
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Computation of Grobner Bases
on a Shared Memory Multiprocessor.

Jean-Philippe Vidal

August 28, 1990

CMU-CS-90-163 y

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The principal result described in this report is the design and implementation of a parallel
version of Buchberger's algorithm. Its correctness is stated and some experimental results are
given. The first parts are devoted to a partial review of Grobner bases, of Buchberger's algorithm
which computes them, and of some of their applications.

Keywords: Algebraic Manipulation, Mathematical Software, Parallel Algorithms, Roots of
Nonlinear Equations, Shared Memory, Special Purpose Algebraic Systems, Systems of Equations.

Contents

1. Review of commutative algebra. 1
1.1. Noetherian modules and rings 1
1.2. Hilbert's basis theorem 2
1.3. Affine algebraic varieties and Zariski topology 4
1.4. Prime ideals and nil radicals 6
1.5. Prime spectrum of a commutative ring 7
1.6. Hilbert's Nullstellensatz 8

2. Rewriting systems in polynomial rings. 10

2.1. Termination of the reduction and admissible orders 11
2.2. Grobner bases and Buchberger's algorithm 13
2.3. Improvements in the algorithm 17

3. Applications of Grobner bases in commutative ring theory. 18

3.1. Intersection of two ideals 19
3.2. The ideal quotient of two ideals I : J 19
3.3. The ideal of polynomial relations among Pi , . . . , Pp 20

4. Dimension of ideals and computation of the Hilbert polynomial. 21
4.1. Basic definitions and Macaulay's result 21
4.2. Computation of the Hilbert polynomial 24

5. A parallel algorithm to compute Grobner bases. 25

5.1. History of the parallelization of Buchberger's algorithm 25
5.2. Description of the needed synchronizing tools 28
5.3. Description of the algorithm 30
5.4. Correctness of the program 33
5.5. Improvement of the algorithm 35
5.6. Features of the implementation 37
5.7. Experimental results 40
5.8. Further possible improvements and conclusion 41

A Table of notations. 44

B Listing of the examples. 47

C Sample of trace of the program. U*>?5V£R£STY LIBRARIES 50
cm:-i2QiE m e l l o n u n i v e r s i t y
PITTSBURGH, PA 15213-3899

T h e c o m p u t a t i o n o f G r o b n e r b a s e s
o n a s h a r e d m e m o r y m u l t i p r o c e s s o r

As soon as the author learned about Grobner bases, he became interested by the details of their
computation. The algorithm has a relatively simple form. But the way it behaves on particular
examples is a complex problem which has not yet been satisfactory solved and which requires at
least some elementary knowledge of algebraic geometry.

In this paper, we first review some concepts of commutative algebra which will be used later on.
We then look at rewriting systems in polynomial rings and study their termination and normal form
properties. This leads us to define admissible orders and Grobner bases and to present Buchberger's
algorithm. In the third section, three applications are listed: finding the intersection of two ideals,
finding the quotient of two ideals, and determining the ideal of the polynomial relations among
a given list of polynomials. In the next section, we look in more detail at a fourth application:
the computation of the Hilbert function of an ideal (but without covering the recent developments
in the determination of the dimension). The last part presents an original work: the design and
preliminary implementation of a parallel algorithm to compute Grobner bases on shared memory
multiprocessors. Performance data on a reasonable set of examples are discussed.

We would like to thank Professor Dana Scott for introducing us to the subject and for his help
in reviewing this paper: his comments have led to great improvements in its structure. It is also
a pleasure to acknowledge the encouragement we have received from Professor Edmund Clarke
for our work on the parallel version of Buchberger's algorithm. Our best thanks to Professor
Bruno Buchberger who invited us on August 1987 at RISC-Linz and even gave us the listing of an
implementation of the sequential algorithm [11].

1. Review of commutative algebra.

Rings are assumed to be commutative. When we use modules, we will consider them to be right-
modules. This is not very relevant, as we will mainly be interested in modules which are in fact
commutative rings considered as modules with respect to themselves.

1.1. Noetherian modules and rings.

The following definitions and theorems appear, for instance, on the chapter 3 of Jacobson's book,

Definition 1.1 A module M satisfies the ascending chain condition if there is no infinite properly
ascending chains M1 C M2 . . . c M{ C . . . of submodules of M. Such a module M is called
Noetherian.

Definition 1.2 A module M satisfies the maximum condition if every non-vacuous set of submod­
ules of M contains a maximal submodule (i.e. a submodule not contained in any other submodule
of the set).

1

Definition 1.3 A submodule M' of a right-module M for a ring R is finitely generated if there
exist n members of M', mi, m 2 , . . . , m n , such that M1 = mi R + m 2 iZ + . . . + m n iZ.

Proposition 1.1 The following three statements are equivalent:

1. The module M satisfies the ascending chain condition.

2. The module M satisfies the maximum condition.

3. Every submodule M1 of M is finitely generated.

Definition 1.4 A ring R is Noetherian if and only if it is a Noetherian module with respect to
itself.

Because a submodule of R (considered as a module with respect to itself) is an ideal of R
(considered as a ring), we can state the following proposition :

Proposition 1.2 The following three statements are equivalent:

1. The ring R satisfies the ascending chain condition (meaning that there is no infinite properly
ascending chain of ideals of R.)

2. The ring R satisfies the maximum condition (meaning that every non-empty set of ideals of
R contains a maximal element).

3. Every ideal I of R is finitely generated.

1.2. Hilbert 's basis theorem.

The following result is an immediate extension of the theorem stated by Hilbert, which concerned
only special rings R (namely fields and the ring of integers).

Theorem 1.1 If R is a Noetherian ring, then R[x\,X2,... , x n] is a Noetherian ring.

There are several proofs of this theorem. The original one, by Hilbert, uses the third character­
ization of Noetherian rings (every ideal has a finite basis) and works by induction on the number
of variables. It can be found in the book of Nathaniel Jacobson [21]. Another proof appears in
Commutative Algebra I, by Zariski and Samuel, Chapter IV, [42]. It works also by induction on
the number of variables but uses the first characterization of Noetherian rings (there is no infinite
properly ascending chain of ideals). Other authors (see, for example, Giusti, [17]) use Dickson's
lemma (1913), which states that, in a finitely generated commutative monoid, for any sequence
{T n } , n € N, there exists p 6 N such that, for all n > p, the term Tn is a multiple of one of the
terms To,.. . ,T P . The proof of Dickson's lemma works by induction over the number of generators
of the monoid.

We choose to present a slight modification of Zariski and Samuel's proof:

Definition 1.5 An ideal of R[x] is called a monomial ideal if it can be generated by a set of
monomials.

2

Definition 1.6 If J is an ideal of J?[x], the monomial ideal generated by the monomials of highest
degree of the polynomials of J is called the initial ideal of / and is denoted by In(I).

Lemma 1.1 If I and J are two ideals of R[x] such that I C J and In(I) = In(J), then I = J .
Therefore, if there exists an infinite properly ascending chain of ideals in the polynomial ring R[x],
then there exists an infinite properly ascending chain of monomial ideals in R[x].

Proof of the lemma: We suppose that I C J and that In{I) = In{J) and we use induction on
the degree of an eventual polynomial belonging to J — J (if any). Note that 0 £ J — I. We suppose
that there is no polynomial of degree less than or equal to p which belongs to J — / , that P of
degree p+ 1 belongs to J — / , and we try to derive a contradiction. 7n(P), the monomial of highest
degree of P, belongs to In{I) and, therefore, there exists a polynomial Q € I such that P — Q is of
degree less than or equal to d. But P — Q belongs to J and, because of the induction hypothesis,
to J. So P £ / and we obtain a contradiction. •

Lemma 1.2 If R is a Noetherian ring, there is a bijection between the monomial ideals of R[x]
and the eventually stationary ascending chains of ideals of R. Moreover, if I and J are two ideals
such that I C J, and if I0 C Ix C . . . C /,; C . . . and J0 C Jx C . . . C Jx• C . . . are the
two eventually stationary ascending chains associated respectively with I and J, then we have the
following diagram:

lo C Ix C . . . C Ii C . . .
I n | n | n
Jo C Jx C . . . C Ji C . . .

Proof of the lemma: Let's consider a monomial ideal / of R[x], We will call I{ the ideal of R whose
elements are the leading coefficients of the polynomials of degree i of J. Iq C Ix C . . . C I%• C . . .
is an ascending chain of ideals and, as R is Noetherian, this chain as to be eventually stationary.
Naturally, to two different monomial ideals correspond two different chains and, for every eventually
stationary ascending chain Iq C Ii C . . . C Jt- C . . . , we can associate the monomial ideal generated
by {r x* \ r € i > 0}. •

Proof of the theorem: Because of lemma 1.1, we only need to prove that, if R is Noetherian,
there is no infinite properly ascending chain of monomial ideals in R[x]. Let's suppose that I1 C
I2 C . . . C P C . . . is an ascending chain of monomial ideals of R[x], Then, using lemma 1.2, we
can associate with each P the chain Iq C f[C ... C If C ... of ideals of R such that they form
the following diagram:

II c I\ c . 1} c
in In In
4 2 c i\ c .. • • Q if c
In In 1 n

i n in |n
II c i\ c .. • Q if c
in In 1 n

3

Let stat (p) be the smallest integer such that the chain associated with P becomes stationary.
It is easy to see that lltat^ Q ^tat{2) -^stat(p) — — This chain is eventually stationary.
Let / be the integer such that for all p > I and for all i > stat{l), we have If = Il

$tat^y Then we
consider, for 0 < i < stat(l), the vertical chains 1} C if C . . . C If C Each one of these chains
is stationary for p > stat'{i).

Then, for p and p' greater than sup{l,stat'(Q),..., stat'(stat(l) — 1)), the two horizontal chains
associated with Ip and P' are equal and, therefore, the two associated monomial ideals P and P'
are also equal. So the chain of monomial ideals is eventually stationary. •

1.3. Affine algebraic varieties and Zariski topology.

The results of this subsection can be found in Fulton, [13] and in Jacobson, [21].

Let K be any field. We will call Kn the n-dimensional vector space of n-tuples of members
of K. It is the affine n-space over K and its elements are called points. If P is a polynomial of
K[x\,... , £ n] , we will say that (fci,... ,fcn) is a zero of P if and only if P(&i , . . . , kn) = 0. If P
is not a constant, then the set of zeros V(P) of P is called a hypersurface (when n = 2, it is also
called an affine plane curve). If P is of degree 1, then V(P) is a hyperplane (a line, if n = 2).

More generally, we can give the following definition:

Definition 1.7 If B is a set of polynomials of K[x\,... , x n] , the affine algebraic variety defined
by B is the set V(B) of common zeros of the polynomials in B:

v(B) = n v{P)

Proposition 1.3 The following properties are immediate:

1. V(K[xl,...,xn]) = <b.

2. V(0) = Kn.

3. If I is the ideal generated by B, then V(B) = V(I).

4- If {Bi}i£E ^ any collection of subsets of K[x\,..., xn], then V (U t € £ ^ t) = fl»e£ ^(^«)-

5. IfPandQ are two polynomials of K[xx,... ,xn], then V(P Q) = V(P) U V(Q).

6. If I and J are two ideals of K[xu .. .,xn], then V(I) U V{J) = V({P Q\P €/,<?€ J}).

Note that property 3 above implies that every affine algebraic variety is a variety defined for a
certain ideal L From Hilbert's basis theorem and property 4 above follows that any such variety
is an intersection of hypersurfaces. Finally, we can deduce from property 7 that any finite subset
of Kn is an affine algebraic variety.

4

Proposition 1.4 If S is a subset of Kn, the subset 1(S) of K[xlt... ,xn] which contains all the
polynomials P such thatV {ku... ,kn) € S, P(ku...,kn) = 0 is an ideal.

Proposition 1.5 The following properties are immediate:

1. l(<b) = K[xu...,xn].

2. S C V(X(S)).

3. I C T(V(I)).

4. If Si C S 2 , then I (S 2) C J (5 i) .

5. / / Vi and V2 are two algebraic varieties such that Vi C V2, then I (V 2) C T{Vi).

In general, T{Kn) / 0. For example, x2 + x £ I(Z5 2). But the equality holds whenever K is an
infinite field. This comes from the fact that if K is an infinite field and if P £ K[x\,..., xn] is not
equal to 0, then there is a rc-tuple (fci,...,fc n) £ if n such that P(&i , . . . , kn) ^ 0 (see Jacobson,
[20], page 136)

From the proposition 1.3, we can deduce that the affine algebraic varieties satisfy the conditions
required from the closed sets of a topological space. This topology on Kn is called Zariski topology.
The sets Op = {(&i, . . . ,k n) £ Kn\P(ki,... ,kn) ^ 0} form a basis of the open sets. Notice that,
if K is not algebraically closed, we obtain Op = Kn for certain polynomials P (for example, if
K = IR and P = x2 + 1). This topology has the following properties:

Proposition 1.6 1. Kn is a Ti-space (i.e., for each pair of points k and k', there exist neig-
bourhoods Vk and Vy of k and kf such that k Vk> and kf £ Vk)-

2. If K is an infinite field, Kn is not a Hausdorff space and, moreover, any two proper open
subsets of Kn intersect. An Hausdorff space, or T2-space, is such that for any two distinct
points k and k', there exist two disjoint neighborhoods Vk and Vk' of k and k(.

3. Kn with the Zariski topology is Noetherian, in the sense that there is no infinite descending
chain of varieties.

Proof: We saw that {(&i,. . . , kn)} = V({xj -ki,...,xn- kn}). That means that the closure of
each point is itself. Therefore its complement is an open set which does not contain the point and
which contains all the other points of the space. This proves the first statement.

Next, it is sufficient to show that any two members of the basis intersect. Suppose P and Q are
two non-zero polynomials of K[x\,... , x n] where K is an infinite field. Then, there exists k £ Kn

such that P{k)Q(k) ^ 0 (see [20], page 136). Then 0P D Oq = 0F q 0.

The third result is easily obtained from proposition 1.5 above and the fact that K[xi,... ,x n]
is Noetherian. •

5

1.4. P r i m e ideals and nil radicals.

The following definition generalizes the arithmetical meaning of prime. In the ring of integers TL,
the set pTL is a prime ideal if and only if p is prime. More generally:

Definition 1.8 An ideal J of a commutative ring R is prime if and only if:

V r i , r2 £ R, ri r2 £ / T\ € I or r2 € /

Proposition 1.7 1. If I is a prime ideal of a commutative ring R, the complement R\I of I
in R is multiplicatively closed.

2. If B is a non empty multiplicatively closed set of a commutative ring R, an ideal I which does
not intersect B and is such that any ideal containing it intersects I is a prime ideal.

Proof: The first part is a direct consequence of the definition of a prime ideal. Now, suppose
that B and J verify the conditions of the second part of the proposition and that r\^I and r2 £ L
Then (ri) + I fl B ^ 0 and (r 2) + I PI B ^ 0. Let r 3 € (n) + P f l 5 a n d r 4 e (r 2) + P fl P . Then
r*3 r 4 € (ri r2) + I 0 B and, therefore, r x r2 £ I. •

Here is an example. Prime ideals of TL are the subrings pTL for p prime. Suppose that we take,
as multiplicatively closed set of TL, the set of powers of 6, B = {1 ,6 ,36,6 3 , . . . , 6 n , . . . } . We can
see that the complement of B in TL is not an ideal (3 £ B but 3 + 3 6 B). The ideals of TL not
intersecting B are the ideals n TL such that n A 6 / 1. Therefore, the prime ideals not intersecting
B are exactly the ideals p TL such that p is a prime distinct from 2 and 3.

Definition 1.9 An element r of a commutative ring R is nilpotent if and only if there exists a
natural number n such that rn = 0. The nil radical, nilrad(R), of a commutative ring R is the set
of its nilpotent elements.

Theorem 1.2 (Krull) The nil radical of R is the intersection of the prime ideals of R.

Proof. First assume that r is a nilpotent element of R (rn = 0) and J a prime ideal of R. Then
rn = 0 6 J , and so r £ J .

Next, suppose r is not nilpotent. The set of ideals of R not intersecting the multiplicative
monoid generated by r is not empty (the null ideal belongs to it) and is inductive (i.e. the union of
any chain of members of this set belongs to the set). Therefore, we can use Zorn's lemma to prove
the existence of a maximal element J in this set. By proposition 1.7, J is prime and r £ J. Notice
that, if i2 is Noetherian, we do not need Zorn's Lemma. •

Definition 1.10 The nil radical of an ideal J of R is the set of elements r of R for which there
exists a natural number n such that rn € i".

Note that the nil radical of an ideal is the preimage of the nil radical of R/I by the canonical
homomorphism of R onto R/I.

6

Proposition 1.8 The nil radical of the ideal I is equal to the intersection of all the prime ideals
of R containing I.

Proof it is well-known that the canonical homomorphism v from R to R/I maps ideals of
R containing / to ideals of R/I in a one-to-one way. Moreover, it can be proven easily that v
maps prime ideals of R containing / to prime ideals of R/I in a one-to-one way. From this, the
proposition follows immediately. •

1.5. P r i m e spec trum of a commutat ive ring.

Let X{R) denote the set of prime ideals of R. For every subset B of i£, let Pr{B) be the set of all
prime ideals of R containing B. Id(B) or more simply (B) denote the ideal generated by the set
B.

Proposition 1.9 The following are immediate:

1. 0 = Pr({l}) and X(R) = Pr({0}).

2. If {Bi}ieE is a collection of subsets of R, f]ieE Pr(Bi) = Pr(UIEeA)-

3. IfBi and B2 are two subsets of R, Pr{Bx) U Pr{B2) = Pr{Id{B1)Id{B2)).

We see from this result that the sets Pr(B) can be considered as the closed sets of a topology
that they determine on X(R).

Definition 1.11 X(R) with the topology just defined is called the spectrum of R, and the subset
Xmax(R) consisting of maximal ideals with the induced topology is called the maximum spectrum.

The open sets are the complements X(R) - Pr(B) = \JreB(X(R) - Pr({r})). The set X(R) -
Pr({r}) is just the set of prime ideals not containing r € R. We call it Xr and we note that
{Xr | r £ R} is a base of the open sets of X(R). Such topologies were introduced by M.H. Stone
for Boolean algebras (in which case Xmax(R) is a compact Hausdorff space with a basis of clopen
subsets), and by N. Jacobson for arbitrary rings.

The space X{R) is not always a Hausdorff space. In particular, if R is a domain, then 0 is a
prime ideal of R whose closure is the whole space X(R). Therefore, 0 can't be separated from any
other prime ideal and X(R) is not even a Ti-space.

Even Xmax(R) is not always a Hausdorff space. For example, the maximal ideals of TL are the
ideals (p) where p is prime. Therefore, Xmax{7L) is a Ti-space. The closure of any infinite set of
maximal ideals of TL is the whole space (because 0 is the only integer which belongs to an infinite
number of prime ideals (p) and because Pr(0) = Xmax(7L)). So the closed sets are 0, the finite
subsets and the whole space Xmax(7L). So the proper open sets are complementary of finite subsets
and, therefore, any two of them intersect. So, Xmax(7Z) is not an Hausdorff space.

Proposition 1.10 X(R) and Xmax(R) are compact spaces.

7

Proof: We need only to prove that for every open covering of X(R) with elements of the base
{Xr | r £ R}y there is a finite open covering contained in it. Suppose X(R) = Ur^B^r- Then
X(R) = - Pr(B). So Pr(J9) = Pr(I) = 0, where J is the ideal generated by J5. So
I = R and there exist r i , . . . , r n € P and s n £ such that 1 = Ya=i

 ri si- Finally
Pr{I) = Pr({n, . . . , r n » and = |J? =i X r . .

The proof for Xmax(R) is similar. •

1.6. Hilbert 's Nul lste l lensatz .

We return to affine algebraic varieties to see how the concept of nil radical of an ideal can be used
in this context. It's easy to see that, for any ideal / of K[x\,... ,#n] (K is any field), V(I) =
V(nilrad(I)). We introduced previously the ideal X(V) as the ideal of all polynomials vanishing
on V. Hilbert's Nullstellensatz states that, when K is algebraically closed, X(V(I)) = nilrad(I).

Theorem 1.3 (Nullstellensatz) Let K be an algebraically closed field and I be an ideal in the
polynomial ring K[x\,.,xn]. Suppose Q{k\,... ,kn) = 0 for all (k\,... ,&n) £ V(I). Then Q £
nilrad(I).

There is a very similar presentation of this theorem, called sometimes Weak Nullstellensatz (at
least, in [13]):

Theorem 1.4 / / / is a proper ideal in K[x\,... , x n] , then V(I) / 0.

Following Fulton, we prove the Weak Nullstellensatz theorem first and use it to prove the main
theorem. We need a lemma, due to Zariski, on fields which are ring-finite over one of their subfields.
A ring R is ring-finite over one of its subrings i27, if there exist n elements of R, r i , . . . , r n such
that the ring homomorphism <f> from R'[x\,...,xn] to R given by <f>(P) = P (^ i , . . . , rn) is onto (we
will write that R = i2 ; [r i , . . . , r n]) . We also say that R is module-finite over Rf if R is a finitely
generated iZ'-module.

Lemma 1.3 If a field K is ring-finite over a subfield K', then K is module-finite over Kf.

Proof of the lemma: Notice first that, if R is a domain which is ring-finite over one of its subrings
R\ then R is module-finite over R' if and only if R is integral (in the case of fields, we say algebraic)
over Rf ([13], chapter 1, page 30, exercise 1-48). The implication from right to left is easy. The
other one is proved by considering a particular generating set of R (as a iZ'-module), { s i , . . . ,sp}
and, for any r £ R the system of linear equations {si r —]Cj=i rijsj = 0}i<«<p- ^ s • • >sp)
is a non-trivial solution of this system, considered in the quotient field of R (R is a domain), the
determinant (which is in R'[r]) is equal to zero.

Now, suppose that K = K'[ki,..., kn]. The proof works by induction on n. For n = 1, we
can suppose than k\ ^ 0 and we can express 1/fci as a member of K'[k\], so there is a polynomial
P £ K'[x] such that l/k\ = P(ki). From this, we see that k\ is algebraic over K' and that K is a
A^'-module of dimension at most degree(P) + 1.

8

Next, if n > 1, K = K'[k\,... ,fcn] = if'(fci)[fc2, • • • ykn]. By induction hypothesis,
iif'(fci)[A;2,...,fcn] is a finitely generated iif'(A;i)-module. If k\ is algebraic over if', the result is
immediate.

Otherwise, we know that there exist monk polynomials in K'{k\)[x), P 2 , • • • >in s.t. P,-(fct) = 0.
Let G if'[&i] be the common denominator of all the fractions appearing in P 2 , . . . , P n . Q ^ 0
because k\ is not algebraic over K'. From this, we can find monic polynomials in A^&ijfx],
P 2 , . . . ,P'n such that P[{Q ki) = 0. As the set of integral elements over K'[ki] is a subring of if
containing K'[ki], we see that for any k e K = K'[ki,..., kn], there is an integer p such that
is integral over if'[&i]. For k = 1/P(&i) where P is a polynomial in if'[x] such that Q and P have
no common factor, this gives a contradiction with the fact that k\ is not algebraic over K'. •

Proof of the Weak Nullstellensatz: I is contained in a maximal ideal J and V(J) C V(J). Now,
7i [x i , . . . , x n] / J is a field which is ring-finite over K. From the lemma, it is algebraic over K
and, as K is algebraically closed, K[xi,... , x n] / J = if. The residue of x t modulo J is fct G if.
Then xt- - fcj G </, for all 1 < i < n. But (xi - fci,...,xn - kn) is a maximal ideal, so J -
(X! - ku ..., x n - * n) . Then V(J) = {(fci,..., kn)} ? 0. •

Proof of the Nullstellensatz: This proof is adapted from Rabinowitsch. Suppose the ideal 7 of
i f[xi , . . . , x n] is generated by P i , . . . , P p . Consider the ideal J generated by P i , . . . , P p , x n +i Q - 1
in if [x x , . . . , x n , x n + i] . As Q vanishes on V(I) C if n , V(J) = 0 (this is a subset of J f n + 1) . From
the weak Nullstellensatz, 1 G J , so there exist polynomials Qo,..., Qp G i f [x i , . . . , x n +i] such that
1 = Qo (x n +i Q — 1) + £X=i Qt-ft- Now, we take the quotient of i f [x i , . . . ,x n +i] by the ideal
(xn+i Q — 1)- By multiplying each side of the above equation by the suitable power of Q, we
obtain that there exist an integer i and polynomials R\,...,RP in if [x i , . . . , x n , x] such that the
equation Q(xly... ,x n)* = I]f=1 i2,(x"i,... , x n , Q (x i , . . . , x n)) P t (x i , . . . , x n) holds in the quotient
ring. As if[xi, x n] is isomorphic to the subring of i f [x i , . . . ,x n +i] / (x n +iQ — 1) generated by
{x i , . . . , x n } , this relation holds in i f [x i , . . . , x n] . This proves that Q G nilrad(I). •

Proposition 1.11 If if is an algebraically closed field, then the maximal ideals of i f [x i , . . . ,x n]
are exactly the ideals generated by {x\ — fci,..., x n — A:n} w/iere (&i, . . . , kn) G Kn.

Proof the fact that the ideal Id({x\ — fci,... , x n — /:„}) is maximal is immediate. Conversely,
suppose that I is a maximal ideal. Then, by the weak Nullstellensatz, there exists k G if n such
that k G V(I). Then the Nullstellensatz implies that I is included in the nil radical of the ideal
Id({xi - . . . , x n - kn}) , which happens to be Id({xi - A?i,... , x n - &n}) itself. As 7 is maximal,
then I = Jd({xi - ku... , x n - A:n}). •

Notice that this result becomes false when if is not algebraically closed. For example, in
IR[xi,x 2], the ideal 7d ({x i - l , x\ + x 2 + 1}) is a maximal ideal. Note also that the ideal generated
by P i (x i) , . . . , P n (x n) , where P i , . . . , P n are irreducible univariate polynomials over if, is not always
a maximal ideal. For example, in IR[xi,x 2], we have Id({x\ + 3,3x^+4}) C icf({2xi-3x 2 ,3x^+4}),
and this is a proper inclusion.

Proposition 1.12 When if is algebraically closed, the maximum spectrum of A — K[x1,..., xn]
and if n with its Zariski topology are homeomorphic spaces.

Proof. The canonical homeomorphism * from Kn to Xmax(A) is given by *(&! , . . . , kn) = ({ x i -
fci,... , x n — kn}). By proposition 1.11, this is a bijection. A closed set of if n for the Zariski topology

9

is a variety V defined by a certain ideal / . A polynomial P £ I vanishes for any (&i, . . . , kn) £ V,
therefore P £ nilrad(Id({x\ — &i , . . . , x n — kn})) which is Id{{x\ — k\,...,xn — fcn}) itself. So,
$(V) is included in the set of maximal ideals containing J. Now, if Id{{x\ — k\,..., xn — kn}) is
a maximal ideal containing / , then any polynomial of I vanishes on . . . , kn). So, ^(V) is the
set of maximal ideals containing / and is therefore a closed set of Xmax(A).

Conversely, consider a closed set Max(I) of Xmax(A), namely the set of maximal ideals con­
taining a given ideal / . From above, we can conclude that $~ 1 (Max(/)) = V(I), and therefore it
is a closed set for the Zariski topology. •

2. Rewriting systems in polynomial rings.

We saw in the previous section that an ideal can be represented by a finite basis of polynomials.
Now we want to know whether this representation is computationally effective, i.e. whether there
exists an algorithm which, given a polynomial P and a finite set of polynomials defining an ideal
J, decides if P belongs to J.

We call a power product an element of the free commutative monoid generated by x\,... ,xn.
The power product corresponding to a monomial is just the monomial divided by its coefficient.

Definition 2.1 A rule r in A is a pair for which the first component is a monomial m of A and
for which the second component is a polynomial P of A such that none of its monomials has the
same power product as m. We will write r : m —• P

Definition 2.2 Q\ £ A is reduced in one step to Q2 £ A by the rule r : m —• P (we will write this
relation as Q\ —>\ Q2) iff a monomial of Q\ is divided by the left-hand side of r (i.e. there exists
a monomial ra' £ A and a polynomial Q £ A such that P = m m! + Q and no power product of
S is equal to the power product of m ml) and Q2 = mf P + Q.

Qi is reduced in one step to Q2 w.r.t. the set of rules TZ (we write Q\ —^ Q2) if it is reduced
in one step by some rule r in TZ.

We will call — ^ the transitive closure of — ^ and — ^ reflexive, transitive closure.

We remark that if Q\ is reduced to Q2 by the rule r : m —• P , then Q\ is reduced to Q2 by any
rule of the form k m —• k P for any k £ K. Therefore, we can choose rules with power products as
left-hand sides. Notice that this is not true for a polynomial ring with coefficients in a ring instead
of a field, for example, in 2Z[xi,£2], the polynomial x\ can be reduced by the rule x\ —> 2 but not
by the rule 2 x\ —• 4.

Proposition 2.1 If TZ is a finite set of rules rt- : ra, —* P{ and if Q\ —^ then Q\ — Q2

belongs to the ideal generated by the polynomials mi — Pi. We call Id(TZ) this ideal and B(7l) the
set of polynomials mi — P t .

So, to prove that a given polynomial P belongs to an ideal / , we can try to form a set of rules
TZ from a finite basis of J and try to reduce P to 0 w.r.t. this set of rules. But there are several
problems with this scheme. First, we want to restrict the space of sets of rules to the ones for which
the reduction always terminates. This is the subject of the next section.

10

2.1. Terminat ion of the reduction and admissible orders.

In order to use rules, it is often very important to see that their applications terminate in finitely
many steps.

Definition 2.3 A relation ^ on a set is Noetherian if there is no infinite descending chain
Ti y T2 ... y T%• y

Obviously, there are some systems of rules TZ for which the relation —>^ is not Noetherian.
For example, in Q[xi,x 2], the relation — ^ R for TZ = {xi —• x2 + 1,x 2 —• x\ + 1} is not Noetherian.
The chain x\ —^ x2 + 1 — ^ x\ + 2 — ^ x\ x2 + x\ + 2 . . . is infinite.

Definition 2.4 Given a set of rules TZ, we define the relation > ^ on the set of power products of
the variables x\,... ,xn by the following conditions:

1. If Ti is a power product appearing on the left-hand side of a rule r and if T2 is a power
product appearing on the right-hand side of r, then T\ T2.

2. (Transitive closure). If T\,T2,T$ are power products such that T\ T2 and T2 » f t T3,
thenTi >rc T 3 .

3. (Multiplicative closure). If T\,T2 are power products such that 7\ > ^ T2 and if T3 is any
power product, then T a T 3 > ^ T 2 T 3 .

We call strict order an antireflexive, antisymmetric, transitive relation.

Proposition 2.2 / / — ^ is Noetherian, then >^ is a partial strict order .

Lemma 2.1 IfT\ T2, then there exists an element k £ K and a polynomial P £ A such that
T\ — > k k T2 + P and T2 is not a power product of P.

Proof of the lemma: We follow the inductive definition of (1) If there exists a rule k T\
k T2 + P , the result is immediate.

(2) If there exists a power product T 3 such that T\ > ^ T 3 and T 3 > ^ T 2 , our induction
hypothesis is that there exist k,l £ K and P,Q £ A such that Ti —4 k T 3 + p a n d r 3 —4 T 2 + Q
and T 3 is not a power product of P , nor T2 a power product of Q. Moreover, we suppose that T2 is
not a power product of P (otherwise, T\ — k T 3 + P is the reduction we are looking for). Then,
Ti — k I T2 + k Q + P and T 2 is not a power product of k Q + P .

(3) If there exist power products T3,T4jT5 such that Tx = T 3 T 4 , T2 = T 3 T 5 and T 4 > ^ T 5 ,
our induction hypothesis is that there exist k £ K and P £ A such that T4 — k T 5 + P and T 5

is not a power product of P . Then, 7\ — k T 2 + T3P and T 2 is not a power product of T 3 P . •

Proo/ of 2.2: If > ^ is a transitive relation, in order not to be a strict order relation, it has to
be either not antireflexive or not antisymmetric. By transitivity, if it is not antisymmetric, it is
not antireflexive. So, let's suppose that there exists a power product T such that T >^ T. By

11

the lemma above, there exist k 6 K and P G R such that T —^ k T + P and T is not a power
product of P. Then, the chain:

T —£ kT + P — k 2 T + kP + P — . . . —4 fcn T + (fc71-1 + . . . + 1) P — . . .

is infinite. •

Definition 2.5 A total admissible order is a total order >- on the set of power products such that:

1. Every power product T satisfies T y 1, and

2. For all power products Tu T 2 , T 3 , the condition T a y T2 implies 7\ T 3 >- T 2 T 3 .

Condition 2 means that y is multiphcatively closed. In the following definitions, among all the
admissible orders which are equivalent by permutation of the variables, we choose the ones which
verify x\ y x 2 y ... y x n - \ y Here are some very important admissible orders:

Definition 2.6 xf . . . arjj* y ^ x^1 ... x ^ iff there exists p (1 < p < n) such that i\ = j \ , ...,
ip-i = jp-i and ip > j p .

Definition 2.7 x%J:..xl» y x L x% ... xfr iff it + .. . + *„ > + .. .+jn or a'i + . . . + in = + .. . + j n

and x%i . . . xj^ >-l ^ i 1 • • • x% f ° r ^ e lexicographic order.

Definition 2.8 x^...x%^ yrR xj 1 .. .z£ n iff + .. . + i n > + .. ,+jn or + .. . + z'n = + .. .+jn

and there exists p (1 < p < n) such that in = j n , . . . , = j p +i and i p < j p .

Note that y i is the lexicographic order, y j L is the total degree ordering refined by the lexico­
graphic order, and y j R is the total degree ordering refined by the reverse lexicographic order.

If y is an admissible order and P a polynomial, we will call Iny(P) the leading monomial of
P , InPpy(P) the leading power product of P , and InCy(P) the leading coefficient of P . When we
consider only one admissible ordering, the index y will be omitted.

The proof that we present here of the following result may be found, for example, in Winkler's
Ph.D. thesis, [39].

Proposition 2.3 An admissible order is a well-ordering (i.e., there is no infinite descending chain
of power products).

Proof, this is an immediate consequence of Dickson's Lemma. The result comes from the
fact that the existence of two power products T\ and T2 such that T\ y T\T2 with T2 ^ 1 is in
contradiction with the definition of an admissible order. •

Given a set B of polynomials and a total admissible order we can find a corresponding set of
rules by taking, for each polynomial P of P , the monomial m of P with the leading power product
w.r.t. y as left-hand side, and P - m as right-hand side. We will designate by 1Z(B,a) the set of
rules obtained from the set of polynomials B by using the total admissible order y .

12

Proposition 2.4 — y n (S y) 2 5 a Noetherian relation for any set of polynomials S and any admis­
sible total order y.

Proof. See Winkler, [39], 3.1. •

Proposition 2.5 Let TZ be a set of rules. If—^ is Noetherian, then there exists an admissible
order y such that TZ = TZ{V(TZ),y).

Proof. We define the relation y on power products as follows: T\ y T2 iff either Ti T2

(see definition 2..4) or 2\ and T2 are not comparable by and T\ y^ T2. Here y^ is the
lexicographic ordering.

If is a partial strict order, then y is a total admissible order and TZ = TZ{V{TZ),y). •

So, by combining propositions 2.2 and 2.4, we see that the sets of rules for which the reduction
relation is Noetherian are exactly those generated from sets of polynomials by using a total admis­
sible ordering. Therefore, in the next sections, we will only consider systems of rules generated by
a system of polynomials and an admissible order.

2.2. Grobner bases and Buchberger's algorithm.

The systems of rules we consider differ from usual term rewriting systems for essentially two reasons:
the first one is that all the terms are ground terms, i.e., there is no rewriting rule containing
variables. Note that x$,... ,xn are indeterminates, sometimes called variables as algebraic objects,
but they are constants of the rewriting systems. The second reason is that the reduction does not
only consist in a replacement of one term by another but also in a simplification of the resulting
polynomial according to the algebraic laws of the ring A. Nevertheless, the two problems are very
similar, and the same terminology applies to both. For an introduction to rewriting systems in
general, we suggest to the review by Huet and Oppen, [19], or the article by Knuth and Bendix,
[22] which describes their completion algorithm. To understand more deeply the relations between
reduction systems in ideal theory and rewriting systems in general, see Winkler's Ph.D thesis, [39].
For a historical review, see Buchberger, [9].

In the previous section, we restricted the universe of the sets of rules to those for which the
reduction is Noetherian. We ended up with sets of rules inferred from a set of polynomials and
from an admissible order. We can now introduce the concept of normal form:

Definition 2.9 A polynomial P is in normal form w.r.t. a system of rules TZ iff there exists no
polynomial Q such that P —^ Q.

A polynomial P has at least one normal form w.r.t. a Noetherian reduction. We are interested
in obtaining a unique normal form. Why ?

We can call <—•* the reflexive, symmetric, transitive closure of — (w e omit TZ when we
consider only one set of rules). <—•* is an equivalence relation in A. For a rewriting system in
general, this is an equivalence relation on the set of terms.

13

Definition 2.10 The unique normal form property holds for a relation
every polynomial has a unique normal form w.r.t, it.

1 is such that

The following proposition is immediate:

Proposition 2.6 If—verifies the unique normal form property, then, for all P,Q G A, we have
P <—•* Q iff P and Q have the same normal form.

In this case, <—•* is computable. This becomes essential if we add the following remark:

Proposition 2.7 If — i s the reduction relation associated with a basis of an ideal I and an
admissible order y, then, for all P,Q in A, we have P <—•* Q iff P — Q € I.

For a reduction relation with the unique normal form property, let's call nf(P) the normal form
corresponding to P. Then we see that nf(A) is isomorphic to A/1. Therefore, this gives a way of
computing the natural homomorphism from A onto A/1. In particular, this gives a solution to the
membership problem: a polynomial P belongs to I iff nf{P) = 0. Therefore, systems of rules for
which the unique normal form property holds are extremely useful.

Now, given an admissible order >- and a basis B of an ideal J, how can we obtain another basis
B' of I such that the unique normal form property holds for the reduction associated with B and
y ? This is the purpose of Buchberger's algorithm, which appeared in Buchberger's thesis, [6], in
1965 and has been extensively studied since. The basis B is called a Grobner basis or standard
basis of I. (The second denomination refers to the work of Hironaka, [18].)

Buchberger's algorithm was designed by using techniques which are very similar to the work
of Knuth and Bendix, [22]. The details of this approach can be found in Winkler's thesis and in
two early articles by Buchberger, [5] and [4]. More recently, a more algebraic presentation of the
algorithm appeared. We will follow this approach here by quoting and explaining the Fundamental
Theorem that Robbiano presented in his Tutorial at Computers and Mathematics 1989, [32].

Let's recall first a basic definition:

Definition 2.11 A ring R is graded by a monoid E if there exists a family of additive subgroups
{Ri}ieE such that R = ®ieE Ri and R{Rj C jR t +j for all i, j G E. If R is a graded ring, an R-module
M is graded if there exists a family of additive subgroups {Mi}ieE such that M = © i € £ Aft- a n (^
RiMj C Mi+j for all i, j G E. The elements of \JieE Ri (resp. \JieE ̂ %) a r e called the homogeneous
elements of R (resp. M).

We choose INn as the monoid of the indices and A^u_iin) = {k xx^ .. ,xx£ | k G K} as additive
subgroups of A. For the power product T = x%^ ... x^n, we call log{T) the vector (t"i,. . . , in)>

Given any p-tuple of elements of JVn, ((i i , i , . . . , *i,n)> • • • ? (*p,i> • • • h,n)), °ne can define a graded
structure on Ap by choosing, as additive subgroups,

(Ap){n i B) = {(*i Ti,...,kp Tp) | log(T,) + . . . , i,,n) = (j i , . . . ,jn) , V/, 1 < / < p},

where ki,... ,kp are elements of K and T\,...,Tp are power products.

14

file:///JieE

Suppose that the ideal J of A has the finite basis B = (P i , . . . , P p) . Let's consider a particular ad­
missible order y. We can grade Ap with the p-tuple of vectors (log(InPp(Pi)),... Jog(InPp(Pp))).
Now, any member of Ap is decomposed uniquely in a sum of elements of the sets (A p) (t l v . . j i n) . We
will call the leading vector of (Q i , . . . ,Q P) the homogeneous part of (Qu... ,Q P) belonging to the
set (;4p)(,-1,...,,-n) for which x\x ...x\? is the highest w.r.t. We will write it Lv((Qi,... ,QP)).

Also we define the two homomorphisms A and A from Ap to A by:

A((Qi , . . . ,Q P)) = £ < 9 / P / , and
i

H(Qu-.-,QP)) = T,QiIn(Pl).
i

Following Robbiano, we say that an homogeneous element H of Ap extends toll G Ap iff Lv(U) = if.

Now, we are ready to state the Fundamental Theorem:

Theorem 2.1 Let y be an admissible order, B = (P i , . . . , P p) a p-tuple of non-zero elements of
A, and I the ideal generated by the elements in B. Then the following conditions are equivalent:

(A) For every P G A W > there exist p polynomials Q\,... , Q P G >1\{0} such that
P = HiQi Pi with InPpy(P) y InPpy(Qi) InPpy(Pi) for every /, 1 < Z < p.

(B) {Iny(Pi),... , / n ^ (P p) } generates Iny(I).

(C-i) P e i «=> P -^%{B,Y) o.

(C-II) Every P G / has a unique normal form w.r.t. the reduction — ¥ \ (b y) an^ ^ s n o r m a ^
form is 0.

(C-III) Every P G A has a unique normal form w.r.t. —>n(B,y)-

(D-I) Every homogeneous element of Ker(A) extends to an element of Ker(X).

(D-II) There exists an homogeneous basis of Ker(A) which extends to elements of Ker(X).

The proof of this important result can be found, for example, in Robbiano, [32].

Definition 2.12 If B satisfies any of these conditions, then B is a Grobner basis of J.
If every polynomial P of B is in normal form for the reduction w.r.t. the set 7£ (P \{P},x) ,

then B is called a reduced Grobner basis for I.

Note that condition (D-II) of theorem 2.1 implies that, if we can find a homogeneous basis of the
module of syzygies of (Jn (P i) , . . . , Jn(P p)) such that, for every vector (Q i , . . . ,Q P) of this basis,
Jli Qi Pi —*n(B ^) 0, then B is a Grobner basis of I w.r.t y.

We now introduce a very convenient homogeneous basis of the syzygies of (P i , . . . , P p) . To make
the definitions readable, we denote T(i) = InPpy(Pi) and T(i , j) = lcm{InPpy{Pi), InPpy(Pj)).
We will also use the notation T(i,jJ) for lcm(InPpy(Pi), InPpy(Pj), InPpy{Pi)).

15

I n p u t : a l i s t of p o l y n o m i a l s (P i , . . . , P p) , b a s i s of an i d e a l I .

Output: a Grobner b a s i s B of I f o r t h e a d m i s s i b l e order y .

B:= (P ! , . . . , P p) ;

l a b e l : = p ;

P a i r s - { (i , j) |1 < i < j < p } ;
w h i l e (P a i r s ^ 0) do

b e g i n

choose from P a i r s ; P a i r s : = P a i r s \ { (i , j) } ;

P:= n f 7 e (B >) (S (i , j)) ;

i f (P ^ 0) t h e n

b e g i n

l a b e l := l a b e l + 1;

Plabei:= P;

B:= (B , P i a b e l) ;

P a i r s : = P a i r s U { (i , l a b e l) |1 < i < l a b e l } ;

end;
end;

Figure 1: Buchberger's algorithm

Proposition 2.8 Let (c i , . . . ,e p) be the canonical basis of Ap. Then the vectors

s(i,j) = JnC ^ j I M e . - - I n C ^ ^ - e j ,

where 1 < i < j < p, form an homogeneous basis of the module of syzygies of
(In>(P1)J...,In>(Pp)) .

Proof: See Robbiano, [32]. •

Definition 2.13 The polynomial

S(iJ) = X(s(iJ)) = InC>{Pi)'^-Pi - InCyiPi)^^-^

is called the S-polynomial of P, and Pj.

Thus, to verify that (P i , . . . , P p) is a Grobner basis, we only need to check that all the S-
polynomials S(i,j) can be reduced to 0 (according to condition (D-II) of the Fundamental Theorem
above). We can introduce now in Figure 1 the elementary version of Buchberger's algorithm. In
this program t i/W(b,>)(P) designate any normal form of P w.r.t. the reduction — v n(B^y

Theorem 2.2 The algorithm of Figure 1 computes a Grobner basis of I w.r.t. y.

16

Proof, if the algorithm terminates, its output B is a Grobner basis because it satisfies (D-II)
above. As every polynomial added to B belongs to 7, B is a Grobner basis of I. Finally, let's call
habel the ideal generated by In(B) after Plahel has been added to B. These ideals form a strictly
increasing sequence of ideals. As A is a Noetherian ring, this sequence has to be finite and the
algorithm terminates. •

2.3. Improvements in the algorithm.

The two improvements that we are going to describe are of different natures. The first one, called
Criterion 2 by Buchberger, [8], avoids certain reductions by forecasting that certain very particular
S-polynomials can be reduced to 0. The second one is a recent refinement by Gebauer and Moller,
[16], of Criterion 1 by Buchberger. They show that Ker(A) is in fact generated by a subset of the
s(i,j) and, therefore, that only a subset of the S-polynomials S(i,j) need to be reduced.

The first improvement concerns pairs of polynomials with co-prime leading power products and
is based on the next proposition.

Proposition 2.9 IfT(iyj) = T{i)T{j), then s(i,j) extends to an element of Ker(X).

Proof. If T(iJ) = T(i)T(j)9 then R = InCy(Pj) Pj e> - InCy(Pi) P,\e, extends s(ij).
Obviously, R € Ker{\). •

So, before an S-polynomial is reduced, the algorithm should check if the two polynomials in the
pair verify the condition of Proposition 2.9. This is the second criterion of Buchberger.

The second improvement is based on the consideration of redundant elements of the basis of
syzygies. Gebauer and Moller, [16], use the resolution of Taylor, [36], to describe their enhancement
of the algorithm. Taylor studied the resolution of monomial ideals and found homogeneous bases for
the different modules in this resolution. These are called Taylor bases. We have already seen that
the module of syzygies of (jTra(Pi),..., 7rc(Pp)) is generated by (s(*\j))i<t<j<p- To avoid tiresome
multiplications by coefficients, we suppose that the polynomials P i , . . . , Pp are normalized, i.e. that
their leading coefficients are equal to 1. This does not imply any restriction because (P i , . . . ,P p)
and (P i / / n C (P i) , . . . , Pp/InC(Pp)) generate the same ideal. Then we have

s(ij) = T(iJ)/T(i)ei - T{i,j)IT{j)ei.

Now we can look at the submodule of Ap(p~1W2 of the syzygies of (s(i, j))i<i<j<p- If we label the
canonical unit vectors {^ij)i<i<j<pj this submodule can be expressed as:

s{2) = { £ Pj eij e Ap(p-X)/21 £ pijS(ij) = o}.
\<i<j<P 1<«'<J<P

This has the Taylor basis (s(^J,/))i<;<j</< p with

S [l ^ l) - T(iJ) C" T(i,l) C " + T(j,l) e>1'

If we grade A^"1^2 by using the vectors (/o5(T(i,j)))i< t < > 7< p , then s(i,j,l) is homogeneous and
belongs to 4 ^ W ? J M

17

Now, what happens if T(i,j,l) is equal to T(i,j), T(i,l) or T(j,l) ? Suppose, for example, that
T(i,j,l) = T(i,j). Then

a (i „• n „ T(i,J,Or , T(i,j,l) .

is a syzygy of (^(z, j))i< t <j< p and, therefore,

So, s(i,j) can be expressed in terms of other members of the basis, and it can be removed from the
homogeneous basis. This means that it is unnecessary to consider the pair of polynomials (P;, Pj)
during the execution of the algorithm.

Naturally, after eliminating s(i,j) from the basis of first syzygies, we can take another look
at 5^2) to see if there exists another syzygy s(i',f) which can be expressed as a combination of
syzygies of lower or equal degree and, if there exists any, we can remove it from the basis and go
on iteratively. But, we must proceed in order: if T(i, j , /) = T(i.j) = T(i,/) , for example, then

, (. - , i) - a (i , /) + ^ ^ * (i , /) = Ot

but we do not want to remove both s(i,j) and s(i,l) from the basis of syzygies because of this
relation.

The details on the way these considerations are actually used to update the set of pairs when a
polynomial is added to the basis may be found in Gebauer and Moller, [16].

These two improvements of the basic algorithm are essential to the efficiency of the computation:
with them, only a small fraction of all the pairs in the Cartesian product are considered. We refer
the reader to the last section of this work. We present there some examples of computations.
For each example, we give the number # P of polynomials in the final basis (including redundant
polynomials) and the number # R of pairs for which the S-polynomials has been reduced. The
comparison between # R and # P x (# P - l) / 2 gives a good idea of the gain that the use of
these two criteria allows us to make.

3 - Applications of Grobner bases in commutative ring theory.

The constructions described in this section are borrowed from Gianni, Trager and Zacharias, [29].
The constructions studying subalgebras of the polynomial ring are due to Shannon and Sweedler,
[34]. Many of these constructions are consequences of the well-known following theorem:

Theorem 3.1 If B is the reduced Grobner basis of an ideal I in K[u\,...,un,x\,... , x n] with
respect to an admissible order y in which the relations xp y ... ul£ hold for all p in { 1 , . . . , n}
and all n-tuples (t i , . . . , i n) in IN n, then B fl K[ui,..., un] is the reduced Grobner basis of I D
K[ui,...,un] for the induced order.

Proof. Let's notice first that, if y has the property defined above polynomials of K[u\,..., un]
can only be reduced by using polynomials of K[u\,..., un]. So, polynomials of J fl K[ui,... ,un]

18

which are reduced to 0 by members of G are reduced to 0 by members of B fl K[ui,..., un]. This
defines B fl K[uu..., un] as a Grobner basis of I fl K[uu ..., un]. The fact that it is a reduced
Grobner basis follows directly from the fact that B is reduced.•

In their formal statement of this property, Gianni, Trager and Zacharias add that B is a Grobner
basis (possibly not reduced) of (K[uu... ,un])[x1,... , x m] for the order induced by y on this
structure.

3.1 . I N T E R S E C T I O N O F T W O I D E A L S .

Let I and J be two ideals of K[x\,... ,a?n] and let u be a new indeterminate (i.e. a member of
an extension of K s.t. x\,... ,xn,u are algebraically independent over K). (u I) is the ideal of
K[x\,..., a;n, u] generated by {u P | P £ 1} .

Proposition 3.1 (u J, (1 — u) J) fl /i [z i , . . . ,2?n] is equal to I fl J .

So, using the contraction mechanism explained in the introduction of this section, we can obtain
a Grobner basis of I D J.

Proof, IN J C (ul,(l-u) J)NK[xu...,xn]. Suppose P € IN J. Then P = u P + (1-u) P.

(u 7, (1 — u) J) N K[x\,... , x n] C I N J. Suppose P = u Pi + (1 — u) P j and that w is not a
variable in P . Then, P = P 7 = Pj and, therefore, P € I fl J •

For Example, 7 = (x 2 + y2 - z2) and J = (x - - 2z) are two ideals of G[x,y,z]. We can
compute a Grobner basis for an ideal whose corresponding variety is the union in the complex
projective plane of the conic defined by I and of the point (1,2,1) defined by J.

The reduced Grobner basis of (u(x 2 + y2 — z2), (1 - u){x - z), (1 - u)(y - 2z)) w.r.t. the
lexicographic order (in which u >l z > l V >L z) is:

{ux - uz - x + 2 , -uy + 2uz + y - 2z,4uz2 + x2 + y2 - 5 z 2 ,
- x 2 2 / + 2 x 2 2 - y3 + 2y2z + yz2 - 2 * 3 , x 3 - x2 z + x y 2 - n 2 - y2 z + z3}

So the last two polynomials give a basis of I fl J . It may not be surprising that these two last
polynomials are - (y - 2z) (x2 + y2 - z2) and (x - z) (x2 + y2 - z 2) .

If we choose now J = (x — z, y), which determines the point (A,0, A) lying on the conic, the
Grobner basis we find for IH J is {x2 + y2 — z 2 } , as expected.

3.2. T H E I D E A L Q U O T I E N T O F T W O I D E A L S I : J .

We consider here the case where I and J are two ideals of K[x\^... , x n] . In fact, the construction
is still valid when I and J are ideals in the polynomial ring over certain rings (namely Noetherian
commutative rings with identity in which linear equations are solvable) if the generators of J are
not zero divisors. See [29] for details.

Suppose J is generated by { P i , . . . , P P } . Then:

19

/: J = {Q\Q J C / } = f]{Q\QPi€l}= f[I:(Pd
1=1 t=l

In the last subsection, we describe how to find bases of intersections of ideals. We discuss now
how to compute a basis of J : (P). Note that

/ : (P) = {Q | Q P € /} = {Q\Q P € / H (P)} = (/ fl (P)) : (P) .

We know how to compute a Grobner basis {Qu ..., Qi} of J fl (P) w.r.t. Then {Qi/P,..., Q//P}
generates J : (P) , because the Q i / P are indeed polynomials, as Qi £ (P) .

It is not immediate that { Q i / P , . . . ,Qi/P} is a Grobner basis w.r.t y. This stems from the
fact that the leading monomial of Qi w.r.t. y is equal to the leading monomial of Qi/P multiplied
by the leading monomial of P . Then we can reduce the S-polynomials Spol(Qi/PyQj/P) w.r.t.
{ Q i / P , . . . ,Q/ /P} by following exactly the reduction of the S-polynomials Spol(Qi,Qj) w.r.t. the
basis {Qi , . . . , (? /} . Therefore, Spol(Qi/P,Qj/P) is reduced to 0 for all pairs (i, j) , and this is one
of the characterizations of a Grobner basis.

Take for example I = ((x - z){x2 + y2 - z2),(y - 2z)(x2 + y2 - z2)) and J = (x - z,y - 2z).
Then / fl (x - z) = ((x - z)(x2 + y2 - z 2)) and I n (y - 2z) = ((x - 2z)(x2 + y2 - z 2)) . Therefore,
/ : J = I: (x - *) = 7 : (y - 2^) = (x 2 + y2 - z2).

3.3. The ideal of polynomial relations among P x , . . . , P p .

Gianni et al., [29], give a succinct description of this construction and of a more general one which
allows us to compute a basis for the kernel of a given ring-homomorphism from P[t/ i , . . . ,y p] to
P [x i , . . . , xn]/I which is invariant on R . The paper by Shannon and Sweedler, [34], is more detailed
and describes a subalgebra membership test as well. We will consider only the case when R is in
fact a field K.

The idea is to consider the ideal (j/i - P i , . . . , yp - Pp) in K[x\,..., x n , y\,..., yp) and to find the
intersection of this ideal with K[yi,... ,y p] . This intersection describes the ideal of the relations
between P i , . . . , P P . The correctness of this construction depends on the following result:

Proposition 3.2 Let R be a ring containing a ring Rf and let {t/i, ..., yp} be a set of algebraically
independent variables over R'. Let <f> be a ring-homomorphism from i2'[t/i,.. . , yp] to R invariant on
R' and such that (j>{yi) = ri. Then the kernel of <f> is equal to 7d ({y i - r i , . . . ,y p - r p }) r \R ' [y i , . . . ,yp]
in which Id({yi - r x , . . . , yp - rp}) is the ideal of R[yi,. ..,%>] generated by yi - r i , . . . , yp - rp.

Proof, suppose that P € Id({yi - ru... ,yp - rp}) fl Rf[yu..., yp]. Then <f>(P(yi,... ,yp)) =
P(ru ..., rp) = 0. Conversely, if P € Ker <£, then in R[yu . . . , t/p]//d({t/i - n , . . . , yp - r p }) , we
have P(2/T,... ,y^>) = P (^ i , . . . , r p) = 0 and, therefore, P belongs to the intersection of the ideal
with y p j . •

Thus we can obtain the ideal of the relations among the polynomials P i , . . . , P P by using once
more the "contraction" algorithm to compute Id{{y\ — P i , . . . , y p — P p }) fl K[y\,..., yp).

20

If the ring R is equal to K[x\,...,xn]/I for a certain ideal I instead of K[x\,..., xn] itself, we
first use the fact that

(K[xu ...,xn]/I)[yu ...,»„] = K[xu..., x n , t / i , . . . , y p] / / e ,

where Ie is the extension of I to an ideal of R[xi,..., x n , 2 / 1 , . . . , y p]. We then remember that, for
any ring P , there is a one-to-one correspondence between the ideals of R containing the ideal I
and the ideals of R/I. Therefore we find the ideal of polynomial relations between P i , . . . , P P by
computing a Grobner basis of Id(Ie (J {yi - P i , . . . , y p - P p }) fl K[y\,..., yp}.

4 . Dimension of ideals and computation of the Hilbert polyno­
mial.

The dimension of a homogeneous ideal I is an important characterization because it gives the first
description of the projective variety associated with I. For example, in C[x,y,z], the only ideal
of dimension —1 is C[x,y,z] itself and the projective variety associated with it is empty. Ideals of
dimension 0 and 1 are respectively associated with finite set of points and curves of the projective
plane. Once a Grobner basis for / is found, there exists a simple algorithm which computes the
dimension of / .

4.1 . Basic definitions and Macaulay's result.

Recall that a homogeneous module M over a homogeneous ring P , where R = © t € # P n E being
a monoid, is such that there exists additive subgroups M,-, i G E such that © t € £ Mt- = M and,
for all i,j £ E, R{Mj C Mj+j.

Definition 4.1 An ideal J of R (resp. a submodule M' of M) is homogeneous iff there exists
a family of aditive subgroups {Ii}ieE °f R (resp {Af/},-^ of M) such that J = 0t€£;/t (resp.
M ' = QieEMi) a n d > f o r e v e r y * € E, Ii C Ri (resp. M[C M,).

Proposition 4.1 P / 7 = © t € £ ; P t / ^ i (resp. MjM1
 = is a graded ring (resp a R-

graded module)

Definition 4.2 A homomorphism /i : M —• Mf between two homogeneous P-modules is homo-
geneous (of degree 0) iff, for all t € £ , h{Mi) C M/

Before we take the particular example of the polynomial ring, we need another set of definitions,
from homological algebra. They can be found in N. Jacobson, [21], chapter 6.

Definition 4.3 A complex C for a ring R is a set {M,} of P-modules indexed by TL together with
an indexed set {hi} of P-homomorphisms hi : Mi —• Afj_i such that Im(hi) C Ker(hi-i) (i.e.
/i,_i hi = 0) for all i. A positive complex is such that M t = 0 for i < 0.

21

Definition 4.4 Let M be an i2-module. A complex over M is a positive complex C together with
a homomorphism e : MQ —• M, called an augmentation, such that eh\ = 0. The complex C,e over
M is called a resolution if the sequence:

is exact (i.e. if Im hi = ifer /î —i for all i > 1, Jro h\ = A'er e and Im e = M).

Recall that an iZ-module M is free if it is isomorphic to a direct sum of R (i.e. M = (£)E, R
for a certain index set Ef).

Definition 4.5 A resolution is a free resolution if every module M t is free .

Definition 4.6 Suppose that all the modules M t and the module M in the resolution C, e are
graded . Then, C, € is a homogeneous free resolution if e is homogeneous and if hi is homogeneous
for every i.

Now that we have all the definitions that we need, we turn to the particular case of the poly­
nomial ring. We put on the polynomial ring R = K[x\,... , x n] (over the field K) the natural
graduation induced by the total degree function: R = 0 Ri where Ri is the set of homogeneous
polynomials of degree i (completed by the zero polynomial). In this case, each considered as a
vector space over K, has the finite dimension

n [i + n - i \
aim R{ = I ^

A homogeneous ideal I is given by a finite basis of homogeneous polynomials. Each submodule
Ri/Ii has a finite dimension over K.

Definition 4.7 The Hilbert function H : IN —• IN is defined by:

H(i) = dim(Ri/Ii)

It is a well known result of Hilbert that this function is equal to a polynomial HP with rational
coefficients for i sufficiently large. The details of the proof can be found in English, for example,
in Mora and Moller, [26]. They list three different forms of this polynomial. The one originally
described by Hilbert is:

j p (o = f c o (^) + - + f c . (r f i /) + - + ^ i (;) + f c -

Definition 4.8 The degree d of HP is the Krull dimension of the ideal.

22

For example, consider the complex projective plane represented by (C 3 - {(0,0,0)})/<r, where
a is the equivalence relation on C 3 defined by u a v iff the two vectors u and v are linearly
dependent. We want to study the intersection of the algebraic curves of equations y = 0 and
yz - x2 + z2 = 0. The points on the intersection form an algebraic variety V(I) where I is
generated by (y, y z — x2 + z2) or (y, — x2 + z2). It is easy to see that this set of zeros consists of
the two points (A;,0, k) and (fc,0, —fc) in the projective plane. We determine the Hilbert polynomial
of the ideal I by the following steps:

• J 0 = {0}, so H(0) = 1.

• {y} is a basis of I\, so H(l) = 2.

• y z, y x, x2 — z2} is a basis of J2, so # (2) = 6 — 4 = 2

• Fori? = C[x,y9z],dimRi = (i + 2)(i+l)/2. Then, J; = y Ri-i + (x 2 - * 2) i i , -2 and
yifc.i O (x 2 - * 2) U,-_2 = y(x2-z2)Ri-z. So

= (» + 2) (» + l) _̂ (t+l)» _ t(t-l) (t-l)(i-2) =
U 2 2 2 2

we see then that HP(i) = 2 for i > 0 and the dimension of the ideal is 0. The ideals for which the
corresponding projective variety is a finite set of points have always dimension 0.

Definition 4.9 The regularity of the ideal I is the smallest integer p such that the Hilbert function
and the Hilbert polynomial have the same value for all i > p.

In our example, the regularity of the ideal I is 1. Now, to help us compute the Hilbert polyno­
mial, we need a very important result which is an extension of a result by Macaulay in 1926, [24].
Originally, Macaulay considered only lexicographic orders.

Theorem 4.1 Let I be a homogeneous ideal of K[xi,... , x n] and y an admissible order. Then, I
and Iny(I) have the same Hilbert function.

Proof. If dim(Ii) = p, then there exists a system of p independent polynomials in I{. By
Gaussian elimination of this system of polynomials written in the basis of the power products of
degree i ordered in decreasing order w.r.t. we obtain a system of p polynomials with distinct
leading power products. So dim((In(I))i) > dim(Ii).

Because In{I) is a monomial ideal, (7n(/)) t as a vector space admits a basis of power products.
Each power product T of this basis is equal to the leading power product of a polynomial of I{ or is
a multiple of the leading power product of a polynomial P of Ij for some j < i. But, in the second
case, we can multiply P by the suitable power product of degree i — j , namely T/InPp(P), and,
as >- is an admissible order, we obtain a polynomial of Jt- whose leading power product is equal to
T. So (In(I))i is generated by the leading monomials of the polynomials of 7 t. •

23

4.2. Computat ion of the Hilbert polynomial .

In their EUROCAL83 paper, [26], Mora and Moller describe an algorithm to compute the Hilbert
polynomial of a homogeneous ideal. This algorithm, due, originally, to Buchberger, [6], takes as
input the set of leading monomials of a Grobner basis of the homogeneous ideal J for any admissible
order.

The idea behind the method can be described as follows. The dimension of Ri is Now,
we want to subtract from this number the number of power products of degree i which are multiples
of a power product in the basis of In{I). If i > j , each power product of degree j has Ô **""1)
multiples of degree i. If we subtract from dim Ri the number of multiples of degree i of each power
product in the basis, we may subtract several times the same power product. So we must add to
this new number the number of common multiples of each pair { T i , ^ } of power products in the
basis of In(I) (i.e. the number of multiples of the least common multiple of T\ and T2). But once
again, we may add several times the same power product, so we need to consider triples of members
of the basis and their common multiples and so on, until we consider the common multiples of all
the power products of the basis of In(I).

This is explained more formally in [26] by the introduction of a homogeneous free resolution of
R/In{I). Let's suppose the basis of In(I) has p elements m i , . . . , m p . The least common multiple
of m t l , . . . , ratf will be denoted / c m (m l l , . . . , rat,). The ring R is graded by using the total degree.
For each / (1 < / < p), the free module Mi = over R is graded in the following intricate way:

• The canonical basis of elements ej = (0 , . . . , 0 ,1 ,0 , . . . , 0) is reindexed by the set of /-tuples
t'/)|l < h < . . . < %i < p}.

• We define the module-endomorphism a\ of M\ by <*/(e(tif....t|)) = lcm(mix,...^m,,) e(ti,...,«<)•
• Now, the component of M\ of degree q is defined by: (Mi)q = afl(Rq x . . . x Rq).

We must also define a family of homomorphisms. For / > 1, hi : Mi —• M/_i is defined by:

^ (-1) " /cm(m t l , . . . ,m t - ,)

The homomorphism hi : Mi -+ R is defined by /ii(e t) = m t , and h0 : R -* R/In(I) is just the
canonical projection.

Naturally, we recognize the Taylor resolution of a monomial ideal that we used in section 2 to
prove the correctness of Buchberger's algorithm.

Proposition 4.2 The resolution

0 -> Mv M p _i ^ . . . M ^ i j H R/In(I) - 0

is a homogeneous free resolution of R/In(I).

24

Proof. See [26]. •

By restricting each endomorphism to the component of degree i, we obtain another exact se­
quence:

0 -+ (Mp)i $ (Mp_!),- . . . (Ma),- 5 Ri % (R/In(I)){ -+ 0.

We can then consider all these modules as vector spaces over K. By applicating p + 1 times the
dimension formula, we obtain:

Proposition 4.3 The Hilbert function of the ideal I is given by the formula

v
H(i) = dimRi + (-1) ' dim(Mt)i.

Here

dim{Mi)i = ^2 dim*(i — degree{ lcm{ mjl,...,))),

and dim*(i) = dim Rl ifi>0 and 0 otherwise.

This proves that the Hilbert function is equal to a polynomial for i large enough and gives a
way to compute it.

The initial algorithm by Buchberger and two improvements are published in the paper by Mora
and Moller, [26]. They are based on the formula above. Some other algorithms to compute the
dimension of the ideal I once a Grobner basis has been computed have been designed, for example
by Kredel and Weispfenning, [23]. The problem with all these is that the computation of a Grobner
basis takes a long time, both in terms of worst complexity and of "observed" complexity. To avoid
it, new algorithms are designed which do not need the computation of a Grobner basis. Let us
mention here the contribution of Giusti, [17], and the joint work of Galligo and Traverso, [15].

5 . A parallel algorithm to compute Grobner bases.

We first review the different contributions which have been brought by various people to the
parallelization of Buchberger's algorithm. Then, we present our parallel algorithm to compute
Grobner bases and we prove its correctness. Finally, we describe the particular features of our
implementation on an Encore Multimax machine and give a series of experimental results using
examples commonly found in the literature.

I M . 5 .1 . His tory of the parallelization of Buchberger's algorithi

Mmsel7\io]° a U e m P t S ^ P a r a U e U Z e B u c h b e r 6 e r ' s algorithm are due to Watt, [38] and to Buchberger

25

In his thesis, Watt proposes general tools to build computer algebra systems on networks. They
allow only a limited interaction between processes. In fact, a process can only ask other processes
to execute a program and to send back the results to it. For the computation of Grobner bases, this
leads to a hierarchical algorithm in which the main process asks other processes to simultaneously
reduce the S-polynomials, waits for all of them to send back their result which are added to the
basis. Then, the main process asks the other processes to simultaneously reduce each member of
the basis w.r.t. the other members to obtain a basis in normal form. As Ponder states it in [31], this
parallel inter-reduction is incorrect, because, if there are two polynomials with the same leading
power product in the input basis of the inter-reduction, there will not be any polynomial with this
leading power product in the result of the inter-reduction. Indeed, each one of them would have
been reduced by the other. Beside this, there are two other main problems with this algorithm.
First, pairs of polynomials whose S-polynomial has already been reduced are not remembered.
Therefore, the same reductions are performed many times. Secondly, as the length of the reduction
of an S-polynomial varies widely, many processors will be idle waiting for the others to finish their
reduction. Watt does not give any indication on the performance of his implementation.

In [10], Buchberger describes two parallelizations of his algorithm which avoid the pitfalls de­
scribed above. They are given as examples of use of the L-machine, a parallel machine designed
at RISC-Linz for the specific use of parallel symbolic computation. The two schemes have a lot
in common. They are based on the model of a set of processes which do not share memory but
can exchange messages. In both, there is a main process called the S Pair Set Manager which dis­
tributes the work directly to the Critical Pair Reducers. When a Critical Pair Reducer has finished
its reduction, it sends back the resulting polynomial to the S Pair Set Manager. If the resulting
polynomial is not equal to 0, then the Critical Pair Reducer must also initiate the propagation of
this new polynomial among all the Critical Pair Reducers. In this propagation lies the difference
between the two schemes. In the first one, the Critical Pair Reducers are the leaves of a tree, whose
internal nodes and root are processors of two other types, named respectively G Set Distributor
and Root Process. New polynomials are propagated in the tree from a leaf. In the second scheme,
Critical Pair Reducers form a ring and new polynomials are distributed in the ring. Therefore,
this second scheme uses only two types of processes: the S Pair Set Manager and the Critical Pair
Reducer. The main difference with Watt's approach is that the processes are less tightly coupled.
The S Pair Set Manager does not wait for all the Critical Pair Reducers to complete their reductions
before it sends to idle processes new pairs to reduce. Instead, as soon as it receives the result of a
reduction, it stops the Critical Pair Reducers whose current work becomes useless because of the
new polynomial entering the basis (if any), it recomputes the set of critical pairs to be reduced and
it sends pairs to reduce to all the idle Critical Pair Reducers. As Buchberger did not implement
these schemes, it is difficult to evaluate their efficiency. We can expect, though, that, when a
large number of Critical Pair Reducers are used, the S Pair Set Manager becomes a bottleneck.
Nevertheless, Buchberger's parallel versions seem much more efficient than Watt's scheme and lead
the way to practical parallel implementations of the computation of Grobner bases.

Ponder in [31] proposes four different parallelizations of Buchberger's algorithm. The two first
are inspired by Watt's approach. They are in fact the two natural ways to transform Watt's
algorithm into a correct one. With the method 1, S-polynomials are computed in parallel and,
then, the basis is sequentially reduced. With the method 2, the S-polynomials are computed
one by one, but the reduction of the basis w.r.t. each polynomial entering the basis is done
in parallel. Ponder gives some performance results for these two algorithms. It seems that the
average parallelism is very low, almost always under 1.5. Moreover, the time of the computation is

26

always much larger than the one taken by the careful sequential implementation made by Zacharias
on top of Macsyma, [41]. Among the reasons of this meager speed-up, there are the criticisms that
we formulate against Watt's approach, namely that the system does not keep track of the pairs
already computed and that the reducers are tightly coupled. Moreover, Ponder does not seem
to use the criteria described by Buchberger in [7] which avoid the computation of many useless
S-polynomials. Ponder describes two other ways to parallelize Buchberger's algorithm. The first
is a divide-and-conquer method which consists of recursively finding a Grobner basis for disjoint
subsets of the input set of polynomials and combining the obtained Grobner bases. The problem is
that this final combination seems generally as expensive as would have been the computation of the
Grobner basis for the input set from the start. The second uses Watt's idea of collusion, [38]. The
Grobner bases of an ideal w.r.t. several admissible orderings are computed simultaneously until one
computation ends. Some statistics on how the order can change the time of the computation are
given in [31] and the estimated efficiency of this collusion scheme is discussed. All four proposed
algorithms are designed for a network of processors.

Melenk and Neun propose in [25] a fine-grain parallelization of the algorithm. In fact, it is the
reduction that is parallelized, by using a pipeline of processes. As soon as the leading monomial of
the result of one step of the reduction has been found, another process can begin a new reduction
step before the first one is finished. What is needed is a synchronization tool to control production
and access of successive monomials. This fine-grain parallelism should work reasonably well on
models with low latency, such as shared memory multiprocessors. They give some simulation
results in the paper. For two and three processors, the speed-up is almost maximal (equal to 2 and
3 respectively). With more processors, it seems that the speed-up cannot go over 4.

Siegl in [35] presents a different scheme. The underlying model of computation is a network
of processors exchanging messages. Each process has access to only one polynomial of the basis.
Therefore, reductions are done by pipelining the polynomial which is reduced through all the
processors, each processor reducing it w.r.t. the polynomial that is attached to it. If the resulting
polynomial is not equal to zero, then a process is added to the pipeline and the new member of the
basis is associated with it. Then, another pipeline computation takes place to update the set of
pairs that need to be reduced: the new polynomial is propagated from processor to processor, and
each processor considers the pair formed by its associated polynomial and by the new member of the
basis. It applies the criteria to avoid unnecessary reductions. It seems that there is a main process
which initializes the computation, proposes to the pipeline S-polynomials that need to be reduced
and also collects the S-polynomials that other processors decide to reduce (in the second pipelined
operation) so that they can be reduced later. Some performance results are given. They concern
relatively small examples. For these, the speed-up is always between 2.5 and 6. An interesting issue
is the behavior of this system when the number of polynomials in the basis increases drastically.
The size of the polynomial going from processor to processor to be reduced is also a critical issue.
It may be the case that, when these polynomials get big, a lot of time is spent in moving them
around.

Finally, Senechaud describes in [33] a parallelized version of Buchberger's algorithm on Boolean
polynomials. The scheme is similar to Siegl's. The main difference is that each process "contains"
more than one polynomial of the basis. Also, it seems that the algorithm does not use the criteria
proposed by Buchberger to avoid unnecessary reductions. The only performance result concerns
the computation of a 32 polynomials input basis with 5 variables. The speed-up factor is 3.3 with
2 processors, 5.7 with 4 processors and stays under 8 for additional processors.

27

Before we introduce our own parallel version of Buchberger's algorithm, let us present in the
next section the tools that we will need to synchronize the actions of the different processes.

5.2. Descript ion of the needed synchronizing tools .

The following synchronizing concepts appear in many places in the literature. Our source is the
book "Operating Systems Principles" by Per Brinch Hansen, [3], pages 77-116.

Critical regions. A variable v of type T which is shared among several processes is defined by
the notation:

shared T v

If the value of v changes during the computation, a mechanism is needed to prevent one process from
reading the value of v when another process is updating it. Otherwise, if v has several components,
the process which reads may end up with an illegal value of v, with certain components of the old
value and the other components of the new value. The tools which allow such mutual exclusion of
processes sharing a variable are called critical regions. As stated by Brinch Hansen, they have the
following properties:

• A process waiting before a critical region will eventually enter it.

• If several critical regions refer to the same variable, only at most one process can be in one
of these critical regions.

• A process entering a critical region will leave it eventually.

To define a critical region protecting the variable v, we will use this notation:

region v do statement

Waiting for a condition to hold. Sometimes, it is needed that a process, in the middle of a
critical region for a shared variable v, tests for some Boolean expression involving components of
v and goes on only when the Boolean expression is true. Now, if the Boolean expression is false
and if the process just stops in its critical region, it prevents any other process to enter a critical
region for the same variable v and, therefore, the variable v will never be updated and the process
will stay in its critical region for ever. This is in contradiction with the third condition defining
critical regions. So, we need to modify our mechanism.

In a critical region for v, a process tests a Boolean expression involving components of v by
using the primitive await. If the expression is true, then the process goes on. If the expression
is false, then the process leaves its critical region temporarily and joins an event queue associated
with v. When a process leaves definitely a critical region for v (i.e. not by executing an await
statement) , it may have modified the value of v. Therefore, the processes on the event queue are
allowed to enter again their critical regions just before the await statement, and to test again the
Boolean expression. Of course, they do so one at a time to ensure mutual exclusion.

28

Readers and writers exclusion. Brinch Hansen use the readers and writers exclusion as
an example of the use of conditional critical regions ([3], pages 106-114). We would like to define
several primitive constructs, allowing us to express this higher level of synchronization in a clear
and easy way.

We want to define in particular a synchronization tool associated with a shared variable v with
the following properties:

• Any number of processes which desire to read v may do it concurrently.

• Only one process may change the value of v at any time.

• No process is reading v when another process changes its value.

• Any process requesting a read or update of v will eventually be allowed to do so.

• Writers have priority over readers in the following sense: as soon as a process wants to change
the value of v, no other process is allowed to read it until the writing process has updated v.

We understand that the second constraint, restricting the number of writers to one, diminishes the
generality of the construct and suppresses the symmetry of the problem. Nevertheless, we keep it
because this makes the expression of our algorithm very simple.

When each location of the shared memory is protected by such a mechanism, we obtain the Con­
current Read Exclusive Write (CREW) version of the Parallel Random Access Machine (PRAM).
Therefore, to precise that a shared variable v of type T is protected by such mechanism, we will
declare it as follows:

CREW T v

We also define two primitives to grant read and write accesses to v. First:

w i t h read_access v do P

When a process executes this statement, it looks if a process has already requested to change the
value of v. If so, it waits until the writer has finished and it tries again to gain read access to v.
When it is successful, it executes the statement P and leaves the protected region. Next:

w i t h w r i t e . a c c e s s v do P

The process executing this statement needs first to compete among all the processes which requested
to write on v. When it becomes the only process allowed to write, it prevents other processes to
obtain read access to v, waits until all the processes which read have left the region, executes the
statement P and leaves the region.

To see how to implement these constructs with conditional critical region, see Brinch Hansen's
book. The exclusion among writing processes is not enforced in Brinch Hansen's presentation but
it is straightforward to add, since we need only to enclose writing regions for v in critical regions
for a new variable.

29

5.3. Descript ion of the algorithm.

First we restate Buchberger's algorithm in Figure 2, in a way which reveals the opportunities
design a parallel version of it.

I n p u t : a s e t B of p o l y n o m i a l s , b a s i s of an i d e a l

B a s i s : = B;

P a i r s := i n i t . p a i r s (B a s i s) ;

w h i l e (s i z e (P a i r s) <> 0) do

b e g i n

p a i r : = c h o o s e (P a i r s) ;

Q:= r e d u c e (s p o l (p a i r) , B a s i s) ;

i f (Q ^ 0) t h e n

b e g i n

B a s i s : = B a s i s U {Q};

P a i r s : = update_pairs (P a i r s , B a s i s , Q)

end;

end;

Figure 2: High-level description of Buchberger's algorithm

If we dispose of several processors, it is possible to reduce several pairs simultaneously. At first,
we do not want to go at a finer granularity than the one described by the algorithm above. The only
two structures that we need to provide with a mechanism of exclusion are the list of polynomials
and the list of pairs to be reduced. The ways the processes share these two variables are distinct:

• Each time the set of pairs is accessed, it is modified. Therefore, a critical region is sufficient
to protect the set of pairs. But, before a pair is chosen, it is necessary to know if there is
any pair in the set. For this, we need to access the structure, so this must be done inside the
critical region. Therefore, we need to use an await statement.

• During the reduction of the S-polynomial of the chosen pair, a process uses many times the
list of polynomials in the basis but never updates it. Processes reducing a polynomial should
be allowed to use this list simultaneously. This is important because the time spent in the
reduction process is much longer than the one spent in updating the basis. So we need to
install a mechanism such that several concurrent readers or one exclusive writer (but not
both) use the list of polynomials at a given time. Therefore, a CREW mechanism is needed
to protect the set of polynomials.

We can now present in Figure 3 the algorithm that each process executes. The different pro­
cesses are started after the initialization of the set of pairs to compute has been done by a single
process. There is, however, an obvious problem with this program: the computation ends by a
deadlock. When s i z e (P a i r s) = 0 and when all the processes are waiting for new pairs in the
await statement, then they will wait for ever. To transform the above program in a deadlock-free
one is straightforward: we need a way to count the processes waiting for the event s i z e (P a i r s) >0.

30

shared l i s t . o f . p a i r s Pairs;
CREW list_of_pols Basis;

process worker(i)

begin
while (true) do

begin
region Pairs do

begin
await (s ize(Pairs) > 0) ;
pair [i] := choose(Pairs);

end;
with read_access Basis do

Q[i]:= reduce(spol (pair[i]) ,Bas is) ;
i f (Q <> 0) then

with write.access Basis do
region Pairs do

begin
Basis := Basis U {Q[i]};
Pairs := update_pairs (Pairs,Basis ,Q [i]) ;

end;
end;

end;

Figure 3: First attempt

31

shared l i s t . o f - p a i r s P a i r s ;

shared i n t e g e r n w a i t i n g ;

CREW l i s t - o f _ p o l s B a s i s ;

p r o c e s s w o r k e r (i)

b e g i n

w h i l e (t r u e) do

b e g i n

r e g i o n P a i r s do

b e g i n

n w a i t i n g * n w a i t i n g + 1;

i f ((n w a i t i n g == n t o t a l p r o c e s s e s)

and (s i z e (P a i r s) == 0) t h e n

c o n c l u d e () ;

await (s i z e (P a i r s) > 0) ;

p a i r [i] : = c h o o s e (P a i r s) ;

n w a i t i n g - n w a i t i n g - 1;

end;

w i t h r e a d . a c c e s s B a s i s do

Q [i] : = r e d u c e (s p o l (p a i r [i]) , B a s i s) ;

i f (Q [i] <> 0) t h e n

w i t h w r i t e _ a c c e s s B a s i s do

r e g i o n P a i r s do

b e g i n

B a s i s := B a s i s U { Q [i] } ;

P a i r s : = u p d a t e - p a i r s (P a i r s , B a s i s , Q [i]) ;

end;
end;

end;

Figure 4: A terminating version

32

The shared variable n w a i t i n g will be associated with the same regions than the variable P a i r s .

Then, before executing the await statement in the first critical region, a process tests if the two fol­
lowing conditions are simultaneously satisfied: all the processes (except the tester itself, of course)
are waiting and the set of pairs to compute is empty. In this case, it calls the function conclude
which terminates the computation and make all the processes exit: we present this program in
Figure 4.

5.4. Correctness of the program.

Susan Owicki introduced proofs of the correctness of parallel algorithms in her thesis, [27] and
in an article she co-authored in 1976 with David Gries, [28]. We will not prove formerly our
algorithm correct in this section but only annotate it with assertions which give strong evidence of
its correctness.

Owicki introduces auxiliary variables. These are variables which appear only in left-hand sides
of some assignments and whose only function is to be a witness of the meaningful components of
the state of the program at a given point in time. We need a way to tell if a process is currently
reducing a pair or if it has already finished and is waiting to begin to compute a new one. Instead of
introducing an auxiliary variable, we use the variables p a i r [i] . We present our modified program
in Figure 5.

To transform p a i r [i] in a witness of the state of the processor, we had to change slightly the
program. Even when the pair is reduced to 0, the process enters a critical region for P a i r s . This
is unnecessary and moderately inefficient but allows us to define a nice invariant for the resource
P a i r s .

We would like to prove that the program above computes the Grobner basis of an ideal. We will
use the following characterization of Grobner bases which is very similar to the condition (D-II) of
the Fundamental Theorem presented in Section 2. A set B of polynomials is a Grobner basis w.r.t.
the admissible order >- iff, for every pair (Pi,P2) of members of P , there is at least one reduction
to 0 of the S-polynomial of Pi and P2 with respect to the set of rules 1Z(B, y). Naturally, as the
reduction w.r.t. a Grobner basis has the property that any polynomial has a unique normal form,
in fact, all the possible reductions of the S-polynomial of Pi and P2 will end at 0. But we only
need to prove that our program satisfies the weaker requirement and we will obtain the stronger
for free.

The first observation is that at most one process at a time is updating any of the two shared
objects P a i r s or B a s i s . This is just because any change to P a i r s or B a s i s is made inside a
critical region for P a i r s . It is also true that all n variables p a i r [i] are updated in a critical region
associated with P a i r s .

Therefore, we introduce an invariant involving P a i r s , B a s i s , and the variables p a i r [i] . This
invariant X = Inv(Pairs, Basis, pair[l],..., pair[n]) must be true whenever there is no process
in a critical region for P a i r s . It says that the only pairs for which the S-polynomial may not be
reduced to 0 w.r.t. B a s i s are the ones in P a i r s , the ones stored in the local variables p a i r [i] , if
any, and their symmetric ((P,Q) and (Q,P) are two symmetric pairs).

33

shared l i s t . o f _ p a i r s P a i r s ;

shared i n t e g e r n w a i t i n g ;

CREW l i s t _ o f _ p o l s B a s i s ;

p r o c e s s w o r k e r (i)

b e g i n

w h i l e (t r u e) do

b e g i n

r e g i o n P a i r s do

b e g i n

n w a i t i n g = n w a i t i n g + 1;

i f ((n w a i t i n g — n t o t a l p r o c e s s e s)

and (s i z e (P a i r s) ~ 0)) t h e n

c o n c l u d e () ;

await (s i z e (P a i r s) > 0) ;

p a i r [i] : = c h o o s e (P a i r s) ;

n w a i t i n g = n w a i t i n g - 1;

end;
w i t h r e a d . a c c e s s B a s i s do

Q [i] : = r e d u c e (s p o l (p a i r [i]) , B a s i s) ;

r e g i o n P a i r s do

b e g i n

i f (Q [i] <> 0) then

w i t h w r i t e . a c c e s s B a s i s do

b e g i n

B a s i s := B a s i s U { Q [i] } ;

P a i r s : = u p d a t e _ p a i r s (P a i r s , B a s i s , Q [i]) ;

end;

p a i r [i] = 0 ;

end;

end;

end;

Figure 5: Use of p a i r [i] as auxiliary variables

34

Formally stated, the invariant reads as follows:

y(P,Q)6 Basis X Basis
{P # Q A (P,Q) g Pai rs A (Q,P) £ Pairs A

[Vi € { 1 , . . . ,n}, pair[i\ = 0 V (pair[i] # (P,Q) A pair[i] 7̂ (Q,P))]}
spol(P,Q)-^ *Basi30

We supposed X to be true before the n workers begin to work. This means that the set of Pairs
has been correctly initialized, first by generating all the pairs {P, Q} of distinct polynomials in the
initial basis and then by eliminating pairs that do not need to be computed because of the criteria
presented in subsection 2.3 above. Initially, all the variables p a i r [i] are equal to 0.

As P a i r s , Basis, and p a i r [i] are only changed in the critical regions for Pa i r s , we want to
state, for each of these two critical regions, that, if I is true after the process enters the region, it
will be true just before the process leaves the region. Our annotated program is in Figure 6.

We leave to the reader the proof of the assertions. If we assume that they are true, then, when
a process reaches the statement conclude(), the formula

V (P,Q) G Basis x Basis,P ^ Q spol(P,Q) — > B a s i s 0

holds. Therefore, at this point Basis is a Grobner basis for the given admissible order.

5.5. Improvement of the algorithm.

Now that we stated the correctness of a simple version of the algorithm, we would like to make
some progress towards more efficient algorithms.

More concurrency between writers and readers. We remark first that a process which
computes a lengthy reduction can prevent another one (or several) from updating the basis of
polynomials and the set of pairs. Therefore, we need to work at a finer granularity. For this, we
need to make the distinction between the polynomials in the basis and the basis itself, which is
just a list of pointers to the polynomials. We need to enforce a CREW mechanism on the list, but
not on the polynomials themselves, because, once created, they are just read and never modified.

Thus we can rewrite the statements:

with read.access Basis do
Q[i] := r e d u c e (s p o l (p a i r [i]) , B a s i s) ;

in the following way. After it has computed the S-polynomial of the pair and stored the result
in Q[i] , the process asks for a grant to read the list of polynomials. Then it traverses this list,
looking for a polynomial with which it can reduce Q [i] . If it finds such polynomial, it returns
a pointer to it; otherwise, it returns the null pointer. Then, it releases its grant to read the list
of polynomials and, if the search on the fist was successful, it reduces Q[i] by the polynomial it
found, reclaims the grant to read the list of polynomials, tries to find a new polynomial to reduce
Q [i] , and continue on until it cannot reduce Q [i] any more.

35

Here is the modified code:

Q [i] : = s p o l (p a i r [i]) ;

w i t h r e a d - a c c e s s B a s i s do

r e d [i] : = r e d u c e _ c h o i c e (Q [i] , B a s i s) ;

w h i l e (red [i] ^0) do

b e g i n

Q [i] := reduce_one_step(Q[i] , r e d [i]) ;

w i t h read_access B a s i s do
r e d [i] : = r e d u c e _ c h o i c e (Q [i] , B a s i s) ;

end;

With this version, between two steps of the reduction a writer can update the basis. The drawback
is that more time is spent in locking. But this is worth the trouble, for the time spent in the
function reduce_choice is considerably less than the time spent in the function reduce_one_step.

Therefore, the constraints imposed on the writers by the readers are much smaller in this version.

Avoiding polynomials with the same leading power product in the basis. In the
version of the algorithm that we described in the Section 6.3, the synchronization is such that the
program oscillates between two modes. In the first one, all the processes reduce pairs concurrently
(if there are enough pairs to reduce). In the second one, all the processes update the basis succes­
sively (if the pair they considered did not reduce to 0) and then wait for the other processes to do so.
Thus, it is possible that two polynomials resulting of concurrent reductions have the same leading
power product. After the improvement described in the previous subsection, the program does not
oscillate between two modes any more. Nevertheless, it is still possible to introduce elements with
the same leading power.

Adding to the basis a polynomial P with the same leading power product as another polynomial
Q in the basis is inefficient for the following reason. The insertion of Q increases the size of the set
of pairs by 1, the new pair being {P,Q} (it is also possible that some pairs {P,R} are replaced by
the corresponding pairs {Q,R}). When the S-polynomial of {P,Q} is computed, the operation is
exactly similar to the reduction of Q by P . So, if Q had been reduced by P before being inserted
in the basis, we would have spared one call to update_pairs which can be quite expensive.

To forbid insertion of polynomials with the same leading power, we enclose the part of the
code in which the basis is updated in another critical region, to enforce mutual exclusion between
potential writers. When a process enters this critical region, it tries to reduce Q [i] another time.
With this additional mechanism, polynomials added to the basis are always reduced w.r.t. the ones
which are already in the basis. Here is the new code:

i f (Q [i] <> 0) t h e n

b e g i n

r e g i o n update do

b e g i n

Q [i] : = r e d u c e (Q [i] , B a s i s) ;

i f (Q [i] <> 0) t h e n

r e g i o n P a i r s do

36

w i t h w r i t e . a c c e s s B a s i s do

b e g i n

B a s i s : = B a s i s U { Q [i] } ;

P a i r s : = u p d a t e _ p a i r s (P a i r s , B a s i s , Q [i]) ;

end;

end;

end;

This feature allows the number of polynomials introduced in the basis to be smaller. But the
large size of the critical region update limits the concurrency. Some more extensive experiments
are needed to decide if it is a useful feature or not. In the meantime, our program will allow the
user to choose one policy or the other by setting a flag.

Removing the CREW mechanism. The algorithms we presented so far used a CREW
mechanism to protect the list of polynomials in the basis. This allows a compact description of
the algorithm, but we can remove it. To do this, we need to implement the list of polynomials as
a linked list. The different processes update the list of polynomials inside a critical region which
ensure mutual exclusion among writers. But readers have free access to this list. We consider here
only the case in which polynomials in the basis are never deleted from it. Therefore, we only need
to be able to add an element in a list in one machine instruction. Here is how we do this: to insert
element a between b and c, the process makes a point to c (at this point the list ... be... is still
valid and other processes can use it). Then, in one instruction, it makes a point to c and the list
is updated.

5.6. Features of the implementat ion.

Our program is written in the C programming language. A package handling multivariate poly­
nomials was developed first. It can be easily adapted to polynomials with coefficients in any
computable ring but we used it only with integer coefficients. A package to handle integers of arbi­
trary length was available: cmump was developed at Carnegie-Mellon University by Rex Dwyer,
Lyle McGeoch, Guy Jacobson and Bennet Yee on top of the mp package developed at Bell Labs.
We didn't need to build a package handling rational numbers because, by multiplying by suitable
coefficients, the computation of the Grobner basis of an ideal of Q [x i , . . . , x n] can be done with
polynomials in 7L[XI,..., XN].

The polynomials are implemented as lists of monomials written in decreasing order w.r.t. the
chosen admissible order. Each power product is implemented as an array of short integers. Each
integer in the array represents the power of a certain variable in the power product. So, we choose
the obvious implementation of power products and we didn't try the one used in the program
Macaulay, where power products are represented by their ordinal number w.r.t. the chosen admis­
sible order. Macaulay is the fastest implementation of Buchberger's algorithm. It is written by
Bayer and Stillman. Hopefully, this will be tried in the future.

Useless pairs are filtered by the function u p d a t e P a i r s . The algorithm it uses is described in a
recent paper by Gebauer and Moller, [16], where a proof of correctness can also be found.

The synchronization between the processors was implemented by using the cthread package
developed at Carnegie-Mellon University by Eric C. Cooper and Richard D. Draves, see [12].

37

shared list-of .pairs Pairs;
shared integer nwaiting;
CREW list_of_pols Basis;

process worker(i)

begin
{pair[i] = 0}
while (true) do

begin
region Pairs do

begin
{X A pair[i] = 0}
nwaiting:= nwaiting + 1;
if ((nwaiting = ntotalprocesses)

and (size(Pairs) == 0) then
{X A (size(Pairs) = 0) A Vi € {1 , . . . , n} ,pair[i] = 0}
conclude();

await (size(Pairs) > 0); {X A (size(Pairs) > 1) A (pair[i\ = 0)}
p a i r [i] : = choose (Pairs); {X A (size(Pairs) > 0) A (pair[i) ^ 0)}
nwaiting:= nwaiting - 1;

end;
with read-access Basis do

begin
AuxBasis[i]:= Basis;
Q[i]:= Reduce(Spol(pair[i]),Basis);
{Spol(pair[i]) — > B a s i s Q[(\]

end;
{Spol(pair[i]) —>AuxBasis\i] QW)
region Pairs do

begin
{X A

[(Q[i\ = 0 A Spol(pair[%\) —Mt,.B««.[t] 0) V
(QW # 0 A 5po/(pair[t]) —MurBa5»»[»] u {<?[»]} °)1 A

pair[i] ^ 0 A AuxBasis[i] C Basis}
if (Q[i] ^ 0) then

with write_access Basis do
begin {X A (Q[i] ^ 0) A (Spo/(pair[i]) —•Bas** u{Q[*]} 0)}

Basis:= Basis U Q[i3;
{Inv(Pairs,Basis - {Q[i]},pair[0],...,pair[n]) A (Spol(pair[i]) —>Basis 0)}
Pairs:= update_pairs(Pairs.Basis,Q[i])
{X A (Spol(pair[i\) — > B a 9 i 9 0)}

end;
{X A Spo/(pair[i]) —^ii 0 Apair[i\ ± 0}
pa i r [i] := 0; {X A patr[t] = 0}

end;
end;

end; Figure 6: Annotated program

38

This package allows parallel programming in C under the MACH operating system, developed
at Carnegie-Mellon University by Rich Rashid and a!., [1]. This package gave us the level of
abstraction that we needed; only the "concurrent readers - exclusive writer" mechanism was not
provided by it.

Our goal was to design a tool with all the "traditional" options (i.e., choice of the order on
the power products, possible deletion of redundant polynomials in the basis in the middle of the
computation, different levels of traces, different ways to choose a polynomial to reduce another one
when several polynomials in the basis may be selected) plus several options directly related to the
parallel version of the algorithm (i.e., number of processors involved in the computation and choice
among two algorithms for the dynamic allocation of memory). Several systems have been already
implemented to test the options not related to parallelism. We mention the AIPI system built by
Carlo Traverso and Leombattista Donati in Pisa, [37].

Choice of the order of the power products. Only certain admissible orders can be used:
lexicographic order, total degree order refined by lexicographic order, total degree refined by reverse
lexicographic order and the very useful type of order defined as follows. The variables are split in
two groups {a?i,... , # n } and {t/ i , . . . ,2/ n}- To compare two power produts, the two subproducts
containing only the variables of group x are compared first according to a certain order (in our case,
the total degree order refined by reverse lexicographic order). Ties are broken by comparing the
two subproducts containing only the variables of group y. This order is a compromise between the
pure lexicographic order, which is useful to eliminate variables, and the total degree order refined
by the reverse lexicographic order, for which the computations are generally faster.

Deletion of redundant polynomials in the basis. When the option is not selected, all the
polynomials which are added to the basis are kept in it until the final reduction step. When the
option is selected and after a pair (P, Q) has been reduced such that the leading power product
of P divides the leading power of the polynomial Q is redundant and it is eliminated from the
basis after all the remaining pairs of which it is a member have been reduced.

Different ways to pick a pair in the set of pairs. Each time a processor executes the
main loop, it has to choose a pair in the set of pairs. Numerous articles present the heuristic which
consists in choosing a pair for which the least common multiple of the two leading power products
is of lowest degree. When several such pairs exist, ties are broken by taking the one for which this
least common multiple is the lowest w.r.t. the admissible order. To test the importance of this
decision, we offer several other possibilities: smallest 1cm w.r.t. the admissible order first, highest
lcm w.r.t. the admissible order first, 1cm of highest degree first (ties are broken by choosing the
pair with highest lcm w.r.t. the admissible order).

There is another issue concerning the order in which the pairs are reduced. Some pairs are
particular, because the leading power product of one of the polynomial divides the leading power
product of the other polynomial. When the S-polynomial of these pairs are reduced, this corre­
sponds to an inter-reduction of the basis, i.e. to a simplification of the basis (at least, in theory).
Therefore, it is very tempting to compute these pairs first. Following the work of Traverso and
Donati in the AIPI system, we let the user choose if he or she wants to give priority to these
particular pairs.

Different options to select polynomials in the basis for reduction. When we want to
reduce a polynomial P w.r.t. the basis B, it is possible that several polynomials of the basis have
leading monomials dividing the leading monomial of P and, therefore, we have to choose among

39

them. The Grobner basis that we obtain is independent from this choice but it can affect the length
of the computation. The user has several choices: the chosen polynomial can either be the one
with the smallest leading power product w.r.t. the admissible order the one with the highest
leading power product w.r.t. the one which arrived first in the basis or the one with the smallest
number of monomials.

Allocation of dynamic memory. The two functions malloc and free which are used in
the dynamic allocation of memory in C have been rewritten in the cthread package to ensure the
correctness of their behaviors when they are used simultaneously by several processes. But the
solution which was adopted consists in enclosing the uniprocessor version of malloc and free in
a critical region. Our program make a very large use of malloc and free: for each polynomial
which appears during the computation, we allocate separately memory for its global structure and
for each of its coefficients. In an attempt to allow more concurrency between the processes, we
implemented another mechanism to allocate memory dynamically and we let the user choose the
one which fits his/her needs best.

Our mechanism is very simple, because each process has its own list of free blocks. When
a process frees some memory, it returns it to its own list of free blocks, even if another process
allocated it. When a process allocates some memory, it takes it from its list of free blocks, using
a simple algorithm. If there is no free block left, the process asks the operating system for more
working space.

5.7. Experimental results .

The particular examples that we use come from two articles, one by Boege, Gebauer and Kredel,
[2], and the other one by Traverso and Donati, [37]. These examples are listed in Appendix B.

Our main goal is to show that our concurrent version of Buchberger's algorithm leads to some
speed-up. Therefore, we are mostly interested in the comparison of several computations executed
with the same setting of the flags but with a different number of processors in each case. For this
reason, all the examples listed here were done with this setting of the flags:

• There is no deletion of redundant elements of the basis during the computation.

• When several polynomials can be used to reduce another one, the one which entered the basis
first is selected (chronological order).

• The useless pair elimination is done by using the Gebauer-Moller criterion which is defined
in [16].

• The pair which is selected in the set of pairs is the one with least common multiple of
smallest degree. If there exist several such pairs, we choose the one with smallest 1cm w.r.t.
the admissible order. We do not give any priority to pairs for which the leading power product
of one of the polynomial is divisible by the leading power product of the other polynomial.

• We limit ourselves to three admissible orders: pure lexicographic order, total order refined by
lexicographical order and pure lexicographic order refined by reverse lexicographical order.
We list in Appendix B the order chosen among the variables. We tried to keep the same
order than in [37] when it was possible.

40

Name O
#P

1
#R

proc
time #P

2p
#R

roc
'lime

5 P roc
// "D

12 I >roc
Arnborg4
Arnborg5
Arnborg5
Butcher

Katsura4
Katsura5
Lazard

Morgenstern
Pavelle4

Robbiano
Rose

Trinksl
Trinks2
VaUa

>-TL
>-TR
>-TR
>TL
>~TR
>~TR
>~TR
>~TR
yL

yrR
yrL
yL

>~TR

12
59
47
66
21
26
35
29
16
30
22
18
22
80

14
147
106
159
38
68
54
94
32
91
39
27
28
524

0.3 (0.3)
57 (67)
38 (41)

326 (368)
16 (17)

1089 (1103)
51 (56)
44 (45)
4(4)

10 (11)
37 (40)
10 (10)
4(4)

905 (932) 1

IT

12
59
47
70
22
26
33
29
16
42
23
19
23
80

ff-XK,

14
148
106
171
39
68
54
94
32
97
40
29
31
524

0.2 (0.2)
30 (33)
20 (21)

196 (209)
10 (10)

549 (551)
17 (22)
19 (19)

2.3 (2.3)
8(7)

16 (16.7)
4(5)
2(2)

474 (482) j

12
64
50
74
24
28
30
29
16
36
25
19
22
80

14
159
112
180
41
70
48
94
32
86
49
28
29
524

time
0.2 (0.2)
13 (13)
9(9)

74 (77)
4(4)

200 (146)
2.5 (2.4)
11(8)

1.3 (1.2)
2.8 (3.5)

5(5)
2.2 (1.7)
0.9 (1)

237 (216)

#P
12
61
58
79
29
29
31
29
16
42
26
19
22
90

#R
14
158
129
199
53
71
58
94
35
107
54
30
29
535

Time
0.3 (0.3)
13 (10)
12 (8)

69 (72)
5(4)

151 (79)
3.8 (2.1)
11 (8)

1.2 (1.1)
3.1 (3.1)
3.5 (2.7)
1.8 (1.9)
0.9 (1)

178 (129)

Figure 7: Experimental results.

• We use two different algorithms for dynamic allocation of memory: one with a global list of
free blocks for all processors and one with a separate list for each processor.

For each computation, we give in Figure 7 the number of different polynomials which enter
the basis "#P"(including the initial ones), the number of pairs which are reduced "#R" and the
time the computation takes in seconds on a Multivax Encore (16 processors). The times we give
do not include the final interreduction which occurs at the end of the computation to obtain the
unique reduced basis. This is our experience that this time is much smaller and, therefore, is
far less important than the time needed to compute a Grobner basis which is not reduced. The
computations with normal allocation policy and with our allocation policy differ essentially in the
time of the execution. Therefore, we give only one value for # P and # R for each example, write
the two times in the same column and put parentheses around the time obtained with our own
allocation policy.

When the number of processors is greater than one, there is naturally no guarantee that another
computation with the same flags will give the same numbers : this depends on the way the different
processors interleave. In fact, results can vary widely. We give the best results we obtained. We
hope to explain and to correct these wide variations in a later work.

The results are encouraging, especially for a small number of processors. In particular, it seems
that using two processors instead of one cuts the the time almost by two, at least for computations
which are long enough. Naturally, when the number of processors is large, it is very possible that
some processors are idle, waiting for other processors to finish their reduction and to put some
pairs in the set of pairs to compute. It would be interesting to have a measure of the maximum
number of processors that will be used during a computation in terms of algebraic structure of the
ideal.

5.8. Further possible improvements and conclusion.

We do not talk here of the the improvements that could come from a better understanding of the
behavior of the algorithm. This is a hard problem that requires theoretic developments first. We

41

hope that our program, by providing examples, will encourage these developments. So, we will
concentrate here on two technical improvements that could more easily be made in the future.

Package for integers of arbitrary length. We did not take the time to rewrite it. It seems
that we could gain some speed-up by rewriting the function which performs multiplications. In
the cmump package, the naive algorithm is used (0(m p) for two integers of respective sizes
ra and p). We could try to implement a faster algorithm, although this would certainly slow
down the computation of Grobner bases for which the coefficients of the polynomials stay in a
reasonable size. So, here also, theoretical results are needed. We could also choose radically
different implementations of integers of arbitrary length. For example, factorizing the integers into
their prime decompositions can give good results in some cases. In this representation, products,
least common multiples, and greatest common divisors are very easy to compute, but addition is
very expensive to perform. Therefore, this representation of integers will give good results only
when the number of additions performed is small compared to the number of multiplications.

Galligo and al suggest in [14] a partly factorized form for coefficients of polynomials. Their basic
idea is to replace computations of the GCD by computations of a divisor which is large enough but
faster to compute than the GCD: the Greater Easy Common Divisor. We would like to implement
their algorithms to compare it with the one we already have.

Another way to implement integers of arbitrary length is by using modular arithmetic and
especially the Chinese Remainder Theorem. An integer / is represented by an array of numbers
/ modulo p i , . . . , / modulo pk where are distinct primes. With this implementation,
multiplication and addition are easy to perform. Several implementations take this approach but
they limit themselves to a number of primes fixed in advance. Macaulay, for example, computes the
Grobner bases in ^ 3 i 9 9 i [^ i , . . . , £ n] - The problem with this approach is that we do not know how
big the coefficients will get and, therefore, it is impossible to know beforehand how many primes
are needed.

In another very similar approach, the Grobner basis in Q[x\,... ,xn] is computed by computing
first the Grobner bases in ZPi[xi,... ,xn] for several prime numbers pi and then lifting them to
Q[x\,... , . r n] . This method has a same drawback: we do not know how many primes are needed.
We refer the interested reader to a recent paper by Winkler, [40].

Package for multivariate polynomials over TL. We can list several different implementa­
tions of the multivariate polynomials that are worth trying in Buchberger's algorithm. None of
them is based on a recursive representation (Q[xi , . . . ,x n] = ((. . . (Q[^i])[^2]) • • Ofcn]) but on ex­
panded representation of polynomials. So a polynomial is always represented as a list of monomials.
A monomial is composed of a coefficient, which is an integer of arbitrary length, and an exponent,
which is represented as an array of integers. Based on this, two representations can be designed:
in the first one, the coefficient itself is stored in the structure; in the other one, only a pointer to
the coefficient is stored. The advantage of the first solution, beside the small gain of space, is that
it needs fewer calls to the dynamic allocation functions. But the second solution is much simpler.

The list of monomials can be represented either as an array or as a linked list. The advantage
of the representation by array is, once again, that it generates fewer calls to the dynamic allocation
functions. But linked lists would be very efficient to implement the addition of two polynomials
P and Q in the special case where the result is put in P or in Q. As this kind of function on
polynomials is used during most of the time of the reduction, this could lead to some reasonable
speed-up.

42

In the current version, the representation of monomials contains a pointer to the coefficient,
instead of the coefficient itself, and the list of monomials is implemented as an array. We hope to
test other implementations in the future.

Conclusion. As computer algebra is a subject which grows extremely fast, this presentation
of Grobner bases is not as comprehensive as the author would have liked. In particular, the list
of applications that are mentioned is certainly not exhaustive. Some very important ones are not
considered (e.g., the determination of the solutions of an algebraic equation and the recent article
by Gianni, Trager and Zacharias, [29], on primary decomposition). There is much, therefore, that
remains to be done.

We have put forward as the essential contribution of this work the design and implementation of
a parallel version of Buchberger's algorithm. It gave us some experience on the size of the overload
due to the collaboration between processors. The fact that the number of polynomials introduced
in the basis does not grow too fast when the number of processors increases is very encouraging.
This makes a usable distributed version of the algorithm a feasible goal.

43

A Table of notations.

In each table, we list the notations
section.

Notations for section 1.

which have been used for the first time in the corresponding

E,E'
i,j

/,n,p
R, R'

4>
r,ri,rij,Si

K, K'
ki
k

M,M',M",Mi
m, mi
X. XI

P,P',P",Pi,
Q,Q',Q",Qi
/ , / ' , /" , /< ,
J, J , J , J{

P

TjTi

B
(B)Jd(B)

y
Iny(P)y In(P)
In>(I), In(I)

S,Si
1(5)

V,Vi

V(P),V(B),V(I)

Op

vk

nilrad(R), nilrad(I)
X(R), XMAX(R)

Pr(B)
Max(B)

Xr

index sets
elements of an index set (possibly IN)
integers
Noetherian commutative ring and subring
homomorphism from R'[x\,..., xn] to R
elements of R
field and subfield
elements of K
element of K or Kn

modules or submodules over R or K
elements of the module M
elements of an extension of R or K

algebraically independent over R or K (variables)
polynomial ring R[x\,..., xn] or K[xii..., xn]

polynomials of A

ideals of R or A
the class of P in R/I (or in A/1)
canonical homomorphism from R (or A) to R/I (or A/1)
terms of the commutative monoid

generated by {x\,..., xn} (power products)
(finite) subset of elements of R or A
the ideal of A generated by the elements of B
order relations on the set of power products
highest monomial of P w.r.t. y
ideal of the highest monomials w.r.t. >- of

all the elements of /
subset of Kn

ideal of K[x\y..., xn] containing all the polynomials
which vanish on S

affine algebraic variety of Kn

affine algebraic variety of Kn associated
with P £ A or B, I C A

{(*!,...,*„) € Kn\P(ku...,kn)?0}
neighborhood of k £ Kn for the Zariski topology
nil radical of R or of an ideal / of R or A
set of prime ideals of R, set of maximal ideals of R
set of prime ideals of R containing B
set of maximal ideals of R containing B
X(R) - Pr({r})
homeomorphism between Xmax(A) and Kn

44

Notations for section 2.

m, m', m:

r, r,
n

Qi —J Q2

Qi —*ln Q2
k+ n *

Id(7l)
B(K)

>L

>TL

>TR

InPpy(P),InPp(P)
InCy(P),InC{P)

nf{P)Mn{P)
nf(B)

log(T)
(̂)(i1,-,n)

Lv((Qu...,Qp))
A,A
U,H
T(i)

T(iJ)
WJJ)

(ci,...,ep)
(«(«,i))i<i<j<P

(e,j)i<,<j<p

(s(iJJ))i<i<j<i<P I

monomial of ̂ 4
rule of the form m —+ P
set of rules
Qi is reduced in one step to Q2 w.r.t the rule r
<3i is reduced in one step to Q2 w.r.t. one of the rules of 1Z
transitive closure of —^
reflexive, transitive closure of —^
ideal generated by the polynomials associated with the rules of 1Z
set of polynomials associated with the rules of 71
partial order on the set of power products

associated with the set of rules TZ
lexicographic order on the set of power products
total degree order refined by the lexicographic order
total degree order refined by the reverse lexicographic order
highest power product of P w.r.t. >-
coefficient of Iny(P)
set of rules associated with the set of polynomials B and

the total admissible order >-
reflexive, symmetric, transitive closure of
normal form of P w.r.t. —^
set of the normal forms of the elements of B
{kx[i...x\r \ k e i<}
if T = x* ... x\?, designs the vector {i\,..., in)

additive subgroups of AP defining its graduation
leading vector of the vector (Qi,..., Qp) of the .R-module AP.
homomorphisms from Ap to A
vectors of Ap

InPpy(Pi)
IcmilnPpyWJnPpyiPj))
IcmilnPpyiPillnPpyiPjlInPpyiP,))
canonical basis of the A-module AP
vectors of AP', members of the first Taylor basis of

the module of syzygies of (7n(Pi),..., In(Pp))
S-polynomial of Pi and Pj
canonical basis of the module Ap^p^1^2

second module of syzygies of (Jn(Pi),..., In(Pp))
vectors of Ap^p'1^2, members of the Taylor basis of

45

Notations for section 3.

u, V>I, y, Z other variables to define polynomial rings over K
' J : J quotient of the ideal I by the ideal J

Spol(P, Q) S-polynomial of the polynomials P and Q
F extension of the ideal 7 of a ring R! to an ideal of

a larger ring R

Notations for section 4-

h,hi,€ homomorphisms between ^-modules

C complex for the ring R
H Hilbert function

HP Hilbert polynomial

d integer denoting the dimension of an ideal

a equivalence relation on C 3

OLi endomorphism of Mi use to define a graduation

46

B Listing of the examples.

Arnborg4

Order on the variables : x y y y z y t

B = {x + y + z + t,xy + yz + zt + tx, xyz + yzt + ztx + txy, xyzt + 1}

Example listed by Traverso and Donati, [37]. Comes initially from Arnborg and Davenport.
Arnborg5

Order on the variables : xyyyzytyu

B = {x + y + z + t + u, xy + yz + zt + tu + uxyxyz + yzt + ztu + tux + uxy, xyzt + yztu + ztux +
tuxy + uxyz,xyztu + 1}

Example listed by Traverso and Donati, [37]. comes initially from Arnborg and Davenport.
Butcher

Order on the variables : a y c2 y c3 y 63 y 62 y a32 y 61 y b

B = {61 + 62 + 63 - a - 6,262c2 + 263c3 - 1 - 6 - 262 + 2a6,362c22 + 363c32 - a - 3a6 2 + 46 +
362 + 363,663a32c2 - a - Sab - 6a6 2 + 46 + 662 + 66 3,462c2 3 + 463c33 - 1 - 6 - 1062 - 66 3 - 464 +
4a6 + 4a63,863c3a32c2 - 1 - 36 - 1462 - 1263 - 86 4 + 4a6 + 4a6 2 + 8a63,1263a32c22 - 1 - 6 - 1462 -
1863 - 1264 + 8a6 + 12a62 + 12a6 3,1 + 76 + 2662 + 3663 + 2464 - 8a6 - 24a62 - 24a63}

Example listed by Boege et al, [2]. Comes initially by Butcher and Runge-Kutta.
Katsura4

Order on variables : u4 y uO y u3 y u2 y ul

B = {uO2 -uQ + 2ul2 + 2u22 + 2u32 + 2u42,2u0ul + 2u\u2 + 2u2u3 + 2u3u4 - ul,2u0u2 + ul2 +
2ulu3 + 2u2u4 - u2,2u0u3 + 2u\u2 + 2u\u4 - u3, uO + 2ul + 2u2 + 2u3 + 2u4 - 1}

Example listed by Boege et al, [2]. Comes initially from Katsura. Laurent series.
Katsura5

Order on variables : u5 y u4 y uO y u3 y u2 y ul

B = {uO2 -u0 + 2ul2 + 2u22 + 2u32 + 2u42 + 2uh2,2u0ul + 2u\u2 + 2u2u3 + 2u3u4 + 2u4ub -
ul,2u$u2 + ul2 + 2ulu3 + 2u2u4 + 2u3ub - u2,2uQu3 + 2ulu2 + 2u\u4 + 2u2u5 - u3,2u0u4 +
2ulu3 + 2ulu5 + u22 - u4, uO + 2ul + 2u2 + 2u3 + 2u4 + 2u5 - 1}

Example listed by Boege et al, [2]. Comes initially from Katsura. Laurent series.

47

Lazard

Order on variables : x y y y z
B = {x2yz + xy2z + xyz2 + xyz + xy + xz + yz, x2y2z + xy2z2 + x2yz + xyz + yz + x + z, x2y2z2 +

x2y2z + xy2z + xyz + xz + z + 1}
Example listed by Traverso and Donati, [37]. Comes initially from Lazard.

Morgenstern
Order on variables : xyyyaybycydyrysyt
B = {xb-ya,xd-d-yc + y,b2 + a2-r2,c2-2c+l + d2 - s2 ,a2-2ac +c2 + b2-2bd +d2 - t2}

Example listed by Traverso and Donati, [37]. Comes initially from Morgenstern.

Pavelle4

Order on variables : xyyyzytyaybycyd

B = {xy + xz + xt - a,yx + yz + yt - 6, zy + zy + zt - c, tx + ty + tz - d}
Example found in Pavelle, [30], page 35. This comes from a problem in chemistry. The variables

are renamed to correspond to the paper by Traverso and Donati.

Robbiano

Order on variables : x y y y z y t

B = {x3l - x6 - x - y,x8 - z,xl0 - t}

Example listed by Traverso and Donati, [37]. Comes initially from by Robbiano.

Rose
Order on variables : u3 y u4 y a46
B = {7^x4 4-20a46^2160a46 2w3 4+1512a46u3 4+315u3 4-4000a46 2-2800a46-490,67200000a46 5^4 3^

94080000a464u43+40924800a463u43+2634240a
40320000a46S3u42+21168000a463u3tt42+49392
41395200a463u32u4 - 26726560a462u32u4 - 7727104a46u32u4 - 852355u32u4 - 10080000a464u33 -
14112000a463tt33 - 7644000a462u33 - 1978032a46u33 - 180075u33}

Example listed by Boege et al,[2]. Comes initially from Rose. General equilibrium Model, 1984.

Trinksl
Order on variables : sytyzypywyb
B = {45p + 356 - 1656 - 36,35p + 40z + 25* - 275,15w + 25ps + 30* - 18/ - 16562, -9w + 15p* +

20zs, wp + 2zt - 1163,99w - l ls6 + 362}
Example listed by Boege et al,[2]. Comes initially from Trinks. Ideal A, 9/12/1983.

Trinks2
Order on variables : sytyzypywyb
B = {45p + 356 - 1656 - 36,35p + 40z + 25* - 27s, 15w + 25ps + 30z - 18* - 16562, -9w + 15pt +

20zs, wp + 2zt - 1163,99w - Usb + 362,1000062 + 66006 + 2673}

48

Example listed by Boege et al,[2]. Comes initially from Trinks 2. Ideal P = A + F7 R,
10/12/1983.

Valla

Order on variables ixyyyzytyuyvywyaybycyAyByCyDyEyFy
G y H y I y J

B = {—z2u+2yzv — xv2 — y2a + xua + A3, — ztu + ytv + yzw — xvw — y2b+xub+B3, —t2u + 2ytw —
xw2 — y2c + xuc + C 3 , — ztv + z2w + yta — xwa — yzb + xv6 + D 3 , —221; + <z*w + ytffr — xwb — t/zc + xvc +
E3,-tv2 + zvw + tua - ywa - zub + yvb + F3, -tvw + zw2 + tub - ywb - zuc + yvc + G3,-t2a + 2ztb -
xb2 — z2c + xac + H3, —twa + tvb + zwb — yb2 — zvc + yac + 7 3 , —w2a + 2vwb — ub2 — v2c + uac + J3}

Example listed by Traverso and Donati, [37]. Comes initially from Valla.

49

C Sample of trace of the program.

The program was run with 5 processors on the very simple example Hairerl in [2]. This is a very
elementary example. It is used here to show how the processors interleave and what kind of trace
can be obtained. We choose an intermediary level of trace. For higher levels, the result of each
reduction step is printed.

Here is the trace that we obtain :

Admissible order : lex icographic .
Number of processors : 5
Dynamic a l loca t ion of memory : s tandard.

I n i t i a l l y :
Set of polynomials :
Polynomial 1 : c2 - a21
Polynomial 2 : - a31 + c3 - a32
Polynomial 3 : b l + b 2 + b 3 -1
Polynomial 4 : 2 c2 b2 + 2 c3 b3 -1
Polynomial 5 : 3 c2~2 b2 + 3 c3~2 b3 -1
Polynomial 6 : 6 c2 a32 b3 -1

Set of p a i r s :
(1,4)
(1,6)
(4,5)

Reduction of the p a i r (1,4) by worker 1

Polynomial 7 created by worker 1 : -2 a21 b2 -2 c3 b3 + 1

Set of p a i r s :
(1,6)
(4,5)

Reduction of the p a i r (1,6) by worker 1

Reduction of the p a i r (4,5) by worker 0

Polynomial 8 created by worker 1 : -6 a21 a32 b3 + 1

Set of p a i r s :
(7,8)

Reduction of the p a i r (7,8) by worker 1

50

Polynomial 9 created by worker 0 : 6 a21 c3 b3 -3 a21 -6 c3~2 b3 + 2

Set of p a i r s :
(7,9)
(8,9)

Reduction of the p a i r (7,9) by worker 0

Reduction of the p a i r (8,9) by worker 2

Polynomial 10 created by worker 1 : -6 c3 a32 b3~2 + 3 a32 b3 - b2

Set of p a i r s :
(9,10)

Reduction of the p a i r (9,10) by worker 1

Polynomial 11 created by worker 2 : -3 a21 a32 -6 c3~2 a32 b3 + c3 + 2

Set of p a i r s :
(8,11)
(7,11)

Reduction of the p a i r (8,11) by worker 2

Reduction of the p a i r (7,11) by worker 4

Polynomial 12 created by worker 1 : -6 c3 a32 b3 + 2 c3 b2 + 2 c3 b3 +
4 a32 b3 -1

Set of p a i r s :
(10,12)
(11,12)

Reduction of the p a i r (10,12) by worker 1

Reduction of the p a i r (11,12) by worker 2

Polynomial 13 crea ted by worker 4 : 4 c3~2 b2~2 + 4 c3~2 b2 b3 +
8 c3 a32 b2 b3 -6 c3 a32 b3 -4 c3 b2 -4 a32 b2 + 3 a32

Set of p a i r s :
(7,13)
(12,13)

Reduction of the p a i r (7,13) by worker 4

51

Reduction of the p a i r (12,13) by worker 3

Polynomial 14 created by worker 1 : -2 c3 b2 b3 -2 c3 b3~2 -4
+ 3 a32 b3 - b2 + b3

Set of p a i r s :
(12,14)
(9,14)
(13,14)

Reduction of the p a i r

Reduction of the p a i r

Reduction of the p a i r

Polynomial 15 created
- 9 a32~2 b3 + 4 a32

(12,14) by worker 1

(9,14) by worker 2

(13,14) by worker 3

by worker 1 : 2 c3 b2~2 + 2 c3 b2 b3 + 12 a32~2 b3~2
b2 b3 + 3 a32 b2 -2 b2

Set of p a i r s :
(14,15)
(13,15)
(7,15)

Reduction of the pa i r (14,15) by worker 1

Reduction of the p a i r (13,15) by worker 2

Reduction of the p a i r (7,15) by worker 3

Polynomial 16 created by worker 1 : 12 a32~2 b3~3 -9 a32~2
6 a32 b2 b3 - b2~2 - b2 b3

Set of p a i r s :
(12,16)
(11,16)

Reduction of the p a i r (12,16) by worker 1

Reduction of the p a i r (11,16) by worker 2

Total number of polynomials which entered the bas i s
(including the i n i t i a l ones) : 17

Number of S-polynomials which have been reduced : 21
Approximate number of a r i thmet ica l operat ions on short in tegers

during phase 1 : 1291
Number of c o l l i s i o n s : 30

52

Elapsed time for phase 1 : 407 mi l l i seconds .

Final in t e r reduc t ion
Deletion of polynomial 4
Deletion of polynomial 5
Deletion of polynomial 6
Deletion of polynomial 8
Deletion of polynomial 10
Deletion of polynomial 13

Polynomial 1 : - c2 + a21

Polynomial 2 : a31 - c3 + a32

Polynomial 3 : - b l - b 2 - b3 + 1

Polynomial 7 : -2 a21 b2 -2 c3 b3 + 1

Polynomial 9 : -6 a21 c3 b3 + 3 a21 + 6 c3~2 b3 -2

Polynomial 11 : 9 a21 a32 + 6 c3~2 b2 + 6 c3~2 b3 + 4 c3 b2
- 6 c3 + 8 a32 b3 -6 a32 -2

Polynomial 12 : 6 c3 a32 b3 -2 c3 b2 -2 c3 b3 -4 a32 b3 + 1

b2 +

Approximate number of a r i thmet i ca l opera t i
during f i n a l reduct ion : 52
Elapsed time during f i n a l in te r reduc t ion :
Waiting for a lock : 0

ion : 105 mi l l i seconds .

ions on short in tegers

53

References
[I] Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and Young, M. Mach : A New

Kernel Foundation For UNIX Development in: Proceedings Summer 1986 USENIX
Technical Conference and Exhibition. 1986, pp. 93-112.

[2] Boege, W., Gebauer, R., and Kredel, H. Some Examples for Solving Systems of Algebraic
Equations by Calculating Groebner Bases. Journal of Symbolic Computation, vol. 1
(1986), pp. 83-98.

[3] Brinch Hansen, P. Operating System Principles. Prentice-Hall, 1973.

[4] Buchberger, B. Some properties of Grobner-bases for polynomial ideals. ACM SIGSAM
Bulletin, vol. 10 (1976), pp. 19-24.

[5] Buchberger, B. A theoretical basis for the reduction of polynomials to canonical forms. ACM
SIGSAM Bulletin, vol. 10 (1976), pp. 19-29.

[6] Buchberger, B. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-
Dimensional Polynomial Ideal (German). Ph.D. Thesis, Univ. Innsbruck, 1965.

[7] Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Grobner
bases, in: Proceedings of EUROSAM 79, Lectures Notes in Computer Science 72.
1979, pp. 3-21.

[8] Buchberger, B. Grobner Bases : An Algorithmic Method In Polynomial Ideal Theory, in:
Recent Trends In Multidimensional Systems Theory, edited by N.K.Bose. D.Reidel
Publishing Company, 1985, pp. 184-232.

[9] Buchberger, B. History and Basic Features of the Critical-Pair/Completion Procedure. Jour­
nal of Symbolic Computation, vol. 3 (1987), pp. 3-38.

[10] Buchberger, B. The Parallelization of Critical Pair/Completion Procedures on the L-Machine.
in: Proceedings of the Japanese Symposium on Functional Programming. 1987,
pp. 54-61.

[II] Bucherger, B. User's Manual for GROBNER, a Grobner Bases Package in muMATH. no.
RISC-Linz 87-38, University of Linz (Austria), 1987.

[12] Cooper, E. C. and Draves, R. P. C Threads, no. CMU-CS-88-154, Computer Science Depart­
ment, Carnegie Mellon University, June 1988.

[13] Fulton, W. Algebraic curves : an introduction to algebraic geometry. Benjamin,
1969.

[14] Galligo, A., Pottier, L., and Traverso, C. Greater Easy Common Divisor and standard basis
completion algorithms, in: ISSAC 88, Lectures Notes in Computer Science. Springer
Verlag, Berlin-Heidelberg-New York, 1988.

[15] Galligo, A. and Traverso, C. Practical determination of the dimension of an algebraic variety.
in: Computers and Mathematics 1989. Springer Verlag, 1989, pp. 46-52.

54

[16] Gebauer, R. and Moller, M. On an installation of Buchberger's algorithm. Journal of Sym­
bolic Computation, vol. 6 (1988), pp. 275-286.

[17] Giusti, M. Combinatorial dimension theory of algebraic varieties. Journal of Symbolic
Computation, vol. 6 (1988), pp. 249-265.

[18] Hironaka, H. Resolution of singularities of an algebraic variety over a field of characteristic
0. Ann. Math, vol. 79 (1964), pp. 109-326.

[19] Huet, G. and Oppen, D. Equations and rewrite rules : a survey, in: Formal Language
Theory, Perspectives and Open Problems. London : Academic Press, 1980, pp. 349-
405.

[20] Jacobson, N. Basic Algebra I, second edition. Freeman, 1985.

[21] Jacobson, N. Basic Algebra II. Freeman, 1980.

[22] Knuth, D. E. and Bendix, P. B. Simple Word Problems in Universal Algebras, in: Proceed­
ings of the Conference on Computational Problems in Abstract Algebra, Oxford
1967, edited by J. Leech. Pergamon Press, 1970, pp. 263-298.

[23] Kredel, H. and Weispfenning, V. Computing Dimension and Independent Sets for Polynomial
Ideals. Journal of Symbolic Computation, vol. 6 (1988), pp. 231-247.

[24] Macaulay, F. S. Some properties of enumeration in the theory of modular systems. Proc.
London Math. S o c , vol. 26 (1927), pp. 531-555.

[25] Melenk, H. and Neun, W. Parallel Polynomial Operations in the Large Buchberger Algo­
rithm, in: Computer Algebra and Parallelism, Workshop at the TIM3 Laboratory,
University of Grenoble, France. Academic Press, London, 1988.

[26] Mora, F. and Moller, M. The computation of the Hilbert function, in: EUROCAL 83,
Lecture notes on Computer Science. 1983.

[27] Owicki, S. Axiomatic Proof Techniques fo Parallel Programs. Ph.D. Thesis, Cornell University,
1975.

[28] Owicki, S. and Gries, D. Verifying properties of parallel programs : an axiomatic approach.
Communications of the ACM, vol. 19 (1976), pp. 279-285.

[29] Patrizia Gianni, B. T. and Zacharias, G. Grobner Bases and Primary Decomposition of
Polynomial Ideals. Journal of Symbolic Computation, vol. 6 (1988), pp. 149-167.

[30] Pavelle, R. Applications of Computer Algebra. Kluwer Academic Publishers, 1986.

[31] Ponder, C. G. Evaluation of "Performance Enhancements" in Algebraic Manipulation Sys­
tems. Ph.D. Thesis, University of California, Berkeley, August 1988.

[32] Robbiano, L. Grobner Bases : a foundation for Commutative Algebra, in: Computers and
Mathematics 1989. 1989.

[33] Senechaud, P. Implementation of a parallel algorithm to compute a Grobner basis on boolean
polynomials, in: Computer Algebra and Parallelism, Workshop at the TIM3 Labo­
ratory, University of Grenoble, France. Academic Press, London, 1988, pp. 159-166.

55

[34] Shannon, D. and Sweedler, M. Using Grobner bases to determine algebra membership, split
surjective algebra homomorphism and determine birational equivalence. Journal of Symbolic
Computation, vol. 6 (1988), pp. 267-273.

[35] Siegl, K. A Parallel Version of Buchberger's Algorithm in STRAND88. no. RISC-Linz 90-17.0,
Johannes Kepler University, Linz (Austria), 1990.

[36] Taylor, D. Ideals Generated by Monomials in an R-sequence. Ph.D. Thesis, University of
Chicago, 1966.

[37] Traverso, C. and Donati, L. Experimenting the Grobner basis algorithm with the AIPI system.
in: Proceedings ISSAC 1989. 1989.

[38] Watt, S. M. Bounded Parallelism in Computer Algebra. Ph.D. Thesis, University of Waterloo,
May 1986.

[39] Winkler, F. The Church-Rosser Property in Computer Algebra and Special Theorem Proving:
An Investigation of Critical Pair/Completion Algorithms. Ph.D. Thesis, Johannes Kepler
Universitat Linz, 1984.

[40] Winkler, F. A p-adic approach to the Computation of Grobner Bases. Journal of Symbolic
Computation, vol. 6 (1988), pp. 287-304.

[41] Zacharias, G. Generalized Grobner Bases in Commutative Polynomial Rings. Bachelor Thesis,
Lab. for Computer Science, MIT (Cambridge), 1978.

[42] Zariski, 0 . and Samuel, P. Commutative algebra, Vol 2. D.Van Nostrand Company, Inc.,
1960.

56

