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Abstract 

We have added multiple threads of control to the Standard ML programming language. Standard 
ML's support for first-class functions and automatic storage management influenced the design in 
a number of ways. We demonstrate how other concurrency and synchronization operations, such 
as cobegin/coend, futures, and events, can be implemented in terms of the thread interface. Finally, 
we describe three implementations of the thread interface: a coroutine version, a uniprocessor 
preemptive version, and a multiprocessor Mach-based version. 

This research was sponsored in part by the Defense Advanced Research Projects Agency, Information Science and 
Technology Office, under the title "Research on Parallel Computing," ARPA Order No. 7330, issued by DARPA/CMO 
under Contract MDA972-90-C-0035, and in part by a National Science Foundation Graduate Fellowship. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as representing the official 
policies, either expressed or implied, of the U.S. Government 



Keywords: threads, Standard ML, parallel programming, Mach, continuations, coroutines, pro
cesses, mutual exclusion, synchronization, shared memory 



1 Introduction 

There is no way to express explicit parallelism in the Standard ML programming language [26]. 
A compiler may, of course, introduce parallelism implicitly, but the state of the art in this area is 
not sufficiently advanced for our purposes. Instead, we need a means of creating and manipulating 
multiple threads of control within a single Standard ML program. 

A thread represents a sequential flow of control or an abstraction of a processor. Threads are also 
known as lightweight processes, but we avoid that term to eliminate confusion with the UNIX 1 

notion of (heavyweight) process. An implementation of threads may require support from the 
compiler, the language runtime system, and the underlying operating system. 

Threads are needed for two main reasons: to express the naturally concurrent structure of distributed 
and interactive systems, and to achieve parallelism on real multiprocessors. Programs constructed 
with multiple threads can be simpler and more modular than programs using alternative mechanisms. 

A system constructed from multiple threads can use simple synchronous interfaces that are easy to 
understand. Whether or not a module is internally multithreaded is purely an implementation issue, 
and is not visible in its interface. This improves modularity and allows programs to be developed 
by composition, with no fear of unpredictable interactions between components. 

Implementors of distributed and interactive applications must deal with asynchronous events such 
as incoming network messages, users' keystrokes, expiration of timers, and so on. The principles 
of modularity and information hiding dictate that different events be detected and processed in 
different modules. The use of multiple threads, each waiting for the appropriate class of events, 
supports this programming methodology. 

The alternatives to multiple threads in systems programming languages include software interrupts; 
non-blocking operations that permit polling; or an operation that allows a program to wait for any of 
a set of events. In UNIX, for example, all of these mechanisms are provided, adding considerable 
complexity to the system interface. 

None of the alternatives to threads provides modularity. If polling or some form of s e l e c t 
operation is used, the programmer must write one portion of code to detect and dispatch events 
appropriately to their handlers; this polling loop violates modularity by "knowing" about all the 
event-processing modules in the system. Similarly, if software interrupts (such as UNIX signals) 
are used, logically unrelated modules must share a common signal handler. 

We have therefore added multiple threads to Standard ML. We describe the design of a thread 
module that can be used directly by parallel applications, as well as by higher-level constructs for 
parallel programming (such as Multilisp/utoras [21] and CSP communication channels [23]). The 
thread package is a Standard ML module; no modifications to the syntax of the language were made. 

LI Standard ML 

The Standard ML programming language (SML) is a mostly functional language with a complete 
formal specification of its semantics [26]. It provides first-class functions (closures), static (compile-
time) typing, polymorphism, exceptions, automatic storage management (garbage collection), and 
a powerful module facility. 

The Standard ML of New Jersey (SML/NJ) implementation [3, 7] supports type-safe, first-class 
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Hoare's monitors [22] 

Mesa processes [25] 

Modula-2+ threads [9,10,33] 

CMA[17] C threads [15] Wand's coroutines [38] 

Ramsey's and Reppy's coroutines [28,30] 

Figure 1: Genealogy of thread interfaces 

continuations with callcc and throw, and provides asynchronous exception handling facilities in the 
form of signal handlers [32]. We have found that these extensions, along with the clean organization 
of the compiler and runtime system, make experimentation with threads considerably easier. 

1.2 Related Work 

The conceptual ancestor of most of the thread interfaces in common use is Hoare's monitor con
struct [22]. This proposal separated the two most common uses of Dijkstra's semaphores (P and 
V operations) into mutual exclusion and synchronization via condition variables. This separation, 
along with syntactic support in the programming language, eliminated many sources of errors with 
semaphores. 
The first practical use of the monitor idea occurred at Xerox PARC, with the implementation of 
processes in Mesa [25]. The precise semantics of Hoare monitors were modified, however, to 
permit a simpler, more robust implementation. In particular, no guarantee was made that signaling a 
process would result in it being the next process to enter the critical region. As a result, a "wakeups 
as hints" style is required, in which processes always recheck the condition for which they are 
waiting, and go back to sleep if necessary. 

At DEC SRC, the researchers who implemented processes and monitors in Mesa went on to add 
threads to Modula-2 for the Firefly multiprocessor workstation. The DEC SRC thread design [9, 
10, 33] is the ancestor of various thread interfaces for UNIX and C [15, 17, 24], as well as the 
current work. This similarity in ancestry has an important practical implication: there is a large, 
common subset of functionality in all of these packages. For example, Birrell's excellent tutorial 
on programming with threads [10] is directly applicable to the SML threads described here. 

Other researchers have examined concurrency in conjunction with SML. However, most have 
adopted message passing as the means of communication and synchronization. Reppy's work on 
first-class synchronous operations [31] describes an implementation of coroutine-based threads and 
a number of higher-level constructs (channels and events). Ramsey presents a similar message-
passing, coroutine threads package based on CSP [28]. Both implementations use continuations to 
simulate concurrency [38]. 

The genealogy of the SML thread module described here is summarized in Figure 1. 
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signature THREAD = 
sig 

3 

val fork : (unit -> unit) -> unit 
val exit : unit -> 7 a 
val yield : unit -> unit 

type mutex 
val mutex : unit -> mutex 
val acquire : mutex -> unit 
val try_acquire : mutex -> bool 
val release : mutex -> unit 

val with__mutex : mutex -> (unit -> 7 a) -> 7 a 

type condition 
val condition : mutex -> condition 
val mutex__of : condition -> mutex 
val with__condition : condition -> (unit -> 7a) -> 'a 
val signal : condition -> unit 
val broadcast : condition -> unit 
val wait : condition -> unit 
val await : condition -> (unit -> bool) -> unit 
exception Undefined 
type 7 a var 
val var : unit -> 7la var 
val get : 7 a var -> 7 a 
val set : 7 a var -> 7 a -> unit 

end 

Figure 2: The SML Thread Interface 

2 Threads in Standard ML 

The SML thread interface is given in Figure 2. In the following sections, we describe the interface 
and give some justification for each of the constructs. 

2.1 Creation and Destruction 

The basic abstraction in the thread module is, naturally, the notion of a thread: a sequential activity 
in a computation. Although a cobegin... coend control structure is one way of (implicitly) creating 
and destroying threads, most current thread packages use a fork.. Join model. This is more general, 
since it can create arbitrary thread relationships, not just nested ones. We follow a slightly different 
approach, providing/or* but not join. 

val fork : (unit -> unit) -> unit 



The f o r k function starts an invocation of its argument executing as an independent thread of 
control. The effect is similar to simply calling the function, except that the caller and callee proceed 
in separate threads. 
Although the function in the forked thread takes no argument, closures can be used easily to simulate 
passing arguments to the child: 

fun fork__with_argument f x = f o r k ( f n () => f x) 

(The f n construction in SML denotes a lexically closed anonymous function, like a lambda 
expression in Scheme.) 

The child function returns no result; it is executed purely for effect. Results can be communicated 
between threads via shared mutable objects, and wrapper functions can be used to implement the 
necessary synchronization and termination protocol. An example, in the form of a futures module, 
is presented in Section 3.2. 

The SML f o r k operation differs from its ancestors in Figure 1 in that no "handle" is returned to 
identify the newly created thread of control. Indeed, there is no "thread" data type exported by 
the interface at all. Instead, the per-thread state described in Section 2.4 generalizes the notions of 
thread identifier and thread-local variables. 

Thread termination occurs either implicitly when the top-level function of the thread returns, or 
explicitly when e x i t is called. 

v a l e x i t : u n i t - > ' a 

The e x i t function terminates the thread that calls it; since it never returns, its invocation is 
considered to have arbitrary type. 

No synchronization with other threads occurs upon exit, and no join operation is provided at this 
level. Application-specific termination protocols can be implemented by using an appropriate 
wrapper function as the argument to fork; the implementation of futures in Section 3.2 offers one 
example of this. 

2.2 Mutual Exclusion 

If two threads perform conflicting operations on the same data, the result is unpredictable—it 
depends on details of scheduling, relative execution speed, compiler code generation, and hardware 
architecture. A classic example is an attempt by two threads to increment a counter at the same time. 
The arbitrary interleaving of each thread's load-increment-store sequence results in the counter being 
incremented by an unpredictable amount. This problem is solved by introducing mutual exclusion 
locks, of type mutex, along with a c q u i r e and r e l e a s e operations. 

t y p e mutex 
v a l mutex : u n i t - > mutex 

v a l t r y _ _ a c q u i r e : mutex - > b o o l 
v a l a c q u i r e : mutex - > u n i t 
v a l r e l e a s e : mutex - > u n i t 
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The mutex function creates a new mutex value. 

The a c q u i r e operation attempts to lock a mutex and does not return until it succeeds, at which 
point the calling thread is said to hold the mutex. At most one thread may hold a given mutex at any 
time. The case of a thread attempting to acquire a mutex it already holds is not treated specially; 
the thread will block forever. 

The t r y _ a c q u i r e operation is similar to a c q u i r e except that it does not wait to acquire the 
mutex; it tries once and returns an indication of whether or not it succeeded. For example, a 
busy-waiting version of the a c q u i r e function could be written in terms of t r y _ a c q u i r e as 
follows: 

f u n a c q u i r e mutex = 
i f t r y _ _ a c q u i r e mutex t h e n () e l s e a c q u i r e mutex 

The r e l e a s e operation unlocks a mutex, giving other threads a chance to acquire it. 

The following code uses mutex operations to increment a counter safely: 

v a l m = mutex () 
v a l c o u n t e r = r e f 0 

a c q u i r e m; 
c o u n t e r := ( ! c o u n t e r ) + 1 ; 
r e l e a s e m 

The a c q u i r e and r e l e a s e operations on a given mutex must always be correctly paired, even 
in the presence of exceptions. This common source of errors is remedied in other languages by 
additional syntax, such as the LOCK statement of Modula-3 [13]. We can achieve the same effect 
in SML simply by delaying the body: 

v a l w i t h _ m u t e x : mutex - > ( u n i t - > ' a ) - > 'a 

f u n with__mutex m body = 
l e t v a l r e s u l t = ( a c q u i r e m; 

body () h a n d l e e x n => 
( r e l e a s e m; r a i s e e x n ) ) 

i n 
r e l e a s e m; 
r e s u l t 

e n d 

The w i t h _ m u t e x operation acquires the mutex while executing the given function, then releases 
it before returning the value of the function call. It also catches any exception raised and releases 
the mutex before re-raising it. The support for closures in SML makes this construct usable directly, 
without the additional syntactic sugar required in Modula-3. 

The example of incrementing a counter can now be expressed as follows: 

w i t h _ m u t e x m ( f n () => c o u n t e r := ( ! c o u n t e r ) + 1) 
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2.3 Synchronization 

A condition variable allows one thread to wait until another thread indicates that some event has 
occurred. The association between the condition variable and this event is maintained entirely by the 
application. The event is typically a change to shared data, and requires some application-specific 
test to detect. A mutex must be used to prevent one thread from testing the shared data while another 
is updating it; this mutex is specified at the time the condition is created. 

type condition 
val condition : mutex -> condition 
val mutex__of : condition -> mutex 
val with_condition : condition -> (unit -> 'a) -> 7 a 

val signal : condition -> unit 
val broadcast : condition -> unit 
val wait : condition -> unit 

The condition function creates a new condition variable, to be used under the protection of the 
specified mutex. 
The mutex__of function returns the mutex associated with a condition. The with_condition 
function is just the composition of with_mutex and mutex__of. 
The signal operation is used to indicate that an event has occurred. If any threads are waiting for 
the specified condition variable, at least one of them is awakened. The broadcast operation is 
similar, except that it guarantees to awaken all threads waiting for the condition. 
The wait operation atomically releases the mutex associated with the specified condition and waits 
for another thread to signal it. The awakened thread then reacquires the mutex before returning. 
The application must ensure that the event associated with the condition can occur only while the 
mutex is held. 
Other threads may execute between the time that the condition is signaled and the time that the 
caller reacquires the mutex. One must therefore view wakeups merely as hints, and always retest 
the shared data. The await operation implements this as follows: 

val await : condition -> (unit -> bool) -> unit 

fun await c test = 
if test () then 

0 
else 

(wait c; await c test) 

The yield operation advises the runtime system to schedule another thread to run on the current 
processor. 

val yield : unit -> unit 
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2.4 Thread State 

Thread state is provided by the var type constructor and its associated operations. A var is similar 
to a ref, but the contents of a var are maintained on a per-thread basis, rather than shared among 
all threads. 

type 'a var 
val var : unit -> ' la var 

exception Undefined 
val get : 'a var -> 'a 
val set : 'a var -> 'a -> unit 

Unlike a ref, a var that is defined in one thread may be undefined in another, hence dereferencing 
it may raise the exception Undefined. Weak type variables are required to handle polymorphic 
var types, in the same way they are used for polymorphic ref types. 

This abstraction of per-thread state allows different "subsystems" to define their own forms of thread 
identification without conflicting with one another. For example, a lock package might only need 
to identify threads with unique values of some type that admits equality, so it can tell whether a 
requesting thread already holds a lock. A master-slave package might need to guarantee that the 
thread IDs had additional properties, like lying in the range 1 . . . N. Another system might require 
per-thread transaction IDs. Rather than choosing a single form of thread ID, different packages can 
use different per-thread variables whose values have whatever semantics they need. An example, 
in the form of recursive mutex locks, is given in Section 3.1. 

3 Building Abstractions on Top of Threads 

The SML thread interface was designed to provide the minimal set of constructs and mechanisms 
needed to support efficient concurrent programming. In this section, we demonstrate how higher-
level constructs and mechanisms can be built on top of the thread interface. 

3.1 Recursive Mutex Locks 

As was stated before, the case of a thread attempting to acquire a lock a second time before releasing 
it is not treated specially. In some implementations, the thread could block forever. Recursive mutex 
locks allow a thread to acquire a lock any number of times before releasing it a corresponding number 
of times. Often, this can make composition of subsystems easier. 

Recursive mutex locks are implemented by a functor parameterized by the Thread structure, as 
shown in Figure 3. This example shows how the basic thread interface can be used to implement 
higher-level facilities. In particular, it demonstrates how per-thread state can be used by one 
particular subsystem without having to worry about name clashes with other subsystems. 

3-2 Futures 

Here is how one can define a variant of Multilisp futures [21]. 
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signature REC_MUTEX = 
sig 

type T 
val new : unit 
val lock : T -
val unlock : T 

nit -> T 
T -> unit 
: T -> unit 

end 

functor Ree Mutex (Thread : THREAD) : REC_MUTEX = 

datatype thread_id = ID of unit ref 

val self : thread__id Thread.var = Thread.var () 

fun me () = Thread.get self 
handle Thread.Undefined => 

let val id = ID (ref ()) 

datatype T = RM of { owner : thread_JLd ref, 
count : int ref, 
mutex : Thread.mutex } 

fun new () = RM { owner = ref (me ()), 
count = ref 0 , 
mutex = Thread.mutex () } 

fun lock (RM { owner, count, mutex }) = 
if !count = 0 orelse !owner <> me () then 

(Thread.acquire mutex; count := 1; owner := me ()) 
else 

inc count 

exception NotOwner 
fun unlock (RM { owner, count, mutex }) = 

if !count = 0 orelse !owner <> me () then 
raise NotOwner 

else if !count = 1 then 
(dec count; Thread.release mutex) 

else 
dec count 

struct 

in 
Thread.set self id; id 

end 

end 

Figure 3: Recursive mutex locks 
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signature FUTURE = 
sig 

9 

type 'a future 
val future : ('a -> ' 2 b ) -> 'a -> ' 2b future 
val touch : 'a future -> 'a 

end 

functor Future (Thread : THREAD) : FUTURE = 
struct 

datatype 'a cell = BUSY | DONE of 'a | EXN of exn 

datatype 'a future = 
FUTURE of Thread.condition * 'a cell ref 

fun future function arg = 
let vai c = Thread.condition (Thread.mutex ()) 

val f = ref BUSY 
fun wrapper () = 

let val result = DONE (function arg) 
handle exn => EXN exn 

in 
Thread.with_condition c 
(fn () => (f := result; Thread.broadcast c)) 

end 
in 

Thread.fork wrapper; 
FUTURE (c, f) 

end 

fun touch (FUTURE (c, f)) = 
let fun touch' () = 

case !f of 
BUSY => (Thread.wait c; touch' ()) 

I DONE x => x 
I EXN exn => raise exn 

in 
Thread.with__condition c touch' 

end 
end 

Figure 4: A variant of Multilisp futures 



An a future represents a computation of a value of type a that may not yet have finished. To use 
the value, the function t o u c h must be applied to the future; this will block if necessary until the 
computation is finished. Unlike Multilisp futures, which can be used interchangeably with "normal" 
values, our variant requires that t o u c h always be used, even after the future has completed. 
The implementation of futures in Figure 4 shows how result-producing computations can be started 
as threads, with appropriate wrapper functions to provide synchronization between the producer 
and consumers of the results. This example shows that a "join" protocol need not be provided by 
the threads module. 
A cobegin ... coend control structure can be implemented trivially in terms of the f u t u r e and 
t o u c h functions: 

v a l c o b e g i n : ( u n i t - > u n i t ) l i s t - > u n i t 

f u n c o b e g i n f n s = 
app t o u c h (map ( f n f => f u t u r e f ( ) ) f n s ) 

The c o b e g i n function takes a list of procedures, starts each one executing in its own thread, and 
then waits for them all to finish before returning. 

3.3 Channels 

We can use the thread interface to define a simple buffered message passing system, as shown in 
Figure 5. We use bounded (n = 1) buffers with mutual exclusion to facilitate the communication. 
The c r e a t e operation creates a new typed channel.2 The p u t and g e t operations allow one to 
send and receive values through a channel. Note that a g e t operation blocks until the buffer is 
non-empty, while the p u t operation blocks until the buffer is non-full. 

Figure 6 shows how we can simulate remote procedure call (RPQ using channels. An RPC-value 
consists of an a channel used for input, and a ¡3 channel used for output. The a c c e p t operation 
takes an RPC-value and an a —• (3 function, gets an a value from its input channel, applies the 
function to that value, and puts the result of type /3 in its output channel. The c a l l operation takes 
an RPC-value and an a value, sends the value to the acceptor, waits until a /3 value is sent back, 
and returns this value as the result of the operation. 

3.4 Other Constructs 

It is possible to implement many other concurrency constructs using the thread interface, including 
but not limited to: 

• CSP guarded commands [23], the Ada rendezvous and select [37], and variants such as 
Charlesworth's multiway rendezvous [14]. (See Section B.3 for an implementation of ren
dezvous and select.) 

• Reppy's first-class synchronous operations (events) [30]. 
2Since we use r e f s to implement channels, we are forced to use a "weak" type variable in the specification. 
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signature CHANNEL = 
sig 

unit -> 'la T 
'a T -> 'a -> unit 
'a T -> 'a 

functor Channel (Thread : THREAD) : CHANNEL = 
struct 

datatype 'a T = CHAN of { here : Thread.condition, 
gone : Thread.condition, 
value : 'a option ref } 

fun create () = 
let val m = Thread.mutex () 
in 

CHAN { here = Thread.condition m, 
gone = Thread.condition m, 
value = ref NONE } 

end 

fun put (CHAN { here, gone, value }) v = 
let fun put' () = 

case lvalue of 
SOME _ => (Thread.wait gone; 

put' ()) 
| NONE => (value := SOME v; 

Thread.broadcast here) 
in 

Thread.with_condition gone put' 
end 

fun get (CHAN { here, gone, value }) = 
let fun get' () = 

case lvalue of 
SOME v => (value := NONE; 

Thread.broadcast gone ; 
v) 

I NONE => (Thread.wait here; 
get' ()) 

in 
Thread.with_condition here get' 

end 
end 

Figure 5: Buffered channels 
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type 'a T 
val create 
val put 
val get 

end 



signature RPC = 
sig 

'b) T 
vai create 
vai accept 
vai cali 

unit -> ('la, 'lb) T 
( ' 2 a -> 'b) -> ( ' 2 a , 'b) T -> unit 
('a, ' 2 b ) T -> 'a -> '2 b 

end 

functor RPC (Channel : CHANNEL) : RPC = 
struct 

datatype ('a, 'b) T = T of ('a Channel.T * 'b Channel.T) 

fun create () = T (Channel.create (), Channel.create ()) 

fun accept f (T (inChan, outChan)) = 
Channel.put outChan (f (Channel.get inChan)) 

fun call (T (outChan, inChan)) value = 
(Channel.put outChan value; Channel.get inChan) 

Of these, Reppy's events are by far the most difficult to implement, due primarily to their generality. 
Basically, an event is a synchronous value that may be "invoked" by a s y n c operation. Example 
event producing functions include t r a n s m i t and r e c e i v e , which synchronize with communi
cation over channels, and w a i t , which synchronizes with the termination of a thread. The choo s e 
operation takes a list of events and produces a new event, representing a non-deterministic choice 
among the events in the list. When s y n c is applied to an event, the base events that comprise it are 
polled 3 to see if any are immediately satisfiable. If so, then one such base event is chosen and the 
corresponding synchronization (and communication, if appropriate) takes place. If no base events 
are immediately satisfiable, then the thread is blocked until one is satisfiable, at which point the 
corresponding synchronization takes place. 

The similarities between events and other languages* select constructs are apparent, but there are 
three main differences: 

1. Events are values, while select statements are, of course, just statements. This implies that 
no single thread "owns" an event. 

2. Events may be composed at run time using c h o o s e , whereas the form of select statements 
is fixed at compile time. 

3. "Output" event values are allowed in arguments to c h o o s e , whereas most select statements 
do not allow output commands in guards. 

3When polled, each event returns one of three indications: ready, any, or blocked. The any status is used to indicate a 
satisfiable event that should only be chosen if there are no ready events. Events that are blocked will never be chosen. 

end 

Figure 6: Remote procedure call using channels 

12 

type ('a. 



Each of these differences makes implementing events quite difficult. (Reppy gives a coroutine 
implementation [31], but many of the difficulties arise in the presence of true parallelism.) In 
particular, the last problem has been a topic of quite a bit of research [8, 34, 35]. Nevertheless, we 
have been able to implement events using the thread interface [27]. 

The fact that so many higher-level constructs can be efficiently implemented in terms of the thread 
interface (with help from SML's first-class functions, polymorphic types, and module system) 
reinforces our belief that we have chosen a good set of primitives. The advantage of our low-
level approach is that it can be implemented efficiently on both uniprocessors and shared-memory 
multiprocessors, as we will show in the remainder of this paper. It can then be used as the basis 
for multiple higher-level facilities, all of which will interoperate. In a large system, for example, 
a module that uses futures can be composed with another module that uses synchronous events 
and channels. The alternative—providing a high-level mechanism as the sole means of expressing 
concurrency—is much less attractive: it may not be natural for all applications, and implementing 
other paradigms efficiently in terms of it may be difficult (consider using a rendezvous simply to 
acquire a lock!) 

4 Simulating Concurrent Threads 

In the following sections, we give some details regarding two implementations of the thread interface 
that we have developed purely in SML/NJ. The first is a coroutine version that uses SML/NJ's first-
class continuations to multiplex control. The second is also a continuation-based version, but uses 
UNIX signals and SML/NJ's asynchronous signal-handling facility to provide preemption. Both 
implementations provide the functionality needed for simulating concurrency on uniprocessors. 

4.1 Using Continuations to Simulate Concurrency 

A continuation of some expression is a function that takes the result of the expression and computes 
the "rest of the program". SML/NJ provides continuations as abstract types with the following 
signature [18]: 

t y p e 'a c o n t 
val callcc : ('a c o n t - > 'a) -> 'a 
val t h r o w : 'a c o n t - > ('a -> 'b) 

The callcc operation is used to create a c o n t that can be applied using the t h r o w operation. 

Wand is generally credited with showing how to simulate concurrency using first-class continua
tions [38]. The key idea is that continuations represent the state of a computation; since they are 
first-class, they can be stored in a data structure (such as a queue) and invoked at a later time. 

Thus, to provide coroutines in SML/NJ, we can map a thread directly onto a continuation. When 
a thread must block (e.g., in a w a i t ) , we can capture its continuation using callcc, store the 
continuation appropriately, and invoke it using t h r o w at some later time when the thread is no 
longer blocked. 

To provide a concrete example, Figure 7 gives a simplified implementation of the f o r k op
eration. The full coroutine implementation is given in Appendix A. The running__queue 
holds continuations for all threads that are not blocked (except for the currently executing thread). 
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f u n f o r k c h i l d = 
c a l l c c ( f n p a r e n t => 

(enqueue p a r e n t r u n n i n g _ q u e u e ; 
c h i l d ( ) ; 
t h r o w (dequeue r u n n i n g _ q u e u e ) ( ) ) ) 

Figure 7: Implementing f o r k 

f u n alarm__handler (_, k) = 
i f ( in__atomic__region ( ) ) t h e n 

( s i g n a l _ o c c u r r e d := t r u e ; k) 
e l s e 

( enqueue running__queue k; 
dequeue r u n n i n g _ q u e u e ) 

Figure 8: Context switching signal handler 

When we f o r k a new c h i l d , we capture the p a r e n t thread's continuation, enqueue it on the 
r u n n i n g _ q u e u e , and invoke the c h i l d . When the c h i l d completes, we dequeue a thread 
from the running__queue and invoke its continuation. 

Implementing a coroutine version of the full thread interface using SML/NJ's continuations is quite 
simple, as evidenced by the size of our code (154 lines including white space). 

4.2 Using Signals for Preemption 

There are certain advantages to coroutines: simplicity, lack of race conditions, and repeatable 
interleaving. However, a major disadvantage of any coroutine implementation is the lack of 
preemption among threads. Without preemption, threads may be "starved" from doing any work 
since a thread could run quite a long time before coming to any synchronization point. This sort of 
behavior is particularly undesirable in interactive programs. 

Fortunately, SML/NJ provides the mechanisms needed to turn our coroutine implementation into 
a preemptively-scheduled uniprocessor threads package. In particular, we are provided with user-
programmable asynchronous signal handlers [32]. We can use one such handler to catch UNIX 
timer signals and trigger a context switch. 

An SML/NJ signal handler has the type: 
( i n t * u n i t c o n t ) - > u n i t c o n t 

Different signal handlers may be installed for different signals. The first argument of the handler 
indicates the number of times the signal has been received before the handler was called. Signals 
are masked when a handler is executing, so it is possible that a signal could have been sent multiple 
times before the corresponding handler is executed. The second argument of the handler is the 
current continuation of the computation that was taking place at the time the signal was received.4 

4This is not entirely accurate: SML/NJ records the signal when it is received, but lets the computation continue until 
it reaches a convenient point at which a continuation can be captured. See Reppy's paper [32] for a complete description. 
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The handler should return a continuation to be invoked as its result. 

To facilitate preemptive context switching, we use the UNIX SIGALRM signal (set to go off at some 
appropriate interval such as 20 msec) and a handler similar to the one found in Figure 8. When 
a SIGALRM is received, the handler will be passed the thread that was running as a continuation 
k. A check is done to see if k was in some "atomic" region (e.g., doing a test-and-set) when the 
signal was received. If so, instead of doing the context switch, the signal is recorded, and k is 
returned so it may complete its atomic operation before switching contexts. If the thread was not 
in an atomic region when the signal was received, k is enqueued on the r u n n i n g _ q u e u e . Then, 
another thread is dequeued and returned as the result continuation to be invoked. 

5 A Multiprocessor Implementation of Threads 

The continuation-based implementations of the thread interface are simple and portable, but they 
have two disadvantages. The first is that calls to the operating system to perform a service such as I/O 
will block all threads until the service is complete. It is possible for certain operations to do a non-
blocking system call (such as UNIX's s e l e c t ) before performing the blocking operation, but other 
common operations (such as a page fault) have no such "hooks". The second disadvantage is that 
there is no provision in SML/NJ to specify that computation should actually take place concurrently. 
Consequently, we cannot take advantage of parallelism on multiprocessor architectures. 

To address these two disadvantages, we have modified the SML/NJ system to support a multi
processor implementation of the thread interface. In the following sections, we give a high-level 
description of these modifications and some details regarding the threads implementation built on 
top of the system. 

5.1 Mach 

The Mach operating system "provides a set of low-level, language-independent primitives for 
manipulating threads of control" [1]. Mach also provides novel memory management facilities and 
inter-process communication. Combined with the UNIX BSD server, which allows BSD binaries 
to be run on top of Mach [20], these facilities provide an attractive operating system platform on 
which to build shared-memory, parallel programming languages. Consequently, we have chosen 
Mach as the foundation for our multiprocessor SML system, SML/Mach. 

Since Mach is an ongoing research project at Carnegie Mellon, and SML/NJ is an ongoing research 
project at AT&T Bell Laboratories and Princeton (among others), we chose as one of our goals to 
have "minimal impact" on the SML/NJ system. In particular, we decided to concentrate our work on 
modifying the runtime system of SML/NJ and avoid touching the compiler. As a result, we expect 
to be able to keep up with and take advantage of new developments in both SML/NJ and Mach. 
Furthermore, it should be possible to integrate, with minimal modifications, other compiler-oriented 
research such as the SML to C compiler [36]. 

5.2 The SML/NJ Runtime 

The SML/NJ runtime system is described elsewhere [5], but we will point out some of the highlights 
that are relevant to this paper. 
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The runtime system for SML/NJ is written in C and provides a coroutine interface to ML code. When 
ML requires a runtime service (e.g., I/O), it sets a global variable r e q u e s t to a value indicating 
which service is desired, saves its register set in a global state vector, loads the C registers from the 
C stack5 and begins to execute the C code that will provide the service. When the runtime service 
is complete, the C registers are saved on the C stack, the ML registers re-loaded, and execution of 
ML code continues. Two assembly language routines, s a v e r e g s and r e s t o r e r e g s , handle 
the machine-specific task of crossing this ML/C boundary. 

One of the most important services provided by the runtime system is garbage collection. SML/NJ 
uses a simple (but efficient) two-generation, copying collector [4]. Allocation is inlined by the 
compiler, making it quite fast. At the entrance of each code tree,6 a check is made to see if enough 
heap space exists for the maximum amount of allocation that the code tree might do. If there is not 
enough space, a trap instruction is used to initiate garbage collection. The runtime system catches 
the exception caused by the GC-trap and performs the following steps [32]. 

1. The runtime routine g h a n d l e catches the trap and records the program counter of the trap 
location in the state vector, sets r e q u e s t to REQ_GC and returns control to the assembly 
code routine s a v e r e g s . 

2. S a v e r e g s saves the ML state in the state vector and passes control to runjml . 

3. The garbage collector is then run, using the state vector as the root set. 

4. After garbage collection, run__ml calls r e s t o r e r e g s , which loads the machine registers 
from the state vector, and returns to the trap location. 

5.3 Support for Thread Creation 

Given the organization of the SML/NJ runtime, the primary obstacle to providing support for 
multiple Mach threads running ML code is the ML/C boundary. One of two approaches could 
be taken: either have each thread run ML code only and treat the C runtime as a server, or allow 
each Mach thread to execute both ML and C runtime code. Obviously, the latter approach is more 
attractive, since no synchronization must take place. Consequently, our implementation takes this 
approach. 
To allow each Mach thread to execute both ML and C runtime code, it is necessary that each thread 
have its own state vector as well as its own C runtime stack. In fact, each thread must have its own 
copy of the r e q u e s t variable and many other variables that are unique, "global" variables in the 
SML/NJ system. 
To provide this functionality, we divide the UNIX stack segment for the entire process into sub-
stacks, one for each thread. The sub-stacks are aligned in such a way that by masking a thread's 
stack pointer appropriately, we can determine the base of the thread's sub-stack. A special routine, 
t h r e a d _ s e l f , does this masking. 

5Contrary to some published claims [5,32], SML/NJ does use a runtime stack. However, the stack is only used by the 
C code that comprises the runtime system. The ML code does all of its allocation (including closures) in the ML heap 
and does not use the stack. 

6According to Reppy [32], "a code tree or extended basic block is an acyclic set of blocks with one entry point and 
one or more exits." 
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A thread's state vector and "global" variables are stored at the base of its sub-stack.7 Since the ML 
code does not use the stack (and fortunately does not use the stack pointer register), t h r e a d _ s e l f 
can be called at any time to gain access to the per-thread information. Therefore, routines such 
as s a v e r e g s and r e s t o r e r e g s were modified to use t h r e a d _ s e l f to locate their calling 
thread's state vector. 
Thus, to create a Mach thread to execute some ML code, we take the following steps: 

1. Obtain a stack for the new thread. 

2. Obtain a portion of the allocation area for the thread. (This is explained in Section 5.4.) 

3. Place an initialized thread-state vector at the base of the stack. The vector will contain the 
address of the ML code to execute, the continuation, the closure, etc. It will also have 
r e q u e s t set to REQ_RETURN. 

4. Make a t h r e a d _ c r e a t e call to Mach. 

5. Make a call to a machine-specific routine, M L t h r e a d _ s e t u p , which sets up the thread to 
execute the C routine run_ml. This is done by calling the Mach t h r e a d _ s e t _ s t a t e 
routine to initialize the program counter and other registers. 

6. Call the Mach t h r e a d _ r e s u m e routine. At this point, the Mach kernel will schedule the 
thread to run. 

When the new thread starts running, it will call the run_ml routine which will check r e q u e s t , 
see that it is set to REQ_RETURN, and "return" to the appropriate ML code. It does so by making a 
call to the modified r e s t o r e r e g s as explained in the previous section. 

5.4 Heap Management 

Once a Mach thread is running, it needs to be able to allocate memory from the ML heap. There 
are basically two approaches we can take towards allocation: have each thread share the allocation 
area and acquire a lock on the current heap-limit pointer before doing an allocation, or divide the 
allocation area among the threads. 

There are two main reasons why the latter approach is more attractive. First, the extra overhead of 
acquiring a lock and updating a shared limit pointer would be unacceptable, since allocations are 
quite frequent in ML. (The SML/NJ compiler dedicates a register to hold the limit pointer, on a 
typical RISC machine, changing to a shared limit pointer would add 4 memory operations to the 
single register operation currently required.) Second, since SML/NJ generates inlined allocation 
code, we would have to modify the compiler to support the former approach. 

Consequently, we give each thread a separate portion of the allocation area. Each thread has its own 
heap-limit pointer, allocation is still inlined, no synchronization is necessary for allocation, and no 
changes are needed in the compiler. In addition, each thread's heap can have pointers into other 
threads' heaps, so the partitioning is invisible to the SML programmer. 

Now that a Mach thread can allocate memory, we need to be able to garbage collect (GQ it. 
There are many approaches we can take towards GC in a multi-threaded system, but our self-
imposed constraint of modifying only the runtime system limits our options. As a first cut, we have 

7This is basically the same approach taken by the Mach C Threads package [15]. 
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Master Code 

1. The thread that caused the GC trap enters the trap handler and acquires a lock on a 
gc__master variable. 

2. If gc__master is already set, the thread executes the Slave code. Otherwise, the thread 
designates itself as the master by setting g c j n a s t e r appropriately. 

3. The master stops all threads that are running and sets their heap-limit pointers so that they 
will each call the GC handler upon entrance to their next code tree. 

4. The master releases the g c _ m a s t e r lock and waits until all other threads that were running 
have entered the GC handler. 

5. The master gathers all of the threads' roots and calls the garbage collector. 

6. When the garbage collector returns, the master re-divides the heap among the threads, acquires 
the g c j m a s t e r lock, gives each thread its roots back, and allows them to continue. 

7. The master clears g c _ m a s t e r and releases the lock. It then continues with its ML code. 

Slave Code 

1. The slave releases the lock on g c j m a s t e r . 

2. The slave tells the master that it is ready for the GC and passes its roots to the master. 

3. The slave waits for the master to signal that the GC is done, at which point it receives its new 
roots. 

4. The slave continues with its ML code. 

Figure 9: Synchronization for GC 

chosen to stop all threads when a single thread exhausts its allocation area. When the threads have 
synchronized, we gather their roots, and call the same copying collector that is used in the SML/NJ 
system. 

Recall from Section 5.2 that when a code tree is entered, a heap limit check is done and a GC trap 
occurs if there is not enough space. We use this facility to synchronize our threads. The details of 
the synchronization appear in Figure 9. Special care must be taken to ensure that deadlock does not 
occur, especially for threads that are blocked at the time of the GC. 

5.5 Support for Locking and Synchronization 

To support mutex locks, we have added two assembly language routines to the runtime system, 
t r y _ _ a c q u i r e and r e l e a s e , which operate on ML i n t r e f values. These routines are 
machine dependent, but essentially translate into atomic "test-and-set" and "clear" operations.8 

To support c o n d i t i o n variables, we have added three routines to the runtime system. The 
8This is actually quite difficult to implement on MIPS machines that do not provide an atomic test-and-set instruction. 

We are indebted to Alessandro Forin of the Mach project for providing a solution for uniprocessors [19]. 
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first, thread__wait_j?ort , returns a representation of a Mach port that the thread can use to 
block itself. The second, t h r e a d _ w a i t , is used by a thread when it wishes to block. This 
is accomplished by performing a Mach m s g _ r e c e i v e on its wa i t_ j?or t . The third routine, 
t h r e a d _ s i g n a l , takes a representation of a Mach port and signals the corresponding thread. 
This is accomplished by doing a Mach msg__send on the port. 

These routines, together with the modifications mentioned in the two previous sections, are all the 
support that was needed to implement the thread interface for Mach multiprocessors. Currently, 
SML/Mach runs on VAX, MIPS, SPARC, and 680x0 based machines. 

5.6 Virtualizing Mach Threads 

In our current implementation, SML/Mach provides only a fixed number of Mach threads for use by 
the programmer. The number of Mach threads is determined when the SML/Mach system begins 
execution. Our intent was to map one Mach thread (or any fixed number) onto each processor, and 
use continuations to multiplex ML threads on individual processors. In the degenerate case of a 
uniprocessor, this should be equivalent to our non-Mach coroutine implementation. 

There are several reasons why we undertook this approach. The first reason is that it leads to fewer 
modifications to the runtime system. For instance, instead of allocating a runtime stack for each 
thread, we can divide the single UNIX stack segment into n pieces, where n is the number of Mach 
threads. 

The second reason is that it is quite simple to "virtualize" the fixed number of Mach threads using 
continuations. Essentially, each continuation-based thread is placed in a shared run-queue. Each 
Mach thread executes an infinite loop as follows: 

1. Block until a continuation is available and atomically dequeue it. 

2. Invoke the continuation. If an exception is raised, catch it, and print it to the terminal. 

3. Go to step 1. 

Note that if a continuation-thread becomes blocked on a mutex or condition, and that mutex or 
condition is later garbage collected, the continuation and hence the logical thread will also be 
garbage collected. Since the thread could never have been awakened, this is precisely what should 
happen. 

The third reason we decided to virtualize Mach threads using continuations is that we claim context 
switching of SML/NJ continuation threads is cheaper than context switching of Mach threads. To 
substantiate this claim, we measured the wall clock time of two threads doing context switches on 
a DECstation 3100. Essentially the same benchmark was run for both C Threads running under 
Mach 2.5 and SML coroutine threads running on the SML/NJ version 0.65 system. The results 
of this benchmark are summarized in Figure 10. It is apparent that context switching for SML/NJ 
continuations takes less time than context switching for Mach threads. 

The primary reason that Mach threads are more expensive than continuations is the need to go 
through the kernel to do an operation such as t hr e a d _ s w i t ch. Another reason why continuations 
are cheaper than Mach threads is that the SML/NJ system uses continuation-passing style code 
generation and allocates all closures on the heap [3]. Thus, continuation creation consists of merely 
allocating and initializing a closure. No migration from a stack to the heap needs to take place. 
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C Mach Threads 86 //sec 

SML Coroutine Threads 39 /isec 

Figure 10: Context Switch Times on DECstation 3100 

System Lock/Unlock Signal Handoff 

C Coroutines 2.0 /xsec 0.7 /xsec 49.2 /xsec 

C/Mach 9.4 /xsec 0.7 /xsec 215.4 /xsec 

SML Coroutines 14.4 /xsec 10.9 /xsec 307.9 /xsec 

SML Coroutines-2 10.9 /xsec 5.7 /xsec 270.4 /xsec 

SML Preemptive 64.6 /xsec 43.1 /xsec 625.0 /xsec 

SML/Mach 107.3 /xsec 56.8 /xsec 1379.2 /xsec 

Figure 11: Comparison of C and SML Threads on DECstation 3100 

6 Future Work 

There are many other issues that we would like to address concerning the addition of threads to 
Standard ML. In the following two sections, we present some of these issues and discuss possible 
approaches. 

6.1 Optimizations 

As stated before, one of our goals was to have minimal impact on the SML/NJ system. However, 
this has kept us from pursuing paths that could lead to better performance. Figure 11 gives some 
comparison between C Mach threads, C coroutine threads, and the different implementations of 
SML threads. All benchmarks were performed on a 20 Mbyte DECstation 3100 running Mach 2.5 
and SML/NJ version 0.65. The Lock/Unlock column gives the time needed to do a (successful) 
try_acquire followed by a release. The Signal column gives the time needed to do signal 
on a condition that has no threads waiting on it. The Handoff column gives the time needed for two 
threads to acquire, await, update a shared flag, signal the other thread, and release. The 
SML Coroutines-2 implementation is essentially the SML Coroutines implementation with queue 
operations inlined by hand. The SML Preemptive implementation was run with a 10 msec interval 
between context switches. While not quite a fair comparison9, it is still apparent that we have quite 
a way to go before we have a production quality threads package. 

Many of the inefficiencies in the SML threads packages are by-products of SML/NJ's treatment of 
ref cells, which is itself a by-product of the generational copying collection scheme employed. 

9For instance, the SML times include the cost (and benefits) of garbage collection. 
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Essentially, reading a mutable object can cost twice as much in SML/NJ as C (due to indirection), 
while updating a mutable object can cost up to 5 times as much (due to the need to log the update.) 

The main inefficiency for SML/Mach, however, is that a call to one of the thread routines (e.g., 
fork, acquire, release, etc.) will cross the ML/C boundary, do the operation, and then 
re-cross the ML/C boundary. Each crossing of the ML/C boundary constitutes a context switch 
in and of itself. By adding new primitive operations (e.g., try__acquire, release, etc.) to 
the SML/NJ compiler, we can eliminate the need to cross this boundary for most of the routines. 
Furthermore, this will allow the simple routines to be inlined by the compiler. 

While providing a fixed number of Mach threads has eased our implementation, we really should 
provide a facility for forking any number of Mach threads dynamically. To do this, we would have 
to modify stack allocation and the assignment of allocation areas to threads. The former problem 
seems quite easy to handle given Mach's virtual memory capabilities, and in fact seems to work 
directly on most architectures. However, on some architectures (notably the Sun-3), this fragments 
the address space and requires a rewrite of the routines that export an executable image file. 

We feel that a change should be made in the assignment of allocation areas to threads, regardless of 
whether we choose to allow dynamic Mach thread creation. We plan to modify SML/Mach so that 
each thread is given a small, fixed-size chunk of allocation area. When a thread exhausts a chunk, a 
check will be made if more chunks are available. If not, then we will have to delay the thread until 
a GC occurs. If a chunk is available, then we can give it to the thread and let it continue. 

This strategy would have the advantage that a GC could be delayed until every chunk was used. 
The current system does a GC whenever one thread exhausts its allocation area. We also feel that 
the chunk strategy would provide a better interface for different GC algorithms. However, this 
strategy has the disadvantage that intra-chunk fragmentation can be quite high. Tuning the size of 
the chunks will be quite important. 

We are interested in exploring concurrent, incremental garbage collection as proposed by Appel, 
Ellis and Li [6]. The Mach virtual memory primitives have been shown to provide the functionality 
necessary to implement such a collector [16, 29]. An incremental collector will be necessary for 
developing interactive and real-time programs in SML. 

Finally, more interaction is desirable between Mach and the SML/Mach runtime system concerning 
the availability of processors and physical memory. For instance, if the operating system knew 
that it was going to take away a processor, it could inform the SML/Mach runtime, as suggested 
by Anderson et al. [2]. The runtime could then decide to adjust the number of Mach threads to 
keep the proper thread to processor ratio. As another example, we already use mutex handqffs10 to 
facilitate context switching [11]. This user-level scheduling approach is an ongoing research topic 
being explored by the Mach project and we hope to take advantage of any "hooks" they expose. 

6.2 Shortcomings 

One potential shortcoming of the thread interface is the inability to communicate asynchronously 
with a thread. To understand why such a facility is desirable, consider the following scenario: A 
thread is forked in an interactive system to invert a 100 x 100 matrix. During the middle of the 
inversion, the user decides that he or she does not need the inverted matrix and presses the "cancel" 
button. However, unless the matrix inversion routine was written in such a way that it periodically 

1 0If a thread is about to block because it failed to acquire a lock, it tells Mach to deschedule it and gives a "hint" that 
the owner of the lock should be run. Thus, the processor is handed off from one thread to another. 
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checks whether or not it has been canceled, the computation will continue. 
To address this shortcoming, we could add an alert mechanism to the interface, as in Modula-2+ [9]. 
Perhaps the best way to do so is to provide A l e r t as a signal producing function and use Reppy's 
signal handlers to catch the alert. This would require that a handle for a thread be returned so the 
user could indicate which thread was to be alerted. It would also require that signal handlers be 
definable on a per-thread basis. 

Unfortunately, the whole notion of UNIX signals in multi-threaded programs is ill-defined. The 
problem is that certain signals should be "broadcast" to all threads, while some signals should 
only be sent to a single thread. For instance, it would seem desirable in an interactive system for 
SIGQUIT (quit) to be broadcast to all threads. However, the SIGFPE (floating point error) signal 
should only be sent to the thread that caused the error. 
Mach defines a general exception mechanism that can be used to emulate UNIX signals and provides 
a precise semantics even in the presence of concurrency [12]. Presently, we use this mechanism 
to catch a GC trap and plan to extend our use to handle the entire range of exceptions that Mach 
provides. 1 1 

A rather serious shortcoming of the thread interface is the lack of integration with the Definition 
of SML. In fact, it is quite interesting that our rather modest changes to SML/NJ's runtime have 
completely invalidated the Definition. It would seem desirable to model the dynamic semantics of 
SML/Mach using some concurrency model such as CCS or CSP. This is certainly a rich topic for 
researchers to pursue and we hope that SML/Mach will provide a concrete reference point. 

7 Summary and Conclusions 

We have presented an interface for multiple threads of control for Standard ML, including provisions 
for locking, synchronization, and per-thread state. One of the primary advantages of the interface 
is that the concepts introduced are similar to those in threads packages that have been demonstrated 
to be of practical use. 
One might argue that using the store to communicate is contrary to the philosophy of SML, since 
the language is "mostly functional". However, we have shown how the interface can be used 
to build higher-level concurrency constructs and mechanisms such as Multilisp-style futures and 
synchronous message passing. Furthermore, we argue that building these abstractions in terms 
of threads provides efficient implementations of these mechanisms for uniprocessors and shared-
memory multiprocessors. 
However, having worked with the thread interface extensively, we have found that it is best to 
structure one's program around these higher-level constructs, only "dipping down" into the thread 
interface when efficiency is called for. 
We have presented three implementations of the interface. All of the implementations make use 
of SML/NJ's first-class continuations and provide a concrete justification for their inclusion in 
the language. Our multiprocessor Mach-based implementation was built with the goal of having 
"minimal impact" on the NJ system. As a result, we expect to keep up with the rapid developments 
of both SML/NJ and Mach. We have pointed out some of the problems with our approach, as well 
as possible solutions. 

1 1 Using the native Mach exception handling facilities instead of the full emulation of UNIX signals should also provide 
better performance. 
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A Coroutine Implementation of SML Threads 

This section presents a coroutine-based implementation of the thread interface given in Figure 2, 
using continuations in Standard ML of New Jersey. The Thread functor is parameterized by a 
polymorphic queue module with the following signature: 

signature QUEUE = 
sig 

type 'a T 
exception Deq 
val create : unit -> 'la T 
val enq : 'a T -> 'a -> unit 
val deq : 'a T -> 'a 
val len : 'a T -> int 
val contents : 'a T -> 'a list 

end 

The Queue structure is used for the run queue, mutex queues, and condition queues. 

functor CoThread (Queue : QUEUE) : THREAD = 
struct 

(•****•••***•*••*•*•**) 
(* Per-thread state. *) 
(***••••**•**••*•*••**) 

type env = unit ref 

datatype 'a var = VAR of (env * 'a) list ref 

exception Undefined 

fun new_env () = ref () 

val current_env = ref (new__env ()) 

fun var () = VAR (ref []) 

fun find [] = raise Undefined 
I find env ((e, a) :: rest) = 
if e = env then a else find env rest 

fun get (VAR v) = find (!current_env) (!v) 

fun replace env [] a = [(env, a)] 
I replace env ((pair as (e, __)) :: rest) a = 
if e = env then (e, a) :: rest 
else pair :: replace env rest a 
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fun set (VAR v) a = (v := replace (!current_env) (!v) a) 

(••••••••••***************̂  
(* Thread creation, destruction, and scheduling. *) 
(••••••••••••••••••••••••••••̂  

datatype thread = THREAD of unit cont * env 

fun thread k = THREAD (k, !current_env) 

val run_queue : thread Queue.T = Queue.create () 

fun reschedule thread = Queue.enq run_queue thread 

exception Deadlock 

fun run__next () = 
let val THREAD (k, env) = Queue.deq run__queue 

handle Queue.Deq => raise Deadlock 
in 

current_env := env; 
throw k () 

end 

fun exit () = run_next () 

fun block queue = 
callcc (fn k => (Queue.enq queue (thread k); 

run__next () )) 

fun yield () = block run_queue 

fun fork f = 
callcc (fn k => 

(reschedule (thread k); 
current__env : = new_env () ; 
f () handle exn => 

print ("Unhandled exception " " 
System.exn_name exn " 
" raised in thread.\n"); 

run__next () )) 

(••*******••*****) 
(* Mutex locks. *) 
(******•******•••) 
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datatype mutex = 
MUTEX of bool ref * thread Queue.T 

fun mutex () = 
MUTEX (ref false, Queue.create ()) 

fun try_acquire (MUTEX (held, _)) = 
if not (!held) then 

(held := true; true) 
else 

false 

fun acquire (m as MUTEX (held, q)) = 
if try__acquire m then 

0 
else 

block q 

fun release (MUTEX (held, q)) = 
reschedule (Queue.deq q) 
handle Queue.Deq => held := false 

fun with__mutex m body = 
let val result = (acquire m; 

body () handle exn => 
(release m; raise exn)) 

in 
release m; 
result 

end 

(•••*•••*****•••) 
(* Conditions. *) 
(•**•*•****•***•) 

datatype condition = 
CONDITION of mutex * thread Queue.T 

fun condition m = 

CONDITION (m, Queue.create ()) 

fun mutex_of (CONDITION (m, __) ) = m 

val with__condition = with__mutex o mutex__of 
fun awaken (CONDITION (m as MUTEX (_, mq), cq)) = 

let val thread = Queue.deq cq 
in 
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if try__acquire m then 
reschedule thread 

else 
Queue.enq mq thread 

end 

fun repeat f = (f (); repeat f) 

fun signal c = 
awaken c handle Queue.Deq => () 

fun broadcast c = 
repeat (fn () => awaken c) handle Queue.Deq => () 

fun wait (CONDITION (m, q) ) = 
(release m; block q) 

fun await c test = 
if test () then 

0 
else 

(wait c; await c test) 
end 
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B Further Examples 

The following sections give further examples that make use of the thread interface. 

B.l Reader/Writer Locks 

signature RW_LOCK = 
sig 

type T 
val create : unit -> T 
val read_with__lock : T -> (unit -> 'a) -> , a 
val write__with_lock : T -> (unit -> 'a) -> 'a 

end 

Reader/writer locks allow multiple readers or a single writer access to some state. The following 
functor implements reader/writer locks. 

functor RW_Lock (Thread : THREAD) : RW_LOCK = 
struct 

datatype T = RW of { free : Thread.condition, 
num_readers: int ref, 
write : bool ref } 

fun create () = RW { free = Thread.condition (Thread.mutex 
num__readers = ref 0 , 
write = ref false } 

fun rw__lock_read (RW { free, num__readers, write }) = 
Thread.with_condition free 
(fn () => 
(Thread.await free (fn () => not (!write)); 
inc num_readers) ) 

fun rw__unlock_read (RW { free, num_readers, ... }) = 
Thread. with__condition free 
(fn () => (dec num_readers; 

if !num__readers = 0 then 
Thread.broadcast free 

else 
( ) ) ) 

fun rw_lock_write (RW { free, num_readers, write }) = 
Thread. with__condition free 
(fn () => (Thread.await free 

(fn () => !num__readers = 0 andalso not (!write)); 
write := true)) 
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fun rw__unlock_write (RW { free, num_readers, write }) 
Thread.with_condition free 
(fn () => (write := false; 

if !num__readers = 0 then 
Thread.broadcast free 

else 
( ) ) ) 

fun with__lock lock_fn unlock__fn lock f = 
let vai result = (lock_fn lock; 

f () handle exn => 
(unlock_fn lock; raise exn)) 

in 
unlock_fn lock; 
result 

end 

vai read_with_lock = 
with_lock rw_lock_read rw__unlock_read 

vai write_with_lock = 
with lock rw__lock_write rw__unlock_write 
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B.2 Asynchronous Channels 

In order to implement an approximation of Ada's rendezvous and select constructs, we first define 
a CHANNEL signature that allows asynchronous sends and asynchronous receives. 

s i g n a t u r e ASYNC_CHANNEL = 
s i g 

i n c l u d e CHANNEL 

e x c e p t i o n GetNow 
v a l get__now : 7 a T - > 7 a 
v a l get__wait : ' a T - > u n i t 

e n d 

The p u t operation puts an object into a channel and returns immediately. The g e t W a i t operation 
waits until some object has been put into the channel. The getNow operation gets a value from a 
channel if a value is available, otherwise the exception GetNow is raised. A functor that implements 
this channel interface is given below: 

f u n c t o r AsyncChanne l (Thread : THREAD) : ASYNCJ3HANNEL = 
s t r u c t 

d a t a t y p e 7 a T = CHAN o f { h e r e : T h r e a d . c o n d i t i o n , 
gone : T h r e a d . c o n d i t i o n , 
v a l u e : 7 a o p t i o n r e f } 

f u n c r e a t e () = 
l e t v a l m = T h r e a d . m u t e x () 
i n 

CHAN { h e r e = T h r e a d . c o n d i t i o n m, 
g o n e = T h r e a d . c o n d i t i o n m, 
v a l u e = r e f NONE } 

e n d 

f u n p u t (CHAN { h e r e , g o n e , v a l u e }) v = 
l e t f u n p u t 7 () = 

c a s e l v a l u e o f 
SOME _ => ( T h r e a d . w a i t g o n e ; 

p u t 7 ( ) ) 
| NONE => ( v a l u e := SOME v ; 

T h r e a d . b r o a d c a s t h e r e ) 
in 

T h r e a d . w i t h _ c o n d i t i o n gone p u t 7 

e n d 

f u n g e t (CHAN { h e r e , g o n e , v a l u e }) = 
l e t f u n g e t 7 () = 

c a s e l v a l u e o f 
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SOME v => (value := NONE; 
Thread.broadcast gone 
v) 

I NONE => (Thread.wait here; 
get' ()) 

in 
Thread.with__condition here get' 

end 

fun get_wait (CHAN { here, gone, value }) = 
let fun get_wait' () = 

case lvalue of 
SOME _ => () 

I NONE => (Thread.wait here; 
get_wait' ()) 

in 
Thread.with__condition here get__wait' 

end 

exception GetNow 

fun get_now (CHAN { here, gone, value }) = 
let fun get__now' () = 

case lvalue of 
SOME v => (value := NONE; 

Thread.signal gone; 
v) 

I NONE => raise GetNow 
in 

Thread.with_condition gone get_now' 
end 

34 



B.3 Rendezvous and Select 

The following signature defines a first-class r e n d e z v o u s type along with a first-class s e l e c t 
type. The former is analogous to an Ada entry, while the latter is analogous to an Ada select. 

s i g n a t u r e RENDEZVOUS = 
s i g 

t y p e ( ' a , ' b ) r e n d e z v o u s 

v a l r e n d e z v o u s : ( ' l a - > ' l b ) - > ( ' l a , ' l b ) r e n d e z v o u s 

t y p e ( ' a , ' b ) arm 

v a l arm : ( ( u n i t - > b o o l ) * ( ' a , ' b ) r e n d e z v o u s ) - > ( ' a , ' b ) arm 

t y p e ( ' a , ' b ) s e l e c t 
v a l s e l e c t : ( ( ' a , ' b ) arm) l i s t - > ( ' a , ' b ) s e l e c t 
v a l a c c e p t : ( ' a , ' b ) s e l e c t - > u n i t 
v a l c a l l : ( ' a , '2b) r e n d e z v o u s - > ' a - > '2b 

e n d 

The R e n d e z v o u s functor below implements the RENDEZVOUS signature. Each rendezvous value 
consists of a function and an input and output channel. Each select value is a list of test functions 
(guards) and corresponding rendezvous values. 

The c a l l operation sends a value on the input channel of the r e n d e z v o u s to some receiver. The 
receiver will use the value to compute some new value and return the result on the output channel. 

The a c c e p t folks a thread to handle each "arm" of the select. Each thread evaluates its guard 
to determine if it should attempt to do communication. If so, it waits until a value has arrived 
from a caller on the input channel. It then looks to see if any other thread has already finished its 
rendezvous. If so, the thread quietly dies (aborts). Otherwise, the thread grabs the value from the 
input channel, uses its rendezvous function to compute the output value, and places the output value 
in the output channel. It then sets a shared flag so that other threads associated with the a c c e p t 
will abort. 

f u n c t o r R e n d e z v o u s ( s t r u c t u r e Thread : THREAD 
s t r u c t u r e Channe l : ASYNC_CHANNEL) : RENDEZVOUS = 

s t r u c t 
s t r u c t u r e Thread = Thread 

d a t a t y p e ( ' a , ' b ) r e n d e z v o u s = 

RV o f ( ( ' a - > ' b ) * ( ' a C h a n n e l . T ) * ( ' b C h a n n e l . T ) ) 

f u n r e n d e z v o u s f = RV ( f , C h a n n e l . c r e a t e ( ) , C h a n n e l . c r e a t e ( ) ) 

d a t a t y p e ( ' a , ' b ) arm = ARM o f ( ( u n i t - > b o o l ) * ( ' a , ' b ) r e n d e z v o u s ) 
v a l arm = ARM 

35 



datatype ('a, 'h) select = SEL of ('a, 'b) arm list 

val select = SEL 

fun call (RV (__, outChan, inChan) ) v = 
(Channel.put outChan v; 
Channel.get inChan) 

exception EmptySelect 

fun threadMap f = map (fn x => Thread.fork (fn () => (f x))) 

fun accept (SEL []) = raise EmptySelect 
I accept (SEL 1) = 
let val selectUnfinished = ref true 

val selectFinished = Thread.condition (Thread.mutex ()) 
fun helper (ARM (test, (r as RV (f, inChan, outChan)))) = 

let fun deposit () = 
if !selectUnfinished then 

(Channel.put outChan (f (Channel.getNow inChan)) 
selectUnfinished := false; 
Thread.signal selectFinished) 

else () 
i n 

in 

if test () then 
(Channel.getWait inChan; 
Thread.with_condition selectFinished deposit 
handle Channel.GetNow => 

(helper (ARM ((fn () => true), r)))) 
else () 

end 

Thread.with_condition selectFinished 
(fn () => (threadMap helper 1; 

Thread.wait selectFinished)) 
end 

end 
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