
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Extensible Records Without Subsumption

Robert W. Harper Benjamin C. Pierce
February 13, 1990

C M U - C S - 9 0 - 1 0 2 a

School of Computer Science
Carnegie Mellon University

Pi t tsburgh, PA 15213

A b s t r a c t

We present a calculus of operations on extensible records, based on a polymorphic lambda calculus
with constrained quantification. This system is related to Cardelli and Mitchell's calculus of oper
ations on records, but expresses constraints on record operations using explicit predicates on types
rather than a subtype relation.

This research was sponsored by the Defense Advanced Research Projects Agency (D O D) and the Office of Naval
Research under Contract N00014-84-K-0415.

T h e views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agencv
or the U.S . government

Subject classification keywords:
F.4.1 Lambda calculus and related systems
D.3.1 Language Theory. Programming
F.3.3 Type structure
D.3.3 Da ta types and structures

Records

1 Introduction
In 1984, Cardelli [Car84, Car88] observed tha t some aspects of "multiple inheritance" in object-
oriented languages can be understood in terms of inclusion relations among record types in a typed
A-calculus. These inclusions are defined formally as a subtype relation: a type t is a subtype of tl

written t < if any member of t may safely be used in a context where a member o f t ' is expected.
The fact tha t the type of an expression may always be promoted to a supertype is captured by the
rule of sub sumption-.

G h 6 € t
Ght<t'
G h e ~ t , (S U B S U M P T I O N)

Cardelli and Wegner [CW85] extended this idea to a powerful second-order type system com
bining CardellTs ordering on types with the usual notion of type quantification [Gir72, Rey74],
using techniques developed by Mitchell [Mit84]. Wand [Wan87, Wan88] analyzed the concept of
record inclusions in the context of ML type inference and introduced the notion of "row variables,"
which allow types to be given to a natural record extension operator. This work was refined by
Jategaonkar and Mitchell [JM88, Jat89] and Stansifer [Sta88].

Remy [Rem89] introduced the notion of positive and negative information and the intuition tha t
adding either positive or negative information (specifying that fields are either definitely present or
definitely absent) gives more refined types. This intuition, formalized as an appropriate extension
to the kind system, plus the restriction tha t the set of field labels is finite, enabled him to use ordi
nary unification as in ML [DM82] to do type inference for programs involving extensible records. 1

Wand [Wan89] later extended Remy's system to infinite label sets and studied type inference for a
more general record merge operator.

Recently, Cardelli and Mitchell [CM89a, CM89b] have Hi«cnver*H a very e'»egant calculus of prim
itive record operations, combining bounded quantification with positive and negative information
about fields and generalizing Cardelli's original subtype ordering on fixed-length records.

At the beginning of the research described in this report, we set out to model positive and neg
ative information, using a variant of bounded quantification where quantified type variables are
constrained to lie between two given types rather than just beneath one given type. But in the
course of investigating these issues, we found it was helpful to think in terms of more primitive con
straints. For example, Cardelli and Mitchell's record extension operator is only defined on records
where the field being added is not already present; to prevent run t ime type errors, the typing rule
for the extension operator must check tha t this is the case. We found it simpler to express this
constraint directly as ur lacks Z" instead of encoding it as "r is less than some type lacking Z."
Another unsatisfying feature of systems tha t combine an order structure on types with ordinary
polymorphism is that they allow the "same" polymorphic function to be written in two ways:

\x:R. e
Aa<R. \x:a. e

We decided to look for a simpler system with no preorder on types at all, where genericity over
record types would arise solely from quantification of type variables. (Essentially, this amounted
to reverse-engineering Cardelli and Mitchell's system back in the direction of Remy's, al though we
didn' t realize it at the time. In fact, during the early stages of their work Cardelli and Mitchell
seem to have independently developed a system similar to ours by extending the kind system of
the polymorphic A-calculus along the lines suggested by Remy.)

S t r i c t l y speaking, Remy introduced two calculi: one based on ML type inference and one based on s u b t y p i
Viewed from a suitable distance, the two sys tems can be considered the same for present purposes .

r - v . ; ' " ^ UN5VER8ITY

Working with record calculi, one soon realizes that there are many conceivable operations on
records, including at least the following: 2

C o n s t r u c t i o n of new records from explicit lists of fields and their values.
E x t r a c t i o n of the value of a particular field of a record.
(F r e s h) e x t e n s i o n of a record by adding a value for a field tha t it does not already

have.
(U n c h e c k e d) u p d a t e where the existing value of a field, if any, is overwritten with a

new one.
C o n s i s t e n t u p d a t e where the new field must have the same type as the existing field

of the record being updated.
C h e c k e d r e s t r i c t i o n of a record to omit one of its fields.
U n c h e c k e d r e s t r i c t i o n where the field being dropped need not be present.
R e n a m i n g of fields.
R e t r a c t i o n of all information about a field.
S y m m e t r i c (f resh) m e r g e or concatenation of two records, where all the fields

present in the first record must be absent in the second, and vice versa.
A s y m m e t r i c (u n c h e c k e d) m e r g e where fields occurring in both records being

merged are given values from the rightmost record.
C o n s i s t e n t (h e r e d i t a r y) m e r g e where fields occurring in both - records must be

records, which are recursively merged in the result.

Following Cardelli and Mitchell, we decided to take the empty record

0 € {},
fresh extension

e|Z=5 € r\l:Int (where e € r and r lacks /) ,

and checked restriction

e\Z € r\l (where e € r and r has I : t for some t)

as primitive.
One major difference between the two systems is tha t , in Cardelli and Mitchell's system, a field

must explicitly be removed from a record before it can be extended at tha t field. In Cardelli and
Mitchell's system, the empty record type gives no information at all beyond the fact tha t all values
of tha t type are records: it neither has nor lacks any field. In the symmetric system, on the other
hand, the empty record type lacks every field.

Our extension operator, like Cardelli and Mitchell's, is only legal on absent fields: {} | /=5
is allowed and {} | /=3 | /=5 is illegal. The restriction operators differ in tha t we provide checked
restriction—{}|Z=5\Z is allowed but {}\l is not—while theirs is unchecked (a record may always be
restricted at any field).

Our system allows just one form of record polymorphism, arising from constrained type vari
ables. For example,

Aa lacks j has i:Int. Xx:a. (x\j=(x.i + x.i)) € Va lacks j has i:Int. a—*(a\j:Int)

2 Most of these are simpler to axiomatize in sys tems without type quantification. Some, such as asymmetric
merge, have several interesting variants, depending on where type variables are allowed to appear in the types of
their arguments .

denotes a function that may be applied to any record with an integer i field and no j field, and
that returns a new record with a j field that is twice the value of the i field of the original, with
all the other fields left unchanged. The general form of the constrained quantifier is

Aa lacks L~ has X + : T + € Va lacks L~ has £ + : T +

where L~ is a set of absent labels and i + is a tuple of present labels of types T + . The special case
where both L~ and Z + are empty corresponds to ordinary type quantification; the bound variable
a then ranges over all types, not just record types. This agrees with the intuition tha t record types
are precisely those types tha t provably lack or provably have at least one field.

Section 2 of this report defines the symmetric system in detail. Section 3 proves the decidability
of typechecking. Section 4 compares the system to its closest relatives, the systems of Remy and
Cardelli and Mitchell. Section 5 suggests some directions for future work.

Our presentation of the symmetric system in Sections 2 and 3 stands on its own and should be
comprehensible to anyone who can read inference rules. To understand the comparison to Cardelli
and Mitchell and Remy, readers should already be familiar with the details of those systems.

2 A Symmetric Calculus of Record Operations
2 . 1 Syntax

The metavariables t and r both range over types; a ranges over type variables; G ranges over
environments; I ranges over a countable set of labels; e ranges over expressions; x ranges over
variables; p ranges over primitive types; c ranges over constants. X, £ + , and L~ range over finite
tuples of distinct labels; T and T + range over finite tuples of types. If L and T are tuples of the
same length, then L : T denote* luc tuple {L\ . T \ , . . . , Ln : T n) . We often use tuples as if they
were sets, ignoring the order of their elements.

The syntax of types is given by the following abstract grammar:

t ::= p (primitive types)
| t—>t' (function types)
| {} (empty record type)
| r\hi (record extension)
| r\l (record restriction)
| a (type variable)
| Va lacks L~ has £ + : T + . i (constrained quantification)

(We omit u lacks L~" if L~ is empty and "has X + : T : + " if X + is empty. Ordinary type
quantification is just the special case of record type quantification where both sets of constraints
are empty.)

The syntax of terms is:

e ::= c (constants)
| x (variables)
| \x:t.e (abstraction)
I e\ €2 (application)
I {} (empty record)
| e.Z (field selection)
I e | /=e ' (record extension)
I e\l (record restriction)
| Aa lacks L~ has X + : T + . e (type abstraction)
I e[t] (type application)

The syntax of environments is:

G ::= 0
| G, x :t

| G, a lacks L" has I + : T +

2.2 Inference Rules
The following judgements are denned by a set of mutually-recursive inference rules:

h G env {G is a well-formed environment)
G h t type (t is a well-formed type)
GY-1 ~~t' (t and t1 are equivalent)
G h r rec (r is a record type)
G h r has I : t' (r has field I of type t ')
G h r lacks / (r does not have field I)
G h e € t (e has type t)

The "has," "lacks," and " ^ " judgements could also be defined by a separate set of mutually-
recursive rules.

2.2.1 W e l l - f o r m e d e n v i r o n m e n t s

h 0env (E N V - E M P T Y)

G h t type
x * dom(G)

h Gy x :t env

h G env
a £ dom(G)
I" n l + = 0

for all t € r + , G h t type
h G, a lacks L~ has I + : T + env

(E N V - V A R)

(E N V - T V A R)

2.2.2 W e l l - f o r m e d record t y p e s

H G e n v
G h {} rec

G h r rec
G h r lacks Z

G h t type
G h r|Z:t rec

G h r rec
G h r has / : t'

G h r \ i rec

h G, a lacks I ~ has I + : T + , G ' env
X - u£+ ^ 0

G, a lacks L~ has I + : T + , G' h a rec

(R E C - E M P T Y)

(R E C - E X T)

(R E C - R E S T R)

(R E C - T V A R)

4

2.2.3 W e l l - f o r m e d t y p e s

h G env
G h p t y p e

G h< type
G h t 1 type

G h type

h G env
a € dom(G)
G h a type

G, a lacks L" has £ + : T + h t type
G h Va lacks X" has I + : T + . * type

G h r rec

2.2.4 T y p e c o n g r u e n c e

G h r type

G h t type

G h f - i

GY-t1 - <"

h G env
G h p - p

G h t i - t[
Ght2~~ t'2

G h <i-** 2 ~ <2

h G env
G H { } ^ { }

G h r\l rec
G h r'V rec
Ghr~~r'

Ghr\l^

G h t - t 7

G h rec
G\-T'\M rec

G h 7-|Z:f - r'|Zrf'

(T Y P E - P R I M)

{ T Y P E - A R R O W)

(T Y P E - T V A R)

(T Y P E - A L L)

(T Y P E - R E C)

(C O N G R - R E F L)

(C O N G R - S Y M M)

(C O N G R - T R A N S)

(C O N G R - P R I M)

(C O N G R - A R R O W)

(C O N G R - E M P T Y)

(C O N G R - R E S T R)

(C O N G R - E X T)

5

"~ G h a type
G h a ~ o

for all : t< e 1+ : T + and U : *J € X + : T ' + , C h « i ~ (J
G, o lacks L~ has X + : T + 1-1 ~ t'

G h (Va lacks L~ has X+:T+.f) ~ (Va lacks L~ has I + i T ' + . f)

2.2 .5 R e c o r d t y p e equ iva l ence

G h »>\J\Z' tec

G H r \Z \ i ' ~ r\l'\l

G h r|/:f rec
G t- (r|Z:t)\Z ~ r

G h (r\l:t)\r rec
1*1'

G\r(r\l:t)\l'~(r\l')\l:t

G H Ht':*')|/":*" rec
G h ~ (r|J"rf")|/':f

2.2 .6 P r e s e n t fields
G h r|Z:t rec

G h (r | / : t) has / : t'

Ghrhasl-.t
G h T\V*' tec

G I- (r|Z':*') has I: t

1*1'

Ghrhasl-.t
G h r\V tec

G h (r\Z') has i : t

G, (a lacks L~ has I + : T +) , G' (-env
7 : t € 1 + : T +

G K ~ <'
G, (a lacks I ~ has L+:T+), G> h o has I: t '

(C O N G R - V A R)

(C O N G R - A L L)

(E Q V - \ - \ ')

(E Q V - | - \)

(E Q V - | - \ ')

(EQV-I-I')

(HAS-I)

(HAS-I')

(H A S - \ ')

(H A S - T V A R)

6

2.2.7 A b s e n t f ields

h G e n v
G h {} lacks Z

G h T\V*' rec
G h (r|Z':*') lacks Z

G h r\Z rec
G h (r\Z) lacks Z

G h r lacks Z

G h lacks /

h G, (a lacks L~ has £ + :T+) , G' env
Z 6 £~

G, (a lacks I " has I + : T +) , G' h a lacks Z

2.2.8 W e l l - t y p e d t e r m s

h G e n v
G h c € const-type(c)

h G, a; : t, G' env
G, a? : G' h aj : t

G, a; : t h e € t '
G h (Aa;:i.e) € t-+t'

G h «x €
G h e 2 € t "

G h (ei e 2) € t1

h G env

G h e € r

G h r lacks Z
G h (e|Z=e') € (r\l:t')

G h e € r
G h r has Z : t

G h (e\l) € (r\Z)

G h e € r
G h r has Z : t

Gbe.let

(L A C K S - E M P T Y)

(LACKS-I')

(L A C K S - \)

(LACKS-V)

(L A C K S - T V A R)

(C O N S T)

(ABS)

(A P P)

(E M P T Y R E C)

(E X T E N D)

(R E S T R I C T)

(S E L E C T)

7

G, a lacks L~ has L+:T+ h 6 € t (T Y P E - A B S)
G h (Aa lacks I " has I + : T + . e) € (Va lacks L~ has I + : T + . t)

G h e e (Va lacks £~ has L + : T + . t)
for all U : U 6 £ + : T + , Gh t1 has / t : t'{

for a l l : € L+ : T + , G h t« ~ <{
foralU^I-, G M ' l a d a f r

G h (e M) € t [< V a] (T Y P E - A P P)

2.3 Alternative Rules
This version of the system is presented so tha t decidability is easy to show. As usual in systems
of this kind, there is a more natural formulation where the equivalence assumptions in rules APP,
T Y P E - A P P , HAS-TVAR, and HAS-| are omitted and two more general rules are added to the
system:

G h e € t

G h e € V

Gh r has I : t
G\-t~i'

(E Q U I V)

(H A S - E Q U I V)
G h r has I : V

3 Properties of tlie Symmetric System
3.1 Basic lemmas

1. N o t a t i o n : We write "... h ..." for "... h ... is derivable." When Gh r rec, we say tha t ur is
a record type (under G) " .

2 . L e m m a : G h r rec iff there is some / such tha t G h r lacks / or there are / and t such tha t
G h r has I : t.

Proof: By straightforward inspection of the rules.

3 . L e m m a : If any of

h G, x : t env
h G, a env

h G, a lacks i " has i+rr1" env

then also

h G env .

Proof: By induction on the structure of the hypothesized proof.

4. L e m m a : If either G ft- t type or G h t rec then h G env.

Proof: By simultaneous induction on the sizes of proofs of G h t type and G h t rec.

5. L e m m a : G \r t ~~ t' implies both Gh t type and G h t' type.

Proof: By induction on the structure of the proof tha t G H t -~t*.

8

6. L e m m a : Let G be an environment and r a record type under G. Then r has the form

TO Opa Ua Oph Ith Opc l t c . . . opn ltn

where

• TQ is either {} or a variable a whose constraint under G is nontrivial (either L~ or £ + is
nonempty),

• opn is either \ or |, and

• ltn is either Z N (if opn is \) or ln : t n (if opn is |).

Proof: By induction on the proof of the well-formedness of r in G. Since G h r rec, r must have
one of the forms {}, 7*'|Z:t, t » ' \ Z , or a.

• if r = {}, then it has the correct form.

• if r = r ' |Z : i , then since G H r ' lacks Z , Lemma 2 and the induction hypothesis imply that r'
has the correct form; r'\l:t clearly does too.

• if r = r ' \ Z , then since Gh r ' has Z : f", Lemma 2 and the induction hypothesis imply that r'
has the correct form; r'\l clearly does too.

• if r = a, then the well-formedness of G implies that a € dom(G) . Rule REC-TVAR guarantees
that a's constraint under G is nontrivial.

7. L e m m a : If G h r has / : t is derivable then G h r lacks Z is not derivable, and vice versa.

Proof: Assume, for a contradiction, t ha t both are derivable. Lemma 2 implies tha t r is a record
type, so r has the form given by Lemma 6 . Now reason by induction on the structure of r , keeping
in mind that the ruies for "has" and "lacks" are syntax-directed:

• if r = a, then because r is well formed (by Lemma 2 and rule REC-TVAR) we may assume
tha t a's constraint in G is "lacks L~ has L+iT*" with L" and £ + disjoint. But then one of
LACKS-TVAR and HAS-TVAR must fail to apply, contradicting the assumption.

• if r = {} , then G h r has I: t cannot be derived and the contradiction is immediate.

• if r = r " \ Z , none of the HAS rules apply.

• if r = r ' V , where V ^ Z , then by HAS- \ ' and L A C K S - \ \ both G h T" has Z : t and
G h r " lacks Z are derivable. This contradicts the induction hypothesis.

• if r = r " | Z : t ' , none of the LACKS rules apply.

• if r = r " | Z ' : < ' , where Z ' ^ Z , then then by HAS-)' and LACKS- | \ both G h r " has Z : t and
G h r " lacks Z are derivable. This contradicts the induction hypothesis.

3.2 Normalization

8. Def in i t ion: The rewrite rules N O R M - \ - \ ' through NORM-| - | ' are formed by orienting rules
E Q V - W through EQV-|- | ' from left to right as follows:

G h T\1\V type
V alphabetically less than Z

G f _ r W , ^ r V , v (NORM -VV)

G h r|Z:^ type
C h W V v , (N O R M - K)

9

G h {r\ht)\V type

(N O R M - | - \ ') Gh{r\l:t)\l'^{r\l')\l:t

V (NORM-I-H

Gh (r\l':t')\l":t" type
I" alphabetically less than /'

G h (r|/':<')l'":<" ~* {r\l":t")\lW

9. Def in i t ion: If G is an environment, C[] is a type context (a type with a hole), and r and r'
are record types such tha t Gh C[r] type and G h r ^ r' by one of the above rewrite rules, then
C[r] reduces in one step to C[r'] under G, written G h C[r] —• C[r '] .

10. Def in i t ion: The reduction relation for a fixed G is the transitive, reflexive closure of one-step
reduction. If a well-formed type t reduces to t' under G, we write Gh t ^* t'.

11 . Fact: A well-formed record type r in an environment G is in normal form with respect to
the reduction relation iff it has the form

1*0Vl • • • VmlWl : Wl • • • \ln-tn

where

1. T0 is either {} or a variable,

2. the sequences li.. . Z m and Z m +i . . .Z n are both in strictly increasing lexicographic order.

Proof: By Lemma 6, r c»« be written as
1*0 Op t t lta OPb Ub opc lte . . . OJ)n ltn

If any oj>i is |, then every opj with j > i must also be |, since otherwise there would be an adjacent
pair . . \ / j . . . " to which either NORM- | - \ or NORM-|-V would apply, contradicting the
assumption tha t none of the normalization rules apply to r. So r has the form

To\h • • • \Jm|Jm+l^m+l • • • l^n^n

Furthermore,

1. to is {} or a variable, by Lemma 6.

2. If either li... Z m or lm+i . . . ^ is out of strict lexicographic order, then there must be an
adjacent pair of elements tha t are out of order. One of the rules N O R M - \ - \ ' , or NORM-| - | '
will apply to this pair, contradicting the assumption.

12 . L e m m a : If G h t —* then G h t -

Proof: Each proof tha t Gh t **** t' corresponds to a proof tha t Gh t~~ t', replacing uses of the
transitive and reflexive closure conditions in the definition of ^ * with instances of CONGR-REFL
and CONGR-TRANS and replacing subproofs of the form G h t" — t"' by the corresponding proof
that Gh t" ~~ t"', using the un-oriented versions of the one-step reduction and congruence rules.

1 0

file:///ln-tn

1 3 . D e f i n i t i o n : The outer rank of a well-formed record type r in an environment G, written
outer- rank(r) , is defined as follows. Write r as

70 Opa lta Oph lth opc lte . . . opn ltn.

Take the sum, over all pairs of elements lU and Ztj, with i < j , of c{lU, Itj), where

c (Z , Z ') = 0 if Z and V are strictly in alphabetical order,
1 otherwise,

c(l :t,U :t') = 0 if Z and V are in alphabetical order,
1 otherwise,

c(J :* , / ') = 0 if Z ^ Z ' ,
1 if Z = Z ' ,

c (Z , / ' : * ') = 0.

The idea is that if r r' by one of the normalization rules being applied on the "outer layer" of
r, then outer-rank(r) > o u t e r - r a n k ^ ') .

14 . D e f i n i t i o n : Let t be a type and r a record-typed subphrase of t. If r's occurrence in t is
not of the form t » | Z : * ' or r \ Z , then r is said to be maximal.

1 5 . D e f i n i t i o n : The rank of a well-formed type t in an environment G is the sum of the outer
ranks of all of its maximal record-typed subphrases. Formally,

rank(p) = 0
rank(f-*t ') = rank(t) + rank(t ')
rank (a) = 0
rank(Va lacks L~ has L+ : T + .t) = rank(t)

rank(r) = outer-rank(r)-r inner-rank(r)

inner-rank ({}) = 0
inner-rank(r|Z : t ') = inner-rank(r) - f rank(t ')
inner-rank (r \ Z) = inner-rank (r)
inner-rank(a) = 0.

1 6 . P r o p o s i t i o n : If G h t ^ then V has smaller rank than t.

P r o o f : The proof that G h t ^ t' consists of a context C and types r and r' such tha t t = C[r]1

t' = C[r '] , and G h r ^ r ' by one of the NORM rules. The hole in C[] appears in exactly one
maximal record-typed subcontext, say R[],

By the definition of rank, we can write

rank(C[r]) = c + outer-rank (R[r]) + inner-rank(.R[r])
rank(C[V]) = c + outer-rank (R [r1]) + inner-rank(£[r ']) ,

where c is a constant depending on C[], and

inner-rank(i^[r]) = d + inner-rank (i£[r])
inner-rank(#[r ']) = d + inner-rank (£[V]),

where d is a constant depending on R[].
From the definitions of outer-rank and the NORM rules, it is clear tha t outer-rank (#[?•]) >

outer-rank(R[?']) and inner-rank(r) > inner-rank (r ') .

11

17. Corol lary: All reduction sequences te iminate .

18. P r o p o s i t i o n : The reduction relation is locally confluent. For any environment G and types
t, t', and t" such tha t G h t — t' and G lr t ~»t", there is a type t'" such tha t Gh t' ~»* t'" and
G h t"

Proof: I t suffices to examine critical pairs of redexes in t—situations where the redexes in t
overlap so tha t after the reduction from t to t' the redex used to reduce t to t" no longer exists in t'
and vice versa. We consider all possible overlapping applications of the rules N O R M - \ - \ ' through
NORM-

1. ((roVi)V»)Vs with / 8 < l 8 < J i :

left redex: ((r 0Vi)Va)V« - ((i-o*a)Vi)Va
- {(r9\l3)\l,)\h.

right redex: ((r 0Vi)Va)V» - ((*oVi)Va)Va
- ((i-oVa)V»)Vi.

2. ((i"©Mi)Vi)Va w i t h / , < i i :

left redex: (K M i A M V a ~ r 0 \ l a .
right redex: ((r 0 Mi)Vi)Va - ((r o M O V a M

~ ((ro\Ja)Mi)Vi
~» 1*0 Va.

3. ((roMi)Va)V« with Z3 < *a and h * h-

left redex: ((r 0 |Mi)Va)\i« ~ ((roVaJMOVa
- ((' o V 2) V 3) M i
- ((roVs)V2)|Zi:*i.

right redex: ((*oUirfi)\Ja)\Z» - ((r o M i A W a
- ((roVa)Mi)Va
- ((roVs)Va)|iirfi.

l£h=l3:

left redex: ((ro|Mi)\la)\Jt ~ ((i W a) M i) V a
~~* r 0 Vi.

right redex: ((roMiAWVa - ((roMx)\la)Va
~» r6Vi .

4. ((r 0 | / i : t i) | / 2 r f a) \ / 2 with h *l2:

left redex: ((r 0 ! I 1 : l 1) | I 2 : i 2) \ Z 2 — ((roMaJMOVa
— (('o|la:*a)Va)IMi
~» »"ol'i Al

right redex: ((r 0 |Zi : t i) |Z 2 : t 2) \Z 2 ~» r0\h:ti.

5. ((i-0|/i:ti)|/arfa)V» with Z2 < h:

12

ifz 3 * z i :

leftredex: ((T» 0 | / i :t 1)|Z 2 :t 2)\Z 3 - ((r o M 2) M i) \ Z 3

- ((7o|/ 2^2)\Z 3)|Zi:t 1

- ((i - o V s N ^ M i .
right redex: ((r 0 |Z 1 : t 1) |Z 2 : t 2) \Z 3 ((ro|Zi:ti)\Z3)|Z2:t2

- ((' oVaJMOl^
- (('oV^M^IMx.

I f Z 3 = Z i :

left redex: ({ro\h:ti)\l2:t2)\h - ((^o|Z 2:t 2)|Z 1 : ^) \ Z 3

^ ^o|Z 2:^ 2.
right redex: ((r 0 |Z 1 : t 1) |Z 2 :^ 2) \Z 3 ^ (K M i)\Z 3)|Z 2:J 2

^o|Z 2:^ 2.

6 . ((ro|/i:<i)|/j:t2)|/srf8 with Z 3 < Z 2 < Z i :

left redex: ((r 0 |Z 1 : t 1) |Z 2 : t 2) |Z 3 : t 3 ~ ((r o M 2) M i) M s

— ((T-oU3:t3)U2^2)Ui^i.
right redex: ((r o M O M O I M a ((*o | / i r f i)M8)M2

— ((^o|Z 3 : t 3) |Z 1 : t 1) |Z 2 : t 2

— ((r o M 3) M 2) M i .

19. P r o p o s i t i o n : The reduction relation is confluent: for every environment G and types t, t'
and t" such tha t C h t ^ t 1 and G h W f , there is some type t"' such tha t G h t ' ^ * and
G h f" ^ *

Proof: By Corollary 17 and Proposition 18.

20 . Corol lary: Every well-formed type has a unique normal form and all maximal reduction
sequences terminate in this normal form.

2 1 . P r o p o s i t i o n : Let t and t' be well formed types in an environment G. Then G h t ~* t' iff
there is a type such tha t is in normal form, G K - ^ * and Gh t' ^* tu(.
Proof:

(<=) By Lemma 12 and CONGR-TRANS.
(=>) By induction on the length of the proof that G\- t ~* t'.
If the last step is an application of one of the congruence rules CONGR-PRIM through CONGR-

ALL, use the induction hypothesis to find common normal forms of all corresponding subphrases
of t and t ' . By the definition of reduction, these normal subphrases can be substituted into the
outer structure of t (or t1) to produce a type t" such that G h t t" and G h t' t". By
Corollary 20, t" can be further reduced to a unique normal form tnt.

If the last step is an application of CONGR-SYMM, use the induction hypothesis, reversing the
roles of t and t'.

If the last step is an application of CONGR-REFL, the result follows directly from Corollary 20.
If the last step is an application of one of the record equivalence rules E Q V - \ - \ ' through EQV- | - | \

then by the corresponding normalization rule either G !h t t' or G ih t' —• t and the result again
follows from Corollary 20.

Otherwise, the last step is an application of CONGR-TRANS. Call the middle type t ^ . Apply
the induction hypothesis to t and t m i d to obtain a normal-form type t"t such that G Ih t ^* t"t and
G h t m i d —** t"f, and again to t m i d and t1 to obtain a normal-form type t% such that G Ih t m i d t" f'
and Gh t' —•* <"£'. By Corollary 20, t"f and <"/ are identical, being common reducts of tt tmid«

13

22 . Corol lary: Equivalence of well-formed types is decidable.

3,3 Decidability of typechecking

2 3 . T h e o r e m : All the judgements of this system are decidable.

Proof: The rules for the judgements
h G env

G ht type
G h r rec
G h r has / : t'
Gh r lacks /
Greet

are all syntax-directed, and hence are decidable given tha t

Gh t ~~t*
is decidable. (In checking this, it is important to observe tha t the equivalence of two types need
only be decided when both are already known to be well formed.) By Lemma 22, all the judgements
are decidable.

4 Related Work
The closest relatives of the symmetric system are Remy's calculi [Rem89] (taking into account
Wand's observation [Wan89] tha t Remy's system can be extended to infinite label sets) and Cardelli
and Mitchell's work on operations on records in a calculus with bounded second-order polymor
phism [CM89a, CM89b].

4.1 Remy
The symmetric system is can be thought of as essentially jus t the instantiation of Remy's ideas in
a pure second-order A-calculus, since genericity in both systems arises solely from polymorphism.
In Cardelli and Mitchell's calculus the function tha t extracts the x field of any record tha t has an
x field of type Int can be written either

\r:(x : Intjj. r.x

or
Aa <{x : Infj). Ar:a. r.x

The symmetric system allows only the second version:
AR has xilnt. \r:R. r.x

Remy's system, which permits only ML-style polymorphism, leaves the A implicit:
x : IntXr:{li : £i.aXl U : A. /n t , U : tn.an,}. r.Z,

One difference between Remy's system and the symmetric system is apparent from this example:
Remy quantifies over flags corresponding to the presence or absence of individual labels. A field
whose flag is an unconstrained type variable may be instantiated to either "present of type f" or
"absent." In the symmetric system, a single type variable s tands for a whole "row" of unknown
fields. This seems to be an artifact of the treatment of infinite label sets in the two systems (ours
is like Cardelli and Mitchell's rather than Wand's) , rather than an essential point of divergence.

Another difference is t ha t Remy considers a slightly different set of primitives (in particular, his
update operation is unchecked), though his system can be extended to include consistent upda te
as well.

14

4.2 Cardelli and Mitchell
The relationship between the symmetric system and Cardelli and Mitchell's is less straightforward.
In a sense they are siblings, since both can be seen as extensions of Remy's ideas to a system with
second-order quantification and both provide the same set of primitive record operations. But the
fact that the core calculus of the symmetric system is based on pure second-order quantification,
while Cardelli and Mitchell's is based on bounded quantification, leads to a number of important
differences. The principal differences are:

• The symmetric system has no explicit order structure on types. This regains unicity of types,
and makes it possible to express functions taking arguments of "exact" types.

• Whereas extraction types are an integral part of Cardelli and Mitchell's system without which
it loses a great deal of power, adding them to the symmetric system would increase" its power
very little. Surprisingly, some of the "canonical" uses of extraction types in Cardelli and
Mitchell can be expressed in the symmetric system without extraction. In particular, we
show below tha t renaming and consistent update are expressible.

• The constraints on the extension and restriction operators in the symmetric system are exactly
symmetric: a record can be extended only on a field that it lacks and restricted only on a
field tha t it has. There is no known symmetric version of Cardelli and Mitchell's calculus
(where, for example, ()\Z ~ ()) in which fresh extension is also definable [Car89].

• The symmetric system seems somewhat simpler overall than Cardelli and Mitchell's and is
arguably more "primitive" because it provides exactly one way to type certain functions that
have two different typings in Cardelli and Mitchell's system. However, the symmetric system
is considerably less concise in many cases because it uses quantifiers to do things tha t can
often be done with sabsumption in Cardelli and Mitch**U'« «yct.#»n>

• The lack of subsumption may make the symmetric system less expressive in practice.

We conjecture tha t if a rule of subsumption were added to the symmetric system, it would end up
looking very much like Cardelli and Mitchell's calculus. Indeed, Cardelli and Mitchell apparently
developed a system similar to the symmetric system during the early stages of their work.

To .understand the relation between the symmetric system and its closest relative it is useful to
try encoding each in the other.

We sketch translations in both directions. (N.b., we have not checked the correctness of these
translations in full detail. Also, the notation used for examples in Cardelli and Mitchell's calculus
in the following has been altered slightly to highlight similarities with the symmetric system.)

The simpler of the two translations is from the symmetric system to Cardelli and Mitchell's.
Define the translation function (-) * from types, environments, terms, and judgements in the sym
metric system to the corresponding ones in Cardelli and Mitchell's system as follows:
Types:

P* = V
(<i-<2)* = t;-<5
O* = 0
(r\l:ty = T'\IH*

a ' = a
(Va lacks L- has £+:T+.<)* = Va <; (Q\(L-\JL+))\L+:(T+y.t*

15

Environments:
0*
(G, * : *) *
(G, a lacks L~ has Z + : T +) *

0
G*, x:f
G ' , a < : (() \ (L - u L +)) \ L + : (T + y r

Terms:
c
x
Xxii'.e0

(e\l=e')<
(e\lY
(Aa lacks L~ has I + : T + . e) *

Judgements:

(h G env)*
(G h t type)*
(G h t - t ') *
(G h r rec)*

h G* env
G* h t* type
G* h r - f
G* h r* <; 0

(G h r has Z : * ') •
(G h r lacks Z)*
(G h e 6 t)*

G* h r* <: OVI«'
G* h r* <; () \^
G* h e* € <*

By translating proofs in the symmetric system into proofs in Cardelli and Mitchell's system, it is
fairly easy to show tha t the translation preserves derivability—for example, tha t if G r e € t is
derivable in the symmetric system then (Ghee t)* is derivable under Cardelli and Mitchell's rules.
(The disjointness condition in rule ENV-TVAR is needed to make the case for type application go
through.) On the other hand, the translation does not reflect derivability because there are terms

{Xx:{i : Int}. 2 + x.i){i = 5, j = 9}

tha t are ill typed in the symmetric system but tha t become well typed when the rule of subsumption

The idea of the translation from Cardelli and Mitchell's system into the symmetric system is
to regard r < r ' as equivalent to a set of "has" and "lacks" assertions expressing the following
constraints on r (our use of "has" and "lacks" here is informal):

1. If T' has Z:t, then r has Z : t with t < t ' .

2. If T' lacks Z, then r lacks Z.

We use the derivation of r <. r' to generate the requisite assertions. The condition on t and t1

reflects the "hereditary" nature of systems like Cardelli and Mitchell's.
The essence of the translation is tha t every use of subsumption is translated into a type appli

cation involving a bounded quantifier. We begin by assuming tha t derivations have been translated
into a normal form where the only use of the subsumption rule is immediately before application,
to promote the type of the argument of a function so tha t it matches the domain type. Each
A-abstraction is then transformed so tha t its domain type is a variable

(Xx:r. e) # = Aa lacks . . . has Xx:a.(e*)

such as

is allowed.

16

where the sets of present and absent labels are determined by the outer-level structure of r. For
example,

(Xx:{i:Int, j:Bool}\k.e)^ = Aa lacks k has hint, jiBooi Xx:a. e*.

Applications are translated so that the "actual" (minimal) type of the argument, which can be
read off from the derivation, is explicitly passed as an extra parameter:

(«i = 4 [(t y p e - o f ^)) *] ef

If the domain type of the function is a primitive, then the use of subsumption at the application
must be trivial (by our assumption above) and the extra type parameter can be dropped from the
translation of both the function and the application. On the other hand, subsumption can work
not only at the outer level of record types, but also on record types embedded in the fields of
larger record types. In general, the translation of a function involves one type quantifier for each
record-typed subphrase of its domain type. For example,

(Xx:{i : {j : Bool}}. = Aa has j:BooL Ab has i:a. Xx:b. .

Obviously, the two translations are not inverses. Neither

(e *) # = *

nor

(e #) * = «

holds in general. However, we believe tha t the translation from Cardelli and Mitchell's system to
the symmetric system both preserves and reflects derivability of judgements—e.g., tha t if G h e € t
is derivable under Cardelli and Mitchell's rules then \G. r e 6 t) # is derivable in the symmetric
system, and conversely tha t if (G h e € t)# is derivable in the symmetric system then G h e € t is
derivable under Cardelli and Mitchell's rules.

4.3 Some examples
Both Cardelli and Mitchell's system and the symmetric system can express the operation of adding
an x field to any record tha t doesn't already have one:

CfcM: AR < ()\x.
Xr:R.r\x=5

Symmetric: AR lacks sc.
Xr:R.r\x=5

Cardelli and Mitchell's record operations allow the "deep update" function tha t negates the b
field of the a field of a record to be written in two different ways. The first version has an analog
in the symmetric system, but the second, which is terser and more elegant, relies crucially on
extraction types to express the result type of the function. In the symmetric system, deep update

17

requires an extra type parameter for every level of nesting.

C&M: AR <: (b : Bool)).
AS <: (a : R).

Xr:S.
r\a\a=(r.a\b\b=not(r.a.b)) using quantification

AS <:(a:Q>: Booty).
Xs:S.

(s —• a = ($.a -* b = not(s.a.fc)))
€ (5 4 - a : (5.a <- b : £oo /» using extraction types

Symmetric: AR has b:Bool.
AS has a : £ .

Ar:5.
r \ a | a = (r . a \ 6 | 6 = n o t (r . a . 6))

The identity function on all records with only a field x (of any type) is expressible only in the
symmetric system, since Cardelli and Mitchell have no way of preventing a larger record from being
given the more restricted type by the rule of subsumption:

A j R . XT:{X : R } - r
The function accepting any record with at least integer x and y fields and returning the stripped

record with only x and y fields can be expressed in both systems, but Cardelli and Mitchell's version
is shorter:

C&M: Xr:(x : Int, y : ltd), r .

Symmetric: AR has x:Int, y : Int.
Xr:R.

{x = r.x, y = r.y)

Since one of the biggest differences between our system and Cardelli and Mitchell's is t ha t we
do not provide extraction types (they seem not to add significant expressive power in systems tha t
do not also have subsumption), it is important to assess how much of what they do with extraction
types is expressible in other ways in our system. Probably the most important use of extraction
types in Cardelli and Mitchell is in defining the "consistent upda te" operator, which takes a record
and gives a new value to one of its fields, where the new value must have the same type as the
existing contents of tha t field. The result then has exactly the same type as the original record.

In both systems, the upda te operation requires a new syntactic form with a separate rule of
inference giving its type:

E h T € R < 0
E H a € R.x (C M - U P D A T E)

E h r.x :- a € j R

G h e € r
G H r has I : t'

G h e' € t"
G h t' - t" (S Y M M - U P D A T E)

G H (e upd / = e') € r

18

A less critical but convenient record operation is "renaming": altering a record so that all of
its values are the same but one of its fields has been renamed. In Cardelli and Mitchell's calculus,
renaming is definable as syntactic sugar:

R[z->y] = (R\x\y:R.x)
r[x — y] = (r\z\y=r.z)

The symmetric system requires a new inference rule for renaming at the level of types because there
is no way to use simple syntactic sugar to get a name for the type of the x field of the original
record type:

G h r rec
Gh r has x : t

G h r\x lacks y
G h r[x - y] - (r\z)\y:t

But at the level of values, syntactic sugar suffices:

r[x —* y] = r\x\y=r.x

The obvious typing rule for the rename operator,

Greer
Gh r has x : t
Gh r lacks y

(S Y M M - T Y P E - R E N A M E)

G h e[x —> y] t r[x — y] (S Y M M - V A L - R E N A M E)

is derivable.

5 Future Work
Our investigation of this calculus suggests a number of profitable avenues for further research:

• In many situations, it is possible to translate expressions involving quantifiers with posi
tive constraints on their bound variable into equivalent expressions involving only negative
constraints on variables. For example,

(Aa has hint. \x:a. x.l + 2) [{}\l:Real\ ({}|J=3)

can be translated as

(Aa lacks /. Xx:(a\l:Int). x.l + 2) [{}] ({}| /=3).

This suggests tha t there may be an equivalent formulation of the symmetric system where
quantifiers have only negative constraints. If there is, we conjecture tha t this system can be
encoded in an even simpler, more basic system whose only record operator is the symmetric
merge.

• Our original investigation of how Cardelli and Mitchell's ideas can be combined with double-
bounded quantification still presents a number of fascinating questions. Interesting issues may
also arise from combining Cardelli and Mitchell's system with one involving intersections (also
called "meets" or "conjunctions") of types [CDV80, Pie89].

• All the schemes for record operations in extensions of ML's type system involve some kind
of type reconstruction. The ramifications of record operations for type reconstruction in a
second-order type system have not yet been considered in depth (either in our work or, as far

• as we know, by Cardelli and Mitchell).

19

• In view of the bewildering variety of conceivable possible operations on records, it would be
very helpful to have a comprehensive taxonomy of natural programming examples where each
operation can be used.

References
[Car84] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and

G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer
Science, pages 51-67. Springer-Verlag, 1984.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138-164, 1988.

[Car89] Luca Cardelli. Personal communication, 1989.

[CDV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and lambda
calculus semantics. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pages 535-560, New York, 1980. Academic Press.

[CM89a] Luca Cardelli and John Mitchell. Operations on records. In Proceedings of Fifth Inter
national Conference on Mathematical Foundations of Programming Language Semantics,
Tulane University, New Orleans, March 1989. To appear.

[CM89b] Luca Cardelli and John C. Mitchell. Operations on records. Research report 48, Digital
Equipment Corporation, Systems Research Center, August 1989.

[CWS5] Luca Cordciii and Peter Wegner. On understanding types, da ta abstraction, end poly
morphism. Computing Surveys, December 1985.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional programs. In
Proceedings of the 9TH A CM Symposium on Principles of Programming Languages, pages
207-212. ACM SIGPLAN/SIGACT, 1982.

[Gir72] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures de Varithme-
tique d'ordre superieur. PhD thesis, Universite Paris VII, 1972.

[Jat89] Lalita A. Jategaonkar. ML with extended pat tern matching and subtypes. Master 's
thesis, MIT, August 1989.

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pat tern matching and
subtypes (preliminary version). Ih Proceedings of the ACM Conference on Lisp and
Functional Programming, pages 198-211, Snowbird, Utah, July 1988. ACM.

[Mit84] John C. Mitchell. Coercion and type inference (summary) . In Proc. 11-th ACM Symp.
on Principles of Programming Languages, pages 175-185, January 1984.

[Pie89] Benjamin C. Pierce. Bounded quantification and intersection types. Thesis proposal,
September 1989.

[Rem89] Didier Remy. Typechecking records and variants in a natural extension of ML. In Proceed
ings of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, pages 242-249. ACM, January 1989.

[Rey74] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Program-
mation, pages 408-425, New York, 1974. Springer-Verlag LNCS 19.

20

[Sta88] Ryan Stansifer. Type inference with subtypes. In Proceedings of the Fifteenth ACM Sf.n-
posium on Principles of Programming Languages, pages 88-97, San Diego, CA, January
1988.

[Wan87] Mitchell Wand. Complete type inference for simple objects. In Proceedings of the IEEE
Symposium on Logic in Computer Science, I thaca, NY, June 1987.

[Wan88] Mitchell Wand- Corrigendum: Complete type inference for simple objects. In Proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

[Wan89] Mitchell Wand. Type inference for record concatenation and multiple inheritance. In
Fourth Annual IEEE Symposium on Logic in Computer Science, pages 92-97, Pacific
Grove, CA, June 1989.

21

