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Abstract 

This paper presents a stereo matching method which uses multiple stereo pairs with various 
baselines to obtain precise depth estimates without suffering from ambiguity. 

In stereo processing, a short baseline means that the estimated depth will be less precise 
due to narrow triangulation. For more precise depth estimation, a longer baseline is desired. 
With a longer baseline, however, a larger disparity range must be searched to find a match. As 
a result, matching is more difficult and there is a greater possibility of a false match. So there 
is a trade-off between precision and accuracy in matching. 

The stereo matching method presented in this paper uses multiple stereo pairs with different 
baselines generated by a lateral displacement of a camera. Matching is performed simply by 
computing the sum of squared-difference (SSD) values. The SSD functions for individual 
stereo pairs are represented with respect to the inverse depth (rather than the disparity, as is 
usually done), and then are simply added to produce the sum of SSDs. This resulting function is 
called the SSSD-in-inverse-depth. We show that the SSSD-in-inverse-depth function exhibits a 
unique and clear minimum at the correct matching position even when the underlying intensity 
patterns of the scene include ambiguities or repetitive patterns. An advantage of this method 
is that we can eliminate false matches and increase precision without any search or sequential 
filtering. 

This paper first defines a stereo algorithm based on the SSSD-in-inverse-depth and presents 
a mathematical analysis to show how the algorithm can remove ambiguity and increase pre­
cision. Then, a few experimental results with real stereo images are presented to demonstrate 
the effectiveness of the algorithm. 
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1 Introduction 
Stereo is a useful technique for obtaining 3-D information from 2-D images in computer vision. 
In stereo matching, we measure the disparity d, which is the distance between the corresponding 
points of left and right images. The disparity d is related to the depth z by 

d = B F - (1) z 
where B and F are baseline and focal length, respectively. 

This equation indicates that for the same depth the disparity is proportional to the baseline, or 
that the baseline length B acts as a magnification factor in measuring d in order to obtain z. That is, 
the estimated depth is more precise if we set the two cameras farther apart from each other, which 
means a longer baseline. A longer baseline, however, poses its own problem. Because a longer 
disparity range must be searched, matching is more difficult and thus there is a greater possibility 
of a false match. So there is a trade-off between precision and accuracy (correctness) in matching. 

One of the most common methods to deal with the problem is a coarse-to-fine control strategy 
[MP79][Gri85]. Matching is done at a low resolution to reduce false matches and then the result 
is used to limit the search range of matching at a high resolution, where more precise disparity 
measurements are calculated. Using a coarse resolution, however, does not always remove false 
matches. This is especially true when there is inherent ambiguity in matching, such as a repeated 
pattern over a large part of the scene (eg., a scene of a picket fence). Another approach to remove 
false matches and to increase precision is to use multiple images, especially a sequence of densely 
sampled images along a camera path [BBM87, Yam88, MSK89]. A short baseline between a 
pair of consecutive images makes the matching or tracking of features easy, while the structure 
imposed by the camera motion allows integration of the possibly noisy individual measurements 
into a precise estimate. The integration has been performed either by exploiting constraints on the 
EPI [BBM87, Yam88] or by a sequential Kalman filtering technique [MSK89, Hee89]. 

A stereo matching method presented in this paper belongs to the second approach: use of 
multiple images with different baselines obtained by a lateral displacement of a camera. Matching, 
however, is performed in a simple way. The sum of square-difference (SSD) values are computed 
for each pair of stereo images. The SSD values are represented with respect to the inverse depth 
\ (rather than the disparity d, as is usually done). Those SSD functions from all the stereo pairs 
are simply added together to produce the sum of SSDs, which we call SSSD-in-inverse-depth. We 
show that the SSSD-in-inverse-depth function exhibits a unique and clear minimum at the correct 
matching position even when the underlying intensity patterns of the scene include ambiguities 
or repetitive patterns. An advantage of this technique is that we can eliminate false matches and 
increase precision without any search or sequential filtering. 

In the next section we present the method mathematically and show how ambiguity can be 
removed and precision increased by the method. Section 3 provides a few experimental results 
with real stereo images to demonstrate the effectiveness of the algorithm. 
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Figure 1: Camera positions for stereo 

2 Mathematical Analysis 
The essence of stereo matching is, given a point in one image, to find the most similar point 
in another image. The sum of squared differences (SSD) of the intensity values (or values of 
preprocessed images, such as bandpass filtered images) over a window is the simplest and most 
effective criterion for matching. In this section, we define the sum of SSD with respect to the 
inverse depth (SSSD-in-inverse-depth) for multiple-baseline stereo, and mathematically show its 
advantage in removing ambiguity and increasing precision. For this analysis, we use 1-D stereo 
intensity signals, but the extension to two dimensional images is straightforward. 

2.1 SSD Function 
Suppose that we have camera positions PO,PI,...,PH and a resulting set of stereo pairs with 
baselines . . . ,BH as shown in figure 1. Let FO(X) and/,(x) be the image pair at the camera 
positions PO and PI, respectively. Imagine a scene point Z whose depth is z. Its disparity dr® for 
the image pair taken from PQ and P, is 

The image intensity functions FO(X) and/,-(x) near the matching positions for Z can be expressed as 

The SSD value over a window W at a pixel position X for the candidate disparity is 
defined as 

(2) 

FO(X) = F(X) + NO(X) 

/.(*) = F(X-DM) + RN(X), 

assuming constant distance near Z and independent Gaussian white noise such that 

NO(X)MX)~N(0,<Tl). 

(3) 

(4) 

e«<(o0c,4o) = Y,VO(X+J)-FI(X + D®+ J))2 (5) 
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where the Zj&r means summation over the window. The d® that gives a minimum of ed(!)(xy d®) 
is determined as the estimate of the disparity at x. Since the SSD measurement e^d®) is a 
random variable, we will compute its expected value in order to analyze its behavior: 

£[e« 0(x,d( 0)] = E 

= E 

X)(f(* +f> -fix + d(0 - dK0 +j) + no(x +J) - m(x + + j)f 

£(A*+y) -fix+d® - dm 

+ E 

+ E 

J22<f(* +J) -fix + d® - dr® +j)(no(x +j) - m(x + d*> + J)) 

X)(«o(* +j) - rnQc + d® +j))2 

- HVix+D-fix + ^-drv+flf + W^, (6) 

where Nw is the number of the points within the window. For the rest of the paper, £[] denotes the 
expected value of a random variable. In deriving the above equation, we have assumed that is 
constant over the window. Equation (6) says that naturally the SSD function e^ix, d®) is expected 
to take a minimum when d® = d^, i.e., at the right disparity. 

Let us examine how the SSD function ed®(x,d®) behaves when there is ambiguity in the 
underlying intensity function. Suppose that the intensity signal f(x) has the same pattern around 
pixel positions x and x + a, 

f(x+J)=f(x + a+f), JEW (7) 
where a £ 0 is a constant. Then, from equation (6) 

Ele^ix, dr®)] = Efa©(x, d^ + a)] = 2NW<%. (8) 

This means that ambiguity is expected in matching in terms of positions of minimum SSD values. 
Moreover, the false match at dr® + a appears in exactly the same way for all i"; it is separated 
from the correct match by a for all the stereo pairs. Using multiple baselines does not help to 
disambiguate. 

2.2 SSD with respect to Inverse Depth 
Now, let us introduce the inverse depth C such that 

c- i . 
z 

(9) 
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From equation and (2), 

4® = BIFCR (10) 

4o = BIFC, (11) 

where (r and C are the real and the candidate inverse depth, respectively. Substituting these into 
equation (5), we have the SSD with respect to the inverse depth, 

««»(*, 0 s £ ( f ( * + y ) -ffc+BIFC +;)) 2 , (12) 

at position x for a candidate inverse depth (. Its expected value is 

EBAFLCQ] - E (^Cx+i) - f (x+BIF(( - Q + ; ) ) 2 + 2 A ^ . (13) 

Finally, we define a new evaluation function £(Q2..«)(x, 0» * e s u m °f SSD functions with 
respect to the inverse depth (SSSD-in-inverse-depth) for multiple stereo pairs. It is obtained by 
adding the SSD functions *«i)(x, Q for individual stereo pairs: 

t«12..«)(z, 0 = E *C©(*i 0- (I4) 

Its expected value is 

£[*«i2..*)(*,C)] 
- 01 

= (i5) 

In the next three subsections, we will analyze the characteristics of these evaluation functions to 
see how ambiguity is removed and precision is improved. 

2.3 Elimination of Ambiguity (1) 
As before, suppose the underlying intensity pattern/(x) has the same pattern around x and x + a 
(equation (7)). Then, according to equation (13), we have 

We still have an ambiguity; a minimum is expected at a false inverse depth Q = C- + sg?- However, 
an important point to be observed here is that this minimum for the false inverse depth Q changes 
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us position as the baseline 5, changes, while the minimum for the correct inverse depth £ does not 
This is the property that the new evaluation function, the SSSD-in-inverse-depth (14), exploits to 
eliminate the ambiguity. For example, suppose we use two baselines flt and B2 (5, d B2) From 
equation (15) 

£[e«i2)C*o, C)] = T>(f(xo+J)-fOco+BiF(C-0)+j))2 

+ E^ + y")-/(^+fi2F(C-C,)+;')) 2 + 4iVw<ra

2 (17) 

We can prove that 

E[eai2)(xo, Q] > 4Nwa2

n = £[eC(i2)(JCb, 0)1 for C ? (18) 

(refer to appendix A) In words, e«i2)(*o, 0 is expected to have the smallest value at the correct G-
That is, the ambiguity is likely to be eliminated by use of the new evaluation function with two 
different baselines. 

We can illustrate this using synthesized data. Suppose the point whose depth we want to 
determine is at x = 0 and the underlying function / (x) is given by 

/ W J < I ) + 2 (19) ' [ 1 if x < - 4 or 4 < x. 

Figure 2 (a) shows a plot of / (JC). Assuming that d^\) = 5, a\ = 0.2, and the window size is 5, the 
expected values of the SSD function ed(\)(xo, d(l)) are as shown in figure 2 (b). We see that there 
is an ambiguity: the minima occur at the correct match d{\) = 5 and at the false match d(\) = 13. 
Which match will be selected will depend on the noise, search range, and search strategy. Now 
suppose we have a longer baseline B2 such that §̂  = 1.5. From equations (6) and (10), we obtain 
E[e<i(i)] as shown in figure 2 (c). Again we encounter an ambiguity, and the separation of the two 
minima is the same. 

Now let us evaluate the SSD values with respect to the inverse depth ( rather than the disparity 
d by using equations (12) through (15). The expected values of the SSD measurements 
and £0<(2)] with baselines B\ and B2 are shown in figures 2 (d) and (e), respectively (the plot 
is normalized such that B\F = 1 ) . Note that the minima at the correct inverse depth (C = 5) 
does not move, while the minima for the false match changes its position as the baseline changes. 
When the two functions are added to produce the SSSD-in-inverse-depth, its expected values 
£[£<(i2)] are as shown in figure 2 (f). We can see that the ambiguity has been reduced because the 
SSSD-in-inverse-depth has a smaller value at the correct match position than at the false match. 

2.4 Elimination of Ambiguity (2) 

An extreme case of ambiguity occurs when the underlying function/ (x) is a periodic function, like 
a scene of a picket fence. We can show that this ambiguity can also be eliminated. 
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Figure 2: Expected values of evaluation functions: (a) Underlying function; (b)E[ed(\)]; (c)£fap)]; 
(d) £[««i)]; («) ̂ I«<(2)]; (0 £[«c(i2)l 
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Let/ (x) be a periodic function with period T. Then, each e<(i)(Jt, Q is expected to be a periodic 
function of C with the period ^ (for the proof, refer to appendix B). This means that there will 
be multiple minima of £<(o(x, 0 (i.e., ambiguity in matching) at intervals of jj? in (. When we use 
two baselines and add their SSD values, the resulting e^nfa, 0 will be still a periodic function of 
C, but its period T\z is increased to 

Tn=LCM f T T \ 
\BXF'B2F)' (20) 

where LCMQ denotes Least Common Multiple. That is, the period of the expected value of the 
new evaluation function can be made longer than that of the individual stereo pairs. Furthermore, 
it can be controlled by choosing the baselines B\ and Zfe appropriately so that the expected value 
of the evaluation function has only one minimum within the search range. This means that using 
multiple-baseline stereo pairs simultaneously can eliminate ambiguity, although each individual 
baseline stereo may suffer from ambiguity. 

We illustrate this by using real stereo images. Figure 3(a) shows an image of a sample scene. 
At the top of the scene there is a grid board whose intensity function is nearly periodic. We took ten 
images of this scene by shifting the camera vertically as in figure 4. The actual distance between 
consecutive camera positions is 0.05 inches. Let this distance be B. Figure 3 shows the first and 
the last images of the sequence. We selected a point X within the repetitive grid board area. The 
SSD values £<(,•)(*, Q over 5-by-5-pixel windows are plotted for various baseline stereo pairs in 
figure 5. The horizontal axis of all the plots is the inverse depth, normalized such that SBF = 1. 
Figure 5 illustrates the trade-off between precision and ambiguity in terms of baselines. That is, 
for a shorter baseline, there are fewer minima (i.e. less ambiguity), but the SSD curve is flatter 
(i.e. less precise localization). On the other hand, for a longer baseline, there are more minima (i.e. 
more ambiguity), but the curve near the minimum is sharper; that is. the estimated depth is more 
precise if we can find the correct one. 

Now, let us take two stereo image pairs: one with B = 5B and the other with B = 86. In figure 6, 
the dashed curve and the dotted curve show the SSD for B * 5B and B » 86, respectively. Let us 
suppose the search range goes from 0 to 20 in the horizontal axis, which in this case corresponds 
to 12 to 0 0 inches in depth. Though the SSD values take a minimum at the correct answer near 
C = 5, there are also other minima for both cases. The solid curve shows the evaluation function 
for the multiple-baseline stereo, which is the sum of the dashed curve and the dotted curve. The 
solid curve shows only one clear minimum; that is, the ambiguity is resolved. 
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(a) (b) 
Figure 3: 'Town" data set: (a) ImageO; (b) Image9 

imageO 

imagel 

image2 

image3 

image4 

imageS 

image6 

image7 

image8 

image9 

Baseline b 2b 3b 4b 5b 6b 7b 8b 9b 

Figure 4: "Town" data set image sequence 
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(c) 

(d) 

(e) 

(f) 

(g) 

9 7000 R g> 60001 
°> 5000R 

4000 

(h) 

5 10 ^15 20 
Figure 5: SSD values vs. inverse depth: (a) B = b; (b) B = lb; (c) B = 36; (d) 5 = 4b; (e) 5 = 5b; 
(t)B- 6b; (g) 5 = lb; (h) 5 = Sb. The horizontal axis is normalized such that SbF = 1. 
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Inverse depth 

Figure 6: Combining two stereo pairs with different baselines 

So far, we have considered using only two stereo pairs. We can easily extend the idea to 
multiple-baseline stereo which uses more than two stereo pairs. Corresponding to equation (20), 
the period of £[*«i2 .-*t)(x, 01 becomes 

Tn^ = LCM . . . , (21) \B\F B2F BHFJ 
where B\ ,52,. •. ,Bn are baselines for each stereo pair. 

We will demonstrate how the ambiguity can be further reduced by increasing the number of 
stereo pairs. From the data of figure 4, we first choose image 1 and image9 as a long baseline stereo 
pair, ie. (1)5 = 8ft. Then, we increase the number of stereo pairs by dividing the baseline between 
imagel and imagc9, i.e. (2) B » 4b and 8ft, (3) B * 2ft, 4ft, 6ft and 8ft, (4) B = ft, 2ft, 3ft, 4ft, 5ft, 
6ft, 7ft and 8ft. Figure 7 demonstrates that the SSSDs-in-inverse-depth shows the minimum at the 
correct position more clearly as more stereo pairs are used. 

2.5 Precision 
We have shown that ambiguities can be resolved by using the SSSD-in-inverse-depth computed 
from multiple baseline stereo pairs. The technique also increases precision in estimating the true 
inverse depth. We can show this by analyzing the statistical characteristics of the evaluation 
functions near the correct match. 
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Figure 7: Combining multiple baseline stereo pairs 

By using the Taylor expansion about we obtain 

f(x + BiF(( - <,) +j) « / ( x + 7 ) + B,F« - 0V'(x+j). (22) 

Substituting this into equation (12), we can approximate e^ix, Q near by a quadratic form of £: 

«cwU»0 « E("5'F(C-Cr)/r'U+y-) + no(j:+7")-«1(x + 5JFC+;-))2 

jew 

= BfF2a(x)(C - Q1 + WW*) - Ao(x))(C - Cr) + c,-(x), 
where 

yew 
- Ttf'(x+j)nk(x+j) 

jew 
d(x) = £ ( , i £ t + ; ) - r t o ( ; c + ; ) ) 2 . 

The estimated inverse depth & is the value C that makes equation (23) minimum; 

bi(x)-b0(x) 
0 = 0 -

BiFa(x) 

(23) 

(24) 

(25) 

(26) 

(27) 
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As shown in (13), the expected value of the estimate Cr is the correct value but it varies due to 
the noise. Following Appendix A in [MSK89], the variance of this estimate is given by 

v " » < « - i p 4 j - ( 2 8 > 

Basically, for the same amount of noise o%9 the variance is smaller (the estimate is more precise) 
as the baseline Bt is longer, or as the variation of intensity signal, a(x), is larger. 

We can follow the same analysis for £<(i2..*)0t, 0 of (14), the new evaluation function with 
multiple baselines. Near C-> it is 

«OT2.H.)CT, 0 * f F2a(pc)(C - Cr)2 +. 2 (f>iF<Mx) - b0(x))) ( C + £ cfc). (29) 

The variance of the estimated inverse depth ( r that minimizes this function is 

^ • n w ( 3 0 ) 

From equations (28) and (30), we see that 

1 * 1 i = - (3D 
Var(l2̂ )(C) tlVaruiC)' 

The inverse of the variance represents the precision of the estimate. Therefore, equation (31) means 
that by using the SSSD-in-inverse-depth with multiple baseline stereo pairs, the estimate becomes 
more precise. We can confirm this characteristic in figures 6 and 7 by observing that the curve 
around the correct inverse depth becomes sharper as more baselines are used. 

3 Experimental Results 
This section presents experimental results of the multiple-baseline stereo based on SSSD-in-inverse-
depth with real 2D images. A complete description of the algorithm is included in Appendix C. 

The first result is for the "Town" data set that we showed in figure 3. Figures 8 (a) and (b) are 
the depth map and its isometric plot with a short baseline, B = 3b. The result with a single long 
baseline, B = 9fe, is shown in figure 9. Comparing these two results, we observe that the depth map 
computed by using the long baseline is smoother on flat surfaces, i.e., more precise, but has gross 
errors in matching at the top of the scene because of the repeated pattern. These results illustrate 
the trade-off between ambiguity and precision. Figure 10, on the other hand, shows the depth map 
and its isometric plot obtained by the new algorithm using three different baselines, 3b, 6b, and 9b. 
For comparison, the corresponding oblique view of the scene is shown in figure 11. We can note 
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(a) (b) 
Figure 8: Result with a short baseline, B = 3b: (a) Depth map; (b) Isometric plot of the depth map 
from the upper left corner. The matching is mosdy correct, but very noisy. 

correct depth 

^ w r o n g 
depth 

(a) ( b ) 
Figure 9: Result with a long baseline, B = 9b: (a) Depth map; (b) Isometric plot. The matching is 
less noisy when it is correct. However, there are many gross mistakes, especially in the top of die 
image where, due to a repetitive pattern, the matching is completely wrong. 

13 



(a) (b) 
Figure 10: Result with multiple baseline, B = 3b, 6b, and 9b: (a) Depth map; (b) Isometric plot 
Compared with figures 9(b) and 10(b), we see that the depth map is less noisy and that gross errors 
have been removed. 

Figure 11: Oblique view 
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W (b) 
Figure 12: "Coal mine" data set, long-baseline pair 

that the computed depth map is less ambiguous and more precise than those of the single-baseline 
stereo. 

Figure 12 shows another data set used for our experiment Figures 13 and 14 compare the 
depth maps computed from the short baseline stereo and the long baseline stereo: the longer 
baseline is five times longer than the short one. For comparison, the actual oblique view roughly 
corresponding to the isometric plot is shown in figure 15. Though no repetitive patterns are apparent 
in the images, we can still observe gross errors in the depth map obtained with the long baseline 
due to false matching. In contrast, the result from the multiple-baseline stereo shown in figure 16 
demonstrates both the advantage of unambiguous matching with a short baseline and that of precise 
matching with a long baseline. 

Finally, figure 17 shows the depth map obtained by our stereo matching algorithm with a locally 
adaptive window, which has been presented in [KO90], for which the depth map of figure 16 is 
used as the initial estimate. The map exhibits both smoothness for flat surfaces and sharpness at 
depth edges. 

4 Conclusions 

S Z H Z ? ^ ^ " M W u S t C r C O m a t C h i n g m c t h o d w h i c h u s « multiple baseline stereo 
f^J^u T overcome A e **k-°ff between precision and accuracy (avoidance of 
false matches) in stereo. The method is rather straightforward: we represent t £ SSD^Sto to 
mdmdual stereo pars as a faction of the inverse depth, ami add JL funcno's ^ S t ^ 
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(a) (b) 
Figure 13: Result with a short baseline: (a) Depth map; (b) Isometric plot of the depth map viewed 
from the lower left corner 

(a) 0» 
Figure 14: Result with a long baseline: (a) Depth map; (b) Isometric plot 
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Figure 15: Oblique view 



(a) (b) 

(c) (d) 
Figure 17: Isometric plots of the depth map computed by an iterative stereo algorithm with a locally 
adaptive window, in which the depth map of figure 16 from the multiple-baseline stereo was used 
as the initial map: (a) and (b) Isometric plot and corresponding view from the lower left corner, 
(c) and (d) Isometric plot and corresponding view from the upper right comer. 
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function, the SSSD-in-inverse-depth, exhibits an unambiguous and sharper minimum at the correct 
matching position. As a result there is no need for search or sequential estimation procedures. 

The algorithm is easily amenable to parallel hardware implementation. Figure 4 shows a 
possible scheme with multiple cameras, SSD calculators, adders and time delays. 

The key idea of the method is to relate SSD values to the inverse depth rather than the disparity. 
As an afterthought, this idea is natural. Whereas disparity is a function of the baseline, there is only 
one true (inverse) depth for each pixel position for all of the stereo pairs. Therefore there must be a 
single minimum for the SSD values when they are summed and plotted with respect to the inverse 
depth. 

We have shown the advantage of the proposed method in removing ambiguity and improving 
precision by analytical and experimental results. 
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Camera 

Delay of 
units 

Figure 18: A scheme for parallel hardware implementation of the multiple baseline stereo algorithm 
by SSSD-in-inverse-depth. We place n + 1 multiple cameras along an axis. All cameras are 
synchronized. Pairs of camera output signals (the 0-th and the i-th) are fed into nd^ax SSD 
calculators with appropriate time delays, where d^a* is the maximum disparity for the stereo pair 
with the longest baseline. Each SSD calculator computes the SSD values between a particular 
image pair for a particular (quantized) inverse depth. The outputs of the SSD calculators for the 
same inverse depth are connected to an adder to produce the sum of SSD's (SSSD) for that inverse 
depth. These SSSD values are compared, and the inverse depth that shows the minimum is selected 
as the estimate. o n 



for; € W, where 

Since Bx ^ B2 and £ ft Q, 

So, we have 

F(X+J) = /(X + fli+y) 
and F(X+F) = F(X + A2+J), 

AX = BxFiQ-Q 
= B2F($-C). 

A\ F A2. 

A SSSD-in-inverse-depth for Ambiguous Pattern 
Proposition: Suppose that there are two and only two repetitions of the same pattern around 
positions x and x + A where A ^ 0 is a constant. That is, for y 6 W 

F(X+J)=F(Z+J), i fandonly i f£=xor£=;c + a. (32) 

Then,iffl,^£2,forVC,C^Cr, 

E[eam(x,0] = HVIX+Ji-FIX+BMC-Q+J))2 

jew 

> 4AU* = £[<W*,C)]. (33) 

Proof: Tentatively suppose that for 3Q, Q ^ 

£ ( f ( * + y W ( * + * i F ( £ - Q + D F + EV^+FT-FB+WIQ-C)+J))2 = 0. (34) yew yew 

Then, it must be the case that 

(35) 

(36) 

FIX +J) = / (£ +y), for £ = X, X + a l f or X + a2. ( 3 7 ) 

^ssfbST" (32)- (34) *- n°'hoii i e •* —<-
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B Period of E[E^T)(X, Q] 

Proposition: If/ (x) is a periodic function with a period T, then E[E^(X^ Q] is a periodic function 
with the period 

Proof: Le t / (x) be a periodic function with a period T. That is, for VJC, 

/ ( j c )= / (x + *r), for* = 0 , ± l , ± 2 , . . . , (38) 

where T > 0 is the period, and there is no smaller value of T with this property. Using equations 
(13) and (38), 

= E<F(X+fi-F(X + BIF(C-Q+M2 + 2NWOL 
JEW 

= £[*«©(*, C)]. (39) 
That is, £[e((!-)(x, C)] is a periodic function of C- Next, we show that ^ is its period. For that, 
tentatively suppose V is the period such that 

r < w m 

Then, 
C + *m = £[«c©C*, 0], for VC. (41) 

Since this must be true for all C, let C be From equation (13). 

JEW 

Therefore, 
F(X)=F(X + KBIFT). (43) 

This means that/ (JC) has a period fijFT that is shorter than T because of (40). This is a contradiction 
and thus V cannot be the period of £[*c(o(*i 01- Therefore, E[E^(X, 01 is a periodic function of C 
with the period J^. 
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C Multiple-Baseline Stereo Algorithm 
We present a complete description of the stereo algorithm using multiple-baseline stereo pairs. The 
task is, given n stereo pairs, find the C that minimizes the SSSD-in-inverse-depth function, 

SSSD{x, 0 = £ X>o(* +J) -fi(x + BiFC +j))2. (44) 

We will perform this task in two steps: one at pixel resolution by minimum detection and the other 
at sub-pixel resolution by iterative estimation. 

Minimum of SSSD at Pixel Resolution 
For convenience, instead of using the inverse depth, we normalize the disparity values of individual 
stereo pairs with different baselines to the corresponding values for the largest baseline. Suppose 
B\ < B2 < • • • < Bn. We define the baseline ratio /?, such that 

Ri = (45) 

Then, 

BiFC^RiBnFC^Ri^ (46) 

where d(n) is the disparity for the stereo pair with baseline Bm. Substituting this into equation (44), 

SSSD(x, din)) = £ o(* +J) -fi(x + Ri<kn) +y))2. (47) 

We compute the SSSD function for a range of disparity values at the pixel resolution, and identify 
the disparity that gives the minimum. Note that pixel resolution for the image pair with the longest 
baseline (Bn) requires calculation of SSD values at sub-pixel resolution for other shorter baseline 
stereo pairs. 

Iterative Estimation at Sub-pixel Resolution 
Once we obtain disparity at pixel resolution for the longest baseline stereo, we improve the disparity 
estimate to sub-pixel resolution by an iterative algorithm presented in [MO89][OK90]. For this 
iterative estimation, we use only the image pair fo(x) andfn(x) with the longest baseline. This is due 
to a few reasons. First, since the pixel-level estimate was obtained by using the SSSD-in-inverse-
depth, the ambiguity has been eliminated and only improvement of precision is intended at this 
stage. Second, using only the longest-baseline image pair reduces the computational requirement 
for SSD calculation by a factor of n, and yet does not degrade precision too significantly. 
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In the experiments shown in section 3, we used the following algorithm for sub-pixel estimation: 
Let db(n) be the initial disparity estimate obtained at pixel resolution. Then, a more precise estimate 
is computed by calculating the following two quantities: 

Ad, = ^Jew(fo(x +j) - / « ( x + dbfr) +M'n{x + dm +j) ( 4 g ) 

Zjew<f& + d<Kn)+J))2 

- 2 _ 2 < % ( 4 9 ) 

The value Ad{H) is the estimate of the correction of the disparity to further minimize the SSD, and 
is its variance. We iterate this procedure by replacing do^ by 

dob) <- do(ii) + ^ ( « ) (50) 

until the estimate converges or up to a certain maximum number of iterations. 
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