
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

REDUCTION OF COMPILATION COSTS
THROUGH LANGUAGE CONTRACTION

Mary Shaw
July 17, 1972

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

This work was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research. Support was
also contributed by the Univac division of Sperry Rand Corporation. This
document has been approved for public release and sale. Its distribution is
unlimited.

ABSTRACT

Programming languages tailored to particular groups of users can often be
constructed by removing unwanted features from a general purpose language. This
paper describes the use of simulation techniques to predict the savings in compilation
cost achievable by such an approach. The results suggest a function which describes
the effect of changes in the power of a language on the compilation cost of an
algorithm expressed in that language: when features not actually used by the
algorithm are removed from the language the cost of compiling the algorithm
decreases moderately, but when features that are needed are removed, the
compilation cost increases sharply.

1. INTRODUCTION

The cost of writ ing and running a program that implements some given algorithm
can be attr ibuted to three sources: compilation cost, execution cost, and the cost of
the programmer's time and effort. Any attempt to reduce the overall cost of
programming must take all of these into account; any work directed at one component
must not simply shift costs to the other two. The work reported here addresses the
subproblem of finding ways to reduce compilation costs by eliminating unused
features from a language and its compiler. The results also suggest techniques for
the analysis and reduction of the other costs. This technique for improving
compilation efficiency is based on the premise that a programming language is
composed of a number of separate features. The approach involves identifying
features of a language that are not useful for some classes of programs being wr i t ten
in that language; these features can then be successively eliminated from the
language, leaving useful sublanguages as a result. Algol was chosen as the language
for study, and a one-pass production-driven compiler [Eva64] was used as the
subject compiler.

2. CONTRACTING A LANGUAGE

We will rely on the intuitive notion of a feature as a syntactic or semantic
component of a language. A contraction is a family of languages produced by
successively factoring out groups of features and making any necessary adjustments
in the remainder of the language. The individual languages of a contraction must be
judged by the usual standards. In addition, the contraction as a whole should be
evaluated on the degree to which the member languages are appropriate to existing
tasks, the naturalness of the notations used, and the ease of moving from one
language to another. To be useful in a real programming situation, a contraction must
consist of subset languages appropriate to the tasks being performed. It is of ten
desirable to have a language that is easily taught and provides only the basic tools;
the teaching and learning task is substantially simplified when programmers can grow
wi th in a single language family rather than outgrowing one language and switching to
another, perhaps very different, one. The availability of a variety of strongly related
languages can reduce overall costs by eliminating unnecessary complexity and
overhead; in such cases it is desirable for the more complex languages to be natural
extensions of the language that is taught first. As is usual when a tradeoff between
general i ty and specialization is involved, two costs are associated with any feature.
These may be overhead cost of its residing unused in the language and the compiler
and the circumlocution cost of using other features of the language to emulate its
ef fect if it is removed. The expected frequency of use of the feature should be a
major consideration in the decision about when or whether a feature should be
factored out of a language. A compiler is not expected to admit of arbi t rary
factor izat ion; rather, some few lines of decomposition should set the style for the
ent i re implementation. This will affect the choice of compilation strategy, the degree
to which conversational usage is permitted, and other decisions. Once this design
decision has been made, some factorizations may be infeasible in that the compiler
must be drastically perturbed in order to implement the change. Such factorizations
cannot be allowed.

1

2.1 . Formal descriptions of contractions

When several groups of features are factored out of a language, any of them may
depend on the presence of another feature or conflict with it. As a result,
dependencies and conflicts among the members of a contraction may arise; these lead
to partial orderings among the languages. When there are dependencies among all
the features to be factored, a linear sequence of subset languages is formed. When
the features to be factored are independent, it is not necessary to order them at all.
If both dependent and independent features are involved, they impose a partial
order ing on the sublanguages of the contraction. Directed graphs are a natural
notational device for describing such relations, especially when both dependent and
independent features are present. A directed graph describing a contraction will be
called a decomposition graph. In the decomposition graph of a contraction,

- each node corresponds to a particular sublanguage,
- each edge connects a sublanguage to one of its immediate descendants

(that is, to one which is smaller by a single factorization).

Thus in the decomposition graph

A, B, C, and D are languages; C must be a subset of both A and B; C and D are distinct
subsets of B; and D need not be a subset of A.

2.2. Examples

A contraction of some features related to Algol conditional statements is shown in
Figure 1. The f irst factorization eliminates else clauses from conditionals. The second
restr ic ts the object of the then to an unlabelled basic statement, leaving a conditional
statement much like Fortran's. The third factorization permits only a goto to occur
after a then, leaving a conditional statement comparable to Basic's. The ellipses
before and after the graph indicate that this is a segment of a larger contraction.
The example of Figure 1 shows a contraction involving only dependent factorizations.
Figure 2 gives one possible factorization of for statements; in this contraction some
of the factorizations are regarded as independent of others. A factorization of for
statements might include the following subsets with the relationships shown in Figure
2:

a. full Algol 60 for statements
b. control variable restricted to be simple identifier
c. arithmetic expression as for list element prohibited
d. while clause as for list element prohibited
e. for list restricted to a single step-until element
f. static evaluation of expressions in control element
g. step size always +1; form is now: for i a until b do
h. initial value always +1; form-is now: for i until b do
i. for list restricted to the form while b do

2

1
no else clauses

then must be unlabelled basic statement

i
only goto after then

Figure 1. Decomposition graph of
one contraction of conditionals

3

a: full set

Figure 2 . Decomposition graph of
one factorization of for statements

4

2.3. Selection of a contraction for detailed study

A few of the many features that might be factored out of Algol were selected for
fu r ther study. The resulting family of eleven languages, given in Figure 3, is the
contract ion studied with the simulation system described in Section 3. The
contract ion contains two major lines of decomposition. The first involves labels and
designational expressions. These are not completely embedded in Algol as data
objects, and few programs actually use them in generality. The second and third lines
involve procedures. Many features are associated with procedures, and they can be
factored out in many ways. The factorizations under consideration touch the most
important aspects of the procedure concept: recursion, parameters, call-by-name, and
the notion of procedure itself. Three of the languages chosen as members of the
contract ion correspond to Algol, Basic, and a small teaching subset of Fortran [Ken70].
The languages of the contraction are described below. A three-letter mnemonic is
g iven below for each language. These mnemonics are used for conciseness in the
subsequent discussion.

FUL - Algol 60 with the restriction that parameters must be specified and
without dynamic own arrays, numeric labels, or parameter delimiter
comments.

SWI - FUL without switches.

DSG - SWI without designational expressions other than simple labels.

IMAM - FUL with the restriction that procedure parameters must be called
by value and without array, procedure, and label parameters.

REC - FUL without recursive procedures.

XXX - FUL with a combination of the restrictions of NAM and REC.

PAR - XXX without procedure parameters or typed functions.

BLK - FUL limited by the constraints of both DSG and PAR, plus the
elimination of blocks (but not compound statements). As a
consequence, goto out of block and own variables are also
eliminated.

FOR - BLK with restriction to for statements with simple control variable
and a single step-until element.

BAS - Algol restricted approximately to the Basic level. Remaining features
are integer and real types, for statements with a single step-until
element and simple control variable, conditional statements with the
then clause restricted to a goto and no else clause, labels, single
array subscripts for fixed base arrays, multiple assignment
statements, parameterless procedures, and arbitrary variable names.

5

TSF - minimal useful subset of Algol. The remaining features are single
assignments, if-then-goto statements, labels, and array accessing
wi th fixed base arrays and a single subscript. This language is
roughly comparable to Kennedy and Solomon's Ten Statement
Fortran [Ken70].

Three linear orderings can be extracted from this partially ordered contraction.
Each is designated by naming one of the languages that occurs only on that linear
suborder ing. Thus there are the following three lines of decomposition:

a. TSF BAS FOR BLK PAR XXX NAM FUL : call-by-name line
b. TSF BAS FOR BLK PAR XXX REC FUL : recursion line
c. TSF BAS FOR BLK DSG SWI FUL : switch line

Some of the results in the following sections are described in terms of these
linear orderings.

3. SIMULATION OF COMPILATION COSTS

One way to evaluate the costs of compiling an algorithm in various members of a
contract ion would be to write a compiler for all of Algol and subset it for the dialects
of interest. However, the effort involved in actually building a family of compilers
substantially exceeds the usefulness of the resulting measurements, especially since
precise costs are not required. A simulation can produce cost estimates at an
appropr iate level of detail with a set of programs much less complex than a complete
compiler. The trends of these costs from language to language and the shapes of the
cost functions are the results of interest. Since the simulation is an abstraction, its
results wil l be much less dependent on particular implementation decisions than the
results that would be obtained from a full compiler. It is useful to view compilation
cost as a function of language size. The estimates of compilation cost produced by
the simulation may be viewed as sample values of such a function. Unfortunately, the
notion of "language size" or "language richness" is not well quantified; however, it is
reasonable that compilers for "larger" languages tend to be larger than compilers for
"smaller" languages. Therefore, compiler size is used here as a crude measure of
language size.

3.1 . Simulation design and validation

The compiler chosen for contraction is a one-pass production-driven system (see,
for example, [Eva64]). In such a compiler, the syntactic analysis is controlled by a
program wr i t ten in a picture language (the productions); this part of the compiler
(called Phase I) generates a postfix string representing the program being compiled.
The postfix representation is processed by a group of semantic and code-generating
rout ines (Phase II) that output the object program. The objective of the simulation
was to produce estimates of compilation times with sufficient accuracy that
comparisons among the sublanguages and the algorithms would be valid. The
accuracy thus required of the simulation exerted a major influence over its design.
On the one hand, the simulation had to carry enough detail to yield results which
would discriminate among the various languages of the contraction. In particular, this

FUL:
Algol

SWI: without
switches

NAM: without
call-by-name

DSG: without designational
expressions

REC: without
recursion

XXX: neither
call-by-name
nor recursion

PAR: also without
procedure parameters
or typed procedures

BLK: also without
block structure

FOR: also with fors
restricted to
single step,,.until

BAS: power similar
to Basic

TSF: minimal useful
subset of Algol

Figure 3 # Decomposition Graph for the Algol Contraction

7

meant that an actual postfix stream had to be produced by Phase I in order to
provide sufficiently detailed input for Phase II. On the other hand, a certain amount of
abstraction was in order; an experiment to measure the effects of language
contract ion on compilation cost should not depend heavily on the particular
factorizations chosen for the experiment. These considerations led to a system wi th
mixed execution and simulation. An actual Phase I processor performs syntactic
analysis and produces the complete postfix representation of the program being
compiled along with a record of Phase I costs; this much is not a simulation. The
simulation begins with Phase II, which accepts the postfix stream and predicts the
costs a compiler would incur in compiling that postfix. Measurements are taken in
terms of events that would occur in a real compiler, then converted to a single cost
for each compilation at the end of the simulation by taking a weighted sum over the
various events. The simulation system itself consists of three programs. The f i rst
two correspond to the two phases of the compiler; they collect tallies of events that
occur during compilation. The third program converts them to a single estimate of
compilation cost by taking weighted sums. A diagram showing the flow of data
through the simulation is given in Figure 4. The validation of the simulation included
checks on the individual components as shown in Figure 4 and an overall validation.
The validation arguments are sketched here; details are given in [Shaw71]. Phase I
is a running version of a subsystem that could appear in a real compiler; as such it
requires no validation. In Phase II and the analysis phase, the values of the
parameters were based on measured values, and the individual contribution of any
parameter is small; further, the simulation is not more than one or two levels deep, so
e r ro rs cannot cascade. Estimates of savings have been conservative throughout the
simulation, so errors in the results will tend to underestimate potential benefits. In
addit ion, the simulation results are used only qualitatively, and comparisons are made
only among members of the contraction - not with other systems. The overall
simulation has been checked with respect to the balance of internal cost distributions
and the agreement of ratios between costs of sublanguages with comparable ratios of
real compiler costs.

3.2. RUNNING THE SIMULATION

3.2.1. Test algorithms

Six test algorithms were chosen to exercise the features involved in the
contract ion and fourteen published algorithms [CACM] were chosen to represent the
general Algol programming population. The complete simulation results for these
programs are given in [Shaw71]j the results for two of the test algorithms (the
typical program and the innerproduct routine) are discussed in Section 4. The
algorithms were wri t ten in full Algol, then rewritten as necessary to adapt to the
restr ict ions of the sublanguages of the contraction. The cost measurements were
made on the basis of simulating the compilation of the rewritten algorithms in the
languages for which they were rewritten and in the smaller languages for which each
rewr i t ten program was still legal. The test algorithms are:

(1) A , , typ ica l M program based on the results of several studies of the style of Algol
and Fortran programmers [Knu70, Knu.nd, Wich70, Shaw71].

(2) A program to play the children's game "Buzz"; for lists are used extensively.

8

Definition of
compiler (productions)--

>

Phase I

postfix

Program to
be compiled

REAL

Actions corresponding
to lexemes that
may appear in postfix

Costs and weights
for events; user—
characteristics

Phase II

event
tallies

Analysis

cost

SIMULATED

Figure 4 . Data Flow of the Simulation

(3) The parsing algorithm for a simple precedence phrase structure language given by
Wir th and Weber [Wir66a]; it relies heavily on while clauses.

(4) A simulator for a small computer that uses switches and designational expressions
to in terpret the operation codes,

(5) An integration routine that adapts to the slope of the integrand by calling itself
recursively.

(6) The Innerproduct routine of the Algol report [Naur63] with its use of call-by-name.

The published algorithms were selected to represent a variety of applications.
They are:

84 Simpson integration
128 Summation of Fourier series
141 Path matrix
143 Treesort 1
149 Elliptic integral
151 Find vector in sorted list
162 XYmove plotting
169 Newton interpolation
212 Frequency distribution
220 Gauss-Seidel solution to simultaneous linear equations
229 Elementary functions by continued fractions
246 Graycode
294 Uniform random number generator
373 Number of double restricted partitions

3.2.2. Description of a language to be simulated

The subsets of Algol that belong to the contraction sequence are described
above. The simulation requires four pieces of data for each language in the
contract ion:

- the productions and other tables that define the language;
- the set of test algorithms, recoded as necessary to be correct in the

sublanguage;
- the cost table that drives Phase II, with one row for each lexeme that

Phase I may emit;
- the cost/weight/probabil i ty table that drives the final analysis.

Given this information, the simulation system will estimate a compilation time for
each of the test algorithms in the given language.

3.3. Estimation of compiler size

Compilation cost depends on the amount of space required to run the compiler as
wel l as on the execution time. Estimated relative sizes for the compilers of the

10

contract ion are given in Table 1. Size estimates for Phase I were based on records
made by the production loader when the compiler for each language was' simulated.
The estimates for Phase II space savings are based on identifying blocks of
instructions in an existing Algol compiler that would become unnecessary if certain
features were removed from the language. The sizes of a number of tables in the
compiler were assumed to depend on the number of special characters in the
language. These estimates were combined to obtain overall size change predictions;
the complete derivation is given in [Shaw71].

3.4. Procedure

The simulation described above was run for each of the eleven languages of the
contract ion with an appropriate version of each six test algorithms. The raw
simulation output represents compilation time only. Real computing costs depend on
space as well as on time; the space-time product is often used as a measure of core
occupancy. Overall costs are represented most realistically by weighting these
measures according to a billing formula. Given such compilation costs for an algorithm
in various sublanguages, it is useful to view the costs as a function of language size.
Validation of the simulation indicates that the results do not depend heavily on either
the bill ing formula or the scaling of language size (see [Shaw71] for details). The
fol lowing were chosen for definiteness. The cost for compiling each of the programs
represent ing the six test algorithms was based on the compilation time predicted by
the simulation programs, the compiler sizes as given in Table 1, and a billing formula
based on the rates

$.01 per run second for compute time
$.002 per 1000 words/sec for core residence

The resulting costs are scaled so that the cost of compiling each algorithm in full
Algol (FUL) is 1.00. As noted above, compiler size is used as a rough indicator of
language size. Further, the languages of the contraction under study are only
part ial ly ordered, so direct comparisons between some pairs of languages are not
meaningful. To avoid that problem, the results in the next section are presented in
terms of the three separate lines of decomposition defined in Section 2.

FUL
SWI
DSG
NAM
REC
XXX
PAR
BLK
FOR
BAS
TSF

1.00
0.96
0.94
0.97
0.97
0.94
0.82
0.74
0.70
0.59
0.44

Table 1. Compiler size estimates

11

4. RESULTS

Figures 5 to 8 graph compilation cost as a function of language size for
representat ive simulation results. Figure 5 shows the cost function for the " typical"
program along the call-by-name line of decomposition; the cost changes along the
other lines are much the same. For this program, compilation cost drops evenly as
the language is contracted from full Algol (FUL) to the subset comparable to Basic
(BAS). The savings arise because this program, constructed to reflect typical usage
habits, does not take advantage of much of the richness available in Algol. However,
when the final factorization (to TSF) is made, the cost increases. This increase is
at tr ibutable largely to the loss of the for statement. The cost shifts for compiling the
Innerproduct routine along the various lines of contraction are very different. This
algorithm relies on dynamic evaluation of parameters to select successive elements of
the arrays being multiplied, and removing that facility requires the programmer to
wr i te a substantial amount of code to simulate the same effect. Figure 6 gives the
cost function for the contraction along the call-by-name line. Call-by-name
parameters are removed in the first factorization, and the cost function increases
sharply as the language moves from FUL to NAM. When the contraction follows the
recursion line, as in Figure 7, compilation cost drops from FUL to REC as recursion is
removed and peaks sharply at XXX when call-by-name is deleted. In the third case
(Figure 8), features related to switches and designational expressions are factored
out f i rs t , and then all the features involved in the two procedure lines are removed at
once. The cost of removing call-by-name still shows up as the language is contracted
to BLK, but the cost jump is less pronounced than in the other two cases because a
number of other, unused features are removed at the same time. For the port ion of
the contraction below BLK, the Innerproduct algorithm behaves like the "Typical"
algori thm: the cost drops until BAS is reached, and then increases to TSF. These
ef fects were common to virtually all the programs simulated: sharp peaks
corresponding to features used to good advantage by an algorithm and a minimum
cost at about the level of Basic.

5. CONCLUSIONS AND EXTENSIONS

5.1. General form of the compilation cost function

These and similar results suggest a general form for the compilation cost function.
The results show two types of costs involved in the contraction of a language. If a
language feature is present but rarely or never used, all programs incur the overhead
cost of keeping the feature available. On the other hand, if a feature is needed but is
not available, there is a cost associated with the inefficiency of having to rewri te the
program to accomplish the same thing in the remainder of the language. Moreover,
the overhead cost of an unused feature is small relative to the cost of emulating an
unavailable feature of the same magnitude. These costs have opposing effects: the
overhead costs tend to drive the language to be small while the emulation costs dr ive
the language to be large. The choice of language to be used by any group of
programmers should thus be driven by the characteristics of their particular
collection of problems. The general function describing compilation cost as a function
of language size (as measured by compiler size) is sketched in Figure 9. The break
where the feature is added represents the emulation cost of the deleted feature. The

12

/
100-

I — , 1 1—I 1 1—M

TSF BAS FOR BLK PAR XXX| RJL
NAM

a) along call-by-name line

Figure 5. Billing Cost vs. Language Size for Typical

overhead cost of other unused features causes the decrease in cost with decreased
language power. Since this function is driven by the overhead cost when no useful
feature is removed and by the emulation cost when a useful feature is involved, the
general function depends on both the languages of the contraction and the application
for which the contraction is intended.

5.2. Appropriateness of Basic

Basic was designed as a problem solving language for beginners. It has
succeeded as such a language, widely accepted as easy to learn and teach. Results
such as the ones presented here suggest one reason this is so. The cost functions

13

90-

80-- /

70-

60-

50-

Billing Cost vs. Language Size for InProd

110

100 +

90

80

70 +

60

5 0 +

TSF
— i 1—I

BAS FOR BLK DSG | FUL
SWI

Fig. 8. along switch line

14

produced by the simulation often show minima or relative minima for the language
BAS, whose power is similar to that of Basic. This indicates that Basic is a good
language for many problems, and that it is an appropriate small language for a
contract ion.

5.3. Extension to total programming cost

Before this approach to compiler design and implementation can be applied to the
generat ion of actual systems, similar analyses of programming and runtime costs must
be performed. Programming effort is a very personal measure, and correspondingly
hard to quantify. A programmer's notions about what are "natural" notations and
facil i t ies are influenced strongly by the languages he has used and with which he
feels at home. This cost should be directly related to some measure of expressibil i ty
of the language: the more natural the notations for any application, the easier it
should be to wr i te algorithms related to that application. If a language is too small,
the programmer will be frustrated by having to write many (to him) simple operations;
if it is too large, he may be confused by the variety of options or simply ignore large
segments of the language. Even in a contractible language, if a programmer is using
too large a member of the contraction, he will have to put up with unnecessary
overhead and may have to write extra instructions to avoid invoking features he does
not want. Runtime costs should be susceptible to the same type of analysis as used
here for compile-time costs. Just as many language features have costs direct ly
allocatable in the compiler, so many features have costs directly allocatable to
runtime facilities. For example, runtime overhead for block administration, the stack,'
the display, and type testing can be eliminated by suitable factorizations of Algol.
Like the compilation cost estimates, the precise results will depend on the application
intended as well as on the sublanguage. Finally, these cost functions should be
combined to obtain estimates of total programming costs. By evaluating human cost in
some appropriate (as yet unspecified) way and taking a weighted sum with the
compilation and execution cost functions, we may obtain such total cost functions for
var ious classes of problems. The expected result is that the total cost functions have
minima somewhere within the available range of language sizes. This shape wil l
indicate that overall costs can be reduced by judicious selection of the language
subset to be used for each application. The available information supports this
expectat ion.

5.4. Expanding a contractible compiler

In addition to building contractible compilers, it should be possible to build
expandible ones. In expandible compilers, alternative forms of various features and
alternative forms of language development will be available, after Algol is contracted
to as small a language as appears useful for meaningful tasks, some constructs can be
replaced, but not necessarily in the same order or with the same features as were
removed. By selecting different features to add to the small language, it should be
possible to generate families of languages similar in structure to the original, but
di f ferent, in detail. The choice of factorizations will, of course, affect the resulting
language families.

16

6. REFERENCES

[CACM] - Communications of the ACM, Algorithms section, various dates.

[Eva64] - Evans, Arthur, "An Algol 60 Compiler", Annual Review in Automatic
Programming, vol 4, Pergamon Press, 1964, pp. 87-124.

[Ken70J - Kennedy, Michael and Martin B. Solomon, Ten Statement Fortran Plus Fortran
IV, Prentice-Hall, 1970.

[Knu70] - Knuth, D. E., An Empirical Study of Fortran Programs, Computer Science
Department, Stanford University, CS-186, 1970.

[Knu.nd] - Knuth, D. E., private communication. Reproduced in [Shaw71], Appendix A.

[Naur63] - Naur, P. and M. Woodger, eds., "Revised Report on the Algorithmic Language
Algol 60", CACM 6,1 (January 1963), pp. 1-20.

[Shaw71] - Shaw, Mary, Language Structures for Contractible Compilers, Computer
Science Department Report, Carnegie-Mellon University, December 1971.

[Wich70] - Wichmann, B. A., Some Statistics from Algol Programs, National Physical
Laboratory, Central Computer Unit Report 11, August 1970.

[Wi r66a] - Wirth, Niklaus and Helmut Weber, "Euler: A Generalization of Algol and its
Formal Definition", CACM 9,1 (January 1966) and CACM 9,2 (February 1966).

17

S e c u r i t ^ C l a s s i f i c a t i ^ ^

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2 « . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2 b . G R O U P

3 . R E P O R T T I T L E

REDUCTION OF COMPILATION COSTS THROUGH LANGUAGE CONTRACTION

. D E S C R I P T I V E N O T E S (Type ot report and Inclusive dates)

Scientific Final
5 . A U T H O R (S) (First name, middle initial, last name)

Mary Shaw

6 . R E P O R T D A T E

Julv 17. 1972
7a. T O T A L N O . O F P A G E S

20
7 b . N O . O F R E F S

9
8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
C61102F
"681304 .

9 « . O R I G I N A T O R ' S R E P O R T N U M B E R (S)
8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
C61102F
"681304 .

9 b . O T H E R R E P O R T N O (S) (Any other numbers that may be assigned
this report)

0 . D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

I I . S U P P L E M E N T A R Y N O T E S

TECH OTHER
1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Va. 22209

3 . A B S T R A C T

Programming languages tailored to particular groups of users can often be con
structed by removing unwanted features from a general purpose language. This paper
describes the use of simulation techniques to predict the savings in compilation cost
achievable by such an approach. The results suggest a function which describes the
effect of changes in the power of a language on the compilation cost of an algorithm
expressed in that language: when features not actually used by the algorithm are
removed from the language the cost of compiling the algorithm decreases moderately,
but when features that are needed are removed, the compilation cost increases sharply

