
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Protocol Implementation on the 
Nectar Communication Processor 

Eric C. Cooper, Peter A. Steenkiste, 
Robert D. Sansom, and Brian D. Zill 

September 1990 
CMU-CS-90-153-

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

SIGCOMM '90 Symposium on Communications Architectures and Protocols 
Philadelphia, Pennsylvania 

September 24-27,1990 

This research was sponsored by the Defense Advanced Research Projects Agency, Information Science and 
Technology Office, under the title "Research on Parallel Computing," ARPA Order No. 7330, issued bv 
DARPA/CMO under Contract MDA972-90-C-0035. 
The views and conclusions contained in this document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the U.S. Government 



Keywords: protocol implementation, high-speed networks 



Abstract 

Wc have built a high-speed local-area network called Nectar that uses programmable 
communication processors as host interfaces. In contrast to most protocol engines, our 
communication processors have a flexible runtime system that supports multiple transport 
protocols as well as application-specific activities. In particular, we have implemented the 
TCP/IP protocol suite and Nectar-specific communication protocols on the communication 
processor. The Nectar network currently has 25 hosts and has been in use for over a year. 
The flexibility of our communication processor design does not compromise its perfor
mance. The latency of a remote procedure call between application tasks executing on two 
Nectar hosts is less than 500 //sec. The same tasks can obtain a throughput of 28 Mbit/sec 
using either TCP/IP or Nectar-specific transport protocols. This throughput is limited by the 
VME bus that connects a host and its communication processor. Application tasks execut
ing on two communication processors can obtain 90 Mbit/sec of the possible 100 Mbit/sec 
physical bandwidth using Nectar-specific transport protocols. 

PITTSBURGH, PA 15213-3SSP 



1 Introduction 

The protocols used by hosts for network communication can be executed on the host 
processors or offloaded to separate communication processors. In Nectar, a high-speed 
local-area network, we have taken the latter approach. By offloading transport protocol 
processing from the host to the communication processor, we reduce the burden on the host. 
Executing protocols on a communication processor is also attractive if the host is unsuited 
to protocol processing, as in the case of specialized architectures, or if the host operating 
system cannot easily be modified, as in the case of supercomputers. 

Unlike traditional network front-end processors, the Nectar communication processor 
has a general-purpose CPU and a flexible runtime system that support both transport protocol 
processing and application-specific tasks. Protocol implementations on the communication 
processor can be added or optimized with no change to the host system software; this 
is particularly advantageous in environments with heterogeneous hardware and operating 
systems. Application-specific communication tasks can be developed for either the host or 
the communication processor using the Nectarine programming interface. 

The interface between the communication processor and user processes on the host is 
based on shared memory. The buffer memory of the communication processor is directly 
accessible to user processes. No system calls or user-to-kemel copy operations arc required 
to send and receive messages. As a result, host processes can communicate with lower 
latency (by a factor of 5) than would be possible using the UNIX socket interface of the 
host operating system [13]. 

Related work on host interfaces for high-speed networks includes the VMP Network 
Adapter Board [10] and the Protocol Engine design [4]. In these approaches, processing of 
specific transport protocols is offloaded to the network interface, but there is no provision 
for the execution of application-specific tasks or multiple transport protocols. 

The Nectar runtime system is similar in structure to other operating systems designed 
specifically to support network protocols, such as Swift [7] and the jc-kemel [12]. However 
the Nectar system is distinguished by its emphasis on the interface between the communi
cation processor and the host. 

The Nectar communication processor together with its host can be viewed as a (het
erogeneous) shared-memory multiprocessor. Dedicating one processor of a multiprocessor 
host to communication tasks can achieve some of the benefits of the Nectar approach, but 
this constrains the choice of host operating system and hardware. In contrast, the Nectar 
communication processor has been used with a variety of hosts and host operating systems. 

In this paper we describe and evaluate our approach to building a communication 
processor. We first give an overview of the Nectar hardware (Section 2). We then describe 
the design of the runtime system on the communication processor and the interactions 
between the runtime system and host processes. As an example of the use of the runtime 
system, we discuss our implementation of TCP/IP in Section 4. In Section 5, we discuss 
how the flexibility of the Nectar design allows different levels of communication functions 
to be offloaded from the host to the communication processor. A performance evaluation 
of the Nectar system is presented in Section 6. 

1 



Figure 1: Nectar system overview 

2 The Nectar System 
The Nectar system consists of a set of host computers connected in an arbitrary mesh via 
crossbar switches called HUBs (Figure 1). Each host uses a communication processor, 
called a CAB {Communication Accelerator Board), as its interface to the Nectar network. 
More details about the Nectar architecture can be found in an earlier paper [2]. 

2.1 HUB Overview 
The Nectar network is built from fiber-optic links and one ormore HUBs. A HUB consists of 
a crossbar switch, a set of I/O ports, and a controller. The controller implements commands 
that the CABs use to set up both packet-switching and circuit-switching connections over 
the network. 

Laige Nectar systems are built using multiple HUBs. In such systems, some of the 
HUB I/O ports are used to connect together HUBs. The CABs use source routing to send 
a message through the network. The HUB command set includes support for multi-hop 
connections and low-level flow control. 

In the current Nectar system, the fiber-optic lines operate at 100 Mbit/sec and the HUBs 
are 16 x 16 crossbars. The hardware latency to set up a connection and transfer the first 
byte of a packet through a single HUB is 700 nanoseconds. 

2.2 CAB Overview 
A block diagram of the CAB is shown in Figure 2. The heart of the CAB is a general-purpose 
RISC CPU. Two optical fibers—one for each direction—connect the CAB to an I/O port 
on the HUB. The fibers are connected to FIFOs for temporary buffering of network data. 
Cyclic Redundancy Checksums for incoming and outgoing data are computed by hardware. 

2 



Data Memory Bus 

Fibers 
to HUB 

Fiber in 

Fiber Out 

CPU Bus 

Data 
Memory 

CPU 

VME 
interface 

Program 
Memory 

Registers 
and 

Devices 

DMA 
I Controller 

VME 

to Host 

Memory 
I Protection 

Serial Line 

Figure 2: CAB block diagram 

The CAB communicates with the host through a VME interface, a common backplane in 
our environment. 

The CAB includes a hardware DMA controller that can manage simultaneous data 
transfers between the incoming and outgoing fibers and CAB memory, as well as between 
VME and CAB memory, leaving the CAB CPU free for protocol and application processing. 
The DMA controller also handles low-level flow control for network communication: it 
waits for data to arrive if the input FIFO is empty, or for data to drain if the output FIFO is 
full. 

To provide the necessary memory bandwidth, the CAB memory is split into two regions: 
one intended for use as program memory, the other as data memory. DMA transfers are 
supported for data memory only; transfers to and from program memory must be performed 
by the CPU. The memory architecture is thus optimized for the expected usage pattern, 
although still allowing code to be executed from data memory or packets to be sent from 
program memory. 

Memory protection hardware on the CAB allows access permissions to be associated 
with each 1 Kbyte page. Multiple protection domains are provided, each with its own set of 
access permissions. Changing the protection domain is accomplished by reloading a single 
register. 

The current CAB implementation uses a SPARC processor running at 16.5 MHz. The 
program memory region contains 128 Kbytes of PROM and 512 Kbytes of RAM. The data 
memory region contains 1 Mbyte of RAM. Both memories are implemented using 35 nsec 
static RAM. 

3 Runtime System 

The CAB runtime system must support concurrent activities that include network interrupts, 
transport-protocol processing, and application-specific computation. A lightweight inter-

3 



CAB 

Applicationf 

Host Process 

Applications 

1 
Nectarine Interface 

Figure 3: Nectar software architecture 

face between the host and the CAB is also essential; expensive host-CAB synchronization, 
data copying, and system calls must be avoided. 

Figure 3 shows the structure of the Nectar software on the host and CAB. The basic 
CAB runtime system provides support for multiprogramming (the threads package) and 
for buffering and synchronization (the mailbox and sync modules). Transport protocols 
(described in Section 4) are implemented on the CAB using these facilities. The Nectarine 
layer provides a consistent interface for applications on both the CAB and the host. The 
CAB device driver in the host operating system allows host processes to map CAB memory 
into their address spaces. 

3.1 Threads, Interrupts, and Upcalls 
Previous protocol implementations have demonstrated that multiple threads are useful, 
but multiple address spaces are unnecessary [7, 11, 12]. Since we expected most of the 
activities on the CAB to be protocol-related, we designed the CAB to provide a single 
physical address space, and the runtime system to support a single address space shared by 
multiple threads. The runtime system can use the multiple protection domains described in 
Section 2 to provide firewalls around application tasks if desired. 

The threads package for the CAB was derived from the Mach C Threads package [8]. It 
provides forking and joining of threads, mutual exclusion using locks, and synchronization 
by means of condition variables. Context switch time is determined by the cost of saving 
and restoring the SPARC register windows; 20 //sec is typical in the current implementation. 

System threads (such as those implementing network protocols) are typically driven 
by events such as a packet arriving or a condition being signaled; after a brief burst of 
processing, they relinquish the processor by waiting for the next event. We make no such 
assumptions about application threads: they may perform long computations with few 
synchronization points, or they may get stuck in infinite loops. Preemption of application 
threads is therefore necessary. The current scheduler uses a preemptive, priority-based 
scheme, with system threads running at a higher priority than application threads. 

Before we implemented preemptive scheduling of threads, upcalls [7] from interrupt 
handlers were the only way to provide sufficiently fast response to external events. For 
example, because of the speed at which an incoming packet fills the CAB input FIFO, a 

4 



Host CAB 

Figure 4: Host-CAB signaling 

start-of-packet interrupt must be handled within a few tens of microseconds. Waking up 
another thread has unacceptably long response time—the context switch would not occur 
until the currently running thread reached a synchronization point and relinquished the 
processor. 

Using upcalls from interrupt level means that data structures must be shared between 
threads and interrupt handlers, resulting in critical sections that must be protected by 
appropriate masking of interrupts. Disabling interrupts is less elegant than protecting 
critical sections by means of module-specific mutual exclusion locks because it violates 
modularity. The implementor of an abstraction must know whether its callers are threads 
or interrupt handlers so that interrupts can be masked appropriately. 

With preemption, a context switch occurs as soon as a higher-priority thread is awak
ened. We therefore plan to revisit our decision to perform significant amounts of protocol 
processing at interrupt time. We will experiment with moving portions of it into high-
priority threads. Although this will introduce additional context switching, the CAB will 
spend less time with interrupts disabled, so overall performance is likely to improve. 

The response time could also be improved by using the SPARC'S interrupt priority 
scheme to implement nested interrupts. Although appropriate use of nested interrupts 
could further reduce latency, the cost would be greater complexity and lack of modularity 
in the code because the implementor of an abstraction would have to be aware of the 
possible interrupt priority levels of users of the abstraction. 

3.2 Host-CAB Signaling 

Host processes and CAB threads interact using shared data structures that are mapped into 
the address spaces of the host processes. To manipulate data structures in CAB memory, a 
host process must be able to do the following: 

• Map CAB memory into its address space and translate between CAB physical ad
dresses and host virtual addresses. 

• Wait for synchronization events on the CAB using either polling or blocking. 

• Notify CAB threads and host processes that an event has occurred. 

The CAB device driver in the host operating system enables host processes to map CAB 
memory into their address spaces (by using the mmap system call). This mapping is done 
as part of program initialization. 

5 



Host condition variables are used for host-CAB synchronization. Host condition vari
ables are similar to the condition variables in the threads package on the CAB, except that 
the waiting entities are host processes instead of CAB threads. Host condition variables 
are located in CAB memory where they can be accessed by both CAB threads and host 
processes. 

S i g n a l and W a i t are the main operations on host conditions. S i g n a l increments 
a poll value in the host condition. W a i t repeatedly tests the poll value, and returns when 
the poll value changes. Both CAB threads and host processes can signal a host condition. 
Using polling, host processes can wait for host conditions without incurring the overhead 
of a system call. 

In many situations, for example a server process waiting for a request, polling is 
inappropriate because it wastes host CPU cycles. Thus we also allow host processes to 
W a i t for host conditions without polling, by calling the CAB device driver. The CAB 
driver records that the process is interested in the specified host condition and puts the 
process to sleep. When a host condition variable is signaled, its address is placed in the host 
signal queue (Figure 4), and the host is interrupted. The CAB driver handles the interrupt 
and uses the information in the queue to wake up the processes that are waiting for the host 
condition. 

The host signal queue has fixed-size elements that consist of an opcode and a parameter. 
This queue can also be used by the CAB for other kinds of requests to the host, such as 
invocation of host I/O and debugging facilities. 

Host processes wake up CAB threads by placing a request in the CAB signal queue 
(Figure 4) and interrupting the CAB. As with the host signal queue, the CAB signal queue 
is also used to pass other types of requests to the CAB. 

The CAB signaling mechanism is extended into a simple host-to-CAB RPC facility by 
allowing the CAB to return a result to the host. The sync abstraction described in Section 3.4 
provides the necessary synchronization and transfer of data. 

3.3 Mailboxes 
A mailbox is a queue of messages with a network-wide address. The buffer space used for 
the messages associated with a mailbox is allocated in CAB memory. By mapping CAB 
memory into their address spaces, host processes can build and consume messages in place. 

Mailboxes also provide synchronization between readers and writers. A host process 
or a CAB thread blocks when it tries to read a message from an empty mailbox; it resumes 
when a message has been placed in the mailbox, typically by a transport protocol on the 
CAB. 

These features make mailboxes attractive for communication between the host and the 
CAB. A host process can invoke a service on the CAB by placing a request in a server 
mailbox; this wakes up the server which processes the request and places the result in a 
reply mailbox, where it can be read by the host process. Similarly, a CAB thread can invoke 
a service on the host by placing a request in a mailbox that is read by a host process. 

Network-wide addressing of mailboxes enables host processes or CAB threads to send 
messages to remote mailboxes via transport protocols. In this way, remote services can be 
invoked from anywhere in the Nectar network. 

6 



Figure 5: Mailbox operations and message states 

The Mailbox Interface 

A two-phase scheme is used for both reading and writing messages in mailboxes. This 
allows messages to be produced or consumed in place without further copying. Figure 5 
depicts the state transitions that a message undergoes as a result of the mailbox operations. 

To write a message, a program first calls Begin__Put , specifying the mailbox and the 
size of the message. This returns a pointer to a newly allocated data area of the required size. 
The writer can now fill in the contents of the message; space for additional messages may 
be reserved in the meantime using additional Begin__Put calls. When the program has 
finished writing the message, it uses E n d _ P u t to make the message available to readers. 

A reader calls B e g i n _ G e t to obtain a pointer to the next available message, allowing 
the data to be read in place. When the reader is finished with the data, E n d _ G e t releases the 
storage associated with it. Multiple threads can use these operations to process concurrently 
the messages arriving at a single mailbox. 

Some applications (such as IP, described in Section 4.1) need the ability to move a 
message from one mailbox to another. The operations described so far would allow this 
functionality, but at the cost of copying data between the different data areas associated 
with the two mailboxes. To avoid this overhead, we introduced an E n q u e u e operation that 
moves the message without copying the data. We also provided operations to "adjust" the 
size of messages in place, effectively removing a prefix or suffix of the message without 
doing any copying. 

Both B e g i n _ P u t and B e g i n _ G e t block if no space or message is available. The 
calling thread is rescheduled when space becomes available or a message arrives. Interrupt 
handlers use non-blocking versions of these calls. 

The mailbox interface also allows a reader upcall to be attached to a mailbox. The 
upcall is invoked as a side effect of the E n d _ P u t operation. This flexibility allows us to 

7 



trade the concurrency of multiple threads against the overhead of context switching. For 
example, if a pair of threads uses a mailbox in a client-server style, the body of the server 
thread can instead be attached to the mailbox as a reader upcall; this effectively converts a 
cross-thread procedure call into a local one. 

Implementation of Mailboxes 
Mailboxes are implemented as queues of messages waiting to be read; buffer space for 
messages is allocated from a common heap. Allocating buffers from the heap provides 
better utilization of the CAB data memory since it is shared among all mailboxes on the 
CAB. As an optimization, each mailbox caches a small buffer, this avoids the cost of heap 
allocation and deallocation when sending small messages. The queue representation also 
allows us to implement the E n q u e u e operation by simply moving pointers. 

Mailbox operations from the host were initially implemented using the simple host-to-
CAB RPC mechanism described in Section 3.2. We also implemented a shared memory 
version in which mailbox data structures are updated directly from the host. Since the 
reader and writer data structures are separate, mutual exclusion between CAB threads and 
host processes can be avoided as long as the readers either all reside on the CAB or all 
reside on the host, and the same for writers. This is certainly true in the common case of 
a single reader and a single writer, and also, more generally, for client-server interfaces 

across the host-CAB boundary. 
In return for the restrictions on placement of readers and writers, the shared memory 

implementation provides about a factor of two improvement over the RPC-based implemen
tation for Sun 4 hosts. We have configured the runtime system so that both implementations 
coexist, and the appropriate implementation can be selected dynamically on a per-mailbox 
basis. 

3.4 Lightweight Synchronization 
Synchronization between two threads or processes does not always need the full generality 
of mailboxes. For example, returning a status value from a transport protocol on the CAB 
to a sender on the host could be done using a mailbox, but all that is really needed is a 
condition variable and a shared word for the value. Syncs allow a user to return a one-word 
value to an asynchronous reader efficiently; they are similar to Reppy's events [14]. 

The Sync Interface 
The operations on syncs are A l l o c , W r i t e , Read , and C a n c e l . A l l o c allocates a 
new sync. W r i t e places a one-word value in the sync data structure, and marks the sync 
as written. R e a d blocks until a sync has been written, then frees the sync and returns its 
value. Alternatively, the reader can use C a n c e l to indicate that it is longer interested in 
the sync. C a n c e l frees the sync if it has been written; otherwise C a n c e l just marks the 
sync as canceled, leaving it to be freed as part of a subsequent W r i t e . 

Implementation of Syncs 
Host processes and CAB threads allocate syncs in CAB memory; conflicts are avoided by 
using two separate pools of syncs. Since there is only one reader, reading a sync does not 
require any locking. Writing a sync does require a critical section: checking whether the 

8 



sync has already been canceled and marking the sync as written must be done atomically. 
On the CAB this is done by masking interrupts. A host process offloads the execution 
of W r i t e to the CAB using the CAB signaling mechanism. C a n c e l is implemented 
similarly. 

3.5 The Application Interface: Nectarine 

Most of the current Nectar applications are written using Nectarine, the Nectar Interface. 
Nectarine is implemented as a library linked into an application's address space. It provides 
applications with a procedural interface to the Nectar communication protocols and direct 
access to mailboxes in CAB memory. It also allows applications to create mailboxes and 
tasks on other hosts or CABs. Nectarine simplifies the task of writing Nectar applications 
by hiding the details of the host-CAB interface and presenting the same interface on both 
the CAB and host. 

4 Protocol Implementation 

We have implemented several transport protocols on the CAB, including TCP/IP and a 
set of Nectar-specific transport protocols. The Nectar-specific protocols provide datagram, 
reliable message, and request-response communication. The reliable message protocol is 
a simple stop-and-wait protocol, and the request-response protocol provides the transport 
mechanism for client-server RPC calls. 

The implementation of the TCP/IP protocol suite serves as a good example of the use of 
the runtime system's features. Time-critical functions are performed by interrupt handlers 
and mailbox upcalls, most others by system threads. Mailboxes are used throughout for 
the management of data areas. The use of mailboxes proved advantageous in avoiding 
any copying of the data between receipt and presentation to the user. Although we 
only describe the implementation of TCP/IP, all the transport protocol implementations are 
structured in a similar fashion. 

4.1 Internet Protocol 

IP input processing is performed at interrupt time. When a packet arrives over the fiber, 
the datalink layer reads the datalink header and initiates DMA operations to place the data 
into an appropriate mailbox. For IP packets, this is always the IP input mailbox. After the 
entire protocol header arrives, the datalink layer issues a start-of-data upcall to the protocol 
so that useful work can be done while the remainder of the packet is being received into 
the mailbox. IP uses this opportunity to perform a sanity check of the IP header (including 
computation of the IP header checksum). 

When the entire packet has been received, the datalink layer issues an end-of-data 
upcall. In this upcall, the IP input handler queues packets for reassembly if they are 
fragments of a larger datagram. The handler transfers complete datagrams to the input 
mailbox of the appropriate higher-level protocol. This transfer uses the mailbox E n q u e u e 
operation, so no data is copied. 

Higher-level protocols (including ICMP) are required to provide an input mailbox to 
IP; this mailbox constitutes the entire receive interface between IP and higher protocols. 
One advantage to this interface is that it allows the higher protocols to be implemented 
either as mailbox upcalls, which are called whenever their input mailbox is written, or as 

9 



separate threads, which block until the next packet arrives. In our current system, ICMP is 
implemented as a mailbox upcall, while UDP and TCP each have their own server threads. 

While the receive interface between IP and higher protocols consists of a simple mailbox, 
the send interface is more complex. To send a packet, higher protocols are expected to 
call IP__Output with a header template, a reference to the data they wish to send, a flag 
indicating whether the data area should be freed once sent, and a route to the destination (if 
known). The header template must contain a partially filled-in IP header. Protocols may 
also append their own header to the end of the template. IP__Output fills in the remaining 
fields in the IP header and calls the datalink layer to transmit the packet. 

4.2 Transmission Control Protocol 
The Nectar TCP implementation runs almost entirely in system threads, rather than at 
interrupt time. This allows shared data structures to be protected with mutual exclusion 
locks rather than by disabling interrupts. We plan to compare this approach to a strictly 
interrupt-driven implementation of TCP as part of the experiment discussed in Section 3.1. 

All TCP input processing is performed by the TCP input thread. This thread blocks on 
a B e g i n _ G e t until a packet arrives. Once it gets a packet, it examines the TCP header, 
checksums the entire packet, and performs standard TCP input processing. To pass data 
to the user, TCP simply deletes the headers and transfers the packet to the user's receive 
mailbox using the E n q u e u e operation. 

A user wishing to send data on an established TCP connection places a request in the 
TCP send-request mailbox. The data to be sent may be placed in the send-request mailbox 
following the request, or it may already exist in some other mailbox, in which case the 
user includes a pointer to it in the request. The TCP send thread on the CAB services this 
request by placing the data on the send queue of the appropriate connection and calling the 
TCP output routine. CAB-resident senders can do this directly without involving the TCP 
send thread. 

5 Usage 
The flexibility of the CAB software architecture allows us to choose which layers in the 
protocol stack are handled by the CAB, effectively changing the interface the CAB presents 
to the host. Three such interfaces are described below, ordered in increasing degree of CAB 
functionality. 

5.1 Network Device 
The Nectar network can be used as a conventional, high-speed LAN by treating the CAB 
as a network device and enhancing the CAB device driver to act as a network interface. We 
have implemented a driver at this level for the Berkeley networking code [11], performing 
IP and higher-level protocols on the host as usual. The advantage of this approach is binary 
compatibility: all the familiar network services are immediately available. 

To perform networking functions, the device driver cooperates with a server thread on 
the CAB that is responsible for transmitting and receiving packets over Nectar. The driver 
and the server share a pool of buffers: to send a packet the driver writes the packet into a 
free buffer in the output pool and notifies the server that the packet should be sent; when 

10 



a packet is received the server finds a free input buffer, receives the packet into the buffer, 
and informs the driver of the packet's arrival. 

5.2 Protocol Engine 

The CAB can be used as a protocol engine by offloading transport protocol processing to 
the CAB. Several interfaces are possible on the host; these interfaces are independent of 
the particular transport protocols implemented on the CAB. 

The Nectarine interface that was described in Section 3.5 provides applications with a 
flexible communication model. Since it uses the host-CAB buffering and synchronization 
facilities directly, some or all of CAB memory must be mapped into applications' address 
spaces. 

The familiar Berkeley socket interface [13] is also being implemented at this level. 
Initially, an emulation library will be provided for applications that can be re-linked. 
Eventually, we will move this support into the UNIX kernel, which will intercept operations 
on Nectar connections and dispatch them to the CAB. This approach incurs the cost of 
system calls, but allows binary compatibility. 

Work is also in progress to support the Mach interprocess communication interface [1]. 
Network IPC in Mach is provided by a message-forwarding server external to the Mach 
kernel; this server is a natural candidate for execution on the CAB. 

5.3 Application-level Communication Engine 

The Nectar CAB and its runtime system are more flexible than many proposed protocol 
engines since application-specific code can be executed on the CAB. Distributed applica
tions on Nectar often perform tasks on both hosts and CABs, effectively using the CABs 
as application-specific network interfaces. 

Common paradigms for parallel processing, such as divide-and-conquer and task-queue 
models, have been implemented on Nectar, using one or more CABs to divide the labor 
and gather the results. Examples include Noodles [6], a package for solid modeling; 
COSMOS [3], a switch-level circuit simulator, and Paradigm [5], a database for vision. 
Further work on load-balancing strategies and language-level tools for parallel program 
generation is in progress. 

We are investigating several other areas that can make good use of the flexibility of the 
CAB: 

• Communication is a major bottleneck in the Camelot distributed transaction sys
tem [16], so experiments are being planned to offload Camelot's distributed locking 
and commit protocols to the CAB. 

• Using Mach together with Nectar, we are investigating network shared memory [9]. 
The CABs will run external pager tasks that cooperate to provide the required con
sistency guarantees. 

• Research is under way to use the CAB to offload presentation layer functionality, 
such as the marshaling and unmarshaling of data required by remote procedure call 
systems [15]. 

11 



Protocol host to host CAB to CAB 
datagram 325 179 
reliable message 414 241 
request-response 438 287 
UDP 842 536 

Table 1: Roundtrip times in microseconds 

VME Network VME 
Host 1 • CAB 1 • CAB 2 •Host 2 

20j beginjput 
j build message 

\ endjput 
\ 
60 \ pass message 

\ begin_get 
5 transport 

10 datalink 
I2'l interrupt 

datalink 
beginjjut 

18 
8 

10 

end_put 
pass message 

Time (microseconds) 

Total: 163 microseconds 20 

• begin_get 

read message 

: end_get 

Figure 6: One-way host-to-host datagram latency analysis 

6 Performance 
A prototype Nectar system has been operational since January 1989. Currently the pro
totype system consists of 2 HUBs and 26 hosts in full-time use. This section reports the 
performance we have achieved on the current system. All measurements involving hosts 
were obtained using Sun 4 workstations. 

6.1 Latency 
Roundtrip latency times for UDP and for the Nectar-specific protocols are shown in Table 1. 

Figure 6 shows a breakdown of the time taken to send a message between two host 
processes using the Nectar-specific datagram protocol. The fiber and Hub latency, less than 
5 /isec, is not included. About 40% of the time is spent in the host-CAB interface at the 
sender and receiver, 40% is due to CAB-to-CAB latency, and the remaining 20% is spent 
on the host creating and reading the message. The time spent in the host-CAB interface 
is relatively large because each read or write over the VME bus takes about 1 /isec. More 
time is spent on the sending side, since the CAB must be interrupted and a CAB thread 

12 



16 32 64 128 256 512 1024 2048 4096 8192 
Message size in bytes 

Figure 7: CAB-to-CAB throughput 

must be scheduled to handle the message. On the receiving side, the host process is polling 
for receipt of the message, so no interrupt or context switch is required. 

6.2 CAB-to-CAB Throughput 

The graph in Figure 7 shows throughput rates achieved between two CAB threads using the 
on-CAB implementation of TCP/IP and the Nectar reliable message protocol (RMP). For 
small packets (up to 256 bytes), the per-packet overhead dominates the transmission time 
completely, and the throughput doubles when the packet size doubles. For larger packet 
sizes, the transmission time dominates and the throughput increase drops. The performance 
difference between TCP/IP and RMP is mostly due to the cost of doing TCP checksums 
in software. RMP does not do any software checksum computation but relies on the CRC 
implemented by the CAB hardware. The curve labeled "TOP w/o checksum" in Figure 7 
shows that TCP without checksums is almost as fast as RMP. 

6.3 Host-to-Host Throughput 

The graph in Figure 8 shows throughput rates achieved between two host processes 
using the on-CAB implementation of TCP/IP and the Nectar reliable message protocol. 
The curves have the same shape as the CAB-CAB throughput curves, but they flatten 
earlier because the slow VME bus makes the transmission times more significant. The 
throughput of both protocols is limited by the bandwidth of the VME bus, which is about 
30 Mbit/sec. The maximum TCP/IP bandwidth is about 24 Mbit/sec In comparison, the 
maximum host-to-host throughput achieved when the CAB is acting as a simple network 
interface (described in Section 5.1) is 6.4 Mbit/sec. The same hosts can do better using 
Ethernet—achieving 7.2 Mbit/sec—because the on-board Ethernet interfaces bypass the 
VME bus. 

13 



Message size in bytes 

Figure 8: Host-to-host throughput 

7 Conclusion 
We have described the design and performance of the runtime system software for the 
Nectar communication processor. The flexibility of the runtime system allows application-
specific communication tasks as well as transport protocols to be executed efficiently on 
the Nectar CAB. 

The facilities provided by the runtime system allow protocols to be implemented easily 
and efficiently. The fact that we achieve roundtrip times as low as 325 /xsec (for the 
datagram protocol) between two UNIX processes shows that the performance of the system 
has not been compromised by its flexibility. 

The limiting factor in host-to-host performance over Nectar is the VME bus, the most 
common bus in our environment. Although we can obtain a throughput of 90 Mbit/sec 
between threads on two communication processors, we are unable to achieve more than 
30 Mbit/sec between host processes. Although we optimized portions of the host-CAB 
interface to minimize the effect of the VME bottleneck, the overall design of the Nectar 
software is independent of the choice of bus. The software architecture described in this 
paper relies only on the presence of shared memory between the host and CAB, and we 
expect that it will perform well when higher-speed buses are used to connect the host and 
the CAB. 

The Nectar system is now used every day by application developers. Our future 
work will include further performance evaluation and tuning, improving the structure and 
functionality of the CAB runtime system, and porting important applications such as NFS 
and the X Window System to Nectar. 

14 



8 Acknowledgments 

The Nectar project is a team effort led by Professor H. T. Kung. The Nectar hardware 
was designed and built by Emmanuel Amould, Matthieu Amould, Frangois Bitz, Onat 
Menzilcioglu, and Steven Schlick. In addition to the authors, the following people have 
made significant contributions to the Nectar software: Michael Browne, Bemd Bruegge, 
Chiun-Hong Chien, Fred Christianson, Guy Jacobson, and I-Chen Wu. 

15 



References 
[1] Michael J. Accetta, Robert V. Baron, William Bolosky, David B. Golub, Richard F. Rashid, 

Avadis Tevanian, Jr., and Michael W. Young. 
Mach: A new kernel foundation for UNIX development. 
In Proceedings of the Summer 1986 USENIX Conference, pages 93-113, July 1986. 

[2] Emmanuel A. Amould, Francois J. Bitz, Eric C. Cooper, H. T. Kung, Robert D. Sansom, and 
Peter A. Steenkiste. 

The design of Nectar: A network backplane for heterogeneous multicomputers. 
In Proceedings of the Third International Conference on Architectural Support for Program

ming Languages and Operating Systems (ASPLOS-III), pages 205-216, April 1989. 
Also available as Technical Report CMU-CS-89-101, School of Computer Science, Carnegie 

Mellon University. 
[3] Randal E. Bryant, Derek Beatty, Karl Brace, Kyeongsoon Cho, and Thomas Sheffler. 

COSMOS: A compiled simulator for MOS circuits. 
In 24th Design Automation Conference, pages 9-16. ACM and IEEE, 1987. 

[4] GregChesson. 
Protocol engine design. 
In Proceedings of the Summer 1987 USENIX Conference, pages 209-215, June 1987. 

[5] Chiun-Hong Chien and Long-Ji Lin. 
Paradigm: An architecture for distributed vision processing. 

In Proceedings of the lOthlnternational Conference on Pattern Recognition. IEEE, June 1990. 

[6] Young Choi. 
Vertex-based Boundary Representation of Non-Manifold Geometric Models. 
PhD thesis, Carnegie Mellon University, 1990. 

[7] David D.Clark. 
The structuring of systems using upcalls. 
In Proceedings of the Tenth ACM Symposium on Operating Systems Principles, pages 171-180. 

ACM, December 1985. 

[8] Eric C. Cooper and Richard P. Draves. 
C Threads. 
Technical Report CMU-CS-88-154, School of Computer Science, Carnegie Mellon University, 

June 1988. 
[9] Allesandro Forin, Joseph Barrera, and Richard Sanzi. 

The shared memory server. 
In Proceedings of the Winter 1989 USENIX Conference, pages 229-243, January 1989. 

[10] Hemant Kanakia and David R. Cheriton. 
The VMP network adapter board (NAB): High-performance network communication for 

multiprocessors. 
In Proceedings of the SIGCOMM '88 Symposium on Communications Architectures and 

Protocols, pages 175-187. ACM, August 1988. 
[11] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. 

The Design and Implementation of the 43BSD UNIX Operating System. 
Addison-Wesley, Reading, Massachusetts, 1989. 

[12] Larry Peterson, Norman Hutchinson, Sean O'Malley, and Herman Rao. 
The ;t-kernel: A platform for accessing Internet resources. 
Owz/wter,23(5):23-33,May 1990. 

[13] John S. Quarterman, Abraham Silberschatz, and James L. Peterson. 
4.2BSD and 4.3BSD as examples of the UNIX system. 
ACM Computing Surveys, 17(4):379-418,December 1985. 

16 



[14] J .RReppy. 
Synchronous operations as first-class values. 
In Proceedings of the SIGPLAN '88 Conference on Programming Language Design and 

Implementation^pagos 250-259, June 1988. 
[15] Ellen H. Siegel and Eric C. Cooper. 

Implementing OSI presentation layer functionality for parallel systems. 
In 3rd Workshop on Large Grain Parallelism. Software Engineering Institute, Carnegie Mellon 

University, October 1989. 
[16] Alfred Z. Spector, Joshua J. Bloch, Dean S. Daniels, Richard P. Draves, Daniel J. Duchamp, 

Jeffrey L. Eppinger, Sherri G. Menees, and Dean S. Thompson. 
The Camelot project. 
Database Engineering, 9(4), December 1986. 
Also available as Technical Report CMU-CS-86-166, School of Computer Science, Carnegie 

Mellon University. 

17 


