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ABSTRACT 

For a convergent sequence fx.} generated by x . M - cp(x. x. x , , . , ) , 
1 i + 1log 2p *> 1 - 1 i _ d + 1 

define the multiplication efficiency measure E to be — - — , where p is 

the order of convergence, and M is the number of multiplications or divi­

sions needed to compute cp. Then, if cp is any multivariate rational func-
2 

tion, E £ 1. Since E = 1 for the sequence {x^} generated by x^ +^ *' X£ + x i " 

with the limit the bound on E is sharp. 
Let P__ denote the maximal order for a sequence generated by an iteration M 

M 

with M multiplications. Then P__ ̂  2 for all positive integer M. Moreover 

this bound is sharp. 



I. INTRODUCTION 

For a convergent sequence {x^} generated by x^ + 

define the multiplication efficiency measure E to be 
log2P 
= cp(x4 ,x 

M , where p is 
i , Ai-l" • • > *i-d+l 

the order of convergence, and M is the number of multiplications or divi­

sions needed to compute cp. In [1] Pater son showed that if 

(i) cp is a rational function, 

(ii) d » 1, 

(iii) lim x 4 is an algebraic number, and 

(iv) cp has rational coefficients, 

then E ^ 1, In this note we show E ^ 1 removing all these restrictions 

except (i). Since condition (i) is not a restriction for a computer al­

gorithm, this is a very general result. In particular, we shall show that 
2 1 

E • 1 for the sequence {x^} defined by • x^ + x i " 4 w * t l 1 t h e limit 

Hence our bound on E is sharp. 
Let P.. denote the maximal order for a sequence generated by an iteration M 

M 

with M multiplications. Since E £ 1, it follows that P M <: 2 for all positive 

integer M. Moreover, we shall show that this bound is sharp. 

Paterson used results from approximation by rational numbers to obtain 

his result, while we use a completely different approach here. With the 

technique we use here, the case d = 1 would be very easy to prove. We 

show that a rational iteration function which generates a p*"*1 order con­

vergent sequence must have degree (degree will be defined below) ^ p, and 

therefore must employ at least F l og 9p"l multiplications or divisions 

The result belongs to analytic computational complexity which deals 

with optimality theory of analytic processes [2]. 

(except by constants). Hence, E • £ 1. M 
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II. NOTATION 

We work over the field of real numbers or the field of complex num­

bers. Let {x^} be any convergent sequence with limit <y, and x^ f a for 

all i. Denote • |xi"<*| for all i. 

Definition 1: (Order) The sequence {x^} has an order p > 1 (or {x^} is a 

From the above definition, it is easy to see that if {x^ has order p, 

then 

It should be noted that in our proofs the only properties of order 

needed are (2,1) and (2.2), although (2.1) has been used as a definition 

of order by many people. Definition 1 is the weakest definition on order 

we have found which enjoys both properties (2.1) and (2.2). 

For each number a9 we define a class F(qO of convergent sequences with 

the same limit a as follows: {x^ € F(a) iff 

(i) f a for all but finitely many i 

(ii) {x^} has an order p > 1 

th e p order sequence) iff lim i+1 
i-» p-e 

and lim ei+l 
i-co p+ e 

* 0 for any e > 0. 

(iii) x. 
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C p l ( y l , y 2 , , , , , y d ) 

s a y , v(yv...,yd) = ^ ( y ^ , . . ; , ^ ) > w h e r e V l ' V " ' ' y d > 

and cp2(yj>Y2>* • • >y^) a r e 1 : 1 7 0 relatively prime multivariate 

polynomials of d variables y^>•••>y^# We say that {x^} 

is generated by the rational iteration cp. For examples of 

these cp's, see [3]. 

Consider a sequence in ¥(a) generated by cp. For the purpose of this 

note, we assume the cost in generating the sequence to be the number of 

multiplications or divisions needed to compute cp at each stage. Then it 

is natural to give the following definition about the measure of efficiency. 

Definition 2: (Multiplication Efficiency) The multiplication efficiency 
log?p 

E of a sequence in ¥(<y) generated by cp is defined to be — w h e r e p is 

the order of the sequence and M is the number of multiplications or divi­

sions needed to compute cp, after doing any preconditioning of coefficients  

(i.e., preconditioning is not counted). 

Definition 3: (Optimality) A sequence in F(qr) is called optimal if it  

has the largest multiplication efficiency among all sequences in F(cy)» 

From (2.2) we can check that a very desirable property holds, namely, 

for any fixed positive integer n, {x^} and [ x
i n} i =o ̂ a v e t^ i e s a m e multi­

plication efficiency. In fact, this invariance under composition property 

implies that any efficiency measure must be a strictly monotonic function 

of E [4]. Therefore, as far as optimality is concerned, it makes no dif­

ference if E or any other possible efficiency measure is used. For in-
M 

stance, the efficiency measure p will give the same answer in optimality 

problems as E will, since it is a strictly monotonic function of E. 
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C p l ( y l , y 2 , # # , , y d ) 

Definition 4: (Degree) Let cp(y- ,y 9,. • • ,y,) 3 3 — 7 - — —-r be a 
. 1 ^ a ™2 1 2****',yd 

multivariate rational expression, where cp^(y^>y2>» • • »y d) a n d 

c p 2 ^ y l , y 2 , # ° # , y d ^ a r e t w o relatively prime multivariate polynomials. 

If D ( c p t ) is the degree of cp̂  (yx,y 2,... ,y d) for i * 1,2, then the degree D(cp) 

of cp(y1,y2,... ,y d) is defined to be max (D(cp L ) , D ( c p 2 ) ) . 
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III, PRELIMINARY LEMMA 

For each positive integer d, we define an order (>) on the set 

*d = \-($i*$2*"' *^d}\^i i s a n o n _ n e 6 a t i v e integer for i = 1,2,...,d} as 

follows: for (jj,J2 J d ) , (Ap , • • . , J&d) € I d > (J 1tJ 2 V > (li> A
2''''' V 

iff there exists k € {l,2,...,d} such that J k > ^ a n d = \ f o r 1 < k« 

th 

Lemma 1: For any number a, let ix^} be any p order sequence in F(o0 gen­

erated by cp, and let e^ = | x - &\ for all i. Suppose that co has d variables. 

Then we have the following: 

(i) if (j 1,j 2,..-,j d) € I, with E j. < P, 
i=l 

p-e e. 
then lim — r-̂  : = 0, for e > 0 and 

i-,oo Ji J2 Jd 
ei ei-r--ei-d-fi 

sufficiently small, and 

(ii) if (j 1,j 2,...,j d), (A 1,* 2,...,X d) € I d 

with (J 1,J 2,...,J d) > C^, A2,. .•, A d) 

d 
and S 1. < p, then 

i=l L 

h h jd 
. e i ei-l"* ei-d+l _ ft 

i-k» 1 2 d e. e. <« • • • e, j•n i i-I i-d+1 

Proof: 

(i) Choose e such that 0 < € < p - £ j. 
i=l 1 

and 0 < c < p - 1. Then 
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lim — — e. , lim - ± — 

1 0-im — 
i-̂oo ei-2 

= lim 

p-e-1 
'i-1 0, and then 

*i-2 
= 0. 

e. 
In general, lim — — - 0 for any positive integer k. Hence, 

i-.» ei-k 
d 
£ 1 

e ? _ e ef = 1 1 /e.xj, /e. x j 
0 * lim } * lim lim( ) \ . . M ") tt - 0, 

i-KO ^1 Jd i-K» Jl Jd i-»«\ ei / Vei-d+l/ 
ei • " V d + l e i " , ei-d+i . . • '• , 

Jl J2 Jd d e. e.....e. d,, 
(ii) Choose € such that 0 < e<p- S Z.. Let Q. - — ~ *f 

i=i 1 1 h h V 
ei ei-l***ei-d+l 

Suppose that j f c > and j = for i < k. Then when i is so 

large that e^ < 1, we have 
•Wl jd 

J k " \ ei-k •••ei-d+l  
Q i * V k + 1 * V l \ 

ei-k '-^i-d+l 

jk+l jd 
6i-k , , < ei-d+l  

ei-k+l * V l \ 
ei-k "^i-d+l 

jk+2 Jd 
e. 
p-e i-k \ + 2 *d 

ei-k ei-k-l-" ei-d+l 
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Case 1, p - e + - JB^ + i ^ 1 for k+i • k+l,...,d. Repeating the above 

procedure, we get 

e \+2 jd 
Q *JdS±l ei-k-l"- ei-d+l 
1 .JlJ V k A +2 /d 

ei-k-l***ei-d+l 

ei-k+l #
 Ei-k 

p-e * p-e 
ei-k ei-k-l 

l-k-1 

Jk+3 jd 
ei-k-2 , , , ei-d+l 

ei-k-2'**ei-d+l 

. „ ei-k+l ei-k ei-d+2 
^ ^ • • ' • • • • • _ 

p-e p-e p-e 
ei-k i-k-1 ei-d+l 

Case 2, P - e + J ^ - ^ < 1 a*d P'^k+i-^+i s l f o r k + i = k + 1 k^" 1 

for some n with k + n - 1 < d. Since P - e - ^ + n > 0, J k + n < P - e + j ^ - ^ < 

Hence we must have j = 0 . Consequently, 1 > p-e-A > E A. - Jt • 
k+n K+n ±si\ 3" K-rn 

This implies that JL • 0 for all i except i = k+n. Then 

e „ . i-k+1 ej-k-n+2 p-e+jk.Hn-A Jk+n+l Jd 
yi p-e p-e i-k-n+1 l-k-n i-d+1 

i-k ei-k-n+l 

Note that p-e+i, - L , > 0. Therefore, in both cases, lim Q. = 0. r k+n K+n l 
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IV. MAIN RESULT 

Theorem 1: For any number a, let {x^ be any p t h order sequence generated 

by tp. Then D(tp) a p. 

Proof: Write 

(4.1) co1(y1,y2 y d) - axp2(y1,y2,...,yd) 

j l jd 2 C(j1,...,jd)(y1-<y) ,..(yd-Q') 

for constants C( j . . , J d>. Suppose that D(cp) < p. Then C>' jj,..., j f l > = 0 for 
d 

all € I. with E j. 2 5 p: Moreover, we shall use induction to 
1 B l d 

show that C(j1,...,jd) = 0 for all (J1,...,Jd) with E j. < p. Note that 
i=l 

for e > 0, 

0 - lim | X l + 1 " *[ - lisa M W l ' — ' V d + l ^ l 
i-»» I x. - a\p_e i-»« . | p-e 

Then, by (4.1), we have 

h jd 
| E C(j1,...,jd)(xi-a) ...(x^^-or) | 
j 1+J 2+...+J d<P 

(4.2) lim — — - ~ — 0 . 
i-Ko e. 

Since lim e. - 0 for k=i,...,i-d+l, from (4.2) it follows that C(0,...,0) = 

SupposeThat C Q ^ . . . , ^ ) - 0 whenever UV...^A) < *d> for some 

i d) € I d with ^ l± < p. (4.2) may be written as 
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lim 
,jd) * (j^,...,^) 

c(j r., .,jd) 
(x1-o» ...(x 1 - d f l- g) 

1 d 
e i •••ei-d+l = 0. 

h *d ei *,,ei-d+l 

Using Lemma 1 for sufficiently small e, we must have C(i^t...,i^) - 0. This 

completes the induction proof. 

Hence C(J1,...,Jd) - 0 for all J d) <= l d > 

From (4.1), c p ^ V j , . . . ,y d) - off>2(y1 y d) = 0. 

Hence cp(y^,...,yd) = a» This is a contradiction. 

Hence, D(cp) ̂  p. • 

Theorem 2: If cp(y^,... ,y d) is a multivariate rational expression and M is 

the number of multiplications or divisions (except by constants) needed to 

compute cp(y1,... , y d ) , then M ^ log2D(cp). 

Proof; Observe that we compute cp(yj,... ,y d) through a sequence of arithmetic 
th 

operations. Let R^(y^»••.,yd) be the result immediately following the i 

multiplication or division (except by constants) for 1 = 1 , 2 , M . Let 

Rp(y^,...,yd) be one of y^,...,yd« Observe that we have either 

(4.3) R n + 1tr 1,...,y d) = ( z " ^ ^ ( y ! y d) + A n + 1 ) 
1=0 * 

x(
ls
E
1
1,i)ftfiRi(!ri'-V + Vi)'or 

(4.4) R n + 1(y 1,...,y d) = (jQ M^Vy^.-.V + Vi* 
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n 
+ <1Jl

 Hi.«ri-iRi(yi'—»yd> + w 

where r̂ri-1* a r e m a n y n u mbers, for n-0,1,...,M-1# 

We claim that, for n=l,2,...,M, the following is true. For any numbers 

kQ,...,kn, C, we have 

(4-5) £ W l V + c - Q̂ .-.-V 
where ^(y^*•••fY^J kg,...,kn,C) i s a multivariate polynomial depending on 

kg,k^,. •. ,k n, C and Q ^ y ^ ^ * • • • >y&) i s a multivariate polynomial independent 

of kp,k^,•.•,k^, C; moreover, both polynomials have degrees ^ 2 n . We prove 

it by induction. It is clear that (4.5) is true for n = 1. Suppose that (4.5) 

is true for all n £ N for some N < M. Suppose that (4.3) is true for n = N. 

Then by (4.5) for n - N, we have 

N+l 
E 
i=0 

N 

k.Ri(y1,..-,yd) + c = k m *ml(Yl>-->yd) + j: \\(yv--->y&) + c 

W s Mi,N+i V + V i ) x (.f 1
Ni,^i Ri ( yi--- yd ) + W 
N 

m< ™.i ̂(yi-'-V + Vi)x (, 
1-0 

N *N+1  

+ s ̂ (ŷ -'-.ŷ  + c <Wyi V 
i-0 

where ?^Vl 7Al "0 V C) = Vl Vyl'""yd' Vl> 
' V y l V N 0 , N + 1 N N , N + 1 ' W + V y l y d 5 k0,...,kN,C) Q H(y 1 

2 

and Q̂ Cyĵ '-'̂ y,!̂  " QN̂ yl'* * * ' yd^ * T h e n b y t h e i n d u c t i o n hypothesis, we 
N+l N + 1 

have that E k^Cyj,... ,y d) + C has degree £ 2 . 
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N+l 
Similarly, from (4.4) we also have that £ k.R, (y-,... ,yj + C has the 

1-0-1 1 1 d 

< ™ V l ( y l , , " , y d l k
0 » " * » k

N » c > + 1 form 7- — r with degree £ 2 for some 
y N + r y i , # " , y d ; 

P N + l ( y l , # , , , y d ; k
0*---> k

N* c) a n d QN+l ( yl , # #-» yd ) # 

Hence, both cases imply that (4.5) is true for n = Nfl. This completes 

the induction. Therefore, for any numbers kQ,...,k ,G» the degree of 

n 
E k.R. + C will not reach D(cp) until n ^ log D(co). This implies that 
i=0 1 1 l 

M ^ log2D(cp). This completes the proof. • 

Note that M ^ M, since preconditioning is only performed on constant co­

efficients. Thus, by Theorem 1, M £ M 2> log^Dfo) ^ log 2p. Therefore, 

we have the following 

log2p 
MAIN RESULT: E = — £ 1. 

. M 

2 1 
Now consider the sequence generated by i|r(x) = x + x - ̂  with the limit 
Since ^ 1 (-1/̂> = 0 a n d fi-fo)^ 0, we can easily show that this sequence 

log22 

has order 2. Obviously M-l for this sequence. Thus E 3 5 — j — = 1. Similarly, 

E=l for the second order sequence generated by T( x) = ^ + x - 1 with the limit 

1. Either example shows that our bound on E is sharp. Moreover, we have the 

following interesting result. 

Let P^ denote the maximal order for a sequence generated by an iteration 

with M multiplications. From our main result, we have the following 
M 

Corollary: P M £ 2 for all positive integer M. Moreover this bound is sharp. 

2 
Proof: Let ^ be the composition of with itself M times where i|r(x) = x -fx-

M 
as before. Then the sequence generated by ^ has order 2 and ^ employs M 



-12-

multiplications. Hence for each M the maximal order is achieved by the 

sequence generated by * w. B 
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1 3 . A B S T R A C T 

For a convergent sequence {x^} generated by x i + 1 = c p(x i,x i ^ 9... d + 1 > , 
log 2p " 1 " 

define the multiplication efficiency measure E to be — — , where p is the 

order of convergence, and M is the number of multiplications or divisions 

needed to compute cp. Then, if cp is any multivariate rational function, E <> 1. 
2 1 

Since E = 1 for the sequence { x^} generated by x^ +^ = x i + x i " 4 w i - t h t* i e 

limit -1/2, the bound on E is sharp. 

Let P M denote the maximal order for a sequence generated by an iteration 
with M multiplications. Then P^ £ 2 for all positive integer M. Moreover 

this bound is sharp. 
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