
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-72-112

C.mmp: THE CMU MULTIMINIPROCESSOR COMPUTER
Requirements and Overview of the Initial Design

C. G. Bell, W. Broadley, W. Wulf, A. Newell

and

C. Pierson
R. Reddy
S. Rege

Department of Computer Science
Carnegie-Mellon University
Pi 1 1 s burgh, Pennsy1vania

August 24, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.

ABSTRACT

This document describes a proposed CMU multiprocessor system to be
constructed around a set of PDP-11 computers connected through a cross-
point switch to a large sharable primary memory. The present design con­
stitutes a solution to a specific set of needs existing in our environment.
The system has research consequences that reach well beyond the particular
demands it was designed to satisfy. For although multiprocessors have
been much talked about and advocated, there are remarkably few operational
systems more complex than dual-processor systems, and even fewer documented
scientific investigations into their performance and operating structure.

This document is limited to a presentation and analysis of the (hard­
ware) system. It gives enough description of the usage requirements, soft­
ware, and the research potentials and problems to make clear why we believe
the effort to be a sound one. It does not attempt a systematic discussion
of the field of multiprocessor research, nor of alternative systems that
might be of interest, either to meet our computing demands or as research
directions.

Section II discusses the requirements and research potential. Section
III lists the design constraints adopted. Section IV lays out the PMS
structure of the system. Section V describes the main specifications of
the operating system. Section VI provides some details on a performance
analysis.

-1-

I. INTRODUCTION

This document describes a proposed CMU multiprocessor system to be con­

structed around a set of PDP-11 computers connected through a crosspoint

switch to a large sharable primary memory. The system is to operate as a

third node in the existing Computer Science computer system, along with two

existing PDP-10 !s.

The present design constitutes a solution to a specific set of needs

existing in our environment. It replaces a prior planned solution, which

consisted of a collection of individual stand-alone PDP-11 systems and PDP-11

i/o processor systems situated in front of the PDP-10 fs. It is not the only

system that satisfies our requirements, as the existence of the prior plan

indicates. However, it provides a highly effective solution and does so with­

in the cost framework with which we have been working.

The system has research consequences that reach well beyond the particular

demands it was designed to satisfy. For although multiprocessors have been

much talked about and advocated, there are remarkably few operational systems

more complex than dual-processor systems, and even fewer documented scientific

investigations into their performance and operating structure. Thus, the

multiprocessor system offers substantial opportunities for significant research

that is consonant with our research interests and capabilities.

This document is limited to a presentation and analysis of the (hardware)

system. It gives.enough description of the usage requirements, software, and

the research potentials and problems to make clear why we believe the effort

to be a sound one. It does not attempt a systematic discussion of the field

of multiprocessor research, nor of alternative systems that might be of

-2-

interest, either to meet our computing demands or as research directions.

Section II discusses the requirements and research potential. Section

III lists the design constraints adopted. Section IV lays out the PMS struc­

ture of the system, giving the various components which have to be fabricated,

their gross specification and the design decisions remaining. Section V de­

scribes the main specifications of the operating system. Section VI provides

some details on a performance analysis.

-3-

II. BACKGROUND ON REQUIREMENTS AND RESEARCH POTENTIAL

The CMU multiprocessor project i9 directly responsive to two require­

ments :

1. the need for particular computational facilities

2. a research interest in computer structures.

The design itself may be viewed as attempting to satisfy the computational

needs with a system that is conservative enough to ensure successful construc­

tion in an immediate time frame. Within this constraint, the system appears

to be a research vehicle of considerable potential, both directly in terms of

research on multiprocessor systems and in its ability to support a wide range

of Important investigations in computer design and systems programming. Beyond

this, the system will produce a significant amount of information processing

capability, thus satisfying an important side condition that the funds we have

available to us for computing facility provide enough general power for the

continued growth of the computer science community at CMU.

The co-existence of usage and direct research interests raises the (not

unknown) spectre of conflicts between these interests in terms of stability

and availability. Consistent with the view that this system is to provide

computing facility, such conflicts, should they arise, will be resolved in

favor of the users of the system.

All of our interests in the system are computer research interests. The

users of the system are engaged in varieties of computer science research not

significantly different from the direct research into multiprocessor hardware

and software. (Indeed, they are often the same people, wearing different hats).

-4-

The existence of the system will generate new research not now being done

in the environment, some of which we can quite clearly see and only part

of which will be direct research on the system. When these additional

efforts come into existence they will have as great a claim as present

projects to the use of the system and will make as great contributions to

justifying the system as satisfying their computation requirements. The

temptation is to lump all these research efforts, direct and indirect, pre­

existing and potential, into a single collection for the purposes of justify­

ing the design. Instead we will preserve some fidelity to history, describ­

ing the requirements in terms of (1) usage by those research efforts who had

already laid a claim for PDP-ll-style resources; (2) potential research ef­

forts and (3) research into multiprocessor systems.

USAGE REQUIREMENTS

The pre-existing research plans that already involved using small com­

puters (PDP-11 fs in fact), and which define the core requirements for the

present multiprocessor system, cover almost the full range of computer science

research at CMU: artificial intelligence, systems programming, and computer

structures. We take up each in turn.

Artificial Intelligence

The work in artificial intelligence relevant to C.mmp is in speech and

vision; the development of a speech-understanding system being a major research

venture at CMU, research on vision being a minor one. The requirements are of

two kinds. The first, common to speech and vision, is that special high data

rate, real time interfaces are required to acquire speech and vision data from

-5-

the external environment. For reasons of total system reliability these

devices should be acquired by an input-output processor (Pio) and then

transferred to Mp under standard internal conditions. A major cause of

instability at a PDP-10 research installation is the specialized hardware

added by that installation. Use of a Pio also permits some pre-processing

of the incoming high rate data, thus lightening the load on the main system

(the PDP-10 fs) which is tuned to a slower interactive rate.

The second requirement, and by far the more stringent one, is to obtain

real time processing for the speech-understanding system. The class of

schemes under active pursuit involve multiprocessing with several PDP-ll's

plus a PDP-10, organized to work on all the levels of speech representation

in parallel and with continuous intercommunication (i.e., the acoustic,

parametric, phonemic, lexical, syntactic and semantic levels). The extent

and shape of the parallel computation and intercommunication is a matter for

intensive investigation, but some such scheme seems a fruitful approach to

achieve real time speech processing. The total requirements of the system

involve very large amounts of Mp, shared between several processors, backed

up by extensive secondary storage. In short it is a computational problem

that puts demands on the system along most dimensions.

Systems Programming and Operating Systems

At CMU we are intensively involved in research on operating systems and

on understanding how software systems are to be constructed. Three faculty

members independently (Habermann, Parnas and Wulf) and many graduate students

are interested in these jroblems. Research in these areas has a strong

This is extremely difficult to prove, of course. In our own system the addi­
tion of any hardware causes some instability for a period of up to several weeks.

-6-

empirical and experimental component, requiring the design and construction

of many systems. We have discarded generally the notion of using virtual

or simulated machines for reasons of performance, credibility and realistic

users. Given the unavailability of the PDP-10 system, which operates in a

user oriented time-sharing mode around the clock, a uniform solution has

been to move to small stand-alone computers as the object machines for such

experimental systems work.

The primary requirement of these systems is isolation, so they can be

used in a completely idiosyncratic way and be restructured in terms of soft­

ware from the ground up. On the other hand, the exact configurations needed

varies from time to time. More important, work on the various experimental

systems does not go on continuously 24 hours a day, but exhibits a variable

pattern of usage, depending on how many people are working on the system and

how intensively. These systems also require in an essential way access by

multiple users and varying amounts of secondary memory.

Computer Structures

There is currently intensive activity at CMU in working with register

transfer modules, using a system of modules (RTM's) developed here and at DEC

(Bell, Grason et al, 1970) and now in production as the PDP-16. A dedicated

facility is needed for the design testing of experimental systems constructed

of these modules. A small computer is appropriate, not only to avoid building

specialized test equipment, but to permit the design testing to become fully

automatic. When operating in test mode the computer must be directly coupled

to the system being tested and isolated from all other systems.

-7-

A similar need for a dedicated system arises from an interest in fault

tolerant systems. Here, it is necessary that the various processors can have

access to one another so that checking can take place. For example, a con­

sole of a faulty computer would be attached to a checking computer so that

all tests could be carried out under control of the checking computer.

General Requirements

All of these research efforts require the same type of general purpose

service as is now provided by our PDP-10 system: files, editing, higher lan­

guages, interactive access, etc. That, under our original plans, some of the

stand-alone systems might have had to give up some of these facilities only

expresses the price that appeared necessary to obtain an isolatable system

that could be restructured from the hardware up. Access to these facilities

simultaneously with the capability for isolation on demand is certainly to be

preferred.

The reasons for requiring general facilities for the speech and vision

research appear somewhat different, since these programs are already large

integrated software systems with an essential component running on the PDP-10.

POTENTIAL RESEARCH EFFORTS

We include in this category those researches that have not guided the

design of the multiprocessor sytem, in the sense of providing constraints it

had to satisfy, but which appear to capitalize on the system so strongly that

they have a probability of occurring that ranges from high to certain.

-8-

Network Research

Our original plans in obtaining the PDP-10 system involved moving towards

a network configuration of several PDP-10 1s. Our motives for so doing were in

large part conditioned on our wanting to do research on networks, as an ap­

propriate structure for a within-institution computer system (Bell, Habermann,

McCredie, Rutledge, Wulf, 1969). Currently we have two PDP-10's, the second

one just achieving full system status. The growth of an actual network has

been slow, being affected by funding limitations and by other developments in

the environment.

The multiprocessor affects the network plans in two ways. The multipro­

cessor itself provides a field within which one can set up experimental net­

work configurations of assorted sizes and shapes. There are limits to what can

be achieved by simulation and artificially constructed abstract networks, just

as there are limits to what can be achieved by simulated and virtual operating

systems. But they provide an essential tool. The proposed multiprocessor

will permit systems with up to perhaps a dozen real nodes to operate in real

time; and we expect a substantial amount of network research to evolve in this

direction.

The multiprocessor system, taken as a single computer system, provides

a third node in a network consisting of itself and the other two PDP-10's.

This is a real network with real problems of exploitation. The multiprocessor

will serve as a highly specialized node with unique functional capabilities.

It will be in no way a minor node in the system in terms of processing power,

though this power will be realized on relative short word lengths (16 b/w).

-9-

Design of Processors

The multiprocessor is designed around a set of identical Pc's, namely

PDP-11's. However, as long as certain interface design philosophies are

maintained, the design permits processors of quite different designs to

operate in the system, and to obtain from the rest of the system support

with respect to files, input/output, initialization, etc. Various systems

constructed with RTM's can take advantage of this.

The recent design exercise on an ARPA list processing system led to a

local design (C.ai, see Bell, Freeman, et al, 1971; Barbacci, et al, 1971;

and McCracken Robertson, 1971) that stressed, among other things, the design

of processors that went a long ways in specialization to a given list processing

system (e.g., a LISP system, an L* system, etc.). The multiprocessor offers

an opportunity to design and realize some experimental processors. Consider­

able investigation is required before one can be sure such a venture is worth

the costs involved, but with the lowering cost of processors it appears on

first analysis to be quite feasible. On the positive side is the principle,

now stated several times, that only a small fraction of the necessary research

on computer systems can be done via simulations and virtual machines. An

actual unconventional processor (say for L *) , which offered substantial pro­

cessing advantages over programmed versions of the same system, would call

forth the programming efforts to explore the system's real worth and determine

its ultimate defects as a user system.

MULTIPROCESSOR RESEARCH

It is a fact that one cannot put together a multiprocessor system of any

complexity today without becoming involved in research on multiprocessors.

-10-

Multiprocessor systems (other than dual processor structures and nPio-Pc

structures) have not become current art. Some of the reasons for this

state of affairs appear to be:

1. The absolutely high cost of processors and primary memories

so that a complex multiprocessor system was simply beyond

the computational realm of all but a few extraordinary users,

no matter what the advantages.

2. The relatively high cost of processors in the total system,

so that an additional processor did not increase the performance/

cost ratio.

3. The unreliability and performance degradation of operating

system software, which made going to more complex system

structures a venture in futility.

4. The inability of technology to construct the central switches

required for such structure, due in part to low component density,

in part to high cost.

5. The loss of performance in multiprocessors due to memory access

conflicts and switching delays.

6. The unknown problems of dividing tasks into sub tasks that can be

executed in some parallel, though possibly interactive way.

Thus, the expense was prohibitive, even for discovering what advantages of

organization might overcome the obvious decrements of performance. And in

any event, it seemed mostly to complicate matters in a world that was already

-11-

too complicated to function properly.

We appear to have entered into a technological domain when many of the

difficulties listed above no longer stand so strongly:

1'. Providing we limit ourselves to multiprocessors of minicomputers,

the total system costs of Pc and Mp are now within the price

range of a reasonable facility. (E.g., the CMU system with

16 Pc, suitable Mp, Ms and T will still be around.5M$, yet

execute approximately 3 ^ 5 million instructions/sec.).

2 1 . The Pc is now generally a smaller part of the total system

cost. Hence, a small incremental cost that provides a substan­

tial increase instruction/sec. will be cost effective.

3 f . Software reliability is now somewhat improved, primarily be­

cause a large number of operating systems have been constructed.

Something is understood about the overhead costs imposed by

various forms of organization.

4 1 . Current medium and large scale integrated circuit technology

enables the construction of switches that do not have the

large losses of the older decentralized switches. Centraliza­

tion of the switch permits fewer and shorter cables.

5'. Memory conflict is not high for the right balance of processors,

memories and switching system. The trade-offs possible, of

course, are characteristic of a given domain of technology.

Appropriate balances appear to be attainable currently.

-12-

6'. There has been work on the problem of task parallelism, not

only general studies, but highly specific studies, e.g.,

around ILLIAC IV and CDC STAR. Other work on modular pro­

gramming (Krutar, 1971; Wulf, 1971) at CMU suggests how sub-

tasks can be executed in a pipeline.

In short, the price of experimentation appears eminently reasonable, given

that there are requirements that appear to be satisfied in a sufficiently

direct and obvious way by a proposed multiprocessor structure (i.e., for us,

the usage requirements listed at the beginning of the section).

However, the state indicated above does not settle many issues about

multiprocessors, nor does it make the development of one routine. We list

below the main areas of research interest in the multiprocessor system it­

self. All of these call for some attention, although the extent of our effort

in each is unclear.

1. The multiprocessor design itself, i.e., its PMS structure. Few

enough multiprocessors have been built, so each one represents

an important point in design space.

2. The processor-memory switch design, especially with respect to

reliability.

3. The configuration of computations on the multiprocessor. There

are many processing structures and little is known about when

they are appropriate and how to exploit them, especially when

not treated in the abstract but in the context of an actual

processing system:

-13-

Parallel processing; a task is broken into a number of sub-
tasks and assigned to separate processors.

Pipeline processing: various independent stages of the task
are executed in parallel (e.g., as in a co-routine structure).

Network processing: the computers operate quasi-independently
with intercommunication (with various data rates and delay
times) •

Functional specialization: the processors have either special
capabilities or access to special devices; the tasks must be
shunted to processors as in a job shop.

Multiprogramming: a task is only executed by a single pro­
cessor at a given time-.

Independent processing: a configurational separation is
achieved for varying amounts of time, such that interaction
is not possible and thus doesn't have to be processed.

4. The decomposition of tasks for appropriate computation. Detailed

analysis and restructuring of the algorithm appear to be required,

as in the work with ILLIAC IV. The speech-understanding system

is the one major example we know we will undertake. It has re­

search interest from the multiprocessor viewpoint, as well as from

the speech recognition viewpoint.

The operating system design and performance. While the basic

operating system design must be conservative, since the multi­

processor will run as a computation facility, it will have sub­

stantial research interest. Variations and alternative operating

systems will also be constructable.

The measurement and analysis of performance of the total system.

One of our complaints about the current field is the high ratio

of design studies to performance studies.

5.

6.

-14-

The achievement of reliable computation by organizational

schemes at higher levels, such as redundant computation.

-15-

III. DESIGN CONSTRAINTS

The following constraints have been set up as a policy to guide our

research and development. While we consider many of the constraints to be

absolute at this time, we may on occasion have to exceed them. The user

and research requirements of the previous section are essentially the objec­

tive function.

PDP-11 PRODUCTION COMPONENTS ,

We would like to use PDP-11 components as they are produced, without

modification. These components include Mp (primary memory modules) , Ks (slow

device controllers for non-direct memory transfers, such as teletypes), Kf

(fast device controllers for direct memory transfers, such as disks), and

Pc (central processors, various models present and future). Modifications

to the central parts of the processors or to the device controllers are no

doubt the most serious, because there are so many of the devices, and a

modification may preclude future device connections. Modification to the

primary memory seems somewhat less serious. There is only one type of com­

ponent, we will have many copies of it, the cost is relatively high for

this portion of the machine (hence we can amortize any change over a larger

number of units). In addition, total system performance is strongly affect­

ed by the Mp characteristics. Hence there may be a large payoff for changing

it.

For the above reasons we have decided to modify the memory system in

order to get the resulting increase in performance and lower cost. Accom­

panying these modifications we must modify each processor interface slightly

-16-

to get a faster memory bus. However, since there are other minor modifica­

tions to the processor for mapping and protection, we can incorporate the

modifications into a single interface that is added on to the standard DEC

processors. This is discussed in a later section.

We have not adopted the constraint that devices need to be addressed

anonomously by all processors at any time. It will be acceptable to set

switches that establish a processor to be in control of a particular device

for a long time (e.g., perhaps seconds or minutes, but possibly even days).

Requests for device data transfers are handled by the particular processor

in control of the device. A particular device must be assignable to more

than one processor in order to meet reliability requirements. In addition,

many devices must be assignable to a single processor to permit specializa­

tion. This constraint on device accessibility is established in the clear

knowledge that in general the processors in the system will be identical

(i.e., PDP-Il's Pc's), hence anonymous from a user-program view, and capable

of being assigned device duties according to the needs of the system.

Although we believe it would be desirable to keep the device addresses

identical to those of DEC, in order to run software without reassembly, we

must modify these numbers. The change is required to avoid putting path-

finding memories (content addressable) in the switches for each of the devices,

LOGIC TECHNOLOGY

Initially, we haye decided to use only standard TTL integrated circuitry,

which can be obtained via standard procurement channels. The TTL constraint

is imposed both because our facilities to fabricate multiple layered boards

are limited and because the interface to the PDP-11 is via TTL.

-17-

Eventually we would like to explore the use of LSI technology in the

design of the switch sections. We have currently rejected the use of this

technology because it requires s close coupling with an integrated circuit

facility, hence putting the scheduling, outcome, etc. beyond our control.

We would like to engage in such a design, when the present system is more

operational.

EXTENDABILITY

We are constraining the design to be relatively fixed, but large, so

that it works with a certain maximum configuration size. Any subsequent

extensions would require a redesign along the same lines, but with differ­

ent parameters. Another approach would be to have a design which would let

the configuration grow in a more indefinite fashion. However, we are not

willing to undertake such a design, because of what appear to be high time

penalties for the smaller systems and the uncertainty of being able to

build a system of indefinite capabilities.

CONFIGURABILITY AND INDEPENDENCE

In order that individual research projects not be coercively constrained

by running within a large system, the design permits partitioning into smal­

ler, independent computers in a reliable fashion. In this mode the subset

of equipment constitutes an independent computer, with appropriate secondary

memory and input-output terminals.

Possibly such a system might reach a point of diminishing returns at a
smaller size than with the fixed, maximum size approach.

-18-

RELIABILITY

We are not designing the circuitry of the system to meet extremely

high reliability constraints, mainly to avoid several lengthy iterations

of design and testing. Nevertheless, we expect to be much concerned with

the ultimate reliability of the system, and will attempt to achieve it by

various techniques at higher levels. From an operational point of view,

we believe the following constraints are the appropriate ones:

1. There must be at least n+1 components of the particular types

necessary to constitute a minimum usable of n components.

(Components for special functions are not considered necessary.)

2. Considering each Mp|Pc|K to have roughly the same reliability,

there must be multiple paths for all component information

flow paths, e.g.,

3. All busses shall function properly when a component connected

to it has power removed.

4. A component can be connected or disconnected when system power

is on.

SCHEDULE

The development time constraint (schedule) determines to a large degree

the methods we use in the design because we feel it is important to have an

K Pc Mp

-19-

operational computer in a short time. The short schedule is based on the

need of our users for the facility and our desire to provide a research

facility* Contributions of this system to such efforts as the ARPA list

processing machine or to improved versions of multiminiprocessor systems

all require rapid completion. Much of the contribution to computer science

of constructing a multiprocessor system comes not from proposing a design

and not even from putting together the physical system, but from exploring

the effect of its structure on computational tasks and constructing operat­

ing systems that exploit its capacity. To ever get to the latter requires

setting a short schedule for producing the former. Thus, time is of es­

sence for the construction phases of the project.

-20-

IV. MULTIPROCESSOR IMS STRUCTURE, IMPLEMENTATION AND ISP

In this section the design will be described briefly and directly, with­

out explicitly relating each part to the design constraints. We assume the

reader is familiar with the DEC PDP-11 structure. The configuration is basi­

cally a multiprocessor system of conventional type that has been proposed and

has existed in smaller-sizes (usually two processors) or different form, e.g.,

the Burroughs B5000 and D825 computers, IBM's 360/65 and various proposed

aerospace computers (see Bell and Newell, 1971a). The structure of the sys­

tem is given in Figure 1.

There are two switches, Smp and Skp. Smp allows the processor to com­

municate with primary memories. Skp allows the processor to communicate with

the various controllers (K) , which in turn manage the secondary memories (Ms

and T) and terminals (T), respectively. The switches are under both computer

and manual control.

Each processor system is actually a complete computer with its own local

primary memory and controllers for secondary memories and terminals (e.g.,

Teletypes). Each processor has a Data operations component, Dmap, for trans­

lating addresses at the processor into physical memory addresses. The local

memory serves both to reduce the bandwidth requirements to the central memory,

since PDP-11 makes many references into a stack area of memory, and to allow

completely independent operation and off-line maintenance.

A central clock,'K.clock, allows precise time to be measured. This is

necessary to allow the software to log message transfers and to perform

measurement. Each processor can interrupt the others for message transmission,

A central time base is broadcast to all processors so that each can compute

independent elapsed times.

-21-

Ks

Ks

Mp

Mp mr*16

Kf

Kf

Smp

(m-to-p crosspoint)

| K.configuration*

Pc

Mp
H K c

Kf H

Ks H

Dmap Pc

H M p
Kc H

K.clock

K.interrupt

Dmap

Kf

Ks

K.configuration

Skp

(p-to-k;null|dual duplex)crosspoint

where: Pc/central processor; Mp/primary memory; T/terminals;
Ks/slow device control (e.g., for Teletype);
Kf/fast device control (e.g., for disk);
Kc/control for clock, timer, interprocessor communication

Both switches have static configuration control by manual and
program control

Fig. 1. Proposed CMU multiminiprocessor computer/c.mmp.

-22-

Smp - THE SWITCH BETWEEN PROCESSORS AND PRIMARY MEMORIES

This switch handles information transfers between primary memory and

the processors (requestors). Transfers from the fast controls, Kf, for

primary memory via the processor, also go through Smp. The switch has

ports (i.e., connections) for m busses for primary memories and p busses

for processors. Up to min(m,p) simultaneous conversations are possible via

the cross-point arrangement. There is no memory in Smp for data port buf­

fering, and a single processor has only one memory request pending at a

time. A more complete discussion of cross-point switch structures is given

in Bell and Newell (1971a). Unlike most cross-point switches, this one is

located centrally (as opposed to being distributed in the memory as is

usual, e.g., in the PDP-10, 360/65 ~ 67, or 1108). While this requires a

larger initial configuration and implies non-modularity, the cost of an

average system should be less and we are interested in a rather large con­

figuration. A large cost component of a switch ystern (together with the

associated mechanical and circuitry problems) is the cables. This structure

requires only p+m cables, as opposed to pxm cables in the case of a distribut

ed switch. This structure also has less cable delays than the associated dis

tributed switch.

Another aspect of Smp is the control required for providing different

configurations. Smp can be set under programmed control (i.e., a Unibus

carried configuration.parameters). In addition, these parameters can also

be set via manual switches on an override basis. The control of Smp can be

by any of the processors, but one processor is assigned the control. In this

respect, switch control is like any other T or Ms control:

-23-

Smp is not Unibus compatible, although the signals are essentially the

same. We have decided against compatibility in order to improve the speed

through the switch and to achieve better signal-to-noise characteristics.

Since we are modifying the processor, the links: P Smp and Smp Mp

can be changed rather easily.

Switch Details

The GMUnibus enters the cross-point and the lines on this bus serve

the following functions:

1. From P: request that a selection be made (terminates in Smp).

2. From P: request a particular memory module, Mp (terminates in Smp).

3. M-P dialogue: control the flow of data between M and P on an

interlocked basis (uni-directional, switched through Smp).

4. From P: select the word within a module, Mp (uni-directional,

switched through Smp).

5. Between P and M: pass information between the selected P and Mp

(bi-directional, switched through Smp).

These lines fall into two categories: those that terminate in Smp and

control the selection process to a selected m-bus, and those that are switched

to a selected m-bus. For those of the second category, which we will consider

to be data, the basic structure of the switching is shown in Figure 2. Here,

we show the components involved with the switching of a bi-directional bus.

If data is only transmitted in one direction (as in the case of addresses

that arrive on p-busses and must be transmitted to the appropriate m-bus)

only half of the circuits are installed in the printed circuit cards (cases

-24-

3 and 4 above). There are p+m receiving circuits per bit that connect to

the entering cables from the processors and memories; also there are p+m

transmitting circuits at these cable entries which transmit the switched

results to the processors and memories. Since this is a bi-directional

bus, the Smp must know the direction of data flow and set the switches ac­

cordingly. There are p>on multiplex circuits per cross-point bit that

operate as follows.

An incoming bit from P to M goes through the p-bus receiver, the ap­

propriate outgoing m-bus line is known (by the m-bus control) and this con­

trol selects the appropriate multiplexor position. The bit passes through

the multiplexor to the transmitter where it is sent on to the m-bus.

A bit from M to P arrives on an m-bus, goes through the m-bus receiver,

and the m-bus control selects the multiplexor corresponding to the p-bus

which is to receive the bit. The multiplexor is selected and the bit is

transmitted on to the processor via a p-bus. This type of switching is used

for case 3, 4 (uni-directional) and 5 (bi-directional).

The selection of a particular m-bus is accomplished by a control associ­

ated with each m-bus that observes all incoming requests from all processors

(cases 1 and 2 above) and decides to close the data port switches and estab­

lish direction for the particular m-bus it controls. The m-bus control

unit (Figure 3) addresses the particular multiplexors for transmitting and

receiving data shown in Figure 2. The inputs to this control are on the

basis of the particular processor requesting the control, m-bus, and the

inputs from manual switches that change the configuration (shown at the right

hand side of the control box). These inputs allow the control to rename

• U-R-

to
memoriei

m

—

MPX ii MPX

T

1
Selection control

T R
t-i

T R
U

R/receiver circuit to processors
T/transmitter (line driven) circuit
MPX/multiplexor:

m with p inputs
p with m inputs

Fig. 2. Bi-directional, cross-point switch of 1 bit for Smp.

<active-p, dir­
ection control < 1
selection>

<control lines,
m-bus selection>

<manual switch and
program controlled
inputs to control
selection>

Fig. 3. Control part of Smp.

-25-

particular m-bus lines to correspond to different physical addresses and

to ignore requests from specific processors.

Mp IMPLEMENTATION

A number of memory manufacturers were approached for implementation of

Mp. At the final selections, not only was a cost/performance ratio impor­

tant but also the vendor's ability and willingness to undertake construc­

tion of the switch. Two manufacturers met these requirements. One was pro­

posing a fast cory memory system (650/250 ns cycle/access) at 1.5^/bit; the

other a 150/180 ns bipolar memory at 2.5^/bit. Both memories were modular

at the 8k (word) level. The core memory system was chosen.

Because of the large number of modules, the cycle time was less impor­

tant than the access time. One of the major processors on this system, the

PDP-11/20, only needs a word approximately every 1.5 jisec. and, in addition,

never does a WRITE into memory, but always does a READ-MODIFY-WRITE (RMW).

A RMW cycle in semiconductor memory takes two cycles whereas in core memory

it takes only 1.2 cycle times. This, plus the better cost/performance ratio

and the difference in access time of only 100 T|sec, led us to choose the

core system.

Alternatives for the Switching Structure

Many alternatives were considered for carrying out the switching between

memory, processors and the other components (primary memories, slow control­

lers and fast controllers). Only one competitive scheme we know of seems

worth mentioning — a switch design that was based on this design, undertaken

-26-

at the University of Newcastle in May, 1971. (See two memos by Bell, Lauer

and Randall, 1971.) Most switches, while giving more flexibility for con­

figuration, and hence reliability (e.g., like the S.trunk, Bell and Newell,

1971a), require more equipment and increase switching time.

Reliability

The reliability of the switch can be significantly increased by pro­

viding some form of a duplicated switch. We are not looking into a switch

of this type currently, because we feel the number of parts in the switch

is sufficiently small. The reliability will be comparable to that of a

single ll/20 processor. The design of the switch is such that failures will

appear either as a failure in a memory or a processor port. Since the sys­

tem is designed to tolerate either of these types of failures, a switch

failure can also be tolerated.

Skp - THE SWITCH BETWEEN PROCESSORS AND THE CONTROLS FOR SECONDARY MEMORIES
AND TERMINALS

Skp allows one or more of k Unibusses which have several slow or fast

controllers (Ks or Kf) to be connected to one of p central processors. The

k Unibusses with the controllers are connected to the p processor Unibusses

on a fairly long term basis (i.e., minutes to days), since a processor will

manage a control completely as a resource, independent of the location of

the actual user process requesting the physical resource. This management

consists of initiating*data transmission, processing interrupts, transmitting

data for it, examining its status, and finally turning it off. One of the

main reasons for only allowing a long term, but switchable, connection be­

tween the K Unibusses and the processor on a one at a time basis is to

-27-

avoid the problem of having to decide dynamically which of the p processors

should manage a particular device. Information is not available in each

device that could be used for this purpose. We have decided to provide only

static switching because about the same amount of processing is involved,

independent of which of the processors does it. Furthermore, this proces-

sing is usually small, hence it does not generally matter which processor

handles it.

Like Smp, Skp has a connection (via Unibus) which is used to control

the configuration of the switch, i.e., determine which of the k busses is

connected to the processors. There is both program (via the Unibus) and

manual control of the configuration. Note that since the control of the

configuration is via one of the controlled Unibusses, the switch must first

be set to a known position to allow subsequent control to be made. Connect­

ing the configuration control bus to a specific computer would violate the

reliability goals.

Skp Structural Alternatives

At the present time we do not know the exact structure of Skp. In the

trivial case this could be a null switch with various devices just connect­

ed to the p busses. Unfortunately, an arrangement of this type will force

a processor and all associated devices to be taken out of the system when

a single device is connected or removed, since the processor will have to

be stopped.

—
The interrupt service to handle a single Teletype character on the PDP-10
is on the order of 500 p,s. Assuming 10 char/sec would require l/2# pro­
cessor capacity per line. The device data transmission is handled roughly
in the same way as PDP-10, except that the better interrupt facility of
PDP-11 should further reduce service times.

-28-

A more desirable structure is k two-position switches, S(2 to 1) which

allow either of two processors to connect to a single Unibus. A structure

of this type might look like:

-s<2 to iy

-S(2 to 1>

-S(2 to 1*

This structure allows us to expand k after the initial configuration, yet

provides multiple control-data Unibusses for a set of controllers connected

to one of the k busses. This gives a particularly simple structure if

k - p / 2 , by having all Unibusses accessible to at least two processors, with

only one switch per processor and only devices on l/2 the processors.

The most desirable alternative for the switch, from a performance view­

point, is the cross-point. The only limitation is its capability for future

growth, given that a central one of the type proposed in Smp is used. The

cross-point gives us the capability of allowing any of the k busses to be

connected to any number of the p processors. S(cross-point) for Skp has the

further advantage of allowing us to construct configurations which have either

all devices on a single processor, or a small number of devices per processor.

In this way, for certain specialized tasks, the devices can be handled with

a minimum of interprocessor communication.

-29-

Skp is not critical in the early configurations, and we can start with

mostly null switching with several S(2 to 1) and eventually construct a full

cross-point. Doing this, we would place duplicate equipment on two separate

processors. Non-duplicated, but reasonably critical, components would be

placed on S(2 to l)'s. Specialized equipment could only be placed on P's

which had no S(2 to 1) or other critical devices.

PROCESSOR AND Dmap - PROTECTION, RELOCATION, AND INTERRUPTS

Most of the PDP-11 processor models can be used with the system, with

minor modifications to the bus interface logic. Higher performance proces­

sors than those currently available might require extensive modification, if

they used a second bus for faster solid-state memories.

The Dmap is a Data Operations component which takes the addresses gen­

erated in the processor and converts them to addresses to use on the Memory

and Unibusses emanating from the Dmap. There are four sets of eight registers

in Dmap, enabling each of eight 8,192 byte blocks to be relocated in the

20 21 * large physical memory. The size of the physical Mp is 2 words or 2 bytes.

Two bits in the processor, together with the address type are used to specify

which of the mapping registers is to be used.

The logical structure, as seen by the systems programmer, of the address

map is described below, together with its implications for the user and the

monitor. For the simple user, the conventional PDP-11 addressing structure

is retained - except that he does not have access to the "i/o page", and

hence the full 16-bit address space refers to primary memory.

Provision has been made to expand the physical address space to 2 (16 X 10)
words at some subsequent time; however, this expansion is not currently planned.

-30-

A PDP-11 program can only generate a 16-bit address, but the

Unibus has 18-bit addressing capability. In the proposed scheme the

additional two bits of address will be obtained from two unused posi­

tions of the program status (PS) register. (Note, this register is in­

accessible to user programs.)

PS Users 16-Bit Address
... , r As in Current

»

i PDP-11 ^ ^ U s e £ \
1 — .

18-Bit Unibus Address

In the sequel we refer to J01-, 1/5-, and 1 1 - mode addressing to

refer to the cases arising from the four possible bit configurations

obtained from PS. These cases are:

These addresses are always mapped, and always

refer to the shared, large, primary memory.

These addresses are (with two exceptions noted

below) are mapped as above. The exceptions are

that 8 kw of this space are not mapped and refer

to the private Unibus of each processor.

11-mode

-31-

For those references that are mapped, the mapping itself consists of

using the top five bits of the 18-bit address to select one of 30 re­

location registers, and replacing these by the contents of the 8 low

order bits of that register:

Users 16-Bit Address

k 1 6 ^ * 1

^ 1 3 " B i t P a g e ^ 18-Bit Unibus Address

•Bit Relocation
Registers \f

f
\ 1 1

h >

21-Bit CMUnibus Address

The leftmost five bits of the 18-bit Unibus address may be thought

of as selecting one of 30 relocation registers, as described above. A

better descrip-tion, however, is that the two bits of the PS select

one of four banks of relocation registers and the leftmost three bits

of the users (16-bit) address selects one of the eight reg­

isters in this bank. This latter description is more appropriate, since

-32-

a process is effectively bound to a particular bank of relocation registers

by its PS word, while it may (by appropriate monitor calls) alter the con­

tents of the relocation registers within that bank and thus alter its

"instantaneous virtual memory 1 1—that is, the set of directly addressable

pages.

Although not implemented in exactly this way, the relocator may be

thought of as a controller on the Unibus as shown below:

21-Bit CMUnibus to large Mp

Kr
(relocator)

Unibus

Pc Mp Ks Kf

Under this conceptualization the relocator, Kr, behaves as a controller

which: (1) responds to all J0Ji(-, J01-, and ljtf- mode addresses by performing

the mapping described above and passing the request along to the switch,

(2) responds to six (of eight possible) 11-mode page addresses by performing

the mapping described above, (3) responds to 30 11-mode addresses for the

relocation registers themselves (in the 'device space').

There are three other properties of the mapping mechanism which have not

been mentioned previously:

-33-

All accesses to trap and interrupt vectors are forces to the

processor's 'local 1 memory. Note that traps and interrupts

save the current PS and initialize PS from the trap vector.

Thus, by appropriate use of the relocation registers the

cost of a context swap can be substantially reduced.

The format of each of the 30 relocation registers is as shown

below:

1 1 1 1 4 8
f I f +

— physical page number

1 reserved for expansion of physical page numbe
not used

- NXM
1 Write protect

'Written-into'

- the 'written-into' bit is set by the hardware whenever

a write operation is performed on the specified page.

- the 'write protect' bit, when set, will cause a trap on

(before) an attempted write operation into the specified

page.

- the NXM, 'non-existent memory', will cause a trap on any

attempted write into the specified page. Note: this is

not adequate for, and not intended for, 'page fault'

interruption.

- the 8-bit 'physical page number' is the actual relocation

value.

-34-

3. Relocation register zero in each bank is identical and, more­

over, the stack will be forced into this page (by ignoring

the three high-order bits of SP). Thus monitor service rou­

tines (entered via a trap) will use the users stack; this

is necessary in order to insure that an RTI (return from inter­

rupt) instruction may be properly executed.

Now consider some implications of the mapping scheme with respect to

user programming, protection, sharing, interrupts, and i/o.

User Programming

User processes will run under jtf/i-, J01-, or ljtf- mode addressing, and

probably under jtfjrf-mode by convention for all but real-time processes where

context switching time is especially critical. Under these modes the PDP-11

appears essentially identical to the non-mapped version except that the i/o

page is inaccessible and certain instructions will be disallowed (e.g.,

HALT). In particular the PS and relocation registers are inaccessible and

thus there is absolute protection between processes. Since all i/o is in

the 11-space, standard devices (e.g., disks) cannot be inadvertently operat­

ed. All pages of a (running) process's instantaneous virtual memory (IVM)

must necessarily be physically present in Mp. Monitor request (via traps)

will be provided to do such things as change the IVM, request a pre-paging

operation, lock a page into Mp, release a page, etc.

Protection and Sharing

As described above, at the hardware level protection is absolute since

a process cannot reference outside the set of pages specified by its bank

-35-

of relocation registers. Also, at the hardware level, sharing is trivial

since the relocation registers of several processes may reference the same

physical page. Inadvertent destruction of shared pages (e.g., code) is

prohibited by write protection. If the shared page is code, however, its

author must exercise some care to make it "position independent" (not dif­

ficult on the PDP-11), since it may execute from different "page positions"

(relocation registers) in the IVM's of different processes. In particular,

for example, the FORTRAN library would be written to execute in this fashion.

Standard compilers, e.g., Bliss, will produce this form of code. Monitor

requests (via traps) will be provided for establishing and controlling such

sharing.

The NXM bit mentioned above will be set for all relocation registers

not being used by a process (i.e., if its IVM is less than 32kw). Should

the process reference one of the registers containig this bit set, it will

be assumed to be running amuck and will be interrupted and killed by the

monitor. No attempt has been made to provide a "page-fault" mechanism be­

cause: (1) the "working set" model strongly suggests it is futile to try

to run a process unless it has a reasonable subset of its pages already

present, and (2) it is extremely difficult (on the PDP-11) to record the

state at the time at which the fault occurred during an instruction.

Interrupts

One of the nice features of the mapping scheme is that, since the PS

is uniquely loaded for each interrupt (or trap), a portion of the context

swap is inexpensive. For example, monitor request traps can directly enter

an address space in which the process description, page table, etc., are

-36-

stored. Similarily, device interrupts can activate a process in the (11)

address space in which that device service can/must be performed.

I/o
Direct-memory-access devices, such as disk and drum, specify an 18-bit

bus address when they read or write to Mp. Thus, these addresses may be

automatically relocated into Mp. Since an i/o operation is not likely to

be for the process using the Pc at that instant, the fbl and/or Ifb relocation

banks can, for example, be used for i/o while the user (Pc) process is using

the fifi bank.

TIME OF DAY CLOCK, TIMER, PROCESSOR IDENTIFICATION

Each processor has a local control, Kc, which is used for (1) inter­

communication among the other processors, (2) to collect the exact time of

day from the central time of day clock, Kclock, and (3) to collect time

events such that software times can be constructed in each processor. In­

formation for these three functions is passed on a single bus, called the

Processor Intercommunication and Clock-Timer Bus.

Time of Day Clock

The clock is used in several ways: for communication to the user re­

quiring time labeling (e.g., printouts, file labels); for software and sys­

tem function time measurements; and for internal naming of 'objects' (e.g.,

pages, files, etc.). for this latter no two objects can have the same

identifier, i.e., the same time.
The K.clock operates continuously, providing a count, in microseconds,

-37-

post A.B.4"'^ In addition to the 60 bits giving the clock information, four

bits are also included in the words to specify the processor number. Each

processor may read this information by executing four instructions to read

four words. In this way a clock number read by any processor is always

unique, even if the clock is read simultaneously by all processors.

In order to avoid timing problems inherent in reading clocks which are

subject to change during the reading interval, reading the first word of the

clock causes the 60 bit time to be placed in a register. On subsequent reads

of the remaining parts of the register the register will not change, thus

insuring that the clock does not change during the interval which it is being

read. Electrically, this process is accomplished by having the central

clock, K.clock, continuously broadcasting the 60 bit number on a bus, to­

gether with information telling when the clock may be read. Physically, this

can take the form of broadcasting on a time multiplexed basis (e.g., every

0.5 microseconds a different quadrant of the clock count is broadcast) to

avoid using a 60-bit wire bus. Alternatively, it may be desirable to broad­

cast continuously the least significant word, while time multiplexing the

most significant part.

Processor Number

The processor number is read by looking at the clock count. This number

is variable, by toggle switches. It is also used for signaling other pro­

cessors using the Intercommunication bus.

*'Anno Babbage 1

2
We rejected using a direct encoding, e.g., year (12-bits), month (4-bits),
day (5-bits), hour (5-bits), minute (6-bits), second (6-bits), milli­
seconds (10-bits) and microseconds (10-bits) (for a total of 58-bits) be­
cause of the difficulty of obtaining time differences.

-38-

Timers

The K.clock also broadcasts periodic time events for use by each pro­

cessor in generating time-interval interrupts. Each processor is equipped

with a counter and the ability to select the frequency with which the

counter is to be decremented. An interrupt is generated on a processor

when its counter is decremented below zero.

Processor Intercommunication

Intercommunication is carried out among the processors fundamentally

by placing messages in memory and having the various processors look at the

messages. In order to signal another processor to look for messages, a pro­

cessor may cause an interrupt to any of the other processors. That is, each

processor has a wire on the intercommunication bus which is used to carry the

input event from all the other processors. There is no information on the

intercommunication bus that identifies the processor requesting the inter­

rupt. Instead, the interrupter is identified by looking in memory at some

predetermined location. In order to allow the system to be partitioned into

arbitrary, totally isolated,subsets, manual switches are provided to pro­

hibit such subsets from generating mutual inter-processor interrupts.

PERFORMANCE ANALYSIS HARDWARE

In order that we can effectively do research into the nature of the

multiprocessor behavior, it is necessary to have performance measuring ports

throughout the system. The basic philosophy in the design of the clock was

to have a very accurate clock which would enable software monitoring. In

addition, it is necessary that we be able to measure the processor-memory

-39-

performance. This requires hardware because the times are short, and the

data is not accessible by other means.

The most accurate method under consideration is to associate a small

memory with each crosspoint intersection. This can be constructed effici­

ently by having a memory array for each of the m rows, since control is on

a row (per memory) basis. When each request for a particular row is acknowl­

edged a 1 is added to the register corresponding to the processor which gets

the request. In this way we can measure the exact amount of work done by

each processor. Note that i/o and file traffic is known since the file

sizes, words transferred, etc. are known. Such a scheme does have the draw­

back of adding significant hardware to the switch, hence lowering reliability.

The performance with even a large number of processors seems quite high

(see Performance of the System, Section VI). Therefore, little may be gained

by measuring the performance accurately. Knowing the performance of individ­

ual P's may be more interesting, and is somewhat easier to implement.

It would be most desirable to measure data about processor instruction

performance as measured by execution. The information which could be ob­

tained includes:

1. instructions executed

2. memory accesses

3. instruction types (relatively difficult)

4. instructions, accesses, instruction types.

Information of the above type would be particularly useful in regard to

generating very accurate, repeatable billing statistics. For example, the

-40-

actual number of instructions executed could be billed. Any scheme based

on time has some error because of background interrupt handling, and memory

interference.

PROCESSOR MODIFICATIONS

Processor modifications to implement the relocation scheme as well as

the switch are minimal and straightforward. The module on the 11/20 Pc that

requires the most modification will be the M725 Bus Interface and IR card.

This card contains not only the two high order address bits of the 18 bit

bus address but also the necessary signals and gating to read and load the

status word. The necessary modifications are made by disabling the conflict

ing functions on the M725 and providing alternative functions on an addition

al card; hence we use as much existing logic as possible.

The relocation registers will be in close proximity to the processor

and thereforie can be wired directly. Thus bus drivers and receivers are

not needed.

The memory bus address decoders (M109) for local memory appear to be

adequate. The device address decoders (M105) are not usable because of

their slow speed. Therefore, a new device address decoder card is being

constructed.

Relocation Register Additions

Each processor port will have 30 relocation registers, each 16 bits

wide. The processor is such that the registers should have a fast access

time, but the cycle time can be rather long. Using five 5N7489N Texas

-41-

Instrument 64 bit memory chips, a 30x16 bit memory with an access time

of 35 ns and a cycle time of 100 nsec. can be built for about $100.

CONNECTION TO PDP-10

C.mmp will be connected to PDP-10 System A, via a PDP-10, DL10 adapter.

This adapter allows up to four minicomputers to access directly the PDP-10

memory at relatively high data rates (up to 4 Mhz bit rates). The data is

transmitted under program control of the PDP-11 processor, and transfers are

variable length byte, variable length character strings. Each computer trans­

ferring data into the PDP-10 memory is provided 64 channels (via one physical

channel). Each channel has control status words kept in the PDP-10 memory,

which control the format and location for packing and unpacking in the PDP-10.

That is, a byte pointer to the character string being transferred is kept for

each channel. The PDP-11 accesses each of the channels by unique addresses

in its memory space. By continuously writing information in a particular

PDP-11 address causes a byte (or word) string to be written in PDP-10 memory

at the location and form specified by the PDP-10 control words. Similarly,

a byte string in PDP-10 can be read into the PDP-11 memory, by having the

PDP-11 continuously read the fixed address corresponding to the channel num­

ber. An interrupt channel is also provided for signaling task completion,

errors, etc., between the two computers.

- 42 -

V. OPERATING SYSTEM CONSIDERATIONS AND IMPLICATIONS

The operating system for the multiprocessor, which we will call

Hydra, is intended (initially) to support the following kinds of activities

1. TTY handling (for several, possibly dissimilar hosts)

2. Display processing

3. Speech/Vision device handling

4. Speech/vision real-time processing

5. Synchronous communication switching

6. "Dedicated" systems such as BASIC, APL, and text editing

Later versions of Hydra will support more general user-type program­

ming. Note, however, that the initial applications have real-time and/

or system characteristics. This has an important influence of the de­

sign of Hydra. It implies that the initial system must provide good

multiprogrammed/multiprocessor scheduling, good process communication

and synchronization mechanisms, etc. In short, it must provide clean

interface and good primitives for systems building. On the other hand,

it need not initially provide fancy device-independent file i/o, an

elaborate user-terminal interface, etc. These features will be built,

in a layered fashion, on top of the kernel so that they may be easily

altered and so that several versions may be run simultaneously.

Hydra will be coded in BLISS-11,which runs on the PDP-10.

Some of the other objectives of the initial Hydra (not in any par­

ticular order) are:

- 43 -

One objective in the multiprocessor design is to allow the

total configuration to be partitioned into disjoint subcon-

figurations. It is not the intention that Hydra cope with this

partitioning other than: (a) it must be able to run with what­

ever resources are available so long as they include certain

minimal facilities, and (b) it must be able to (software) lock­

out a subset of resources in preparation for partitioning.

The virtual address space instantaneously available to a pro­

cess is limited by the 16-bit addresses of the PDP-11. More

specifically, the instantaneous virtual memory (IVM) consists

of eight 4k (16b word) pages named by the relocation registers.

However, a process will be allowed a much larger total virtual

memory (VM), perhaps 4000 pages. Monitor traps will be pro­

vided for the user to re-define that portion of his VM which

is to be his IVM.

The relocation registers are not fitted with page-fault detec­

tion, implying that all pages of the IVM must be in core when

a process is running. The IVM is the user's "working set"

and will be kept core-resident for high priority processes.

Monitor traps will be provided for a process to request pre-

paging as well as to mark that specific pages are to be kept

core-resident.

A premise of the multiprocessing design is that not all Pc's

need be identical, either in terms of their instruction sets

44

or in terms of the devices accessible to them (e.g., displays

may be on specific processors). Therefore, a process may be

eligible to run only on a subset of the processors. The sched­

uling algorithm must cope with this problem. The current plan

is to associate a mask defining the set of processors on which

it is eligible to run, and to use a (dynamic) priority sched­

uling algorithm to schedule the highest priority process able

to run on the available processor.

In operating systems it is not uncommon for a "job" to con­

sist of several inter-dependent processes; however, there is

usually an enforced ancestral relation between these processes.

Exploiting the multiprocessor, as in the speech/vision task,

makes such mandatory relations undesirable. (It implies,

among other things, too many levels of interrupt handling.)

Context switching time can be a problem. In general (on the

H/20) 13 registers must be saved/restored, 11 of them under

program control. Thus, in the best case 48 memory references

will be made. This is too many for some device service routines

(e.g., for a scope). For these, relocation registers (from the

/il or lfi sets) will be set aside and they will save only used

registers. This can reduce the time to five memory references

(one accumulator saved).

Processor performance can be improved by minimizing conflicts

for memory banks. We are studying this problem, but do not

have a proposal yet. (See the Section on Performance for

estimates of degradations assuming random references.)

- 45 -

A simple argument indicates that i/o traffic, t , is relatively
insignificant and so was not considered in these figures. For
example,transferring with four drums or 15 fixed head disks at
full rate is comparable to one Pc.

VI. PERFORMANCE OF THE SYSTEM

The performance of the multiprocessor can be computed almost

exactly given m (the number of memories), p (the number of processors),

t^ (the delay introduced by the switch), and the following parameters:

t The mean of a distribution of the processor time P
between the completion of one memory request and

the next request .

t ,t The access time and cycle time for the memories to a c

be used •

t =t -t The rewrite time of the memory, w c a J

t ^ The average transfer times of high speed i/o transfers,

e.g., drum or disk, which interfere with processor

requests; in this analysis we ignore this effect.

Strecker (1970) gives closed form solutions for the interference i

terms of a defined quantity, the UER (unit execution rate). The UER is,

effectively, the rate of memory references and, for the PDP-11, is

approximately twice the actual instruction execution rate. (A single

instruction on the 11 may make from one to five memory references, but i

about two on the average.) Strecker give the following relations,

neglecting i/o transfers, and assuming random memory references:

46

fcp = t w J U E R " < n , / t
c

) (1 " < L " 1 / m > P >

t < t • UER - - 1 " (1 " 1 / m) P *> < V 1 7 6 1 1 - t 1 . (1 - l/m)P (t - t) / t w p c

t > t : UER = (m/t) (I - (1 - P / m) p)
P W C Ttl

m

where P + (m / p) (^ -) U - (1 - P m/™) P)) - 1 = 0

Various speed processors, starting with the Model 20, various types of

memories, and various switch delays, t^ can be studied by means of these

formulas* Switch delays effects are calculated by adding to t and
a

t , i.e., t 1 = t J + t ; and t 1 = t, + t . In particular the following
c * a- d a* c d c r

cases are given in the attached graphs (Figures 4a-f). The plots show

UER x 10** as a function of p for a fixed m, for various parameters of m.

m-parameters are the triplet: (t^,t^,t^).

m = 8,16
p = 1,5,10, ...,35

t = 700 ns (11/20), 450 ns, and 200 ns
P

t d = 190,270 ns

t ,t = (300,0); (400,250); (650,350); (900,350); and (1200,500) ns
c a

The two values of t^ correspond to the estimated switch delay in two

cable-length cases: 10 f and 2 0 f . The t ,t values correspond to the six
c a

memory systems being considered.

In addition to-the Unit Execution Rates for Mp references, two

separate measures of the degradation were obtained:

- 47 -

Processors

Fig. 4a. Performance va Pc's for 8 Mp; Pc(Model 20; tp: 700 ns)

UER xlO (accesses/sec)

24 L

22

20

18

49

Fig. 4c. Performance vs Pc's for 8 Mp; Pc(«; tp: 200 ns)

16 300,0,190

o
CO
CO
o
CO CO <u a o

o

14

12
400,250.270

a: w

10

8 -

350,190

20 10 15
i

25 30
Processors

Processors

1 5 10 15 20 25 30 35~*
Processors

- 52 -
Fig. 4-f. Performance vs Pc's for 16 Mp

Processors

- 53 -

The (percent) degradation due to both memory inter­

ference and the switch delay

D£ The (percent) degradation due to only memory inter­

ference effect

Only sample values have been incldued because of the volume of data,

and the following cases are shown in Table 2:

m = 8, 16

p = 1,5,10,15

t = 700,450,200 ns
P

t == 190 ns a

t ,t = (300,0); (400,250); and (650,350) ns c a

Note, in particular, that for the p=l case is the performance

degradation due to the delay introduced by the switch. In effect, this

indicates the number of P fs necessary to overcome switching delays.

Two unmistakable conclusions can be drawn from the data: (1) the

delay in the switch, t , is the dominant factor, and (2) it is better to
d

use the fastest memory you can get, unless the cost is too high. Also,

because of the long switch delay, faster processors are not needed, or

rather, cannot be used effectively.

More processors will yield higher performance until a sharp cut-off

occurs when processing capacity has absorbed the total Mp capacity. This

can be seen from the figures when a slow memory or fast processor is used.

Since the processor costs are small (in the order of $12K/processor with a

local Mp and some terminals), an objective function based solely on maximizing

performance/cost should not be used. The performance/cost is a fairly flat

function near maximum, since the processor cost is a small part of the system

cost.

Table 2 Switching and Mp Degradation

note td - 190 ns
11/20 Processor (tp: 700 ns)

m — 8 m = 16 ..,

p <"*no (400, 250) (650. 350) (300.0) (400 ,250) (650, 350)
p

D l D 2 »1 D 2
D 2 Dl D 2 D l D 2

D l D 2

1 16.0 18.3 — 16.0 — 16.0 — 18.3 — 16.0 —
5 19.8 4.6 25.2 8.3 26.5 12.6 17.8 2.2 21.6 4.1 21.2 6.3

10 25.1 10.9 34.1 19.3 38.7 27.0 20.2 5.1 26.0 9.4 27.6 13.9

15 31.1 18.0 42.7 29.9 49.0 39.3 22.8 8.2 30.3 14.7 33.7 21.1

Processor, Pc#2 with tp: 450 ns

m =* B m = 16

T> (400 250) (650 r350) (300 ,0) ' (400. 250) (650, 350)
r

Di
i " / . _

D 2 Dl D 2 Dl D 2
D l . D 2 Dl D 2 D l

1 20.2 24.1 20.2 — 20.2 — 24.0 — 20.2 —
5 26.0 7.2 34.6 13.9 35.1 18.6 23.0 3.5 29.3 7.0 27.9 9.6

10 33.6 16.8 46.2 29.2 48.3 36.4 26.6 8.0 35.6 15.3 36.4 20.3

15 41.4 26.5 55.8 41.8 59.6 49.4 30.4 12.7 41.5 23.0 43.7 29.5

Proces sor, Pc#3 with tp: 200 ns ,
m = 8 m = 16

(400,2501 (650. 3501 (300.0) (400 ,250) (650, 350)
P V JU

D l D 2

V • **** <
Dl D 2 Dl D 2 Dl D 2 D 2

Dl D 2

1 27.5 34.8 26.8 — 27.5 — 34.9 — 27.2 —
5 36.7 12.7 50.8 24.6 47.0 27.6 32.1 6.3 43.7 13.4 38.5 15.6

10 47.3 27.2 63.6 44.2 61.8 47.8 37.7 14.0 52.3 26.7 49.1 30.1

15 56.2 39.6 71.8 56.8 70.8 60.1 43.0 21.3 59.1 37.1 56.9 40.9

55 -

In Figure 5 we have plotted the performance/cost. Here note that

if we start with a small size configuration of five Model 20 fs, the cost

is only $375K, while the performance is 4.5x10^ accesses/second (UER),

giving a cost-effectiveness of 12. Going to 1 Pc#2«s later, provides about

a UER of 15xl0 6. While the cost is only $625K (cost-effectiveness is 24).

Following this strategy provides a very cost-effective system, once a

reasonably large number of processors are used. In fact, in the range of 15

processors the cost-effectiveness is relatively constant, while the absolute

performance nearly doubles. The most impressive region is with a fast Pc

of 200 ns from 10 - 35 P f s. Here performance/cost varies by + 5J> and

performance ranges from 13x10^ to 26x10**.

Our interest in this exercise is to determine whether the faster

memory seems worthwhile. We think it is,solely on the current configuration.

Since we would like to fabricate specialized, faster processors

eventually, the additional bandwidth seems essential.

- 56 -

Fig. 5. Cost effectiveness (UER/$) VS P C ' S .

Smp(16 processors; 16 memories); td: 190 ns)

Processors: Memories:
11/20; tp: 700 ns
Pc.2; 450 ns
Pc.3; tp 200 ns

Mp C
Mp C

tc:
tc:

400;
650;

ta:
ta:

250
350

Pc.2.Mp(400)

14

12

10

8 1

6

4

0 1 10 15 20 25 30 35

2

Processors

- 5 7 -

VIII. CONCLUSIONS

We have given an overview of the design of the proposed C.mmp. We

have described the computational requirements of our present research that

the system is to serve, and translated these into a set of specific con­

straints used to shape the design. We have also described the wide range

of additional research payoffs that can rather clearly be expected on the

basis of the system.

Many details of the design are left unspecified. These are, and will

be, given in detailed memoranda on specific parts. For example, a separate

paper is under preparation on the details of the Smp design: its fabrica­

tion and precise operation, including processor-port assignment control,

manual switching, etc. Similarly, there will be a detailed description of

the operating system structure and operation. But the essential features

of the system are now firm.

-58-

REFERENCES

Barbacci, M., H. Goldberg and M. Knudsen, C.ai (P.LISP) — a LISP processor
for C.ai, Department of Computer Science, Carnegie-Mellon University, 1971.

Bell, C. G., "Minicomputer Architecture," IEEE Conference, March 1971.

Bell, C. G., R. Cady, H. McFarland, B. Delagi, J. O'Laughlin," R. Noonan and
W. Wulf, "A New Architecture for Minicomputers - The DEC PDP-11," SJCC 1970,
pp. 657-675.
Bell, C. G., P. Freeman et al, C.ai: A Computing Environment for AI Research -
Overview, PMS,and Operating System Considerations, Department of Computer
Science, Carnegie-Melion University, May 1971.

Bell, C. G., J. Grason, S. Mega, R. Van Naarden and P. Williams, The Design,
Description and Use of the DEC Register Transfer Modules (RTM), Department
of Computer Science, Carnegie-Mellon University, 1970.

Bell, C. G., A. aN. Habermann, J. McCredie, R. Rutledge and W. Wulf, "Computer
Networks," Computer Science Research Review, Carnegie-Melion University, 1969.

Bell, C. G., H. C. Lauer, and B. Randall, A Switch for Connecting Computer
Components, The University of Newcastle Upon Tyne (U.K.), Technical Report
SRM/16, June 3, 1971.

Bell, C. G., H. C. Lauer and B. Randall, S(Magnabus) - A Multi-Unibus Switch
for PDP-11, CMU memorandum, May 27, 1971.

Bell, C. G., and A. Newell, Computer Structures, McGraw-Hill Book Company,
1971a.
Bell, C. G.,and A. Newell, "Possibilities for Computer Structures, 1971,"
FJCC 1971b. (in press)

DEC PDP-11 Documents: Programmer Reference Manual and Unibus Interface
Manual.

Krutar, R., Personal communication, 1971.

McCracken, D. and G. Robertson, C.ai (P.L*) -- a L* processor for C.ai,
Department of Computer Science, Carnegie-Mellon University, 1971

Strecker, W. D., "An Analysis of the Instruction Execution Rate in Certain
Computing Structures," Ph.D. Dissertation, Carnegie-MelIon University,
ARPA Report, 1971.

Wulf, W., Personal communication, 1971

'A

(Security
, .,. DOCUMENT CONTROL DATA - R & D

c ; . „ , , , W / o n . / „ „ . , tody o, ah„tKr, „nd ,„„„,.„„ . m o l a t l o n mu„ „a „ ^ o v B r a n ^ o f i ^ e l m m a u i m H O R I G I N A T I N G A C T I V I T Y (Corporate author)

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

| 3 . R E P O R T T I T L E

2 a . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
i i . G R O U P — — —

C ' : 7 e h e ™ « " l M S ™ ™ S ° R C 0 M P 0 T E R « " 0 " " ! "
D E S C R I P T I V E N O T E S (T y p e o / report a n d inctualv dale.)

Scientific f i n a l

A U T H O R I S l (Firat name, middle initial, last name)

C G. Bell, W. Broadley, W. Wulf, A. Newell, C. Pierson, R. Reddy, S. Rege

| 6 . R E P O R T D A T E

August ?4, 1971

J8a. C O N T R A C T O R G R A N T N O . F446 20-70-C-0107

b. P R O J E C T N O . 9769

61102F

D. 681304
10. D I S T R I B U T I O N S T A T E M E N T

I O I A L N O . O F P A G E S [76 . N O , 0 F R E F S

63 1 1 5

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S)

CMU-CS-72-112

™ p o , R " ° R T N O ' S > ° ' h " n U m t " " " " ' * • —

Approved for public release; distribution unlimited.

I 1 *• S U P P L E M E N T A R Y N O T E S

TECH OTHER

1 3 . A B S T R A C T

S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Arlington, Va. 22209

This document describes a proposed CMU multiprocessor system to be constructed
around a set of PDP-11 computers connected through a crosspoint switch to a large
sharable primary memory. . The present design constitutes a solution to a specific
set of needs existing in our environment. The system has research consequences
that reach well beyond the particular demands it was designed to satisfy. For al­
though multiprocessors have been much talked about and advocated, there are re­
markably few operational systems more complex than dual-processor systems, and
even fewer documented scientific investigations into their performance and oper­
ating structure.

This document is limited to a presentation and analysis of the (hardware)
system. It gives enough description of the usage requirements, software, and the
research potentials and problems to make clear why we believe the effort to be a
sound one. It does not attempt a systematic discussion of the field of multi­
processor research, nor of alternative systems that might be of interest, either
to meet our computing demands or as research directions.

Section II discusses the requirements and research potential. Section III
lists the design constraints adopted. Section IV lays out the PMS structure of
the system. Section V describes the main specifications of the operating system.
Section VI provides some details on a performance analysis.

D D , F
N° 0?. S1473

L I N K A

R O L E I W T

L I K K B

R O L E W T

L I N K C

R O L E | W T

Security Classification

K E Y W O R D S

multiprocessor
crosspoint switch
operating system
performance analysis

Security Classif ication

