
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Specifications as Search Keys
for Software Libraries:

A Case Study Using Lambda Prolog

Eugene J. Rollins and Jeannette M. Wing
26 September 1990

CMU-CS-90-159^

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Searching through a large repository of objects can be a tedious activity if a user cannot easily identify
the object of interest. In the context of software development, we describe a method of searching through
program libraries using specification matching. We use signature information along with pre- and post
condition specifications as search keys to increase the recall and precision of a query. This paper details a
case study of specification matching where we use Lambda Prolog as our specification and query language
and higher-order unification to retrieve from a library of ML functions. We discuss the significance of
specification matching in general and point out some open issues.

©1990 E. J. Rollins and J. M. Wing

This research was sponsored by the Defense Advanced Research Projects Agency (DOD) and monitored
by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division
(AFSQ, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-87-C-1499, ARPA Order No.
4976, Amendment 20.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Keywords: Specifications, signature, matching and unification, program library,
search and retrieval, Lambda Prolog, ML, Larch.

Specifications as Search Keys for Software Libraries

Eugene J. Rollins and Jeannette M. Wing

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

September 26, 1990

1. Context and Motivation

Searching through a large repository of objects can be a tedious activity if a user cannot easily identify the

object of interest. If the object is a file stored in a campus-wide distributed file system, the user might need

to know some part of its name, e.g., a partial pathname, and possibly its location, e.g., the host name of the

file server. If the object is a database record, the user might need to know the record's attribute names in

order to formulate a query based on the attributes' values. What if the object is a component in a program

module library?

We propose searching through software libraries using specificationmatching. We assume a specification,

Si, is associated with each component, pi, in a software library of i components. For example, a procedure's

specification might consist of a name, a signature, and a pair of pre- and post-conditions describing the

procedure's behavior. Specification matching is the process of determining whether for a given query, q,

and specification, si, Sg satisfies q. For example, if the query and specification languages are both drawn

from the same logical language, then satisfies is logical implication; specification matching is the process of

showing an implication holds.

The expressiveness of the query and specification languages will determine whether specification match

ing is decidable. At one extreme, as in traditional program verification, it might require some "heavy-duty"

theorem proving with key insights provided by a human user. Through appropriate restrictions on the lan

guage and the meaning of satisfies, however, specification matching can be made practical and useful with

or without any human guidance. This paper describes one instance of the more general idea of specification

matching.

We use AProlog (pronounced "Lambda Prolog") [12] as our specification and query languages, and

AProlog's built-in higher-order unification to do specification matching. The most significant advantage we

gain in our use of AProlog is that unification gives us "for free" the desired theorem-proving power required

to do specification matching in general.

Criteria for Effective Matching

Let R be the set of relevant objects (objects of interest to the user) in a library and Q be the set of

objects resulting from a query. With an ideal match Q « R. We use precision and recall [18] as two

measurements to determine how good a match is and define them as these ratios: Precision = \R D Q\ : \Q\

and Recall = \R n Q\ : \R\. Precision is the ratio between the number of relevant items returned and the

number of all items returned. High precision means that a high percentage of the items resulting from a

query are of interest to the user. Recall is the ratio between the number of relevant items returned and the

number of all relevant items in the library. High recall means that few items of interest to the user are missed.

Scenario: A Pipelined Query

Imagine a user poses the query "What procedures in the library sort lists of elements of type a ? "

Breaking this single query into stages, the user might first retrieve all procedures whose signatures match

a list —• a list. At a second stage, the user might retain only those whose pre-condition states that the input

list is non-empty and post-condition states that the output list is a permutation of the elements in the input

list where the elements are arranged in ascending order. At a third stage, the user might retain only those

procedures for which a certain property P holds; in our example, P might be the property that the procedure

does not modify any of the elements in its list argument.

To test out our ideas, we built a prototype utility for specification matching in AProlog for a library of

Standard ML (ML) functions [13], each of which we specify following Larch's two-tiered approach [7].

In Section 2 we highlight the features of AProlog, ML, and Larch necessary to understand our examples.

We refer the reader to the references for details. Our prototype's basic utility supports signature matching,

described in Section 3, as what might be done in the first stage of a pipelined query. Our extended utility

supports more general specification matching, described in Section 4, and invokes the signature matching

predicate. As we develop these matching predicates we explain how our changes affect the precision and

recall of queries. Section 5 motivates our use of higher-order unification to do specification matching easily,

but also notes where AProlog falls short of being an "ideal" specification and query language. Section 6

discusses related work. We close in Section 7 with a summary of our contributions; their potential influence

in areas like formal specifications, software reuse and databases; and ideas for future work.

2

2. Highlights of AProlog, ML, and Larch

AProlog is a higher-order logic programming language; it treats functions and predicates as first-class objects.

Its semantics is based on a logic that uses the mechanism of the typed A-calculus for constructing predicate

and function terms and permits quantification over such constructions. The first-order subset of AProlog

is a typed dialect of Prolog. Standard ML [13] is a typed functional programming language that treats

functions as first-class objects and supports user-defined abstract data types as well as a host of other modem

programming language features. We specify each ML function or abstract type following Larch's two-tiered

approach [7], We defer a description of this approach to Section 4. For readers familiar with Larch, we

essentially use AProlog as the assertion language of a Larch interface specification instead of the Larch

Shared Language (a fragment of first-order logic with equality). We assume familiarity with Prolog and

explain further details of AProlog, ML, and Larch as necessary.

3. Matching Signatures

Our basic utility for searching ML function libraries consists of AProlog clauses that specify ML types and

function signatures (Section 3.1), and define signature matching (Sections 3.2 and 3.3).

3.1. Specifying M L Types and Function Signatures in AProlog

We distinguish AProlog types from ML types, which are values (or terms) in our AProlog implementation.

Terms that represent ML types have the AProlog type m l - t y p e . The clauses below define four AProlog

constants: i n t , b o o l , r e a l , and s t r i n g . The first clause can be read as "the (AProlog) type of i n t is

m i - t y p e " .

t y p e i n t m l - t y p e . % i n t e g e r
t y p e b o o l m l - t y p e . % b o o l e a n
t y p e r e a l m l - t y p e .
t y p e s t r i n g m l - t y p e .

In addition to these basic types, ML features several compound types. The first clause below declares

the constant l i s t to be a function that takes a term of type m l - t y p e and produces a term of type m l - t y p e .

For example, (l i s t i n t) forms a term representing the ML type for integer lists. The constant fn is a

curried function and takes one argument at a time. Given two arguments it produces an m l - t y p e term. The

3

expression (fn i n t i n t) represents the ML type int —• int.

t y p e l i s t m l - t y p e -> m l - t y p e .
t y p e a r r a y m l - t y p e -> m l - t y p e .
t y p e fn m l - t y p e - > m l - t y p e -> m l - t y p e . % f u n c t i o n
t y p e p r o d m l - t y p e - > m l - t y p e -> m l - t y p e . % c a r t e s i a n p r o d u c t

In order to build a signature library, we use the the constant hasType to form propositions that relate

ML function identifiers with their ML type signatures. The predefined Lambda Prolog type o is the type of

propositions.

t y p e hasType m l - f u n c t i o n -> m l - t y p e -> o

Figure 1 gives AProlog clauses declaring the signatures of ML functions in our sample library. 1 For

example, the ML plus function, denoted as m l - p l u s , has the ML type int x int — int. Since ML allows the

use of type variables, we conveniently use AProlog variables to represent ML type variables. For example,

the function m l - h d takes a list of elements of any type and returns a value of the element type. As opposed

to the m l - s o r t function, the curried function m l - g e n s o r t takes a binary function on elements of any type

and returns a function that takes a list of elements and returns a list of elements. Intuitively, m l - g e n s o r t ' s

functional argument is the comparision predicate to be used in sorting the elements in a list. Note that we

can state type signatures for ML functions using hasType without explicitly declaring their Lambda Prolog

types. Given their use in hasType rules, their types will be inferred to be m l - f u n c t i o n .

hasType m l - n o t (fn b o o l b o o l) .
hasType m l - a b s (fn i n t i n t) . % A b s o l u t e v a l u e .
hasType m l - p l u s (fn (p rod i n t i n t) i n t) .
hasType m l - l e s s t h a n (fn (p rod i n t i n t) b o o l) . % Less t h a n .

hasType m l - h d (fn (l i s t A) A) .
hasType m l - t l (fn (l i s t A) (l i s t A)) .
hasType m l - c o n s (fn (p rod A (l i s t A)) (l i s t A)) .
hasType m l - n u l l (fn (l i s t A) b o o l) .
hasType m l - l e n g t h (fn (l i s t A) i n t) .
hasType ml-map (fn (fn A B) (fn (l i s t A) (l i s t B))) .
hasType m l - n t h (fn (p rod (l i s t A) i n t) A) . % R e t u r n s n t h e l e m e n t i n l i s t
hasType m l - i n t s o r t (fn (l i s t i n t) (l i s t i n t)) . % S o r t s l i s t s of i n t e g e r s .
hasType m l - s o r t (fn (l i s t A) (l i s t A)) . % S o r t s l i s t s of A.
hasType m l - g e n s o r t (fn (fn (p rod A A) b o o l) (fn (l i s t A) (l i s t A))

% G e n e r i c s o r t i n g f u n c t i o n .

Figure 1: Signatures for a Library of ML Functions

lWe prefix all ML function names with m l - to avoid conflict with predefined Lambda Prolog constants such as n o t and d i v .

4

3.2. Simple Signature Matching

Our queries ask "What functions have a signature that matches the pattern 5?". Queries are solved by

attempting to unify the signature S with the signature of each function F in the library. If unification with

F's signature is successful (a consistent binding of variables is found), then F satisfies the query.

To motivate our full signature matching predicate presented in the next section, we begin with some simple

queries based on just our hasType predicate. We illustrate queries through scripts showing interaction with

the AProlog system. The first line of each example begins with the AProlog prompt (? -) followed by a query.

Results of the query follow on subsequent lines, where a single result is a binding of AProlog variables to

values; multiple results to the same query are separated by a semicolon and the system replies no if there

are no solutions.

The query below asks for all functions of type bool -* bool, of which there is only one, m l - n o t .

? - hasType F (fn b o o l b o o l) .
F ™ m l - n o t

The following query shows how variables can be instantiated in different ways to satisfy the query. In
the first solution, x can be any m l - t y p e term. In the last two solutions, specific values for x are given.

? - hasType F (fn (l i s t X) X) .
F ~ m l - h d , X » X: m l - t y p e ;
F ~ m l - n u l l , X b o o l ;
F ~ m l - l e n g t h , X ™ i n t

The next example shows that we may miss a function that has an extra argument but otherwise matches

the signature pattern. In this case the missing function is m l - g e n s o r t , which may be of interest when

looking for sorting functions.

? - hasType F (fn (l i s t i n t) (l i s t i n t)) .
F — m l - t l /
F m l - i n t s o r t ;
F - = m l - s o r t

The next two queries show that the order of arguments in the signature is significant, and that again

relevant functions may be overlooked.

? - hasType F (fn (p rod i n t (l i s t X)) X) .
no

? - hasType F (fn (p rod (l i s t X) i n t) X) .
F — m l - n t h , X ~ X: m l - t y p e

3 3 . Full Signature Matching

Recognizing that we may miss functions of interest through a naive use of the hasType predicate, we need a

more general signature matching predicate that considers certain distinct signatures as "equivalent." Inspired

by Rittri's [16] use of a congruence relation on signatures, which allow signatures with minor structural

differences to match, we introduce the following functions that transform functions:

hasType m l - f l i p (fn (fn (prod A B) C) (fn (prod B A) C)) .
hasType m l - c u r r y (fn (fn (prod A B) C) (fn A (fn B C))) .
hasType m l -uncurry (fn (fn A (fn B C)) (fn (prod A B) C)) .

M l - f l i p returns a function that reverses the order of the arguments of a function of two arguments.

Ml-curry and ml -uncurry respectively curry and uncurry their functional arguments. Note that ml-map

(Figure 1) is a transformer function as well.

We now define a signature matching predicate s a t i s f y - s i g that applies our transformation functions,

thereby giving us more solutions. It explicitly uses the function a p p l y to apply (transformation) functions

to functions.
t y p e s a t i s f y - s i g m l - f u n c t i o n -> m l - t y p e -> i n t -> o .
t y p e a p p l y m l - f u n c t i o n - > m l - f u n c t i o n -> m l - f u n c t i o n .

s a t i s f y - s i g F T Depth : - hasType F T . % Base c a s e ,

s a t i s f y - s i g (a p p l y F G) T Depth : - % R e c u r s i v e c a s e .

Depth > 0, NextDepth i s (Depth - 1) ,

s a t i s f y - s i g F (fn Tl T) NextDepth,
s a t i s f y - s i g G Tl NextDepth.

The base case of s a t i s f y - s i g captures the notion of query satisfaction that we have been using so far.

It states that a function f satisfies type signature pattern T, if F has a type signature that matches T. The

recursive case makes use of our transformation functions by defining signature matching on applications

of functions to functions. An application (a p p l y F G) satisfies T, if G satisfies a signature Tl , and F

transforms functions with signature Tl into functions with signature T. The third argument, Depth, ignored

for the base case, is used in the recursive case to restrict the level of nested applications of a p p l y .

Using s a t i s f y - s i g allows us to find the function we missed in an earlier query. Although the function

m l - n t h does not match the query, the function that results from swapping its arguments does match.

?- s a t i s f y - s i g Y (fn (prod i n t (l i s t X)) X) 1 .
Y ™ apply m l - f l i p m l - n t h , X ™ X: m l - t y p e

The next query also shows that s a t i s f y - s i g can increase recall over using hasType alone.

?- s a t i s f y - s i g F (fn (l i s t i n t) (l i s t i n t)) 1 .
F — m l - t l ;
F — m l - i n t s o r t ;
F " m l - s o r t ;
F — a p p l y m l - g e n s o r t m l - l e s s t h a n ;

F »» a p p l y ml-map m l - a b s

But what about precision? Suppose in this last query we were looking for integer sorting functions.

Then the fourth solution above is relevant, but the fifth is not. Function signatures do not carry enough

information to distinguish these two results.
The clauses for s a t i s f y - s i g apply two functions that are inverses of one another (e.g., two flips, or

6

cuny and uncurry) and hence report trivially different solutions. In the example below, the Lambda Prolog

system reports y e s to indicate that it was interrupted by the user before it could report additional solutions

to the query.

?- s a t i s f y - s i g F (fn (l i s t i n t) (l i s t i n t)) 3 .
F == m l - t l ;
F »» m l - i n t s o r t ;
F m l - s o r t ;
F » apply m l - g e n s o r t m l - l e s s t h a n ;
F ~ apply m l - g e n s o r t

(apply ml-uncurry (apply ml-curxy m l - l e s s t h a n)) ;
F ~ apply m l - g e n s o r t (apply m l - f l i p m l - l e s s t h a n) ;
F ~ apply m l - g e n s o r t

(apply m l - f l i p (apply m l - f l i p m l - l e s s t h a n)) ;
F ~ apply ml-map ml-abs ;
? ~ a p p l y (app ly m l - c u r r y (app ly m l - u n c u r r y m l - g e n s o r t))

m l - l e s s t h a n /
F ~ apply (apply ml -curry (apply ml-uncurry m l - g e n s o r t))

(apply ml-uncurry (apply ml -curry m l - l e s s t h a n)) ;
F » • apply (apply ml -curry (apply ml-uncurry m l - g e n s o r t))

(apply m l - f l i p m l - l e s s t h a n) ;
F " apply (apply ml -curry (apply ml-uncurry m l - g e n s o r t))

(apply m l - f l i p (apply m l - f l i p m l - l e s s t h a n)) ;
F =» apply (apply ml -curry (apply ml-uncurry ml-map)) m l - a b s ;
y e s

We can eliminate some of these extra solutions by modifying the s a t i s f y - s i g clauses to prohibit the

application of inverses.

t y p e i n v e r t m l - f u n c t i o n -> m l - f u n c t i o n -> o.
i n v e r t m l - f l i p m l - f l i p .
i n v e r t m l - c u r r y ml -uncurry .
i n v e r t ml-uncurry m l - c u r r y .

The revised definition of s a t i s f y - s i g is:

s a t i s f y - s i g F T Depth : - hasType F T.

s a t i s f y - s i g (apply F G) T D : -
Depth > 0, NextDepth i s (Depth - 1) ,
s a t i s f y - s i g F (fn Tl T) NextDepth,
s a t i s f y - s i g G Tl NextDepth,
i f (G - (apply HI H2))

(not (i n v e r t F HI))
t r u e .

where i f is defined as:

t y p e i f o -> o -> o -> o .
i f P T E : - P, ! , T.
i f P T E : - E.

The only change to s a t i s f y - s i g is to add a test for whether the function we want to match, G, is the

result of the application of two functions, a (transformation) function Hi and H2; if it is then we match only

if the transformation function F is not the inverse of Hi. This additional check increases precision without

7

decreasing recall. The last query will now result in fewer uninteresting solutions.
? - s a t i s f y - s i g F (fn (l i s t i n t) (l i s t i n t)) 3 .

F — m l - t l ;
F m l - i n t s o r t ;
F " m l - s o r t ;
F ~ a p p l y m l - g e n s o r t m l - l e s s t h a n ;
F » a p p l y m l - g e n s o r t (a p p l y m l - f l i p m l - l e s s t h a n) /
F «•» a p p l y ml-map m l - a b s

4. Matching Specifications

Signatures carry limited information for distinguishing functions in a library. For example, in a local ML

library of 270 functions, over 50% have type A -* B and 32% have type A x A — 5 , where A and 5 are

ML base types. Of the latter, 22% have type either int x int — int or int x int — £00/. Using additional

semantic information in queries could increase precision. In this section we extend the basic library search

utility by introducing a mechanism to match specifications.

We write Larch-style specifications, each composed of two components: (1) An interface component

describes individual program module behavior, e.g., the side effects of a Pascal procedure or exceptional

termination of an ML function. It consists of a pre-condition and post-condition pair, each written as a

first-order predicate. (2) A shared component defines the abstractions, e.g., properties of sets, lists, and

partial orders, used in interface components. It consists of a set of algebraic equations that define relations

among operators, and hence defines equality between terms that appear in an interface component. 2

Below we present a small library of functions over collection-like objects defined in terms of lists.

First, we give a shared component that contains clauses about list operators, and then, we give five interface

components, each containing, in addition to a signature, a pre- and post-condition pair. These two subsections

also show how we systematically transform the predicates and equations of Larch-style specifications into

AProlog clauses. Finally, we give a set of clauses for solving queries that contain three parts: a signature, a

pre-condition, and a post-condition.

4.1. Shared Component: A List Abstraction

Figure 2 gives a shared component specification for lists. The two constructors are new and c o n s .

t y p e cons A -> (l i s t A) -> (l i s t A) .
t y p e new l i s t A.

Using a set of AProlog propositions, we define each of the observers, i s e m p t y , h a s , l e n g t h , and

2For this experiment, we ignore the inductive rules of inference that can appear in a Larch shared component.

8

count in terms of each of the constructors. The semantics of each boolean-valued observer can be given as

a list of propositions that are true. For example, the first clause below for i s e m p t y states that "isempty

on the new list is true."
t y p e i s e m p t y l i s t A -> o .

i s e m p t y new.

n o t (i s e m p t y (cons X Y)) .

As in Prolog clauses, we read : - as reverse implication with the consequent on the left-hand side and

the antecedent on the right-hand side. For example, in the second clause for has, an element, E , is in a

non-empty list, Y if it was the last element, x, inserted or is already in the list Y .
t y p e h a s l i s t A - > A -> o.

not (has new E) .

h a s (cons X Y) E : - i f (E * X) t r u e (has Y E) .

The semantics of an observer that returns a non-boolean value is expressed as a proposition that relates

arguments to results. The type of the Lambda Prolog constant l e n g t h given below indicates the function it

represents takes a list and produces an integer result. The first rule states that l e n g t h , returns 0 given new.

The second rule states that given (cons x Y) , the l e n g t h function returns as the value of L the length of

Y plus l .
t y p e l e n g t h l i s t A -> i n t -> o .

l e n g t h new 0 .

l e n g t h (cons X Y) L : - (l e n g t h Y YLen), (L i s (YLen + 1)) .

In Figure 2, we define c o u n t similarly, where informally, the count function returns the number of

occurrences a given element is in a given list.

4,2. Interface Component: Collection Functions

Figure 3 gives interface components for five functions over collection-like objects. For each function we

provide its signature using a hasType clause, a pre-condition, and a post-condition. Given the following

AProlog types,

t y p e p r e m l - f u n c t i o n -> (o -> o) -> o .
t y p e p o s t m l - f u n c t i o n -> (o -> o) -> o .
t y p e w i t h A -> o -> o .

we see that each (pre- and post-) condition is a boolean-valued (AProlog) function. A pre-condition takes

the same arguments as the (ML) function it describes. A post-condition takes those arguments plus one

argument for each result. We use the constant w i t h to express conditions in curried form. In AProlog A X . A

is written as x \ A . A w i t h term contains a lambda expression that introduces a bound variable and has a

predicate for a body. The bound variable represents one argument or one result of the (ML) function being

defined. Since pre- and post-conditions are functions and we want to do reasoning with them, we need to

use a higher-order logic in which functions are first-class objects. We will discuss the need for higher-order

t y p e new l i s t A. % The empty l i s t .

t y p e cons A -> (l i s t A) -> (l i s t A) . % Add an e lement onto a l i s t .

t y p e i s empty l i s t A -> o . % I s a l i s t empty?
i s empty new.
not (i sempty (cons X Y)) .

t y p e has l i s t A -> A -> o . % I s an e lement i n a l i s t ?
not (has new E) .
has (cons X Y) E : - i f (E - X) t r u e (has Y E) .

t y p e l e n g t h l i s t A -> i n t -> o . % What's t h e l e n g t h of a l i s t ?
l e n g t h new 0 .
l e n g t h (cons X Y) L : - (l e n g t h Y YLen), (L i s (YLen + 1)) .

t y p e count l i s t A -> A -> i n t -> o . % Occurrences of an e lement i n a l i s t ,
count new E 0 .
count (cons X Y) E C : - count Y E Par t , i f (E * X) (C i s (Part + 1)) (C i s Part)

Figure 2: Shared Component for List Abstraction

logic in detail in Section 5.1.

For example, b a g l n i t ' s signature indicates that it is a constant of ML type bag. Its post-condition

states that the value of the resulting bag, when viewed as a list, is a list of length 0. (Note that the meaning

of l e n g t h is given by the shared component shown in Figure 2.)

hasType b a g l n i t bag .
pre b a g l n i t (with B \ t r u e) .
p o s t b a g l n i t (with B \ (l e n g t h B O)) .

In the clauses for bagAdd, B denotes the value of the bag argument, E the integer argument, and B 2 the
result. The pre-condition states that the bag argument must be represented by a list of length less than 100.
The post-condition states that the result contains E.

hasType bagAdd (fn (prod bag i n t) b a g) .
pre bagAdd

(wi th B \ (w i t h E \ ((l e n g t h B L) , (l e s s - t h a n L 1 0 0)))) .

p o s t bagAdd (wi th B \ (w i t h E \ (w i t h B 2 \ (h a s B 2 E)))) .

Looking at the clauses for the remaining functions, we note the following: (1) like b a g l n i t , c o n t a i ne r I n i t

and s e t l n i t place no restrictions on its input argument (pre-condition is true), (2) the post-conditions for

b a g l n i t , c o n t a i n e r l n i t , and s e t l n i t all differ, though intuitively they have the same meaning, and

(3) unlike bagAdd, setAdd's post-condition states that the result contains no duplicate elements.

10

file:///true

hasType b a g l n i t bag . % I n i t i a l i z e a bag.
pre b a g l n i t (with B \ t r u e) .
p o s t b a g l n i t (with B \ (l e n g t h B O)) .

hasType bagAdd (fn (prod bag i n t) b a g) . % I n s e r t an i n t i n a bag.
pre bagAdd (with B \ (w i t h E \ ((l e n g t h B L) , (l e s s - t h a n L 1 0 0)))) .

p o s t bagAdd (with B \ (w i t h E \ (w i t h B 2 \ (h a s B 2 E)))) .

hasType c o n t a i n e r l n i t c o n t a i n e r . % I n i t i a l i z e a c o n t a i n e r ,
pre c o n t a i n e r l n i t (with C \ t r u e) .
p o s t c o n t a i n e r l n i t (with C \ ((i s e m p t y C), (l e n g t h C 0))) .

hasType s e t l n i t s e t . % I n i t i a l i z e a s e t .
pre s e t l n i t (with S \ t r u e) .
p o s t s e t l n i t (W I T H S \ (i s e m p t y S)) .

hasType setAdd (fn (prod s e t i n t) s e t) . % I n s e r t an i n t i n a s e t .
pre setAdd (with S \ (w i t h E \ t r u e)) .

p o s t setAdd (with SI \ (w i t h E \ (w i t h S 2 \ ((h a s S 2 E) , (count S 2 E 1))))) .

Figure 3: Interface Components for Five Functions

4.3. Full Specification Matching

A complete query now comprises three parts: a signature (and a depth), a pre-condition, and a post-condition.

To satisfy a query these three parts of a function description must satisfy the three parts of a query,

t y p e s a t i s f i e s m l - f u n c t i o n -> A -> o .
s a t i s f i e s F (query S i g Depth QPre QPost) : -

s a t i s f y - s i g F S i g Depth,
s a t i s f y - p r e F QPre,
s a t i s f y - p o s t F QPost.

We defined satisfaction for signatures in Section 3. Here we define satisfaction for pre- and post

conditions. A pre-condition is satisfied if the pre-condition of the query implies the pre-condition of the

library function. That is, the function's pre-condition can be weaker than the query's pre-condition, meaning

that we can call the function in any context required by the query as well as other contexts. A post-condition

is satisfied if the post-condition of the library function implies the post-condition of the query. That is, the

function's post-condition can be stronger than the query's post-condition, meaning that the function may

produce results for any context required by the query as well as other contexts. In AProlog, we capture these

1 1

file:///true
file:///true
file:///true
file:///true

ideas as follows:
t y p e s a t i s f y - p r e m l - f u n c t i o n -> A -> o .

s a t i s f y - p r e F QPre : - (pre ,F CPre) , i m p l i e s QPre CPre.

t y p e s a t i s f y - p o s t m l - f u n c t i o n -> A -> o .
s a t i s f y - p o s t F QPost : - p o s t F CPost , i m p l i e s CPost QPost .

We define i m p l i e s below. In AProlog, p i means "for all", and *> means "implies".

t y p e i m p l i e s A -> B - > o .
i m p l i e s (wi th P) (wi th Q) : - ! , (pi x \ (i m p l i e s (P x) (Q x))) .

i m p l i e s P Q : - P - > Q.

Recall that all conditions are represented by w i t h terms, each of which takes a lambda expression

argument. The first i m p l i e s clause states that i m p l i e s holds for (with P) and (with Q), if it holds

for all pairs of propositions resulting from identical substitution of type-correct values for the variables in

lambda expressions P and Q. The second i m p l i e s clause states that for simple propositions i m p l i e s

reduces to first-order implication. Our fonnulation of i m p l i e s requires that for i m p l i e s to hold between

two propositions they must have the same number of w i t h levels. This would be true of conditions for any

functions with matching signatures.

Here now is an example of a full query and its solution. It asks for all functions F that take one argument

of type T and another of type integer, and returns a result of type T. The query's pre-condition is just true3

and its post-condition states that F should guarantee the result contains the integer argument. Set Add is the

only solution satisfying this query.
? - s a t i s f i e s F (query (fn (prod T i n t) T) 1

(wi th X \ (with Y \ t r u e))
(wi th X \ (with Y \ (with Z \ (has Z Y))))) .

F ™ s e t Add, T ™ s e t
Suppose we were to satisfy the query's three parts separately:

?- s a t i s f y - s i g F (fn (prod T i n t) T) 1 .
F == m l - p l u s , T == i n t ;
F - « bagAdd, T =»• bag /
F " setAdd, T =™ s e t /
F " apply m l - f l i p m l - p l u s , T ™ i n t ;
F apply m l - f l i p m l - c o n s , T == l i s t i n t

? - s a t i s f y - p r e F (with X \ (wi th Y \ t r u e)) .
F — setAdd

?- s a t i s f y - p o s t F (with X \ (with Y \ (with Z \ (has Z Y)))) .
F — bagAdd ;
F — setAdd

Note that the post-condition for setAdd is stronger than that of the query. In this particular example,

3Not all implementations of AProlog will allow t r u e to appear as it does in our query.

12

changing the query's post-condition as follows has no effect on recall or precision.
? - s a t i s f y - p o s t F

(with X \ (w i t h Y \ (w i t h Z \ ((h a s Z Y), (count Z Y 1))))) .
F ~ setAdd

? - s a t i s f y - p o s t F (with X \ (w i t h Y \ (w i t h Z \ (c o u n t Z Y 1)))) .
F — setAdd

Looking back to the original query, we see that: (1) the signature query alone results in a set of functions

many of which appear to be semantically unrelated, (2) unlike for the post-condition query alone, the function

bagAdd is not a result of the original query because the query's pre-condition does not imply bagAdd's

pre-condition. In conclusion, additional semantic information increases precision dramatically.

5. Benefits and Limitations of AProlog

We are fortunate to have the power of higher-order unification provided by AProlog yet we do miss the

power of (first-order) equational reasoning. We discuss each of these in turn.

5.1. Why Higher-order Logic?

To motivate our need for higher-order logic to do specification matching, let us consider expressing post

conditions within first-order logic. One way to do this is to represent a parameter in a post-condition by a

AProlog variable. The post-conditions of the library functions would be expressed as:
p o s t - 1 b a g l n i t (l e n g t h B O) .
p o s t - 1 bagAdd (has B2 E) .
p o s t - 1 c o n t a i n e r l n i t ((i s e m p t y C) , (l e n g t h C O)) .
p o s t - 1 s e t l n i t (i s e m p t y S) .
p o s t - 1 setAdd ((has S2 E) , (count S2 E 1)) .

We would define a s a t i s f y - p o s t - 1 predicate as:

s a t i s f y - p o s t - l F Q : - p o s t - 1 F Y , Y => Q.

and pose the following query:
? - s a t i s f y - p o s t - l G (has H J) .
G ~ b a g l n i t
H — cons X Y
J — X ;
y e s

This query shows that AProlog will find substitutions for the variables H and J such that the query can be

satisfied. Looking back on the rules for h a s we see that the term (has (cons x Y) x) reduces to t rue.

Since Y ~> t r u e for any Y, the query will match all functions in the library.

This formulation finds particular terms to substitute into query's post-condition variables. A correct

formulation should allow the query to be satisfied only if it can be satisfied by any substitution in its

13

post-condition. We can simulate modeling post-condition parameters not with Prolog variables, but with

Prolog constants that have no clauses governing them. Consider each condition as a function with a list of

parameters, where we name each parameter x/i, with integer n representing its index in the parameter list.

The post-conditions of the library functions would be expressed as:

p o s t - 2 b a g l n i t (l e n g t h x l 0) ,
p o s t - 2 bagAdd (has x3 x2) .
p o s t - 2 c o n t a i n e r l n i t ((i s e m p t y x l) , (l e n g t h x l 0)) .
p o s t - 2 s e t l n i t (i sempty x l) .

p o s t - 2 setAdd ((has x3 x 2) , (count x3 x2 1)) .

We would define s a t i s f y - p o s t - 2 as follows:
s a t i s f y - p o s t - 2 F Q : - p o s t - 2 F Y , Y »> Q.

Then for the following query,
? - s a t i s f y - p o s t - 2 G (has x3 x 2) .

G ~~ bagAdd ;
G — setAdd

we would get correct results. However, this second formulation has some limitations. The least important

limitation is that the constants xn must be reserved and not used as function names. More significant

limitations arc on the reasoning that can be done with the post-condition functions.

The language we used to express the post-conditions is fairly simple and contains no binding constructs.

If we introduce l e t , f o r a l l , or t h e r e e x i s t s constructs that create new variable bindings, we would

have to introduce i m p l i e s clauses to deal with post-condition functions that contained those constructs.

Using first-order Prolog we would also have to express the variable substitution rules in order to handle

these binding constructs properly. However, (higher-order) AProlog includes the substitution rules. Hence,

we can express rules on any binding constructs without the need to give explicit clauses for substitution.

In summary, a higher-order Prolog can be simulated in first-order Prolog by encoding the variable

substitution mechanism. By using higher-order Lambda Prolog, the rules are already correctly implemented.

They are efficiently implemented since the substitution mechanism is integrated with unification.

Moreover, any additional reasoning about conditions we may want to do can be done directly in AProlog.

An example of such reasoning would be flipping arguments in query pre- and post-conditions. Note that

the order of parameters in query post-conditions is significant in the second first-order formulation (using

constants for parameters) as well as in our higher-order formulation. Consider these queries:
? - s a t i s f y - p o s t - 2 G (has x3 x l) .

no
? - s a t i s f y - p o s t G (with XI \ (with X2 \ (wi th X3 \ (has X3 X I)))) .

no
In a manner similar to flipping the order of arguments when defining a more general signature matching,

14

we can extend the higher-order formulation to flip the order of parameters in post-conditions.

s a t i s f y - p o s t (apply m l - f l i p F) QPost : -
p o s t F CPost, f l i p CPost CFl ipped, i m p l i e s CFlipped QPost.

where f l i p is defined as:

f l i p (with X \ (with Y \ ((P Y) X)))
(with Y \ (with X \ ((P Y) X))) .

Our query now has two solutions:

?- s a t i s f y - p o s t G (with XI \ (with X2 \ (with X3 \ (has X3 X I)))) .
G »* apply m l - f l i p bagAdd /
G apply m l - f l i p setAdd

5.2. Equational Reasoning

We have seen that adding semantic information can dramatically increase precision. What effect does it

have on recall? Consider the following post-condition queries.

?- s a t i s f y - p o s t F (with X \ (i sempty X)) .
F « • c o n t a i n e r l n i t ;
F == s e t l n i t

?- s a t i s f y - p o s t F (with X \ (l e n g t h X 0)) .
F- » b a g l n i t /
F ™ c o n t a i n e r l n i t

?- s a t i s f y - p o s t F (with X \ ((l e n g t h X 0) , (i sempty X))) .

F ™ c o n t a i n e r l n i t

Using equational reasoning we can deduce that (l e n g t h x 0) - (i sempty X). However, AProlog

does not use equational reasoning in solving queries. There may be library functions whose specifications are

equivalent to that of the query, but expressed differently. Our search mechanism will miss those functions.

6. Related Work

Given a signature as a search key, doing an exact match will not always return all relevant components. To

increase recall, we can relax the semantics of match to return all components whose signatures are in some

sense either "equivalent" to or more "general" than the query's. Rittri [16] defines a congruence relation

on types, whose formal justification is given in terms of Cartesian closed categories, that is used to match

types "equivalent" to the key. Our inclusion of the transformation functions f l i p , curry and uncurry

of Section 3 encode his equivalence relation. Runciman and Toyn [17] define a generality ordering on

types, that with suitable restrictions can be turned into a partial order. Our use of an explicit apply in our

definition of s a t i s f y - s i g gives us a similar effect of ordering types (and unifying over types rather than

identifying them as in Rittri's case), e.g., that the type A B is greater than the type 5 . To paraphrase Rittri

[16], whereas his search method is based on the user's ignorance of argument order and currying, Runciman

15

and Toyn's is based on the user's ignorance of extra arguments. Our solution combines both ideas into one

framework.

To our knowledge, no previous work has been done on specification matching, where specifications

capture formally the semantics of the objects they describe, e.g., in the form of pre- and post-condition

predicates.

Tangentially related to our work on search is the reliance on dependency [3], hierarchy [15], and/or

inheritance relations [6] among software components to browse through libraries. Specific examples include

literate programming systems [8] where users attach informal documentation to code, and hypertext systems

[2, 19] where users make explicit links between document parts. They focus on the relation between

components rather than the components themselves, thereby facilitating general browsing, but not query-

specific search.

7. Summary and Significance of Contributions, Future Work

The new idea we propose is to access software libraries using specifications as search keys. Specifically,

we have shown that: (1) how to search based on signatures using first-order unification to do signature

matching, and (2) how to search based on pre- and post-conditions using higher-order unification to do

specification matching. One additional concrete contribution is our use of AProlog to specify ML library

functions, following the Larch two-tiered specification style in particular.

Our work should be of interest to many communities involved in the traditional study of programming

languages. First, for the logic programming community, we show a practical need for higher-order unification

since it lets us do specification matching automatically. We show a practical use of AProlog as a specification

and query language for our software library application and as an implementation language for our prototype

search utility.

Second, for the formal specification and software engineering communities, we show a new use of

specifications (as search keys), thus providing another incentive for specifying programs. Formal specifi

cations have a long history of being useful in the software development process for program design and

program verification. But what about software reuse? If software modules are truly to be reused either

without change or for further tailoring, we cannot rely on identifying modules simply by name (and perhaps

signature information) and then on "eyeballing" the code in the retrieved modules to see if any are relevant

to our needs. We need to rely on module descriptions written in a language higher-level than the code itself.

Hence, we see formal specifications as playing the key 4 role for software library search.

4Pun intended.

16

Third, programming language and database ideas are merging, as witnessed by programming language

design influencing query language design (and vice versa), and more recently, the incorporation of persistence

and atomic transactions in programming languages [9, 4, 1, 11], We show a deeper connection between

the two areas by identifying their different ideas of satisfaction: "a program satisfies a specification" and

"a database object satisfies a query" are instances of the same general idea. Here, we use unification to do

satisfaction checking, i.e., to do database retrieval.

Our experiment with AProlog shows the feasibility of our more general idea of specification matching;

however, we do recognize that theoretical and practical challenges remain. For example, we used trans

formation functions like f l i p and an implicit ordering on functions to obtain higher recall. We could

use different transformation functions and/or define different orderings on function signatures that would

tradeoff precision and recall. Also, more generally, we could define orderings on specifications; viewing

specifications as theories [20], for example, we could use theory inclusion as an ordering relation. We also

observe that were we to have higher-order unification with equality then we would have a more expressive

specification language. Work on combining first-order Horn clause logic with equality, e.g., as in Eqlog [5],

is a step in that direction.

More practically, to realize the third stage of our pipelined query scenario, we encourage more work on

improving the performance of current theorem provers. Finally, since more and bigger software libraries

appear everyday [6, 14, 10], to make indexing and searching through them more effective, we encourage

people to go through the trouble of attaching formal specifications to their software components.

8. Acknowledgments

This research was conducted in collaboration with members of the Venari and Ergo Projects at Carnegie-

Mellon University. Thanks to Greg Morrisett, Linda Leibengood, and Scott Dietzen for commenting on

an earlier draft of this paper. Greg Morrisett implemented the first version of signature matching in Turbo

Prolog. Thanks also to Frank Pfenning for Lambda Prolog consulting.

17

References

[1] M. P. Atkinson, K. J. Oiisolm, and W. P. Cockshott. PS-Algol: an Algol with a persistent heap.

SIGPLAN Notices, 17(7):24-31, July 1982.

[2] E. J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 2(9): 17-41, September 1987.

[3] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-small. IEEE

Trans, on Soft. Eng., June 1976.

[4] D. L. Detlefs, M. P. Heriihy, and J. M. Wing. Inheritance of synchronization and recovery properties

in Avalon/C++. IEEE Computer, pages 57-69, December 1988.

[5] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for logic programming. In

D. DeGroot and G. Lindstrom, editors, Functional and Logic Programming, pages 179-210. Prentice-

Hall, 1986.

[6] A. Goldberg and D. Robson. Smalltalk 80: The Language and its Implementation. Addison-Wesley,

1983.

[7] J. V. Guttag, J. J. Homing, and J. M. Wing. The Larch family of specification languages. IEEE

Software, 2(5):24-36, September 1985.

[8] D. E. Knuth. Literate programming. Computer Journal, 27(2):97-l 11,1984.

[9] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed programs.

ACM Transactions on Programming Language and Systems, 5(3):382-404, July 1983.

[10] Math. Mathematica. Math, January 1988.

[11] D. C. J. Matthews. Poly manual. SIGPLAN Notices, 20(9):52-76, September 1985.

[12] D. A. Miller and G. Nadathur. Higher-order logic programming. In Third International Conference on

Logic Programming, London, July 1986.

[13] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MTT Press, 1990.

[14] D. R. Musser and A. A. Stepanov. The Ada Generic Library. Springer-Verlag, 1989.

[15] D. L. Pamas. On a 'Buzzword9: Hierarchical Structure, pages 336-339. North-Holland Publishing

Company, 1974.

18

[16] M. Rittri. Using types as search keys in function libraries. In Conference on Functional Programming

Languages and Computer Architectures, pages 174-183, September 1989.

[17] C. Runciman and I. Toyn. Retrieving re-usable software components by polymorphic type. In

Conference on Functional Programming Languages and Computer Architectures, pages 166-173,

September 1989.

[18] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[19] J. B. Smith and S. F. Weiss. An overview of hypertext. CACM, 31(7), July 1988. See entire issue for

related papers.

[20] W. M.TurskiandT. S.E.Maibaum. The Specification of Computer Programs. Aadison-Wesiey, 1987.

19

