
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Foundations of 
A Computational Theory 
of Catecholamine Effects 

Harry Printz 
David Servan-Schreiber 

May 21, 1990 
CMU-CS-90-105 3 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Abstract 

This report presents the mathematical foundation of a theory of catecholamine effects upon human signal detection 
abilities. We argue that the performance-enhancing effects of catecholamines are a consequence of improved 
rejection of internal noise within the brain. 

To support this claim, we develop a neural network model of signal detection. In this model, the release of 
a catecholamine is treated as a change in the gain of a neuron's activation function. We prove three theorems 
about this model. The first asserts that in the case of a network that contains only one unit, changing its gain 
cannot improve the network's signal detection performance. The second shows that if the network contains enough 
units connected in parallel, and if their inputs satisfy certain conditions, then uniformly increasing the gain of all 
units does improve performance. The third says that in a network where the output of one unit is the input to 
another, under suitable assumptions about the presence of noise along this pathway, increasing the gain improves 
performance. We discuss the significance of these theorems, and the magnitude of the effects that they predict. 
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1 Introduction 
The catecholamines are a group of neuroactive substances that are believed to modu
late information processing in the brain, as opposed to transmitting particular pieces 
of information. Much is known about their effect upon the responsivity of individual 
neurons, and upon gross aspects of behavior like alertness and attention. However, 
there is as yet no comprehensive theory that explains the latter effects in terms of the 
former. 

In this paper we advance the mathematical foundations for such a theory. We 
believe that the effects of catecholamines upon human performance at signal detection 
tasks are a consequence of improved rejection of noise within the brain. They may 
also arise partly from an enhancement in the ability of the perceptual apparatus to 
extract a signal from noisy sensory data, though this effect appears to be small. 

Our argument proceeds along the following lines. We construct a model of signal 
detection in biological systems, which captures certain known features of neurons, 
and ignores others. Then we prove several properties of this model, and use these 
formal results to explain the gross behavioral impact of catecholamines. 

We have described this as a computational theory, which no doubt gives some 
indication of the nature of our model. Specifically, we treat the neuron as a device 
that computes a real-valued function of its net input, called an activation function, 
and we treat the influence of the catecholamines as a change in this function. We will 
not concern ourselves with the biochemical machinery that implements the activation 
function, nor with the precise way in which catecholamines affect this mechanism. 
Our work is an investigation of the performance of an assembly of these devices, 
commonly called a neural network, upon a particular computational task. This task 
is a formalization of a real signal detection task performed by human subjects. 

The formal results we prove about our model consist of three theorems. Each one 
concerns the effect of changes in the activation function upon the signal detection 
performance of a neural network. 

The first of these, the Constant Optimal Performance Theorem, asserts that if a 
network contains only one unit, changing its gain cannot improve the network's signal 
detection performance. This result is significant because it undermines explanations 
of catecholamine effects that are formulated exclusively in terms of the signal-to-noise 
ratio. 

The second, the Ensemble Performance Theorem, shows that if the network con
tains a number of units connected in parallel, and if their inputs satisfy certain con
ditions, then uniformly increasing the gain of all units does improve the network's 
performance. This amounts to enhancing the network's ability to extract a signal from 
noisy inputs, a phenomenon we call the ensemble effect. However, our numerical 
studies suggest that the magnitude of this effect is small. 

The third, the Chain Performance Theorem, says that in a network where the 
output of one unit supplies the input to another, under suitable assumptions about the 
presence of noise along this connection, increasing the gain improves performance. 
As we will see, this means that the network is doing a better job at rejecting internal 
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noise. We call this the chain effect. 
The apparent contradiction between the first two results is resolved below. Its 

resolution depends in an essential way upon summing the outputs of several units. 
Thus one corollary of this work is the demonstration of a truly emergent property of 
neural networks. 

Note that these results are all statements about our model. They do not touch 
on how well the model accords with real biological systems, or to what extent the 
behavior of the model explains the effects of catecholamines upon human subjects. 
These issues are addressed in a companion paper [12]. 

The plan of the current paper is as follows. In Section 2 we review the neu
rophysiology phenomena that motivated this study. In Section 3, we discuss the 
neural network models to which the theorems apply, describe the signal detection 
task the networks perform, and introduce the terminology and notation we will use 
throughout the paper. In Section 4 we state the theorems and explain what they say, 
and provide some intuition about why they are true. In Sections 5, 6 and 7 we prove 
the Constant Optimal Performance Theorem, the Ensemble Performance Theorem, 
and the Chain Performance Theorem respectively. In Section 8 we give a critical 
review of the different explanations we have provided for catecholamine effects, and 
suggest directions for future research. In Section 9 we summarize our results and 
contributions. 

The reasoning presented here draws upon results in probability theory and real 
analysis. We have tried to keep the descriptive material at an introductory level. 
Sections 2, 3, 4, 8 and 9 require only elementary probability theory, at the level 
of [14, Sections 9.1-9.8], and some previous exposure to signal detection theory, such 
as [6, Chapter 1]. To read and understand the proofs requires a working knowledge 
of real analysis at the level of [10] and [17], and familiarity with the results of [16, 
Chapters 2 and 3]. 

2 Neurophysiologies! Motivation 
In this section we outline the neurophysiological phenomena that motivated our work. 
First we discuss the catecholamines, and evidence that these substances modulate neu
ral responsivity. Then we describe the phenomenon that we propose to explain, which 
is the enhancement, with catecholamine release, of human signal detection perfor
mance. This outline is not intended as a critical evaluation of competing hypotheses 
about the role of the catecholamines, but merely as a sketch of one widely held view, 
which motivated our investigations. 

The catecholamines are a group of neuroactive substances, consisting of dopamine 
and its metabolic products, norepinephrine and epinephrine [3]. Dopamine and nore
pinephrine were originally thought to function as inhibitory neurotransmitters; that 
is, their release at a synapse was thought to reduce the firing rate of the postsynap
tic neuron [3, p 267]. However, more recent studies suggest that these substances 
may act as neuromodulators. By "neuromodulator" we mean a substance that does 
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not itself alter the firing rate of a neuron, but which changes the cell's response to 
putative neurotransmitters. 

There is now a body of evidence suggesting that dopamine and norepinephrine 
function in this way. For example, the presence of dopamine at a synapse in the 
striatum, at concentrations too low to change the basal firing rate of the postsynaptic 
neuron, increases both the excitatory effect of the neurotransmitter glutamine (glu), 
and the inhibitory effect of the neurotransmitter 7-aminobutyric acid (gaba) [1]. That 
is, upon release of gaba in the presence of dopamine, there is a greater reduction 
of the neuron's firing rate from its basal level than if the same amount had been 
released in the absence of dopamine. Likewise for the firing rate increase induced by 
the release of GLU. For reasons that will become apparent later, we will refer to this 
modulatory effect as raising the neuron's gain. Similar results apply to norepinephrine 
[18]. Moreover, once a catecholamine has been released, its influence on the target 
cell may last several seconds or even minutes, whereas the effects of gaba and glu 
last only a few milliseconds. 

In addition to these pharmacological results, there is anatomical and physiolog
ical evidence that the catecholamines function as gross modulators of information 
processing within the brain, rather than as messengers of particular neural signals. 

The anatomy of systems of catecholamine-containing neurons allows them to 
influence neuronal activity throughout much of the neocortex. In primate brains, 
nearly all of the cell bodies of noradrenaline-containing neurons are found in the lo
cus ceruleus, a small, well-circumscribed nucleus. While the bodies and preterminal 
axons of these neurons contain relatively low concentrations of catecholamines, the 
varicosties at the ends of the axons contain very high concentrations [3, pp 259-261]. 
These axons project to many cortical structures, including the primary somatosen
sory cortex, the primary motor cortex, the primary visual cortex, and area 7 of the 
parietal lobe. In addition, fibers from the locus ceruleus innervate almost all sub
cortical structures, including the thalamus. Dopamine-containing neurons originate 
in the substantia nigra and the ventro tegmental area, and project to subcortical motor 
structures, the primary motor cortex, and the associational neocortex of the prefrontal, 
temporal and parietal lobes. 

In contrast to thalamus-to-cortex and cortex-to-cortex fibers, which project to 
sharply delineated areas of the cortex, catecholaminergic fibers branch in profusion. 
Moreover, whereas thalamic fibers project radially, leading more or less directly from 
the thalamus to their destination, catecholaminergic fibers follow along the surfaces 
of brain structures. A single axon from a catecholaminergic neuron may traverse 
several functionally distinct cortical regions. This anatomical organization is well 
suited to global modulation, but not to spatially localized transmission of signals. 

The catecholaminergic systems also have physiological properties that set them 
apart from other types of neural systems. Their conduction velocity is slow, and their 
baseline firing rate is low and stable, resulting in a steady release of catecholamines. 
These neurons exhibit a constricted firing range, and are not able to sustain high levels 
of activity. Their apparent function is to maintain a constant level of norepinephrine 
and dopamine at their axon terminals. Finally, at least in the locus ceruleus, when this 
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body is stimulated, all its neurons fire uniformly, independent of the specific source 
of stimulation. It appears to weigh inputs from its two or possibly three afferents, and 
then widely distribute a uniform chemical message. In fact, the modulatory effects 
of norepinephrine that we described above have also been induced by the stimulation 
of the locus ceruleus [18]. 

Now we turn to the effect of catecholamine release upon human information 
processing. Our measure of this effect is the continuous performance test. In one 
version of this test, a subject watches a sequence of letters flashed for fixed duration 
one after another upon a screen, and is asked to press a button whenever any two 
successive letters are the same. Two identical consecutive letters are said to be an 
instance of the target event. Pressing the button when there was no target event is 
called a false alarm; failing to report a target event is called a miss. 

We compare the performance of subjects before and after receiving a central ner
vous system stimulant, such as amphetamine, that directly releases catecholamines 
from synaptic terminals, and blocks their reuptake. Before medication, typical per
formance is 15% to 20% misses, and 0.5% to 1% false alarms. After medication, the 
fraction of misses drops to 6% to 12%, while the fraction of false alarms is unchanged 
[8]. We take this as evidence that one possible effect of the catecholamines upon the 
human information processing system is to improve the ability of subjects to extract 
a signal from a noisy background. These results have been closely matched by a 
computer simulation of neural behavior during this task [13]. 

Our aim is to explain the improvement in signal detection performance of sys
tems of neurons in terms of the effect of the catecholamines upon individual neurons. 
Several researchers [5,18] have attempted to account for these observations in terms 
of the "improved signal-to-noise ratio" of the individual cell. Unfortunately, these 
accounts are formulated too imprecisely to have explanatory value. For example, 
they do not specify where noise enters the cell. As we shall see, this has a substan
tial influence upon whether or not the modulatory effect of the catecholamines can 
actually improve signal detection performance. Moreover, signal-to-noise ratio (SNR) 
is not a characteristic of the cell, but of the input incident upon it, or output emerging 
from it. Probably what these researchers had in mind was the ratio between the input 
and output S N R S . But it turns out that even increasing this ratio may not improve 
performance. 

In this paper we attempt to meet these difficulties head-on. We formulate models 
of neural behavior, and of signal detection performance, that are mathematically 
precise, yet broad enough to encompass real biological systems. Reasoning formally 
about these models, we establish the existence of the ensemble effect and the chain 
effect We provide numerical examples of both effects; these examples have led us 
to conclude that stimulant-induced enhancement of signal detection performance is 
primarily a consequence of the chain effect. We also point out some gaps in our 
explanations. These are areas where somewhat more information (about the function 
of real biological systems) and insight (into the mathematical behavior of our models 
of these systems) are required, before we can claim to have a complete understanding 
of these phenomena. 
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3 N e t w o r k M o d e l s a n d S i g n a l D e t e c t i o n 

In this section we establish the framework for our theorems. We say what kinds 
of networks they apply to, describe the signal detection task we are modeling, and 
introduce some terminology and notation. 

3.1 Network Models 

Our work concerns three different kinds of neural networks, which we call single-
unit, multi-unit and chain. These are illustrated in Figure 1 below. The circles are 
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Figure 1: Single-Unit, Multi-Unit and Chain Networks 

"units," which are intended to model the action of neurons. Each unit works in the 
same way: it takes its net input x, which is a real number, computes the value/G(JC), 
which is guaranteed to he in the range (0,1), and supplies this as its output y. We 
will sometimes refer to y as the unit's activation; it represents a neuron's firing rate, 
or equivalently, its probability of firing. 

The only difference between single-unit and multi-unit networks is that there are 
N identical units in the multi-unit case. Here the N individual outputs y i , . . . , y# 
are each multiplied by 1/N, and summed to yield z, the network output. Note that 
because of the weighting by 1/N, the multi-unit output z is also guaranteed to he in 
(0,1). The only difference between single-unit and chain networks is that an output 
noise term v is added to the unit's activation y to yield the final output z. This means 
that z is no longer guaranteed to lie in (0,1). 

/ G is called the unit's activation function. It is a strictly increasing function from 
the reals to (0,1). We put no conditions on its continuity or differentiability. The G 
subscript is meant to indicate that the particular function fc is drawn from a family 
of activation functions, {fc}. Each value of the gain parameter G, where G > 0, 
determines a strictly increasing function from the reals to (0,1). For instance, the set 
of biased logistic functions, given by 

M x ) = i 

is such a family. Figure 2 below shows the graphs y = fc(x) for two members of 
this family. 
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Figure 2: Two Members of a Typical Activation Family 

There is one additional condition that we impose on the family {fG}. We require 
that as G —• oo, the function fc converges pointwise almost everywhere to the unit 
step function uq, where uo is defined by 

and that this convergence is monotone increasing for x > 0, and monotone decreasing 
for x < 0. This means that as G increases, the value fc(x) gets steadily closer to 1 if 
x > 0, and steadily closer to 0 if x < 0, except possibly on a negligible set of points. 
For a rigorous discussion of convergence almost everywhere, consult [17] or [11]. 
We will say that a set of functions {fc} that satisfies this, plus the earlier conditions 
on each member function, is an activation family. As an example, for any fixed value 
of the bias B, the biased logistics fc(x) = 1/(1 + e~{Gx+B)) are an activation family.1 

3.2 T h e Signal Detect ion Task 

Now we describe the signal detection task that we want these networks to perform. 
We begin by reviewing the notion of signal detection in general, then specialize this 
to the single-unit and multi-unit networks. 

When we speak of "signal detection," we mean the following. Suppose there are 
two possible situations, or "states of the world," that we wish a receiver to distinguish. 
We call these two states "signal present" and "signal absent"—a bit of a misnomer, 
since in both cases there is some input to the receiver. It is the job of the receiver to 
process this input, determine the state of the world, and announce "detect" when the 
signal is present, or "ignore" when it is absent 

1The logistics are used throughout purely as a familiar example. The theorems we develop apply to 
any activation family. 

for X < 0 
for x>0 
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Now let the receiver be a single-unit network, operating at a fixed gain G. Suppose 
for a moment that its input can take on only two values: xs for "signal present," and 
xA for "signal absent," with xA < *s. We wish to discriminate between these two 
cases by observing the output y. Since / G is strictly increasing, we can do this by 
selecting a threshold 0 that satisfies / G ( * A ) < 0 < /G(XS)> Then to determine the 
state of the input, we compare the output y with 0. If y > 0, we announce "detect," 
if y < 0, "ignore." We call the first case a hit, the second, a correct ignore. 

This task is easy because we have assumed that the input is noise-free—it is 
always either xs or XA, right on the mark. But this is never the case in any real-world 
situation, since the input will often be corrupted by noise. 

We can capture the effect of noise by modeling the input with probabilities. The 
input to the unit is now a random variable (hereafter "rv") that is described by its 
probability density function (pdf). In the presence of signal, it is the rv Xs> described 
by pdf PXS. In the absence of signal, it is the rv XA, with pdf PXJI. We require that 
these pdfs are Lebesgue integrable [17] , but we impose no other conditions on them. 
For those who are unfamiliar with Lebesgue integration, there is a brief discussion 
of the subject at the end of this section. 

Since the input is now described by a pdf, so too is the output. Xs and XA 

determine new rvs, Ys = /G(XS) and YA = /G(XA), which represent the output of the 
unit in the presence and absence of signal respectively. We write PYS and PYA for 
their pdfs, which are determined by the action offG upon P^ and PXA. The situation 
is summarized in Figure 3 , which shows a typical activation function / G , input pdfs 
PXS and PXAy and the resulting PYS and PYA. 

If it happens that PYS and PYA do not overlap, then we can continue to distinguish 
perfectly between presence and absence of signal. But if they do overlap, we are 
bound to make some mistakes. Referring to Figure 3 , suppose we select 0 = 1 /2 as 
threshold. It is apparent that both 

PYSIODI and j\YA{ODT 

are non-zero. These are respectively the probability that the output falls below thresh
old with signal present, and the probability that it exceeds threshold with signal ab
sent. Thus there is a non-zero chance that we will ignore the signal when it is in fact 
present—called a miss—or conversely "detect" it when it is actually absent—a false 
alarm. 

Unfortunately, when the pdfs overlap, the problem of misses and false alarms 
will arise no matter what value we choose for 0. The best we can do is determine 
a threshold 0* that is optimal in the following sense. Let us assign a payoff to each 
of the four possible situations in our signal detection task. These are listed in the 
following payoff matrix 

detect ignore 
signal present D -M 
signal absent -F I 
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Figure 3: Input and Output Probability Density Functions. The curves at the 
bottom are the pdfs of the net input in the signal absent (left) and signal present 
(right) cases. Thus the probability that the input lies in [xo, *i] in each case is the 
area under the corresponding curve between these limits. The curves along the 
y-axis are the transformed pdfs for each case; they are functions of the activation 
y, and represent the distribution of outputs. Thus the probability that the output 
lies in [yo,yi] is the area of the region bounded below by a line at yo, on the 
right by the appropriate pdf, above by a line at yi, and on the left by the y-axis. 
Note: the X and Y pdfs are drawn to different scales. 

where D, M, F and / are non-negative. Thus we are rewarded an amount D for 
correctly detecting signal present, and / for ignoring signal absent, but penalized F 
for a false alarm, and M for a miss. 

If we write Ps and PA for the prior probabilities of signal presence or absence, 
then it is not hard to show [6] that the expected payoff at the threshold 0, written 
E(0\ is given by 

Note that a and /? are both non-negative. We will refer to the value E(0) as the 
network's performance at threshold 0, and to the function £ as the performance 
function. 

where 

a 

IPA-MPS, 

(D+M)Ps and 
(F + / ) / > A . 
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By solving the equation dE/dO = 0 we can determine a value 0* that maximizes 
E. (Note that E is a continuous function on the compact domain [0,1], and therefore 
attains a maximum.) Let us write £* for E(0*), the expected payoff at optimal 
threshold. We say that 0* is the optimal threshold, and E* is the network's optimal 
performance, on the signal detection task that is determined by the given pdfs, prior 
probabilities and payoffs. This means that if we use 0* to discriminate between 
presence and absence of signal, though we will still make some mistakes, we will 
maximize the long-run expected payoff. 

We can now say precisely what we mean by a signal detection task for a single-
unit network. Such a task T is specified by 

PS,PA, the prior probabilities of the signal present and signal 
absent states of the world, 

£>, M, F, /, non-negative payoffs, as in the matrix above, and 
PXsiPxA, Lebesgue integrable pdfs of the input in the signal 

present and signal absent states. 

If either a or /? equals 0, then we will say T is a trivial signal detection task. For if 
a = 0, then clearly 0* = 1, and if /? = 0, then 0* = 0, independent of pYs and pyA. If 
a and /? are both non-zero, we will say T is non-trivial. 

The case when the receiver is a multi-unit network is a straightforward extension 
of these ideas. We consider a network of a fixed number of units N, connected as 
in Figure 1, each operating at the same fixed gain G. But now we have N inputs 
JCI , . . . ,XN. In the presence of signal, these inputs are described by N independently 
distributed rvs X$i,.. . ,XSN, each with pdf pxs, and in the absence of signal by 
XAi,... ,XAN, each with pdf pxA. 

The input rvs are each transformed by / G exactly as in the single-unit case. Thus 
in the presence of signal the outputs are described by N independent rvs Ysi,..., YSN, 
each with pdf These are weighted and summed to yield the network output z, 
which is an rv 

Ysi + -- + YSN 
Z s = N 

with pdf pzs- Since the summands are independent rvs, pzs is the convolution of TV 
copies of p(Xs/N)y the pdf of Ys/N. Likewise in the absence of signal we have the N 
rvs YA\,..., YAN* each with pdf pyA, which yield the output rv 

7 YAI+-- + YAN  
Z a = N 

with pdf pzA. 
As in the single-unit case, the multi-unit receiver must distinguish between the 

signal present and absent states by comparing the network output z with a threshold 
0 . But if px5 and pxA overlap, so too will and pzA, and we once again have the 
problem of misses and false alarms. As before, the performance of the network at 
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threshold 0 is given by 

where ct, /? and A are unchanged. And as before, we can find the optimal threshold 0*, 
thereby determining E* = £(0*), the optimal performance of the multi-unit network 
on the signal detection task. 

The only difference between the signal detection task for multi-unit and single-
unit receivers is that there are N inputs instead of one. Thus we will adopt the same 
definition for a multi-unit signal detection task T , where it is understood that all the 
input rvs have the same pdf pxs or pxA, depending upon the state of the world. 

An identical development may be carried through for a chain. We model the 
output noise term v by the random variable V, with pdf py. The network's output in 
the presence of noise is an rv Zs = Ys + V\ in the absence of noise it is ZA = YA + V. 
Hence the performance function is 

Since we are treating the output noise as a property of the network, and not of the 
signal detection task, we can adopt the single-unit definition of T unchanged. 

To close this section, since some readers may be unfamiliar with Lebesgue inte
gration, we will now provide a brief discussion of what is entailed when we say a 
pdf is Lebesgue integrable. Suppose X is a real-valued random variable, and px is 
its pdf. Then the probability that X lies in a set D, written Pr(X E D)y is given by 
the integral _ 

where x d ( 0 is a function that equals 1 if £ G D, and 0 otherwise. 
Imagine now that there were some single real value r such that the probability 

that X has precisely this value, and no other, is non-zero. If this were so, then the 
value of Pr(X e D) would change as we adjoined or deleted the single point r from 
D. In such cases we say that X has an atom at r. It is as if there were an infinitely 
small, indivisible hunk of "probability," located right at r. 

However, our intuition is that nothing takes place with infinite precision in real bi
ological systems. Suppose the rv X represents the value of some physical parameter— 
say the membrane potential of a neuron. There is no one single real value such that 
the probability that X has precisely that value, and no other, is non-zero. So we want 
to exclude the situation just described. Thus we require that X has no atoms; saying 
that px is Lebesgue integrable implies this. 

This same intuition underlies our requirement that the activation function fc be 
strictly increasing. For suppose to the contrary that there were a number y 6 [0,1], 
and a non-empty interval (jci ,*2), such that for each x in (x\,X2)> we have fc(x) = y. 
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Consider the rv Y = fG(X). Then by definition, 

Pr(y = y) = Pr(/b(X) = y). 

ButfG(X) attains the value y at least whenever X lies in (xi.jfc), and possibly in 
other cases as well. So Pr(y = y) > Pr(X e (jti, JC2». Thus if the right-hand quantity 
is non-zero—which is entirely possible, whether or not X has atoms—then Y has an 
atom at y. It is for this reason that we require fG to be strictly increasing for all 
G. Note that any increasing function can be approximated uniformly, with arbitrary 
precision, by a strictly increasing function, so this requirement does not impose any 
practical restrictions. 

It is possible to develop a concept of the integral, known as the Stieltjes integral, 
for dealing with rvs that have atoms. In fact, we will make use of the Stieltjes 
integral in the proof of the Ensemble Performance Theorem. But even when we use 
this concept, we will require that X is atomless and fG is strictly increasing, for the 
plausibility reasons just cited. 

One more comment about integrals. So far we have explicitly exhibited the 
variable of integration, as in 

But this is really a useless piece of notation, unless the integrand is a multivariate 
function, or the variable of integration appears elsewhere in the integrand. For this 
reason, from now on we drop the except in special cases. 

3.3 Notation for Gain 

In the preceding discussion we made no mention of the gain G, except to say that 
it was fixed. We did this to clarify the discussion of the performance function, the 
optimal threshold, and the performance at optimal threshold. However, in what fol
lows we will be greatly concerned with the effect of changing the gain. In particular, 
we will need to exhibit the value of the gain in effect when certain quantities are 
computed. We now extend the notation of the previous section to do this. 

We begin with the random variables Xs and XA, with their pdfs and pxA. 
These characterize the inputs to the network in the two possible states of the world. 
Since these quantities are inputs, by assumption they are not affected by variations 
in the gain. 

Each unit passes its input through the activation function fG to determine its 
output, and here the gain enters the picture. We write YGs for the random variable 
/G(XS)> the output of a unit operating at the gain G in the signal present case. YGs 
is described by its pdf, which we write as py^. In general, the shape of py^ changes 
with G—see Figure 4 for an example of this dependence. Naturally, the mean of py^ 
will also depend upon G. We write 
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for this statistic. The symbols Y G A y pY(SA and n(YGA) denote similar quantities for the 
signal absent case. Likewise, we have rvs Z G S and Z G A j with pdfs pz^ and pz^, and 
means ij.(ZGS) and p.(ZGA) for the output of the multi-unit network. Finally, we write 
<r2(V) for the variance of any random variable V. 

We are now in a position to state and discuss the three main results of this paper the 
Constant Optimal Performance Theorem, the Ensemble Performance Theorem and 
the Chain Performance Theorem. Their proofs are somewhat technical, and we defer 
them to later sections. Here we formulate the theorems, say what they mean, and 
supply some intuition about why they are true. 

4.1 The Constant Optimal Performance Theorem 

This theorem is an assertion about the dependence—or rather, the independence—of 
the optimal performance of a single-unit network upon the gain. Let's return to the 
signal detection task T for this network, taking care to exhibit just how the gain 
enters into the determination of 0* and E * . 

Since the pdfs pxs and pxA of the input are part of the definition of the task facing 
the network, they are of course independent of the gain. However, the pdfs py^ and 
PYQA of the output rvs YGs and Y G A are decidedly not independent of the gain. This 
is evident in Figure 4, which shows fGt pYas and py^ for three different values of G. 
In view of the dramatic dependence of the output pdfs upon the gain, it is natural to 
ask if changing G can improve the network's signal detection performance. 

Let us formulate this question more precisely. We are given a particular signal 
detection task T, specified by Ps and PA\ D, Af, F and /; and pxs and pxA. For any 
fixed value of the gain G, we can determine the performance function 

where a, /? and A do not depend upon G. Let 0 G be the threshold for which this 
function attains its maximum. Does there exist a different value of the gain, G', with 
some possibly different optimal threshold such that the optimal performance 
at G', is greater than ££, the optimal performance at G? More simply put, we want 
to know if we can find G' such that 

The Constant Optimal Performance Theorem answers this question in the negative. 
We state the theorem now, and prove it below in Section 5. 

Theorem (Constant Optimal Performance) Let E% be the performance 
at optimal threshold of a single-unit network on the signal detection 

4 What the Theorems Mean 

Eq, > E(J. 
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-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 
x (Net Input) 

Figure 4: Dependence of Output Pdfs Upon Gain. These graphs use the same 
conventions and input pdfs as Figure 3. They depict the biased logistic/c and 
the output pdfs for the gain values 0.5, 1.0 and 1.4 (top to bottom). The bias B 
was fixed at —1 throughout. 
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task T, and let { / G } be the unit's activation family. Then E£ is a 
constant, independent of the gain G. 

It is important to understand just what this theorem means. It does not say that 
EG(P) is independent of the gain. In general, at any fixed threshold 0, the performance 
can go either up or down as we increase the gain. (Of course, if we are at 0£, the 
performance can only go down.) Nor does it say that there is some fixed threshold 
0* that is optimal for all gains. The situation is summarized in Figure 5 below. This 
figure displays a hypothetical performance function for three different values of the 
gain, G\ < Gi < G 3 . By considering the threshold 0 = 1/2, for example, we see that 

0.0 05 LO 
0 (Threshold) 

Figure 5: Performance as a Function of Threshold for Three Different Gains 

the performance may rise and then fall with increasing gain. The key observation is 
that the maxima Z T ^ , E^ and ££ 3 , attained respectively at thresholds 0 ^ , 0 ^ and 
0 ^ , are all exactly the same. 

We want to underscore the generality of this theorem. It imposes absolutely no 
conditions on the original signal present and signal absent pdfs, p^ and pxA, except 
that they are Lebesgue integrable. These of course must be fixed; we are not claiming 
that the unit's optimal performance is the same for wholly different signal detection 
tasks. But for any two fixed px5 and pxA whatsoever, the theorem will hold. We have 
used Gaussian pdfs for the input rvs in our figures, but that is only because this is a 
familiar distribution, and a likely one for naturally occurring noise. 

Readers familiar with signal detection theory may wonder why we have not 
couched our discussion in terms of the parameter d\ which is often used as a measure 
of the distinguishability of signal-present and signal-absent cases [6, p. 60]. This is 
an important point. The parameter ct is the difference of the means of the output rvs 
Yes and YGA, divided by their standard deviation, under the assumption that these rvs 
are both Gaussian, with a common standard deviation. But as we have taken some 
pains to show in our figures, the output pdfs have a complicated internal structure, 
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which is not fully captured by their mean and standard deviation alone. Increasing 
the gain may in fact drive apart the means fi(Ycs) and /X(*GA). But this does not 
imply that their pdfs py^ and PY^ are being rigidly translated away from one another. 
Such an intuition is false and misleading. 

This point is significant because the average power output of a neuron can be 
shown to be proportional to the mean of its firing rate. Now the signal-to-noise ratio 
(SNR ) through a channel is defined as the quotient of the average power through the 
channel in the presence of signal, and the average power in absence of signal. Hence 
even though increasing the gain may raise the S N R at the output of a single-unit 
network, its performance at optimal threshold will remain constant. Thus any theory 
that accounts for the performance effects of the catecholamines exclusively in terms 
of the S N R is inadequate. But there is much that is right about such theories, and we 
will investigate them further in Section 8. 

We can say a bit about why the theorem is true, without going into the details 
of the proof. Suppose we try to determine the optimal threshold by differentiating 
EG(0) with respect to 0, and setting the derivative equal to zero. We have 

= - a - P r „ ( 0 ) + ^ P r « ( * ) -

Thus 0£ satisfies 
CC-PYM^^PYM. (t) 

Now 
PTOGS > 0) = Pttfbto) > 0) = Pr(X 5 >fal (0)). 

Assume for a moment that / G is differentiate, with a differentiable inverse / J 1 . 
(The actual proof imposes no such restrictions.) From this it is possible to show that 

and likewise for py^. Hence (f) may be rewritten 

This means that 0£ satisfies (f) if and only if JC* =f£l (0£) satisfies 

^ % W = ^ ^ ) . (TT) 

But now observe that equation ( t t ) is completely independent of the gain. Its solution 
JC* is determined by the signal detection task T , independent of any activation function 
/ G . The only effect of a gain change is to move 0£ = fc(x*) around in (0,1). 

Now the optimal performance at gain G is given by 

EQ = \ + a - Pr(YGS Pr(YGA > 0£). 
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But for the probability of a hit at optimal threshold, we have 

MYcs > 0*G)WG(XS) > 01) = Pr(X* > / J ! (*£)) = Pr(X5 > **), 

and likewise for the probability of a false alarm at optimal threshold, PT(YGA > OG)-
That is, though adjusting G alters 0£, this value moves in just such a way as to leave 
unchanged the chances of both a hit and a false alarm at optimal threshold. Therefore 
for a fixed signal detection task T, 

= A + a . P r f t > x*) - (3 Pr(XA > x*) 

is a constant 
These insights have another important consequence. Suppose we alter the payoffs 

and prior probabilities of T, but leave pxs and pxA unchanged. We are varying 
a = (D + M) • Ps and 0 = (F + 1 ) • PA. This means that for fixed pxs and pxA, we 
can move x* anywhere we like on the real axis, and hence OQ in (0,1), just by 
manipulating the prior probabilities Ps and PA (or if we like, the entries in the payoff 
matrix). This is illustrated in Figure 6 below. 

In particular, note that the analogous equation in the multi-unit case, 

"•PZciM^P'PZatiO), ($) 

obtained by differentiating the expression for the multi-unit performance with respect 
to 0, is satisfied by the optimizing 0%. This means that 0£ can be moved where 
we please in (0,1) by altering the prior probabilities or the payoffs. This will have 
important consequences for the applicability of the Ensemble Performance Theorem. 

The alert reader may be wondering why, if equation ($) determines 0£ for a 
multi-unit receiver, the Constant Optimal Performance Theorem cannot be extended 
to cover this case as well. The answer is that in the single-unit case, the simple 
relationships 

^(YGs>0) = Pr(Xs>f3\O)) and Pr(y G A > 0) = Pr(XA > f i \ 0 ) ) 

permit us to reduce the equation for £* to one in which the gain makes no appearance. 
But in the multi-unit case, no such reduction is possible. We know that PZ<K = P(YQS/N)> 

where the * N denotes the N-fold convolution of the pdf with itself. But when we try 
to express 

PT(ZG5 > 0) = 

in terms of pxSy we find that /G is inextricably woven into P ^ / ^ y and likewise 
for P ^ / # ) . This prevents us from finding a gain-independent expression for the 
performance. Similar difficulties arise when we attempt to formulate equation ( J ) in 
a gain-independent way. These problems make it impossible to carry the argument 
through. 
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-3.0 -2.0 -1.0 0.0 1.0^ 2.0 3.0 

a=.4 

P=.6 

-3.0 -2.0 -1.0 0.0 X* 1.0 2.0 3.0 

a=.7 
V=3 

-3.0 -2.0 -1.0 ** 0.0 1.0 2.0 3.0 

Figure 6: Variation of JC* With a and This figure demonstrates how changing 
the prior probabilities and the payoffs moves JC* around on the real line, and 
hence moves BQ = / G ( J C * ) , which is not shown here, around in [0,1]. In each of 
the graphs above, the lefthand curve is f3 • pxA, and the righthand curve is apxs-
Their intersection determines the solution** of the equation a-pxs (*) = f3pxA(x). 
In these examples, we have taken payoffs so that a =Ps and /3 = PA. and hence 
a + p = 1, but this of course is not a requirement. 
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4.2 The Ensemble Performance Theorem 

The Ensemble Performance Theorem asserts that under suitable conditions, the op
timal performance of a multi-unit receiver can be improved by increasing the gain. 
No doubt this sounds like the exact opposite of the Constant Optimal Performance 
Theorem. We resolve this apparent logical contradiction below. 

The aim of this section is to formulate this result, and provide some intuition 
about why it holds, without giving all the details of the proof. Our approach will 
be to retrace the reasoning that led us to the theorem, introducing the appropriate 
concepts as they arise. 

This discussion parallels that of the preceding section. But it is almost twice 
as long, and for this reason we divide it into four subsections. First we provide 
the foundations and intuitions that underlie this result Then we supply a worked 
example of the fundamental concept. Next we state the theorem. Finally we discuss 
its meaning and give a numerical example. 

4.2.1 Foundations and Intuitions 

We begin with two basic conditions that plainly must be fulfilled if we are to have 
any hope at all of proving a theorem that says what we desire. These concern the 
number of units Nt and the signal detection task T . 

First, in view of our previous result, the new theorem cannot possibly hold for a 
single-unit receiver. Thus the theorem must include some sort of lower bound on N. 
Second, the signal detection task T must be non-trivial, since otherwise no change 
in G, or for that matter pXs or pX/i, will alter the performance. 

Next, we take note of two simple conditions on the relation between Xs and XA 

that must be part of the hypotheses of the theorem, either explicitly or implicidy. 
The first is that they must not be identical. For if they were, we could not possibly 
discriminate between the signal present and signal absent states, no matter what the 
value of the gain. The second is that Xs and XA must not be separable. By this we 
mean there must be no x* for which both XA < x* always and Xs > x* always. For 
if this were so, at any gain G we could choose 0£ = /G(**) and discriminate without 
error between the two states, and therefore could not improve the performance by 
increasing the gain. 

Anecdotally, these conditions say that the situation must neither be so apallingly 
bad, nor so astoundingly good, that we cannot hope to improve it. As we shall see, 
both of them turn out to be consequences of the hypotheses of the theorem. 

Next we will proceed to investigate, in very general terms, the effect of increasing 
the number of units. But we want to emphasize that our result concerns the improved 
performance, with increasing gain, of a network with a fixed number of units N. We 
investigate the effect of increasing N only because it helps understand some of the 
concepts that arise in the proof. 

This said, we proceed with our study. Let's consider the signal absent case. We 
assume that the gain is fixed at some value G, and write YA for YQA> likewise ZA for 

18 



ZGA> and so on. Recall that ZA is defined as 

Z A ' — N — 

Then we have at once /i(ZA) = N(YA)Y so increasing N has no effect upon the mean. 
As N increases, ZA tends to a Gaussian random variable, centered on N(YA), with 

a peak that becomes sharper and more narrow with increasing N. This is the meaning 
of the central limit theorem, and it is the basis of the statistical result that taking more 
independent samples reduces the chance of error. It is straightforward to show that 
<r2(ZA) = <T2(YA)/N, which gives us a measure of how rapidly this peak narrows with 
increasing N. Figure 7 is an example of how the pdf of the sum varies with the 
number of summands. In the figure, each summand is the rv YA = /G(XA). The input 
rv XA and gain G are fixed; only N is changing. 

Note that for any fixed 9 > N(YA)Y the tail probability Pr(ZA > 9) diminishes as 
N increases. This probability, which is the chance of a false alarm, equals the area 
beneath the curve pzA and to the right of 0. As the peak narrows and sharpens, more 
and more probability mass is concentrated near the mean, so this area shrinks as N 
gets larger. 

Figure 7: Pdfs for Three Values of N. The curves shown are the pdfs of the 
rv ZA = Ylti where each rv YA = fc(XA). The area to the right of 0 
and below the curve represents the tail probability, Pr(Zy| > 0). Note how this 
probability shrinks with increasing N. 

It can be shown [16] that providing 9 > II(YA)9 as N increases Pr(ZA > 9) falls 
to 0 like yA

N. Here j A is a real number in [0,1] that depends upon 9 and the shape 
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of PYA\ it measures the rate at which the tail probability decreases. We say that 7 A 
is the rate number for the rv YA. This property is expressed precisely by the limit 
equation 

7 A = lim Pr(ZA > (§) 
N—+OQ 

which we will take as the definition of yA. 
Since yA depends upon 9 and YAy we should write 7 ( 0 , 1A) for the rate number. 

And since YA itself depends upon XA and / G , it would be still more proper to write 
7 ( 0 , X A , / G ) . But in the interest of simplifying notation we will generally drop these 
reminders and ask the reader to keep the dependence in mind. 

Some readers may be wondering about the requirement that 9 > p(YA). We have 
imposed it to ensure that PT(ZA > 9) actually does fall as N — > 0 0 . For if 9 < n(YA), 
then as N increases, PT(ZA > 9) rises, to a limiting value of 1. We can ease this 
restriction by taking 7 A = 1 if 9 < fi(YA)t and by saying not that the tail "falls to 0 
like 7 A n , " but only that it "behaves like yA

N" as N increases. This is consistent with 
our definition of 7 A , and simply amounts to recognizing that (§) applies more widely 
than we originally expected. 

There is another issue that we want to mention now, though it cannot be as easily 
resolved. In writing equation (§), we have assumed that the limit exists. But there is 
no obvious reason why this should be so. It is entirely conceivable that even though 
the tail falls as N increases, it does so in a way that does not conform asymptotically 
to any familiar function. 

Remarkably, the limit in (§) exists under extremely broad conditions—so broad 
that for the purposes of this work, we need impose no additional restrictions upon 
the input pdfs, or the activation functions that transform them. In Section 6 we will 
demonstrate this, and discuss how to compute the rate number from a pdf, and how 
it relates to more familiar concepts. For the moment it is enough to note that the 
limit exists, and that the rate number for ZA depends upon the gain. This completes 
our discussion of the effect of increasing N. 

Now let us restore the G subscript to our notation, and investigate the effect of 
increasing the gain. We consider two values of the gain, G and G\ with G < G'. If 
we set YGA = / G ( * A ) and YG»A = fG<(XA) then the random variables 

7 _ E I L L YGA 7 _ E Z L YG'A 
GA N N 

represent the network output at these two gain values. We write j G A and yG>A for the 
respective rate numbers of these rvs, where 

7 G A = Jim PT(ZGA > 0 ) 1 / N and 7 G < A = Jim P T ^ A > 0 ) 1 / N 

Suppose now that we could show that 7 G ' A < 1GA\ then clearly 7 G ' A ^ < 7GAN for 
all N. Now roughly speaking, for large N the chance of a false alarm PT(ZGA > 9) 
lies close to IGAN, and likewise for PI(ZG>A > 9) and 7 G ' A * . (This is not quite what 
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the definition (§) says; getting round this difference requires a mathematical trick that 
we defer to the proof.) 

In particular, we can find an integer N, possibly very large but nonetheless fixed 
and finite, such that PT(ZG>A > 0) < PT(ZGA > 0 ) . This means that for a network of 
N units, we can cause the probability of a false alarm to drop by increasing the gain 
from GtoG. 

We have couched this discussion in terms of two fixed values of the gain, where 
the initial G and a higher G' are both known. In general though the situation takes the 
following less constrained form. Given the initial gain G, can we find some higher 
gain that gives improved performance? This leads us to formulate the discussion 
in terms of the limit of the rate number as G increases without bound. We write 
this as 7 O O A , defined by 7 O O A = limc-+oo 7GA . Then by an extension of the reasoning 
of the preceding paragraph, we have that for a suitably large network, providing 
loo A < 7GA, we can reduce the probability of a false alarm by increasing the gain 
from G to a sufficiently large value. 

We give this property a special name. Fix a threshold 0 . We say that PXA is 
a gain improvable density (gid) if, for some fixed value of N, we can reduce the 
tail probability from PT(ZGA > 0 ) to a smaller value PT(ZG'A > 0 ) by increasing the 
gain from G to G'. If we want to underscore a particular threshold for which pxA 

has this property, we will say that it is a gid for the threshold 0 . In view of the 
preceding paragraph, 7 ^ < yGA is a sufficient condition to make pxA a gid. This 
nomenclature extends to the signal present case as well, with the change that we 
consider the opposite tail, PT(ZGS < 0 ) . 

4 . 2 . 2 A Gain Improvable Density 

So far we have explained the concept of a gid, but we have not exhibited one. We 
now give an example of a gid, and also provide the promised intuition about why 
increasing the gain yields an improvement in the tail probability of the sum, but not 
of an individual unit. The discussion that follows lies at the heart of understanding 
our whole result, and the reader is urged to pay specially close attention. 

LetX be a binomial random variable that attains the value x\ < 0 with probability 
and the value X2 > 0 with probability p. Then YG = / G ( X ) is likewise a binomial, 

attaining yi = / G ( * I ) with probability 1 - p, and yi = / G ( * 2 ) with probability p. We 
proceed to examine the probability that the sum ZG = J ^ M YG/N exceeds a threshold 
0 , where yx < 0 < y 2 . Note that Pr(yG >0)=p. 

ZG is a discrete random variable, which can attain only the N + 1 values 

Afy (N — l)yi +y 2 (N - f)yx + iy2 Ny2 

N ' N N " " , N 

with probabilities 

( o ) ( 1 -"W> 0 > -^"V. . . . , ( * > - P f - V , - . . , -P)Y 
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respectively. Thus we may find an explicit expression for PT(ZG > 0) as follows. We 
determine the least integer JG such that 

(N-JG)yi + JGy2 0m 

N ~ ' 
this may be obtained as 

Then we have 

We will make use of this quantity shortly. 
As the gain increases without bound, y\ falls to 0 , and yi rises to 1. So in the 

limit, which we denote by the oo subscript, we have a random variable = uo(X)y 

which is just a binomial that attains 0 with probability 1 - p, and attains 1 with 
probability p. As before, we define Zoo = YA=\ *W#. 

Let's compare 7oo with YG. By increasing the gain, we have not altered the 
probability that an individual unit exceeds the threshold; this remains fixed at p. 
But when YQQ does exceed 0, it does so by a greater amount than YG would have. 
Likewise, when Y^ lies below 0, as it does with probability 1 - p, it falls short by 
more. 

Now we make a key observation. Unlike the tail probability of an individual rv 
like YG or 7 ^ , when we consider the sum Z ^ , the margin by which each summand 
Yoo/N exceeds or falls short of 0/N is important, since such excesses or shortfalls will 
be accumulated together, and thereby may determine whether or not the total exceeds 
the threshold. Let us attempt to reason about the effect of a gain increase upon ZG. 
We expect a fraction of about p of the summands to increase their contribution, but we 
expect a fraction 1 - p to decrease. Hence providing the decrease sufficiently exceeds 
the increase, the tail probability of Z ^ will likely lie below the tail probability of ZG. 

We now justify this intuition. Proceeding as before, we obtain 

The terms in this series have the same form as the ones in the earlier series, and they 
are all positive. So if this sum is to be smaller than the earlier one, it must extend 
over fewer terms. Thus Pr(Zoo > 0) < PT(ZG > 0) if and only if the lower limit on 
the summation index is higher in the Zoo case than in the ZG case, that is, 

where 

(*) 
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A sufficient condition for this is 

yi-yi N 

Note that this cannot possibly be satisfied if N = 1, since 0 G (0,1). Suppose now 
0 > (0-yi)/O>2-yi). which is so whenever 0 < yi / ( l - y 2 + y i ) . Then we can pick 
N large enough so that 

» - — > 5 -

in which case the condition on the index is satisfied. Thus we have shown that if 

i - y 2 + y i : 

then px is a gid. 
To make this discussion even more concrete, here is a numerical example. For YG, 

we take a binomial rv that attains y\ = 3/8 with probability l—p = 4/5, andy 2 = 7/8 
with probability p = 1/5. Thus Y^ is a binomial that attains 0 with probability 4/5, 
and 1 with probability 1/5. Then we take 0 = 1/2 and set N = 3, so that 

z G = J2 Y°/3 a n d Zcx> = ] T W 3 . 

Note that these choices satisfy (*). 

I (i) 
Value 
of ZG 

Value 
Of Zoo 

Probability 
of Attaining 

0 i 64/125 9/24 0/3 64/125 
1 3 16/125 13/24 1/3 48/125 
2 u>

 

4/125 17/24 2/3 12/125 
3 1 1/125 21/24 3/3 1/125 

Pr(Z G > 0) 1 Pr(Zoo > 6) 
61/125 13/125 

Table 1: Behavior of the Sum of Three Binomial Random Variables 

The values that ZG and Z ^ can attain, and the probabilities of attaining them, are 
straightforward to calculate. The discrete "pdfs" of these two rvs appear in Figure 8, 
and their behavior is summarized in Table 1. Note that of the values that ZG can 
attain, only z = 9/24 lies below 0. But of the values that Z ^ can attain, both z = 0 
and z = 1/3 fall below 0. This shift is responsible for the drop in the tail probability. 
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0.0 0.5 1.0 
(Z Value) 

0.0 0.5 1.0 
(Z Value) 

Figure 8: "Pdfs" of Zc and Z^. These graphs depict the atoms of 
Zc = J2]=i yG/3 (top) and Zoo = Yl]=i >W 3 (bottom). Note how increasing the 
gain moves one of the atoms across the threshold 6 = 1/2. 

24 



4.2.3 STATEMENT OF THE THEOREM 

Now we turn to formulating the Ensemble Performance Theorem. To do this, we 
need to elaborate on two ideas we introduced in the preceding paragraphs. First, we 
extend the notion of a rate number to cover the signal present case. This is just a 
matter of turning things around and looking at the opposite tail of the pdf. That is, 
the tail probability Pr(Zcs < 9) behaves like 7GSN as N increases, where JGS lies in 
[0,1]. Here JGS is defined by 

yGs = lim PT(ZGS < 0)l/N. 
N—•OO 

Likewise, we define 7ooS = limG-+OO 7GS-
Second, we need to discuss the limiting distributions of YGA and YGS, as G in

creases without bound. It is intuitively clear that both these random variables tend 
to binomials on the values 0 and 1 as G —• oo, and we will prove this in Section 6, 
Lemma 6. We write the limiting rvs as I ^ A and Y^s. Now we define the quantities 

/•OO rOO 

A+= / px, and r = / P X s . 
Jo Jo 

As we demonstrate below, the probability that 7OOA takes the value 1 is A + , and the 
probability that y^s takes the value 1 is S+. It follows at once that ^ ( ^ O O A ) = ^ + and 

It is straightforward to determine the rate number for a binomial random variable; 
we do this in Section 6, just after Lemma 10. For now we just state the results for 
YOOA and TOOS- Providing / ^ C O A ) <0 < M^OOS), we have 

( T ) ' ™ D * ^ = ( T ) ' ( ^ T ) ' " ' 
Why have we not written 7 ^ and 7005 on the lefthand side of these two equali
ties? This question goes to the heart of our proof. Recall that 7 ^ is defined as 
limG^OO 7GA» and likewise for 7005. But note that 7GA is itself defined in terms 
of a limiting process—specifically, 7GA = lim^OO PT(ZGA > Thus to write 
loo A = y(0, YOOA) is to assert that 

lim (l im PT(ZGA > 0 ) 1 / A O = lim (l im PrCZ^ > 0 ) ) 1 / N ; 

in other words, that the order of taking limits can be interchanged. 
In fact, this is true—otherwise we would not have chosen so suggestive a notation. 

But proving it is quite difficult For the moment we will take it as given, and proceed 
with our exposition. We are now ready to state the second main result of this paper. 

THEOREM (ENSEMBLE PERFORMANCE) Consider a multi-unit receiver 
operating at gain G on a non-trivial signal detection task T. Let 0 be 
the set of real numbers 0 satisfying any one of the following conditions 
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• 7 ( 0 , YOOA) < 7 ( 0 , YGA) and T ( 0 , Y^s) < l(0, YGS) 

• 7 ( 0 , Yoos) < 7 ( 0 , 17M) and 7 ( 0 , Y^) < l(0Jcs) 
• 7(0, YOOA) < 7 ( 0 , YGA) and T ( 0 , Y^) < l(0, Y G A ) . 

Then for each 0 € Q, there is a G > G such that for sufficiently large 
N, EG>(0) > EG(0). In particular, if 0£ € €>, then E$? > ££. In other 
words, increasing the gain improves the optimal performance. 

We will now attempt to explain the reasoning at work here, though a complete 
understanding requires tackling the proof. 

Let's return to the performance function for a multi-unit network. ££, the optimal 
performance at gain G, is given by 

We want to show that by increasing the gain to some new value G ' , we can improve 
upon this number. Note that the first integral equals 1 - Pr(ZGs < 0 G ) , and the 
second equals Pr(ZGA > 0 G ) . Hence this expression can be written in terms of tail 
probabilities as 

where the first tail is the chance of a miss, and the second is the chance of a false 
alarm. 

Now a, 0 and A are determined as before by the signal detection task T. Thus 
to have any hope of getting better performance, we must somehow favorably alter 
the values of the tail probabilities. Since both oc and /? are positive, any change 
that simultaneously reduces both tails will improve performance. This will certainly 
happen when we increase the gain if both p^ and pxA are gids for the threshold 0£ . 
But it turns out that even when increasing the gain causes one tail to go up, if it does 
not go up too quickly, the overall performance can still improve. 

Hence the heart of the problem is to determine when, if ever, any of these con
ditions are fulfilled. We will go at this in a slightly backward way. Starting from 
the optimal threshold 0G for a fixed gain G, we imagine increasing the gain without 
bound, and ask if £OO(0G) exceeds Eg(0Q). If so, then we know there is some finite 
gain G ' > G such that Eg>(0Q) > Eg(0Q), and hence that the optimal perfor
mance at G ' , exceeds ££, the optimal performance at G. From this we will try to 
work back-to-front and deduce sufficient conditions to make the optimal performance 
go up with increased gain. 

Thus we are led to consider the expression 

for fixed 0, and ask under what conditions Aoo > 0. By simple arithmetic, 

A o o ^ a - {Pr(Z C 5 < 0) - Pr(Zoo 5 < 0 )} - 0 • {Pr(ZooA > 0) - P r (Z G A > 0 ) } , 

EQ = \ + a — a - Pr(ZGS < 0£) - 0 PT(ZGA > 0 G ) , 

'OO 
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where A and /? are determined as before by the payoffs and the prior probabilities. 
Now the tail probabilities in this expression all vary with N , since each rv Z is 

defined as J ^ L \ Y/N f o r t h e corresponding Y. As N gets big, they behave like 

Pr (Z G 5 < 6 ) ~ y G S

N Pr(Zoo5 < 0 ) ~ 7 o o S

N 

MZGA > 0) ~ y G A

N Pr(ZooA > 6) ~ 7 o o A

N . 

(These equations express asymptotic relations that are not strictly true; the correct 
relations are of the slightly different form Pr 1 / y v ~ 7.) Thus for large N , 

A » ~ A ( y G S

N - 7oo/) - P {looAN - 7GAN) . 

There are now various cases to be considered, depending upon the directions of the 
inequalities y e s $ 7ooS and y G A § 7 00 A-

Suppose for the moment that y G s > 7oos. Then AOO > 0 iff 

A 7 Q O A N - 7GAN 

P Y j G ^ - y o o s " ' l " 

Now if 700,4 < 7 G A , then 7^ A

N - y G A

N < 0 for all Nt and since a,/? > 0, the 
inequality holds trivially. Otherwise, we have jooA > 7GA, and (f) can be rewritten 

Z>((m)N) x I (}) 
/? \ \ 1 G S J \1GSJ ) 1 - ( 1 O O S / 7 G S ) N 

It follows by a simple limit argument that if JGS > TooA, from which y e s > IGA as 
well, we can always find N sufficiently large to make this inequality true, no matter 

what the values of A and 0 . 

This is a good point to take a look at the meaning of the inequalities among the 
rate numbers. Consider the conditions JGS > loos and 7ga > TooA- As we argued 
on page 21, these respectively imply that p x s and p x A are gids. This shows that the 
first condition in the theorem implies improved performance with increasing gain. 

More searchingly, consider the inequalities JGs > TooA and JOOA > JGA that we 
have just treated. Since y e s > TooA, we know that for sufficiently large N , the 
quantity (JOOA/7GS)N can be made arbitrarily small. Thus even though 700̂  > 7ga 
means that p x A is n o t a gid, the condition y e s > TooA ensures us that the right hand 
side of (|) still falls to 0 with increasing N . Hence as the gain increases, even though 
the number of false alarms rises, the increase is small enough that for some fixed 
large JV, the overall performance still goes up. This is the formal basis for our earlier 
comment that the ensemble effect can appear even when the number of false alarms 
rises with increasing gain, providing it does not go up too far. 

Furthermore, by the definition of a limit, the inequalities JGS > loos and 7gs > 
7ooA imply that we can find some finite G' such that yGs > l c s and yGs > 7g ;a. and 
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therefore make all these arguments go through for some sufficiently large N. That is, 
we have established that if 

IGS > Toos and 7GA > TOOA 

then for some finite G > G and some large, fixed but finite N, we have EG(Q) > 
EG(0). This justifies the second condition in the theorem. The third condition, 
IGA > 7OOA and 7GA > Toos, is argued in the same way. Hence when any one of 
the three conditions holds, if 0 happens to be OQ, then EG'(0%) > EG(0£) = EQ. But 
EQ, = EG'(0GI) > EG'(0Q), SO we have EQ, > EQ as claimed. This completes our 
discussion of the proof. 

Next we fulfill the promise, made at the start of this section, to show how the 
two conditions on Xs and XA—that they are neither identical nor separable—follow 
from the hypotheses of the theorem. First suppose that they are identical; we will 
show this implies 0 is empty. For given any 0, either 7005 or 7 0 0 A is 1, since 
vQfoos) = belongs to either [0,0] or [0,1]. But the rate number for any rv 
satisfies 7 < 1. Hence for any 0, at least one conjunct of each of the theorem's three 
conditions must fail, so 0 is empty. 

On the other hand, suppose Xs and XA are separable, say by the value x*. We will 
show that 0Q g 0. For if JC* separates Xs and XA, then for each G , /G(X*) separates 
YGS and YGA* and hence also ZGS and ZGA- Thus the threshold OQ = /G(**) gives 
perfect performance, and therefore is optimal for the gain G. Now observe that if 0Q 
separates ZGS and ZQA, then y G A = 0 and JQS = 0. But the rate number for any rv 
satisfies 7 > 0. Hence for OQ, none of the inequalities can hold, so 0Q & 0. 

4 . 2 A Meaning of the Theorem, and a Numerical Example 

Now for a few words about what the theorem means. The performance improvement 
is not achieved by increasing the number of units. As we mentioned before, we are 
not claiming that taking more units improves signal detection performance. Such 
a claim, while true, follows at once from the well-known result that taking more 
statistically independent samples reduces the expected error [9]. Our result is that 
with fixed N, providing the conditions of the theorem are fulfilled, we can improve 
the performance of the network just by increasing the gain. It is not even necessary 
to change the operating threshold from 0Q to 0Q,, though doing so could improve the 
performance still further. 

As in the case of the Constant Optimal Performance Theorem, there are no con
ditions on the activation family {fc}. But in the case of the Ensemble Performance 
Theorem, this should be emended to "no explicit conditions on the activation fam
ily." For the shape of / G plays a major role in determining the distributions of 
YGA = /G(XA) and YGS = fc(Xs), and hence also in determining the rate numbers 
7(0, YGA) and y(0, YGS)- Comparison of these quantities with the limiting values jooA 
and 7oo5—which are independent of the particular activation family—then determines 
whether or not the ensemble effect appears at the given threshold. 
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But this does not represent a shortcoming of the theorem. Our definition of 
an activation family was deliberately unrestrictive, and it admits families of truly 
wild functions. It is entirely plausible that the shape of some given activation func
tion /G will influence whether or not the ensemble effect appears in this instance. 
For instance, / c must not already be so close to the limiting step function u 0 that 
there is no room for improvement. Indeed, it is somewhat surprising that all the 
required information about JG in relation to Xs and X A can be bundled up in just four 
numbers—7G5, IGA> loos and y ^ . 

It must be said, however, that the current theorem does leave something to be 
desired. We would like the result to hold uniformly, at fixed G and N, for all 0 G 0 . 

But the order of quantification in the statement of the theorem is 

V0 G 0 3G' 3N. 

Hence the increased gain G' and the size N of the multi-unit receiver required to see 
the effect can vary with the particular value of the threshold 0 . This produces certain 
difficulties in applying the theorem. Consider some X s , X A and/b. As we increase 
N to a number sufficiently large to ensure the appearance of the effect, in general OQ 
will change, and may in fact no longer lie in 0 1 

Actually, the situation is not quite as bad as it seems. Suppose we are trying 
to determine conditions under which a multi-unit receiver will exhibit the ensemble 
effect on inputs Xs and X A . The set 0 of admissible thresholds, though dependent 
upon the input rvs and f G t does not depend at all upon a, fi or N . So for any given 
gain G and threshold 0 £ , we first compute the rate numbers and ensure that 0 £ G 0 . 
Next we find G large enough to bring y e s and 7 c A close to their limiting values, 
and then take N large enough for the effect to appear. 

All we need now is a signal detection task such that the optimal threshold is 
actually OQ. But this is easy to arrange; we just adjust a and /? so that OQ is actually 
a solution of 

" • PZosiO) = p • P Z g a ( 0 \ 

which determines the optimal threshold. (Consult Figure 6 to see how changes in a 
and /? can be used to bring OQ to any value we desire.) We can then work backward 
from a and /? to determine the payoffs and prior probabilities. 

A stronger version of the theorem would reverse the order of the quantifiers, to 

3 N 3 G ' V 0 G < 9 . 

Proving such a result would probably require more stringent conditions on the thresh
olds admitted to 0 , and in this sense would be narrower than our current formulation. 
But it would have the advantage of applying, for fixed N and G', to all the admissible 
thresholds. 

The obstacle to proving such a version is that we have no information about how 
rapidly the tails PT(ZGA > 0) and Pr(ZCs < 0) converge to y(0, YGA)N and 7(0, Y G s f 

as N increases. Without this knowledge, we can say only that for some sufficiently 

29 



large N, they are close enough that we can ignore any differences, and thereby draw 
the desired conclusion. 

We now provide a numerical example of the effect. We have already seen half of 
this example—the gid treated in Table 1 and Figure 8. We use this as the signal absent 
distribution. For the signal present distribution, we reflect the top graph of Figure 8 
through a vertical line passing through the value .5 on the Z axis. Taking appropriate 
values for the payoffs and prior probabilities Ps and PA, we obtain a = /? = 1. By a 
symmetry argument, 0* = 1 /2 . Then for low gain, we have 

£ £ - A = a-Pr(Zcs>0*)-l3I>r(ZGA>0*) 
= 64/125-61/125 
= 3/125, 

and at high gain 

E*G-\ = 112/125-13/125 
= 99/125. 

We report the value of EQ - A because A is a constant depending only upon T , and 
we are concerned with the gain-varying portion of the performance. Thus, this is 
an example of the ensemble effect Figure 9 shows how ZGs and ZGA change with 
increasing gain, and yield the performance improvement 

Unfortunately, this example is not biologically plausible. First, the underlying 
input rvs Xs and XA are both binomials, so they contain atoms. But this is not a 
serious problem, since there are atomless distributions that give the same numerical 
results. The real difficulty is that Xs and XA have entirely different structures. They 
are not even close to being translates of one another. It is difficult to explain why 
the noise distribution, which is presumably additive at the network inputs, should 
depend upon the state of the world. 

We have searched for a numerical example under the following conditions, which 
we consider biologically more plausible. We took each input to be a Gaussian rv, 
centered at xs or xA. That is, Xs = xs + W, and XA - xA + W> where W is a zero-mean 
Gaussian rv of variance independent of the state of the world. For the activation 
family, we used the biased logistics, with bias - 1 , so 

Then we experimented with the gain, the size of the network, and the parameters of 
the signal detection task in an attempt to find an instance of the effect. 

It was not difficult to find a situation where both pxg and pxA were gain improvable 
densities, that is, 

7(0,YOOS)<7(0,YQS) and T O M W X IWJGAY 
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0.0 

0.0 

0.5 1.0 
(Z Value) 

0.5 1.0 
(Z Value) 

Figure 9: Ensemble Effect Example. These graphs depict the atoms of both the 
signal-absent rv ZGA, marked with a •, and the signal-present rv ZGS, marked 
with a •. The top graph shows them for some finite gain, the bottom graph 
shows them in the limit as G —* oo. By symmetry, the optimal threshold 0* 
equals 1/2 in both graphs. Note how increasing the gain moves one of the 
signal-absent atoms below the threshold, and one of the signal-present atoms 
above the threshold, simultaneously reducing both the probability of a miss and 
the probability of a false alarm. 
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However, when we fixed N and explicitly computed the performance at optimal 
threshold for two different values of the gain, we obtained inconclusive results. We 
saw both small performance improvements and drops, on the order of .01%, for 
networks containing from 2 to 16 units. Since these results he within the error range 
of our numerical integration procedure, they cannot be regarded as instances of the 
effect 

We have devoted some thought to these figures. We are not disturbed by the 
performance drops, since the theorem makes no prediction for small N. But when 
is N big enough? It appears that the tail probabilities converge slowly to their 
asymptotic form yN, and this means N must take substantially larger values than we 
have considered. Because we do not know a way to compute the required integrals 
with sufficient precision, we have not examined such high values of N. 

Here is an example of the magnitude of N required. In one case we studied, we 
obtained the following rate numbers 

G 7G5 1GA 

1 .67367 .99867 
oo .64210 .98638 

Hence both Yes and YGA are gids. For the argument behind the theorem to apply, 
P*(ZGS < 0) and YT(ZGA > #) must be well-approximated by yes" and JGAN. But for 
the numbers in the table above, JGAN does not drop below .5 until N « 512. 

These insights have led us to believe that the influence of the ensemble effect is 
small, at least in this situation. The theorem does not come into play, so to speak, 
until the network is reasonably large. By then almost all of the probability mass is 
concentrated around the two means. It follows that there is very little mass left in the 
tails, upon which the gain-varying portion of the performance depends. Thus even 
though increasing the gain may reduce both the miss and false alarm probabilities, 
these reductions, and therefore the performance improvement, are likely to be small. 

4.3 The Chain Performance Theorem 

In this section we state and explain the Chain Performance Theorem. As the name 
suggests, this result applies to a chain network, which is the third model in Figure 1. 
The theorem gives sufficient conditions for improved performance, with increasing 
gain, in the presence of additive noise at the output of a single-unit network. Not 
too surprisingly, we call this the chain effect. 

After the sometimes difficult going of the previous section, this discussion will 
be easier to follow. This is because the intuition behind the effect is easy to grasp. 
We proceed to develop this intuition, in the following steps. First, we briefly review 
the chain network, with special attention to the role of noise and its sources. We also 
explain why we use the term "chain." Next we develop the basic intuition behind 
the theorem, by considering an example where there is no noise in the input to the 
network. This is biologically implausible, but conceptually useful. Then we state the 
theorem, and follow it, as usual, with some discussion of its meaning. 
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Refering to Figure 1, we review the operation of a chain. This is a single-unit 
network, but with the unit's activation y summed with a noise term v to yield the 
final output 2 . This added term is described by a random variable V, which we will 
refer to as the output noise. We write pv for its pdf (when it exists), and in an abuse 
of notation, VO for its distribution function. 

We place no restrictions on the mean or variance of the output noise. This means 
that the final output rv Z is no longer concentrated on (0,1). It is easy to compute 
Pz\ this is just the convolution of py and pv-

In what follows, we make two key assumptions about the output noise. We 
assume that it arises from brain activity that is uncorrelated with the signal detection 
task at hand, and that its distribution is independent of the gain. These assumptions 
are evident in our notation for the output noise rv, which is an unadorned V. When 
we write Xs and XA for the input rvs, the subscripts distinguish the signal-present 
and signal-absent cases. We make no such distinction for V, since by assumption it 
is independent of the stimulus. Likewise, V has no G subscript because it is gain-
independent. We will say more about both these assumptions in the critique at the 
end of this document 

It is important to see that there is another reason why V bears no G subscript, aris
ing not from any assumption, but from the structure of the network we are modelling. 
The activation rvs Yes and YGA are labelled this way because their distributions are 
determined by fGl as /G(XS) and fc(XA). However, fG has no direct influence upon 
V. Noise that is present in the inputs, which is captured in the rvs Xs and XA, gets 
transformed by the activation function, whereas output noise does not This is not 
an assumption, but an insight into a fundamental difference between the influence of 
gain variation upon noise arising at two different places in the network. 

Proceeding as before, it is now straightforward to develop an expression for the 
performance function E. The network's output at gain G in the presence of signal is 
ZGs = YGS + V, and in the absence of signal it is ZGA = YGA + V. Hence 

Note that both integrals now extend over all the reals above 0, since the output is no 
longer restricted to (0,1). 

This is an appropriate spot to discuss our use of the word "chain." Let us imagine 
that the output of one neuron serves as the input to another. The random variable V 
models the noise that may be aggregated with the first neuron's output, in the dendritic 
tree of the post-synaptic neuron. But our figure does not show a unit corresponding 
to the second neuron, nor have we included it in the model. 

This is because it is mathematically superfluous, as we shall now argue. We claim 
that under suitable conditions, increasing the gain improves the distinguishability of 
the rvs ZGS and ZGA, which describe the signal-present and signal-absent inputs to the 
second neuron. But by an argument identical to the one used to establish the Constant 
Optimal Performance Theorem, it is possible to show that the optimal performance 
achievable on the output of the second neuron is precisely the optimal performance 
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achievable on ZGS and Z G A . Hence it suffices, for our purposes, to show that ££, as 
defined on ZGS and ZGA, goes up with increasing gain. This will then establish an 
improvement, with increasing gain, in the optimal performance at the final output of 
a chain of two neurons. 

Now we explain how the effect arises. Suppose for the moment that the rvs Xs 

and XA always took the values xs and xA respectively, with xA < 0 < xs. Then the 
rvs YGs and YGA would take the values yes = / G ( * S ) and yGA = / G ( * A ) . Since {fG} 
is an activation family, we know that a suitable increase in gain would cause yes to 
increase, and ycA to decrease. 

For the sake of illustration, let us now suppose that V were normally distributed, 
with mean 0 and variance a2. Then clearly ZGS = yGS + V would be normally 
distributed with mean yes, and ZGA = ycA+V would be normally distributed with mean 
yGA- Thus the effect of increasing the gain would be to slide the entire distribution 
of ZGS to higher activation values, leaving its shape unchanged, and likewise to slide 
ZGA to lower values. This effect is illustrated in Figure 10. Hence for any fixed 
threshold 0, simultaneously Pr(ZGs > 0) would rise, and PT(ZGA > 0) would fall, 
with increasing gain. 

The first of these is the probability of a hit, and the second is the probability of 
a false alarm. Since 

this establishes that for any threshold 0, we have EG>(0) > EG(0) for G' > G. The 
inequality is strict if G' is sufficiently larger than G. In particular, this holds for 0 G , 
so ££/ > EG>(&G) > EG{0Q) = ££, or more simply E&, > ££, which is the desired 
result 

While this argument gives a strong intuition about the effect, the situation is not 
quite as simple as Figure 1 0 suggests. In general, the input rvs overlap, in the manner 
of Figure 11. And by virtue of the Constant Optimal Performance Theorem, we know 
that even though an increase in gain may drive apart the means of the output rvs YGS 
and YGA, there are compensating changes in pYos and pyGA that keep the performance 
at optimal threshold constant 

Nevertheless, as careful inspection of Figure 11 bears out, under fairly general 
conditions the probabilities PT(ZGS > 0) and PT(ZGA > 0) behave as the intuition 
just developed leads us to expect, and the performance rises with increasing gain. 
This is formalized in the following theorem, which gives sufficient conditions for the 
appearance of the chain effect 

Theorem (Chain Performance) Consider a chain operating at thresh
old 0 and gain G on a signal detection task T. Let 

E(0) = A + a • PT(ZGS > # ) - / ? • ^(ZGA > 0), 

and 

and let VQ be the distribution function of the output noise. Then provid-
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4.0 6.0 
X (NET INPUT) 

Figure 10: Dependence of Chain Output Pdfs Upon Gain. These graphs use the 
same conventions as Figure 3. They depict the sliding of the output pdfs as the 
gain moves through the values 0.5, 1.0 and 1.4 (top to bottom). The vertical 
lines at the bottom represent the **pdfs" of XA and Xs. 
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and 
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V(0) - V(0 - 1) ' 

there exists G > G such that EG>(0) > EG(0). 

The proof of this theorem is quite simple. We write down the inequalities 

PT(ZGA > 0) > Pr(ZooA > 0) and Pr(Zoo 5 > 0) > PT(ZGS > 0). 

The first of these states that in the limit as the gain increases without bound, the 
chance of a false alarm goes down. The second says that in the same limit, the 
chance of a hit goes up. The hypotheses of the theorem are sufficient conditions 
that the statements are simultaneously true, and this gives us the desired result. The 
details, which consist of bounding the convolution integrals that define F ^ and F ^ , 
appear in Section 7 below. 

The Xs and XA "pdfs" in Figure 10 have atoms and are therefore inadmissible; 
we used them because they make it easy to understand how the effect arises. They 
are also non-overlapping. But the effect also appears when the input rvs can be 
represented by true pdfs, even if these pdfs overlap. In Figure 11 we proceed to 
exhibit such a case. We use the familiar input rvs and gain values of Figure 4; the 
output noise rv V is a zero-mean Gaussian. The numerical parameters used for this 
example are as follows 

a P fi(XS) v(Xs) H(XA) <r(XA) /i(V) <r(V) 
1 1 1.25 1 -1.25 1 0 .15 

and here is the performance at optimal threshold for each gain value. 

G E*G-\ 
0.5 .299 .495 
1.0 .328 .662 
1.4 .344 .711 

At the end of Section 4.1, where we pointed out a deficiency in theories of 
catecholamine effects based upon the signal-to-noise ratio (SNR) , we also said that 
these explanations were not without merit We touch on this again now. 

The heart of the matter is that the chain effect arises because increasing the gain 
helps drown out the noise along the communication pathway in a chain of neurons. 
In a chain of two neurons, this is effectively the same as increasing the S N R at the 
input to the second one. We present a more complete discussion in Section 8 below. 
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X (NET INPUT) 

Figure 11: Dependence of Chain Output Pdfs Upon Gain. These graphs use the 
same conventions and input pdfs as Figure 3. They depict the output pdfs, in 
the presence of additive Gaussian noise, as the gain moves through the values 
0.5, 1.0 and 1.4 (top to bottom). 
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5 C o n s t a n t O p t i m a l P e r f o r m a n c e T h e o r e m : P r o o f 

In this section we prove the Constant Optimal Performance Theorem. We start with 
an overview of the argument. The first step is to define a new function, £G(*)> that 
expresses the performance EG{6) as a function of x = fG\6), the inverse image of 
the threshold. Since for some thresholds 6 there may not even be an x such that 
# = /G(X), this may seem impossible, but as we will see, there is a way around this 
difficulty. Next we show that for any two gain values G and C , the functions SG 

and SGi are identical. This result lies at the heart of the proof, since once it has been 
demonstrated, we know that any performance achievable at one gain G is achievable 
at any other gain G'. We argue exactly this point and thereby establish the theorem. 

Now for the proof. First, a little notation. We will write 3£ for the real numbers, 
and & for the extended reals, obtained by adjoining -oo and oo to 3fc. Now let T 
be a signal detection task, and consider a single-unit network with activation family 
{fG} and performance function EG, Recall that EG is defined as 

where YGs = /G(XS) and YGA = / G ( ^ A ) . We define the function EG on 3£ by 

£ G = EG O/G 

and enlarge its domain to & by adjoining the ordered pairs (-oo, A + a — /?) and 
(oo,A) to the function. 
Lemma 1 For any two gain values G and G't the functions SG and £& are identical. 

Proof: To show that £G and £& are the same function, we must show they are equal 
for every x G 9fc*. By construction they are equal at -oo and at oo, so it suffices to 
consider only J C G S . NOW 

£ c « = *c(/fe«) = A + a 
Jfoix) Jfc 

PYGA-

By definition, 

= Pr(fG(Xs)>fG(x)) by definition of YGS 

= Pr(Xs > x) since / G is strictly increasing 

A similar argument shows that 
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Hence •oo 
£G(x) = A + a PxA-

But the expression on the right is independent of the gain, and since the same argu
ment applies to £&, this establishes our claim. I 

In view of this result, we will confine our attention to a single function £ on 
given by 

with its domain enlarged to 5Rt as before. Intuitively, £ expresses the performance 
in a gain-independent way. We now show that £ attains the same values as EG, and 
only those values. 

Lemma 2 For any G, the range of EG equals the range of £. 

Proof: The range of EG is the set of all values EG{&) where 0 varies over [ 0 , 1 ] . 
Since £ = EG ofG for any G, clearly range £ C range EG. So it suffices to prove 
the reverse inclusion. 

We need to show that for every 9 G [ 0 , 1 ] , we have EG(9) G range £. That is, 
we must exhibit an x G ft* such that EG(9) = £(JC). So suppose 9 G [ 0 , 1 ] is given, 
and let L = {x € 91 \fG(x) > 0 } . Define xe G & by 

and likewise for YGA. Hence EG(9) = A = £(xe). 
Next suppose L is unbounded below. This implies that fG(x) > 9 for all x G 

For suppose that fG(x\) < 9 for some x\ G Since L is unbounded below, there is 
some *o < JCI for which fG(xo) > 9. But fG is increasing, so fG(x\) > / G ( * O ) > 9, 
contrary to our supposition. 

Now since fG(x) > 9 for all x G 5ft, we have 

and likewise for YGA. Hence EG(9) = A + a - /? = 
Finally, suppose JC* = infL. Now L is the set of all points such that/GOt) > 0; 

that is, x G L <*fG(x) > 9. Thus 

OO if L is empty, 
- O O if L is unbounded below, and 
infL otherwise. 

We claim £(xe) = EG(9). We proceed to examine the three possibilities. 
First suppose L is empty. Then fG(x) < 9 for all x G 3t This means 

P r ( Y G 5 > ^ ) = Pr(/'G(X 5)>0) = O, 

P r ( y G 5 > 0 ) = P r ( /b (X 5 )>0 )= l , 

Pr(yG5 > 0) = Pr(/b(*s) > 0) = Pr(X5 G L). 
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Now L is either the set OO) or [xg, OO). But 

since pxs is Lebesgue integrable, so adjoining or deleting x$ from the domain of 
integration does not change the integral. Thus 

Pr(YGS>9) = J™ pXs, 

and a similar argument applies to YGAy so we have 

EG(9) = A + a . P r ( y G 5 > 0 ) - / ? P r ( y G A > 0 ) 
/•oo roo 

= A + a / pxs-P PxA 

= S{xB) 

as desired. I 
All the hard work has now been done, and we are ready to prove the theorem. 

Theorem 1 (Constant Optimal Performance) Let EQ be the performance at opti
mal threshold of a single-unit network on the signal detection task T , and let {fG} 
be the umt*s activation family. Then EQ is a constant, independent of the gain G. 

Proof: Let G and G' be arbitrary gain values. Define the function S on SJt as above. 
By Lemma 2, 

EQ = sup range EG = sup range S = sup range E& - EQ, . 

But G and G' were arbitrary. Hence the optimal performance EQ is the same for each 
value of the gain. I 

6 E n s e m b l e P e r f o r m a n c e T h e o r e m : P r o o f 

In this section we prove the Ensemble Performance Theorem. The proof is a straight
forward limit calculation, which closely parallels the discussion that follows the orig
inal statement of the theorem, in Section 4.2.3. However, to put this argument on a 
firm mathematical foundation, we need to establish two supporting results. First, we 
must prove the existence of the limit 

lim Pr(Z > 0)L/N

} 

N-+oo 

which defines the rate number y(0,Y). Second, we must develop techniques for 
reasoning about the tail probabilities Pr(ZGA > 0) and Pr(ZGS < 9) as G —> OO. The 
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latter result itself consists of two parts: determining the limiting behavior of the rate 
numbers JGS and TGA . and showing how to reduce questions about tail probabilities 
to questions about rate numbers. 

Unfortunately, the road to establishing these results is somewhat long and arduous. 
To help the reader follow it, we now provide an overview of the whole development. 

We begin with a random variable X, and establish that YG = /G(X ) and Yoo = u 0 (X) 
really are random variables as well. That is, they define probability measures on 
This allows us to exploit the standard integral convergence theorems. 

Next we introduce the function My, which is known as the moment generating 
function (mgf) of Y. (Now and hereafter Y stands either for Y^ = uo(X)y or any 
YQ = /G(X).) This function turns out to be a key instrument in computing rate 
numbers and reasoning about them, and we will study it in some detail. In particular, 
we prove that as G —• oo, we have MyG —• My^ uniformly on any compact set. It 
follows directly from this that FyG —• Fy^ as G —• oo, which we claimed earlier but 
did not prove. But the real reason we establish this result is that it is key in showing 
that 7 G —• Too. which is essential to proving the theorem. 

To establish this last result, we proceed in a slighdy roundabout way. First we 
introduce the rate function, fy, and show how it is related to the mgf. Then we apply 
Cramer's Theorem to establish that l i m ^ o o Pr(Z > 0)llN exists and equals e~ / y ( t f ) . 
In a single stroke this shows both that the rate number is well-defined, and gives us 
a way to compute it. We immediately apply this result to determine the rate number 
for a binomial rv. 

Then in a sequence of lemmas we prove that y G —• Too as G —• oo. This is 
important because the very next step is to show that certain questions about tail 
probabilities can be reduced to questions about their rate numbers. This is the "con
vergence trick" we spoke of earlier. Thus if we know the limiting values of the rate 
numbers, these can be used to draw conclusions about the limiting behavior of the 
tail probabilities, and hence of the performance itself. With the requisite tools finally 
in hand, we then proceed to prove the theorem. This concludes the overview. 

We start by establishing some notation. Through most of this discussion, we will 
generally not distinguish the signal present and signal absent cases. For the present 
we are concerned only with the general properties of rate numbers and moment 
generating functions. 

In what follows, X is a random variable on 3£, which should be thought of as 
standing for either Xs or XA—we dispense temporarily with the S and A subscripts. 
X is assumed to have a Lebesgue-integrable pdf px. We write Fx for its distribution 
function (df), defined by FX(0 = Pr(X < f )• As before, {fc} is an activation family, 
and Y G is the rv defined by Y G = / G ( X ) . We write FyG for the df of Y G t and pyG for 
its pdf, when this exists. We also define Yoo as wo(X), where UQ is the step function 
at 0, the limiting form offG. 

Lemma 3 Y^ is a random variable, and YG is a random variable for each G. 

Proof: By [2, Theorem 3.1.4], it suffices to show that wo. and each/ G , are Borel 
measurable. Since these are all increasing functions on this follows at once. I 

41 



Clearly, Yoo is a binomial rv with df FYoo given by 

{ 0 for y < 0 
1 - p for 0 < y < l 

p for 1 < y 

where p = / 0

o o/>x. 
Now we introduce the moment generating function of Y. This is a real-valued 

function, written MY(0, defined for all f G & by 

The last equality follows because Y is concentrated on [0,1]. Note that if Y does not 
have a pdf, this can equally well be written as the Lebesgue-Stieltjes integral 

Since we have placed no bound upon £ in this expression, the reader may have a 
queasy feeling that all sorts of delicate issues of convergence are being swept under 
the rug. However, we will now show that we are in the fortunate position that this 
integral transform always exists for the rvs in question. At the same time, we prove 
several well-known properties of the mgf. 

Lemma 4 Let Y be one of the rvs YQ = / G W for some G, or = uo(X). Then 
(1) the moment generating function My(0 exists for all £ £ (2) MY has derivatives 
of all orders everywhere on (3) MY{£) is always strictly greater than zero, and 
(4) logAfy(f) is a convex function of £. 

Proof: We have 

Since e*y is continuous as a function of y for each f, it is bounded on [0,1], so 
the existence of the integral follows at once. To prove (2), let denote the £th 
derivative of the mgf; a similar argument establishes the existence of 

for every positive integer k. The differentiation under the integral sign is justified 
because yke*y is continuous, hence bounded on [0,1], for each k. 

To prove (3), note that by Jensen's inequality [10, Proposition 5.17], for any 
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Finally, for any a G (0,1), and all 6 , 6 E 

MYIATX + (1 - < MyihrMrGd1-* 

by Holder's inequality [10, Theorem 6.2], Taking log of both sides gives us (4). I 
Next we show that it is meaningful to talk about the limiting behavior of YQ as 

G —• OO. We will show that MYo —> MYoo as G —• OO, and deduce from this that 
FYG —• Fy^. But we will actually establish a much stronger result, namely that MYG 

converges uniformly to MYoo on any compact set This is by far the most searching 
proof in the paper, and we will put it to good use later on. 

Lemma 5 (Uniform Convergence of MGFs) For any compact D C ?R, we have 
MYc —• MYoo, and \ogMYo —• logMYoo, both uniformly on D, as G —> OO. 

Proof: First note that it suffices to prove that MYG —• MYOO uniformly on D. The uni
form convergence of logAfyG to \ogMYoo follows from this because MYoo is bounded 
uniformly away from zero on D, and log is uniformly continuous on any compact 
domain. 

We proceed to establish the uniform convergence of MYa to MYoo on D. Let {G„} 
be any increasing sequence of gain values such that Gn —• OO as n —• OO. This 
gives us a sequence of functions {MYGM}. Our strategy is to decompose each MYGH as 
the sum of two continuous functions, Ln and Unt such that each function sequence 
{Ln} and {Un} is isotone, and where Ln —> I - p and Un —• pe* as n - + OO. Then 
by Dini's Theorem [7, Theorem 6.11], both {£,„} and {Un} converge uniformly on 
D, so MY(Jm —• (1 - p) + pe* uniformly on D. By direct evaluation of the integral, 
MYoo (f) = (1 - p) +pet. Thus MYcm —• MYoo uniformly on D, and since this holds for 
every increasing divergent sequence { G „ } , we have the desired result. 

So it is enough to construct the sequences {Ln} and {£/„}. First we show how 
to reduce any MYG to an expectation involving fc and X. Let us write E[R] for the 
expectation of a random variable R . Then we have 

MYG(0 = f & dFYo(y) = e[etYo] = e[e&<» ] = f°° e^x)

Px(x)dx, 
JO J-oo 

where the last equality follows from the definition of expectation, and the assumption 
that X has a Lebesgue-integrable pdf p*. 

Fix { G O , and define 

for x < 0 
for x > 0 fo(r)-\ 0 for ^ < 0 m a * • « - ( 0 

We will presently show that each gn and hn is integrable, so we may define 

/

OO rOO 

gH(x)dx and / /in(x)dx. 
•OO J — oo 

43 



Clearly MyG% =Ln + Un. 
Now for every n, e^foto is measurable as a function of x, and px is integrable 

hence measurable, so each gn and hn is measurable. Also, 

|A«WI,l*i.«l < m a x { l , ^ } p x W , 

where the righthand side integrable for every f. This proves that each gn and hn is 
integrable. It also proves that we may apply the Dominated Convergence Theorem 
to conclude Un —• pe* and Ln —• 1 - p pointwise as w —* oo. A similar argument 
shows that each Un and Ln is differentiate, hence continuous as a function of f. 

It remains only to show that each sequence of functions is isotone. At this point, 
we separate D into D + = D n [0,oo) and D~ = D n ( - 0 0 , 0 ] . Note that D + and D~ 
are compact. We will show that {Un} and {Ln} are isotone on D + and D~ separately. 
This proves that Un —• and Ln —• 1 - p, uniformly on each of £>+ and £>~. But 
then clearly the convergence is uniform over all of D, and we have the desired result. 

So we proceed to show that each sequence is isotone as required. First note that 
if m > n then G m > G n , since the sequence of gains is increasing. Thus fcm > / G „ 
on [ 0 , 0 0 ) , and/G„ < /G„ on ( - 0 0 , 0 ] , since {fc} is an activation family. Now let 
f G £>+. Then £ > 0, so 

e€fe.« > JfaM for all x > 0, so 
gm(x) > gn(x) for all x G 3ft, so 

Um(0 > Un(0 for a l l* €0*. 

Thus {Un} is an increasing sequence of functions on D + . Likewise, {Ln} is a de
creasing sequence of functions on D + . Hence both sequences converge uniformly on 
D + . A similar argument applies to D" . I 

This immediately gives us 

Lemma 6 FyG —• Fy^ <w G —• 0 0 . /n other words, YG converges to the binomial rv 
Yoo cis G — • 0 0 . 

Proof: Let us write Cy for the Laplace Transform of Y\ clearly Cy(0 = My(-0> 
where £ > 0. By the preceding lemma, lim G ^oo £>Yg(0 = A^CO pointwise for all 
f G 3ft. Hence by [4, Theorem XIII. 1.2], FyG — Fy^ as G -* 0 0 . I 

We now embark on a series of lemmas that will provide the connection between 
the mgf and the rate number. These begin with the following definition. Let Y be 
either Yoo or some YG, and fix a threshold 6. We define the function He(0 for each 
£ E f t b y 

//*(O = £0-logA/ y (O. 

Without delay, we prove 

Lemma 7 For any YG or Yoo, the function //$(£) exists for all f G 3ft and all 0 G 
[0,1], and -He(0 is a convex function of f. 
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Proof: Immediate from Lemma 4. I 
We will shortly establish that log y(9yY) = - s u p ^ / / * ( £ ) • But before we do 

this, we need to come to grips with an issue that we have so far finessed. In our 
motivating discussion of y(9, Y)y we defined this quantity by the equation 

7 ( f l , y )= l im Pr(Z>9)l'N, 

where Z = Y^TI Y/N- H e n c e tf > E) vanishes, so does Pr(Z > 9) for all N9 and 
therefore y(9)Y) = 0. But then log 7(0, Y) does not exist! 

In fact, if Pr(7 > 6) vanishes, then He is unbounded above as a function of £, so 
sup^6 a//*(£) does not exist This pathology warns us that before constructing any 
mathematical apparatus that uses s u p ^ //*(£). we had best determine just when this 
quantity exists. The following lemma serves the need. 

Lemma 8 Given 9 > p(Y), suppose that Pr(7 > 9) is non-zero. Then sup^^//$(£) 
exists, and equals sup^>0//^(0. 

Proof: First we show that if 9 > p(Y)y then H0(O < H0(O) for all f < 0. By Jensen's 
inequality, MY(0 > ^ { Y ) for any £, so - logAfy(0 < -£p(Y). Hence for £ < 0, 

//*(O = £ 0 - l o g M r ( O < Z(9-p(Y)) < 0=//*(0). 

This shows that s u p ^ / / $ ( £ ) = sup£ > 0//*(£). providing it exists. We now es
tablish this. Let 

Re(0 = e-t$MY(0. 

By Lemma 4, we have R$(£) > 0 for all £. Hence \ogR0(O exists for all £, and 
clearly He = - log/?*. Since log is continuous and strictly increasing on (0, oo), we 
have 

sup//*(£) = - l o g inf 

This equation means that if either side exists, then so does the other, and they are 
equal. 

We proceed to show that the infimum on the right-hand side exists and is non-zero. 
Observe that for any £ > 0, we have e ^ $ ) > 1 for all y > 9. Hence 

R$(0= f e^"0)dFY(y) > [ e^~0)dFY(y) > f dFY(y) = P r (7>0) . 
Jo Je Je 

Since this bound holds for all f > 0, and since Pr(y > 9) is non-zero, we have 
inff>o/?0(O > 0. Thus sup^>0//^(O exists. I 

This is a good place to pause and consider another issue, one that is not so 
much mathematical as pedagogical. The preceding lemma required that 9 > p(Y). 
Though we have temporarily suppressed the separation of signal-present and signal-
absent cases, no doubt it is clear—barkening back to our motivating discussion in 
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Section 4.2—that we have the signal-absent case in mind here. But an analogous 
result can be proved for the signal-present case. The requisite changes in the hy
potheses and the conclusions are straightforward, and not particularly interesting— 
for instance, we require that 9 < fi(Y) and that Pr(7 < 9) is non-zero, and we get 
suPeea H$(0 = sup£<0//*(£). 

So from here on we will pursue the development in a one-sided fashion. We will 
continue the investigation for rvs that satisfy 9 > p,(Y) and Pr(7 > 9) J 0, and leave 
it to the reader to reverse the sense of the inequalities as required. 

Now we provide the long-promised link between the moment generating function 
and the rate number. For each 9 G 3ft we define 

M0)=sup{£0-logJfy(O}. 

Evidently, ly(9) = sup^ € R )• h is called the rate function for 7, and we will now 
see how it is connected with the rate number. 

Lemma 9 (Existence and Computation of Rate Numbers) Let Y be Y^, or YGfor 
some gain G. Define Z = Y^Li ^et 0 G (0,1) be given, and define the rate 
function Iy as above. Then providing 9 > n(Y), and Pr(7 > 9) is non-zero, 

~i(9,Y) = e - h m . 

Proof: By Cramer's Theorem [15, Theorem 3.8] and Lemma 4 the random variable 
Z satisfies the large deviation principle with rate function Iy. Thus 

lim sup log Pr(Z > 9) < - inf IY(x) 
tf-oo N * > e 

and 
l iminf- logPr(Z> 9) > - inf IY(x). 
N-+oo N x>e 

By [15, Lemma 3.3], Iy is convex and hence continuous, so 

i n f / y « = i n f / r W = / y ( 0 ) , 
x>B x>6 

which exists by virtue of Lemma 8. Now trivially, Pr(Z > 9) < Pr(Z > 9). Hence 

lim inf i log Pr(Z > 9) < Urn inf i- log Pr(Z > 9). 

So we have 
-IY{9) < l iminf~logPr(Z> 9) < l imsup^logPr(Z> 9) < -/y(0), 

N—oo N N-+oo N 

and this establishes the validity of the limit equation 

lim i l o g P r ( Z > 0 ) = /y(0). 
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The final conclusion follows from this by the continuity of exp, and the definition of 
1(0, Y). I 

This lemma establishes two key results. First, it demonstrates the existence of the 
limit that defines 7 ( 0 , Y). Second, it gives us an analytic tool for computing 7 ( 0 , Y) 
for any YGJ and even for y ^ , which has atoms at 0 and 1. To help us apply these 
results, we prove the obvious but handy 

Lemma 10 If fo satisfies H'0(^o) = 0, then s u p ^ //*(£) = He(£o). 

Proof: Consider the function C(0 = - H e ( 0 ; clearly C'(£o) = 0. By Lemma 4, C is 
convex and differentiate everywhere. By [10, Proposition 5.16], C is an increasing 
function. 

Suppose there were some f 1 such that He(£\) > He(£o). Then we should have 
C(£o) > C(f 1 ) ; we now show this is impossible. 

Consider the chord from (fo,C(fo)) to (6>C(£i))- If fo < 6 , the slope of this 
chord is negative. Hence by the Mean Value Theorem, there is some f > fo with 
C ( 0 < 0. But this cannot be, since C is increasing, and C'(fo) = 0. A similar 
argument shows we cannot have H$(£i) > H0(£o) for any £ 1 < £ 0 . Thus //*(£o) is 
the maximum. I 

It is now straightforward to find the rate function of the binomial rv y ^ , and we 
proceed to sketch this computation. Suppose y ^ attains the value 1 with probability 
p, and 0 with probability 1 - p . Then by direct evaluation of the integral, 

Afyo o(0 = ( l - p ) + p« e . 

Now we maximize H$(£) = £ 0 — logMYoo(Q by solving 

So we require 

that is, 

This may be solved for 

O M Y o o ( 0 = M ' Y o o ( 0 , 

0(1 - p + / > ^ ) = p e * . 

Note that this solution is unique. By substituting £ 0 into H $ , and performing some 
enjoyable simplifications, we obtain 

,r.(S)=log(£) (£' 1 - 0 

) 
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for 0 < p < 0 < 1. This gives us at once 

^»>-(S)'(Bf • 
which justifies our unproven claims in Section 4.2 about T O O S and T O O A . 

The last step before proving the theorem itself is to establish the limiting behavior 
of 7 ( 0 , YG). We will show that l imc -CO 7 ( 0 , YG) = T ( 0 , 1«>). But as we mentioned 
previously, this is a rather deep result For it asserts that we may interchange the 
order of limits in the expression 

lim lim (F*Y»(0))1/N. 

Lemma 6 established only the pointwise convergence of FyG to FYoo. This conver
gence is not uniform, since each FyG is continuous, whereas FYoo plainly is not. 

Despite this pathology, it does happen that y(0>YG) —• 7 ( ^ , ^ 0 0 ) as G —• 0 0 , 

and we will now go about demonstrating this. The argument is separated into two 
lemmas. To make them easier to state and prove, we introduce a slight variation on 
our earlier notation. Let us add a G subscript to //*, writing 

HSG(0 = & - logAfyc(0 and H9oo(0 = - logMYoo(£). 

These are exacdy the same as He taken for YG and Y ^ . We introduce the notation 
because we are now concerned with the limiting behavior as G increases, so we want 
to display the G dependence explicitly. 

Now for a sketch of the argument. Suppose He<x> attains its sup at F O O , and H$G 
attains its sup at £G . In the first lemma, we show that for sufficiently large G, the 
value £G lies close to £00. This permits us to concentrate our attention on a compact 
domain D. In the second lemma, by an appeal to the uniform convergence of log MyG 

to logMy^ on D, we show that H$G(£G) — • # 0 0 0 ( £ 0 0 ) . Since 7 ( 0 , YG) = HBG(€G) and 
7 ( 0 , Y O O ) = # * O O ( F O O ) , this gives us the desired result. 

Lemma 11 (Localization of Maxima) Let YG = fcQO and Y^ = uo(X), with p = 
/o°° Px- Suppose 0 andp satisfy 0 < p < 0 < 1, and let HoooiO attain its maximum 
on 3ft at too. Then there exists a gain Go, and a compact D C 3ft containing £oo, such 
that for all G > Go, the function Hec(£) attains its maximum on 3ft at some £ G £ L>. 

Proof: Set / = f00 - 1 and h = + 1» and let D be the interval [/, h]. Since Heoo 
attains its maximum uniquely at .we have the strict inequalities / /^OO (0, #000 (h) < 
FTOOTFOO). Let € = Heootfoo) - max{//*OO(0 , //*OO(/0}; clearly e > 0. 

Since D is compact, by Lemma 5 logAfyc —• logAfy^, and hence also HeG —* 
Hsooy both uniformly on D. So there exists Go such that if G > G 0 , then \HBG(0 -

# , O O ( O I < c / 3 f o r a l U € D . 
Now fix any G > Go, and consider the chord from (/,//*G(0) to ( £ O O , # 0 G ( £ O O ) ) . 

We know 

H9G(l) < / W / W 3 < / / * O O ( £ O O ) - e / 3 < / / • G T F O O ) . 
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Thus the slope of this chord, 

1 

is strictly positive. By Lemma 4 , the function HeG has derivatives of all orders 
everywhere. Hence by the Mean Value Theorem, it has a positive derivative for 
some f in (/,£oo). A similar argument shows that it has a negative derivative for 
some £ in , h). But H$G is continuous, since HBG has derivatives of all orders. 
Hence HeG has a zero derivative, and by Lemma 10 attains its supremum, for some 
f i n (/,/*) C D . I 

Lemma 12 (Rate Number Convergence) Let YG = fG(X) and FQO = uo(X), with 
p = / 0 ° ° px. Suppose 0 and p satisfy 0 < p < 0 < 1. Then lim^oo 7 ( 0 , YG) = 
7 0 , TOO). 

Proof: Let e > 0 be given. By the preceding lemma, we can find a gain G\ and a 
compact such that for all G > G\, we have y(0,YG) = sup^ € D HeG(0-

Since H#G —• /Ẑ oo uniformly on D , there exists G2 such that if G > G2, then 
WeaiO - HEOO(£)\ < C for all f G D. Thus for G > G 2 , we have 

I sup//* G (0 - sup//^oo(Ol < 

Now take Go = max{Gi, G2} . Then for all G > Go, we have 

| 7 ( 0 , YG) - 7 ( 0 , ^oo)| = I supH$G(0 - sup//,oo(ai < 

as desired. I 
We will need one more mathematical tool, to evaluate limits of form V1/V2 as 

N —• 0 0 , where V\ and V2 are tail probabilities. As we now demonstrate, such limits 
are determined by the rate numbers of the two tails. The proof exploits the same 
basic trick that is used to establish the root test for convergence of infinite sequences. 

Lemma 13 (Root Convergence) Consider rvs Yx and Y2 with 7 (0 ,Fi) < 7 ( 0 , ^ 2 ) . 
Let Zi = £ £ 1 Yi/N and Z2 = YZi YI/N. ™en 

Pr(Zi > 0)/Pr(Z 2 > 0 ) - + 0 as N -+ 00. 

Proof: Let us write Vx = Pr(Zi > 0) , V2 = Pr(Z2 > 0 ) , and 71 = 7 ( 0 , ^1), 72 = 
7 ( 0 , ^2)- Then by Lemma 9 , we have 

vl,N->yi and Vx

2

/N' — 7 2 as TV—• 0 0 . 

Since both these limits exist, and since our assumption 72 > 71 implies 72 > 0, we 
have 

(Vi/V2)l/N-+yi/y2 astf — 0 0 . ( * ) 
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Now 7 I < 7 2 , so 7 1 / 7 2 < 1. Pick p satisfying ( 7 1 / 7 2 ) < P < 1. Then by (•) there 
exists N\ such that for all N > N\ 

Now let e > 0 be given, and pick N2 such that pF2 < e. Set N = max{Ni ,#2}; then 
for any Nf > N we have V\/V2 < P^ < PN < c- • 
There are three additional versions of this lemma, with the inequalities of Z\ and 
Z 2 with respect to 0 set in the other possible combinations. They are all argued in 
exactly the same way, and we will not bother to state or prove them. 

We are now in a position to prove the Ensemble Performance Theorem. But the 
formal argument obscures, rather than illuminates, what is really going on. For this 
reason, we urge the reader to return to the conclusion of Section 4.2, and reread the 
informal discussion of the argument there before attacking the proof. 

Theorem 2 (Ensemble Performance) Consider a multi-unit receiver operating at 
gain G on a non-trivial signal detection task T. Let <9 be the set of real numbers 6 
satisfying any one of the following conditions 

• 7 ( 0 , y ^ ) < 7 ( 0 , YGA) and 7 ( 0 , Y^s) < y(0JGs) 

• 7 ( 0 , ^005) < 7 ( 0 , YGS) and 7 ( 0 , < 7 ( 0 , Yas) 
• 7 ( 0 , Y^) < 7 ( 0 JGA) and 7 ( 0 , Y^s) < 7 ( 0 , YGA)-

Then for each 0 G @, there is a G' > G such that for sufficiently large N, EG>(0) > 
FG(0). In particular, if 9Q G @> then EQ, > EQ. In other words, increasing the gain 
improves the optimal performance. 

Proof: First note that since T is non-trivial, a,/? > 0 throughout. Now recall that 

EG(P) = A + a - a P r ( Z C I ? < 0 ) - / ? P r ( Z G A > 0 ) , and 

EG>(0) = A + a - a P r ( Z G / 5 < 0 ) - / ? P r ( Z G / A > 0 ) 

To keep things uncluttered, we write 

Let AG> = Ec(0) - EG(0). Then by simple arithmetic we have 

A& = oc{VGs - VG's] - P{VG'A - VGA). 

We proceed to show that each of the three conditions in the theorem implies that for 
some finite G' and N, we shall have Ac > 0. 
Case 1: 700A < 7GA and 7 ^ 5 < KGS-

Vx/V2 < 

VGS = ^(ZGS<0) 

P G A = P r ( Z G A > 0 ) 

VG>s = FT(ZG/5 < 0) 

7> G / A = P r ( Z G M > 0 ) . 
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By Lemma 12, we can find G' > G such that JGS > 7 c s and JGA > 7 c A - Hence by 
Lemma 13, we can find N\ and N2 such that 

V G S > VG's for all N > NU and 

VGA > VG>A foral lAr>N 2 

Take N0 = max{AFI, N2}, then for all N > N0 we have 

AG> = Oc{VGS - ? W - / ? { ? > G ' A - VGA} 

> 0 

since a and /?, and both expressions in braces, are all strictly positive. 
Case 2: 7 ^ < 7 G 5 and 7 O O A < T G S -

The preceding argument covered the case when JGA > T C O A , S O without loss of 
generality assume 7 G A < 7 O O A - Thus we have JGS > T G A as well. Once again, 

Ac* = <*{VGs - VG'S} - P{PG>A - VGA}-

By the same reasoning as before, we can find G' > G such that 7 G S > 7 G / S , and 
IGS > 7G'A. Likewise, there is an Ni such that VGS > Vcs and for all TV > N\. 
Hence for all such N, A& > 0 iff 

<* > VG>A ~ VGA = (VG>A _ VGA\ x 1 

P VGS - VG>s \ Vcs VGs) X 1 - VG>slVGs 

But by Lemma 13, 

- ^ - 0 , ^ - 0 and I - V g s / V g s ^ I 

as N 0 0 . Hence 

(VVA _ VGA\ x 1 ^ 0 

V VGS VGS) * 1 - VG>s/VGs ~* 

as N —> 0 0 . By the definition of a limit, this means that we can find some N2 such 
that for all N > N2 

f* ? > G ' A - ? > G A 

/ ? ^ G 5 - ? > G ' S " 

So taking N0 = max{Ni ,N 2 } , we have AG> > 0 for all N > N0. 
Case 3 : 7 ^ < 7 G A and 7 ^ 5 < 7 G A » 

This is just like case 2. I 
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7 C h a i n P e r f o r m a n c e T h e o r e m : P r o o f 

In this section we prove the Chain Performance Theorem. Since the proof involves 
no new concepts, our discussion will be brief. 

Our aim is to establish that by increasing the gain in a chain network to a suitably 
large value, we can improve the performance. To do so we will find conditions 
ensuring that with a sufficient gain increase, both the probability of false alarm and 
the probability of a miss will fall. We accomplish this in three steps. First we find the 
limiting values of these probabilities as G —> oo. Then we develop bounds on them 
at finite gain. Finally we write down inequalities between the bounds and the limiting 
values, which assert that in the limit both probabilities decline. These expressions 
become the hypotheses of the theorem, which then follows at once. 

We recall our earlier notation. Suppressing the S and A subscripts for a moment, 
we write X for an input rv, YG = /GQO for the activation rv, and V for the output 
noise rv. In an abuse of notation, we will also write just VO, instead of FvO, for V9s 
distribution function. Z G , the rv of the final output, is defined as YG + V. We write 
Yoo for uo(X), and Zoo for Yoo + V. Throughout the discussion, our only requirement 
is that {/b} is an activation family, and that X is atomless. 

Lemma 14 LetfG, X , YG, V and Z G be as given, and let X+ = Pr(X > 0). Then 

Proof: First we establish that FZoo(0) = limG-^oo Fzo(P). Since ZCX>=YOQ+ V, by [4, 
Theorem V.4.2], we have FZOO = FYOO * V and FZG = FYG * V. Here we have written 
* for the convolution. Thus 

By the Dominated Convergence Theorem for Lebesgue-Stieltjes integrals, and 
Lemma 6, we have 

where the last equality follows from the definition of Zoo. To get the expression for 
^ZooW. we perform the integration explicitly, and do a little arithmetic. I 

Next we develop upper and lower bounds on the distribution function Fzc at fixed 
finite gain. 

Lemma 15 Let YG, Zg and V be defined as above. Then 

FZoo (6) = lim FzciO) = r • <y(0 - 1) - V(0)) + V{0). 

FYc(0)V(0) < Fza(0) < FrG(0)-(V(*)-V(O)) + V(P). 
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Proof: We will establish both bounds on Fzg(0) at the same time. First we write 
down the convolution integral for Fz<., and decompose it into three terms. 

Fzoffi) = <Fra*VW) 

J — OO 

Fro(.0 - O dV(0 + / FYo(fi - O dV(0 + / FYo(e - O dV(0-
-oo Jo JO 

The last integral vanishes, because FYa(9 - Q = 0 for all f > 9. Now we bound the 
two remaining integrals. The following two lines should be read from the center out 
in both directions. 

FYg(0)V(P) = FYg(6) f dV(0< f FYG{6-OdV(0< I ^ ( 0 = V(0), 
J— OO J— OO J— OO 

and 

0 = F y o ( 0 ) / dV(0< f FroW-0m0<FYoV) [ dV(£) = FYG{9HV(9)-V(f))y 
Jo Jo Jo 

Adding these up, we get the desired conclusions. I 
Now we proceed with the proof. 

Theorem 3 (Chain Performance) Consider a chain operating at threshold 9 and 
gain G on a signal detection task T. Let 

A* = / PxA and S+= f 
Jo Jo 

oo 
PXs, 

and let VO be the distribution function of the output noise. Then providing 

( l - f Y ^ V ( 9 ) - V ( 9 - l ) > A 

V(9) - V(9 - 1) ' 

there exists G' > G such that EG>{9) > EG(9). 

Proof: Let 
^oo(0) = ^ooW -^G (0 ) , 

where £oo(0) = limc-oo E&(9). Then it suffices to show that Ax>(#) > 0. By 
simple arithmetic 

Ax>(*) = a{Pr(Z G 5 < 9) - Pi(ZOOS < 9)} - /?{Pr(ZooA > 9) - Pr(ZcA > 9)}. 
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Since a > 0, (3 > 0, it suffices to show 

rr(ZGS<0)>Pr(ZooS<e) and Pr(Z G A < 0)< W&»A < 0) (t). 

Bounding PT(ZG5 < 0) below and PT(ZGA < 0) above by Lemma 15, and computing 
the right hand side of each inequality in (t) explicitly by Lemma 14, it follows that 
(t) is implied by 

FYCS(0) • V(0) > S+ (V(0 - 1) - V(0)) + V(0) 

and 
FYO*<P) ' WW) - V(0)) + V(0) < A + (V{0 - 1) - V ( 0 ) ) + V(0). 

A little arithmetic brings these to the form in the statement of the theorem. I 

8 C r i t i c a l R e v i e w 

In this section we offer a critique of various accounts of catecholamine effects, in
cluding our own. First, we review the problems with accounts that are based upon 
the signal-to-noise ratio ( S N R ) . But we fill in a bit more detail, notably the relation 
between the mean firing rate and the average power. We also explain the sense in 
which such accounts are correct. Second, we point out inadequacies in our own 
argument. These fall into two classes: unsupported assumptions, and areas requiring 
additional insights. 

8.1 Problems with SNR-Based Accounts 

Near the end of Section 4 . 1 , we criticized SNR-based accounts of catecholamine 
effects. Then at the end of Section 4 .3 , we suggested that they had some redeeming 
features. We now proceed to review and unify these arguments. 

First, let us establish the connection between signal power, firing rates, and the 
S N R . The S N R arises in electrical engineering theory [19] when considering the 
extraction of some continuous-time signal $(0 from a noisy background n(t). In 
an effort to quantify how difficult a task this presents to a receiver, we compare the 
average power input to the receiver in the presence of signal, S = ((s(t)+n(t))2), with 
the average power in the absence of signal, Af = (n(0 2). Here the angle brackets 
represent time-averaging, and the quantities being averaged are the squares of the 
incident amplitudes, since these are proportional to the incident energy. If s(0 is just 
a tiny perturbation added on to n(t), then S » A/\ and the signal will be difficult to 
detect On the other hand, if the signal amplitude is high and the noise amplitude 
is low, then S > Af. Hence the quotient S/Afy called the signal-to~noise ratio, is a 
measure of the difficulty of the detection task. 

These ideas can be related to our work as follows. We are concerned with repeated 
attempts to detect a given state of the world, or target event Consider a single-unit 
network. Recalling our earlier notation, we write x$ and xA for the nominal input 
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in the signal present and absent cases. Thus the network output in these cases is 
ys =fc(xs) or yA =fG(xA) respectively. 

Now each of ys and yA represents a firing rate; the number of spikes or action 
potentials per unit time. Let us assume that each spike delivers energy U ergs to its 
afferent neurons. Then the power (energy per unit time) delivered in each case is 
U • ys or U • yA respectively. 

But as we discussed before, these firing rates are usually corrupted by noise. 
Hence over many trials, the network output is a random variable, Ys or YA. Thus the 
statistic for measuring the distinguishability of signal present and absent cases is the 
ratio between the average power per trial in these two cases. Writing e[R] for the 
expectation of an rv R, we have 

e[U.Ys] = U'e[Ys] = U.ii(Ys) and e[U-YA] = U- n(YA). 

Thus the S N R is n(Ys)/n(YA). 
Now we return to the performance of a single-unit receiver. The crux of our 

criticism is that increased S N R at the output of a single-unit network does not imply 
improved performance. For it is easy to find rvs Xs and XA, and an activation family 
{/b}, where increasing the gain simultaneously drives p,(Ys) up and n(YA) down. This 
surely causes the S N R to rise. But by the Constant Optimal Performance Theorem, 
the performance at optimal threshold remains the same. 

Yet there is a sense in which this analysis is correct This is best appreciated by 
understanding how it goes wrong in the case of a single-unit receiver. The problem 
is that the effect of gain increase upon pys and pyA is not captured by the mean alone. 
Gain changes will in general alter the shapes of these pdfs, possibly driving apart 
the main concentrations of probability mass, but simultaneously extending their tails 
for a countervailing effect The erroneous intuition that separating the means will 
improve performance arises from the assumption that the effect of a gain increase is 
to translate the output pdfs rigidly away from one another. 

Yet suppose for a minute that this were so. Then we should expect improved 
perfomance, at any fixed threshold lying between the means. For in general, trans
lating the signal absent pdf down will reduce the chance of a false alarm (unless the 
portion that is slid across the threshold is identically zero), and likewise for upward 
translation of the signal present pdf, and the probability of a miss. 

Though none of our network models match this situation exactly, there is an 
extension that comes close. This is the case of the multi-unit chain, which is illustrated 
in Figure 12. Here W is the output of a multi-unit network. The output noise rv V 
and final output rv Z are defined exactly as in a single-unit chain. 

Now if W is the output of a network that contains a large number of units, the 
pdfs pws and pwA lose most of their internal structure, which is derived from Xs and 
XA. Each is an exceedingly narrow, sharply peaked Gaussian, centered respectively 
on fi(Ys) and v(YA). Thus they closely approximate "delta functions" located at these 
values. Hence the effect of adding output noise V is to create output pdfs pzs and 
PzA that are essentially copies of pv centered at the means. Thus, to a very good 
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z 

Figure 12: A Multi-Unit Chain 

approximation, increasing the gain in this case does amount to sliding apart two rigid 
rvs. This is precisely the intuition behind the chain effect. 

8.2 Problems with Our Analysis 
Now we critique our own explanation of these effects. These comments are intended 
to highlight where we have made assumptions because too little is known about the 
actual operation of the brain, or areas of our investigation where we believe there are 
additional insights to be garnered. 

The single most important assumption concerns our analysis of chains, where we 
treat the noise rv V as gain independent. One can produce plausible arguments that 
the variance of this rv should rise, fall or remain constant with increasing gain. 

If the variance should fall, we expect that the chain effect would appear even 
more strongly, since this would presumably reduce the chance of misses and false 
alarms due to output noise. But if the variance should rise, then these probabilities 
would presumably increase. Whether this would be offset by the increased separation 
of the means depends upon the precise behavior of V, Ws and WA. Thus relaxing the 
assumption that V is gain-independent will not wholly undermine our argument, but 
requires us to carry out a more detailed analysis. 

Our second comment concerns the ensemble effect. We have argued, on the ba
sis of limited numerical evidence, that the biological import of this effect is small. 
But this does not constitute a decisive argument, and as we have seen, there are 
circumstances in which the magnitude of the effect is large. It is an open mathemat
ical problem whether there are biologically plausible cases in which the ensemble 
effect, or something similar, substantially influences the performance of the network. 
And it is an interesting neurobiological problem whether such an effect, if present, 
determines some aspect of behavior. 

Whatever the fate of the ensemble effect, there is a flip side to it that is possibly 
even more interesting. In exactly the same way that a gain increase can be shown in 
certain circumstances to induce a performance improvement, it is possible to show 
that in other circumstances an increase will drive down performance. We call this the 
anti-ensemble effect. It is tantalizing to speculate about the countervailing influences 
of the chain effect and the anti-ensemble effect. For instance, their interaction may 
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contribute to the fact that human performance improves to a point under the influence 
of central nervous system stimulants, but then begins to degrade. 

9 S u m m a r y a n d C o n c l u s i o n 

In this paper we have proven three theorems about the effect of gain variation upon 
the signal detection performance of neural networks. The first of these demonstrates 
that under arbitrary alterations of the activation function, the performance at optimal 
threshold of a single-unit network is constant This is the Constant Optimal Perfor
mance Theorem. The second states that in spite of this, the optimal performance of a 
multi-unit network can improve with increasing gain, providing the network is large 
enough, and the signal detection task is of the proper form. This is the Ensemble 
Performance Theorem. The third result, the Chain Performance Theorem, states that 
under suitable assumptions about noise added to the output of one unit, which serves 
as the input to another, increasing the gain again improves performance. We call the 
improvement arising from the second theorem the ensemble effect, and that arising 
from the third theorem the chain effect. 

These results were established under extremely general assumptions about the 
activation function, and the probability distributions of the input. This is significant 
because we have based a theory of catecholamine effects upon them [12]. Our claim 
is not that we have a precise and accurate model of the brain, but rather that our 
results are sufficiently general and encompassing that whatever model is actually 
correct, the effects that we have identified explain the way the model's performance 
varies with increasing gain. 

This work makes three major contributions. The first is the demonstration that 
the influence of catecholamine release upon signal detection performance cannot be 
understood as a consequence of the effect of these substances upon a single isolated 
unit. This follows from the Constant Optimal Performance Theorem. The second 
is the identification of the ensemble effect and the chain effect These effects arise 
from interactions among a collection of neurons, assembled either in parallel or in 
series, and operating in the presence of noise. The Ensemble Performance Theorem 
and the Chain Performance Theorem explain how a collection of neurons can have 
signal detection properties that a single neuron lacks. The third contribution is the 
comparison of the magnitude of these effects. 

As a secondary contribution, we have established a framework for further inves
tigation in this area, and shown how to reason within i t Moreover, although the 
magnitude of the ensemble effect is too small to explain the performance impact of 
catecholamines, we believe it may yet have a role to play in understanding some 
aspect of behavior. 
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