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ABSTRACT 

This document describes a proposed CMU multiprocessor system to be 
constructed around a set of PDP-11 computers connected through a cross-
point switch to a large sharable primary memory. The present design con­
stitutes a solution to a specific set of needs existing in our environment. 
The system has research consequences that reach well beyond the particular 
demands it was designed to satisfy. For although multiprocessors have 
been much talked about and advocated, there are remarkably few operational 
systems more complex than dual-processor systems, and even fewer documented 
scientific investigations into their performance and operating structure. 

This document is limited to a presentation and analysis of the (hard­
ware) system. It gives enough description of the usage requirements, soft­
ware, and the research potentials and problems to make clear why we believe 
the effort to be a sound one. It does not attempt a systematic discussion 
of the field of multiprocessor research, nor of alternative systems that 
might be of interest, either to meet our computing demands or as research 
directions. 

Section II discusses the requirements and research potential. Section 
III lists the design constraints adopted. Section IV lays out the PMS 
structure of the system. Section V describes the main specifications of 
the operating system. Section VI provides some details on a performance 
analysis. 
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I. INTRODUCTION 

This document describes a proposed CMU multiprocessor system to be con­

structed around a set of PDP-11 computers connected through a crosspoint 

switch to a large sharable primary memory. The system is to operate as a 

third node in the existing Computer Science computer system, along with two 

existing PDP-10 !s. 

The present design constitutes a solution to a specific set of needs 

existing in our environment. It replaces a prior planned solution, which 

consisted of a collection of individual stand-alone PDP-11 systems and PDP-11 

i/o processor systems situated in front of the PDP-10 fs. It is not the only 

system that satisfies our requirements, as the existence of the prior plan 

indicates. However, it provides a highly effective solution and does so with­

in the cost framework with which we have been working. 

The system has research consequences that reach well beyond the particular 

demands it was designed to satisfy. For although multiprocessors have been 

much talked about and advocated, there are remarkably few operational systems 

more complex than dual-processor systems, and even fewer documented scientific 

investigations into their performance and operating structure. Thus, the 

multiprocessor system offers substantial opportunities for significant research 

that is consonant with our research interests and capabilities. 

This document is limited to a presentation and analysis of the (hardware) 

system. It gives.enough description of the usage requirements, software, and 

the research potentials and problems to make clear why we believe the effort 

to be a sound one. It does not attempt a systematic discussion of the field 

of multiprocessor research, nor of alternative systems that might be of 
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interest, either to meet our computing demands or as research directions. 

Section II discusses the requirements and research potential. Section 

III lists the design constraints adopted. Section IV lays out the PMS struc­

ture of the system, giving the various components which have to be fabricated, 

their gross specification and the design decisions remaining. Section V de­

scribes the main specifications of the operating system. Section VI provides 

some details on a performance analysis. 
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II. BACKGROUND ON REQUIREMENTS AND RESEARCH POTENTIAL 

The CMU multiprocessor project i9 directly responsive to two require­

ments : 

1. the need for particular computational facilities 

2. a research interest in computer structures. 

The design itself may be viewed as attempting to satisfy the computational 

needs with a system that is conservative enough to ensure successful construc­

tion in an immediate time frame. Within this constraint, the system appears 

to be a research vehicle of considerable potential, both directly in terms of 

research on multiprocessor systems and in its ability to support a wide range 

of Important investigations in computer design and systems programming. Beyond 

this, the system will produce a significant amount of information processing 

capability, thus satisfying an important side condition that the funds we have 

available to us for computing facility provide enough general power for the 

continued growth of the computer science community at CMU. 

The co-existence of usage and direct research interests raises the (not 

unknown) spectre of conflicts between these interests in terms of stability 

and availability. Consistent with the view that this system is to provide 

computing facility, such conflicts, should they arise, will be resolved in 

favor of the users of the system. 

All of our interests in the system are computer research interests. The 

users of the system are engaged in varieties of computer science research not 

significantly different from the direct research into multiprocessor hardware 

and software. (Indeed, they are often the same people, wearing different hats). 
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The existence of the system will generate new research not now being done 

in the environment, some of which we can quite clearly see and only part 

of which will be direct research on the system. When these additional 

efforts come into existence they will have as great a claim as present 

projects to the use of the system and will make as great contributions to 

justifying the system as satisfying their computation requirements. The 

temptation is to lump all these research efforts, direct and indirect, pre­

existing and potential, into a single collection for the purposes of justify­

ing the design. Instead we will preserve some fidelity to history, describ­

ing the requirements in terms of (1) usage by those research efforts who had 

already laid a claim for PDP-ll-style resources; (2) potential research ef­

forts and (3) research into multiprocessor systems. 

USAGE REQUIREMENTS 

The pre-existing research plans that already involved using small com­

puters (PDP-11 fs in fact), and which define the core requirements for the 

present multiprocessor system, cover almost the full range of computer science 

research at CMU: artificial intelligence, systems programming, and computer 

structures. We take up each in turn. 

Artificial Intelligence 

The work in artificial intelligence relevant to C.mmp is in speech and 

vision; the development of a speech-understanding system being a major research 

venture at CMU, research on vision being a minor one. The requirements are of 

two kinds. The first, common to speech and vision, is that special high data 

rate, real time interfaces are required to acquire speech and vision data from 
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the external environment. For reasons of total system reliability these 

devices should be acquired by an input-output processor (Pio) and then 

transferred to Mp under standard internal conditions. A major cause of 

instability at a PDP-10 research installation is the specialized hardware 

added by that installation. Use of a Pio also permits some pre-processing 

of the incoming high rate data, thus lightening the load on the main system 

(the PDP-10 fs) which is tuned to a slower interactive rate. 

The second requirement, and by far the more stringent one, is to obtain 

real time processing for the speech-understanding system. The class of 

schemes under active pursuit involve multiprocessing with several PDP-ll's 

plus a PDP-10, organized to work on all the levels of speech representation 

in parallel and with continuous intercommunication (i.e., the acoustic, 

parametric, phonemic, lexical, syntactic and semantic levels). The extent 

and shape of the parallel computation and intercommunication is a matter for 

intensive investigation, but some such scheme seems a fruitful approach to 

achieve real time speech processing. The total requirements of the system 

involve very large amounts of Mp, shared between several processors, backed 

up by extensive secondary storage. In short it is a computational problem 

that puts demands on the system along most dimensions. 

Systems Programming and Operating Systems 

At CMU we are intensively involved in research on operating systems and 

on understanding how software systems are to be constructed. Three faculty 

members independently (Habermann, Parnas and Wulf) and many graduate students 

are interested in these jroblems. Research in these areas has a strong 

This is extremely difficult to prove, of course. In our own system the addi­
tion of any hardware causes some instability for a period of up to several weeks. 
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empirical and experimental component, requiring the design and construction 

of many systems. We have discarded generally the notion of using virtual 

or simulated machines for reasons of performance, credibility and realistic 

users. Given the unavailability of the PDP-10 system, which operates in a 

user oriented time-sharing mode around the clock, a uniform solution has 

been to move to small stand-alone computers as the object machines for such 

experimental systems work. 

The primary requirement of these systems is isolation, so they can be 

used in a completely idiosyncratic way and be restructured in terms of soft­

ware from the ground up. On the other hand, the exact configurations needed 

varies from time to time. More important, work on the various experimental 

systems does not go on continuously 24 hours a day, but exhibits a variable 

pattern of usage, depending on how many people are working on the system and 

how intensively. These systems also require in an essential way access by 

multiple users and varying amounts of secondary memory. 

Computer Structures 

There is currently intensive activity at CMU in working with register 

transfer modules, using a system of modules (RTM's) developed here and at DEC 

(Bell, Grason et al, 1970) and now in production as the PDP-16. A dedicated 

facility is needed for the design testing of experimental systems constructed 

of these modules. A small computer is appropriate, not only to avoid building 

specialized test equipment, but to permit the design testing to become fully 

automatic. When operating in test mode the computer must be directly coupled 

to the system being tested and isolated from all other systems. 
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A similar need for a dedicated system arises from an interest in fault 

tolerant systems. Here, it is necessary that the various processors can have 

access to one another so that checking can take place. For example, a con­

sole of a faulty computer would be attached to a checking computer so that 

all tests could be carried out under control of the checking computer. 

General Requirements 

All of these research efforts require the same type of general purpose 

service as is now provided by our PDP-10 system: files, editing, higher lan­

guages, interactive access, etc. That, under our original plans, some of the 

stand-alone systems might have had to give up some of these facilities only 

expresses the price that appeared necessary to obtain an isolatable system 

that could be restructured from the hardware up. Access to these facilities 

simultaneously with the capability for isolation on demand is certainly to be 

preferred. 

The reasons for requiring general facilities for the speech and vision 

research appear somewhat different, since these programs are already large 

integrated software systems with an essential component running on the PDP-10. 

POTENTIAL RESEARCH EFFORTS 

We include in this category those researches that have not guided the 

design of the multiprocessor sytem, in the sense of providing constraints it 

had to satisfy, but which appear to capitalize on the system so strongly that 

they have a probability of occurring that ranges from high to certain. 
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Network Research 

Our original plans in obtaining the PDP-10 system involved moving towards 

a network configuration of several PDP-10 1s. Our motives for so doing were in 

large part conditioned on our wanting to do research on networks, as an ap­

propriate structure for a within-institution computer system (Bell, Habermann, 

McCredie, Rutledge, Wulf, 1969). Currently we have two PDP-10's, the second 

one just achieving full system status. The growth of an actual network has 

been slow, being affected by funding limitations and by other developments in 

the environment. 

The multiprocessor affects the network plans in two ways. The multipro­

cessor itself provides a field within which one can set up experimental net­

work configurations of assorted sizes and shapes. There are limits to what can 

be achieved by simulation and artificially constructed abstract networks, just 

as there are limits to what can be achieved by simulated and virtual operating 

systems. But they provide an essential tool. The proposed multiprocessor 

will permit systems with up to perhaps a dozen real nodes to operate in real 

time; and we expect a substantial amount of network research to evolve in this 

direction. 

The multiprocessor system, taken as a single computer system, provides 

a third node in a network consisting of itself and the other two PDP-10's. 

This is a real network with real problems of exploitation. The multiprocessor 

will serve as a highly specialized node with unique functional capabilities. 

It will be in no way a minor node in the system in terms of processing power, 

though this power will be realized on relative short word lengths (16 b/w). 
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Design of Processors 

The multiprocessor is designed around a set of identical Pc's, namely 

PDP-11's. However, as long as certain interface design philosophies are 

maintained, the design permits processors of quite different designs to 

operate in the system, and to obtain from the rest of the system support 

with respect to files, input/output, initialization, etc. Various systems 

constructed with RTM's can take advantage of this. 

The recent design exercise on an ARPA list processing system led to a 

local design (C.ai, see Bell, Freeman, et al, 1971; Barbacci, et al, 1971; 

and McCracken Robertson, 1971) that stressed, among other things, the design 

of processors that went a long ways in specialization to a given list processing 

system (e.g., a LISP system, an L* system, etc.). The multiprocessor offers 

an opportunity to design and realize some experimental processors. Consider­

able investigation is required before one can be sure such a venture is worth 

the costs involved, but with the lowering cost of processors it appears on 

first analysis to be quite feasible. On the positive side is the principle, 

now stated several times, that only a small fraction of the necessary research 

on computer systems can be done via simulations and virtual machines. An 

actual unconventional processor (say for L * ) , which offered substantial pro­

cessing advantages over programmed versions of the same system, would call 

forth the programming efforts to explore the system's real worth and determine 

its ultimate defects as a user system. 

MULTIPROCESSOR RESEARCH 

It is a fact that one cannot put together a multiprocessor system of any 

complexity today without becoming involved in research on multiprocessors. 
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Multiprocessor systems (other than dual processor structures and nPio-Pc 

structures) have not become current art. Some of the reasons for this 

state of affairs appear to be: 

1. The absolutely high cost of processors and primary memories 

so that a complex multiprocessor system was simply beyond 

the computational realm of all but a few extraordinary users, 

no matter what the advantages. 

2. The relatively high cost of processors in the total system, 

so that an additional processor did not increase the performance/ 

cost ratio. 

3. The unreliability and performance degradation of operating 

system software, which made going to more complex system 

structures a venture in futility. 

4. The inability of technology to construct the central switches 

required for such structure, due in part to low component density, 

in part to high cost. 

5. The loss of performance in multiprocessors due to memory access 

conflicts and switching delays. 

6. The unknown problems of dividing tasks into sub tasks that can be 

executed in some parallel, though possibly interactive way. 

Thus, the expense was prohibitive, even for discovering what advantages of 

organization might overcome the obvious decrements of performance. And in 

any event, it seemed mostly to complicate matters in a world that was already 
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too complicated to function properly. 

We appear to have entered into a technological domain when many of the 

difficulties listed above no longer stand so strongly: 

1'. Providing we limit ourselves to multiprocessors of minicomputers, 

the total system costs of Pc and Mp are now within the price 

range of a reasonable facility. (E.g., the CMU system with 

16 Pc, suitable Mp, Ms and T will still be around.5M$, yet 

execute approximately 3 ^ 5 million instructions/sec.). 

2 1 . The Pc is now generally a smaller part of the total system 

cost. Hence, a small incremental cost that provides a substan­

tial increase instruction/sec. will be cost effective. 

3 f . Software reliability is now somewhat improved, primarily be­

cause a large number of operating systems have been constructed. 

Something is understood about the overhead costs imposed by 

various forms of organization. 

4 1 . Current medium and large scale integrated circuit technology 

enables the construction of switches that do not have the 

large losses of the older decentralized switches. Centraliza­

tion of the switch permits fewer and shorter cables. 

5'. Memory conflict is not high for the right balance of processors, 

memories and switching system. The trade-offs possible, of 

course, are characteristic of a given domain of technology. 

Appropriate balances appear to be attainable currently. 
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6'. There has been work on the problem of task parallelism, not 

only general studies, but highly specific studies, e.g., 

around ILLIAC IV and CDC STAR. Other work on modular pro­

gramming (Krutar, 1971; Wulf, 1971) at CMU suggests how sub-

tasks can be executed in a pipeline. 

In short, the price of experimentation appears eminently reasonable, given 

that there are requirements that appear to be satisfied in a sufficiently 

direct and obvious way by a proposed multiprocessor structure (i.e., for us, 

the usage requirements listed at the beginning of the section). 

However, the state indicated above does not settle many issues about 

multiprocessors, nor does it make the development of one routine. We list 

below the main areas of research interest in the multiprocessor system it­

self. All of these call for some attention, although the extent of our effort 

in each is unclear. 

1. The multiprocessor design itself, i.e., its PMS structure. Few 

enough multiprocessors have been built, so each one represents 

an important point in design space. 

2. The processor-memory switch design, especially with respect to 

reliability. 

3. The configuration of computations on the multiprocessor. There 

are many processing structures and little is known about when 

they are appropriate and how to exploit them, especially when 

not treated in the abstract but in the context of an actual 

processing system: 
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Parallel processing; a task is broken into a number of sub-
tasks and assigned to separate processors. 

Pipeline processing: various independent stages of the task 
are executed in parallel (e.g., as in a co-routine structure). 

Network processing: the computers operate quasi-independently 
with intercommunication (with various data rates and delay 
times) • 

Functional specialization: the processors have either special 
capabilities or access to special devices; the tasks must be 
shunted to processors as in a job shop. 

Multiprogramming: a task is only executed by a single pro­
cessor at a given time-. 

Independent processing: a configurational separation is 
achieved for varying amounts of time, such that interaction 
is not possible and thus doesn't have to be processed. 

4. The decomposition of tasks for appropriate computation. Detailed 

analysis and restructuring of the algorithm appear to be required, 

as in the work with ILLIAC IV. The speech-understanding system 

is the one major example we know we will undertake. It has re­

search interest from the multiprocessor viewpoint, as well as from 

the speech recognition viewpoint. 

The operating system design and performance. While the basic 

operating system design must be conservative, since the multi­

processor will run as a computation facility, it will have sub­

stantial research interest. Variations and alternative operating 

systems will also be constructable. 

The measurement and analysis of performance of the total system. 

One of our complaints about the current field is the high ratio 

of design studies to performance studies. 

5. 

6. 
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The achievement of reliable computation by organizational 

schemes at higher levels, such as redundant computation. 
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III. DESIGN CONSTRAINTS 

The following constraints have been set up as a policy to guide our 

research and development. While we consider many of the constraints to be 

absolute at this time, we may on occasion have to exceed them. The user 

and research requirements of the previous section are essentially the objec­

tive function. 

PDP-11 PRODUCTION COMPONENTS , 

We would like to use PDP-11 components as they are produced, without 

modification. These components include Mp (primary memory modules) , Ks (slow 

device controllers for non-direct memory transfers, such as teletypes), Kf 

(fast device controllers for direct memory transfers, such as disks), and 

Pc (central processors, various models present and future). Modifications 

to the central parts of the processors or to the device controllers are no 

doubt the most serious, because there are so many of the devices, and a 

modification may preclude future device connections. Modification to the 

primary memory seems somewhat less serious. There is only one type of com­

ponent, we will have many copies of it, the cost is relatively high for 

this portion of the machine (hence we can amortize any change over a larger 

number of units). In addition, total system performance is strongly affect­

ed by the Mp characteristics. Hence there may be a large payoff for changing 

it. 

For the above reasons we have decided to modify the memory system in 

order to get the resulting increase in performance and lower cost. Accom­

panying these modifications we must modify each processor interface slightly 
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to get a faster memory bus. However, since there are other minor modifica­

tions to the processor for mapping and protection, we can incorporate the 

modifications into a single interface that is added on to the standard DEC 

processors. This is discussed in a later section. 

We have not adopted the constraint that devices need to be addressed 

anonomously by all processors at any time. It will be acceptable to set 

switches that establish a processor to be in control of a particular device 

for a long time (e.g., perhaps seconds or minutes, but possibly even days). 

Requests for device data transfers are handled by the particular processor 

in control of the device. A particular device must be assignable to more 

than one processor in order to meet reliability requirements. In addition, 

many devices must be assignable to a single processor to permit specializa­

tion. This constraint on device accessibility is established in the clear 

knowledge that in general the processors in the system will be identical 

(i.e., PDP-Il's Pc's), hence anonymous from a user-program view, and capable 

of being assigned device duties according to the needs of the system. 

Although we believe it would be desirable to keep the device addresses 

identical to those of DEC, in order to run software without reassembly, we 

must modify these numbers. The change is required to avoid putting path-

finding memories (content addressable) in the switches for each of the devices, 

LOGIC TECHNOLOGY 

Initially, we haye decided to use only standard TTL integrated circuitry, 

which can be obtained via standard procurement channels. The TTL constraint 

is imposed both because our facilities to fabricate multiple layered boards 

are limited and because the interface to the PDP-11 is via TTL. 
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Eventually we would like to explore the use of LSI technology in the 

design of the switch sections. We have currently rejected the use of this 

technology because it requires s close coupling with an integrated circuit 

facility, hence putting the scheduling, outcome, etc. beyond our control. 

We would like to engage in such a design, when the present system is more 

operational. 

EXTENDABILITY 

We are constraining the design to be relatively fixed, but large, so 

that it works with a certain maximum configuration size. Any subsequent 

extensions would require a redesign along the same lines, but with differ­

ent parameters. Another approach would be to have a design which would let 

the configuration grow in a more indefinite fashion. However, we are not 

willing to undertake such a design, because of what appear to be high time 

penalties for the smaller systems and the uncertainty of being able to 

build a system of indefinite capabilities. 

CONFIGURABILITY AND INDEPENDENCE 

In order that individual research projects not be coercively constrained 

by running within a large system, the design permits partitioning into smal­

ler, independent computers in a reliable fashion. In this mode the subset 

of equipment constitutes an independent computer, with appropriate secondary 

memory and input-output terminals. 

Possibly such a system might reach a point of diminishing returns at a 
smaller size than with the fixed, maximum size approach. 
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RELIABILITY 

We are not designing the circuitry of the system to meet extremely 

high reliability constraints, mainly to avoid several lengthy iterations 

of design and testing. Nevertheless, we expect to be much concerned with 

the ultimate reliability of the system, and will attempt to achieve it by 

various techniques at higher levels. From an operational point of view, 

we believe the following constraints are the appropriate ones: 

1. There must be at least n+1 components of the particular types 

necessary to constitute a minimum usable of n components. 

(Components for special functions are not considered necessary.) 

2. Considering each Mp|Pc|K to have roughly the same reliability, 

there must be multiple paths for all component information 

flow paths, e.g., 

3. All busses shall function properly when a component connected 

to it has power removed. 

4. A component can be connected or disconnected when system power 

is on. 

SCHEDULE 

The development time constraint (schedule) determines to a large degree 

the methods we use in the design because we feel it is important to have an 

K Pc Mp 
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operational computer in a short time. The short schedule is based on the 

need of our users for the facility and our desire to provide a research 

facility* Contributions of this system to such efforts as the ARPA list 

processing machine or to improved versions of multiminiprocessor systems 

all require rapid completion. Much of the contribution to computer science 

of constructing a multiprocessor system comes not from proposing a design 

and not even from putting together the physical system, but from exploring 

the effect of its structure on computational tasks and constructing operat­

ing systems that exploit its capacity. To ever get to the latter requires 

setting a short schedule for producing the former. Thus, time is of es­

sence for the construction phases of the project. 
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IV. MULTIPROCESSOR IMS STRUCTURE, IMPLEMENTATION AND ISP 

In this section the design will be described briefly and directly, with­

out explicitly relating each part to the design constraints. We assume the 

reader is familiar with the DEC PDP-11 structure. The configuration is basi­

cally a multiprocessor system of conventional type that has been proposed and 

has existed in smaller-sizes (usually two processors) or different form, e.g., 

the Burroughs B5000 and D825 computers, IBM's 360/65 and various proposed 

aerospace computers (see Bell and Newell, 1971a). The structure of the sys­

tem is given in Figure 1. 

There are two switches, Smp and Skp. Smp allows the processor to com­

municate with primary memories. Skp allows the processor to communicate with 

the various controllers (K) , which in turn manage the secondary memories (Ms 

and T) and terminals (T), respectively. The switches are under both computer 

and manual control. 

Each processor system is actually a complete computer with its own local 

primary memory and controllers for secondary memories and terminals (e.g., 

Teletypes). Each processor has a Data operations component, Dmap, for trans­

lating addresses at the processor into physical memory addresses. The local 

memory serves both to reduce the bandwidth requirements to the central memory, 

since PDP-11 makes many references into a stack area of memory, and to allow 

completely independent operation and off-line maintenance. 

A central clock,'K.clock, allows precise time to be measured. This is 

necessary to allow the software to log message transfers and to perform 

measurement. Each processor can interrupt the others for message transmission, 

A central time base is broadcast to all processors so that each can compute 

independent elapsed times. 
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Ks 

Ks 

Mp 

Mp mr*16 

Kf 

Kf 
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Kf H 

Ks H 

Dmap Pc 

H M p 
Kc H 

K.clock 

K.interrupt 

Dmap 

Kf 

Ks 

K.configuration 

Skp 

(p-to-k;null|dual duplex)crosspoint 

where: Pc/central processor; Mp/primary memory; T/terminals; 
Ks/slow device control (e.g., for Teletype); 
Kf/fast device control (e.g., for disk); 
Kc/control for clock, timer, interprocessor communication 

Both switches have static configuration control by manual and 
program control 

Fig. 1. Proposed CMU multiminiprocessor computer/c.mmp. 
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Smp - THE SWITCH BETWEEN PROCESSORS AND PRIMARY MEMORIES 

This switch handles information transfers between primary memory and 

the processors (requestors). Transfers from the fast controls, Kf, for 

primary memory via the processor, also go through Smp. The switch has 

ports (i.e., connections) for m busses for primary memories and p busses 

for processors. Up to min(m,p) simultaneous conversations are possible via 

the cross-point arrangement. There is no memory in Smp for data port buf­

fering, and a single processor has only one memory request pending at a 

time. A more complete discussion of cross-point switch structures is given 

in Bell and Newell (1971a). Unlike most cross-point switches, this one is 

located centrally (as opposed to being distributed in the memory as is 

usual, e.g., in the PDP-10, 360/65 ~ 67, or 1108). While this requires a 

larger initial configuration and implies non-modularity, the cost of an 

average system should be less and we are interested in a rather large con­

figuration. A large cost component of a switch ystern (together with the 

associated mechanical and circuitry problems) is the cables. This structure 

requires only p+m cables, as opposed to pxm cables in the case of a distribut 

ed switch. This structure also has less cable delays than the associated dis 

tributed switch. 

Another aspect of Smp is the control required for providing different 

configurations. Smp can be set under programmed control (i.e., a Unibus 

carried configuration.parameters). In addition, these parameters can also 

be set via manual switches on an override basis. The control of Smp can be 

by any of the processors, but one processor is assigned the control. In this 

respect, switch control is like any other T or Ms control: 
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Smp is not Unibus compatible, although the signals are essentially the 

same. We have decided against compatibility in order to improve the speed 

through the switch and to achieve better signal-to-noise characteristics. 

Since we are modifying the processor, the links: P Smp and Smp Mp 

can be changed rather easily. 

Switch Details 

The GMUnibus enters the cross-point and the lines on this bus serve 

the following functions: 

1. From P: request that a selection be made (terminates in Smp). 

2. From P: request a particular memory module, Mp (terminates in Smp). 

3. M-P dialogue: control the flow of data between M and P on an 

interlocked basis (uni-directional, switched through Smp). 

4. From P: select the word within a module, Mp (uni-directional, 

switched through Smp). 

5. Between P and M: pass information between the selected P and Mp 

(bi-directional, switched through Smp). 

These lines fall into two categories: those that terminate in Smp and 

control the selection process to a selected m-bus, and those that are switched 

to a selected m-bus. For those of the second category, which we will consider 

to be data, the basic structure of the switching is shown in Figure 2. Here, 

we show the components involved with the switching of a bi-directional bus. 

If data is only transmitted in one direction (as in the case of addresses 

that arrive on p-busses and must be transmitted to the appropriate m-bus) 

only half of the circuits are installed in the printed circuit cards (cases 
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3 and 4 above). There are p+m receiving circuits per bit that connect to 

the entering cables from the processors and memories; also there are p+m 

transmitting circuits at these cable entries which transmit the switched 

results to the processors and memories. Since this is a bi-directional 

bus, the Smp must know the direction of data flow and set the switches ac­

cordingly. There are p>on multiplex circuits per cross-point bit that 

operate as follows. 

An incoming bit from P to M goes through the p-bus receiver, the ap­

propriate outgoing m-bus line is known (by the m-bus control) and this con­

trol selects the appropriate multiplexor position. The bit passes through 

the multiplexor to the transmitter where it is sent on to the m-bus. 

A bit from M to P arrives on an m-bus, goes through the m-bus receiver, 

and the m-bus control selects the multiplexor corresponding to the p-bus 

which is to receive the bit. The multiplexor is selected and the bit is 

transmitted on to the processor via a p-bus. This type of switching is used 

for case 3, 4 (uni-directional) and 5 (bi-directional). 

The selection of a particular m-bus is accomplished by a control associ­

ated with each m-bus that observes all incoming requests from all processors 

(cases 1 and 2 above) and decides to close the data port switches and estab­

lish direction for the particular m-bus it controls. The m-bus control 

unit (Figure 3) addresses the particular multiplexors for transmitting and 

receiving data shown in Figure 2. The inputs to this control are on the 

basis of the particular processor requesting the control, m-bus, and the 

inputs from manual switches that change the configuration (shown at the right 

hand side of the control box). These inputs allow the control to rename 
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particular m-bus lines to correspond to different physical addresses and 

to ignore requests from specific processors. 

Mp IMPLEMENTATION 

A number of memory manufacturers were approached for implementation of 

Mp. At the final selections, not only was a cost/performance ratio impor­

tant but also the vendor's ability and willingness to undertake construc­

tion of the switch. Two manufacturers met these requirements. One was pro­

posing a fast cory memory system (650/250 ns cycle/access) at 1.5^/bit; the 

other a 150/180 ns bipolar memory at 2.5^/bit. Both memories were modular 

at the 8k (word) level. The core memory system was chosen. 

Because of the large number of modules, the cycle time was less impor­

tant than the access time. One of the major processors on this system, the 

PDP-11/20, only needs a word approximately every 1.5 jisec. and, in addition, 

never does a WRITE into memory, but always does a READ-MODIFY-WRITE (RMW). 

A RMW cycle in semiconductor memory takes two cycles whereas in core memory 

it takes only 1.2 cycle times. This, plus the better cost/performance ratio 

and the difference in access time of only 100 T|sec, led us to choose the 

core system. 

Alternatives for the Switching Structure 

Many alternatives were considered for carrying out the switching between 

memory, processors and the other components (primary memories, slow control­

lers and fast controllers). Only one competitive scheme we know of seems 

worth mentioning — a switch design that was based on this design, undertaken 
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at the University of Newcastle in May, 1971. (See two memos by Bell, Lauer 

and Randall, 1971.) Most switches, while giving more flexibility for con­

figuration, and hence reliability (e.g., like the S.trunk, Bell and Newell, 

1971a), require more equipment and increase switching time. 

Reliability 

The reliability of the switch can be significantly increased by pro­

viding some form of a duplicated switch. We are not looking into a switch 

of this type currently, because we feel the number of parts in the switch 

is sufficiently small. The reliability will be comparable to that of a 

single ll/20 processor. The design of the switch is such that failures will 

appear either as a failure in a memory or a processor port. Since the sys­

tem is designed to tolerate either of these types of failures, a switch 

failure can also be tolerated. 

Skp - THE SWITCH BETWEEN PROCESSORS AND THE CONTROLS FOR SECONDARY MEMORIES 
AND TERMINALS 

Skp allows one or more of k Unibusses which have several slow or fast 

controllers (Ks or Kf) to be connected to one of p central processors. The 

k Unibusses with the controllers are connected to the p processor Unibusses 

on a fairly long term basis (i.e., minutes to days), since a processor will 

manage a control completely as a resource, independent of the location of 

the actual user process requesting the physical resource. This management 

consists of initiating*data transmission, processing interrupts, transmitting 

data for it, examining its status, and finally turning it off. One of the 

main reasons for only allowing a long term, but switchable, connection be­

tween the K Unibusses and the processor on a one at a time basis is to 
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avoid the problem of having to decide dynamically which of the p processors 

should manage a particular device. Information is not available in each 

device that could be used for this purpose. We have decided to provide only 

static switching because about the same amount of processing is involved, 

independent of which of the processors does it. Furthermore, this proces-

sing is usually small, hence it does not generally matter which processor 

handles it. 

Like Smp, Skp has a connection (via Unibus) which is used to control 

the configuration of the switch, i.e., determine which of the k busses is 

connected to the processors. There is both program (via the Unibus) and 

manual control of the configuration. Note that since the control of the 

configuration is via one of the controlled Unibusses, the switch must first 

be set to a known position to allow subsequent control to be made. Connect­

ing the configuration control bus to a specific computer would violate the 

reliability goals. 

Skp Structural Alternatives 

At the present time we do not know the exact structure of Skp. In the 

trivial case this could be a null switch with various devices just connect­

ed to the p busses. Unfortunately, an arrangement of this type will force 

a processor and all associated devices to be taken out of the system when 

a single device is connected or removed, since the processor will have to 

be stopped. 

— 
The interrupt service to handle a single Teletype character on the PDP-10 
is on the order of 500 p,s. Assuming 10 char/sec would require l/2# pro­
cessor capacity per line. The device data transmission is handled roughly 
in the same way as PDP-10, except that the better interrupt facility of 
PDP-11 should further reduce service times. 
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A more desirable structure is k two-position switches, S(2 to 1) which 

allow either of two processors to connect to a single Unibus. A structure 

of this type might look like: 

-s<2 to iy 

-S(2 to 1> 

-S(2 to 1* 

This structure allows us to expand k after the initial configuration, yet 

provides multiple control-data Unibusses for a set of controllers connected 

to one of the k busses. This gives a particularly simple structure if 

k - p / 2 , by having all Unibusses accessible to at least two processors, with 

only one switch per processor and only devices on l/2 the processors. 

The most desirable alternative for the switch, from a performance view­

point, is the cross-point. The only limitation is its capability for future 

growth, given that a central one of the type proposed in Smp is used. The 

cross-point gives us the capability of allowing any of the k busses to be 

connected to any number of the p processors. S(cross-point) for Skp has the 

further advantage of allowing us to construct configurations which have either 

all devices on a single processor, or a small number of devices per processor. 

In this way, for certain specialized tasks, the devices can be handled with 

a minimum of interprocessor communication. 
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Skp is not critical in the early configurations, and we can start with 

mostly null switching with several S(2 to 1) and eventually construct a full 

cross-point. Doing this, we would place duplicate equipment on two separate 

processors. Non-duplicated, but reasonably critical, components would be 

placed on S(2 to l)'s. Specialized equipment could only be placed on P's 

which had no S(2 to 1) or other critical devices. 

PROCESSOR AND Dmap - PROTECTION, RELOCATION, AND INTERRUPTS 

Most of the PDP-11 processor models can be used with the system, with 

minor modifications to the bus interface logic. Higher performance proces­

sors than those currently available might require extensive modification, if 

they used a second bus for faster solid-state memories. 

The Dmap is a Data Operations component which takes the addresses gen­

erated in the processor and converts them to addresses to use on the Memory 

and Unibusses emanating from the Dmap. There are four sets of eight registers 

in Dmap, enabling each of eight 8,192 byte blocks to be relocated in the 

20 21 * large physical memory. The size of the physical Mp is 2 words or 2 bytes. 

Two bits in the processor, together with the address type are used to specify 

which of the mapping registers is to be used. 

The logical structure, as seen by the systems programmer, of the address 

map is described below, together with its implications for the user and the 

monitor. For the simple user, the conventional PDP-11 addressing structure 

is retained - except that he does not have access to the "i/o page", and 

hence the full 16-bit address space refers to primary memory. 

Provision has been made to expand the physical address space to 2 (16 X 10 ) 
words at some subsequent time; however, this expansion is not currently planned. 
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A PDP-11 program can only generate a 16-bit address, but the 

Unibus has 18-bit addressing capability. In the proposed scheme the 

additional two bits of address will be obtained from two unused posi­

tions of the program status (PS) register. (Note, this register is in­

accessible to user programs.) 

PS Users 16-Bit Address 
... , r As in Current 

» 

i PDP-11 ^ ^ U s e £ \ 
1 — . 

18-Bit Unibus Address 

In the sequel we refer to J01-, 1/5-, and 1 1 - mode addressing to 

refer to the cases arising from the four possible bit configurations 

obtained from PS. These cases are: 

These addresses are always mapped, and always 

refer to the shared, large, primary memory. 

These addresses are (with two exceptions noted 

below) are mapped as above. The exceptions are 

that 8 kw of this space are not mapped and refer 

to the private Unibus of each processor. 

11-mode 
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For those references that are mapped, the mapping itself consists of 

using the top five bits of the 18-bit address to select one of 30 re­

location registers, and replacing these by the contents of the 8 low 

order bits of that register: 

Users 16-Bit Address 

k 1 6 ^ * 1 

^ 1 3 " B i t P a g e ^ 18-Bit Unibus Address 

•Bit Relocation 
Registers \f 

f 
\ 1 1 

h > 

21-Bit CMUnibus Address 

The leftmost five bits of the 18-bit Unibus address may be thought 

of as selecting one of 30 relocation registers, as described above. A 

better descrip-tion, however, is that the two bits of the PS select 

one of four banks of relocation registers and the leftmost three bits 

of the users (16-bit) address selects one of the eight reg­

isters in this bank. This latter description is more appropriate, since 
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a process is effectively bound to a particular bank of relocation registers 

by its PS word, while it may (by appropriate monitor calls) alter the con­

tents of the relocation registers within that bank and thus alter its 

"instantaneous virtual memory 1 1—that is, the set of directly addressable 

pages. 

Although not implemented in exactly this way, the relocator may be 

thought of as a controller on the Unibus as shown below: 

21-Bit CMUnibus to large Mp 

Kr 
(relocator) 

Unibus 

Pc Mp Ks Kf 

Under this conceptualization the relocator, Kr, behaves as a controller 

which: (1) responds to all J0Ji(-, J01-, and ljtf- mode addresses by performing 

the mapping described above and passing the request along to the switch, 

(2) responds to six (of eight possible) 11-mode page addresses by performing 

the mapping described above, (3) responds to 30 11-mode addresses for the 

relocation registers themselves (in the 'device space'). 

There are three other properties of the mapping mechanism which have not 

been mentioned previously: 
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All accesses to trap and interrupt vectors are forces to the 

processor's 'local 1 memory. Note that traps and interrupts 

save the current PS and initialize PS from the trap vector. 

Thus, by appropriate use of the relocation registers the 

cost of a context swap can be substantially reduced. 

The format of each of the 30 relocation registers is as shown 

below: 

1 1 1 1 4 8 
f I f + 

— physical page number 

1 reserved for expansion of physical page numbe 
not used 

- NXM 
1 Write protect 

'Written-into' 

- the 'written-into' bit is set by the hardware whenever 

a write operation is performed on the specified page. 

- the 'write protect' bit, when set, will cause a trap on 

(before) an attempted write operation into the specified 

page. 

- the NXM, 'non-existent memory', will cause a trap on any 

attempted write into the specified page. Note: this is 

not adequate for, and not intended for, 'page fault' 

interruption. 

- the 8-bit 'physical page number' is the actual relocation 

value. 
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3. Relocation register zero in each bank is identical and, more­

over, the stack will be forced into this page (by ignoring 

the three high-order bits of SP). Thus monitor service rou­

tines (entered via a trap) will use the users stack; this 

is necessary in order to insure that an RTI (return from inter­

rupt) instruction may be properly executed. 

Now consider some implications of the mapping scheme with respect to 

user programming, protection, sharing, interrupts, and i/o. 

User Programming 

User processes will run under jtf/i-, J01-, or ljtf- mode addressing, and 

probably under jtfjrf-mode by convention for all but real-time processes where 

context switching time is especially critical. Under these modes the PDP-11 

appears essentially identical to the non-mapped version except that the i/o 

page is inaccessible and certain instructions will be disallowed (e.g., 

HALT). In particular the PS and relocation registers are inaccessible and 

thus there is absolute protection between processes. Since all i/o is in 

the 11-space, standard devices (e.g., disks) cannot be inadvertently operat­

ed. All pages of a (running) process's instantaneous virtual memory (IVM) 

must necessarily be physically present in Mp. Monitor request (via traps) 

will be provided to do such things as change the IVM, request a pre-paging 

operation, lock a page into Mp, release a page, etc. 

Protection and Sharing 

As described above, at the hardware level protection is absolute since 

a process cannot reference outside the set of pages specified by its bank 
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of relocation registers. Also, at the hardware level, sharing is trivial 

since the relocation registers of several processes may reference the same 

physical page. Inadvertent destruction of shared pages (e.g., code) is 

prohibited by write protection. If the shared page is code, however, its 

author must exercise some care to make it "position independent" (not dif­

ficult on the PDP-11), since it may execute from different "page positions" 

(relocation registers) in the IVM's of different processes. In particular, 

for example, the FORTRAN library would be written to execute in this fashion. 

Standard compilers, e.g., Bliss, will produce this form of code. Monitor 

requests (via traps) will be provided for establishing and controlling such 

sharing. 

The NXM bit mentioned above will be set for all relocation registers 

not being used by a process (i.e., if its IVM is less than 32kw). Should 

the process reference one of the registers containig this bit set, it will 

be assumed to be running amuck and will be interrupted and killed by the 

monitor. No attempt has been made to provide a "page-fault" mechanism be­

cause: (1) the "working set" model strongly suggests it is futile to try 

to run a process unless it has a reasonable subset of its pages already 

present, and (2) it is extremely difficult (on the PDP-11) to record the 

state at the time at which the fault occurred during an instruction. 

Interrupts 

One of the nice features of the mapping scheme is that, since the PS 

is uniquely loaded for each interrupt (or trap), a portion of the context 

swap is inexpensive. For example, monitor request traps can directly enter 

an address space in which the process description, page table, etc., are 
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stored. Similarily, device interrupts can activate a process in the (11) 

address space in which that device service can/must be performed. 

I/o 
Direct-memory-access devices, such as disk and drum, specify an 18-bit 

bus address when they read or write to Mp. Thus, these addresses may be 

automatically relocated into Mp. Since an i/o operation is not likely to 

be for the process using the Pc at that instant, the fbl and/or Ifb relocation 

banks can, for example, be used for i/o while the user (Pc) process is using 

the fifi bank. 

TIME OF DAY CLOCK, TIMER, PROCESSOR IDENTIFICATION 

Each processor has a local control, Kc, which is used for (1) inter­

communication among the other processors, (2) to collect the exact time of 

day from the central time of day clock, Kclock, and (3) to collect time 

events such that software times can be constructed in each processor. In­

formation for these three functions is passed on a single bus, called the 

Processor Intercommunication and Clock-Timer Bus. 

Time of Day Clock 

The clock is used in several ways: for communication to the user re­

quiring time labeling (e.g., printouts, file labels); for software and sys­

tem function time measurements; and for internal naming of 'objects' (e.g., 

pages, files, etc.). for this latter no two objects can have the same 

identifier, i.e., the same time. 
The K.clock operates continuously, providing a count, in microseconds, 
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post A.B.4"'^ In addition to the 60 bits giving the clock information, four 

bits are also included in the words to specify the processor number. Each 

processor may read this information by executing four instructions to read 

four words. In this way a clock number read by any processor is always 

unique, even if the clock is read simultaneously by all processors. 

In order to avoid timing problems inherent in reading clocks which are 

subject to change during the reading interval, reading the first word of the 

clock causes the 60 bit time to be placed in a register. On subsequent reads 

of the remaining parts of the register the register will not change, thus 

insuring that the clock does not change during the interval which it is being 

read. Electrically, this process is accomplished by having the central 

clock, K.clock, continuously broadcasting the 60 bit number on a bus, to­

gether with information telling when the clock may be read. Physically, this 

can take the form of broadcasting on a time multiplexed basis (e.g., every 

0.5 microseconds a different quadrant of the clock count is broadcast) to 

avoid using a 60-bit wire bus. Alternatively, it may be desirable to broad­

cast continuously the least significant word, while time multiplexing the 

most significant part. 

Processor Number 

The processor number is read by looking at the clock count. This number 

is variable, by toggle switches. It is also used for signaling other pro­

cessors using the Intercommunication bus. 

*'Anno Babbage 1 

2 
We rejected using a direct encoding, e.g., year (12-bits), month (4-bits), 
day (5-bits), hour (5-bits), minute (6-bits), second (6-bits), milli­
seconds (10-bits) and microseconds (10-bits) (for a total of 58-bits) be­
cause of the difficulty of obtaining time differences. 
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Timers 

The K.clock also broadcasts periodic time events for use by each pro­

cessor in generating time-interval interrupts. Each processor is equipped 

with a counter and the ability to select the frequency with which the 

counter is to be decremented. An interrupt is generated on a processor 

when its counter is decremented below zero. 

Processor Intercommunication 

Intercommunication is carried out among the processors fundamentally 

by placing messages in memory and having the various processors look at the 

messages. In order to signal another processor to look for messages, a pro­

cessor may cause an interrupt to any of the other processors. That is, each 

processor has a wire on the intercommunication bus which is used to carry the 

input event from all the other processors. There is no information on the 

intercommunication bus that identifies the processor requesting the inter­

rupt. Instead, the interrupter is identified by looking in memory at some 

predetermined location. In order to allow the system to be partitioned into 

arbitrary, totally isolated,subsets, manual switches are provided to pro­

hibit such subsets from generating mutual inter-processor interrupts. 

PERFORMANCE ANALYSIS HARDWARE 

In order that we can effectively do research into the nature of the 

multiprocessor behavior, it is necessary to have performance measuring ports 

throughout the system. The basic philosophy in the design of the clock was 

to have a very accurate clock which would enable software monitoring. In 

addition, it is necessary that we be able to measure the processor-memory 
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performance. This requires hardware because the times are short, and the 

data is not accessible by other means. 

The most accurate method under consideration is to associate a small 

memory with each crosspoint intersection. This can be constructed effici­

ently by having a memory array for each of the m rows, since control is on 

a row (per memory) basis. When each request for a particular row is acknowl­

edged a 1 is added to the register corresponding to the processor which gets 

the request. In this way we can measure the exact amount of work done by 

each processor. Note that i/o and file traffic is known since the file 

sizes, words transferred, etc. are known. Such a scheme does have the draw­

back of adding significant hardware to the switch, hence lowering reliability. 

The performance with even a large number of processors seems quite high 

(see Performance of the System, Section VI). Therefore, little may be gained 

by measuring the performance accurately. Knowing the performance of individ­

ual P's may be more interesting, and is somewhat easier to implement. 

It would be most desirable to measure data about processor instruction 

performance as measured by execution. The information which could be ob­

tained includes: 

1. instructions executed 

2. memory accesses 

3. instruction types (relatively difficult) 

4. instructions, accesses, instruction types. 

Information of the above type would be particularly useful in regard to 

generating very accurate, repeatable billing statistics. For example, the 
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actual number of instructions executed could be billed. Any scheme based 

on time has some error because of background interrupt handling, and memory 

interference. 

PROCESSOR MODIFICATIONS 

Processor modifications to implement the relocation scheme as well as 

the switch are minimal and straightforward. The module on the 11/20 Pc that 

requires the most modification will be the M725 Bus Interface and IR card. 

This card contains not only the two high order address bits of the 18 bit 

bus address but also the necessary signals and gating to read and load the 

status word. The necessary modifications are made by disabling the conflict 

ing functions on the M725 and providing alternative functions on an addition 

al card; hence we use as much existing logic as possible. 

The relocation registers will be in close proximity to the processor 

and thereforie can be wired directly. Thus bus drivers and receivers are 

not needed. 

The memory bus address decoders (M109) for local memory appear to be 

adequate. The device address decoders (M105) are not usable because of 

their slow speed. Therefore, a new device address decoder card is being 

constructed. 

Relocation Register Additions 

Each processor port will have 30 relocation registers, each 16 bits 

wide. The processor is such that the registers should have a fast access 

time, but the cycle time can be rather long. Using five 5N7489N Texas 
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Instrument 64 bit memory chips, a 30x16 bit memory with an access time 

of 35 ns and a cycle time of 100 nsec. can be built for about $100. 

CONNECTION TO PDP-10 

C.mmp will be connected to PDP-10 System A, via a PDP-10, DL10 adapter. 

This adapter allows up to four minicomputers to access directly the PDP-10 

memory at relatively high data rates (up to 4 Mhz bit rates). The data is 

transmitted under program control of the PDP-11 processor, and transfers are 

variable length byte, variable length character strings. Each computer trans­

ferring data into the PDP-10 memory is provided 64 channels (via one physical 

channel). Each channel has control status words kept in the PDP-10 memory, 

which control the format and location for packing and unpacking in the PDP-10. 

That is, a byte pointer to the character string being transferred is kept for 

each channel. The PDP-11 accesses each of the channels by unique addresses 

in its memory space. By continuously writing information in a particular 

PDP-11 address causes a byte (or word) string to be written in PDP-10 memory 

at the location and form specified by the PDP-10 control words. Similarly, 

a byte string in PDP-10 can be read into the PDP-11 memory, by having the 

PDP-11 continuously read the fixed address corresponding to the channel num­

ber. An interrupt channel is also provided for signaling task completion, 

errors, etc., between the two computers. 
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V. OPERATING SYSTEM CONSIDERATIONS AND IMPLICATIONS 

The operating system for the multiprocessor, which we will call 

Hydra, is intended (initially) to support the following kinds of activities 

1. TTY handling (for several, possibly dissimilar hosts) 

2. Display processing 

3. Speech/Vision device handling 

4. Speech/vision real-time processing 

5. Synchronous communication switching 

6. "Dedicated" systems such as BASIC, APL, and text editing 

Later versions of Hydra will support more general user-type program­

ming. Note, however, that the initial applications have real-time and/ 

or system characteristics. This has an important influence of the de­

sign of Hydra. It implies that the initial system must provide good 

multiprogrammed/multiprocessor scheduling, good process communication 

and synchronization mechanisms, etc. In short, it must provide clean 

interface and good primitives for systems building. On the other hand, 

it need not initially provide fancy device-independent file i/o, an 

elaborate user-terminal interface, etc. These features will be built, 

in a layered fashion, on top of the kernel so that they may be easily 

altered and so that several versions may be run simultaneously. 

Hydra will be coded in BLISS-11,which runs on the PDP-10. 

Some of the other objectives of the initial Hydra (not in any par­

ticular order) are: 
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One objective in the multiprocessor design is to allow the 

total configuration to be partitioned into disjoint subcon-

figurations. It is not the intention that Hydra cope with this 

partitioning other than: (a) it must be able to run with what­

ever resources are available so long as they include certain 

minimal facilities, and (b) it must be able to (software) lock­

out a subset of resources in preparation for partitioning. 

The virtual address space instantaneously available to a pro­

cess is limited by the 16-bit addresses of the PDP-11. More 

specifically, the instantaneous virtual memory (IVM) consists 

of eight 4k (16b word) pages named by the relocation registers. 

However, a process will be allowed a much larger total virtual 

memory (VM), perhaps 4000 pages. Monitor traps will be pro­

vided for the user to re-define that portion of his VM which 

is to be his IVM. 

The relocation registers are not fitted with page-fault detec­

tion, implying that all pages of the IVM must be in core when 

a process is running. The IVM is the user's "working set" 

and will be kept core-resident for high priority processes. 

Monitor traps will be provided for a process to request pre-

paging as well as to mark that specific pages are to be kept 

core-resident. 

A premise of the multiprocessing design is that not all Pc's 

need be identical, either in terms of their instruction sets 
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or in terms of the devices accessible to them (e.g., displays 

may be on specific processors). Therefore, a process may be 

eligible to run only on a subset of the processors. The sched­

uling algorithm must cope with this problem. The current plan 

is to associate a mask defining the set of processors on which 

it is eligible to run, and to use a (dynamic) priority sched­

uling algorithm to schedule the highest priority process able 

to run on the available processor. 

In operating systems it is not uncommon for a "job" to con­

sist of several inter-dependent processes; however, there is 

usually an enforced ancestral relation between these processes. 

Exploiting the multiprocessor, as in the speech/vision task, 

makes such mandatory relations undesirable. (It implies, 

among other things, too many levels of interrupt handling.) 

Context switching time can be a problem. In general (on the 

H/20) 13 registers must be saved/restored, 11 of them under 

program control. Thus, in the best case 48 memory references 

will be made. This is too many for some device service routines 

(e.g., for a scope). For these, relocation registers (from the 

/il or lfi sets) will be set aside and they will save only used 

registers. This can reduce the time to five memory references 

(one accumulator saved). 

Processor performance can be improved by minimizing conflicts 

for memory banks. We are studying this problem, but do not 

have a proposal yet. (See the Section on Performance for 

estimates of degradations assuming random references.) 
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A simple argument indicates that i/o traffic, t , is relatively 
insignificant and so was not considered in these figures. For 
example,transferring with four drums or 15 fixed head disks at 
full rate is comparable to one Pc. 

VI. PERFORMANCE OF THE SYSTEM 

The performance of the multiprocessor can be computed almost 

exactly given m (the number of memories), p (the number of processors), 

t^ (the delay introduced by the switch), and the following parameters: 

t The mean of a distribution of the processor time P 
between the completion of one memory request and 

the next request . 

t ,t The access time and cycle time for the memories to a c 

be used • 

t =t -t The rewrite time of the memory, w c a J 

t ^ The average transfer times of high speed i/o transfers, 

e.g., drum or disk, which interfere with processor 

requests; in this analysis we ignore this effect. 

Strecker (1970) gives closed form solutions for the interference i 

terms of a defined quantity, the UER (unit execution rate). The UER is, 

effectively, the rate of memory references and, for the PDP-11, is 

approximately twice the actual instruction execution rate. (A single 

instruction on the 11 may make from one to five memory references, but i 

about two on the average.) Strecker give the following relations, 

neglecting i/o transfers, and assuming random memory references: 
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fcp = t w J U E R " < n , / t
c

) ( 1 " < L " 1 / m > P > 

t < t • UER - - 1 " ( 1 " 1 / m ) P *> < V 1 7 6 1 1 - t 1 . (1 - l/m)P ( t - t ) / t w p c 

t > t : UER = (m/t ) (I - (1 - P / m ) p ) 
P W C Ttl 

m 

where P + ( m / p ) ( ^ - ) U - (1 - P m/™) P)) - 1 = 0 

Various speed processors, starting with the Model 20, various types of 

memories, and various switch delays, t^ can be studied by means of these 

formulas* Switch delays effects are calculated by adding to t and 
a 

t , i.e., t 1 = t J + t ; and t 1 = t, + t . In particular the following 
c * a- d a* c d c r 

cases are given in the attached graphs (Figures 4a-f). The plots show 

UER x 10** as a function of p for a fixed m, for various parameters of m. 

m-parameters are the triplet: (t^,t^,t^). 

m = 8,16 
p = 1,5,10, ...,35 

t = 700 ns (11/20), 450 ns, and 200 ns 
P 

t d = 190,270 ns 

t ,t = (300,0); (400,250); (650,350); (900,350); and (1200,500) ns 
c a 

The two values of t^ correspond to the estimated switch delay in two 

cable-length cases: 10 f and 2 0 f . The t ,t values correspond to the six 
c a 

memory systems being considered. 

In addition to-the Unit Execution Rates for Mp references, two 

separate measures of the degradation were obtained: 
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Processors 

Fig. 4a. Performance va Pc's for 8 Mp; Pc(Model 20; tp: 700 ns) 
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Fig. 4c. Performance vs Pc's for 8 Mp; Pc(«; tp: 200 ns) 
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Fig. 4-f. Performance vs Pc's for 16 Mp 

Processors 
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The (percent) degradation due to both memory inter­

ference and the switch delay 

D£ The (percent) degradation due to only memory inter­

ference effect 

Only sample values have been incldued because of the volume of data, 

and the following cases are shown in Table 2: 

m = 8, 16 

p = 1,5,10,15 

t = 700,450,200 ns 
P 

t == 190 ns a 

t ,t = (300,0); (400,250); and (650,350) ns c a 

Note, in particular, that for the p=l case is the performance 

degradation due to the delay introduced by the switch. In effect, this 

indicates the number of P fs necessary to overcome switching delays. 

Two unmistakable conclusions can be drawn from the data: (1) the 

delay in the switch, t , is the dominant factor, and (2) it is better to 
d 

use the fastest memory you can get, unless the cost is too high. Also, 

because of the long switch delay, faster processors are not needed, or 

rather, cannot be used effectively. 

More processors will yield higher performance until a sharp cut-off 

occurs when processing capacity has absorbed the total Mp capacity. This 

can be seen from the figures when a slow memory or fast processor is used. 

Since the processor costs are small (in the order of $12K/processor with a 

local Mp and some terminals), an objective function based solely on maximizing 

performance/cost should not be used. The performance/cost is a fairly flat 

function near maximum, since the processor cost is a small part of the system 

cost. 



Table 2 Switching and Mp Degradation 

note td - 190 ns 
11/20 Processor (tp: 700 ns) 

m — 8 m = 16 .., 

p <"*no (400, 250) (650. 350) (300.0) (400 ,250) (650, 350) 
p 

D l D 2 »1 D 2 
D 2 Dl D 2 D l D 2 

D l D 2 

1 16.0 18.3 — 16.0 — 16.0 — 18.3 — 16.0 — 
5 19.8 4.6 25.2 8.3 26.5 12.6 17.8 2.2 21.6 4.1 21.2 6.3 

10 25.1 10.9 34.1 19.3 38.7 27.0 20.2 5.1 26.0 9.4 27.6 13.9 

15 31.1 18.0 42.7 29.9 49.0 39.3 22.8 8.2 30.3 14.7 33.7 21.1 

Processor, Pc#2 with tp: 450 ns 

m =* B m = 16 

T> (400 250) (650 r350) (300 ,0) ' (400. 250) (650, 350) 
r 

Di 
i " / . _ 

D 2 Dl D 2 Dl D 2 
D l . D 2 Dl D 2 D l 

1 20.2 24.1 20.2 — 20.2 — 24.0 — 20.2 — 
5 26.0 7.2 34.6 13.9 35.1 18.6 23.0 3.5 29.3 7.0 27.9 9.6 

10 33.6 16.8 46.2 29.2 48.3 36.4 26.6 8.0 35.6 15.3 36.4 20.3 

15 41.4 26.5 55.8 41.8 59.6 49.4 30.4 12.7 41.5 23.0 43.7 29.5 

Proces sor, Pc#3 with tp: 200 ns , 
m = 8 m = 16 

(400,2501 (650. 3501 (300.0) (400 ,250) (650, 350) 
P V JU 

D l D 2 

V • **** < 
Dl D 2 Dl D 2 Dl D 2 D 2 

Dl D 2 

1 27.5 34.8 26.8 — 27.5 — 34.9 — 27.2 — 
5 36.7 12.7 50.8 24.6 47.0 27.6 32.1 6.3 43.7 13.4 38.5 15.6 

10 47.3 27.2 63.6 44.2 61.8 47.8 37.7 14.0 52.3 26.7 49.1 30.1 

15 56.2 39.6 71.8 56.8 70.8 60.1 43.0 21.3 59.1 37.1 56.9 40.9 
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In Figure 5 we have plotted the performance/cost. Here note that 

if we start with a small size configuration of five Model 20 fs, the cost 

is only $375K, while the performance is 4.5x10^ accesses/second (UER), 

giving a cost-effectiveness of 12. Going to 1 Pc#2«s later, provides about 

a UER of 15xl0 6. While the cost is only $625K (cost-effectiveness is 24). 

Following this strategy provides a very cost-effective system, once a 

reasonably large number of processors are used. In fact, in the range of 15 

processors the cost-effectiveness is relatively constant, while the absolute 

performance nearly doubles. The most impressive region is with a fast Pc 

of 200 ns from 10 - 35 P f s. Here performance/cost varies by + 5J> and 

performance ranges from 13x10^ to 26x10**. 

Our interest in this exercise is to determine whether the faster 

memory seems worthwhile. We think it is,solely on the current configuration. 

Since we would like to fabricate specialized, faster processors 

eventually, the additional bandwidth seems essential. 
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Fig. 5. Cost effectiveness (UER/$) VS P C ' S . 

Smp(16 processors; 16 memories); td: 190 ns) 
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VIII. CONCLUSIONS 

We have given an overview of the design of the proposed C.mmp. We 

have described the computational requirements of our present research that 

the system is to serve, and translated these into a set of specific con­

straints used to shape the design. We have also described the wide range 

of additional research payoffs that can rather clearly be expected on the 

basis of the system. 

Many details of the design are left unspecified. These are, and will 

be, given in detailed memoranda on specific parts. For example, a separate 

paper is under preparation on the details of the Smp design: its fabrica­

tion and precise operation, including processor-port assignment control, 

manual switching, etc. Similarly, there will be a detailed description of 

the operating system structure and operation. But the essential features 

of the system are now firm. 
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This document is limited to a presentation and analysis of the (hardware) 
system. It gives enough description of the usage requirements, software, and the 
research potentials and problems to make clear why we believe the effort to be a 
sound one. It does not attempt a systematic discussion of the field of multi­
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Section II discusses the requirements and research potential. Section III 
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