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Abstract

The principal result described in this report is the design and implementation of a parallel
version of Buchberger’s algorithm. Its correctness is stated and some experimental results are
given. The first parts are devoted to a partial review of Grobner bases, of Buchberger’s algorithm

which computes them, and of some of their applications.
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The computation of Grobner bases
on a shared memory multiprocessor

As soon as the author learned about Grobner bases, he became interested by the details of their
computation. The algorithm has a relatively simple form. But the way it behaves on particular
examples is a complex problem which has not yet been satisfactory solved and which requires at
least some elementary knowledge of algebraic geometry.

In this paper, we first review some concepts of commutative algebra which will be used later on.
We then look at rewriting systems in polynomial rings and study their termination and normal form
properties. This leads us to define admissible orders and Grébner bases and to present Buchberger’s
algorithm. In the third section, three applications are listed: finding the intersection of two ideals,
finding the quotient of two ideals, and determining the ideal of the polynomial relations among
a given list of polynomials. In the next section, we look in more detail at a fourth application:
the computation of the Hilbert function of an ideal (but without covering the recent developments
in the determination of the dimension). The last part presents an original work: the design and
preliminary implementation of a parallel algorithm to compute Grébner bases on shared memory
multiprocessors. Performance data on a reasonable set of examples are discussed.

We would like to thank Professor Dana Scott for introducing us to the sub ject and for his help
in reviewing this paper: his comments have led to great improvements in its structure. It is also
a pleasure to acknowledge the encouragement we have received from Professor Edmund Clarke
for our work on the parallel version of Buchberger’s algorithm. OQOur best thanks to Professor
Bruno Buchberger who invited us on August 1987 at RISC-Linz and even gave us the listing of an
implementation of the sequential algorithm [11].

1. Review of commutative algebra.

Rings are assumed to be commutative. When we use modules, we will consider them to be right-
modules. This is not very relevant, as we will mainly be interested in modules which are in fact
commutative rings considered as modules with respect to themselves.

1.1. Noetherian modules and rings.

The following definitions and theorems appear, for instance, on the chapter 3 of Jacobson’s book,
[21].

Definition 1.1 A module M satisfies the ascending chain condition if there is no infinite properly
ascending chains My C M, ... C M; C ... of submodules of M. Such a module M is called
Noetherian.

Definition 1.2 A module M satisfies the mazimum condition if every non-vacuous set of submod-
ules of M contains a maximal submodule (i.e. a submodule not contained in any other submodule
of the set).



Definition 1.3 A submodule M’ of a right-module M for a ring R is finitely generated if there
exist n members of M’, my, mg, ..., My, such that M=mR+mR+...+m, R.

Proposition 1.1 The following three statements are equivalent:

1. The module M satisfies the ascending chain condition.
2. The module M satisfies the mazimum condition.

3. Every submodule M' of M is finitely generated.

Definition 1.4 A ring R is Noetherian if and only if it is a Noetherian module with respect to
itself.

Because a submodule of R (considered as a module with respect to itself} is an ideal of R
{considered as a ring), we can state the following proposition :

Proposition 1.2 The following three statements are equivalent:

1. The ring R satisfies the ascending chain condition (meaning that there is no infinite properly
ascending chain of ideals of R.)

2, The ring R satisfies the mazimum condition (rmeaning that every non-ehpty set of ideals of
R contains a mazimal element).

3. Every ideal I of R is finitely generated.

1.2. Hilbert’s basis theorem.

The following result is an immediate extension of the theorem stated by Hilbert, which concerned
only special rings R (namely fields and the ring of integers).

Theorem 1.1 If R is a Noetherian ring, then R[z1,%2,... ,Tn} is @ Noetherian ring.

There are several proofs of this theorem. The original one, by Hilbert, uses the third character-
ization of Noetherian rings (every ideal has a finite basis) and works by induction on the number
of variables. It can be found in the book of Nathaniel Jacobson [21]. Another proof appears in
Commutative Algebra I, by Zariski and Samuel, Chapter 1V, [42]. It works also by induction on
the number of variables but uses the first characterization of Noetherian rings {(there is no infinite
properly ascending chain of ideals). Other authors (see, for example, Giusti, [17]) use Dickson’s
lemma (1913), which states that, in a finitely generated commutative monoid, for any sequence
{Tn}, n € N, there exists p € N such that, for all » > p, the term T, is a multiple of one of the
terms T, ..., Tp. The proof of Dickson’s lemma works by induction over the number of generators
of the monoid.

We choose to present a slight modification of Zariski and Samuel’s proof:

Definition 1.5 An ideal of R[z] is called a monomial ideal if it can be generated by a set of
monomials.




Definition 1.6 If I is an ideal of R[z], the monomial ideal generated by the monomials of highest
degree of the polynomials of 7 is called the initial ideal of I and is denoted by In([).

Lemma 1.1 If I and J are two ideals of R[z] such that I C J and In(I) = In(J), then I = J.
Therefore, if there ezists an infinite properly ascending chain of ideals in the polynomial ring R[z],
then there ezists an infinite properly ascending chain of monomial ideals in R[z].

Proof of the lemma: We suppose that I C J and that In(I) = In(J) and we use induction on
the degree of an eventual polynomial belonging to J — I (if any). Note that 0 ¢ J — I. We suppose
that there is no polynomial of degree less than or equal to p which belongs to J — I, that P of
degree p+ 1 belongs to J — I, and we try to derive a contradiction. [ n(P), the monomial of highest
degree of P, belongs to In(I) and, therefore, there exists a polynomial @ € I such that P~ Q is of
degree less than or equal to d. But P~ @ belongs to J and, because of the induction hypothesis,
to I. So P € I and we obtain a contradiction. O

Lemma 1.2 If R is a Noetherian ring, there is a bijection between the monomial ideals of R[z]
and the eventually stationary ascending chains of ideals of R. Morebver, if I and J are two ideals
such that I C J, and if Iy C I C ... CLC...andJy C Jy C ... C J; C...are the
two eventually stationary ascending chains associated respectively with I and J, then we have the
following diagram:

h ©T 5L € ... C I, ¢
N I | N
Jo € 5 € ... C J C

Proof of the lemma: Let’s consider a monomial ideal I of R[z]. We will call I; the ideal of R whose
elements are the leading coefficients of the polynomials of degree iof I. I, C I, C ... cCLc...
Is an ascending chain of ideals and, as R is Noetherian, this chain as to be eventually stationary.
Naturally, to two different monomial ideals correspond two different chains and, for every eventually
stationary ascending chain I, C I, C...C I, C .. -» We can associate the monomial ideal generated
by {rz'|re L, i>0}). O

Proof of the theorem: Because of lemma 1.1, we only need to prove that, if R is Noetherian,
there is no infinite properly ascending chain of monomial ideals in R[z]. Let’s suppose that I! C
I*C...CcI’PC...isan ascending chain of monomial ideals of R[z]. Then, using lemma 1.2, we
can associate with each I the chain I C IP C ... C I? C ... of ideals of R such that they form
the following diagram:

Ii € 7 Cc...c I c
N | N [N
I c i c C 7 c
[N | N A
| N N [N
L ¢ c..crc



Let stat (p) be the smallest integer such that the chain associated with I” becomes stationary.
It is easy to see that I:m(l) C Ifm(z) c...C ...Ifm(p) C .... This chain is eventually stationary.
Let I be the integer such that for all p > I and for all i > stat(l), we have P = Iim(”. Then we
consider, for 0 < i < stat(l), the vertical chains ncrgc..c I? C .... Each one of these chains
is stationary for p > stat'(i).

Then, for p and p’ greater than sup(l, stat’(0),... , stat'(stat(l) — 1)), the two horizontal chains
associated with P and I?' are equal and, therefore, the two associated monomial ideals 17 and I*'
are also equal. So the chain of monomial ideals is eventually stationary. O

1.3. Affine algebraic varieties and Zariski topology.

The results of this subsection can be found in Fulton, [13] and in Jacobson, [21].

Let K be any field. We will call K™ the n-dimensional vector space of n-tuples of members
of K. It is the affine n-space over K and its elements are called points. If P is a polynomial of
K[z1,...,2,), we will say that (k1,...,kn) is a zero of P if and only if P(kyy... ko) =0, If P
is not a constant, then the set of zeros V(P) of P is called a hypersurface (when n = 2, it is also
called an affine plane curve). If P is of degree 1, then V(P) is a hyperplane (a line, if n = 2).

More generally, we can give the following definition:

Definition 1.7 If B is a set of polynomials of K[z1,...,z4], the affine algebraic variety defined
by B is the set V(B) of common zeros of the polynomials in B:

V(BY= (] V(P)
FeB

Proposition 1.3 The following properties are immediate:

1. V(K[zy,...,z.)) = 0.

2. V(@)= K".

3. If I is the ideal generated by B, then V(B) = V(I).

4. If {B;}ieE is any collection of subsets of K[z1,... \Zn], then V (Uieg Bi) = Mice V(Bi)-
5. If P and Q are two polynomials of K{z1,...,2.), then V(P Q) = V(P)U V(Q).

6. If I and J are two ideals of K[zy,...,z.], then V(DuV()=V{PQIPe ,Q € J}).
7. {(k1,... kn)} = V{{z1— k1ye o5 Zn — En})

Note that property 3 above implies that every affine algebraic variety is a variety defined for a
certain ideal 7. From Hilbert’s basis theorem and property 4 above follows that any such variety
is an intersection of hypersurfaces. Finally, we can deduce from property 7 that any finite subset
of K™ is an affine algebraic variety.



Proposition 1.4 If S is a subset of K™, the subset I(5) of K[z1,...,2,} which contains all the
polynomials P such that ¥ (ki1,...,k,) € S, P(ky,....kn) =0 is an ideal,

Proposition 1.5 The following properties are immediate:

1. I(0) = K[z1,...,7,).

2. §CV(I(S)).

8. I CI(V(I)).

4. If $1 C 5y, then I(Sy) C Z(S1).

5. If Vi and V, are two algebraic varieties such that V, C Vo, then I(Vy) C Z(V4).

In general, Z(K™) # 0. For example, z2 4z € Z(Z2). But the equality holds whenever K is an
infinite field. This comes from the fact that if K is an infinite field and if Pe€Klzy,...,z,]is not
equal to 0, then there is a n-tuple (ky,... ykn) € K™ such that P(ky,... k) # 0 (see Jacobson,
[20], page 136)

From the proposition 1.3, we can deduce that the affine algebraic varieties satisfy the conditions
required from the closed sets of a topological space. This topology on K™ is called Zariski topology.
The sets Op = {(k1,...,k,) € K™|P(ky,...,kn) # 0} form a basis of the open sets. Notice that,
if K is not algebraically closed, we obtain Op = K™ for certain polynomials P (for example, if
K =1R and P =z + 1). This topology has the following properties:

Proposition 1.6 1. K" isa T} -space (i.e., for each pair of points k and k', there erist neig-
bourhoods Vi and Vi of k and k' such that k € Ve and &' ¢ V. ).

2. If K is an infinite field, K™ is not a Hausdor{f space and, moreover, any two proper open
subsets of K™ intersect. An Hausdorff space, or Ty-space, is such that for any two distinct
points k and K/, there exist two disjoint neighborhoods Vi and Vi of k and k',

3. K™ with the Zariski topology is Noetherian, in the sense that there is no infinite descending
chain of varieties.

Proof: We saw that {(ki,...,k,)} = V({z1 ~ ky,... +@n — kn}). That means that the closure of
each point is itself. Therefore its complement is an open set which does not contain the point and
which contains all the other points of the space. This proves the first statement.

Next, it is sufficient to show that any two members of the basis intersect. Suppose P and ¢ are
two non-zero polynomials of K[zy,... ,Zn] where K is an infinite field. Then, there exists £ € k™
such that P(k)Q(k) # 0 (see [20], page 136). Then Op N Og =0pg #0.

The third result is easily obtained from proposition 1.5 above and the fact that K [#1,...,2,)
is Noetherian. O



1.4. Prime ideals and nil radicals.

The following definition generalizes the arithmetical meaning of prime. In the ring of integers Z,
the set pZ is a prime ideal if and only if p is prime. More generally:

Definition 1.8 An ideal I of a commutative ring R is prime if and only if:

Vry,m2 € R, T1T2€I=>r1€Iorr2€I

Proposition 1.7 1. If I is a prime ideal of @ commutative ring R, the complement R\T of I
in R is multiplicatively closed.

2. If B is a non empty multiplicatively closed set of a commutative ring R, an ideal I which does
not intersect B and is such that any ideal containing it intersects I is a prime ideal.

Proof: The first part is a direct consequence of the definition of a prime ideal. Now, suppose
that B and I verify the conditions of the second part of the proposition and that r; ¢ I and r2 € 1.
Then (r1)+I NB#0and (r2)+ I NB#0. Let r3 € (ri)+ P N Band rq4 € (r2) + P NB. Then
ratg € (r172)+ 1 0B and, therefore, vy o g I. O

Here is an example. Prime ideals of ZZ are the subrings pZZ for p prime. Suppose that we take,
as multiplicatively closed set of ZZ, the set of powers of 6, B = {1,6,36,6%,...,6™,...}. We can
see that the complement of B in 7 is not an ideal (3 ¢ B but 3+3 € B). The ideals of Z not
intersecting B are the ideals n 2 such that n A6 # 1. Therefore, the prime ideals not intersecting
B are exactly the ideals p Z such that p is a prime distinct from 2 and 3.

Definition 1.9 An element r of a commutative ring R is nilpotent if and only if there exists a
natural number n such that ** = 0. The nil radical, nilrad(R), of a commutative ring R is the set
of its nilpotent elements.

Theorem 1.2 (Krull) The nil radical of R is the intersection of the prime ideals of R.

Proof. First assume that 7 is a nilpotent element of R (r* = 0) and J a prime ideal of R. Then
=0 ¢€J,andso 7€ J.

Next, suppose r is not nilpotent. The set of ideals of R not intersecting the multiplicative
monoid generated by r is not empty (the null ideal belongs to it} and is inductive (i.e. the union of
any chain of members of this set belongs to the set). Therefore, we can use Zorn's lemma to prove
the existence of a maximal element J in this set. By proposition 1.7, J is prime and 7 € J. Notice
that, if R is Noetherian, we do not need Zorn's Lemma. O

Definition 1.10 The nil radical of an ideal [ of R is the set of elements 7 of R for which there
exists a natural number n such that 7" € I.

Note that the nil radical of an ideal is the preimage of the nil radical of R/I by the canonical
homomorphism of R onto R/I.




Proposition 1.8 The nil radical of the ideal I is equal to the intersection of all the prime ideals
of R containing I.

Proof: it is well-known that the canonical homomorphism v from R to R/I maps ideals of
R containing I to ideals of R/f in a one-to-one way. Moreover, it can be proven easily that v
maps prime ideals of R containing I to prime ideals of /7 in a one-to-one way. From this, the
proposition follows immediately.O

1.5. Prime spectrum of a commutative ring.

Let X(R) denote the set of prime ideals of B. For every subset B of R, let Pr(B) be the set of all
prime ideals of R containing B. Id(B) or more simply (B) denote the ideal generated by the set
B.

Proposition 1.9 The following are immediate:

1. 0 = Pr({1}) and X(R) = Pr({0}).
2. If {B;}ieE is a collection of subsets of R, MNice Pr(B:) = Pr(U;cg Bi).
3. If By and B, are two subsets of R, Pr(B;)U Pr(B,) = Pr(1d(By)Id(B3)).

We see from this result that the sets Pr(B) can be considered as the closed sets of a topology
that they determine on X(R).

Definition 1.11 X(R) with the topology just defined is called the spectrum of R, and the subset
Xmaz () consisting of maximal ideals with the induced topology is called the mazimum spectrum.

The open sets are the complements X (R) — Pr(B) = Ures(X(R) ~ Pr({r}}). The set X(R) —
Pr({r}) is just the set of prime ideals not containing r € R. We call it X, and we note that
{X: | r € R} is a base of the open sets of X(R). Such topologies were introduced by M.H. Stone
for Boolean algebras (in which case X maz(R) is a compact Hausdorff space with a basis of clopen
subsets), and by N. Jacobson for arbitrary rings.

The space X(R) is not always a Hausdorff space. In particular, if R is a domain, then 0 is a
prime ideal of R whose closure is the whole space X (R). Therefore, 0 can’t be separated from any
other prime ideal and X(R) is not even a 7}-space.

Even X,,..-(R) is not always a Hausdorff space. For example, the maximal ideals of Z are the
ideals (p) where p is prime. Therefore, Xmaz(Z) is a Ty-space. The closure of any infinite set of
maximal ideals of Z is the whole space (because 0 is the only integer which belongs to an infinite
number of prime ideals (p) and because Pr(0) = Xmaz(Z)). So the closed sets are @, the finite
subsets and the whole space X,,,.( ZZ). So the proper open sets are complementary of finite subsets
and, therefore, any two of them intersect. 50, Ximaz(Z) is not an Hausdorff space.

Proposition 1.10 X(R) and X,,..(R) are compact spaces.

7



Proof: We need only to prove that for every open covering of X(R) with elements of the base
{X, | r € R}, there is a finite open covering contained in it. Suppose X(R) = U,ep Xr. Then
X(R) = X(R)—~ Pr(B). So Pr(B) = Pr(I) = @, where I is the ideal generated by B. So
I = R and there exist 71,...,7n € B and s,...,8, € R such that 1 = S 7 8. Finally
Pr(I) = Pr({r1,-..,7a}) and X(R) = Uy X»..

The proof for Xpaz(R) is similar. O

1.6. Hilbert’s Nullstellensatz.

We return to affine algebraic varieties to see how the concept of nil radical of an ideal can be used
in this context. It’s easy to see that, for any ideal T of K[z1,...,%,] (K is any field), V(I) =
V(nilrad(I)). We introduced previously the ideal Z(V) as the ideal of all polynomials vanishing
on V. Hilbert’s Nullstellensatz states that, when K is algebraically closed, Z(V([)) = nilrad(I).

Theorem 1.3 (Nullstellensatz) Let K be an algebraically closed field and I be an ideal in the
polynomial ring K(z1,...,z,). Suppose Q(ki,... ka) =0 for all (ky,...,ka) € V(I). Then Q €
nilrad(]).

There is a very similar presentation of this theorem, called sometimes Weak Nullstellensatz (at
least, in [13]):

Theorem 1.4 If I is a proper ideal in K[z1,...,%,], then V(I) # 0.

Following Fulton, we prove the Weak Nullstellensatz theorem first and use it to prove the main
theorem. We need a lemma, due to Zariski, on fields which are ring-finite over one of their subfields.
A ring R is ring-finite over one of its subrings R', if there exist n elements of R, r1,...,7xs such
that the ring homomorphism ¢ from B[z, ... ,Zy] to R given by ¢(P) = P(ry,... ,Ty) is onto (we
will write that R = R'[r1,...,Ta)). We also say that R is module-finite over R’ if R is a finitely
generated R’-module.

Lemma 1.3 If a field K is ring-finite over a subfield K', then K is module-finite over K'.

Proof of the lemma: Notice first that, if R is a domain which is ring-finite over one of its subrings
R, then R is module-finite over R’ if and only if R is integral (in the case of fields, we say algebraic)
over R’ ([13], chapter 1, page 30, exercise 1-48). The implication from right to left is easy. The
other one is proved by considering a particular generating set of R (as a R'-module), {s1,...,85}
and, for any » € R the system of linear equations {si 7 — E?=1 ri;8; = Ohicicp. As (815..- 2 Sp)
is a non-trivial solution of this system, considered in the quotient field of R (R is a domain), the
determinant (which is in R'[r]) is equal to zero.

Now, suppose that K = K’lk1,...,ka]. The proof works by induction on ». For n = 1, we
can suppose than k; # 0 and we can express 1/k as a member of K'[k;], so there is a polynomial
P € K'[z) such that 1/k; = P(k;). From this, we see that k; is algebraic over K’ and that K is a
K'-module of dimension at most degree(P) + L.




Next,if n > 1, K = K'lky1,...,kn} = K'(k1)[kz,...,ky]. By induction hypothesis,
K'(k1)lks,... ks is a finitely generated K’(k;)-module. If k, is algebraic over K’, the result is
immediate. .

Otherwise, we know that there exist monic polynomials in K'(ki)[z), Pa,..., Py s.t. Pi(k;) = 0.
Let @ € K’[k,] be the common denominator of all the fractions appearing in Py,...,P,. Q # 0
because k; is not algebraic over K’. From this, we can find monic polynomials in K Tkq][z],

25+ +» Py such that P/(Q k;) = 0. As the set of integral elements over k' [k1] is a subring of K
containing K'[k,], we see that for any k € K = K'[ks,...,k,], there is an integer p such that Qrk
is integral over K'[k]. For k = 1/P(k;) where P is a polynomial in K’[z] such that Q and P have
no common factor, this gives a contradiction with the fact that k; is not algebraic over K’. O

Proof of the Weak Nullstellensatz: I is contained in a maximal ideal J and V(J) € V(I). Now,
K[zy,...,2,]/J is a field which is ring-finite over K. From the lemma, it is algebraic over K
and, as K is algebraically closed, Kfzy,...,2,]/J = K. The residue of ; modulo J is ki€ K.
Then z; —k; € J,forall 1 < i < n. But (z1 — k1,...,2n — ky) is a maximal ideal, so J =
(21— k1,. ., 20 — ko). Then V(J) = {(k1,...,k)} # 0. O

Proof of the Nullstellensatz: This proof is adapted from Rabinowitsch. Suppose the ideal I of
K[z1,...,z,]is generated by Py, ..., P,. Consider the ideal J generated by Py, ..., Ppza1 @ -1
in K[z1,...,8n,%n41]. As Q vanishes on V(I) C K™, V{(J) = @ (this is a subset of K™*!). From
the weak Nullstellensatz, 1 € J, so there exist polynomials Qos---,Qp € K(z1,...,254,) such that
1=Qo (Tny1 Q- 1)+ 3P QiP.. Now, we take the quotient of K(zy,...,2,41] by the ideal
(zn+1 @ = 1). By multiplying each side of the above equation by the suitable power of Q, we
obtain that there exist an integer ¢ and polynomials Ry,..., Ry in Kfzy,...,2,,7] such that the
equation a(fl,...,fn)‘ =37, E,-(fl,...,fn,a(fl,...,Tn))-ﬁg(fl,...,fn) holds in the quotient
ring. As K([z1,....2,] is isomorphic to the subring of K[z1,...,2n41)/(2a+1Q — 1) generated by
{Z1,-..,%n}, this relation holds in K[z4,... »Zx). This proves that Q € nilrad(I). O

Proposition 1.11 If K is an algebraically closed field, then the mazimal ideals of Klzy,...,z4,)
are exactly the ideals generated by {x1 — ky,...,z, — kn} where (ky,... k) € K™,

Proof: the fact that the ideal Id({z1 — k1,...,2, — k,}) is maximal is immediate. Conversely,
suppose that [ is a maximal ideal. Then, by the weak Nullstellensatz, there exists & € A™ such
that £ € V(I). Then the Nullstellensatz implies that I is included in the nil radjcal of the ideal
Id({z1—ky,...,2, — k,}), which happens to be Id({zy - ky,...,z, - kn.}) itself. As [ is maximal,
then J = Id({z; ~ ky,...,2, — k,}). O

Notice that this result becomes false when K is not algebraically closed. For example, in
R{zy,z2], the ideal Id({z;~1, z% + 2, + 1})is a maximal ideal. Note also that the ideal generated
by Py(z1),..., Pa(zn), where Py,..., P, are irreducible univariate polynomials over K, is not always
a maximal ideal. For example, in R[z1, 23], we have Td({z2+3,3z2+4}) C Id({2zy—3x2, 323 +4}),

and this is a proper inclusion.

Proposition 1.12 When K is algebraically closed, the mazimum spectrum of A = K(zq,...,z,)
and K™ with its Zariski topology are homeomorphic spaces.

Proof: The canonical homeomorphism ¥ from K™ to Xmaz(A)is given by $(ky,..., k) = ({z,—
K1,...,Zn—kn}). By proposition 1.11, this is a bijection. A closed set of K™ for the Zariski topology
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is a variety V defined by a certain ideal 1. A polynomial P € I vanishes for any (ki,...,kn) €V,
therefore P € nilrad(Id({z1 — k1,...,Zn — kn})) which is Jd({z) — k1,...,%n — kn}) itsell. So,
¥(V) is included in the set of maximal ideals containing I. Now, if Id({z1 = k1,...,%n = kn}) is
a maximal ideal containing I, then any polynomial of / vanishes on (ki,...,kn). So, ¥(V) is the
set of maximal ideals containing I and is therefore a closed set of Xmaz(A).

Conversely, consider a closed set Maz(J) of Xymaz(A), namely the set of maximal ideals con-
taining a given ideal J. From above, we can conclude that ¥~} Maz(I)) = V(I), and therefore it
is a closed set for the Zariski topology. D

2. Rewriting systems in polynomial rings.

We saw in the previous section that an ideal can be represented by a finite basis of polynomials.
Now we want to know whether this representation is computationally effective, i.e. whether there
exists an algorithm which, given a polynomial P and a finite set of polynomials defining an ideal
I, decides if P belongs to I.

We call a power product an element of the free commutative monoid generated by z1,...,Zr.
The power product corresponding to a monomial is just the monomial divided by its coeflicient.

Definition 2.1 A rule 7 in A is a pair for which the first component is a monomial m of A and
for which the second component is a polynomial P of A such that none of its monomials has the
same power product as m. We will write 7 : m — P

Definition 2.2 Q; € A is reduced in one step to Q3 € A by the ruler : m — P (we will write this
relation as Q; —! @Q5) iff a monomial of @, is divided by the left-hand side of r (i.e. there exists
a monomial m’ € A and a polynomial @ € A such that P = mm’ + Q and no power product of
S is equal to the power product of m m’) and Q2 = m' P + Q.

(1 is reduced in one step to Qg w.r.t. the set of rules R (we write ¢y —% Q2) if it is reduced
in one step by some rule r in R.

We will call —3, the transitive closure of —}% and —% its reflerive, transitive closure.

We remark that if Q, is reduced to @, by the rule r : m — P, then Q. is reduced to Q; by any
rule of the form k m — k P for any k € K. Therefore, we can choose rules with power products as
left-hand sides. Notice that this is not true for a polynomial ring with coefficients in a ring instead
of a field, for example, in Z[z1,z2], the polynomial z? can be reduced by the rule zy — 2 but not
by the rule 2 z; — 4.

Proposition 2.1 If R is a finite set of rules r; : m; — P; and if Q1 —% Q2, then ¢ — Q2
belongs to the ideal generated by the polynomials m; — P, We call Id(R) this ideal and B(R) the
set of polynomials m; — F;.

So, to prove that a given polynomial P belongs to an ideal I, we can try to form a set of rules
R from a finite basis of J and try to reduce P to 0 w.r.t. this set of rules. But there are several
problems with this scheme. First, we want to restrict the space of sets of rules to the ones for which
the reduction always terminates. This is the subject of the next section.
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2.1. Termination of the reduction and admissible orders.

In order to use rules, it is often very important to see that their applications terminate in finitely
many steps.

Definition 2.3 A relation > on a set is Noetherian if there is no infinite descending chain
71 » To oo T » ...,

Obviously, there are some systems of rules R for which the relation —% is not Noetherian.
For example, in Q[z),%;], the relation —} for R = {2y — 22+ 1,2, — 2% +1} is not Noetherian.
The chain z; —% 22+ 1 —} 22+ 2 —L z; 25 4+ 1 + 2.. . is infinite.

Definition 2.4 Given a set of rules R, we define the relation % on the set of power products of
the variables z1,...,z, by the following conditions:

1. If 71 is a power product appearing on the left-hand side of a rule r and if T, is a power
product appearing on the right-hand side of r, then 7} > 1.

2. (Transitive closure). If Ty, T3, T are power products such that 7y »r Ty and b >g Ts,
then 7Y »n T;. :

3. (Multiplicative closure). If T}, T, are power products such that Ty »x 73 and if 73 is any
power product, then Ty T3 >g T Ty,

We call strict order an antireflexive, antisymmetric, transitive relation.
Proposition 2.2 If —J), is Noetherian, then >x is a partial strict order .

Lemma 2.1 If T} g Ty, then there exists an element k € K and a polynomial P € A such that
11 —-—>,"i kT; 4+ P and T, is not a power product of P.

Proof of the lemma: We follow the inductive definition of > 5. (1) If there exists a rule k T} —
k" Tz + P, the result is immediate.

(2) If there exists a power product T3 such that 7, »r T3 and T >»x T3, our induction
hypothesis is that there exist &,/ € & and P, € A such that T} —3} kT3+Pand Tz —3} [ T+Q
and T3 is not a power product of P, nor T a power product of . Moreover, we suppose that 75 is
not a power product of P (otherwise, Ty —3} k T3+ P is the reduction we are looking for). Then,
Ty —L kITo+kQ+ Pand Tpis not a power product of k Q + P.

(3) If there exist power products T35, Tq,Ts such that Ty = T3 Ty, Tp = T3 Ts and Ty »r Ts,
our induction hypothesis is that there exist £ € K and P € A such that T ——>£ kTs+ P and Ty
1s not a power product of P. Then, T} —% k T;+ T3 P and T is not a power product of i3 P. O

Proof of 2.2: If >>x is a transitive relation, in order not to be a strict order relation, it has to
be either not antireflexive or not antisymmetric. By transitivity, if it is not antisymmetric, it is
not antireflexive. So, let’s suppose that there exists a power product T" such that T »x T. By
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the lemma above, there exist k € K and P € R such that T —%t kT + P and T is not a power
product of P. Then, the chain:

T—»{kT+P—>§k2T+kP+P——>;5...——»*,ik“T+(k"“1+...+1)P—u->§...

is infinite. O
Definition 2.5 A total admissible order is a total order > on the set of power products such that:

1. Every power product T satisfies T > 1, and

2. For all power products Ty, T2, T3, the condition T > T, implies Th1 T3 > T, T3.

Condition 2 means that > is multiplicatively closed. In the following definitions, among all the
admissible orders which are equivalent by permutation of the variables, we choose the ones which
verify &1 > 3 > ... > Tn—1 > Tp Here are some very important admissible orders:

Definition 2.6 mi’ R L) x{l ...xin iff there exists p (1 < p < n) such that i3 = j1, .« -»

n
ip—1 = Jp-1 and ip > Jp.

Definition 2.7 zf-ll _...:r:';‘_ =TL z{‘ vz iffiy i > it ot it i = TR e o
and i ...zi > i ...z for the lexicographic order.

Definition 2.8 I'f ...:cﬁ{* TR x{l cozdn iff i 4. tin > J1te o gnor 4. Fip = fite. ot
and there exists p (1 € p € n) such that ip = Ju, ..., ip+1 = Jp1 and i, < Jp.

Note that > is the lexicographic order, > is the total degree ordering refined by the lexico-
graphic order, and >7g is the total degree ordering refined by the reverse lexicographic order.

If > is an admissible order and P a polynomial, we will call 1 ny (P) the leading monomial of
P, InPp, (P) the leading power product of P, and InC, (P) the leading coefficient of P. When we
consider only one admissible ordering, the index > will be omitted.

The proof that we present here of the following result may be found, for example, in Winkler’s
Ph.D. thesis, [39)].

Proposition 2.3 An admissible order is a well-ordering (i.e., there is no infinite descending chain
of power products).

Proof: this is an immediate consequence of Dickson’s Lemma. The result comes from the
fact that the existence of two power products Ty and T, such that Ty > T\Ty with T # 1is in
contradiction with the definition of an admissible order.0

Given a set B of polynomials and a total admissible order >, we can find a corresponding set of
rules by taking, for each polynomial P of B, the monomial m of P with the leading power product
w.r.t. > as left-hand side, and P — m as right-hand side. We will designate by R(B, o) the set of
rules obtained from the set of polynomials B by using the total admissible order .

12




Proposition 2.4 —"112(5 ) is a Noetherian relation for any set of polynomials S and any admis-
sible total order ».

Proof. See Winkler, [39], 3.1. O

Proposition 2.5 Let R be a set of rules. If —}, is Noetherian, then there ezists an admissible
order > such that R = R(P(R),»).

Proof: We define the relation > on power products as follows: 77 > Ty iff either 7} > R 15
(see definition 2..4) or T} and T, are not comparable by »p and T »; T,. Here > is the
lexicographic ordering.

If >»p is a partial strict order, then > is a total admissible order and R = R(P(R}),»). O

So, by combining propositions 2.2 and 2.4, we see that the sets of rules for which the reduction
relation is Noetherian are exactly those generated from sets of polynomials by using a total admis-
sible ordering. Therefore, in the next sections, we will only consider systems of rules generated by
a system of polynomials and an admissible order.

2.2. Grobner bases and Buchberger’s algorithm.

The systems of rules we consider differ from usual term rewriting systems for essentially two reasons:
the first one is that all the terms are ground terms, i.e., there is no rewriting rule containing
variables. Note that zg,...,z, are indeterminates, sometimes called variables as algebraic objects,
but they are constants of the rewriting systems. The second reason is that the reduction does not
only consist in a replacement of one term by another but also in a simplification of the resulting
polynomial according to the algebraic laws of the ring A. Nevertheless, the two problems are very
stmilar, and the same terminology applies to both. For an introduction to rewriting systems in
general, we suggest to the review by Huet and Oppen, [19], or the article by Knuth and Bendix,
[22] which describes their completion algorithm. To understand more deeply the relations between
reduction systems in ideal theory and rewriting systems in general, see Winkler’s Ph.D thesis, {39].
For a historical review, see Buchberger, [9).

In the previous section, we restricted the universe of the sets of rules to those for which the
reduction is Noetherian. We ended up with sets of rules inferred from a set of polynomials and
from an admissible order. We can now introduce the concept of normal form:

Definition 2.9 A polynomial P is in normal form w.rt. a system of rules R iff there exists no
polynomial @ such that P —% Q.

A polynomial P has at least one normal form w.r.t. a Noetherian reduction. We are interested
in obtaining a unique normal form. Why ?

We can call —* the reflezive, symmetric, lransitive closure of —! (we omit R when we
consider only one set of rules). +—" is an equivalence relation in A. For a rewriting system in
general, this is an equivalence relation on the set of terms.
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Definition 2.10 The unique normal form property holds for a relation —1 iff —1 is such that
every polynomial has a unique normal form w.r.t. it.

The following proposition is immediate:

Proposition 2.8 If —! verifies the unique normal form property, then, for all P,Q € A, we have
P —* Q iff P and Q have the same normal form.

In this case, «——* is computable. This becomes essential if we add the following remark:

Proposition 2.7 If — is the reduction relation associated with a basis of an ideal I and an
admissible order >, then, for all P,Q in A, we have P +—" Q iff P — Qel

For a reduction relation with the unique normal form property, let’s call n f(P) the normal form
corresponding to P. Then we see that nf(A) is isomorphic to A/I. Therefore, this gives a way of
computing the natural homomorphism from A onto A/I. In particular, this gives a solution to the
membership problem: a polynomial P belongs to I iff nf(P) = 0. Therefore, systems of rules for
which the unique normal form property holds are extremely useful.

Now, given an admissible order > and a basis B of an ideal I, how can we obtain another basis
B’ of I such that the unique normal form property holds for the reduction associated with B” and
> ? This is the purpose of Buchberger’s algorithm, which appeared in Buchberger’s thesis, [6], in
1965 and has been extensively studied since. The basis B’ is called a Grobner basis or standard
basis of I. (The second denomination refers to the work of Hironaka, [18].)

Buchberger’s algorithm was designed by using techniques which are very similar to the work
of Knuth and Bendix, [22]. The details of this approach can be found in Winkler’s thesis and in
two early articles by Buchberger, [5] and [4]. More recently, a more algebraic presentation of the
algorithm appeared. We will follow this approach here by quoting and explaining the Fundamental
Theorem that Robbiano presented in his Tutorial at Computers and Mathematics 1989, [32].

Let’s recall first a basic definition:

Definition 2.11 A ring R is graded by a monoid E if there exists a family of additive subgroups
{R:}ieE such that R = @;cg Riand R;R; C Riyjforalli,j € E. If R is a graded ring, an R-module
M is graded if there exists a family of additive subgroups {M;}icg such that M = B;cg M; and
R;M; C M ;forall i,j € E. The elements of Uicg Ri (resp. Uieg M;) are called the homogeneous
elements of R (resp. M).

We choose IN" as the monoid of the indices and Ay, i) = {k 2 .. zir | k€ K} as additive
subgroups of A. For the power product T = ... zin, we call log(T') the vector (iy,. .. yin).

Given any p-tuple of elements of N™, ((i1,35++-1%1,n)s-- s {Ip15- -+ ipn)), one can define a graded
structure on AP by choosing, as additive subgroups,

(AP)Giryonim) = {1 Tas- oo s bp Tp) 1og(T1) + (i, coritn) = (ryeeeydn), V1S 1< )y
where ki, ...,k, are elements of K and T1,... , T, are power products.
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Suppose that the ideal J of 4 has the finite basis B = (P1,...,P,). Let’s consider a particular ad-
missible order >. We can grade A? with the p-tuple of vectors (log(InPp(P,)),.. ., log(InPp(P,))).
Now, any member of A? is decomposed uniquely in a sum of elements of the sets (AP)(,-I'_“','n). We
will call the leading vector of (§Q1,...,Q,) the homogeneous part of (@1,..-,Qp) belonging to the
set (AP),,...in) for which 2 ...zl is the highest w.r.t. ». We will write it Lv((Q1,...,Q,)).

Also we define the two homomorphisms A and A from AP to A by:

A((Ql" --an)) = ZQ} Pj‘, and
{

A{(Qr, .-, Qp)) = - Qi In(P).
7

Following Robbiano, we say that an homogeneous element H of A? extendsto U € AP iff Lv(U) = H.
Now, we are ready to state the Fundamental Theorem:

Theorem 2.1 Let > be an admissible order, B = (P1,...,P) a p-tuple of non-zero elements of
A, and I the ideal generated by the elements in B. Then the following conditions are equivalent:

(A) For every P € I\{0}, there ezist p polynomials Q,,... ,@p € A\{0} such that
P =3%.Q P with InPp, (P) = InPp,(Q) InPp,(P,) for everyl, 1 <1< p.

(B) {In.(P1),...,Iny(P,)} generates In, (I).

(C-I) Pel < P _"_";Z(Bk) 0.

(C-1I}) Every P € I has a unique normal form w.r.t. the reduction —+;2(B'>~) and this normal
Jorm is 0.

=

(C-1I1) Every P € A has a unique normal form w.r.t. ——R(B.r)"

(D-1) Every homogeneous element of Ker(A) eztends to an element of Ker(A).

(D-II} There exists an homogeneous basis of Ker(A) which extends to elements of Ker()).
The proof of this important result can be found, for example, in Robbiano, [32].

Definition 2.12 If B satisfies any of these conditions, then B is a Grébner basis of I.

If every polynomial P of B is in normal form for the reduction w.r.t. the set R(B\{P},>),
then B is called a reduced Grobner basis for 1.

Note that condition (D-II) of theorem 2.1 implies that, if we can find a homogeneous basis of the
module of syzygies of (In{P,),...,In(P,)) such that, for every vector (@1,...,Q,) of this basis,
Q1P "_"7‘2(3,>) 0, then B is a Grobner basis of I w.r.t >.

We now introduce a very convenient homogeneous basis of the syzygies of (P1,..., Pp). To make
the definitions readable, we denote T'(3) = InPp, (F) and T(¢,7) = lem(InPp, (F), InPp, (P})).
We will also use the notation 7'(z,3,!) for lem(InPp,(F;), InPp, (F;), InPp, (F)).
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Input: a list of polynomials (P1,...,Pp), basis of an ideal I.
Output: a Grdbner basis B of I for the admissible order ».

B:= (P1,...,Pp);

label:= p;

Pairs:= {(i,3) |t <i<J<p);

while (Pairs # §) do

begin

choose (i,7) from Pairs; Pairs:= Pairs\{(i,j)};
P:= nfp(p,)(8(i,j));
if (P # 0) then

begin
label:= label + 1;
Plabe1:= P;

B:= (B,P1abel);
Pairs:= Pairs U {(i,label)|1l < i < label};
end;
end;

Figure 1: Buchberger’s algorithm

Proposition 2.8 Let (e1,...,€p) be the canonical basis of AP. Then the vectors

s(i,j) = InCy(P;) Tigz(;';) € — I'nC>(H)%}§)ej,

where 1 < i < j < p, form an homogeneous basis of the module of syzygies of
(In,.(P1),...,Iny(Fp)) -
Proof: See Robbiano, [32]. O

Definition 2.13 The polynomial

S(i,j) = A(s(4,7)) = InC>_(Pj)%f).)Pi - InC,(F;) TIEZ;J)) P;

is called the S-polynomial of P; and P;.

Thus, to verify that (Pj,...,FPp) is a Grobner basis, we only need to check that all the S-
polynomials 5(z, 7) can be reduced to 0 (according to condition (D-II) of the Fundamental Theorem
above). We can introduce now in Figure 1 the elementary version of Buchberger’s algorithm. In
this program n fr(p »)(F) will designate any normal form of P w.r.t. the reduction —»"‘R( B,

Theorem 2.2 The algorithm of Figure 1 computes a Grébner basis of I w.r.t. ».
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Proof. if the algorithm terminates, its output B is a Grébner basis because it satisfies (D-II)
above. As every polynomial added to B belongs to I, B is a Grobner basis of I. Finally, let’s call
ligber the ideal generated by In(B) after P,y has been added to B. These ideals form a strictly
increasing sequence of ideals. As A is a Noetherian ring, this sequence has to be finite and the
algorithm terminates. O

2.3. Improvements in the algorithm.

The two improvements that we are going to describe are of different natures. The first one, called
Criterion 2 by Buchberger, [8], avoids certain reductions by forecasting that certain very particular
S-polynomials can be reduced to 0. The second one is a recent refinement by Gebauer and Méller,
[16], of Criterion 1 by Buchberger. They show that K er(A) is in fact generated by a subset of the
s(1,7) and, therefore, that only a subset of the S-polynomials S5(%,7) need to be reduced.

The first improvement concerns pairs of polynomials with co-prime leading power products and
is based on the next proposition.

Proposition 2.9 IfT(i,5) = T(i)T(j), then s(i,5) extends to an element of Ker(M).

Proof. ¥ T(i,j) = T(i)T(j), then R = InCo(P;) Pje; — InC, (P;) P;ej extends s(i,j).
Obviously, R € Ker(A). D

So, before an S-polynomial is reduced, the algorithm should check if the two polynomials in the
pair verify the condition of Proposition 2.9. This is the second criterion of Buchberger.

The second improvement is based on the consideration of redundant elements of the basis of
syzygies. Gebauer and Méller, [16], use the resolution of Taylor, [36], to describe their enhancement
of the algorithm. Taylor studied the resolution of monomial ideals and found homogeneous bases for
the different modules in this resolution. These are called Taylor bases. We have already seen that
the module of syzygies of (In{P;),...,In(P,)) is generated by (s(2,7))1<i<j<p- To avoid tiresome
multiplications by coefficients, we suppose that the polynomials P, ..., P, are normalized, i.e. that
their leading coefficients are equal to 1. This does not imply any restriction because (Pi,..., FP,)
and (P /InC(P1),..., P,/InC(P,)) generate the same ideal. Then we have

s(6,5) = T(i,5)/T(i)ei — T(3,5)/ T(j)e;.

Now we can look at the submodule of AP(P=1)/2 of the syzygies of (s(4,7))1<icj<p. If we label the
canonical unit vectors (e;;)1<i<;<p, this submodule can be expressed as:

S ={ 3 Pje; e a2 S pogg) = o).
1<i<i<p 1Li<s<p
This has the Taylor basis (s(i,4, D h<icj<i<p with

- T(s,5,1) TG, 5,1) T(i,5,1)
N2 . .
S(”'&J! ) T(i,J) et] T(l,l) ell T(j, l) ejl

If we grade AP(P—1)/2 by using the vectors (log(T(i,j)))lS,-qu, then s(i,7,{) is homogeneous and

p(p-1)/2
belongs to A,og(:r(:',j,f))
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Now, what happens if T(3, ,1) is equal to T(i,), T(i,1) or T(4,I) ? Suppose, for example, that
T(i,5,1) = T(i,7). Then
o TG T(s,45,0)
S(Z,],l) = €i; — T(i,I) €il T(j,l) €51
is a syzygy of (s(i,7))1<i<j<p and, therefore,

6= i

s(i, ) + 1;_‘—(%—(.;‘_‘3‘%;—)3('1,1) = 0.

So, s(i,7) can be expressed in terms of other members of the basis, and it can be removed from the
homogeneous basis. This means that it is unnecessary to consider the pair of polynomials (F;, P;)
during the execution of the algorithm.

Naturally, after eliminating s(,7) from the basis of first syzygies, we can take another look
at S to see if there exists another syzygy s(i’,j’) which can be expressed as a combination of
syzygies of lower or equal degree and, if there exists any, we can remove it from the basis and go
on iteratively. But, we must proceed in order: if T(i,j,1) = T(i.j) = T(i,1), for example, then

. . T(¢,5,1) .
s(i,7) — (¢, D) + =——==s(5,1) = 0,
(i,3) = 3(6.D) + 750D
but we do not want to remove both s(i,7) and s(i,!) from the basis of syzygies because of this
relation.

The details on the way these considerations are actually used to update the set of pairs when a
polynomial is added to the basis may be found in Gebauer and Méller, {16].

These two improvements of the basic algorithm are essential to the efficiency of the computation:
with them, only a small fraction of all the pairs in the Cartesian product are considered. We refer
the reader to the last section of this work. We present there some examples of computations.
For each example, we give the number #P of polynomials in the final basis (including redundant
polynomials) and the number #R of pairs for which the S-polynomials has been reduced. The
comparison between #R and #P x (#P — 1)/2 gives a good idea of the gain that the use of
these two criteria allows us to make.

3. Applications of Grébner bases in commutative ring theory.

The constructions described in this section are borrowed from Gianni, Trager and Zacharias, [29)].
The constructions studying subalgebras of the polynomial ring are due to Shannon and Sweedler,
[34]. Many of these constructions are consequences of the well-known following theorem:

Theorem 3.1 If B is the reduced Grobner basis of an ideal I in K{tg,.. tn,T1,. .-, 2n] with
respect to an admissible order > in which the relations zp > wll .. i hold for allp in{1,... , 1}
and all n-tuples (i1,...,4,) in IN", then BN Klu1,...,un)] is the reduced Grobner basis of I N
K[uy,...,uy] for the induced order.

Proof: Let’s notice first that, if > has the property defined above polynomials of K{uy,...,uxs]
can only be reduced by using polynomials of K[uy,...,un]. So, polynomials of IN K[uy,..., s}
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which are reduced to 0 by members of G are reduced to 0 by members of BN K (%1,...,u,]. This
defines B N K[uy,...,u,] as a Grébner basis of I O Kluy,...,u,]. The fact that it is a reduced
Grobner basis follows directly from the fact that B is reduced.O

In their formal statement of this property, Glanni, Trager and Zacharias add that B is a Grébner
basis (possibly not reduced) of (K[uy,... yun])[1,...,2,] for the order induced by > on this
structure.

3.1. Intersection of two ideals.

Let I and J be two ideals of K[z, .+.,Zy] and let u be a new indeterminate (i.e. a member of
an extension of K s.t. z,,...,z,,u are algebraically independent over K). (u I) is the ideal of
Klzy,...,2q,u] generated by {u P | P ¢ I} .

Proposition 3.1 (u I,(1 — u) JYNK{ry,...,2,) is equal to I N J.

So, using the contraction mechanism explained in the introduction of this section, we can obtain
a Grobner basis of 7N J.

Proof INJ C (ul, (1-u) J)N K[z;,...,z,). Suppose P € INJ. Then P = u P + (1-u) P.

(ul,(1-w)J) N Klz1,...,2,] € InJ. Suppose P = 4 Py + (1 - u) Py and that u is not a
variable in P. Then, P = P; = P, and, therefore, P InJ O

For Example, I = (22 + y2 — 22) and J = (z ~ 2,y — 22) are two ideals of Clz,y,2]. We can
compute a Grébner basis for an ideal whose corresponding variety is the union in the complex
projective plane of the conic defined by I and of the point (1,2, 1) defined by J.

The reduced Grébner basis of (u(z? + y* — 22), (1-u)(z - 2),(1-u)(y - 22)) wrt. the
lexicographic order ( in which u =1 z > Y »~L z) is:

{uz —uz -2+ 2 —uy+2uz+y—-224u2? + 22 + ¥ - 522,
~-zfy + 2222 — v+ 290z + yz? — 225 2% _ 22, +zy® —z2? _ vz + 2%}
So the last two polynomials give a basis of 1 NJ. It may not be surprising that these two last
polynomials are — (y — 2z) (z2 + y? — 2%} and (z — 2) (22 + y? — 2?),

If we choose now J = (z - 2z, y), which determines the point (2,0, ) lying on the conic, the
Grobner basis we find for 7N J is {22 + y? — 22}, as expected.

3.2. The ideal quotient of two ideals 7 : J.

We consider here the case where 7 and J are two ideals of K[zy,...,7,]. In fact, the construction
is still valid when I and J are ideals in the polynomial ring over certain rings (namely Noetherian
commutative rings with identity in which linear equations are solvable) if the generators of J are
not zero divisors. See [29] for details.

Suppose J is generated by {Py,...,P,}. Then:
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In the last subsection, we describe how to find bases of intersections of ideals. We discuss now
how to compute a basis of J : (P). Note that

[2(P)=H{0 QP €/ = {0Q P €/ H(P)=(1(P):(P).

We know how to compute a Grobner basis {Q, ..., Qi} ofJ fl (P) w.r.t. Then {Qi/P,..., Q//P}
generates J : (P), because the Qi/P are indeed polynomials, as Qi £ (P).

It is not immediate that {Qi/P,... ,Qi/P} 1is a Grobner basis w.r.t y. This stems from the
fact that the leading monomial of Qi w.r.t. y is equal to the leading monomial of Qi/P multiplied
by the leading monomial of P. Then we can reduce the S-polynomials Spol(Qi/P Qj/P) w.T.t.
{Qi/P,... ,Q//P} by following exactly the reduction of the S-polynomials Spo/(Qi,Qj) w.r.t. the

basis {Qi,...,(?/}. Therefore, Spol(Qi/P,Qj/P)  1is reduced to O for all pairs (i,j), and this is one
of the characterizations of a Grobner basis.

Take for example [ = ((x - z){x’ +y - Z)(v - 2z2)(x +y - z)) andJ =(x - zy - 2z).
Then / fl(x- z) =((x- z)(x +y -2z))andIn(y- 2z) =((x- 2z)(x +y - z’)). Therefore,
/o= (x-%=T:(-2)=+y - Z)

3.3. The ideal of polynomial relations among P_,..., P .
Gianni et al., [29], give a succinct description of this construction and of a more general one which
allows us to compute a basis for the kernel of a given ring-homomorphism from P[t/i,...,y,] to
P[xi,...,x//[ which is invariant on R . The paper by Shannon and Sweedler, [34], is more detailed

and describes a subalgebra membership test as well. We will consider only the case when R is in
fact a field K.

The idea is to consider the ideal (ji - Pi,...,y, - P) in K/x\,..., x,,)\.., ») and to find the
intersection of this ideal with K/yi,... ,y,]. This intersection describes the ideal of the relations
between Pi,...,P,. The correctness of this construction depends on the following result:

Proposition 3.2 Let R bea ring containing a ring R and let {t/i, ..., y,} bea set of algebraically
independent variables over R'. Let <f> be a ring-homomorphism from i2'[t/i,...,y,] to R invariant on
R' and such that (j7>{yi) = ri. Then the kernel of <f> is equal to 7d({yi-ri,...,y,-r,})r\R'[yi,... y]
in which ld({yi - r_,...,y, - r}) is the ideal of R[yi,. ..,%>] generated by yi - ri,...,y, - r,

Proof, suppose that P € Ild({yi - r.. v, - r}) flR[y.., y]. Then <f>(Pyi..,y)) =
P, .., r) = 0. Conversely, if P € Ker < then in Rfy, ..., t/]/d({t/i - n,...,y, - r,}), we
have P(2/T,... y*>) = P("i,...,r,) = 0 and, therefore, P belongs to the intersection of the ideal
with VAR

Thus we can obtain the ideal of the relations among the polynomials Pi,...,P, by using once
more the "contraction" algorithm to compute Id{{y\ — Pi,...,y, — P ) A K/y\..., »).
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