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T h e c o m p u t a t i o n o f G r o b n e r b a s e s 
o n a s h a r e d m e m o r y m u l t i p r o c e s s o r 

As soon as the author learned about Grobner bases, he became interested by the details of their 
computation. The algorithm has a relatively simple form. But the way it behaves on particular 
examples is a complex problem which has not yet been satisfactory solved and which requires at 
least some elementary knowledge of algebraic geometry. 

In this paper, we first review some concepts of commutative algebra which will be used later on. 
We then look at rewriting systems in polynomial rings and study their termination and normal form 
properties. This leads us to define admissible orders and Grobner bases and to present Buchberger's 
algorithm. In the third section, three applications are listed: finding the intersection of two ideals, 
finding the quotient of two ideals, and determining the ideal of the polynomial relations among 
a given list of polynomials. In the next section, we look in more detail at a fourth application: 
the computation of the Hilbert function of an ideal (but without covering the recent developments 
in the determination of the dimension). The last part presents an original work: the design and 
preliminary implementation of a parallel algorithm to compute Grobner bases on shared memory 
multiprocessors. Performance data on a reasonable set of examples are discussed. 

We would like to thank Professor Dana Scott for introducing us to the subject and for his help 
in reviewing this paper: his comments have led to great improvements in its structure. It is also 
a pleasure to acknowledge the encouragement we have received from Professor Edmund Clarke 
for our work on the parallel version of Buchberger's algorithm. Our best thanks to Professor 
Bruno Buchberger who invited us on August 1987 at RISC-Linz and even gave us the listing of an 
implementation of the sequential algorithm [11]. 

1. Review of commutative algebra. 

Rings are assumed to be commutative. When we use modules, we will consider them to be right-
modules. This is not very relevant, as we will mainly be interested in modules which are in fact 
commutative rings considered as modules with respect to themselves. 

1.1. Noetherian modules and rings. 

The following definitions and theorems appear, for instance, on the chapter 3 of Jacobson's book, 

Definition 1.1 A module M satisfies the ascending chain condition if there is no infinite properly 
ascending chains M1 C M2 . . . c M{ C . . . of submodules of M. Such a module M is called 
Noetherian. 

Definition 1.2 A module M satisfies the maximum condition if every non-vacuous set of submod­
ules of M contains a maximal submodule (i.e. a submodule not contained in any other submodule 
of the set). 
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Definition 1.3 A submodule M' of a right-module M for a ring R is finitely generated if there 
exist n members of M', mi, m 2 , . . . , m n , such that M1 = mi R + m 2 iZ + . . . + m n iZ. 

Proposition 1.1 The following three statements are equivalent: 

1. The module M satisfies the ascending chain condition. 

2. The module M satisfies the maximum condition. 

3. Every submodule M1 of M is finitely generated. 

Definition 1.4 A ring R is Noetherian if and only if it is a Noetherian module with respect to 
itself. 

Because a submodule of R (considered as a module with respect to itself) is an ideal of R 
(considered as a ring), we can state the following proposition : 

Proposition 1.2 The following three statements are equivalent: 

1. The ring R satisfies the ascending chain condition (meaning that there is no infinite properly 
ascending chain of ideals of R.) 

2. The ring R satisfies the maximum condition (meaning that every non-empty set of ideals of 
R contains a maximal element). 

3. Every ideal I of R is finitely generated. 

1.2. Hilbert 's basis theorem. 

The following result is an immediate extension of the theorem stated by Hilbert, which concerned 
only special rings R (namely fields and the ring of integers). 

Theorem 1.1 If R is a Noetherian ring, then R[x\,X2,... , x n ] is a Noetherian ring. 

There are several proofs of this theorem. The original one, by Hilbert, uses the third character­
ization of Noetherian rings (every ideal has a finite basis) and works by induction on the number 
of variables. It can be found in the book of Nathaniel Jacobson [21]. Another proof appears in 
Commutative Algebra I, by Zariski and Samuel, Chapter IV, [42]. It works also by induction on 
the number of variables but uses the first characterization of Noetherian rings (there is no infinite 
properly ascending chain of ideals). Other authors (see, for example, Giusti, [17]) use Dickson's 
lemma (1913), which states that, in a finitely generated commutative monoid, for any sequence 
{T n } , n € N, there exists p 6 N such that, for all n > p, the term Tn is a multiple of one of the 
terms To,.. . ,T P . The proof of Dickson's lemma works by induction over the number of generators 
of the monoid. 

We choose to present a slight modification of Zariski and Samuel's proof: 

Definition 1.5 An ideal of R[x] is called a monomial ideal if it can be generated by a set of 
monomials. 
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Definition 1.6 If J is an ideal of J?[x], the monomial ideal generated by the monomials of highest 
degree of the polynomials of J is called the initial ideal of / and is denoted by In(I). 

Lemma 1.1 If I and J are two ideals of R[x] such that I C J and In(I) = In(J), then I = J . 
Therefore, if there exists an infinite properly ascending chain of ideals in the polynomial ring R[x], 
then there exists an infinite properly ascending chain of monomial ideals in R[x]. 

Proof of the lemma: We suppose that I C J and that In{I) = In{J) and we use induction on 
the degree of an eventual polynomial belonging to J — J (if any). Note that 0 £ J — I. We suppose 
that there is no polynomial of degree less than or equal to p which belongs to J — / , that P of 
degree p+ 1 belongs to J — / , and we try to derive a contradiction. 7n(P), the monomial of highest 
degree of P, belongs to In{I) and, therefore, there exists a polynomial Q € I such that P — Q is of 
degree less than or equal to d. But P — Q belongs to J and, because of the induction hypothesis, 
to J. So P £ / and we obtain a contradiction. • 

Lemma 1.2 If R is a Noetherian ring, there is a bijection between the monomial ideals of R[x] 
and the eventually stationary ascending chains of ideals of R. Moreover, if I and J are two ideals 
such that I C J, and if I0 C Ix C . . . C /,; C . . . and J0 C Jx C . . . C Jx• C . . . are the 
two eventually stationary ascending chains associated respectively with I and J, then we have the 
following diagram: 

lo C Ix C . . . C Ii C . . . 
I n | n | n 
Jo C Jx C . . . C Ji C . . . 

Proof of the lemma: Let's consider a monomial ideal / of R[x], We will call I{ the ideal of R whose 
elements are the leading coefficients of the polynomials of degree i of J. Iq C Ix C . . . C I%• C . . . 
is an ascending chain of ideals and, as R is Noetherian, this chain as to be eventually stationary. 
Naturally, to two different monomial ideals correspond two different chains and, for every eventually 
stationary ascending chain Iq C Ii C . . . C Jt- C . . . , we can associate the monomial ideal generated 
by {r x* \ r € i > 0}. • 

Proof of the theorem: Because of lemma 1.1, we only need to prove that, if R is Noetherian, 
there is no infinite properly ascending chain of monomial ideals in R[x]. Let's suppose that I1 C 
I2 C . . . C P C . . . is an ascending chain of monomial ideals of R[x], Then, using lemma 1.2, we 
can associate with each P the chain Iq C f[ C ... C If C ... of ideals of R such that they form 
the following diagram: 

II c I\ c . 1} c 
in In In 
4 2 c i\ c .. • • Q if c 
In In 1 n 

i n in |n 
II c i\ c .. • Q if c 
in In 1 n 
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Let stat (p) be the smallest integer such that the chain associated with P becomes stationary. 
It is easy to see that lltat^ Q ^tat{2) -^stat(p) — — This chain is eventually stationary. 
Let / be the integer such that for all p > I and for all i > stat{l), we have If = Il

$tat^y Then we 
consider, for 0 < i < stat(l), the vertical chains 1} C if C . . . C If C . . . . Each one of these chains 
is stationary for p > stat'{i). 

Then, for p and p' greater than sup{l,stat'(Q),..., stat'(stat(l) — 1)), the two horizontal chains 
associated with Ip and P' are equal and, therefore, the two associated monomial ideals P and P' 
are also equal. So the chain of monomial ideals is eventually stationary. • 

1.3. Affine algebraic varieties and Zariski topology. 

The results of this subsection can be found in Fulton, [13] and in Jacobson, [21]. 

Let K be any field. We will call Kn the n-dimensional vector space of n-tuples of members 
of K. It is the affine n-space over K and its elements are called points. If P is a polynomial of 
K[x\,... , £ n ] , we will say that (fci,... ,fcn) is a zero of P if and only if P(&i , . . . , kn) = 0. If P 
is not a constant, then the set of zeros V(P) of P is called a hypersurface (when n = 2, it is also 
called an affine plane curve). If P is of degree 1, then V(P) is a hyperplane (a line, if n = 2). 

More generally, we can give the following definition: 

Definition 1.7 If B is a set of polynomials of K[x\,... , x n ] , the affine algebraic variety defined 
by B is the set V(B) of common zeros of the polynomials in B: 

v(B) = n v{P) 

Proposition 1.3 The following properties are immediate: 

1. V(K[xl,...,xn]) = <b. 

2. V(0) = Kn. 

3. If I is the ideal generated by B, then V(B) = V(I). 

4- If {Bi}i£E ^ any collection of subsets of K[x\,..., xn], then V ( U t € £ ^ t ) = fl»e£ ^(^«)-

5. IfPandQ are two polynomials of K[xx,... ,xn], then V(P Q) = V(P) U V(Q). 

6. If I and J are two ideals of K[xu .. .,xn], then V(I) U V{J) = V({P Q\P €/,<?€ J}). 

Note that property 3 above implies that every affine algebraic variety is a variety defined for a 
certain ideal L From Hilbert's basis theorem and property 4 above follows that any such variety 
is an intersection of hypersurfaces. Finally, we can deduce from property 7 that any finite subset 
of Kn is an affine algebraic variety. 
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Proposition 1.4 If S is a subset of Kn, the subset 1(S) of K[xlt... ,xn] which contains all the 
polynomials P such thatV {ku... ,kn) € S, P(ku...,kn) = 0 is an ideal. 

Proposition 1.5 The following properties are immediate: 

1. l(<b) = K[xu...,xn]. 

2. S C V(X(S)). 

3. I C T(V(I)). 

4. If Si C S 2 , then I ( S 2 ) C J (5 i ) . 

5. / / Vi and V2 are two algebraic varieties such that Vi C V2, then I (V 2 ) C T{Vi). 

In general, T{Kn) / 0. For example, x2 + x £ I(Z5 2). But the equality holds whenever K is an 
infinite field. This comes from the fact that if K is an infinite field and if P £ K[x\,..., xn] is not 
equal to 0, then there is a rc-tuple (fci,...,fc n) £ if n such that P(&i , . . . , kn) ^ 0 (see Jacobson, 
[20], page 136) 

From the proposition 1.3, we can deduce that the affine algebraic varieties satisfy the conditions 
required from the closed sets of a topological space. This topology on Kn is called Zariski topology. 
The sets Op = {(&i, . . . ,k n ) £ Kn\P(ki,... ,kn) ^ 0} form a basis of the open sets. Notice that, 
if K is not algebraically closed, we obtain Op = Kn for certain polynomials P (for example, if 
K = IR and P = x2 + 1). This topology has the following properties: 

Proposition 1.6 1. Kn is a Ti-space (i.e., for each pair of points k and k', there exist neig-
bourhoods Vk and Vy of k and kf such that k Vk> and kf £ Vk)-

2. If K is an infinite field, Kn is not a Hausdorff space and, moreover, any two proper open 
subsets of Kn intersect. An Hausdorff space, or T2-space, is such that for any two distinct 
points k and k', there exist two disjoint neighborhoods Vk and Vk' of k and k(. 

3. Kn with the Zariski topology is Noetherian, in the sense that there is no infinite descending 
chain of varieties. 

Proof: We saw that {(&i,. . . , kn)} = V({xj -ki,...,xn- kn}). That means that the closure of 
each point is itself. Therefore its complement is an open set which does not contain the point and 
which contains all the other points of the space. This proves the first statement. 

Next, it is sufficient to show that any two members of the basis intersect. Suppose P and Q are 
two non-zero polynomials of K[x\,... , x n ] where K is an infinite field. Then, there exists k £ Kn 

such that P{k)Q(k) ^ 0 (see [20], page 136). Then 0P D Oq = 0F q 0. 

The third result is easily obtained from proposition 1.5 above and the fact that K[xi,... ,x n ] 
is Noetherian. • 
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1.4. P r i m e ideals and nil radicals. 

The following definition generalizes the arithmetical meaning of prime. In the ring of integers TL, 
the set pTL is a prime ideal if and only if p is prime. More generally: 

Definition 1.8 An ideal J of a commutative ring R is prime if and only if: 

V r i , r2 £ R, ri r2 £ / T\ € I or r2 € / 

Proposition 1.7 1. If I is a prime ideal of a commutative ring R, the complement R\I of I 
in R is multiplicatively closed. 

2. If B is a non empty multiplicatively closed set of a commutative ring R, an ideal I which does 
not intersect B and is such that any ideal containing it intersects I is a prime ideal. 

Proof: The first part is a direct consequence of the definition of a prime ideal. Now, suppose 
that B and J verify the conditions of the second part of the proposition and that r\^I and r2 £ L 
Then (ri) + I fl B ^ 0 and ( r 2 ) + I PI B ^ 0. Let r 3 € (n) + P f l 5 a n d r 4 e ( r 2 ) + P fl P . Then 
r*3 r 4 € (ri r2) + I 0 B and, therefore, r x r2 £ I. • 

Here is an example. Prime ideals of TL are the subrings pTL for p prime. Suppose that we take, 
as multiplicatively closed set of TL, the set of powers of 6, B = {1 ,6 ,36,6 3 , . . . , 6 n , . . . } . We can 
see that the complement of B in TL is not an ideal (3 £ B but 3 + 3 6 B). The ideals of TL not 
intersecting B are the ideals n TL such that n A 6 / 1. Therefore, the prime ideals not intersecting 
B are exactly the ideals p TL such that p is a prime distinct from 2 and 3. 

Definition 1.9 An element r of a commutative ring R is nilpotent if and only if there exists a 
natural number n such that rn = 0. The nil radical, nilrad(R), of a commutative ring R is the set 
of its nilpotent elements. 

Theorem 1.2 (Krull) The nil radical of R is the intersection of the prime ideals of R. 

Proof. First assume that r is a nilpotent element of R (rn = 0) and J a prime ideal of R. Then 
rn = 0 6 J , and so r £ J . 

Next, suppose r is not nilpotent. The set of ideals of R not intersecting the multiplicative 
monoid generated by r is not empty (the null ideal belongs to it) and is inductive (i.e. the union of 
any chain of members of this set belongs to the set). Therefore, we can use Zorn's lemma to prove 
the existence of a maximal element J in this set. By proposition 1.7, J is prime and r £ J. Notice 
that, if i2 is Noetherian, we do not need Zorn's Lemma. • 

Definition 1.10 The nil radical of an ideal J of R is the set of elements r of R for which there 
exists a natural number n such that rn € i". 

Note that the nil radical of an ideal is the preimage of the nil radical of R/I by the canonical 
homomorphism of R onto R/I. 
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Proposition 1.8 The nil radical of the ideal I is equal to the intersection of all the prime ideals 
of R containing I. 

Proof it is well-known that the canonical homomorphism v from R to R/I maps ideals of 
R containing / to ideals of R/I in a one-to-one way. Moreover, it can be proven easily that v 
maps prime ideals of R containing / to prime ideals of R/I in a one-to-one way. From this, the 
proposition follows immediately. • 

1.5. P r i m e spec trum of a commutat ive ring. 

Let X{R) denote the set of prime ideals of R. For every subset B of i£, let Pr{B) be the set of all 
prime ideals of R containing B. Id(B) or more simply (B) denote the ideal generated by the set 
B. 

Proposition 1.9 The following are immediate: 

1. 0 = Pr({l}) and X(R) = Pr({0}). 

2. If {Bi}ieE is a collection of subsets of R, f]ieE Pr(Bi) = Pr( UIEeA)-

3. IfBi and B2 are two subsets of R, Pr{Bx) U Pr{B2) = Pr{Id{B1)Id{B2)). 

We see from this result that the sets Pr(B) can be considered as the closed sets of a topology 
that they determine on X(R). 

Definition 1.11 X(R) with the topology just defined is called the spectrum of R, and the subset 
Xmax(R) consisting of maximal ideals with the induced topology is called the maximum spectrum. 

The open sets are the complements X(R) - Pr(B) = \JreB(X(R) - Pr({r})). The set X(R) -
Pr({r}) is just the set of prime ideals not containing r € R. We call it Xr and we note that 
{Xr | r £ R} is a base of the open sets of X(R). Such topologies were introduced by M.H. Stone 
for Boolean algebras (in which case Xmax(R) is a compact Hausdorff space with a basis of clopen 
subsets), and by N. Jacobson for arbitrary rings. 

The space X{R) is not always a Hausdorff space. In particular, if R is a domain, then 0 is a 
prime ideal of R whose closure is the whole space X(R). Therefore, 0 can't be separated from any 
other prime ideal and X(R) is not even a Ti-space. 

Even Xmax(R) is not always a Hausdorff space. For example, the maximal ideals of TL are the 
ideals (p) where p is prime. Therefore, Xmax{7L) is a Ti-space. The closure of any infinite set of 
maximal ideals of TL is the whole space (because 0 is the only integer which belongs to an infinite 
number of prime ideals (p) and because Pr(0) = Xmax(7L)). So the closed sets are 0, the finite 
subsets and the whole space Xmax(7L). So the proper open sets are complementary of finite subsets 
and, therefore, any two of them intersect. So, Xmax(7Z) is not an Hausdorff space. 

Proposition 1.10 X(R) and Xmax(R) are compact spaces. 
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Proof: We need only to prove that for every open covering of X(R) with elements of the base 
{Xr | r £ R}y there is a finite open covering contained in it. Suppose X(R) = Ur^B^r- Then 
X(R) = - Pr(B). So Pr(J9) = Pr(I) = 0, where J is the ideal generated by J5. So 
I = R and there exist r i , . . . , r n € P and s n £ such that 1 = Ya=i

 ri si- Finally 
Pr{I) = Pr({n, . . . , r n » and = |J? =i X r . . 

The proof for Xmax(R) is similar. • 

1.6. Hilbert 's Nul lste l lensatz . 

We return to affine algebraic varieties to see how the concept of nil radical of an ideal can be used 
in this context. It's easy to see that, for any ideal / of K[x\,... ,#n] (K is any field), V(I) = 
V(nilrad(I)). We introduced previously the ideal X(V) as the ideal of all polynomials vanishing 
on V. Hilbert's Nullstellensatz states that, when K is algebraically closed, X(V(I)) = nilrad(I). 

Theorem 1.3 (Nullstellensatz) Let K be an algebraically closed field and I be an ideal in the 
polynomial ring K[x\,.,xn]. Suppose Q{k\,... ,kn) = 0 for all (k\,... ,&n) £ V(I). Then Q £ 
nilrad(I). 

There is a very similar presentation of this theorem, called sometimes Weak Nullstellensatz (at 
least, in [13]): 

Theorem 1.4 / / / is a proper ideal in K[x\,... , x n ] , then V(I) / 0. 

Following Fulton, we prove the Weak Nullstellensatz theorem first and use it to prove the main 
theorem. We need a lemma, due to Zariski, on fields which are ring-finite over one of their subfields. 
A ring R is ring-finite over one of its subrings i27, if there exist n elements of R, r i , . . . , r n such 
that the ring homomorphism <f> from R'[x\,...,xn] to R given by <f>(P) = P ( ^ i , . . . , rn) is onto (we 
will write that R = i2 ; [r i , . . . , r n ] ) . We also say that R is module-finite over Rf if R is a finitely 
generated iZ'-module. 

Lemma 1.3 If a field K is ring-finite over a subfield K', then K is module-finite over Kf. 

Proof of the lemma: Notice first that, if R is a domain which is ring-finite over one of its subrings 
R\ then R is module-finite over R' if and only if R is integral (in the case of fields, we say algebraic) 
over Rf ([13], chapter 1, page 30, exercise 1-48). The implication from right to left is easy. The 
other one is proved by considering a particular generating set of R (as a iZ'-module), { s i , . . . ,sp} 
and, for any r £ R the system of linear equations {si r — ]Cj=i rijsj = 0}i<«<p- ^ s • • >sp) 
is a non-trivial solution of this system, considered in the quotient field of R (R is a domain), the 
determinant (which is in R'[r]) is equal to zero. 

Now, suppose that K = K'[ki,..., kn]. The proof works by induction on n. For n = 1, we 
can suppose than k\ ^ 0 and we can express 1/fci as a member of K'[k\], so there is a polynomial 
P £ K'[x] such that l/k\ = P(ki). From this, we see that k\ is algebraic over K' and that K is a 
A^'-module of dimension at most degree(P) + 1. 
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Next, if n > 1, K = K'[k\,... ,fcn] = if'(fci)[fc2, • • • ykn]. By induction hypothesis, 
iif'(fci)[A;2,...,fcn] is a finitely generated iif'(A;i)-module. If k\ is algebraic over if', the result is 
immediate. 

Otherwise, we know that there exist monk polynomials in K'{k\)[x), P 2 , • • • >in s.t. P,-(fct) = 0. 
Let G if'[&i] be the common denominator of all the fractions appearing in P 2 , . . . , P n . Q ^ 0 
because k\ is not algebraic over K'. From this, we can find monic polynomials in A^&ijfx], 
P 2 , . . . ,P'n such that P[{Q ki) = 0. As the set of integral elements over K'[ki] is a subring of if 
containing K'[ki], we see that for any k e K = K'[ki,..., kn], there is an integer p such that 
is integral over if'[&i]. For k = 1/P(&i) where P is a polynomial in if'[x] such that Q and P have 
no common factor, this gives a contradiction with the fact that k\ is not algebraic over K'. • 

Proof of the Weak Nullstellensatz: I is contained in a maximal ideal J and V(J) C V(J). Now, 
7i [x i , . . . , x n ] / J is a field which is ring-finite over K. From the lemma, it is algebraic over K 
and, as K is algebraically closed, K[xi,... , x n ] / J = if. The residue of x t modulo J is fct G if. 
Then xt- - fcj G </, for all 1 < i < n. But (xi - fci,...,xn - kn) is a maximal ideal, so J -
(X! - ku ..., x n - * n ) . Then V(J) = {(fci,..., kn)} ? 0. • 

Proof of the Nullstellensatz: This proof is adapted from Rabinowitsch. Suppose the ideal 7 of 
i f[xi , . . . , x n ] is generated by P i , . . . , P p . Consider the ideal J generated by P i , . . . , P p , x n +i Q - 1 
in if [ x x , . . . , x n , x n + i ] . As Q vanishes on V(I) C if n , V(J) = 0 (this is a subset of J f n + 1 ) . From 
the weak Nullstellensatz, 1 G J , so there exist polynomials Qo,..., Qp G i f [ x i , . . . , x n +i] such that 
1 = Qo (x n +i Q — 1) + £X=i Qt-ft- Now, we take the quotient of i f [x i , . . . ,x n +i] by the ideal 
(xn+i Q — 1)- By multiplying each side of the above equation by the suitable power of Q, we 
obtain that there exist an integer i and polynomials R\,...,RP in if [x i , . . . , x n , x] such that the 
equation Q(xly... ,x n )* = I]f=1 i2,(x"i,... , x n , Q ( x i , . . . , x n ) ) P t ( x i , . . . , x n ) holds in the quotient 
ring. As if[xi, x n ] is isomorphic to the subring of i f [x i , . . . ,x n +i] / (x n +iQ — 1) generated by 
{x i , . . . , x n } , this relation holds in i f [x i , . . . , x n ] . This proves that Q G nilrad(I). • 

Proposition 1.11 If if is an algebraically closed field, then the maximal ideals of i f [x i , . . . ,x n ] 
are exactly the ideals generated by {x\ — fci,..., x n — A:n} w/iere (&i, . . . , kn) G Kn. 

Proof the fact that the ideal Id({x\ — fci,... , x n — /:„}) is maximal is immediate. Conversely, 
suppose that I is a maximal ideal. Then, by the weak Nullstellensatz, there exists k G if n such 
that k G V(I). Then the Nullstellensatz implies that I is included in the nil radical of the ideal 
Id({xi - . . . , x n - kn}) , which happens to be Id({xi - A?i,... , x n - &n}) itself. As 7 is maximal, 
then I = Jd({xi - ku... , x n - A:n}). • 

Notice that this result becomes false when if is not algebraically closed. For example, in 
IR[xi,x 2], the ideal 7d ({x i - l , x\ + x 2 + 1}) is a maximal ideal. Note also that the ideal generated 
by P i ( x i ) , . . . , P n ( x n ) , where P i , . . . , P n are irreducible univariate polynomials over if, is not always 
a maximal ideal. For example, in IR[xi,x 2], we have Id({x\ + 3,3x^+4}) C icf({2xi-3x 2 ,3x^+4}), 
and this is a proper inclusion. 

Proposition 1.12 When if is algebraically closed, the maximum spectrum of A — K[x1,..., xn] 
and if n with its Zariski topology are homeomorphic spaces. 

Proof. The canonical homeomorphism * from Kn to Xmax(A) is given by *(&! , . . . , kn) = ( { x i -
fci,... , x n — kn}). By proposition 1.11, this is a bijection. A closed set of if n for the Zariski topology 
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is a variety V defined by a certain ideal / . A polynomial P £ I vanishes for any (&i, . . . , kn) £ V, 
therefore P £ nilrad(Id({x\ — &i , . . . , x n — kn})) which is Id{{x\ — k\,...,xn — fcn}) itself. So, 
$(V) is included in the set of maximal ideals containing J. Now, if Id{{x\ — k\,..., xn — kn}) is 
a maximal ideal containing / , then any polynomial of I vanishes on . . . , kn). So, ^(V) is the 
set of maximal ideals containing / and is therefore a closed set of Xmax(A). 

Conversely, consider a closed set Max(I) of Xmax(A), namely the set of maximal ideals con­
taining a given ideal / . From above, we can conclude that $~ 1 (Max( / ) ) = V(I), and therefore it 
is a closed set for the Zariski topology. • 

2. Rewriting systems in polynomial rings. 

We saw in the previous section that an ideal can be represented by a finite basis of polynomials. 
Now we want to know whether this representation is computationally effective, i.e. whether there 
exists an algorithm which, given a polynomial P and a finite set of polynomials defining an ideal 
J, decides if P belongs to J. 

We call a power product an element of the free commutative monoid generated by x\,... ,xn. 
The power product corresponding to a monomial is just the monomial divided by its coefficient. 

Definition 2.1 A rule r in A is a pair for which the first component is a monomial m of A and 
for which the second component is a polynomial P of A such that none of its monomials has the 
same power product as m. We will write r : m —• P 

Definition 2.2 Q\ £ A is reduced in one step to Q2 £ A by the rule r : m —• P (we will write this 
relation as Q\ —>\ Q2) iff a monomial of Q\ is divided by the left-hand side of r (i.e. there exists 
a monomial ra' £ A and a polynomial Q £ A such that P = m m! + Q and no power product of 
S is equal to the power product of m ml) and Q2 = mf P + Q. 

Qi is reduced in one step to Q2 w.r.t. the set of rules TZ (we write Q\ —^ Q2) if it is reduced 
in one step by some rule r in TZ. 

We will call — ^ the transitive closure of — ^ and — ^ reflexive, transitive closure. 

We remark that if Q\ is reduced to Q2 by the rule r : m —• P , then Q\ is reduced to Q2 by any 
rule of the form k m —• k P for any k £ K. Therefore, we can choose rules with power products as 
left-hand sides. Notice that this is not true for a polynomial ring with coefficients in a ring instead 
of a field, for example, in 2Z[xi,£2], the polynomial x\ can be reduced by the rule x\ —> 2 but not 
by the rule 2 x\ —• 4. 

Proposition 2.1 If TZ is a finite set of rules rt- : ra, —* P{ and if Q\ —^ then Q\ — Q2 

belongs to the ideal generated by the polynomials mi — Pi. We call Id(TZ) this ideal and B(7l) the 
set of polynomials mi — P t . 

So, to prove that a given polynomial P belongs to an ideal / , we can try to form a set of rules 
TZ from a finite basis of J and try to reduce P to 0 w.r.t. this set of rules. But there are several 
problems with this scheme. First, we want to restrict the space of sets of rules to the ones for which 
the reduction always terminates. This is the subject of the next section. 
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2.1. Terminat ion of the reduction and admissible orders. 

In order to use rules, it is often very important to see that their applications terminate in finitely 
many steps. 

Definition 2.3 A relation ^ on a set is Noetherian if there is no infinite descending chain 
Ti y T2 ... y T%• y .... 

Obviously, there are some systems of rules TZ for which the relation —>^ is not Noetherian. 
For example, in Q[xi,x 2 ], the relation — ^ R for TZ = {xi —• x2 + 1,x 2 —• x\ + 1} is not Noetherian. 
The chain x\ —^ x2 + 1 — ^ x\ + 2 — ^ x\ x2 + x\ + 2 . . . is infinite. 

Definition 2.4 Given a set of rules TZ, we define the relation > ^ on the set of power products of 
the variables x\,... ,xn by the following conditions: 

1. If Ti is a power product appearing on the left-hand side of a rule r and if T2 is a power 
product appearing on the right-hand side of r, then T\ T2. 

2. (Transitive closure). If T\,T2,T$ are power products such that T\ T2 and T2 » f t T3, 
thenTi >rc T 3 . 

3. (Multiplicative closure). If T\,T2 are power products such that 7\ > ^ T2 and if T3 is any 
power product, then T a T 3 > ^ T 2 T 3 . 

We call strict order an antireflexive, antisymmetric, transitive relation. 

Proposition 2.2 / / — ^ is Noetherian, then >^ is a partial strict order . 

Lemma 2.1 IfT\ T2, then there exists an element k £ K and a polynomial P £ A such that 
T\ — > k k T2 + P and T2 is not a power product of P. 

Proof of the lemma: We follow the inductive definition of (1) If there exists a rule k T\ 
k T2 + P , the result is immediate. 

(2) If there exists a power product T 3 such that T\ > ^ T 3 and T 3 > ^ T 2 , our induction 
hypothesis is that there exist k,l £ K and P,Q £ A such that Ti —4 k T 3 + p a n d r 3 —4 T 2 + Q 
and T 3 is not a power product of P , nor T2 a power product of Q. Moreover, we suppose that T2 is 
not a power product of P (otherwise, T\ — k T 3 + P is the reduction we are looking for). Then, 
Ti — k I T2 + k Q + P and T 2 is not a power product of k Q + P . 

(3) If there exist power products T3,T4jT5 such that Tx = T 3 T 4 , T2 = T 3 T 5 and T 4 > ^ T 5 , 
our induction hypothesis is that there exist k £ K and P £ A such that T4 — k T 5 + P and T 5 

is not a power product of P . Then, 7\ — k T 2 + T3P and T 2 is not a power product of T 3 P . • 

Proo/ of 2.2: If > ^ is a transitive relation, in order not to be a strict order relation, it has to 
be either not antireflexive or not antisymmetric. By transitivity, if it is not antisymmetric, it is 
not antireflexive. So, let's suppose that there exists a power product T such that T >^ T. By 
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the lemma above, there exist k 6 K and P G R such that T —^ k T + P and T is not a power 
product of P. Then, the chain: 

T —£ kT + P — k 2 T + kP + P — . . . —4 fcn T + (fc71-1 + . . . + 1) P — . . . 

is infinite. • 

Definition 2.5 A total admissible order is a total order >- on the set of power products such that: 

1. Every power product T satisfies T y 1, and 

2. For all power products Tu T 2 , T 3 , the condition T a y T2 implies 7\ T 3 >- T 2 T 3 . 

Condition 2 means that y is multiphcatively closed. In the following definitions, among all the 
admissible orders which are equivalent by permutation of the variables, we choose the ones which 
verify x\ y x 2 y ... y x n - \ y Here are some very important admissible orders: 

Definition 2.6 xf . . . arjj* y ^ x^1 ... x ^ iff there exists p (1 < p < n) such that i\ = j \ , ..., 
ip-i = jp-i and ip > j p . 

Definition 2.7 x%J:..xl» y x L x% ... xfr iff it + .. . + *„ > + .. .+jn or a'i + . . . + in = + .. . + j n 

and x%i . . . xj^ >-l ^ i 1 • • • x% f ° r ^ e lexicographic order. 

Definition 2.8 x^...x%^ yrR xj 1 .. .z£ n iff + .. . + i n > + .. ,+jn or + .. . + z'n = + .. .+jn 

and there exists p (1 < p < n) such that in = j n , . . . , = j p +i and i p < j p . 

Note that y i is the lexicographic order, y j L is the total degree ordering refined by the lexico­
graphic order, and y j R is the total degree ordering refined by the reverse lexicographic order. 

If y is an admissible order and P a polynomial, we will call Iny(P) the leading monomial of 
P , InPpy(P) the leading power product of P , and InCy(P) the leading coefficient of P . When we 
consider only one admissible ordering, the index y will be omitted. 

The proof that we present here of the following result may be found, for example, in Winkler's 
Ph.D. thesis, [39]. 

Proposition 2.3 An admissible order is a well-ordering (i.e., there is no infinite descending chain 
of power products). 

Proof, this is an immediate consequence of Dickson's Lemma. The result comes from the 
fact that the existence of two power products T\ and T2 such that T\ y T\T2 with T2 ^ 1 is in 
contradiction with the definition of an admissible order. • 

Given a set B of polynomials and a total admissible order we can find a corresponding set of 
rules by taking, for each polynomial P of P , the monomial m of P with the leading power product 
w.r.t. y as left-hand side, and P - m as right-hand side. We will designate by 1Z(B,a) the set of 
rules obtained from the set of polynomials B by using the total admissible order y . 
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Proposition 2.4 — y n ( S y ) 2 5 a Noetherian relation for any set of polynomials S and any admis­
sible total order y. 

Proof. See Winkler, [39], 3.1. • 

Proposition 2.5 Let TZ be a set of rules. If—^ is Noetherian, then there exists an admissible 
order y such that TZ = TZ{V(TZ),y). 

Proof. We define the relation y on power products as follows: T\ y T2 iff either Ti T2 

(see definition 2..4) or 2\ and T2 are not comparable by and T\ y^ T2. Here y^ is the 
lexicographic ordering. 

If is a partial strict order, then y is a total admissible order and TZ = TZ{V{TZ),y). • 

So, by combining propositions 2.2 and 2.4, we see that the sets of rules for which the reduction 
relation is Noetherian are exactly those generated from sets of polynomials by using a total admis­
sible ordering. Therefore, in the next sections, we will only consider systems of rules generated by 
a system of polynomials and an admissible order. 

2.2. Grobner bases and Buchberger's algorithm. 

The systems of rules we consider differ from usual term rewriting systems for essentially two reasons: 
the first one is that all the terms are ground terms, i.e., there is no rewriting rule containing 
variables. Note that x$,... ,xn are indeterminates, sometimes called variables as algebraic objects, 
but they are constants of the rewriting systems. The second reason is that the reduction does not 
only consist in a replacement of one term by another but also in a simplification of the resulting 
polynomial according to the algebraic laws of the ring A. Nevertheless, the two problems are very 
similar, and the same terminology applies to both. For an introduction to rewriting systems in 
general, we suggest to the review by Huet and Oppen, [19], or the article by Knuth and Bendix, 
[22] which describes their completion algorithm. To understand more deeply the relations between 
reduction systems in ideal theory and rewriting systems in general, see Winkler's Ph.D thesis, [39]. 
For a historical review, see Buchberger, [9]. 

In the previous section, we restricted the universe of the sets of rules to those for which the 
reduction is Noetherian. We ended up with sets of rules inferred from a set of polynomials and 
from an admissible order. We can now introduce the concept of normal form: 

Definition 2.9 A polynomial P is in normal form w.r.t. a system of rules TZ iff there exists no 
polynomial Q such that P —^ Q. 

A polynomial P has at least one normal form w.r.t. a Noetherian reduction. We are interested 
in obtaining a unique normal form. Why ? 

We can call <—•* the reflexive, symmetric, transitive closure of — ( w e omit TZ when we 
consider only one set of rules). <—•* is an equivalence relation in A. For a rewriting system in 
general, this is an equivalence relation on the set of terms. 
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Definition 2.10 The unique normal form property holds for a relation 
every polynomial has a unique normal form w.r.t, it. 

1 is such that 

The following proposition is immediate: 

Proposition 2.6 If—verifies the unique normal form property, then, for all P,Q G A, we have 
P <—•* Q iff P and Q have the same normal form. 

In this case, <—•* is computable. This becomes essential if we add the following remark: 

Proposition 2.7 If — i s the reduction relation associated with a basis of an ideal I and an 
admissible order y, then, for all P,Q in A, we have P <—•* Q iff P — Q € I. 

For a reduction relation with the unique normal form property, let's call nf(P) the normal form 
corresponding to P. Then we see that nf(A) is isomorphic to A/1. Therefore, this gives a way of 
computing the natural homomorphism from A onto A/1. In particular, this gives a solution to the 
membership problem: a polynomial P belongs to I iff nf{P) = 0. Therefore, systems of rules for 
which the unique normal form property holds are extremely useful. 

Now, given an admissible order >- and a basis B of an ideal J, how can we obtain another basis 
B' of I such that the unique normal form property holds for the reduction associated with B and 
y ? This is the purpose of Buchberger's algorithm, which appeared in Buchberger's thesis, [6], in 
1965 and has been extensively studied since. The basis B is called a Grobner basis or standard 
basis of I. (The second denomination refers to the work of Hironaka, [18].) 

Buchberger's algorithm was designed by using techniques which are very similar to the work 
of Knuth and Bendix, [22]. The details of this approach can be found in Winkler's thesis and in 
two early articles by Buchberger, [5] and [4]. More recently, a more algebraic presentation of the 
algorithm appeared. We will follow this approach here by quoting and explaining the Fundamental 
Theorem that Robbiano presented in his Tutorial at Computers and Mathematics 1989, [32]. 

Let's recall first a basic definition: 

Definition 2.11 A ring R is graded by a monoid E if there exists a family of additive subgroups 
{Ri}ieE such that R = ®ieE Ri and R{Rj C jR t +j for all i, j G E. If R is a graded ring, an R-module 
M is graded if there exists a family of additive subgroups {Mi}ieE such that M = © i € £ Aft- a n ( ^ 
RiMj C Mi+j for all i, j G E. The elements of \JieE Ri (resp. \JieE ̂ %) a r e called the homogeneous 
elements of R (resp. M). 

We choose INn as the monoid of the indices and A^u_iin) = {k xx^ .. ,xx£ | k G K} as additive 
subgroups of A. For the power product T = x%^ ... x^n, we call log{T) the vector (t"i,. . . , in)> 

Given any p-tuple of elements of JVn, ( ( i i , i , . . . , *i,n)> • • • ? (*p,i> • • • h,n)), °ne can define a graded 
structure on Ap by choosing, as additive subgroups, 

(Ap){n i B ) = {(*i Ti,...,kp Tp) | log(T,) + . . . , i,,n) = ( j i , . . . ,jn) , V/, 1 < / < p}, 

where ki,... ,kp are elements of K and T\,...,Tp are power products. 
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Suppose that the ideal J of A has the finite basis B = ( P i , . . . , P p ) . Let's consider a particular ad­
missible order y. We can grade Ap with the p-tuple of vectors (log(InPp(Pi)),... Jog(InPp(Pp))). 
Now, any member of Ap is decomposed uniquely in a sum of elements of the sets (A p ) ( t l v . . j i n ) . We 
will call the leading vector of (Q i , . . . ,Q P ) the homogeneous part of (Qu... ,Q P ) belonging to the 
set (;4p)(,-1,...,,-n) for which x\x ...x\? is the highest w.r.t. We will write it Lv((Qi,... ,QP)). 

Also we define the two homomorphisms A and A from Ap to A by: 

A((Qi , . . . ,Q P ) ) = £ < 9 / P / , and 
i 

H(Qu-.-,QP)) = T,QiIn(Pl). 
i 

Following Robbiano, we say that an homogeneous element H of Ap extends toll G Ap iff Lv(U) = if. 

Now, we are ready to state the Fundamental Theorem: 

Theorem 2.1 Let y be an admissible order, B = ( P i , . . . , P p ) a p-tuple of non-zero elements of 
A, and I the ideal generated by the elements in B. Then the following conditions are equivalent: 

(A) For every P G A W > there exist p polynomials Q\,... , Q P G >1\{0} such that 
P = HiQi Pi with InPpy(P) y InPpy(Qi) InPpy(Pi) for every /, 1 < Z < p. 

(B) {Iny(Pi),... , / n ^ ( P p ) } generates Iny(I). 

(C-i) P e i «=> P -^%{B,Y) o. 

(C-II) Every P G / has a unique normal form w.r.t. the reduction — ¥ \ ( b y) an^ ^ s n o r m a ^ 
form is 0. 

(C-III) Every P G A has a unique normal form w.r.t. —>n(B,y)-

(D-I) Every homogeneous element of Ker(A) extends to an element of Ker(X). 

(D-II) There exists an homogeneous basis of Ker(A) which extends to elements of Ker(X). 

The proof of this important result can be found, for example, in Robbiano, [32]. 

Definition 2.12 If B satisfies any of these conditions, then B is a Grobner basis of J. 
If every polynomial P of B is in normal form for the reduction w.r.t. the set 7£ (P \{P},x) , 

then B is called a reduced Grobner basis for I. 

Note that condition (D-II) of theorem 2.1 implies that, if we can find a homogeneous basis of the 
module of syzygies of ( Jn (P i ) , . . . , Jn(P p )) such that, for every vector ( Q i , . . . ,Q P ) of this basis, 
Jli Qi Pi —*n(B ^) 0, then B is a Grobner basis of I w.r.t y. 

We now introduce a very convenient homogeneous basis of the syzygies of ( P i , . . . , P p ) . To make 
the definitions readable, we denote T(i) = InPpy(Pi) and T(i , j ) = lcm{InPpy{Pi), InPpy(Pj)). 
We will also use the notation T(i,jJ) for lcm(InPpy(Pi), InPpy(Pj), InPpy{Pi)). 
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I n p u t : a l i s t of p o l y n o m i a l s ( P i , . . . , P p ) , b a s i s of an i d e a l I . 

Output: a Grobner b a s i s B of I f o r t h e a d m i s s i b l e order y . 

B:= ( P ! , . . . , P p ) ; 

l a b e l : = p ; 

P a i r s - { ( i , j ) |1 < i < j < p } ; 
w h i l e ( P a i r s ^ 0) do 

b e g i n 

choose from P a i r s ; P a i r s : = P a i r s \ { ( i , j ) } ; 

P:= n f 7 e ( B > ) ( S ( i , j ) ) ; 

i f (P ^ 0) t h e n 

b e g i n 

l a b e l := l a b e l + 1; 

Plabei:= P; 

B:= ( B , P i a b e l ) ; 

P a i r s : = P a i r s U { ( i , l a b e l ) |1 < i < l a b e l } ; 

end; 
end; 

Figure 1: Buchberger's algorithm 

Proposition 2.8 Let ( c i , . . . ,e p ) be the canonical basis of Ap. Then the vectors 

s(i,j) = JnC ^ j I M e . - - I n C ^ ^ - e j , 

where 1 < i < j < p, form an homogeneous basis of the module of syzygies of 
(In>(P1)J...,In>(Pp)) . 

Proof: See Robbiano, [32]. • 

Definition 2.13 The polynomial 

S(iJ) = X(s(iJ)) = InC>{Pi)'^-Pi - InCyiPi)^^-^ 

is called the S-polynomial of P, and Pj. 

Thus, to verify that ( P i , . . . , P p ) is a Grobner basis, we only need to check that all the S-
polynomials S(i,j) can be reduced to 0 (according to condition (D-II) of the Fundamental Theorem 
above). We can introduce now in Figure 1 the elementary version of Buchberger's algorithm. In 
this program t i/W(b,>)(P ) designate any normal form of P w.r.t. the reduction — v n(B^y 

Theorem 2.2 The algorithm of Figure 1 computes a Grobner basis of I w.r.t. y. 
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Proof, if the algorithm terminates, its output B is a Grobner basis because it satisfies (D-II) 
above. As every polynomial added to B belongs to 7, B is a Grobner basis of I. Finally, let's call 
habel the ideal generated by In(B) after Plahel has been added to B. These ideals form a strictly 
increasing sequence of ideals. As A is a Noetherian ring, this sequence has to be finite and the 
algorithm terminates. • 

2.3. Improvements in the algorithm. 

The two improvements that we are going to describe are of different natures. The first one, called 
Criterion 2 by Buchberger, [8], avoids certain reductions by forecasting that certain very particular 
S-polynomials can be reduced to 0. The second one is a recent refinement by Gebauer and Moller, 
[16], of Criterion 1 by Buchberger. They show that Ker(A) is in fact generated by a subset of the 
s(i,j) and, therefore, that only a subset of the S-polynomials S(i,j) need to be reduced. 

The first improvement concerns pairs of polynomials with co-prime leading power products and 
is based on the next proposition. 

Proposition 2.9 IfT(iyj) = T{i)T{j), then s(i,j) extends to an element of Ker(X). 

Proof. If T(iJ) = T(i)T(j)9 then R = InCy(Pj) Pj e> - InCy(Pi) P,\e, extends s(ij). 
Obviously, R € Ker{\). • 

So, before an S-polynomial is reduced, the algorithm should check if the two polynomials in the 
pair verify the condition of Proposition 2.9. This is the second criterion of Buchberger. 

The second improvement is based on the consideration of redundant elements of the basis of 
syzygies. Gebauer and Moller, [16], use the resolution of Taylor, [36], to describe their enhancement 
of the algorithm. Taylor studied the resolution of monomial ideals and found homogeneous bases for 
the different modules in this resolution. These are called Taylor bases. We have already seen that 
the module of syzygies of (jTra(Pi),..., 7rc(Pp)) is generated by (s(*\j))i<t<j<p- To avoid tiresome 
multiplications by coefficients, we suppose that the polynomials P i , . . . , Pp are normalized, i.e. that 
their leading coefficients are equal to 1. This does not imply any restriction because ( P i , . . . ,P p ) 
and ( P i / / n C ( P i ) , . . . , Pp/InC(Pp)) generate the same ideal. Then we have 

s(ij) = T(iJ)/T(i)ei - T{i,j)IT{j)ei. 

Now we can look at the submodule of Ap(p~1W2 of the syzygies of (s(i, j))i<i<j<p- If we label the 
canonical unit vectors {^ij)i<i<j<pj this submodule can be expressed as: 

s{2) = { £ Pj eij e Ap(p-X)/21 £ pijS(ij) = o}. 
\<i<j<P 1<«'<J<P 

This has the Taylor basis (s(^J,/))i<;<j</< p with 

S [ l ^ l ) - T(iJ) C" T(i,l) C " + T(j,l) e>1' 

If we grade A^"1^2 by using the vectors (/o5(T(i,j)))i< t < > 7< p , then s(i,j,l) is homogeneous and 
belongs to 4 ^ W ? J M 
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Now, what happens if T(i,j,l) is equal to T(i,j), T(i,l) or T(j,l) ? Suppose, for example, that 
T(i,j,l) = T(i,j). Then 

a ( i „• n „ T(i,J,Or , T(i,j,l) . 

is a syzygy of (^(z, j))i< t <j< p and, therefore, 

So, s(i,j) can be expressed in terms of other members of the basis, and it can be removed from the 
homogeneous basis. This means that it is unnecessary to consider the pair of polynomials (P;, Pj) 
during the execution of the algorithm. 

Naturally, after eliminating s(i,j) from the basis of first syzygies, we can take another look 
at 5^2) to see if there exists another syzygy s(i',f) which can be expressed as a combination of 
syzygies of lower or equal degree and, if there exists any, we can remove it from the basis and go 
on iteratively. But, we must proceed in order: if T(i, j , / ) = T(i.j) = T(i,/) , for example, then 

, ( . - , i ) - a ( i , / ) + ^ ^ * ( i , / ) = Ot 

but we do not want to remove both s(i,j) and s(i,l) from the basis of syzygies because of this 
relation. 

The details on the way these considerations are actually used to update the set of pairs when a 
polynomial is added to the basis may be found in Gebauer and Moller, [16]. 

These two improvements of the basic algorithm are essential to the efficiency of the computation: 
with them, only a small fraction of all the pairs in the Cartesian product are considered. We refer 
the reader to the last section of this work. We present there some examples of computations. 
For each example, we give the number # P of polynomials in the final basis (including redundant 
polynomials) and the number # R of pairs for which the S-polynomials has been reduced. The 
comparison between # R and # P x ( # P - l ) / 2 gives a good idea of the gain that the use of 
these two criteria allows us to make. 

3 - Applications of Grobner bases in commutative ring theory. 

The constructions described in this section are borrowed from Gianni, Trager and Zacharias, [29]. 
The constructions studying subalgebras of the polynomial ring are due to Shannon and Sweedler, 
[34]. Many of these constructions are consequences of the well-known following theorem: 

Theorem 3.1 If B is the reduced Grobner basis of an ideal I in K[u\,...,un,x\,... , x n ] with 
respect to an admissible order y in which the relations xp y ... ul£ hold for all p in { 1 , . . . , n} 
and all n-tuples ( t i , . . . , i n ) in IN n, then B fl K[ui,..., un] is the reduced Grobner basis of I D 
K[ui,...,un] for the induced order. 

Proof. Let's notice first that, if y has the property defined above polynomials of K[u\,..., un] 
can only be reduced by using polynomials of K[u\,..., un]. So, polynomials of J fl K[ui,... ,un] 
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which are reduced to 0 by members of G are reduced to 0 by members of B fl K[ui,..., un]. This 
defines B fl K[uu..., un] as a Grobner basis of I fl K[uu ..., un]. The fact that it is a reduced 
Grobner basis follows directly from the fact that B is reduced.• 

In their formal statement of this property, Gianni, Trager and Zacharias add that B is a Grobner 
basis (possibly not reduced) of (K[uu... ,un])[x1,... , x m ] for the order induced by y on this 
structure. 

3.1 . I N T E R S E C T I O N O F T W O I D E A L S . 

Let I and J be two ideals of K[x\,... ,a?n] and let u be a new indeterminate (i.e. a member of 
an extension of K s.t. x\,... ,xn,u are algebraically independent over K). (u I) is the ideal of 
K[x\,..., a;n, u] generated by {u P | P £ 1} . 

Proposition 3.1 (u J, (1 — u) J) fl /i [ z i , . . . ,2?n] is equal to I fl J . 

So, using the contraction mechanism explained in the introduction of this section, we can obtain 
a Grobner basis of I D J. 

Proof, IN J C (ul,(l-u) J)NK[xu...,xn]. Suppose P € IN J. Then P = u P + (1-u) P. 

(u 7, (1 — u) J) N K[x\,... , x n ] C I N J. Suppose P = u Pi + (1 — u) P j and that w is not a 
variable in P . Then, P = P 7 = Pj and, therefore, P € I fl J • 

For Example, 7 = (x 2 + y2 - z2) and J = (x - - 2z) are two ideals of G[x,y,z]. We can 
compute a Grobner basis for an ideal whose corresponding variety is the union in the complex 
projective plane of the conic defined by I and of the point (1,2,1) defined by J. 

The reduced Grobner basis of (u(x 2 + y2 — z2), (1 - u){x - z), (1 - u)(y - 2z)) w.r.t. the 
lexicographic order ( in which u >l z > l V >L z) is: 

{ux - uz - x + 2 , -uy + 2uz + y - 2z,4uz2 + x2 + y2 - 5 z 2 , 
- x 2 2 / + 2 x 2 2 - y3 + 2y2z + yz2 - 2 * 3 , x 3 - x2 z + x y 2 - n 2 - y2 z + z3} 

So the last two polynomials give a basis of I fl J . It may not be surprising that these two last 
polynomials are - (y - 2z) (x2 + y2 - z2) and (x - z) (x2 + y2 - z 2 ) . 

If we choose now J = (x — z, y), which determines the point (A,0, A) lying on the conic, the 
Grobner basis we find for IH J is {x2 + y2 — z 2 } , as expected. 

3.2. T H E I D E A L Q U O T I E N T O F T W O I D E A L S I : J . 

We consider here the case where I and J are two ideals of K[x\^... , x n ] . In fact, the construction 
is still valid when I and J are ideals in the polynomial ring over certain rings (namely Noetherian 
commutative rings with identity in which linear equations are solvable) if the generators of J are 
not zero divisors. See [29] for details. 

Suppose J is generated by { P i , . . . , P P } . Then: 
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/: J = {Q\Q J C / } = f]{Q\QPi€l}= f[I:(Pd 
1=1 t=l 

In the last subsection, we describe how to find bases of intersections of ideals. We discuss now 
how to compute a basis of J : (P). Note that 

/ : (P) = {Q | Q P € /} = {Q\Q P € / H (P)} = ( / fl (P)) : (P) . 

We know how to compute a Grobner basis {Qu ..., Qi} of J fl (P) w.r.t. Then {Qi/P,..., Q//P} 
generates J : (P) , because the Q i / P are indeed polynomials, as Qi £ (P) . 

It is not immediate that { Q i / P , . . . ,Qi/P} is a Grobner basis w.r.t y. This stems from the 
fact that the leading monomial of Qi w.r.t. y is equal to the leading monomial of Qi/P multiplied 
by the leading monomial of P . Then we can reduce the S-polynomials Spol(Qi/PyQj/P) w.r.t. 
{ Q i / P , . . . ,Q/ /P} by following exactly the reduction of the S-polynomials Spol(Qi,Qj) w.r.t. the 
basis {Qi , . . . , ( ? /} . Therefore, Spol(Qi/P,Qj/P) is reduced to 0 for all pairs (i, j ) , and this is one 
of the characterizations of a Grobner basis. 

Take for example I = ((x - z){x2 + y2 - z2),(y - 2z)(x2 + y2 - z2)) and J = (x - z,y - 2z). 
Then / fl (x - z) = ((x - z)(x2 + y2 - z 2 )) and I n (y - 2z) = ((x - 2z)(x2 + y2 - z 2 )) . Therefore, 
/ : J = I: (x - *) = 7 : (y - 2^) = (x 2 + y2 - z2). 

3.3. The ideal of polynomial relations among P x , . . . , P p . 

Gianni et al., [29], give a succinct description of this construction and of a more general one which 
allows us to compute a basis for the kernel of a given ring-homomorphism from P[t/ i , . . . ,y p] to 
P [ x i , . . . , xn]/I which is invariant on R . The paper by Shannon and Sweedler, [34], is more detailed 
and describes a subalgebra membership test as well. We will consider only the case when R is in 
fact a field K. 

The idea is to consider the ideal (j/i - P i , . . . , yp - Pp) in K[x\,..., x n , y\,..., yp) and to find the 
intersection of this ideal with K[yi,... ,y p ] . This intersection describes the ideal of the relations 
between P i , . . . , P P . The correctness of this construction depends on the following result: 

Proposition 3.2 Let R be a ring containing a ring Rf and let {t/i, ..., yp} be a set of algebraically 
independent variables over R'. Let <f> be a ring-homomorphism from i2'[t/i,.. . , yp] to R invariant on 
R' and such that (j>{yi) = ri. Then the kernel of <f> is equal to 7d ({y i - r i , . . . ,y p - r p } ) r \R ' [ y i , . . . ,yp] 
in which Id({yi - r x , . . . , yp - rp}) is the ideal of R[yi,. ..,%>] generated by yi - r i , . . . , yp - rp. 

Proof, suppose that P € Id({yi - ru... ,yp - rp}) fl Rf[yu..., yp]. Then <f>(P(yi,... ,yp)) = 
P(ru ..., rp) = 0. Conversely, if P € Ker <£, then in R[yu . . . , t/p]//d({t/i - n , . . . , yp - r p }) , we 
have P(2/T,... ,y^>) = P ( ^ i , . . . , r p ) = 0 and, therefore, P belongs to the intersection of the ideal 
with y p j . • 

Thus we can obtain the ideal of the relations among the polynomials P i , . . . , P P by using once 
more the "contraction" algorithm to compute Id{{y\ — P i , . . . , y p — P p }) fl K[y\,..., yp). 
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