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ABSTRACT 

Programming languages tailored to particular groups of users can often be 
constructed by removing unwanted features from a general purpose language. This 
paper describes the use of simulation techniques to predict the savings in compilation 
cost achievable by such an approach. The results suggest a function which describes 
the effect of changes in the power of a language on the compilation cost of an 
algorithm expressed in that language: when features not actually used by the 
algorithm are removed from the language the cost of compiling the algorithm 
decreases moderately, but when features that are needed are removed, the 
compilation cost increases sharply. 



1. INTRODUCTION 

The cost of writ ing and running a program that implements some given algorithm 
can be attr ibuted to three sources: compilation cost, execution cost, and the cost of 
the programmer's time and effort. Any attempt to reduce the overall cost of 
programming must take all of these into account; any work directed at one component 
must not simply shift costs to the other two. The work reported here addresses the 
subproblem of finding ways to reduce compilation costs by eliminating unused 
features from a language and its compiler. The results also suggest techniques for 
the analysis and reduction of the other costs. This technique for improving 
compilation efficiency is based on the premise that a programming language is 
composed of a number of separate features. The approach involves identifying 
features of a language that are not useful for some classes of programs being wr i t ten 
in that language; these features can then be successively eliminated from the 
language, leaving useful sublanguages as a result. Algol was chosen as the language 
for study, and a one-pass production-driven compiler [Eva64] was used as the 
subject compiler. 

2. CONTRACTING A LANGUAGE 

We will rely on the intuitive notion of a feature as a syntactic or semantic 
component of a language. A contraction is a family of languages produced by 
successively factoring out groups of features and making any necessary adjustments 
in the remainder of the language. The individual languages of a contraction must be 
judged by the usual standards. In addition, the contraction as a whole should be 
evaluated on the degree to which the member languages are appropriate to existing 
tasks, the naturalness of the notations used, and the ease of moving from one 
language to another. To be useful in a real programming situation, a contraction must 
consist of subset languages appropriate to the tasks being performed. It is of ten 
desirable to have a language that is easily taught and provides only the basic tools; 
the teaching and learning task is substantially simplified when programmers can grow 
wi th in a single language family rather than outgrowing one language and switching to 
another, perhaps very different, one. The availability of a variety of strongly related 
languages can reduce overall costs by eliminating unnecessary complexity and 
overhead; in such cases it is desirable for the more complex languages to be natural 
extensions of the language that is taught first. As is usual when a tradeoff between 
general i ty and specialization is involved, two costs are associated with any feature. 
These may be overhead cost of its residing unused in the language and the compiler 
and the circumlocution cost of using other features of the language to emulate its 
ef fect if it is removed. The expected frequency of use of the feature should be a 
major consideration in the decision about when or whether a feature should be 
factored out of a language. A compiler is not expected to admit of arbi t rary 
factor izat ion; rather, some few lines of decomposition should set the style for the 
ent i re implementation. This will affect the choice of compilation strategy, the degree 
to which conversational usage is permitted, and other decisions. Once this design 
decision has been made, some factorizations may be infeasible in that the compiler 
must be drastically perturbed in order to implement the change. Such factorizations 
cannot be allowed. 
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2.1 . Formal descriptions of contractions 

When several groups of features are factored out of a language, any of them may 
depend on the presence of another feature or conflict with it. As a result, 
dependencies and conflicts among the members of a contraction may arise; these lead 
to partial orderings among the languages. When there are dependencies among all 
the features to be factored, a linear sequence of subset languages is formed. When 
the features to be factored are independent, it is not necessary to order them at all. 
If both dependent and independent features are involved, they impose a partial 
order ing on the sublanguages of the contraction. Directed graphs are a natural 
notational device for describing such relations, especially when both dependent and 
independent features are present. A directed graph describing a contraction will be 
called a decomposition graph. In the decomposition graph of a contraction, 

- each node corresponds to a particular sublanguage, 
- each edge connects a sublanguage to one of its immediate descendants 

(that is, to one which is smaller by a single factorization). 

Thus in the decomposition graph 

A, B, C, and D are languages; C must be a subset of both A and B; C and D are distinct 
subsets of B; and D need not be a subset of A. 

2.2. Examples 

A contraction of some features related to Algol conditional statements is shown in 
Figure 1. The f irst factorization eliminates else clauses from conditionals. The second 
restr ic ts the object of the then to an unlabelled basic statement, leaving a conditional 
statement much like Fortran's. The third factorization permits only a goto to occur 
after a then, leaving a conditional statement comparable to Basic's. The ellipses 
before and after the graph indicate that this is a segment of a larger contraction. 
The example of Figure 1 shows a contraction involving only dependent factorizations. 
Figure 2 gives one possible factorization of for statements; in this contraction some 
of the factorizations are regarded as independent of others. A factorization of for 
statements might include the following subsets with the relationships shown in Figure 
2: 

a. full Algol 60 for statements 
b. control variable restricted to be simple identifier 
c. arithmetic expression as for list element prohibited 
d. while clause as for list element prohibited 
e. for list restricted to a single step-until element 
f. static evaluation of expressions in control element 
g. step size always +1; form is now: for i a until b do 
h. initial value always +1; form-is now: for i until b do 
i. for list restricted to the form while b do 
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1 
no else clauses 

then must be unlabelled basic statement 

i 
only goto after then 

Figure 1. Decomposition graph of 
one contraction of conditionals 
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a: full set 

Figure 2 . Decomposition graph of 
one factorization of for statements 
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2.3. Selection of a contraction for detailed study 

A few of the many features that might be factored out of Algol were selected for 
fu r ther study. The resulting family of eleven languages, given in Figure 3, is the 
contract ion studied with the simulation system described in Section 3. The 
contract ion contains two major lines of decomposition. The first involves labels and 
designational expressions. These are not completely embedded in Algol as data 
objects, and few programs actually use them in generality. The second and third lines 
involve procedures. Many features are associated with procedures, and they can be 
factored out in many ways. The factorizations under consideration touch the most 
important aspects of the procedure concept: recursion, parameters, call-by-name, and 
the notion of procedure itself. Three of the languages chosen as members of the 
contract ion correspond to Algol, Basic, and a small teaching subset of Fortran [Ken70]. 
The languages of the contraction are described below. A three-letter mnemonic is 
g iven below for each language. These mnemonics are used for conciseness in the 
subsequent discussion. 

FUL - Algol 60 with the restriction that parameters must be specified and 
without dynamic own arrays, numeric labels, or parameter delimiter 
comments. 

SWI - FUL without switches. 

DSG - SWI without designational expressions other than simple labels. 

IMAM - FUL with the restriction that procedure parameters must be called 
by value and without array, procedure, and label parameters. 

REC - FUL without recursive procedures. 

XXX - FUL with a combination of the restrictions of NAM and REC. 

PAR - XXX without procedure parameters or typed functions. 

BLK - FUL limited by the constraints of both DSG and PAR, plus the 
elimination of blocks (but not compound statements). As a 
consequence, goto out of block and own variables are also 
eliminated. 

FOR - BLK with restriction to for statements with simple control variable 
and a single step-until element. 

BAS - Algol restricted approximately to the Basic level. Remaining features 
are integer and real types, for statements with a single step-until 
element and simple control variable, conditional statements with the 
then clause restricted to a goto and no else clause, labels, single 
array subscripts for fixed base arrays, multiple assignment 
statements, parameterless procedures, and arbitrary variable names. 
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TSF - minimal useful subset of Algol. The remaining features are single 
assignments, if-then-goto statements, labels, and array accessing 
wi th fixed base arrays and a single subscript. This language is 
roughly comparable to Kennedy and Solomon's Ten Statement 
Fortran [Ken70]. 

Three linear orderings can be extracted from this partially ordered contraction. 
Each is designated by naming one of the languages that occurs only on that linear 
suborder ing. Thus there are the following three lines of decomposition: 

a. TSF BAS FOR BLK PAR XXX NAM FUL : call-by-name line 
b. TSF BAS FOR BLK PAR XXX REC FUL : recursion line 
c. TSF BAS FOR BLK DSG SWI FUL : switch line 

Some of the results in the following sections are described in terms of these 
linear orderings. 

3. SIMULATION OF COMPILATION COSTS 

One way to evaluate the costs of compiling an algorithm in various members of a 
contract ion would be to write a compiler for all of Algol and subset it for the dialects 
of interest. However, the effort involved in actually building a family of compilers 
substantially exceeds the usefulness of the resulting measurements, especially since 
precise costs are not required. A simulation can produce cost estimates at an 
appropr iate level of detail with a set of programs much less complex than a complete 
compiler. The trends of these costs from language to language and the shapes of the 
cost functions are the results of interest. Since the simulation is an abstraction, its 
results wil l be much less dependent on particular implementation decisions than the 
results that would be obtained from a full compiler. It is useful to view compilation 
cost as a function of language size. The estimates of compilation cost produced by 
the simulation may be viewed as sample values of such a function. Unfortunately, the 
notion of "language size" or "language richness" is not well quantified; however, it is 
reasonable that compilers for "larger" languages tend to be larger than compilers for 
"smaller" languages. Therefore, compiler size is used here as a crude measure of 
language size. 

3.1 . Simulation design and validation 

The compiler chosen for contraction is a one-pass production-driven system (see, 
for example, [Eva64]). In such a compiler, the syntactic analysis is controlled by a 
program wr i t ten in a picture language (the productions); this part of the compiler 
(called Phase I) generates a postfix string representing the program being compiled. 
The postfix representation is processed by a group of semantic and code-generating 
rout ines (Phase II) that output the object program. The objective of the simulation 
was to produce estimates of compilation times with sufficient accuracy that 
comparisons among the sublanguages and the algorithms would be valid. The 
accuracy thus required of the simulation exerted a major influence over its design. 
On the one hand, the simulation had to carry enough detail to yield results which 
would discriminate among the various languages of the contraction. In particular, this 



FUL: 
Algol 

SWI: without 
switches 

NAM: without 
call-by-name 

DSG: without designational 
expressions 

REC: without 
recursion 

XXX: neither 
call-by-name 
nor recursion 

PAR: also without 
procedure parameters 
or typed procedures 

BLK: also without 
block structure 

FOR: also with fors 
restricted to 
single step,,.until 

BAS: power similar 
to Basic 

TSF: minimal useful 
subset of Algol 

Figure 3 # Decomposition Graph for the Algol Contraction 
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meant that an actual postfix stream had to be produced by Phase I in order to 
provide sufficiently detailed input for Phase II. On the other hand, a certain amount of 
abstraction was in order; an experiment to measure the effects of language 
contract ion on compilation cost should not depend heavily on the particular 
factorizations chosen for the experiment. These considerations led to a system wi th 
mixed execution and simulation. An actual Phase I processor performs syntactic 
analysis and produces the complete postfix representation of the program being 
compiled along with a record of Phase I costs; this much is not a simulation. The 
simulation begins with Phase II, which accepts the postfix stream and predicts the 
costs a compiler would incur in compiling that postfix. Measurements are taken in 
terms of events that would occur in a real compiler, then converted to a single cost 
for each compilation at the end of the simulation by taking a weighted sum over the 
various events. The simulation system itself consists of three programs. The f i rst 
two correspond to the two phases of the compiler; they collect tallies of events that 
occur during compilation. The third program converts them to a single estimate of 
compilation cost by taking weighted sums. A diagram showing the flow of data 
through the simulation is given in Figure 4. The validation of the simulation included 
checks on the individual components as shown in Figure 4 and an overall validation. 
The validation arguments are sketched here; details are given in [Shaw71]. Phase I 
is a running version of a subsystem that could appear in a real compiler; as such it 
requires no validation. In Phase II and the analysis phase, the values of the 
parameters were based on measured values, and the individual contribution of any 
parameter is small; further, the simulation is not more than one or two levels deep, so 
e r ro rs cannot cascade. Estimates of savings have been conservative throughout the 
simulation, so errors in the results will tend to underestimate potential benefits. In 
addit ion, the simulation results are used only qualitatively, and comparisons are made 
only among members of the contraction - not with other systems. The overall 
simulation has been checked with respect to the balance of internal cost distributions 
and the agreement of ratios between costs of sublanguages with comparable ratios of 
real compiler costs. 

3.2. RUNNING THE SIMULATION 

3.2.1. Test algorithms 

Six test algorithms were chosen to exercise the features involved in the 
contract ion and fourteen published algorithms [CACM] were chosen to represent the 
general Algol programming population. The complete simulation results for these 
programs are given in [Shaw71]j the results for two of the test algorithms (the 
typical program and the innerproduct routine) are discussed in Section 4. The 
algorithms were wri t ten in full Algol, then rewritten as necessary to adapt to the 
restr ict ions of the sublanguages of the contraction. The cost measurements were 
made on the basis of simulating the compilation of the rewritten algorithms in the 
languages for which they were rewritten and in the smaller languages for which each 
rewr i t ten program was still legal. The test algorithms are: 

(1) A , , typ ica l M program based on the results of several studies of the style of Algol 
and Fortran programmers [Knu70, Knu.nd, Wich70, Shaw71]. 

(2) A program to play the children's game "Buzz"; for lists are used extensively. 
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Figure 4 . Data Flow of the Simulation 



(3) The parsing algorithm for a simple precedence phrase structure language given by 
Wir th and Weber [Wir66a]; it relies heavily on while clauses. 

(4) A simulator for a small computer that uses switches and designational expressions 
to in terpret the operation codes, 

(5) An integration routine that adapts to the slope of the integrand by calling itself 
recursively. 

(6) The Innerproduct routine of the Algol report [Naur63] with its use of call-by-name. 

The published algorithms were selected to represent a variety of applications. 
They are: 

84 Simpson integration 
128 Summation of Fourier series 
141 Path matrix 
143 Treesort 1 
149 Elliptic integral 
151 Find vector in sorted list 
162 XYmove plotting 
169 Newton interpolation 
212 Frequency distribution 
220 Gauss-Seidel solution to simultaneous linear equations 
229 Elementary functions by continued fractions 
246 Graycode 
294 Uniform random number generator 
373 Number of double restricted partitions 

3.2.2. Description of a language to be simulated 

The subsets of Algol that belong to the contraction sequence are described 
above. The simulation requires four pieces of data for each language in the 
contract ion: 

- the productions and other tables that define the language; 
- the set of test algorithms, recoded as necessary to be correct in the 

sublanguage; 
- the cost table that drives Phase II, with one row for each lexeme that 

Phase I may emit; 
- the cost/weight/probabil i ty table that drives the final analysis. 

Given this information, the simulation system will estimate a compilation time for 
each of the test algorithms in the given language. 

3.3. Estimation of compiler size 

Compilation cost depends on the amount of space required to run the compiler as 
wel l as on the execution time. Estimated relative sizes for the compilers of the 
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contract ion are given in Table 1. Size estimates for Phase I were based on records 
made by the production loader when the compiler for each language was' simulated. 
The estimates for Phase II space savings are based on identifying blocks of 
instructions in an existing Algol compiler that would become unnecessary if certain 
features were removed from the language. The sizes of a number of tables in the 
compiler were assumed to depend on the number of special characters in the 
language. These estimates were combined to obtain overall size change predictions; 
the complete derivation is given in [Shaw71]. 

3.4. Procedure 

The simulation described above was run for each of the eleven languages of the 
contract ion with an appropriate version of each six test algorithms. The raw 
simulation output represents compilation time only. Real computing costs depend on 
space as well as on time; the space-time product is often used as a measure of core 
occupancy. Overall costs are represented most realistically by weighting these 
measures according to a billing formula. Given such compilation costs for an algorithm 
in various sublanguages, it is useful to view the costs as a function of language size. 
Validation of the simulation indicates that the results do not depend heavily on either 
the bill ing formula or the scaling of language size (see [Shaw71] for details). The 
fol lowing were chosen for definiteness. The cost for compiling each of the programs 
represent ing the six test algorithms was based on the compilation time predicted by 
the simulation programs, the compiler sizes as given in Table 1, and a billing formula 
based on the rates 

$ .01 per run second for compute time 
$ .002 per 1000 words/sec for core residence 

The resulting costs are scaled so that the cost of compiling each algorithm in full 
Algol (FUL) is 1.00. As noted above, compiler size is used as a rough indicator of 
language size. Further, the languages of the contraction under study are only 
part ial ly ordered, so direct comparisons between some pairs of languages are not 
meaningful. To avoid that problem, the results in the next section are presented in 
terms of the three separate lines of decomposition defined in Section 2. 

FUL 
SWI 
DSG 
NAM 
REC 
XXX 
PAR 
BLK 
FOR 
BAS 
TSF 

1.00 
0.96 
0.94 
0.97 
0.97 
0.94 
0.82 
0.74 
0.70 
0.59 
0.44 

Table 1. Compiler size estimates 
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4. RESULTS 

Figures 5 to 8 graph compilation cost as a function of language size for 
representat ive simulation results. Figure 5 shows the cost function for the " typical" 
program along the call-by-name line of decomposition; the cost changes along the 
other lines are much the same. For this program, compilation cost drops evenly as 
the language is contracted from full Algol (FUL) to the subset comparable to Basic 
(BAS). The savings arise because this program, constructed to reflect typical usage 
habits, does not take advantage of much of the richness available in Algol. However, 
when the final factorization (to TSF) is made, the cost increases. This increase is 
at tr ibutable largely to the loss of the for statement. The cost shifts for compiling the 
Innerproduct routine along the various lines of contraction are very different. This 
algorithm relies on dynamic evaluation of parameters to select successive elements of 
the arrays being multiplied, and removing that facility requires the programmer to 
wr i te a substantial amount of code to simulate the same effect. Figure 6 gives the 
cost function for the contraction along the call-by-name line. Call-by-name 
parameters are removed in the first factorization, and the cost function increases 
sharply as the language moves from FUL to NAM. When the contraction follows the 
recursion line, as in Figure 7, compilation cost drops from FUL to REC as recursion is 
removed and peaks sharply at XXX when call-by-name is deleted. In the third case 
(Figure 8), features related to switches and designational expressions are factored 
out f i rs t , and then all the features involved in the two procedure lines are removed at 
once. The cost of removing call-by-name still shows up as the language is contracted 
to BLK, but the cost jump is less pronounced than in the other two cases because a 
number of other, unused features are removed at the same time. For the port ion of 
the contraction below BLK, the Innerproduct algorithm behaves like the "Typical" 
algori thm: the cost drops until BAS is reached, and then increases to TSF. These 
ef fects were common to virtually all the programs simulated: sharp peaks 
corresponding to features used to good advantage by an algorithm and a minimum 
cost at about the level of Basic. 

5. CONCLUSIONS AND EXTENSIONS 

5.1. General form of the compilation cost function 

These and similar results suggest a general form for the compilation cost function. 
The results show two types of costs involved in the contraction of a language. If a 
language feature is present but rarely or never used, all programs incur the overhead 
cost of keeping the feature available. On the other hand, if a feature is needed but is 
not available, there is a cost associated with the inefficiency of having to rewri te the 
program to accomplish the same thing in the remainder of the language. Moreover, 
the overhead cost of an unused feature is small relative to the cost of emulating an 
unavailable feature of the same magnitude. These costs have opposing effects: the 
overhead costs tend to drive the language to be small while the emulation costs dr ive 
the language to be large. The choice of language to be used by any group of 
programmers should thus be driven by the characteristics of their particular 
collection of problems. The general function describing compilation cost as a function 
of language size (as measured by compiler size) is sketched in Figure 9. The break 
where the feature is added represents the emulation cost of the deleted feature. The 
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Figure 5. Billing Cost vs. Language Size for Typical 

overhead cost of other unused features causes the decrease in cost with decreased 
language power. Since this function is driven by the overhead cost when no useful 
feature is removed and by the emulation cost when a useful feature is involved, the 
general function depends on both the languages of the contraction and the application 
for which the contraction is intended. 

5.2. Appropriateness of Basic 

Basic was designed as a problem solving language for beginners. It has 
succeeded as such a language, widely accepted as easy to learn and teach. Results 
such as the ones presented here suggest one reason this is so. The cost functions 
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produced by the simulation often show minima or relative minima for the language 
BAS, whose power is similar to that of Basic. This indicates that Basic is a good 
language for many problems, and that it is an appropriate small language for a 
contract ion. 

5.3. Extension to total programming cost 

Before this approach to compiler design and implementation can be applied to the 
generat ion of actual systems, similar analyses of programming and runtime costs must 
be performed. Programming effort is a very personal measure, and correspondingly 
hard to quantify. A programmer's notions about what are "natural" notations and 
facil i t ies are influenced strongly by the languages he has used and with which he 
feels at home. This cost should be directly related to some measure of expressibil i ty 
of the language: the more natural the notations for any application, the easier it 
should be to wr i te algorithms related to that application. If a language is too small, 
the programmer will be frustrated by having to write many (to him) simple operations; 
if it is too large, he may be confused by the variety of options or simply ignore large 
segments of the language. Even in a contractible language, if a programmer is using 
too large a member of the contraction, he will have to put up with unnecessary 
overhead and may have to write extra instructions to avoid invoking features he does 
not want. Runtime costs should be susceptible to the same type of analysis as used 
here for compile-time costs. Just as many language features have costs direct ly 
allocatable in the compiler, so many features have costs directly allocatable to 
runtime facilities. For example, runtime overhead for block administration, the stack,' 
the display, and type testing can be eliminated by suitable factorizations of Algol. 
Like the compilation cost estimates, the precise results will depend on the application 
intended as well as on the sublanguage. Finally, these cost functions should be 
combined to obtain estimates of total programming costs. By evaluating human cost in 
some appropriate (as yet unspecified) way and taking a weighted sum with the 
compilation and execution cost functions, we may obtain such total cost functions for 
var ious classes of problems. The expected result is that the total cost functions have 
minima somewhere within the available range of language sizes. This shape wil l 
indicate that overall costs can be reduced by judicious selection of the language 
subset to be used for each application. The available information supports this 
expectat ion. 

5.4. Expanding a contractible compiler 

In addition to building contractible compilers, it should be possible to build 
expandible ones. In expandible compilers, alternative forms of various features and 
alternative forms of language development will be available, after Algol is contracted 
to as small a language as appears useful for meaningful tasks, some constructs can be 
replaced, but not necessarily in the same order or with the same features as were 
removed. By selecting different features to add to the small language, it should be 
possible to generate families of languages similar in structure to the original, but 
di f ferent, in detail. The choice of factorizations will, of course, affect the resulting 
language families. 
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