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ABSTRACT

For a convergent sequence {xi] generated by xi+11:g¢éxi,xi-1""’xi-d+1)’

define the multiplication efficiency measure E to be , where p is

M

the order of convergence, and M is the number of multiplications or divi-

sions needed to compute . Then, if ® is any multivariate rational func~

tion, E = 1, Since E = 1 for the sequence {xi} generated by X1 =X,  + X, -

with the limit -%, the bound on E is sharp.
Let PM denote the maximal order for a sequence generated by an iteration
with M multiplications. Then PM = ZM for all positive integer M. Moreover

this bound is sharp. .



I. INTRODUCTION

For a convergent sequence {xi} generated by xi+11:ém;xi’xi-l""’ xi-d+1)’
define the multiplication efficiency measure E to be TER where p is

the order of convergence, and M is the number of multiplications or divi-

siona needed to compute ¢. In {1] Paterson showed that if

7_(i)_ @ 1s a rational function, .
(11 d =1,

(1i1) 1lim x; is an algebraic number, and

j_-ow_

{1lv) o has rational coefficients,

then E < 1, 1In this note we show E £ 1 removing all these restrictions
except (1). Since condition (i) 1s not a restriction for a computer al-
gorithm, this is a very general result, In particular, we shall show that
2

X, + x, - % with the limit

E = 1 for the sequence [xi] defined by x, , = x, s

-%. Hence our bound on E ig sharp.

Let PM denote the maximal order for a sequence generated by an iteration
with M multiplications. Since E S 1, it follows that P, < M for all positive
integer M. Moreover, we shall show that this bound is sharp.

Paterson used results from approximation by rational numbers to obtain
his result, while we use a completely different approach here. With the
technique we use here, the case d = 1 would be very easy to prove. We
show that a rational iteration function which generates a pth order con~
vergent seguence muat have degree (degree will be defined below) = p, and

therefore must employ at least riogzbj multiplications or divisions
16g.,p
2

(except by constants). Hence, E = < 1.
The result belongs to analytic computational complexity which deals

with optimality theory of analytic processes (2].



II. NOTATION

We work over the field of real numbers or the field of comp lex num-
bers, Let [xi} be any convergent sequence with limit ¢, and x, # ¢ for

all 1. Denote ey = |xi-a| for all 1.

Definition 1: (Order) The sequence {xi} has an order p > 1 (or [xi} is a
pth order sequence) iff 1lim ®141 - o and lim ®1+1 # 0‘for: any ¢ > 0,
iwo p-g i=e pte
3 !

From the above definitiom, it 1s easy to see that if [xi] has order p,

then

e
(2.1) p = supi{r | lm t+1 = 0}, and

1= ey

(2.2) for any fixed positive integer n, {xin}:=0 has order pn.

It should be noted that in ocur proofs the only properties of order‘
needed are (2.1) and (2.2), although (2.1) haa been used as a definition
of order by many people. Definition 1 is the weakest definition on order
we have found which enjoys both properties (2.1) and (2.2).

For each number o, we define a class F(a) of convergent sequences with

the same limit o as follows: [xi] € F(a) Lff

(1) Xy # o for all but finitely many 1

(11) {xi} has an order p > 1

{(1i1) X1 " d(xi’xi-l""’xi-d+1) for all i, for some multi-

variate rational expression a(yl,yz,...,yd) of d variables,



wl(yI:yZ.v-- . :yd)
h ch(yleZ’- X ,)Td)

say, m(yl,...,yd) » where @, (¥15¥,50004Yy)

and ¢z(y1,y2,...,yd) are two relatively prime multivariate
polynomials of d variables Ys¥gaeees¥yo We say that {xi}
is generated by the rational iteration 9. For examples of

these 's, see [3].

Consider a sequence in F(u) generated by ¢. For the purpose of this
note, we assume the cost in generating the sequence to be the number of
multiplications or divisions needed to compute ¢ at each stage. Then it
is nétural to give the following definition about the measure of efficiency.

Definition 2: (Multiplication Efficiency) The multiplication efficiency
log,p
2

E of a sequence in F(y) generated by ¢ is defined to be where p is

the order of the sequence and M is the number of multiplications or divi-

sions needed to compute ¢, after doing any preconditioning of coefficients

(i.e,, preconditioning is not counted).

Definition 3: (Optimality) A sequence in F(g) is called optimal if it

has the largest multiplication efficiency among all sequences in F(wo).

From (2.2) we can check that a very desirable property holds, namely,
for any fixed positive integer n, [xi} and {xin}:;ﬂ have the same multi-
plication efficiency. 1In fact, this invariance under composition property
implies that any efficiency measure must be a strictly monotonic function
of E [(4]. Therefore, as far as optimality is concerned, it makes no dif-
ference if E or any other possib}e efficiency measure is used. For in-
stance, the efficiency measure pﬁ will give the same answer in optimality

problems as E will, since it is a strictly monotonic function of E,.



CP]_ (yl’yz IRRR ’yd)
(92 (yl :st A ’Yd)

be &

Definition 4: (Degree) Let w(yl,yz,...,yd) =

multivariate rational expression, where wl(yl,yz,;..,yd) and

9y (¥)sTps+4+2Yy) are two relatively prime multivariate polynomials.

If D(mi) is the degree of q&(yl,yz,...,yd) for i = 1,2, then the degree D{p)

of m(yl,yz,...,yd) is defined to be max(D(qi), D(¢2))_




II1. PRELIMINARY LEMMA

For each positive integer d, we define an order (>) on the set
Iy = {(jl,jz,...,jd)lji is a non-negative integer for { = 1,2,.,.,d} as

follows: for (jl,jz,...,jd), (1'1’2'2""’13) € Id, (jl’jZ""’jd) > (I,l,ﬂz,...,ﬂd)

iff there exists k € {1,2,...,d} such that jk > zk and ji = Li for i < k.

Lemma l: For any nmumber ¢, let {xi} be any pth order sequence in F(g) gen-

erated by ¢, and let ei = Ix. - a[ for all i, GSuppose that ¢ has d variables.

L

Then we have the following:

d
(i) if (jl’jZ"“’jd) € Icl with T ji< Ps
i=1
eP ¢
then lim 3 3 x - = 0, for ¢ .~ 0 and
e J1 J2 g

1 Si-1"""%i.dnl
sufficiently small, and
(ii) if (jl,jz,...,jd), (31,22,...,£a) €1,
with (J1sdpseessdyg) > (Bslyseessdy)

d
and T 21 < p, then

P

i=1 .

Ejl I, ejd
i ei-l..‘ ;—-d+1 = 0

lim
i-me j"1 !'2 Ed

1 ®i-100%i-d+l

Proof:
d

(i) Choose € such that 0 < e<p - L ji
i=1
and 0 < ¢ < p - 1. Then
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® e -¢-1
lim P = lim —— - [;_1 = 0, and then
joo €521 i &P
i-1
e e, e
li.m = lim 1 - i-l = 0.

joo 122 iow i1 G2

e

In general, lim ei = 0 for any positive integer k. Hence,
i+ "i-k
d
p
. eP-E€ R T
0 < lim — } < lim —= 1hm(}~;) (f \) - o.
e gl ed e J1 | Ja £ ~d+1
R i **1-a+1
d 31 Iz Ja
e’ 1 l.e -d+1
(1i) Choose ¢ such that 0 < e<p- T y, . Let Q = ;' ]J-Z ]j, .
i=1 1k N

i €i-17*"%1-a+1
Suppose that jk > )zk and ji = Li for i < k. Then when i is so

large that e, < 1, we have

. Jktl  Jd
b ®iak ctrfiodel

Y = fikn L1 L
e

{1k " %i-d+l

o+l Ja
. i & T 50!
i-k+l
' e K

i-k *"Ci-d+l

. eJk+2 eJd
_ ikl | ipke+;|k+1 ‘Qk+1 . i-k-1 ;-d+1
el - Sy 42 d

-k €1 k-1"""%1-d+1
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Case 1, p - ¢ + jk+i. - zkﬂ 21 for k+i = k+l,...,d. Repeating the above

procedure, we get

e o2 14
q skl o Siokeltce €1 .d+1
Toeh ik by b
i-k e

i-k-1°""%i-d+1

e e .
- Aokl ik, eif'_+3k+2'£k+2)

p-€ p-¢ k-1
€1k €5 k-1
e3k+3 ejd
O 8ik-200"% a4l
hers L3
& k-2°°"%i-d+l
e e e,
s & & B S :_:+1 L] ;”t L] *Ad ] ;_-:.+—2
€i-k €ik-1 € -da+l

Case 2, P-e+jk+n-!‘k+n < 1 and p-ﬁjk+i'fk+i z1 for k+ i = ktl,...,k+n-1

for some n with k + n - 1 <d. Since p-e-4 0, < p-eti <4, < 1.
d

" Hence we must have jk-l-n = . Consequently, 1 > P-s'i‘kﬂn > izl gi - ‘e‘k-i-n'
This implies that zi = 0 for all i except i = k+n. Then
< ®i-k+1 . . ®i k-2 . ep-e+jk+n-fk+n ejk+n+1 jd
% = Tt T e i-k-m+1 " Sikem t Ottt T %iog4l
i-k i-k-n+l

Note that p-e+j - > 0, Therefore, in both cases, lim q, = 0,
k+n Lk+n jom L ™



1V. MAIN RESULT

Theorem 1: For any number ¢, let {xi} be any pth order sequence generated

by ©. Then D(p) 2 p.

Proof: Write

(4e1) 0] (FysYpaeses¥y) = 09y (¥ s¥paenes¥y)

- i iy
= Z C(jl’...’jd) (Yl'd) -c-(yd-a}
(jl,...,,‘;d)erd

for constants C(jl""’jd)'; Suppose that D(¢) < p. Then Cijl,...,jdr = 0 for
all (jl,...,jd) € I, with ¥ j, Zp: Moreover, we shall use induction to
i=1 :
d

show that C(jl,...,jd) = 0 for all (jl"“’jd) with T ji < p. Note that
=1

for e > 0,

%41 - @

0 = lim iy lim Im(xi'xi-l"'"xi-d+1)_a|

i |xi - Q" 1= |xi . alp'e

Then, by (4.1), we have
( e )j"l
E C jl,l--’jd X.‘Q’ ---(X._d+1-a
j1+j 2+' . '+j d<p t *
(4.2) lim " =0,
i e?

1

Since lim e = 0 for k=i,...,i-d+1, from (4.2) it follows that C(0,...,0) = 0.
§=ee0

SUPPOSG that C(jl""’jd; = 0 whenever (jll"',jd) < (31"-':ﬂd) for some

(L ,...,ld) €1, with £ £ < p. (4.2) may be written as
1 =1
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i iq
I Z C(j . )(xi-d) --o(xi_d+1'0.') |
. 1’21y ) i
(j-l’ln.,Jd) 2 (£1,l--’£d) e 1 e d
lim i °*%i.d+1 -0
i e?-s
. 1
e”l L
i 07 %iad+l

Using Lemma 1 for sufficiently small ¢, we must have C(El,....zd) = 0. This

completes the induction proof,

Hence C(jl,...,jd) = 0 for all (jl,...,jd) €1I,.

I
o

From (4.1}, @) (¥yseees¥y) = 09, (Fse00,yy) =
Hence ¢(y1,...,yd) = . This is a contradiction,

Hence, D(p) = p. u

Theorem 2: 1If w(yl,...,yd) is a multivariate rational expression and M is

the number of multiplications or divisions (except by constants) needed to

compute (¥y,...,¥,), then M2 log,D(w) .

Proof: Observe that we compute w(yl,...,yd) through a sequence of arithmetic
operations, Let Ri(yl""’yd) be the result immediately following the ith
multiplication or division (except by constants) for i=1,2,...,M. Let

Ro(yl,...,yd) be one of Yyseees¥ye Observe that we have either

n
o3 Ropg¥peeeayg) = (2 M Ry Opoeeeayy) +4)
n
X (iEINi,n+1Ri(y1’..',yd) + Bn+1);0r
n
(4-4) Rn+1(y1’|oo,yd) = ( z Mi,mlRi(yl’...’yd) + AI\"-]_)

i=0
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n

where Mi,n+1’ Ni,n+1’ An+1’ Bn+1 are many numbers, for nFO,l,...,ﬁ-l.

We claim that, for n=1,2,...,ﬁ, the following is true. For any numbers

kos--.,kn, C, we have

- P (y cess3¥ g3 k e k ’ C)
(4.5) T k.R (yl,_“,y Y+ C = n’1? 4’ “o? K
gm0 1 d Q_(7preees¥y)

where Pn(yl,...,yd; ko,...,kn,C) is a multivariate polynomial depending on
ko,kl,...,kn, C and Qn(yl,yz,...,yd) is a multivariate polynomial independent
of ko’kl""’kn’ C; moreover, both polynomials have degrees < 2", We prove

it by induction. It is clear that (4.5) is true for n = 1, Suppose that (4.53)
is true for all n = N for some N < M. Suppose that (4.3) is true for n = N.

Then by (4.5) for n = N, we have

M1 N .
. 3
T KR (yyseeesvy) €= K1 Rgyq Tyoeeesyg) + I kR (ypaeeesyg/ F ¢
i=0 i=0
N N )
= ae + B
kNH(ii_:O N R (ypseees¥g) F A ¢ ElN 1Ry poeeeo¥g) ¥ By
N Pp1 yoerea¥g kgseorskys ©
+ k, R eass¥,) +C=
130 ACALARARE Quyr o0+ Ya)
. = A
where Pml(yls-“!yd, ko!""kN’ C) kN""l N(yl, "-’Yd’ 0’N+1"'°’MN’N.|.]_’ N+]_)

. PN(yl""’yd; NO,N+1’.,.,NN,N+1, BN+1) + PN(yl,-..,yd, 0,--., N,C) QN(Y]_, .’yd)s

2 . .
and Qn+1(y1""’yd) - QN(yl,...,yd) . Then by the induction hypothesis, we
M1 N+1

have that 120 kiRi(yl""’yd) + C has degree =< 2
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N+1
Similarly, from (4.4) we also have that T kiRi(yl""’yd) + C has the
i=0.

p (Fyseensy, s k 2oe s K sC)
M1'Y1 d 0 N with degree < 2N+1 for some

form
Q1 Gpaees¥y)

PN+1(y1’.."yd; kos-O':kNaC) and QN+1(yi"'°’yd)°

Hence, both cases imply that (4.5) is true for n = M+l. This completes
the induction. Therefore, for any numbers kO""’kn’c‘ the degree of
n

T kiRi + C will not reach D{¢p) until n = logzD(w). This implies that
i=0

M= logzD(tp). This completes the proof. [ |
Note that M = M, since preconditioning is only performed on constant co-
efficients, Thus, by Theorem 1, M 2 } 2 log,D(w) = log,p. Therefore,

we have the following

log,p
M

MAIN RESULT: E = <1,

Now consider the sequence generated by y(x) = x2 + x - L with the limit

4
-12. Since t'(-l,}’2)= 0 and q;"(-lﬂ)# 0, we can easily show that this sequence
log, 2
has order 2. Obviously M=1 for this sequence. Thus E = 12 = 1. Similarly,

E=1 for the second order sequence generated by T(x) = =+ x - 1 with the limit

R

1. Either example shows that our bound on E is sharp. Moreover, we have the
following interesting result,
Let PM denote the maximal order for & sequence generated by an iteration

with M multiplications. From our main result, we have the following

Corollary: EM < oM for all positive integer M. Moreover this bound is sharp,

Proof: Let *M be the composition of § with itself M times where y(x) = x2 + x - %

as before. Then the sequence generated by *M has order ZM and *M employs M
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“multiplications, Hence for each M the maximal order is achieved by the

sequence generated by *M' B
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