
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



RESPONSE TO DETECTED ERRORS 

IN WELL-STRUCTURED PROGRAMS 

D. L. Parnas 

July, 1972 

This research was supported by the National Science Foundation 
under grant GJ 30127 to Carnegie-Mellon University. F o u n d a " ° n 

HUT UUiiy 
cARNEiiMEuw mmni 



ABSTRACT 

This paper discusses an approach to handling run time errors in well-

structured programs. It is often assumed that in well-structured programs 

which can be proven correct errors will not be a problem. This paper is 

predicated on the assumption that run time errors will continue to be a 

problem. 

This paper describes an organization for structured programs which 

attempts to satisfy the following criteria: 

(1) Error response routines are written by each programmer in terms 

of the abstract machine which he uses for his normal case code. 

Errors are reported in those terms. He is never forced to use 

information about the implementation of other levels in the 

system. 

(2) Programs can be written so that the code for error detection, 

error correction, and normal case, are lexically separate and 

can be modified independently. 

(3) The system can evolve from one which does little error recovery 
to one which introduces quite sophisticated techniques without 
a change in structure. 

(4) Even with unsophisticated recovery procedures, the task of 

locating the module containing a bug discovered at run time 

does not require knowledge of many modules. 



1• INTRODUCTION 

Perhaps because structured programming is advanced as a means of 

eliminating errors in programs, programs written to demonstrate struc

tured programming (e.g., [3,5]) are written assuming that each subpro

gram will always perform correctly. Moreover, each program is written 

on the assumption that it itself will never behave incorrectly. 

This paper is written on the assumption that, although structured 

programming will help, run time errors will be with us for a while. 

Three justifications for this assumption are: 

(1) even the best of "structured programmers11 occasionally err; 

(2) the apparatus on which we run occasionally fails and may 

cause a program to fail (either directly or by causing a 

change in code or data); 

(3) in practice programs are changed and errors appear which had 

not appeared before* 

Given this assumption, a system intended to be reliable must be 

designed with error handling as a fundamental consideration. 

This paper suggests a design approach which we believe can increase 

reliability. It is not particularly concerned with detecting errors; 

it is concerned with the response to the detection of an error. We are 

not primarily concerned with debugging (the programmer's response to a 

detected error); we are concerned with the program's response to a detected 

error. Such responses include attempts at self diagnosis, saving of par

tial results, printing of diagnostic information, etc. 



-2-

This paper does not present an algorithm for error recovery. The 

paper does present a scheme for program organization which facilitates 

the introduction of recovery and diagnostic algorithms. It also presents 

a list of guidelines to help the designer in anticipating the types of 

errors which might occur. 

2. DIFFICULTIES INTRODUCED BY A "LEVELED STRUCTURE" 

To understand the proposal of this paper one must understand the 

concept of a hierarchically structured system [3]. One must recall that 

the lower levels must function without the presence of the upper levels, 

and they can be used by a variety of upper level programs. It follows 

that the lower levels cannot use any knowledge of the higher levels. 

However, error recovery usually requires the combined action of several 

levels. An error will be detected by a lower level but information 

available only at a higher level determines the appropriate action. 

This is a special case of the observation that structured programming 

introduces a compartmentalization of knowledge and may make more difficult 

any action which requires knowledge from several compartments. 

3. THE EFFECT OF ERRORS ON CODE COMPLEXITY 

A straightforward machine language program to write on a file 

is usually naive. Error probabilities are relatively high in 

peripherals; the code needed for error detection and correction makes 

the programs quite complex. As a result even a change in the normal 

case procedure is difficult. 

Appendix 2 should be read at this point by readers who do not accept 
the above paragraphs. 



-3-

Such complications can occur at all levels in a structured program. 

They are most apparent at the l/o level because of the probability of 

error being higher there, but the problems are not essentially different 

at other levels. 

To keep the code for the normal case separate from the code concerned 

with errors, we propose that modules in a structured system make use of 

a software analog of a "trap11. Most computer hardware is designed to 

detect common errors and transfer control to a specified location upon 

detecting such an error. Typical trap conditions are "divide by zero" 

and "memory bounds violation". Traps allow simpler code because 

one need not include checks for those errors in the program. Traps also 

decrease the probability of such errors going undetected.* 

In the examples given in [1] the modules are specified to call user 

provided subroutines under conditions which we interpret as errors. In 

fact, this is the only way that module restrictions are specified! 

The subroutine names correspond to the hardware trap locations. The 

user of those modules may write his code without checks for violations 

of module restrictions. The code concerned with error recovery is con

fined to the trap routines. This organization achieves lexical separation 

of normal use, detection, and correction procedures, thereby easing changes. 

We state our first suggestion: Place responsibility for the detection  

of attempts to violate its specifications in the "abstract machine"; it  

calls a trap routine upon detection of such an error. Other errors,fail 

ures of the virtual machine, will also be reported by traps. The remainder 

of this paper assumes such an organization. 
* It has been suggested that traps provide a convenient mechanism for re
porting infrequent events to programs which would otherwize need to make 
frequent checks. Errors, the subject of this paper, are only special cases 
of that class of situations [7], 



-4-

It is intended that the trap handling routines be written by the user 

of a virtual machine and have access to the data used by that user's "virtual 

program". It is desirable that the programs written for a "virtual machine" 

can alter the routine associated with the trap routine name. 

4. NON-MAINTAINABLE ABSTRACTIONS 

In this paper we are assuming that systems are structured according to 

the recommendations of [2] and [3]. Each program is written in terms of 

an abstraction of the remaining portions of the system; its correctness 

depends upon a small subset of the properties of the code that it calls 

upon. This section illustrates that the need to make appropriate responses 

to errors often severely limits the abstractions we may use. 

The structure of a program will be less clear if the user of a module 

cannot write all of his code in terms of the abstract model he is given [4]. 

Consequently we cannot abstract from facts which should be used to recover 

from (or diagnose) an error. 

As an example consider a virtual machine which provides instructions 

which perform "simultaneous" string substitutions on every line of a file. 

The substitutions can be irreversible (one cannot tell where the change 

was made by looking at the file afterwards). Let us further assume that 

the specification given to the users of this machine completely hides 

the processing sequence (giving the appearance that all lines are pro

cessed simultaneously)• 

Real difficulties in implementing such a virtual machine arise 

because execution of the machine "instruction" will extend over a measurable 



-5-

period of time and might be interrupted by an error. If the file is 

partially processed, recovery will depend upon the user's ability to know 

which parts of his file have been operated upon. When this depends upon 

the sequence of processing, he must know "hidden" information. 

One solution would be to keep, within the "virtual machine", in

formation sufficient to restore the file to its original state. This 

solution usually has a very high cost. If one made a module with such 

a specification, there would be many situations in which one could not 

afford to use it. 

Often a practical solution is to make the module somewhat less  

abstract. The specification must admit to the possibility of error and 

provide information to assist in error recovery. The set of "degraded" 

designs includes designs which specify the sequencing and designs 

that mark unchanged and erroneous parts of the file. Unless we 

abandon the idea of abstraction completely, none of these designs always 

presents the information necessary for recovery. We can, however, handle 

the most frequent errors by modeling the errors as a set of abstract errors 

rather than ignoring them! 

The above brings out the second suggestion of this paper: Do not  

specify a module or level to be an abstraction which errors will frequently  

deny. 

5. ERROR TYPES AND DIRECTION OF PROPOGATION 

An error detected at any given level in a system may be either 

propogating downward (violating the specified restrictions on the virtual 

machine) or propogating upward. The upward propogating errors may represent 



-6-

either failures of a mechanism which has been used correctly, or they 

represent "reflections11 of an error which had previously propogated down

ward. We shall deal with these cases in turn. 

When detected, a downward propogating error should be returned to 

the level above. Responsibility for diagnosis and possible recovery must 

lie at the higher levels because the lower level program does not have 

sufficient knowledge to determine what was desired. (See Appendix 2 for 

examples.) With the "trap11 mechanism this results in a call to a sub

routine written by the last caller. Thus, when a downward propogating 

error is detected, it is reflected to higher levels. 

A level is informed of an upward propogating error when a "trap" 

handling routine is called. If the routine handles a reflected error of 

usage, it should first determine whether or not the error originated at 

its own level. If it determines that the error of usage occurred at a 

higher level, it must adjust its external state , and call a trap routine 

above. If it is determined that the error has returned to its original 

level, the program may either attempt recovery, or inform the next higher 

level of an error of mechanism (by calling a trap routine). 

When a level is informed of an error by the machine below it, it 

may either attempt recovery (by means of retry,or an alternative pro

gram) or adjust its external state and report the error still higher. 

Any of these routines may also produce diagnostics for programmers. 

Normally, the lower levels of a system do not abort the job in the 

event of a failure of mechanism. At some higher level recovery or loss 

minimization procedures may be available. Job abortion occurs only at the  

highest level (or when the call mechanism fails). 

We elaborate on this later. 



-7-

To summarize, upon detecting an error in a hierarchically structured 

piece of software the error is first reflected and control passed to the 

level where the error originated. At this point it is either corrected 

or reflected still higher as an error in mechanism. At every level,either 

recovery is attempted or the error is reported still higher. At each 

level,the error handling routines have the responsibility of restoring 

the state of the virtual machine used by the level above to one which is 

consistent with the specifications. All possible efforts are made to assure 

that no program is given control with its virtual machine in an "impossible11 state. 

The above is only a skeleton into which various error recovery and 

diagnostic policies may be fit. The meta-structure proposed has three 

advantages: 

(1) It allows each error handling procedure to be written at the 

level where the necessary knowledge exists and in terms of the 

virtual machine. This preserves the modular structure [4]. 

(2) It provides for the evolution of a system towards increased  

reliability without major revisions. Usually when the system 

is first assembled the error "trap11 routines are primitive. 

They may do no more than print their name. As the develop

ment progresses, increased experience and understanding allows 

these routines to be replaced with more sophisticated diagnostic, 

recovery, or loss minimization routines. 

(3) The use of even the trivial versions of the trap routines 

With a precisely defined machine (real or virtual) certain relations be
tween the functions may be "proven" by taking the specification as a set 
of axioms. A state in which those relations do not hold is termed "impossible". 



-8-

greatly simplifies debugging once the system has been "inte

grated11. When a system has been produced by the cooperation 

of many programmers, nooneknows the complete system well. 

When a bug appears, it is a difficult job to determine which 

programmer should study the problem. In our experience in 

testing systems whose error policies approximate those sug

gested in this paper, error routines which do no more than 

print out their own name usually indicate which module (and 

which programmer) is at fault. We make great efforts to avoid 

having bugs which show up after the modules are combined, but 

when we fail, the above becomes useful. 

6. SPECIFYING THE ERROR INDICATIONS 

When a module is designed and specified we specify all the limita

tions of the program and all the error calls which will be made in the 

event that those conditions are violated. We also specify routines to 

be called in the event of certain other failures. The following is a 

list of considerations which must enter into the construction of the 

list. It may be viewed as an aid to error anticipation. 

6.1 Limitations on the values of parameters. Since any piece of 

software has a limited range of parameters which it can handle, a trap 

should occur if these are violated. These should be omitted only if it 

would be impossible to violate them (e.g., if "compile time" checks are 

feasible). 

6.2 Capacity limitations. Since any module which stores informa

tion will have a finite storage capacity, traps should occur when that 



-9-

capacity is exceeded. The specification must enable users to predict 

when such a trap will occur (i.e., to determine the capacity). 

6.3 Requests for undefined information. Any module which provides 

a memory function must be designed in the light of the possibility that 

information will be requested before it has been inserted or after it 

has been deleted. Traps should be specified for all such conditions. 

6.4 Restrictions on the order of operations. Efficiency, ease of 

implementation, or a desire to detect probable programming errors, may 

dictate a restriction on the order of calls on a module's functions. 

For example, most file systems require "opening" a file before one may 

access it. Traps should be specified for violation of these restric

tions. It is sometimes necessary to add functions to a module in order 

to specify the conditions under which such traps occur. In the file 

example a predicate "OPENED" would be appropriate. (See also Appendix 2.) 

6.5 Detection of actions which are likely to be unintentioned. 

Experience has shown us a common class of programming errors which result 

in certain "strange" actions. For example, the opening of a file which 

is already open is often indicative of an error. Many pieces of soft

ware use the unlikely action as a way of encoding some other operation 

(e.g., the closing of the file). We prefer to specify traps for such 

occurrences and provide alternative means of performing the other operation. 

Then a user has the option of specifying the alternative operation as the 

body of his trap routine. This particular recommendation is a question 

of taste. Modules designed in this way often have restrictions that some 
find annoying. 



-10-

6.6 Sufficiency, The above list of downward propogating error 

checks could be summarized as follows: The set of error trap conditions 

specified should be sufficient to guarantee that,if none of them applies, 

the change specified as the effect of calling the routine could be carried 

out without violating any module limitations. Further, the fact that no 

trap occurs, should guarantee that the value of the function (if any) 

will not be "undefined11. 

6.7 Priority of traps. A single erroneous call may violate several 

of the trap conditions mentioned above. It is not usually useful to call 

several trap routines. Instead we assign a priority to each trap and 

specify that only the highest priority "enabled" trap to be called. (In 

[1] the priority was indicated by the sequence of the calls in the text.) 

Priority assignment becomes essential when the value of some functions 

in the trap definitions might be undefined in an erroneous call. Then 

the priority of the traps must guarantee that there will be an enabled 

trap with a higher priority than any error condition which mentions un

defined functions (see Appendix 1). 

6.8 Size of the"trap vector". The structure and efficiency of the 

individual trap routines is improved as the class of errors they handle is 

restricted. The analysis done by the routine to determine the exact 

error often computes information which was known to the calling 

module. However, one must also avoid specifying a very large number of 

distinct error routines. One can combine several similar conditions to 

reduce the number of distinct routines. The optimal "trade-off" is a 

function of: (1) the sophistication of the error diagnosis being attempted 



-11-

(which determines the number of routines which would actually be dif

ferent) and (2) a complex space-time tradeoff. A practical compromise is 

to combine similar conditions and pass a parameter indicating the actual 

error. 

6.9 State after the trap. Programming is simplest when the module 

had no external changes after an error call. When it is not practical 

to adhere to such a rule, the trap should not occur until sufficient 

information to determine the state change is made available to the cal

lers* The trap routine has the option of executing "return11 after at

tempting correction of the error; the module should then continue after 

ascertaining that the call is now correct. If continuation is impossible, 

the trap specification should make that clear. A return in such cases 

can be handled by calling a trap routine used only for such an illegal 

"return". 

6.10 Errors of Mechanism. Reporting a failure by the module is 

inherently more difficult than reporting the downward passing errors we 

have been discussing. The actual error can only be accurately described 

in terms of information which has been hidden from the user. He could not 

use an accurate report. We want to give him abstract information which 

may help him in recovering; we are again faced with a trade-off between 

the simplicity of the design and the accuracy or detail of the abstract 

report. At one extreme we use a single trap name to report "failure" 

and require that the user of the module run diagnostic programs on his 

virtual machine to determine the extent of the damage. Experience with 

hardware diagnostic programs teaches us that this is quite a difficult 



-12-

task. In the case of a "virtual machine" there are many types of fail

ures in which the module has the capability of delivering quite a de

tailed analysis of the damage to the virtual machine. For example, a 

file system is usually capable of giving its users a list of damaged 

records and even a list of "commands" which no longer work correctly. 

However, some failures are so catastrophic that the information is not 

available. In the example given in Appendix 1 we have chosen a design 

in which the "failure" error call routines pass a parameter which clas

sifies the type of failure. These classifications allow the user to 

answer such questions as: 

(1) Did the command which failed change any function values? 

(2) Is it possible that a retry would work? 

(3) Were functions other than the one called affected? 

(4) Was the module able to restore functions to a state 

consistent with the specifications or is the machine 

in an "impossible" state? 

We considered an alternative which was further towards the fully 

detailed extreme. In this alternative we would have added a predicate 

associated with each function; the predicate would be true if the failure 

had affected proper functioning of its associated function. There would 

also have been a predicate which would be true if the module had been un

able to set the value of the previously mentioned predicates properly. 

This predicate would have been true in catastrophic failures. (There 

would always be the possibility of a catastrophe so great that even the 

last predicate could not be properly set.) In an extreme alternative, 



-13-

the predicates had as many parameters as their associated functions and 

would provide true or false indications for each possible call. 

We rejected these alternatives because: 

(1) It seemed unlikely that one would want to make an imple

mentation which was sufficiently redundant that it would be 

able to provide such detailed information. 

(2) It seemed unlikely that a user program would be written to 

use such information. 

Our decision we made was based upon a certain expected set of applica

tions and would be wrong for some. We present it only as an example of 

one solution to this class of problem. 

8. REDUNDANCY AND EFFICIENCY 

Modules designed as described above can be thought of as highly 

insulated external programs; the traps can be viewed as a wall protecting 

the module from damage. In a system constructed with such a view, 

much of the system resources are applied to maintaining the 

walls. For example, as a particular value is passed through several modules 

it will be repeatedly checked against the same limits. Such redundancy is ex

tremely valuable in the early testing stages*, but when the system is reliable 

the inefficiency introduced by the redundant checking becomes significant. 

When errors are quite rare, we can eliminate some of the redundant 
checks. 

Here one can discern two distinct approaches. (1) Retain the upper 

level checks, eliminate the lower level checks, assuming that no error 

H N T U8IABY 
UnEME-HUIR DIVERSITY 



-14-

will be introduced in the variable on its way down. (2) Retain the lower 

level checks, use the trap routines at the intermediate levels to pass 

the error back up to the point where it occurred. The second is usually 

preferable, but there are exceptions. When there are difficulties in 

the "backing up" which is sometimes needed in the second approach, the 

first approach can detect errors before changes are made. 

9. EXAMPLES 

Appendix 1 gives an example of a module specified in accordance with 

this paper. The notes annotating the example indicate which sections of 

the paper gave rise to particular decisions in the specification. Appendix 2 

is a narrative of an error traversing several levels. 

Space does not permit us to discuss a whole system in great detail. 

The reader might wish to look at [2] where all the modules of a small 

system are presented. In that example we were forced to ignore errors of 

mechanism because the lowest level was a commercial Fortran implementa

tion which did not permit the fielding of errors by user provided software. 

10. CONCLUSIONS 

We find it unfortunate that our conclusions are based on a small set 

of experiences on small scale systems with inexperienced programmers. 

This limited experience supports the following conclusions: 

1. Proper handling of errors requires that a systematic approach to 

error handling be taken in every part of the system. Most of our dif

ficulties with errors occurred because our "lowest" level, the commercial 

system that we were using, did not follow our approach. 



-15-

2. The trap approach appears to be enormously helpful, but the use 

of FORTRAN subroutine calls introduces three important difficulties. 

The caller's identity is unavailable to the FORTRAN routine; reassigning 

the contents of the trap locations dynamically was unnecessarily complicated 

and transfer of control between error routine and main program is uneces-

sarily restricted. These difficulties could and should be corrected in a 

professional attempt to apply our techniques. 

3. Our ability to abstract did not appear excessively restricted by 

the necessity of considering errors in designing the abstraction. 

4. Reflection of downward traveling errors and the passing of failures 

upward appears, on the basis of very limited trials, to be workable and 

useful. Reflection provides a basis for eliminating redundant error checks 

except in the (hopefully) rare case of actual occurrence of an error. 

5. The consideration of error possibilities will require half and 

sometimes more than half of a designer's effort in writing specifications 

for his modules in our present efforts. In our own evaluation this is a 

reasonable price for the potentially increased reliability of the system. 

6. Our proposal is one which, at first glance» violates a fundamental 

rule of hierarchically structured systems. In previous examples of such 

systems it has been presumed that a program at level i calls only programs 

at level i-1 and lower. We now have a scheme in which programs call error 

routines written at higher levels. In the previous situation there was a 

simple formal test which one could make to test whether or not the system 

was hierarchically structured. It is important that we now find a basis 



-16-

for mechanical checking of hierarchical structuring. Merely labeling a 

routine "error routine" does not have any significance. 

We propose that the necessary information is contained in the speci 

fication of the modules. The correctness of a given module's implementa

tion is dependent upon the lower level routines which it chooses to call. 

If those lower level routines (which are not named in the specification) 

fail, causing the module to fail, the module will not be considered to 

meet its specifications. In contrast, the module is specified only to  

call the trap routine. Its responsibility ends with the call. The module 

will be considered correct even if the trap routine is absent. This is 

analagous to the hardware which is considered correct whether or not trap 

routines are provided. 

We propose then that the test for hierarchical structure (which re

quires that a program complete all specified actions without calling upon 

higher level routines) specifically make an exception of the calling of 

routines named in its specification. Under 

this definition, the systems we discussed have a hierarchical structure 

and the concept of "virtual machine" is still valid. 

7. Some readers have suggested that instead of trap routines the 

upper levels leave encoded instructions for use by the lower levels in 

the event of error. Such a solution only replaces a machine interpreted 

trap routine by a software interpreted one. 

8. We feel that an organization similar to the one proposed is an 

essential step towards the production of highly reliable systems. 



-17-

Acknowledgement: I am grateful to P.J, Courtois, H.D. Wactlar, Dr. James 

S. Miller, A. Newell, A. Jones for helpful comments on versions of this paper. 

Many of the ideas in this paper were suggested by the work of systems 

programmers who informally organized parts of this program this way. The 

assistance of their examples in suggesting the guidelines offered here is 

acknowledged. 



-18-

References 
[1] Parnas, D. L., A Technique for Software Modules Specification with 

Examples, Carnegie-MelIon University Technical Report, 1971, Com 
munications of the ACM, May 1972. 

[2] Parnas, D. L., On the Criteria for Decomposing Systems into Modules, 
Carnegie-MelIon University Technical Report, 1971, to be published, 
Communications of the ACM, 1972. 

[3] Dijkstra, E. W., Notes on Structured Programming, T.H.E., Eindhoven, 
The Netherlands. 

[4] Parnas, D. L., "Information Distribution Aspects of Design Methodology", 
Proceedings of IFIP Congress 71, 1971. 

[5] Wirth, N., "Programming by Stepwise Refinement", Communications of the  
ACM. 

[6] Parnas, D. L., Some Conclusions from an Experiment in Software Engineer
ing Techniques, Technical Report, Computer Science Department, Carnegie-
Mellon University, to be published in Proceedings 1972 FJCC. 

[7] A Jones, Private Communication. 



A-1.1 

APPENDIX 1 

ANNOTATED EXAMPLE OF MODULE DESIGN IN THE LIGHT OF ERRORS 

INTRODUCTION 

Figure 1 is a module specification using the technique described in 

[1]* The module specified is a modification of an example from that paper. 

With one minor exception all changes from the earlier version are a conse

quence of the considerations in this paper. The notes below refer to 

markings in Figure 1. 

1. This function has no parameters and may always be called. The 

only trap provided is for the case that the module fails. The function 

represents the number of nodes which may yet be added to the tree and is 

included so that the user of the module may predict when the trap rou

tine EC41 or EC46 will be called. See also (8) below. 

2. The only limitation on this function call is the size of the 
parameter (i.e., the maximum integer which may be a node identifier) as 
discussed in section 6.1 of the paper. 

3. Here we have an illustration of the ordering suggested by the 
priority considerations in section 6.7. If EC4 is not called, the value 
of EC5 should be defined. It would only make sense to call EC6 if EC4 or 
EC5 need not be called. 

4. The function VALDEFD (Value defined) is included in order to 

specify a trap if someone attempts to read a value stored at a node in 



A-1.2 

the tree (by calling VAL) before setting that value (by calling SVAL). 

This is according to the considerations in section 6.3. 

5. Functions ELS and ERS (Exists Left Son and Exists Right Son) are 

included so that the user can predict the conditions under which EC20 and 

EC24 would occur. 

6. The inclusion of the separate functions SVAL and CVAL (Set VAL 

and Change VAL) is an example of the attempt to trap probably user errors 

as discussed in section 6.5. The design makes the assumption that setting 

a value for a node which already has a value is, in many applications, an 

error and requires a distinct function CVAL for that case (alternatively 

we could require deletion of the node, but that would introduce great in

efficiency). Inmost programs this would cause no inconvenience. If it 

did, the body of EC28 could be a call on CVAL. This of course is an ex

ternal change of design which is less efficient than the corresponding 

internal change would have been. 

7. We have specified a module in which deletion of a node which still 

has descendants is illegal. This is certainly a debatable design decision. 

It might trap some errors, but it can force ineficiency when it is desired 

to delete a whole subtree. Were this to become a problem, we would add 

yet another function to delete a whole subtree. 

8. The three points marked "(8)" illustrate a difficulty in trying 

to make the calls on error routines completely predictable yet not reveal 

the implementation. Our manipulations on SPSLFT make the assumption that 



A-1.3 

space for storing VAL is allocated when the node is created. In some 

implementations that would not be so. For those implementations the 

specifications will require a call to EC41 or EC46 in some cases when 

space is actually still available. If, however, we took the obvious 

alternative and made separate changes to SPSLFT for creating a node and 

SVAL, we would be restricting our implementation to one which made separate 

allocations. Such implementations would use more space and would be un

desirable if SLS or SRS were always followed directly by SVAL. Note that 

the elimination of space limitations would violate sections 6.2 and 6.6. 

9. Note that the specification does not specify the value of LS(i); 

only some properties of it. Further note that this specification is 

acceptable only on the very reasonable assumption that pi (the maximum 

number of node names) is not less than p2 (the maximum number of nodes). 

If that assumption were violated, we would have to introduce error calls 

for the situation where there does not exist a value of k with the properties 
specified. 

10. Note that it would be quite reasonable to reduce the size of the 

trap vector by combining EC41 and EC46. See section 6.8. 

11. The error calls EC1, EC3, EC6, EC9 report failures of mech

anism rather than an incorrect call. We have chosen to have each of these 

pass a parameter k which will indicate the class of failure which has oc

curred. The values of k are defined as part of the specifications. 

The important thing to note is that the meaning of each particular 

possible value of k is defined in terms of external properties of the 

module. If the user had kept redundant records he would be able to 



A-1.4 

determine which value of k applied by diagnostic testing. We pass the 

value of k so that he will not need to keep such records and on the 

assumption that reasonable implementations will be able to determine the 

proper value under all but the most catastrophic of failures. The last 

value is an escape for such cases. 

As mentioned in section 6.10. this particular design is but one 

point on a scale which includes many possibilities. We give it as a reason

able but not necessarily optimal design. 



A-2.1 

APPENDIX 2 

EXAMPLES IN WHICH ERROR MESSAGES MUST BE PASSED BETWEEN LEVELS 

It may not be obvious to some readers that errors in a hierarchically 

structured system must be handled at levels other than that at which they 

are detected. We present two examples as a means of showing why the de

tecting level may not have the information necessary to perform the proper 

action. 

Example 1. Bad Tape Block 

An unreadable tape block will be detected at the lowest level because 

the hardware will signal its presence. The low level program which has 

been ordered to read a given tape block, has no knowledge of the intended 

use of the information and can take no corrective action. Some levels 

higher we have a program providing a simple sequential access method. 

This program knows that the block was part of a given file but no more. 

Still higher we might find a program managing a large data base. This 

program might know that the block in question was part of a summary file 

which had just been computed from a master file and the record could be 

recomputed. Alternatively, the system might not be that sophisticated, 

but the error could be passed higher to the user who is able to give in

structions for recovery. 

Example 2. Out of Date Directory 

Due to a software error a file is changed while a copy of its directory 

still exists. A program using that old directory attempts to read the file 

and ultimately receives an error due to some hardware violation. If the 



A-2.2 

error is passed up to the level which used the incorrect directory, it 

can check its copy against the master copy and try again. Recovery at 

the intermediate levels was impossible. If this sophistication were not 

present, the error could be passed upward to some higher level which would 

attempt a retry. If the retry involves getting a new copy of the directory, 

we may well have success. 

In these two examples we have tried to show both errors of usage and 

errors of mechanism. We have also shown that the considerations are 

important for both hardware and software errors. In all the situations 

outlined an attempt to handle the error at the incorrect level would 

have failed due to lack of proper knowledge, the system would have a 

poorer reliability than necessary. The alternate solution is to intro

duce the necessary knowledge to the lower level. This clearly would 

reduce the advantage we have gained from the hierarchical structure. 



Function SRS 
possible values: none 
parameters: integer i 
initial values: not applicable 
effect: 

call EC43 if i < 0 or i > pi 
call EC44 if 'Exists'(i) * false 
call EC45 if 'ERS'(i) = true 

(10) call EC46 if'SPSLFT'« 0 
(11) call EC4700 if failure 

there exists k such that [ 
0 < k < pi 

(9) 'Exists'(k) = false 
Exists(k) = true 
RS(i) = k 

VALDEFD(k) = false 
ELS(k)=ERS(k) » false 

ERS(i) -true 
FA(k) * i ] 

(8) SPSLFT ='SPSLFT'-1 

Values of k in calls of ECl,EC3,EC6,EC9,EC13,EC15,EC17,EC21,EC25,EC29,EC33 
EC37,EC42,EC47 

k = 0 

k = 1 
value of SPSLFT,Exists,FA, VALDEFD, VAL,ELSfERS, LS, RS unchanged, successful retry possible. 
value of SPSLFT,Exists,FA,VALDEFD,VAL,ELS,ERS,LS,RS unchanged, 
successful retry impossible, 

k = 2 value of function called lost or changed, no other changes. 
"possible state11, successful retry possible, 

k = 3 value of function called lost or changed, no other changes. 
"impossible state", continuation impossible, 

k = 4 value of function called lost or changed, no other changes, 
"possible state", successful retry impossible 
value of functions other than that called changed, 
"possible state", successful retry possible, 
value of functions other than that called have been changed, 
"impossible state", successful retry impossible, 
value of functions other than that called have been changed, 
"impossible state", continuation impossible. 

k = 5 

k = 6 

k = 7 

Notes 
.. k = 2,3,4 only possible in ECl,EC3 ... EC25 
2. k = 0 or k = 1 suggest that information is not lost but growth or 

change of tree is restricted. 
3. "possible state" and "impossible state" are defined in the paper. 
4. The design makes the assumption that if the module is unable to 

restore its external appearance to a "possible state" it cannot continue. 
5. "successful retry possible" does not guarantee successful retry. It 

only means that successful retry is not known to be impossible. 
This value would be given if the module experienced difficulties 
which might be resolved externally to the module and suffered 
no internal damage to its data structures. 



Function DEL 
possible values: none 
parameters: integer i 
initial values: not applicable 
effect: 

call EC34 if i<0 or i > pi 
call EC35 if 'Exists'(i) - false 

(7) call EC36 if 'ELS'(i) or 'ERS'(i) 
(11) call EC37(k) if failure 

FA(i) is undefined 
VAL(i) is undefined 
ERS(i) is undefined 
ELS(i) is undefined 
VALDEFD(i) is undefined 
Exists (i) • false 
if i - 'LSTFA'(i))then [ 

LSCFA'(i)) is undefined 
ELSCFA'(i) ) - false] 

if i - 'RSTFA'(i))then [ 
RSCFA'(i)) is undefined 
ERSCFA'(i) ) - false] 

(8) SPSLFT -'SPSLFT' • 1 

Function SLS 
possible values: none 
parameters: integer i 
initial values: not applicable 
effect: 

call EC38 if i < 0 or i > pi 
call EC39 if 'Exists'(i) - false 
call EC40 if 'ELS'(i) = true 

(10) call EC41 if 'SPSLFT' - 0 
(11) call EC4200 if failure 

there exists k such that [ 
0 < k < pi 

(9) 'Exists'(k) - false 
Exists (k) - true 
LS(i) - k 
ELS(i) -true 
ELS(k)-ERS(k) » false 

VALDEFD(k) • false 
FA(k) - i ] 

(8) SPSLFT -'SPSLFT'-1 



Function SPSLFT 
possible values: integer 
parameters:none 

(1) initial values: p2 
effect: 

(11) call ECl(k) if failure 

Function Exists 
possible values: true, false 
parameters: integer i 
initial values: Exists(O) * true;Exists(l:pl)«false; all others undefined 
effect: 

(2) call EC2 if i < 0 or i > pi 
(11) call EC3(k) if failure 

Function FA 
possible values: integer 
parameters: integer i 
initial values: FA(O) » 0; all others undefined 
effect: 

call EC4 if i < 0 or i > pi 
(3) call EC5 if 'Exists'(i) - false 
(11) call EC6(k) if failure 

Function VALDEFD 
possible values: true,false 
parameters: integer I 

(4) initial values: VALDEFD(O) -false; all others undefined 
effect: 

call EC7 if i<0 or i > pi 
call EC8 if 'Exists'(i) - false 

(11) call EC9(k) if failure 

Function VAL 
possible values: integer 
parameters: integer i 
initial values: undefined 

call EC10 if i<0 or i > pi 
call ECU if'Exists'(i) - false 
call EC 12 if 'VALDEFD'(i) - false 

(11) call EC 13(k) if failure 

Function ELS 
possible values: true,false 
parameters: integer i 
initial values: ELS(O)- false; all others undefined 
effect: 

call EC48 if i < 0 or i > pi 
call EC 14 if 'Exists'(i) - false 

(11) call EC 15(k) if failure 



(5) 
Function ERS 

possible values: true.false 
parameters: integer i 
initial values: ERS(0)= false; all others undefined 
effect: 

call EC49 if i < 0 or i > pi 
call EC 16 if 'Exists'(i) - false 

(11) call ECl7(k) if failure 

Function LS 
possible values: integer 
parameters: integer i 
initial values: undefined 
effect: 

Function RS 
possible values: integer 
parameters: integer i 
initial values: undefined 
effect: 

call EC22 if i < 0 or i > pi 
call EC23 if 'Exists'(i) - false 
call EC24 if 'ERS'(i) * false 

(11) call EC25(k) if failure 

Function SVAL 
possible values: none 
parameters:integer i,v 
initial values: not applicable 
effect: 

Function CVAL 
possible values: none 
parameters:integer i,v 
initial values: not applicable 
effect: 

(11) 

call EC18 if i < 0 or i > pi 
call EC 19 if 'Exists'(i) - false 
call EC20 if 'ELS'(i) - false 
call EC21 (k) if failure 

(6) 
(11) 

call EC26 if i<0 or i > pi 
call EC27 if 'Exists'(i) - false 
call EC28 if 'VALDEFD'(i) » true 
call EC29(k) if failure 

VAL(i) = v 
VALDEFD(i) - true 

(11) 

call EC30 if i<0 or i > pi 
call EC31 if 'Exists'(i) = false 
call EC32 if 'VALDEFD'(i) = false 
call EC33(k) if failure 

VAL(i) = v 


