NOTES:

v o i d E v e n t _ R e p l a y (F i l e)
c h a r * F i l e ;

File Name of an event file. The event file is generally produced by the event
filer, but it can also be prepared manually by the programmer as long as it
conforms to the event file format described in Section 9.10, page 59.

Nothing.

Even t_Rep lay () replays a set of events produced in an earlier execution and therefore must
be called before E v e n t _ E n t e r _ E n t e r p r e t e r () . This is automatically done if the
environment variable BEE.REPLAY is set to the name of the event file.

Event_UpdateJRate
Set the event interpreter update rate.

INTERFACE:
v o i d Even t_Upda te_Ra te (Nr)
i n t Nr;

PARAMETERS:

RETURNS:
NOTES:

Nr Update the event interpreter window associated with the client every at least
every Nr events. Default value: 1.

Nothing.

Even t_Upda te_Rate () can be called any time. However, when an event interpreter is
looked up, the value of the update time for this event interpreter is determined by the latest
Even t_Upda te_Ra te () call.

Event_Update_Time
Set the time between event interpreter window updates.

INTERFACE:
v o i d Event_Update_Time (Time)
i n t Time;

PARAMETERS:

RETURNS:
NOTES:

Update the screen every Time seconds. Default value: 3. Time

Nothing.

Event_Update_Time () can be called any time. When an event interpreter is looked up, the
value of the update time for this event interpreter is aetermined by the latest
Event_Update^Time () call.

Event_Sample_Time
Time interval for sampling event probes in the client.

INTERFACE*

v o i d Event_Sample_Time (Time)
i n t Time;

44 FUNCTIONAL SPECIFICATION

PARAMETERS:

RETURNS:
NOTES:

Time Sample the client event probes every Time seconds. Default: No sampling.

Nothing.
Event_Sample_Time () can be called any time. When an event interpreter is looked up, the
value of the sample time for this event interpreter is determined by the latest
Event_Sample_Time () call.

EventDisplay
Name of the workstation to be used for display.

INTERFACE:

PARAMETERS:

v o i d Event Display(Name)

c h a r * Name;

NOTES:

Name Name of display to be used by event interpreter when opening windows.
For the X window manager, N has to be in the format host:server:screen.

E v e n t _ D i s p l a y () can be called any time. Name is passed as a hint to the I n i t function of
the event interpreter. Even t JDi s p l a y () therefore has to be called by the client before the
event interpreter is looked up. The event interpreter will use the hint if it has not yet opened a
window, otherwise the hint will be ignored.

Event_Window
Window configuration hints for event interpreter.

INTERFACE-

PARAMETERS:

v o i d Event_Window (Window_name,
Upper_ le f t _ x ,
Uppe r _ l e f t _ y ,
Width ,
H e i g h t ,
T e x t _ c o l o r ,
L i n e _ c o l o r)

c h a r * Window_name;
i n t U p p e r _ l e f t _ x ;
i n t U p p e r _ l e f t _ y ;
i n t Wid th ;
i n t H e i g h t ;
i n t T e x t _ c o l o r
i n t L i n e c o l o r ;

Window name Name of window and icon used by event interpreter. Default value: "Event
EI".

Upper_left_x Upper left x coordinate of window body. Default value: 1.
Upperjeft_y Upper left y coordinate of window body. Default value: 1.
Width Width of window. Default value: 400.
Height Height of window. Default value: 300.
Text_color Color of text in the window. Text_color is not used if the screen is black-

and-white. Default value: BLUE.
Line_color Color of lines in the window. Line_color is not used if the screen is

black-and-white. Default value: STEELBLUE.

RETURNS: Nothing.

FUNCTIONAL SPECIFICATION 45

NOTES: If B E E is running under X, the upper left position specifies the position OF the body OF THE

window, not the position of the titlebar. The window information is made available to THE event
interpreter when the I N I T () function is called. E V E N T _ W I N D O W () therefore has TO BE CALLED
by the client before the event interpreter is looked up. BEE'S available colors are defined in
$BEE_DIR/bee_color.h.

EventJFont
Name of type font for text.

I N T E R F A C E

V O I D E V E N T _ F O N T (F)
C H A R * F ;

PARAMETERS:

F Name of the type font used by event interpreter when displaying text IN the
X window.

RETURNS: Nothing.

NOTES: The font information is made available to the event interpreter when the I N I T () function is
called. E v e n t _ F O N T () therefore has to be called by the client before the event interpreter is
looked up. B E E has its own ideas about typefonts and linewidth when the window gets very
small. It selects a 5x8 type font and also restricts the smallest window to a size depending ON
the view: The smallest linegraph view is a rectangle of 300x100 pixels, the smallest piechart
view is a quadrant of 100x100 pixels.

Event_Histogram_View
Set the layout information for the histogram view.

INTERFACE:

V O I D E V E N T _ H I S T O G R A M _ V I E W (T I T L E ,

X _ A X I S _ N A M E ,
Y _ A X I S _ N A M E ,
X _ A X I S _ T Y P E ,
Y _ A X I S _ T Y P E ,
X _ A X I S _ L I M I T ,
Y _ A X I S _ L I M I T)

C H A R * T I T L E ;
C H A R * X _ _ A X I S _ N A M E ;
C H A R * Y _ A X I S _ N A M E ;
A X I S _ T Y P E _ T X _ A X I S _ _ T Y P E ;
a x i s _ T y p e _ T Y _ A X I s _ T y p e ;
L O N G X _ a x i s _ L I M I T ;
l o n g Y _ a x i s _ L I M I T ;

PARAMETERS:

Title Tide of view. Default value: "Event Profile".
X_axis_name String attached to lower right comer of the view. Default value: "".
Y_axis_name String attached to upper left corner of the view. Default value: "".
X_axis_type, Y_axis_type

For histogram views the axis type can be one of the following values:
L I N E A R _ N O _ N U M B E R S L I N E A R A X I S W I T H NO MARKERS

L I N E A R L I N E A R A X I S W I T H NUMBERED M A R K E R S .
L I N E A R 2 L I N E A R A X I S W I T H U N N U M B E R E D M A R K E R S .
L O G A R I T H M I C L O G A R I T H M I C A X I S W I T H N U M B E R S .

X_axis_limit Maximum sensor value allowed for display. Sensor values larger than
X_axis_limit are represented by smaller columns.

Y_axis_limit Maximum number of event sensors. If the client enters more than

46 FUNCTIONAL SPECIFICATION

Y_axis_limit only the Y_axis_Iimit most recently updated sensors are
shown. This parameter is ignored in version BEE 2.7 and earlier versions.

RETURNS: Nothing.
NOTES: The layout information is made available to the event interpreter when the I n i t () function is

called. Event_His togram_View () therefore has to be called by the client before the event
interpreter is looked up. BEE changes to a small typefont if the histogram window is small or if
the number of sensors becomes so large that their name positions overlap each other in the
current type font.

Event_Linegraph_View
Set the layout information for the linegraph view.

INTERFACE:

v o i d E v e n t _ L i n e g r a p h _ V i e w (T i t l e ,
X _ a x i s_name,
Y _ a x i s_name,
X _ a x i s _ t y p e ,
Y _ a x i s _ t y p e ,
X _ l i m i t ,
Y _ l i m i t ,
S l i d i n g _ w i n d o w ,
S t a c k _ c u r v e s)

c h a r * T i t l e ;
c h a r * X _ a x i s _ n a m e ;
c h a r * Y _ a x i s _ n a m e ;
a x i s _ t y p e _ t X _ a x i s _ t y p e ;
a x i s _ t y p e _ t Y _ a x i s _ t y p e ;
l o n g X _ l i m i t ;
l o n g Y _ l i m i t ;
i n t S l i d i n g _ w i n d o w ;
b o o l e a n _ t S t a c k _ c u r v e s ;

PARAMETERS:

Title Tide of view. Default value: "Event Profile".
X_axis_name String attached to lower right comer of the view. Default value:"".
Y_axis_name String attached to upper left comer of the view. Default value:"".

X_axis_type, Y_axis_type
The y axis type should be one of the following:

LINEAR Linear axis with numbered markers showing absolute
sensor values.

PERCENT Axis with number markered showing percentages from
0 to 100. Sensor values at each time point always add
up to 100%.

The x axis currently always displays time in seconds. Thus the x axis type
should be LINEAR or UNEAR2.
Maximum timestamp value (in sees). When an event with a time stamp
larger than X_limit is encountered, the x axis is not rescaled.
Maximum event sensor value. When an event sensor value larger than
Y_limit is encountered, the y axis is not rescaled. (YJimit is ignored if
Y _ a x i s _ t y p e is set to PERCENT) .

Sliding_window Time range (in seconds) shown at the X axis.
Stack__curves If TRUE, each sensor line serves as the x axis of the next sensor line, with

the exception of the first sensor which uses the x axis of the coordinate
system as base line. If FALSE, all event sensor values are drawn with

X_limit

YJimit

FUNCTIONAL SPECIFICATION 47

respect to the x axis of the coordinate system.
RETURNS: Nothing.
NOTES:

• If the number of event sensors is large, rounding errors occur in the linegraph
window: The sum of all event sensor values will be displayed as greater than 100%.

• The layout information is made available to the event interpreter when the I n i t ()
function is called. Even t_L ineg raph_y i ew () therefore has to be called by
the client before the event interpreter is looked up. The initial time at the origin is
determined by the time stamp of the first incoming event. If it is between 0 and
Time_Window, the time at origin starts with 0, otherwise it is chosen such that the
event sensor value can immediately be displayed without rescaling the x axis.

• A client timestamp is always converted into event interpreter time by
E v e n t _ V i r t u a l _ C l i e n t _ T i m e () (See Section 8.10, 47) . When the event
time advances past the time at the end of the x axis, the x axis is shifted. The size of
the shift depends on the new event time. If it is less than the last encountered event
time plus S l id ing_window, the x axis is shifted 3/4 to the left, otherwise the
time at the origin is computed in the same way as when the first time stamp was
encountered. Because the incoming event streams are only partially ordered, there
is also the possibility of old events, that is, events whose timestamp is older than the
time at the origin. Old events are not displayed by the linegraph view (the user is
notified of old events if event verbosity is on).

• When event sensor values are encountered that exceed the current top value at the y
axis, the y axis is rescaled. If possible, the new value is chosen such that the y scale
markers are a multiple of 10.

• Event sensor values can only be positive.

8.10 Miscellaneous Functions
Event_VirtualJIHent_Time

Convert the time stamp of client event to event interpreter time.
INTERFACE:

v o i d Even t_Vi r tua l_Cl ien t__Time (E) ;
E v e n t _ t E;

PARAMETERS:

E Client event
RETURNS: Nothing.

NOTES: When a client from a remote node initially attaches to an event interpreter, BEE computes the
difference between the time in the client's timestamp and the time of the event interpreter's
clock (See Even t_Get_Time_Del ta ()) and E v e n t _ V i r t u a l _ C l i e n t _ T i m e ()
corrects E's time stamp by this difference. Of course, this method is only an approximation and
it assumes a constant communication delay as well as the absence of clock drift. If the
application is running for a very long time, clock drift becomes an issue and the offset between
the clocks on different nodes will have to be recalculated periodically with
E v e n t _ Ge t_T ime_D e 11 a.

Event_Get_Time_Delta
Compute the difference between the timestamp in event E and the current clock.

INTERFACE:

b o o l e a n _ t Event_Get__Time_Delta (E, D e l t a) ;
E v e n t _ t E ;
i n t * D e l t a ;

48 FUNCTIONAL SPECIFICATION

PARAMETERS: None.
RETURNS: T R U E if the time stamp is older than the clock, otherwise FALSE.
NOTES: The computed Delta is subsequently used by E v e n t _ V i r t u a l _ C l i e n t _ T i m e () .

Even t_GetJT ime_Del ta () is automatically called by the EI server when a client initially
attaches to an event interpreter.

Event_Tabie_Inheritance
Set the inheritance mode for event tables.

INTERFACE:

v o i d E v e n t _ T a b l e _ I n h e r i t a n c e (Flag) ;
b o o l e a n _ t F l a g ;

PARAMETERS:

RETURNS:
NOTES:

Flag If TRUE, create a task event table whenever a task is created. The initial
table is an exact copy of the system event table, but only the event classes
are inherited, not the attached event interpreter lists. Events generated in a
task are handled by the task event table, and not by by the system event
table. If Flag = F A L S E , the system event table is used for all events. The
default value is Flag = F A L S E .

Nothing.
In NECTAR, E v e n t _ T a b l e _ I n h e r i t a n c e (TRUE) cannot be called in a Nectarine task. If
E v e n t _ T a b l e _ I n h e r i t a n c e (FALSE) is called in a task, all events generated in that task
are from then on handled by the system event table.

Event_Remote_Print
Redirect the output of P R I N T J M S G macros.

INTERFACE
v o i d Even t_Remote_Pr in t (Flag)
b o o l e a n _ t F l a g ;

PARAMETERS:
Flag If T R U E , P R I N T J M S G () macros send the string to be printed to the event

interpreter service n b e e _ p r i n t _ m s g n . If F A L S E , P R I N T _ _ M S G () prints
the string into the active typescript window.

RETURNS: Nothing.
NOTES: Remote printing is only possible if print messages are not filtered and if the call to

PRINT_MSG () is issued outside the event kernel. Remote printing generates event points of
type E.STRING.

Event_Imt_Debug_Switches
Debugging switches used for debugging of the event kernel.

INTERFACE
v o i d E v e n t _ I n i t _ D e b u g _ S w i t c h e s ()

PARAMETERS: None.
RETURNS: Nothing.
NOTES: The following debug switches are known:

EHJDEBUG Debug event handler functions.
E_SERVER_DEBUG Debug message traffic between client and event interpreters.

FUNCTIONAL SPECIFICATION 49

EventJVersion
Print BEE's version number.

INTERFACE:
v o i d E v e n t _ V e r s i o n ()

PARAMETERS: None.
RETURNS: Nothing.
Event_ProtocoI_Version

Return version number of event protocol.
INTERFACE:

i n t E v e n t _ P r o t o c o l _ V e r s i o n ()
PARAMETERS: None.
RETURNS: Protocol number of event protocol.

NOTES: The event protocol version is changed whenever the event protocol implementation is changed.
Event_Verbose

Control verbosity when executing event kernel functions.
INTERFACE:

v o i d Even t_Verbose (Flag)
b o o l e a n _ t F l a g ;

PARAMETERS:

Flag If TRUE, various event kernel functions are executed verbose. If FALSE, event
kernel functions are executed silently.

RETURNS: Nothing.

Event_Lookup_Retry
Number of retries when looking up an event interpreter.

INTERFACE:
v o i d Event_Lookup__Retry (Ret ry)
i n t R e t r y ;

PARAMETERS:

Retry Retry determines the number of times a client program to retry after an
unsuccessful lookup of a remote event interpreter. -1 means forever. The
default value is 1.

RETURNS: Nothing.

NOTES: See E v e n t _ L o o k u p _ R e m o t e _ I n t e r p r e t e r () .
Event_Buffer_Size

Size of event buffers allocated by the event kernel.
INTERFACE:

v o i d E v e n t _ B u f f e r _ S i z e (Nr_of_even ts)
i n t Nr_of e v e n t s ;

PARAMETERS:

Nr_of_events Maximum number of events that can be be stored in the event buffer The
default value is EVENT_BUFFER_SIZE (currendy set to 100).

50 FUNCTIONAL SPECIFICATION

Nothing.
In verbose mode (see Even t_Verbose ()), the new event buffer size and the size of one
event are printed on standard output.

RETURNS:
NOTES:

EVENT PROTOCOL 51

9 E v e n t Pro tocol
B E E can be seen as a remote procedure call mechanism with filters optimized for the purpose of event processing.

In this section we deal with the lowest level of BEE, its event protocol. Sections 9.1 to 9.6 describe the internal
representation of event records and event interpreters. Section 9.7 explains the types of messages that can be
exchanged between clients and event interpreters. Section 9.8 describes the event network format used for
exchanging events between heterogenous machines and for archiving events and Section 9.9 lists the access
functions defined on event messages.

9.1 Event Class
Bee offers a small set of predefined event classes. In addition, it provides the user with the ability to define user

defined classes. The predefined event classes are:
t y p e d e f enum e v e n t _ c l a s s {

E_PROCEDURE,
E_EVENT,
} E v e n t _ p r e d e f i n e d _ c l a s s _ t ;

E.PROCEDURE This event class is generated with the BEGIN/END sensors defined in section 8.2. Because this
event class does not contain an event variant, the name of the event sensor is piggybacked in the
event variant To reduce the client overhead and network traffic, this is done only the first time
the sensor encountered.

E .EVENT A general event range class with no variant part. Generated by the B E G I N _ E V E N T / E N D _ E V E N T
sensors defined in section 8.2.

Another event class, E_STRING is predefined by BEE, but only entered into the event table if the client is attached
to the remote print service:

E_STRING An event with a string in the variant part. Generated if remote printing is on (see section 8.10).

The constant E J X A S S M A X denotes the maximum number of predefined and userdefined event classes.

9.2 Event Attributes
t y p e d e f enum e v e n t _ a t t r i b u t e

{E_ACT r

EJTERM,
E_POINT,
E_AGGREGATE,
E_NAME,
E_PROBE} E v e n t _ a t t r i b u t e _ t ;

E_ACT
EJTERM
E.POINT
E_AGGREGATE
E.NAME
E_PROBE

The activation of an event range.
The termination of an event range.
An event point.
An aggregate event

The name of an event sensor (contained in the variant part).
An event probe.

52 EVENT PROTOCOL

93 Event Record
The predefined data type Event_record_t is declared as follows:

fdef ine E_DATA_LEN <implementation dependent>/* Maximum event v a r i a n t s i ze */

typedef s t r u c t Tinie_val {
long seconds;
long t i c k s ; /*

* On a Unix host node, a t i c k i s equal
* t o a microsecond. On the Nectar CAB, a t i c k
* i s equal t o 960 nanoseconds.
*/

} * Time_y a l _ t ;

typedef i n t Event_c lass_ t ; / * Unique i d e n t i f i e r for event c l a s s */

typedef i n t Event_id_t ; / * Unique i d e n t i f i e r for event sensor */

typedef s t r u c t Event_record {
s t r u c t Time_val TS; / *
Event_id_t EID; / *
Event_class_t C lass ; / *
E v e n t a _ t t r i b u t e _ t A t t r ; / *
Event_node_t NodeID; / *
Event_node_t ProcessID; / *
Event_thread_t ThreadID; / *
union { / *

char S t r i ng [E_DATA_LEN] ; / *
char Data [E_DATA_LEN] ; / *

} Var ian t ;
} * Event_record_t ;

Timestamp in seconds, m i l l i s econds */
Event sensor d e s c r i p t o r (Process unique) */
Event c l a s s */
Event a t t r i b u t e */
Node d e s c r i p t o r (Network unique) */
Process d e s c r i p t o r (Node unique) */
Thread Id in process (Process unique) */
Event c l a s s s p e c i f i c v a r i a n t */
S t r ing in E_STRING event */
For user defined events */

The fields of an event record are:

TS

EID

Class
Attribute

NodelD

ProcessID

ThreadID
Variant

The time stamp describes the time of the event when it was generated on the client side. The
time is expressed in elapsed seconds and microseconds since 00:00 GMT, January 1, 1970 (zero
hour). The resolution of the system clock is hardware dependent; the time may be updated
continuously or in ticks. On NECTAR, the time is read from a register on the CAB and provides a
resolution of 1 JIS. The Cray clock has nanosecond resolution, but for portability reasons, B E E
rounds Cray time stamps to microseconds. Under UNIX, the time stamp is never correct enough
that one should believe the microsecond values. On Sun-4 systems the clock resolution is 1
msec. The clock of a VAX 3100 has a resolution of 10 msec and on Sun-3 systems it is 20
msec.
The event sensor descriptor or event id. Event id's are small integers assigned by the event
kernel and are unique on a process basis.
A small integer describing the class of the event (See section 9.1).
A small integer describing the attribute of the event Possible values are described in section
9.2.
The node id of a host on which the process is running. It is unique for each node in the network.
BEE' TCP/TP implementation uses the internet address of the host as node id.
The process id of a client process. It is unique for each workstation, however different
workstations can assign the same process id to different client programs generating events.
A small integer used to distinguish multiple threads in one client process.
The data dependent part of an event depends on the Class as well as on the Attribute field. For
example, if the attribute is E.NAME, the variant contains the name of the event sensor. When an
event sensor of type E . P R O C E D U R E is encountered the first time, the variant also contains the
name of the sensor, that is, the name is "piggybacked" on the first event with the attribute E _ A C T .

In the case of an user defined event, the type of the variant is described by an event message of
type E_DESCRlPTOR (See Section 9.8.1).

E V E N T PROTOCOL 53

9.4 Event Table
The event table is an array of E _ C L A S S M A X event associations, where the value of E . C L A S S M A X is implementation

dependent An event association describes an event class and the event interpreters attached to it.
t y p e d e f s t r u c t e v e n t _ a s s o c i a t i o n {

E v e n t _ c l a s s _ t C l a s s ;
c h a r Name [E_NAME_LEN] ;
b o o l e a n _ t E n a b l e d ; / * TRUE: g e n e r a t e e v e n t s f o r c l a s s * /
E v e n t _ i n t e r p r e t e r _ l i s t _ t E I ; / * L i s t of e v e n t i n t e r p r e t e r s */

} * E v e n t _ a s s o c i a t i o n j : ;

BEE supports two kinds of event tables: system and task event tables. The system event table is generated at client
startup time and contains the event associations for the predefined event classes. Task event tables are associated
with threads or Nectarine tasks and are generated at thread/task creation time. They inherit the event classes defined
in the system event table at that dme. Whenever an event is generated the event handler selects the appropriated
event table and scans the event associations for associated event interpreters. The creation of task event tables can
be suppressed with E v e n t _ T a b l e _ I n h e r i t a n c e () . In this case all event sensors are processed in the context
of the system event table.

9.5 Client Server and E I Server Port
BEE knows about two types of event servers. The client server is created for each client program and is accessible

via the client server port e v e n t _ c l i e n t _ p o r t . The client server accepts event kernel requests from remote
event interpreters via the EI server port e v e n t _ s e r v e r _ p o r t . The EI server is a module or thread started by
E v e n t _ E n t e r _ I n t e r p r e t e r () . The EI server accepts events from attached clients. Attachment is done with
E v e n t _ L o o k u p _ I n t e r p r e t e r () by requesting the EE server port from the name server given the name of the
event interpreter service.

t de f ine BEE_port_t imp lemen ta t ion dependent> /* Node unique po r t */
fdef ine BEE_gl_port_t imp lemen ta t ion dependent> /* Network unique po r t */

BEE_gl_port_t even t_c l i en t_por t ; /* Cl ien t se rve r por t
of cur ren t c l i e n t * /

BEE_gl_port_t event_server_por t ; / * EI server po r t */

9.6 Event Interpreter
An event interpreter is represented internally as:

/*
* Event I n t e r p r e t e r Lookup mode
*/

typedef enum event_lookup_mode {
E_REPLACE, /* Replace e x i s t i n g se rv i ce in Bee domain */
E_ERROR_IF_EXISTS, /* Raise e r r o r i f s e rv ice e x i s t s */
E_ERROR_IF_NOT_EXISTS /* Raise e r r o r i f s e rv ice does not e x i s t */

} Event_lookup_mode_t;
/ *

* C l i en t death mode
*/

typedef enum event_client_death_mode {
E_DELETE_SENSORS, /* Delete a l l information about c l i e n t in

event sensor a r ray */
E_KEEP_SENSORS /* Keep event sensor information about c l i e n t */

} Event_cl ient_death mode t ;

54 E V E N T PROTOCOL

typedef s t r u c t Even t_ in te rp re te r {
char Name[MAXPATHLEN];
Event_return_t (* I n i t) () ;
Event_return_t (* Every) () ;
Event_return_t (* Final) () ;
char Filter[E_NAME_LEN];
Event_lookup_mode_t E I_lookup_mode ;
Event_client_death_mode_t Client_death_mode ;

} * Even t_ in t e rp r e t e r_ t ;

Name is the path name of the executable client program. Init, Every, Final are pointers to functions with the
following interface:

E v e n t _ r e t u r n _ t I n i t (E) E v e n t _ t E;

E v e n t _ r e t u r n _ t Every (E) E v e n t ^ t E;

E v e n t e r e t u r n _ t F i n a l (E) E v e n t _ t E;

The string Filter is used by the event handler to send only those events to attached event interpreters whose event
sensor names have Filter as a prefix. The EI_lookup_mode specifies what to do if the service exists or does not
exist in the name server domain. And CIient_Death_mode specifies what to do with the accumulated event sensor
information in the case of a client death.

9.7 Message Types
In BEE ' s event processing model, the communication between client and event interpreters is bi-directional.

Messages sent from the client to the event interpreter are called events and the delivery of an event is guaranteed by
the underlying communication system. In the N E C T A R implementation of BEE, events are sent with NECTARINE'S

reliable message protocol, in the UNIX implementation they are sent with sockets using TCP/IP. The connection
between client and event interpreter for events is done with the E v e n t _ L o o k u p _ I n t e r p r e t e r () and
E v e n t _ E n t e r _ I n t e r p r e t e r () functions via the name server. Events are described in section 9.8.1.

Communication between event interpreter and client is done by a request-response protocol which is always
initiated by the event interpreter. Messages sent from the event interpreter to the client are called event interpreter
requests (or simply requests). The event interpreter issues the request to the client and indicates a reply port. The
client then executes the corresponding event kernel function and sends a reply message containing the return result
to the indicated reply port The event kernel function E v e n t _ A t t a c h _ C l i e n t _ P o r t () attaches an event
interpreter to a particular client If the event configuration is planned, the client server port is made known to the
event interpreter with the LNIT event In an unplanned event configuration, the client server port can be determined
with Even t_Lookup_Serv i ce () . Event interpreter requests and client replies are described in section 9.8.2
and section 9.8.3, respectively.

9.8 Event Network Format
The event network format specifies the format of messages exchanged between clients and event interpreters.

Network_Format_ t is an enumerated type, but for portability reasons, it is of type string. Currendy the
following values are known:

#define E_RESERVED_FORMAT "0" /* I n d i c a t e s i l l e g a l network format */
•def ine E_ASCII_FORMAT M l " /* Message i s in ASCII format. */
•def ine E_SUN_FOFMAT "2" /* Message in na t i ve Sun format */
•def ine E_VAX_FORMAT " 3 " /* Message in na t i ve Vax format */
•def ine E_CRAY_FORMAT "4" /* Message in na t i ve Cray format */

typedef char Event_network_f ormat_t [4] ;

E V E N T PROTOCOL 55

9.8.1 Events
The general format of an event is

T Y P E D E F E N U M E _ C L I E N T _ C M D {

E _ I N I T , / *
E _ E V E R Y , / *
E _ F I N A L , / *
E J R E G I S T R A T I O N , / *
E _ D E A T H , / *
E _ R £ Q U E S T , / *
E _ R E P L Y , / *
E _ D E S C R I P T O R / *
} E _ C L I E N T _ C M D T ;

I N I T I A L I Z A T I O N M E S S A G E
E V E R Y M E S S A G E
F I N A L M E S S A G E
C L I E N T R E G I S T R A T I O N
C L I E N T D E A T H

E V E N T I N T E R P R E T E R R E Q U E S T
C L I E N T R E P L Y

T Y P E D E S C R I P T O R O F E V E N T V A R I A N T

* /
* /
* /
* /
* /
* /
* /
* /

T Y P E D E F S T R U C T E V E N T J M S G {

E V E N T _ N E T W O R K _ F O R M A T _ T F O R M A T ;
E _ C L I E N T _ C M D _ T C M D ;
S T R U C T E V E N T _ R E C O R D E V E N T ;

U N I O N {

E V E N T _ I N I T _ T I N I T ;
E V E N T _ C L I E N T _ T E V E N T S E R V E R ;

} D A T A ;
} * E V E N T T ;

The contents of the data field depends on the value of Cmd of the event message:

E J N T T Sent to an event interpreter immediately after the client registration message has been sent
Contains client's recommendation about desired layout and update frequency of event
information. The E V E N T _ I N I T _ T structure is defined as follows:

T Y P E D E F S T R U C T B E E _ D I S P L A Y _ I N F O
CHAR T I T L E _ N A M E [E J T I T L E _ N A M E]
CHAR X A X I S _ N A M E [E _ X A X I S _ N A M E]
CHAR Y A X I S N A M E [E _ Y A X I S _ N A M E] ,
CHAR X A X I S ~ U N I T [E J C A X I S J 7 N I T] .
A X I S _ T Y P E _ T X A X I S _ T Y P E ;
LONG X A X I S _ L I M I T ;
LONG Y A X I S ~ L I M I T ;

LONG X _ I N I T ;
LONG Y _ I N I T ;
I NT S A M P 1 E _ T I M E ;
I N T U P D A T E _ R A T E ;
I N T U P D A T E ^ T I M E ;
LONG S L I D I N G _ W I N D O W ;
B O O L E A N ^ T S T A C K I N G _ M O D E ;

I N T T E X T _ C O L O R ;
I N T L I N E _ C O L O R
} B E E _ D I S P L A Y _ I N F O _ T ;

T Y P E D E F S T R U C T B E E _ W I N D O W _ I N F O {
CHAR D I S P L A Y [E _ D I S P L A Y _ N A M E] ; / * X D I S P L A Y
I N T U P P E R _ L E F T _ X ;
I N T O P P E R ^ L E F T ^ ^ Y ;
I N T W I N D O W _ W I D T H ;
I N T WINDOW_HE I G H T ;
CHAR W I N D O W _ N A M E [E _ W I N _ N A M E] ; / *
CHAR F O N T _ N A M E [E _ F O N T _ N A M E] ; / *
} B E E _ W I N D O W _ I N F O _ T ;

T Y P E D E F S T R U C T E V E N T _ I N I T {
B E E _ W I N D O W _ I N F O__T WINDOW;
B E E _ J I I S P L A Y _ _ I N F O _ T D I S P L A Y ;

} E V E N T I N I T T ;

{
/ * GRAPH T I T L E
/ * NAME OF X - A X I S
/ * NAME OF Y - A X I S
/ * U N I T OF X - A X I S ,
/ * T Y P E OF X A X I S
/ * MAXIMUM X V A L U E
/ * MAXIMUM Y VALUE

/ * I N I T I A L X - A X I S V A L U E .
/ * I N I T I A L Y - A X I S V A L U E .
/ * T I M E BETWEEN S A M P L E S
/ * D I S P L A Y U P D A T E RATE
/ * D I S P L A Y U P D A T E T I M E
/ * W I D T H OF X A X I S I N S E E S
/ * T R U E : U S E B A S E L I N E O F

P R E V I O U S S E N S O R * /
/ * COLOR U S E D FOR T E X T * /
/ * COLOR U S E D FOR L I N E S * /

*/

V
*/
V
*/
*/
*/
V
*/
*/
V
*/
*/
*/

NAME OF X - W I N D O W
F O N T TO B E U S E D B Y E I

E . F I N A L Sent to any active event interpreter when client calls E V E N T _ D E A T H _ M T E R P R E T E R () . The

56 E V E N T PROTOCOL

E . R E G I S T R A T I O N

E_DEATH

E . D E S C R I P T O R

E . F I N A L message is of type E V E N T _ m s g (defined in Section 9.8.1, page 55) with an empty
D A T A field.
This event TYPE is sent to the event interpreter when client creates a connection as the result OF a

E V E N T _ L O O K U P _ I N T E R P R E T E R () call. In the E V E N T _ R E C O R D field ONLY C l a s s is
initialized. The variant part OF the E .REGISTRATION message is defined as follows:

T Y P E D E F S T R U C T E V E N T _ C L I E N T {
B O O L E A N _ T A C T I V E ; / * C L I E N T HAS A V A L I D E V E N T

C L I E N T S E R V E R P O R T * /
CHAR C L I E N T _ N A M E [E J M A X P A T H L E N] ; / * NAME O F C L I E N T ' S R U N F I L E * /
E V E N T _ I D _ T N O D E ; / '
LONG P R O C E S S ; / *
LONG T H R E A D ; / *
E V E N T _ M A C H I N E _ T M A C H I N E ; / *

B E E _ G L _ P O R T _ T P O R T ; / *
B E E _ P O R T _ T R E P L Y _ P O R T ; / *
LONG N R _ O F _ C O N N S ; / *
S T R U C T T I M E _ V A L T I M E _ D E L T A ; / *

B O O L E A N _ T C L I E N T _ T I M E _ A H E A D ; / *

} E V E N T _ C L I E N T _ T ;

NODE I D O F C L I E N T * /
P R O C E S S I D O F C L I E N T * /
THREAD O F C L I E N T * /
P R O C E S S O R T Y P E ON WHICH
C L I E N T E X E C U T E S . * /
E V E N T C L I E N T S E R V E R P O R T * /
R E P L Y PORT FOR R E Q U E S T S * /
O P E N C L I E N T C O N N E C T I O N S * /
D I F F E R E N C E B E T W E E N E I T I M E

AND C L I E N T T I M E * /
T R U E : (C L I E N T T I M E - E I T I M E)
> » 0 , F A L S E O T H E R W I S E . * /

Only the fields N A M E , N O D E AND P O R T ARE FILLED by the client, the other FIELDS ARE FILLED BY THE

EI server. T I M E _ D E L T A IS the difference between the local event interpreter time AND the time
stamp of the registration messsage. It IS ADDED to all event time stamps generated BY the client
to convert client time to EI time, B E E assumes that clocks ON different hosts DO NOT have THE
same time, but do not DRIFT IN relation to each other during the client RUN.

Sent to attached event interpreter when the client calls E V E N T _ D E L E T E _ L N T E R P R E T E R () or
sent to ANY attached event interpreter when the client dies OR finishes execution (ONLY, OF course,
IF the client's death CAN BE diagnosed). The E J X I E N T _ D E A T H message is OF type E V E N T _ m s g
(DEFINED IN Section 9.8.1, page 55) with AN empty D A T A FIELD.

For each user DEFINED class, a message of type E .DESCRIPTOR IS sent to the attached event
interpreter when E V E N T _ L O O K U P _ I N T E R P R E T E R () is called. The C L A S S FIELD in the
E V E N T _ r e c o r d describes the event class. The variant part OF the E _ D E S C R I P T O R message
contains the type descriptor describing the layout OF the user defined event:

T Y P E D E F S T R U C T E V E N T _ V A R I A N T _ D E S C R I P T O R {
T Y P E D E S C R I P T O R [E _ M A X P A T H L E N] ;

} E V E N T _ V A R I A N T _ D E S C R I P T O R _ T ;

The type descriptor USES the control string syntax from C's I/O facility. FOR example, the type
descriptor w%d%d%F %d%s" describes AN event variant consisting OF two integers, A floating
point number, another integer AND a string.

9JS2 Event Interpreter Requests
THE FORMAT OF AN EI REQUEST IS:

T Y P E D E F S T R U C T E V E N T _ E I _ R E Q U E S T {

E V E N T _ N E T W O R K _ F O R M A T _ T F O R M A T ;
E _ J 2 1 _ C M D _ T C M D ;
L O N G I D ;

} * E V E N T _ E I _ R E Q U E S T _ T ;

ONLY A SUBSET OF THE EVENT KERNEL FUNCTIONS ARE AVAILABLE AS REQUESTS.THE POSSIBLE REQUESTS ARE:

E V E N T PROTOCOL 57

T Y P E D E F E N U M E _ E I _ C M D {

E _ C L A S S _ N A M E ,
E _ E N A B L E _ C L A S S ,
E _ D I S A B L E _ C L A S S ,
E _ D E T A C H _ I N T E R P R E T E R ,
E _ D I S A B L E _ I N T E R P R E T E R ,
E _ D E L E T E _ I N T E R P R E T E R ,
E _ E N A B L E _ I N T E R P R E T E R ,
E _ K I L L ,
E _ S E N S 0 R _ N A M E ,
E _ D E S C R I P T O R ,
E _ V E R B O S E ,
E L V E R S I O N

} E _ E I _ _ C M D _ _ T ;

E . C L A S S . N A M E GET PRINT NAME OF EVENT CLASS. THE I D FIELD CONTAINS THE EVENT CLASS ID.

E . E N A B L E . C L A S S ENABLE PROCESSING OF EVENTS OF THE SPECIFIED CLASS WHICH IS CONTAINED IN THE I D FIELD OF THE
MESSAGE.

E J D I S A B L E . C L A S S DISABLE PROCESSING OF EVENTS OF A SPECIFIED CLASS WHICH IS CONTAINED IN THE I D FIELD OF THE
MESSAGE..

E_DETACH_INTERPRETER

DETACH EVENT INTERPRETER. THE I D FIELD OF THE MESSAGE CONTAINS THE EVENT INTERPRETER DESCRIPTOR.

E . D I S A B L E . I N T E R P R E T E R

DISABLE EVENT INTERPRETER. THE I D FIELD CONTAINS THE EVENT INTERPRETER DESCRIPTOR.

E_DELETE_INTERPRETER

DELETE EVENT INTERPRETER. THE I D FIELD CONTAINS THE EVENT INTERPRETER DESCRIPTOR.

E_ENABLE_INTERPRETER

ENABLE EVENT INTERPRETER. THE I D FIELD CONTAINS THE EVENT INTERPRETER DESCRIPTOR.

E . K I L L ACKNOWLEDGEMENT BY THE EVENT INTERPRETER THAT IT NO LONGER WANTS TO COMMUNICATE WITH THE
CLIENT SERVER. THIS MESSAGE IS ONLY SENT BY THE EVENT INTERPRETER AFTER IT RECEIVED A E . F I N A L

MESSAGE. The CLIENT ATTACHED TO EVENT INTERPRETERS CANNOT EXIT BEFORE HAVING RECEIVED AN E J O L L
MESSAGE.

E _ S E N S O R _ N A M E GET PRINT NAME OF EVENT SENSOR. THE I D FIELD CONTAINS THE EVENT SENSOR ID.

E_DESCRLPTOR GET TYPE DESCRIPTOR FOR USER DEFINED EVENT CLASS. THE I D FIELD CONTAINS THE EVENT CLASS ID.

E_VERBOSE CONTROL EVENT PROCESSING VERBOSITY IN CLIENT.

E_VERSION GET B E E AND PROTOCOL VERSION.

9.8 J CLIENT Replies
THE FORMAT OF A CLIENT reply IS:

T Y P E D E F S T R U C T E V E N T _ C L I E N T _ R E P L Y {

E V E N T _ N E T W O R K _ F O R M A T _ T F O R M A T ;
E V E N T _ R E T U R N _ T R E T U R N _ C O D E ;
C H A R I N F O [E J M A X P A T H L E N] ;

} * E V E N T U A L I E N T _ R E P L Y _ J : ;

The R E T U R N _ C O D E FIELD INDICATES SUCCESS (E . S U C C E S S) OR FAILURE (E . F A I L U R E) OF THE REQUEST I N THE CASE OF A

LOOKUP, THE I N F O FIELD CONTAINS THE NAME OF THE EVENT CLASS OR EVENT SENSOR. If THE EI REQUEST WAS E . V E R S I O N , I N F O

CONTAINS BEE'S VERSION NUMBER AND THE PROTOCOL VERSION SEPARATED BY A BLANK SPACE.

58 E V E N T PROTOCOL

9.9 Event Access Functions
Event access functions permit to access individual fields in an event. In the following we describe functions that

access the general fields as well as variant fields that depend on the event class.

9.9.1 General Access Functions
Fust we describe event access functions that are defined for all event messages:

(int) E_Type(E) Type of event E. The type is any scalar defined by E _ c l i e n t _ c m d _ t or
E _ E I _ c m d _ t .

(pointert) ETimestamp(E)
Pointer to time stamp of event E. In BEE 2.6, time stamps are not unique. The
time is read from the CAB clock, a 32 bit integer with a micro second resolution
which wraps around approximately every hour.

(long) E_Seconds(E)
Seconds in time stamp of event.

(long) EJTicks(E) Ticks in time stamp of event On a Unix host node, a tick is equal to a
microsecond. On a Nectar CAB, a tick is equal to 960 nanoseconds.

(int) E_Class(E) Event class of event
(int) E_Process_Id(E)

Process id of event If the event occurred in a Unix process, it is the Unix
process number of the client, if the event occurred on a Cab, it is the Nectar id of
the CAB processor.

(int) E_Thread_Id(E)
Thread id in which the event occurred. In NECTAR, the Nectarine Task id in
which the event occurred.

9.9.2 E_INIT Access Functions
For events of type E J N T T the following functions are defined:

(char *) EI_Window_Name(E)
Name of event interpreter(EI)'s X window.

(int) EI_Upper_Left_X(E)
Upper left x coordinate of El's X window (not the titlebar!).

(int) EI_Upper_Left_Y(E)
Upper left y coordinate of El's X window (not the title bar).

(int) EI_Heigfat(E) Height of El's X window.
(int) EIJVidth(E) Width of El's X window.
(char *) EI JTitle(E)

Main tide to be used by EI.
(char *) EIJXaxis(E)

Title to be attached to X axis.
(char *) EI_Yaxis(E)

Title to be attached to Y axis.
(int) EI_Xunit(E) Number of sub units on X axis.
(int) EI_Yunit(E) Number of sub units on Y axis.
EI_Xtype(E) Scale of X axis: Linear or logarithmic.
EI_Ytype(E) Scale of Y axis: Linear, percent or logarithmic.
(long) EI_Xlimit(E)

Maximum x value.

EVENT PROTOCOL 59

(long) EI_Ylimit(E)
Maximum y value,

(int) EI_SampIe_Time(E)
Time interval for sampling event probes,

(int) EI_Update_Rate(E)
Maximum number of events between view updates,

(int) EI_Update_Time(E)
Time interval between view updates,

(int) EI_Time_Window(E)
Range to be used when displaying time,

(int) EI_Text_Color(E)
Color of textual information such as sensor names, main title, etc. Colors
known by B E E are defined in b e e _ c o l o r . h.

(int) EI_Line_Color(E)
Color to be used for histogram columns, piecharts sectors and other lines.
Colors known by B E E are defined in b e e _ c o l o r . h.

9.93 E_EVERY And E_FINAL Access Functions
The following event access functions are defined on events of type E . E V E R Y and E.FTNAL:

(int) E_Qual(E) Denotes whether the event an event point, or the activation or termination of an
event range.

(int) E_Id(E) Event sensor descriptor (unique only at process level),
(long) EJLongJValue(E)

Value contained in variant of E.
(char *) E_String_Value(E)

Pointer to a string contained in variant of E.
(pointer^) E_Pointer_Value(E)

Pointer to an untyped value contained in variant of E.

9.9.4 EREGISTRATION And E_DEATH Access Functions
For events of type E_REGiSTRATlON and E _ D E A T H we have:

(char *) E_Client_Name(E)
Name of client.

E_Client_Process(E)
Process Id of Client.

E_Client_Port(E) B E E port of client server.

9.9.5 E_DESCRIPTOR Access Functions

(char *) E_Descriptor(E)
Type descriptor for event class.

9.10 Event Network Format

The event protocol offers several message formats: an Ascii format and a set of host formats. In the Ascii format
all the components of an event message are represented as text. If a client and an event interpreter are compiled by
the same compiler and execute on machines of the same architecture they can exchange messages in host format.
To determine whether boths parties can indeed share the same format, the event protocol contains a negotiation
phase when the client connects to the event interpreter. As a result of the negotiation the client knows which

60 E V E N T PROTOCOL

MESSAGE FORMAT IT CAN USE.

FOR PORTABILITY REASONS, THE EVENT PROTOCOL DESCRIBES ONLY THE ASCII FORMAT, BUT NONE OF THE HOST FORMATS. HOST

FORMATS ARE DETERMINED DE FACTO BY THE COMPILER'S ALLOCATION STRATEGY FOR STRUCTURES. CURRENTLY B E E SUPPORTS HOST

FORMATS for Sun, Vax AND CRAY. New HOST FORMATS CAN BE ADDED RELATIVELY EASY BY DEFINING new SCALARS FOR THE

ENUMERATED TYPE E V E N T _ N E T W O R K _ F O R M A T _ T and BY PROVIDING CONVERSION ROUTINES BETWEEN THE NEW FORMAT

and the ASCII FORMAT The ASCII FORMAT IS USED BY VARIOUS PARTS OF B E E , SUCH AS the EVENT FILER, BEE'S EVENT REPLAY

FACILITY and by the EVENT KERNEL WHEN EXCHANGING EVENTS, REQUESTS and REPLIES BETWEEN HETEROGENOUS HOSTS.

9.10.1 Events, Requests and Replies
D E F I N E E V E N T _ A S C I I _ M S G _ S I Z E 5 1 1
T Y P E D E F S T R U C T E V E N T _ A S C I I _ M S G {

E V E N T _ N E T W O R K _ F O R M A T _ T F O R M A T ;
C H A R E V E N T _ M E S S A G E [E V E N T _ A S C I I _ M S G _ S I Z E] ;

} * E V E N T _ A S C I I _ T ;

E J N I T
The FORMAT OF E V E N T _ M E S S A G E for AN EVENT MESSAGE of TYPE E J N T T IS:

(0 (< W I N D O W F I E L D S >) (< D I S P L A Y F I E L D S >) (< E V E N T R E C O R D >))

The < E V E N T R E C O R D > FIELDS are DESCRIBED IN Section 9.3. < W I N D O W F I E L D S > CONTAINS ENTRIES FOR EACH OF THE

FIELDS IN B E E _ W I N D O W _ I N F O _ T , and < D I S P L A Y F I E L D S > CONTAINS ENTRIES for EACH OF the FIELDS IN

B E E _ D I S P L A Y _ i n f O _ T DESCRIBED IN Section 9.8.1. The CORRESPONDING TYPE DESCRIPTOR IS

(%D (%S %D %D %D %D) \
(%S %S %S %D %D %D %D %D %D %D %D %D %D %D %D) \
(%D %D %D %X %D %D % D . % D))

E_EVERY and EJFTNAL
The FORMAT OF E V E N T _ M E S S A G E for EVENT MESSAGES of type E . E V E R Y and E_FINAL, RESPECTIVELY, IS:

(1 « E V E N T R E C O R D >))

(2 (< E V E N T R E C O R D >))

The FIELDS OF < E V E N T R E C O R D > are DESCRIBED IN SECTION 9.3. The CORRESPONDING TYPE DESCRIPTOR IS

(%D (%D %D %D %X %D %D %D.%D % S))

EJREGISTRATION and E_DEATH
The FORMAT OF E V E N T J M E S S A G E for EVENT MESSAGES OF TYPE E . R E G I S T R A T I O N and E J D E A T H , RESPECTIVELY, IS:

(3 (CLIENTNAROE N O D E P O R T) (< E V E N T R E C O R D >))

(4 (C L I E N T N A M E N O D E P O R T) « E V E N T R E C O R D >))

C L I E N T N A M E IS the full PATH name OF the EXECUTABLE RUNFILE. N O D E IS A UNIQUE IDENTIFICATION OF the WORKSTATION ON

WHICH the CLIENT IS RUNNING. P O R T IS the CLIENT'S CLIENT SERVER PORT. The FIELDS OF < E V E N T R E C O R D > are DESCRIBED

IN SECTION 9.3. The CORRESPONDING TYPE DESCRIPTOR IS

(%D (%S %X %D %D %X %D) (%D %D %D %X %D %D % D . % D))

EJDESCRIPTOR
The FOX-mat OF EVENT ENTRIES OF TYPE EJDESCRIPTOR IS

(7 (T Y P E) (< E V E N T R E C O R D >))

T Y P E CANNOT CONTAIN any BLANKS. The EVENT CLASS IN E V E N T R E C O R D CONTAINS the EVENT CLASS for T Y P E . The

CORRESPONDING TYPE DESCRIPTOR IS

(%D (%S) (%D %D %D %X %D %D % D . % D))

EVENT PROTOCOL 61

9.10.2 Event File Format
An event file consists of a header and a list entries in Ascii format:

(Bee__Version P r o t o c o l _ V e r s i o n)
(Cmd Event)

(Cmd Event)

The header describes the Bee version and the event protocol version of the event interpreter that created the event
file. Each of the entries (Cmd Event) describe an event generated by a client, a request initiated by a event
interpreter or a client reply. Entries in an event file are only partially ordered by the timestamps of the generating
clients. Event files can be automatically produced by attaching the event interpreter "bee^filer" 1 0, but they can also
edited manually. An example of an event file is shown below:

(B E E 2 . 8 : 2 5 - O c t - 1 9 9 0 0)

(3 (t e s t 5506 8 0 0 2 f a d c 2205 0 0) (1 1 2 16559 8 0 0 2 f a d c 2205 0 4 . 9 4 5 4 4 4))
(0 (c o u n t e r 0 0 100 2 0 0) (P r o f i l e s e e s P e r c e n t 0 0 0 0 0 5 1 20 1 0 0) \

(1 0 0 14473 3 0 0 2 f a d c 2205 0 5 .0))
(1 (1 0 0 14473 8 0 0 2 f a d c 2 2 0 5 0 5 .0 f o o))
(1 (1 0 1 14473 8 0 0 2 f a d c 2 2 0 5 0 6 .0))
(1 (1 0 0 14473 8 0 0 2 f a d c 2 2 0 5 0 1 3 . 5 1 0 0 7 1))
(1 (1 0 1 14473 8 0 0 2 f a d c 2 2 0 5 0 1 3 . 5 1 0 4 4 7))
(1 (9 0 0 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 5 8 3 2 8 b a r))
(1 (9 0 1 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 5 8 7 1 5))
(1 (10 0 0 16559 8 0 0 2 f a d c 2205 0 2 7 . 8 5 8 3 2 8 h e l l o))
(1 (10 0 1 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 5 8 7 1 5))
(1 (9 0 0 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 6 2 6 0 0))
(1 (10 0 0 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 6 2 0 0 5))
(1 (10 0 1 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 6 2 3 8 9))
(1 (9 0 1 16559 8 0 0 2 f a d c 2 2 0 5 0 2 7 . 8 6 3 0 0 0))
(7 (%f) (5 4 2 1 6 5 5 9 8 0 0 2 f a d c 2205 0 2 9 . 7 4 3 5 5 0))
(7 (%f) (6 4 2 16559 8 0 0 2 f a d c 2205 0 2 9 . 7 4 3 5 5 2))
(1 (5 4 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 3 5 5 4 S e n s o r A))
(1 (5 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 3 7 3 5 30))
(1 (6 4 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 3 9 2 0 S e n s o r B))
(1 (6 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 4 0 7 7 4 0 . 4 5))
(1 (7 4 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 4 2 6 2 S e n s o r C))
(1 (7 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 2 9 . 7 4 4 4 2 0 40))
(1 (5 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 1 9 3 . 8 8 3 6 9 5 25))
(1 (6 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 1 9 3 . 8 8 3 9 4 3 3 5 . 3 4))
(1 (7 3 2 16559 8 0 0 2 f a d c 2 2 0 5 0 1 9 3 . 8 8 4 2 5 6 45))
(2 (- 1 1 2 16559 8 0 0 2 f a d c 2205 0 1 9 4 . 8 8 4 2 5 6))

(4 (t e s t 5506 8 0 0 2 f a d c 2205 0 0) (- 1 1 2 16559 8 0 0 2 f a d c 2205 0 1 9 4 . 8 8 4 2 5 6))

9.11 Protocol Interface
The following functions describe the interface of the event protocol.

Event_Send_Init
Send message E of type EJNTT reliably to event interpreter at port Port.

INTERFACE:

v o i d E v e n t _ S e n d _ I n i t (P o r t , E)
B e e _ g l _ p o r t P o r t ;
E v e n t _ t E;

PARAMETERS:

P Port of remote event interpreter.

, 0Note that the event filer currently stores only event messages, but not event requests or event responses. Thus BEE is not able to renl*v t lw
complete event related behavior of a client from the event file of an event filer. responses, nus BEE is not able to replay the

62 EVENT PROTOCOL

E Init Message

RETURNS: Nothing.
NOTES: Event_connect_error is set to EJFAILURE if event interpreter is unreachable.

Event_Send_Every
Send message E of type E_EVERY reliably to event interpreter at port Port.

INTERFACE:
v o i d E v e n t _ S e n d _ E v e r y (P o r t , E)
B e e _ g l _ p o r t P o r t ;
E v e n t _ t E;

PARAMETERS:

Port Port of remote event interpreter.

E Every Message

RETURNS: Nothing.
NOTES: Event_connect_error is set to E.FAILURE if event interpreter is unreachable.

Event_Send_Final
Send message E of type E . F I N A L reliably to event interpreter at port Port.

INTERFACE:
v o i d E v e n t _ S e n d _ F i n a l (P o r t , E)
B e e _ g l _ p o r t P o r t ;
E v e n t _ t E;

PARAMETERS:
Port Port of remote event interpreter.

E Final Message

RETURNS: Nothing.
NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.

Event_Send_Registration
Send message E of type E_REGlSTRATlON reliably to event interpreter at port Port.

INTERFACE:
v o i d E v e n t _ S e n d _ R e g i s t r a t i o n (P o r t , E)
B e e _ g l _ p o r t P o r t ;
E v e n t _ t E;

PARAMETERS:
Port Port of remote event interpreter.
E Registration Message

NOTES: Event_connect_error is set to EJFAILURE if event interpreter is unreachable.

Event_Send_Client_Death
Send message E of type EJDEATH reliably to event interpreter at port Port

INTERFACE:
v o i d E v e n t _ S e n d _ C l i e n t _ D e a t h (P o r t , E)
B e e _ g l _ p o r t P o r t ;
E v e n t _ t E;

Port Port of remote event interpreter.
PARAMETERS:

EVENT PROTOCOL 63

E Client Death Message
RETURNS: Nothing.

NOTES: Event_connect_error is set to E_FAILURE if event interpreter is unreachable.
Event_Send_Descriptor

Send message E of type E_DESCRiPTOR reliably to event interpreter at port Port.
INTERFACE:

v o i d E v e n t _ S e n d _ D e s c r i p t o r (P o r t , E)
B e e _ g l _ p o r t P o r t ;
Event t E;

Port of remote event interpreter.
Type Descriptor Message

PARAMETERS:

Port
E

RETURNS: Nothing.

NOTES: Event_connect_error is set to E.FATLURE if event interpreter is unreachable.
Event_Receive_Msg

Receive an event message E on port Port, report size of message in Size.
INTERFACE:

v o i d Even t_Rece ive_Msg(S i ze , P o r t , E)
i n t S i z e ;
B e e _ g l _ p o r t P o r t ;
Event t E;

Size of received event message.
Port of remote event interpreter.
Event Message

RETURNS:
NOTES:

PARAMETERS:

Size
Port
E

Nothing.

Event_connect_error is set to E_FAILURE if event interpreter is unreachable.
Event_Send_Request

Send a Request to the client server at Port, waiting for an answer on ReplyPort.
INTERFACE:

v o i d E v e n t _ S e n d _ R e q u e s t (P o r t , R e q u e s t , R e p l y P o r t)
B e e _ g l _ p o r t P o r t ;
E v e n t _ E I _ r e q u e s t _ t Reques t ;
B e e _ g l _ p o r t R e p l y P o r t ;

PARAMETERS:

RETURNS:
NOTES:

Port Client server port
Request Event interpreter request.

ReplyPort Port on which event interpreter expects the reply from the client.
Nothing.

Event_connect_error is set to E_FAILURE if client is unreachable.

64 E V E N T P R O T O C O L

Event Receive Request
R e c e i v e a R e q u e s t at port Port, size of received message is placed in Size using the ReplylD specified when

sending the request.
I N T E R F A C E :

v o i d E v e n t _ R e c e i v e _ R e q u e s t (S i z e , P o r t , R e q u e s t , R e p l y l D)

i n t S i z e ;

B e e _ g l _ p o r t P o r t ;

E v e n t _ E I _ r e q u e s t _ t R e q u e s t ;

B e e _ g l _ p o r t R e p l y l D ;

P A R A M E T E R S :

Size of received message.
Event interpreter port.
Event interpreter request.
Port or ID on which event interpreter expects the reply from the client.

Size
Port
Request
ReplyPort

R E T U R N S : Nothing.
N O T E S : Event_connect_error is set to E . F A I L U R E if client is unreachable

Event_Send_RepIy
Send a reply Item to event interpreter identified by ReplylD.

I N T E R F A C E :

v o i d E v e n t _ S e n d _ R e p l y (R e p l y l D , I t e m)

E v e n t _ E I _ r e q u e s t _ t I t e m ;

B e e _ g l _ j ? o r t R e p l y l D ;

P A R A M E T E R S :

Item
ReplylD

Request to be sent.
ID - sent with request- on which event interpreter expects the reply from the
client

R E T U R N S : Nothing.

N O T E S : Event_connect_error i s set to E J F A I L U R E i f event interpreter i s unreachable.

Event_Receive_Reply

Receive a reply Item from a client server request o n port Port, size o f received message is placed i n Size.

I N T E R F A C E :

v o i d E v e n t _ R e c e i v e _ R e p l y (S i z e , P o r t , I t e m) i n t S i z e ;

B e e _ g l _ p o r t P o r t ;

E v e n t _ c l i e n t _ r e p l y _ I t e m ;
P A R A M E T E R S :

Size of received message.
Event interpreter port
Reply received from client

Size
Port
Item

R E T U R N S : Nothing.
N O T E S : Event_connect_error is set to E _ F A I L U R E if client is unreachable.

Event_Host_To_Ascii
Convert event message from host format to Ascii format.

I N T E R F A C E :

EVENT PROTOCOL 65

v o i d Even t_Hos t_To_Asc i i (E, CE)
Event__t E;
E v e n t _ A s c i i _ t CE;

PARAMETERS:

Original event message.
Converted event message.

RETURNS:
NOTES:

£
CE

Nothing.

This function is automatically called by the send functions of the event protocol if the event
interpreter is located on a heterogenous node.

Event_Ascii_To_Host
Convert event message from Ascii format into format used by host.

INTERFACE:

v o i d Even t_Asc i i_To_Hos t (E, CE)
E v e n t _ A s c i i _ t CE;
E v e n t _ t E;

PARAMETERS:

RETURNS:
NOTES:

Original event message in Ascii format
Converted event message in host format.

E

CE

Nothing.

This function is automatically called by the r e c e i v e functions of the event protocol if the
received message is in Ascii format.

E V E N T KERNEL S U M M A R Y

E V E N T K E R N E L S U M M A R Y

I . BEE S u m m a r y

L I Even t Sensors

L l . l Language Independent Sensors

Event_Sensor(Name, Class, Attr, Variant, EID)
Event sensor for a user defined event class (with EID parameter).

1.1.2 C Language Sensors

EVENT_SENSOR(Name, Class, Attr, Variant, EID)
Event sensor for a user defined event class (with EID parameter).

EVENT(Name, Class, Attr, Variant)
Event sensor for a user defined event class.

BEGIN_PROCEDURE(Name)
Activation of an event range of class E . P R O C E D U R E .

END_PROCEDURE(Name)
Termination of an event range of class E . P R O C E D U R E .

BEGIN J£VENT(Name)
Activation of an event range of class E . E V E N T .

END_EVENT(Name)
Termination of an event range of class E . E V E N T .

POINT_EVENT(Sensor_Name)
Event point of event class E . E V E N T .

1.2 Even t Sensor Func t ions

Event_Sensor_Max()
Maximum number of event sensors allowed in client program.

Event_Sensor_Controi(C, Flag)
Disable/enable all event sensors of a given event class C.

Event_Sensor_Filter(C, Filter)
Define global filter Filter to be applied to all event sensors of event class C.

1.3 E v e n t Ini t ia l izat ion Func t ions
Eventlnitialize (C)

Initialize the event processing facility for client C.
Event_Finalize (C)

To be called before the client finishes its execution on a node.
Event_Create_Table (ET, ENT)

Allocate an event table (system or task event table).
Event_Cleanup_Table (ET, ENT)

Deallocate a event table (system or task event table).

68 E V E N T KERNEL S U M M A R Y

1.4 Even t N a m i n g Func t ions

Event_class_t Event_Register_Class(Name, Type, Size)
Define a new event class Name with a variant part of type Type occupying Size bytes.

Event_Client_Name()
Return name of client program.

Event_Class_Name(C)
Return name of event class C.

Event_Class_ID(Name)
Return the event class descriptor of a predefined or user event class.

Event_Register_Name(Name, EID)
Enter name Name of event sensor into symbol table and return its event sensor descriptor EID.

Event_Sensor_Name(EID)
Return name of event sensor given an event sensor descriptor EID.

1.5 Even t G e n e r a t o r Func t ions

void Event_Generate(Class, Attr, EID, Variant)
Event_Generate assembles the components event sensor EID, class Class, attribute Attr and
event class specific information Variant into an event message and passes it to the event
handler.

Event_Regenerate (E)
Event_Regenerate passes an event message to the event handler without modifying the
timestamp.

1.6 Even t H a n d l e r Func t i ons
Event_Handle (E) Determine list of attached event interpreters for event E and pass £ to their Every function.
Event_Enable (C) Enable the event class C in the current event table.
Event_Delete(C) Delete the event class C from the current event table.
Event_Disable(C) Disable the event class C.

1.7 Even t I n t e r p r e t e r Func t ions

Event_Delete_Interpreter (EIJ0>)
Delete event interpreter EI_ID from the EI table.

EventDetachlnterpreter (EIJ0>)
Execute the F i n a l () function of an event interpreter for all event classes it has been attached
to and delete it from the current event table.

EventDisableJtaterpreter (EI_ID)
Disable event interpreter EI_ID.

EventEnableJnterpreter (EIID)
Enable eventinterpreter EIJQ).

1.8 Even t Service Func t ions
Event_Enter_Interpreter(S, I, E, F, Class, Filter, Enter_Mode, ClientJDeathJVlode)

" " Enter event interpreter with service name N into name server domain.
EventJLookupJfaterpreter(S, I, E, F, C, Filter, Location)

E V E N T KERNEL S U M M A R Y 69

Look up event interpreter at global name server.
Event_Enter_Service(S, Enter_Mode, D)

Make B E E service S known to the global name server in the domain b(D) and return its B E E
Enter_Mode specifies what to do if the service already exists.

Event_Lookup_Service(S, D)
Lookup service S in the BEE name server domain D.

Event_ Attach_Client_Port(Port)
Attach event interpreter to a client specified by its client server port Port.

L 9 E v e n t I n t e r p r e t e r C o n t r o l F u n c t i o n s

Event_Replay(F) Read events from an event file F.
Event_Update_Rate(Nr)

Set the event interpreter update rate.
Event_UpdateJTime(Time)

Set maximum time between event interpreter window updates.
Event_Display(N) The name N of the workstation to be used by event interpreters for display.
Event_Window(N, X, Y, W, H, T, L)

Window configuration hints for event interpreter.
Event_Font(F) Name of type font for text.
Event_Histogram_View(TitIe, Xname, Yname, Xtype, Ytype, Xlimit, Ylimit)

Layout information for the histogram view.
Event_Linegraph_View(Title, Xname, Yname, Xtype, Ytype, Xlimit, Sliding_Window, Ylimit)

Layout information for the linegraph view.

L 1 0 Miscel laneous Func t ions

Event_Virtual_CUentJTime(E)
Convert the time stamp of client event E to event interpreter time.

Event_Get_Time_Delta(E, Delta)
Compute the difference between the timestamp in event E and the current clock.

Event_Table_Inheritance(Flag)
Enable/disable the inheritance mode for event tables.

Event_Remote_Print (Flag)
Redirect the output of P R I N T . M S G macros to event interpreter "bee_print_msg".

Event_Init_Debug_Switches()
Set event kernel debug switches.

Event_Version () Print BEE ' s version number.
Event_Verbose (Flag)

Enable/disable verbosity when executing event kernel functions.
Event_Lookup_Retry (Retry)

Set the number of retries when looking up an event interpreter service.
E vent_B uffer_Size (Nr_of_events)

Size of event buffers allocated by the event kernel.

70 E V E N T KERNEL S U M M A R Y

1.11 E v e n t Protocol Func t ions

Event_Send_Init(Port, E)
Send init message E reliably to event interpreter at port Port

Event_SendJEvery(Port, E)
Send every message E reliably to event interpreter at port Port.

Event_Send JFinal(Port, E)
Send final message E reliably to event interpreter at port Port.

Event_Send_Registration(Port, E)
Send client registration message E reliably to event interpreter at port Port.

Event_Send_Client_Death(Port, E)
Send client death message E reliably to event interpreter at port Port.

Event_Send_Descriptor(Port, E)
Send type descriptor message E reliably to event interpreter at port Port.

Event_Send_Request(Port, Request, ReplyPort)
Send a Request to the client server at Port waiting for an answer on ReplyPort.

Event_Send_Repiy(ReplyID, Item)
Send a reply Item to event interpreter identified by ReplylD.

Event_Receive_Msg(size, Port, E)
Receive an event message E on port Port, report size of message in Size.

Event_Reeeive_Request(Size, Port, Request, ReplylD)
Receive a Request at port Port, size of received message is placed in Size.

Event_ReceiveJReply(Size, Port, Item)
Receive a reply Item from a client server request on port Port, size of received message
placed in Size.

71

R e f e r e n c e s

[1] Ziy a Aral and Ily a Gertner.
High-Levei Debugging in Parasight.
In Workshop on Parallel and Distributed Debugging, pages 151-160. ACM, Madison Wisconsin, May,

1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

[2] Emmanuel A. Arnould, Francois J. Bitz, Eric C. Cooper, H. T. Kung, Robert D. Sansom and Peter
A. Steenkiste.
The Design of Nectar A Network Backplane for Heterogeneous Multicomputers.
In Proceedings of the Third International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 205-216. ACM/IEEE, Boston, April, 1989.
[3] Peter Bates.

Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior.
In Workshop on Parallel and Distributed Debugging, pages 11-22. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

[4] Thomas E. Bihari and Karsten Schwan.
Dynamic Adaptation of Real-Time Software for Reliable Performance.
Technical Report OSU-CISRC-5/88-TO17, Ohio State University, May, 1988.

[5] Bemd Bruegge and Peter Hibbard.
Generalized Path Expressions - A High Level Debugging Mechanism.
Journal of Systems and Software 3:265-276,1983.

[6] Eric C. Cooper, Peter A. Steenkiste, Robert D. Sansom, and Brian D. Zill.
Protocol Implementation on the Nectar Communication Processor.
In Proceedings of the SIGCOMM '90 Symposium on Communications Architectures and Protocols, pages .

ACM, Philadelphia, September, 1990.
Also published as CMU Technical Report CMU-CS-90-153.

[7] IJ.PElshoff.
A Distributed Debugger for Amoeba.
In Workshop on Parallel and Distributed Debugging, pages 1-10. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

[8] Riccardo Guesella and Stefano Zatti.
The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.2BSD.
IEEE Transactions on Software Engineering 15(7):847-853, July, 1989.

[9] Dieter Haban and Dieter Wibranietz.
A Hybrid Monitor for Behavior and Performance Analysis of Distributed Systems.
IEEE Transactions on Software Engineering 16(2): 197-211, February, 1990.

[10] Jeffrey Joyce, Greg Lomow, Konrad Slind and Brian Unger.
Monitoring Distributed Programs.
ACM Transactions on Computer Systems 5(2):121-150, May, 1987.

[11] Michael J. Kaelbling and David M. Ogle.
Minimizing Monitoring Costs: Choosing between Tracing and Sampling.
In 23rd International Hawaii Conference on System Sciences, pages 314-320. January, 1990.

[12] Ted Lehr, Zary Segall, Dalibor Vrsalovic, Eddie Capian, Alan Chung, and Charles Fineman.
Visualizing Performance Debugging.
IEEE Computer 22(10):38-52, October, 1989.

[13] Allen D. Malony, Daniel A. Reed, David C. Rudolph.
Integrating Performance, Data Collection, Analysis and Visualization.
Performance Instrumentation and Visualization.
ACM Press, 1990, pages 73-97.
Edited by Margaret Simmons, Rebecca Koskela.

72

[14] Russell D. McLaren and William A. Rogers.
Instrumentation and Performance Monitoring of Distributed Systems.
In Proceedings of the Fifth Distributed Memorv Computing Conference, pages 1180-1186. IEEE. April,

1990.
[15] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy

Torzewski.
IPS-2: The Second Generation of a Parallel Program Measurement System.
IEEE Transactions on Parallel and Distributed Systems 1(2):206-217, April, 1990.

[16] David M. Ogle, Karsten Schwan, and Richard Snodgrass.
The Dynamic Monitoring of Real-Time Distributed and Parallel Systems.
Technical Report GIT-ICS-90/23, Georgia Institute of Technology, May, 1990.

[17] S. P. Reiss, E. Golin and R. Rubin.
Prototyping Graphical Languages with GARDEN.
In IEEE Conference on Visual Languages. IEEE, 1986.

[18] Richard Snodgrass.
A Relational Approach to Monitoring Complex Systems.
ACM Transactions on Computer Systems 6(2): 157-196, May, 1988.

[19] David Socha, Mary L. Bailey and David Notkin.
Voyeur Graphical Views of Parallel Programs.
In Workshop on Parallel and Distributed Debugging, pages 206-215. ACM, Madison Wisconsin, May,

1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

[20] Peter SteenMste.
Nectarine - A Nectar Interface.
1988.
Carnegie Mellon University, Internal document.

[21] H. Tokuda, M. Kotera, C. MErcer.
A Real-Time Monitor for a Distributed Real-Time Operating System.
In Workshop on Parallel and Distributed Debugging, pages 68-77. ACM, Madison Wisconsin, May, 1988.
Also published in SIGPLAN Notices, Volume 24, Number 1, January 1989.

[22] W.W.Wilcke, D.G.Shea, R.GBooth, D.H.Brown, M.E.Giampapa, L.Huisman, G.R. Irwin, E.Ma,
T.T.Murakami, F.T.Tong, P.R.Varker and D.J. Zukowski.
The IBM Victor Multiprocessor Project.
In Proceedings of the First Conference on Hyper cube Multiprocessors. IEEE, Monterey, California, March,

1989.

BEE Functionality

BEGINJEVENT 31
BEGIN PROCEDURE 30

END_EVENT 31
ENDJPROCEDURE 31
EVENT s e n s o r 30
Even t_Asc i i_To_Hos t 65
E v e n t _ A t t a c h _ C l i e n t _ P o r t 42
E v e n t _ B u f f e r _ S i z e 49
Even t_Cla s s_ ID 34
Event_Class_Name 34
Even t_Cleanup_Tab le 33
Event_Cl ien t_Name 34
E v e n t _ C l i e n t _ S e r v e r 41
E v e n t _ C r e a t e _ T a b l e 33
E v e n t _ D e l e t e 37
E v e n t _ D e t a c h _ I n t e r p r e t e r 41
E v e n t D i s a b l e 38

Even t_Send_F ina l 62
E v e n t _ S e n d _ I n i t 61
E v e n t _ S e n d _ R e g i s t r a t i o n 62
Event_Send_Reply 64
Event_Send_Reques t 63
Even t_Sensor 29
E v e n t _ S e n s o r _ C o n t r o l 32
E v e n t _ S e n s o r _ F i l t e r 32
Event_Sensor_Ma:s 31
E v e n t _ T a b l e _ I n h e r i t a n c e 48
Even t_Upda te_Rate 43
Event^Verbose 49
E v e n t _ V e r s i o n 49
Event_Vi r t ua 1_C 1 i e n t_T ime 47
Event Window 44

POINT EVENT 31

User d e f i n e d e v e n t s 34
E v e n t _ D i s a b l e _ I n t e r p r e t e r 40
E v e n t _ D i s p l a y 44
Event_EI_Sample_Time 43
E v e n t _ E I _ S e r v e r 41
Svent_EI_Update_Time 43
Even t_Enab le 37
E v e n t _ E n a b l e _ I n t e r p r e t e r 40
E v e n t _ E n t e r _ I n t e r p r e t e r 38
E v e n t _ E n t e r _ S e r v i c e 42
E v e n t _ F i n a l i z e 33
Event_Font 45
E v e n t ^ G e n e r a t e 35
Event_Get_Time_Del ta 47
Event_Handle 36
Even t_Hand le_Ra te 36
Event_His togram_View 45
Even t_Hos t_To_Asc i i 64
E v e n t _ I n i t i a l i z e 32
Event_Ini t_Debug__Switches 48
Event_Linegraph_View 46
E v e n t _ L o o l c u p _ I n t e r p r e t e r 39
E v e n t _ L o o k u p _ R e m o t e _ I n t e r p r e t e r 40
Event_Lookup_Ret ry 49
Event_Loo)cup_Service 42
Event_Name 35
E v e n t _ P r o t o c o l _ V e r s i o n 49
Event_Receive_Msg 63
Even t_Rece ive_Rep ly 64
Even t_Rece ive_Reques t 64
E v e n t _ r e g e n e r a t e 36
E v e n t _ R e g i s t e r _ C l a s s 34
Event_Regis te r_Name 35
E ve nt_Remot e_P r i n t 48
Even t_Rep lay 43
E v e n t _ S e n d _ C l i e n t _ D e a t h 62
E v e n t _ S e n d _ D e s c r i p t o r 63
Event__Send__Every 62

