NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SL238 - A SOFTWARE LABORATORY
INTERMEDIATE REPORT

W. Coruin We Wulf

May 1972
Carnegie-Mellon University

Pittsburgh, Pennsylvania

This work was supported by the Advanced Research Projects Agency of

the Dffice of the Secretary of Defense (F44820-78-C-B187) and is
monitored by the Air Force Dffice of Scientific Ressarch.

SL238 - A SOFTWARE LABORATORY. 2

ABSTRACT

This report describes the resources and data structuree of 5..238
(Software Laboratory 238) and the designing of SL.238 modules and
systems. GSL238 is a simple, mul tiprocess, operating system used to
create an environment suitable for the construction of experimental

programming systems for educational and research uses.

5L238 - A SOFTWARE LABORATORY 3

INTRODUCTION

The similarity betueen many of the components af various systems
programs has often been noted but seldom exploited. Lexical
analyzers and syntax analyzers, for example, occur in all compilers
and to some extent in assemblers, editors, command interpreters, etc.
Yet they are generaliy re-written for each such system
{translator-uriting systems, or compiler-compilers, have been the one
exception to this practice)l. This situation is especially annoying
to two groups of papple to whom the present report is primarily
aimed: (1)} the researcher who would }ike to quickiy fabricate a
system in order to experiment with a single aspect of it in depth and
{2) the instructor who would |ike to assign programming problems on
some aspect of systems programming but which only make sense in the
context of a complete system. To illustrate this point, consider the
researcher f(or student) who would Iike to (is assigned to)
‘investigate various compiler optimization strategies on the
tree-representation of a program. To do this, lexical analysis,
symbo! table and space management, parser, tree-generation, and 1/0
functions must first be written. None of these is essential to the
project at hand, and collectively they may be sufficientliy

effort-consuming to make the project impractical.

This report describes the intermediate resuits of a project to

design a software laboratory (SL238) suitable for the study of

sof tuare systems.

SL230@ - A SOFTWARE LABORATORY b

The Physical Model

— ~
& Efﬂ /ZZZZZZZZ /

FIGURE I

SL238 - A SOFTWARE LABORATORY 5
THE PHILOSOPHY

The objective of SL23@ is to create an environment within which
researchers and students may experiment wWith the éonstruction of
software systems. The system accomplishes this by providing a large
number of functional "modulies" together with a mechanism for flexibly
interconnecting them in various ways. The philosophy of the system
is a software analog of the harduware "macro-modules” of Clark [1] and
"register-transfer-modules" of Bell [2]. Much of the philosophy for
the approach described below is due to Krutar ([31; key ideas were
borrowed from Habermann and Jones [4] and from many discussions with

Per Brinch Hansen.

The phiiosophy of the SL238 environment resulits from
consequences of a particular physical medel. The concepts implied by
that model are essential for the user to understand that environment.

That model is:

A (user) system ie constructed from a number of
component modules, The module is a functional unit
receiving signals (data) from one of a number of uires,
cables or ports, performing some operations and (possibiy)
generating ocutput signals on other cables (or ports). The
cables connected to a module are fitted with standard
male/female connectors so that the output of any module may
be directed to the input of any other module by an‘
appropriate interconnection of their cables. Rather than

direct interconnection, a special "patch panel”, similar to

S1.238 - A SOFTWARE LABORATORY 6

an old-fashioned telephone suwitchboard, is provided to
facilitate the interconnections. Figure I illustrates this

model .,

In thie model modules do not know to whom or to what they are
connected. Internal names are used to reference porte for receiving
and sending information and the actual supplier or receiver is
specified externally by the particular cabling pattern established by
the user. This fact, coupled wuith the "standard connector"
assumption, permits the substitution of a module for a functionally

equivalent one (or netuwork of ones) at any time.

The use of the system is best illustrated by a simple example.
Suppose one wished to construct a program to read text from a
paper-tape reader and print it on the teletype. Modules aexist for
reading {characters) from the paper tape reader (PTREAD) and writing
(characters) on the teletype (TTYOUT) -~ they can be interconnected

as follous:

S At

Suppressing the patch panel helps to clarify the diagram in more

compliex examples, this configuration may be drawn simpliy as:

PTREAD | TTYOUT

4

Nou suppose one would like to add pagination of the output.. Further,

SL238 - A SOFTWARE LABORATORY 7

suppose there is a module (PAGER) which accepts input and passes it
along to its output, but also looks at each data item for a special
end-of-line (EOL) character and, after the nth occurance, inserts a
special upspace-the-paper (form-feed) character. If the original
connection is broken and reconnected as shoun below, the desired

pagination will result.

PTREAD |————| PAGER |———| TTYOUT

Suppose further that it is desired to get a character frequency
distribution in the text while the printing is going on. If a module
(CHRFOR) to do this exists, the following configuration might be

created:

> CHRFRQ

PTREAD |-————]| SPLIT |————| PAGER |—»———| TTYOUT

In this configuration, 'SPLIT’ is a simple module which, when it
receives input, replicates that same input on each of two output
ports. HMuch more complicated configurations could be built in this
manner but this example has served to illustrate the genaral

philosophy.

Of course, software modules are not physical objects; they do
not have tangible cables dangling cut of them. The patchboard does

not have a physical existence either. The acts of connection and

SL238 - A SOFTWARE LABORATORY 8

reconnection are not accomplished by physical acts but rather by

commands typed on a terminal. The precise syntax of these commands

is defined in the command language interpreter module (CLI) and may
change as more attention is paid to the human engineering aspec't's of

the system (which is considered to be a crucial aspsct of the whole

project). However, the structure of these commands le intended to

reinforce the conceptual model presented above; thus the commands

mimic the things one wouid expect to do to modules physically wired

together ~-- for example: connections may be made or broken at any

time, the complete "wiring list" may be displayed or individual wires

traced, the =signais flouwing along a particular cable may be

monti tored, etc.

SL238 - A SOFTWARE LABORATORY 9

IMPLEMENTATION AND RESOURCES

The system model presented in the previous section might be
implemented in any one of a number of ways -- sach module could have
a subroutine or co-routine structure, for example. It was decided to
construct each module as an asynchronous (sequential) process. The
cabling and patchboard are implemented as a "mailbox" message
buffering system. The system is implemented in two pieces: (1) a
emall "kernel" which includes space management, process management,

and message handling primitives, and (2) the modules.

The command language (CL) for using SL238 is implemented as a
set of modules using the mechanisms provided by the kernel. It is in
no way different from, or more privileged than modules assembled by
the user. This construction philosophy permits the CL to be easily
modified, permits different versions of the CL for different users,
and permits the CL to be easily adapted to various configurations and
needs. Finally, the CL, being constructed from modules itself, forms
an advanced example of the use of the system and is discussed in a

later section on current systems and modules.

THE KERNEL

The Kkernel consists of a smail number of data structures,
accessors, and routines for manipulating the structures. The data
structures used in the Kerne! are instances of a smaller number of

"classes" of structures (objects, lists of objects, semaphores, and

vectors).

SL238 - A SOFTWARE LABORATORY 18

The routines in the Kernel are constructed such that each
performe an operation appropriate to a class of structures on any
instances of a member of that class. This operation is never
performed by any other routine. This is a working definition of the
term "clean" used earlier, It should be noted that thie definition
of clean conflicts with similar ones proposed elsewhere [7] in that
it implies a étrong functional interdependency. It was chosen in
favor of a data semantic interdependency because of the clarity and

modifiabilitg it affords.

The Kernel has been purposely Kept small {(the entire Kernel
consists of less than 288 PDP-11 instructions) allowing (1) the
design and implementation to be iterated, (2) the Kerne! itself to be
an object of study in a systems programming course, and {3} a usable
subset of the total system to be used on a minimal (4K} PDP-11

configuration.

The following is an English description of the data structures

and their associated manipulative routine supplied by the kernel.

(1) objects

An "object" is a data structure which is composed of 2%N (1 sN
€ 1B) words, tuwo of wuhich contain a link field (objects are
frequently chained together on lists), and a priority field {(when on

a list, objects are aluays in priority order).

SL238 - A SOFTWARE LABORATORY 11

LINK
PRIORITY

//\—\/—/

?
lTSIZE WORDS

All system objecte have system defined names associated with the

offsete from the base address of the object. These names are aluays

used uwhen accessing the areas of an object and are given beside the

locations in the diagrams of the objects (each block in a diagram

represents ons word).

The routines for manipulating objects are:

a)

b}

c)

)

e)

f)

g)

get (n} aliocate memory for an object of size 24"n"
and return its address.

release (a,n) deallocate the space for an object wuwhose
’addreas is "a" and size is n. The value of
"release" is undefined.

copgold (a,n,b) copy the contents of an object whose base

address is "a" and size is 24"n" words into
an object whose base address is "b"; exactly
2%"n" worde uwill be copied. Return the base

address of "b".

copy (a,n) create an object of size 27"n" and make its
contents identical to thoee of "a"; return
the address of the new copy.

link €a,h) link the object Whose base address is "a" on
to the list uhose header address is "h". The
object will be linked inte the proper

priority position on the liat. Return the
address of "a".

delink (h) remove the first object, that is the highest
priority one, from the (ist whose header
address is "h" and return the address of this
object.

swap (h1,h2) delink the first object of the "hl“ chain and
link it onto the "h2" chain; return the

SL238 - A SOFTWARE LABORATORY 12

address of the swapped object.
{(2) The "feasible" list, semaphores, and synchronization

A particular class of objects are called "DIB’s", Dynamic
Information Blocks. DIB is the name given ta what has been called a
"process description" in other systems, and contains relevent state
information for & process. The "feasible" list is a chéin of all the
DIB's for processes which are ready to run. All other processes are |
"pending on a semaphore" and these DIB's are chained on a list
associated with that particular semaphore. The reader is assumed to
be familiar with Dijkstra’s P and ¥V primitives and their use for

process synchronization [B).

SEMAPHORE - FEASIBLE HEADER
SEMHDR HEADER — HEADER —pm
SEMCNT COUNT
v v
LINK “e LINK »e
PRIORITY PRIORITY

SL238 - A SOFTWARE LABORATORY 13

DIB
DIBLNK LINK
DIBPRO PRIORITY
DIBNME
— NAME —
bIBSP STACK REGISTER

DIBSIB POINTER TO MODULE
DIBULK |LINK FOR USER DIB LIST
DIBOLK LINK FOR MODULE DIBLIST
DIBPRT

— PORT INFORMATION —

The routines which manipulate semaphores and the feasible |ist are:

savstart saves the context of the current process on its
stack, saves the stack pointer of the current
process in its DIB, and initiates the process whose
DIB is at the top of the feasible Jist by
retrieving its stack pointer and restoring its
context from the stack.

P (sem)

Dijkstra’s synchronization primitives.
Y (sem)

(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called
"messages". Modules do not send messages directly to other modules
but rather to "ports". A port is a local (to the module) rname for
one of the cables in the model -- thus modules are not aware of which
other modules they receive messages from nor send messages to; they

are aware only of their own local port names.

SL23@ - A SOFTWARE LABORATORY 14

The patchboard is implemented as numbered a sat of "mailboxes”

-- data structure

empty) set of mes

8 which contain {(among other things) a (possibly

sages. Patchboard connections are accomplished by

making the "port information" portion of a process’s DIB reference a

particular maiibox by its number.

A MESSAGE MATLBOX
MSGLNK LINK MBXHOR HEADER
MSGPRI PRIDRITY
MSGTYP | TYPE | SIZE | MSGSIZ MBXUSE MUTUAL
— EXCLUSION —
MSGODAT SEMAPHORE
— USER DATA —
|~ MBXACC
— ACTIVITY —
/_\./] SEMAPHORE

The message handli

send (m,p)

receive (p)

Al though the

necessary for the

MBXLIM '
- LIMIT —
SEMAPHORE

ng primitives are:
A copy of the message whose base address is "m"
will be sent to the maiibox connected to port "p".
1f the mailbox is currently full the sending
process is suspended until space for the message
becomes available.

Return the address of a message in the mailbox
connected to port "p". The message is removed from
the mailbox. If no meseages are currently in the

mailbox the process is suspended until a message is
sent to it.

SYSTEM FUNCTIONS

kerne!l supplies all of the support facilities

running process, there is a set of functions that

SL238 -~ A SOFTWARE LABORATORY 15

is useful to have in a common area where it may be shared by all the
modules. These functions are those which are either performed by
many modules (but too simple to be an independent module) or are best

performed uith more access to system data structures.

The system functions are neither necessary for the opsration of
the kernel nor do they form a permanently defined set. They exist

sclely as a convenience for the user.
(1) Process creation functions

The Kerne! supplies routines to support processes but it does
not provide any means to create them or interconnect them. A moduie
could perform these activities but this might endanger the

reliabiiity of the system. The process control functions ares:

create (a,b,c) create an incarnation of the module whose base
address is "a"; give it the name located in the 2
Hword area whose address is "b" and use the first 7
words of the area whose address is "c¢" as the DIB's
priority and its context vaiues (if c=8, the
priority becomes the modules priority and the
context values are undefined). Link the DIB on the
feasibie list and on the system OIB list. Return
value is the address of the new DIB.

connect {(a,b,c) disconnect the Ath port of the DIB uhose base
address is "b" from any connection and reconnect it

to the mailbox number "c". If "c" is B, allocate a
new mailbox. Return values are the mailbox address
and number-.

(2) Arithmetic functions

The PDP-11 is a mini-computer and does not supply all the
hardware arithmetic functions that are normal ly used by processes.

Rather than every module having its oun routines, the most useful are

SL238 - A SOFTUARE LABORATORY 16

provided in the system functions (if the functions become available

as hardware, the modules can be changed to take advantage of it

and/or the system functions can be changed to be more efficient).

The arithmetic functions currently provided are:

multpy (a,b)

mul t58 (a)

divide (a,b)

divbg {a)

log2 (a)

pouwerd (a)

unsigned integer multiply "a" times "b" and return
the double precision result.

has the result of "multpy(a,#58}" ("#" denoctes
octal)

unsigned integer division of "a" by "b", returning
a quotient and a remainder.

has the result of "divide (a,#58)".

caiculate the log, base 2, of "a" and round it to
the next higher integer. Return value is the log
and the difference between "a3" and 2t{first return
value}.

calculate 2%"a" and return it.

{3} Conversion functions

The names in the DIB’s and in the modules are in RADIX 58

(al lowing 3 characters/uord). The conversion functions from RADIX 58

and ASCII are:

convbB (a)

conasc (a)

returns the RADIX 58 value of "a".

returns the ASCII value of "a".

SL238 - A SOFTWARE LABORATORY 17

MODULES

The modules are the basic building blocks of all SL238 systems.
As such there are several restrictions placed on the code and several
conventions that should be foilowed when modules are coded. A SL23@
module (source file) is composed of 3 parts, (1) decumentation (for
programmer use), (2} Static Information Block (SIB) and (3)the
executable code. A detailed description of the parts follows and an

example of a module is given in appendix A,

DOCUMENTATION

The documentation is a description of what the module does and
how to sucessfully interface the module to other modules. .It gives
all the information that is externally visible {message formats, what
the module does,...) but it doesn't give the algorithms used or the
internally defined data structures. The format has the purpose of
insuring that all information necessary for the proper use of the
module is available to the user, This forces the modules to be clean
{as defined ear!ier), the internal data is unavailable and it can not
be used in assumed connections. The format consists of Keywards and
descriptions (see the example in appendix A}, The follouwing

describes uhat the Keyuords signifys
MODULE module name as given in the SIB

FUNCTION: English description of the function of the

module, exciusive of port information, message
formats and algorithms :

PARAMETERS: the parameters of the module as given in the
SIB, which are: priority, stack size, dib size,
number of ports, and module size (approximate)

SL230 - A SOFTWARE LABORATORY 18

EXTERNAL: external variables referenced by the module.
These are given in the format:
<English name> (<system name>)
example:
TELETYPE INPUT STATUS REGISTER (T@KBS)

PORTS: description of the message format that is sent or
received through each port, including what the
module uses the port for. The format is:

<port number> <port name> <port function>

CONNECTIONS: moduies that the module is ‘normalliy®
connected to., The format is:

*"CONNECTIONS:
PORT . MOOULE
<PDRT NUMBER> <MODULE NAME»>:<PORT NUMBER CONNECTED TO»>
ASSEMBLY: ail the files uwith which the moduie must be
assembled, wusually the files which define

interface languages (explained in a later
section) and assembly time options

SiB-

The SIB is the name given to the object that contains the system
module data constants for a particular module. A!l SIB's are iinked
on the system SIB list (SIBHED) and are availabie to all users. The

SIB is located at the head of a module’s code and ite format is:

SL238 - A SOFTWARE LABORATORY 18

siB
SIBLNK LINK
SIBPR] PRIORITY
SIBNME
— NAME —

SiBOSZ | DIB SIZE |STACK SIZE| SIBSSZ
SIBNPT |# OF PORTS| ENTRY PT | SIBEPO

SIBMSZ MODULE SIZE
SIBDLK MODULE DIB LIST
SIBPRT PORTS

e

PORT FORMAT

MAIL BOX

PORT NAME

The contents of each field (at load time) must be:

SIBLNK - moduie size (in bytes)., This value is used by the loader to

allocate spaces.
SIBPRI -~ module priority
SIBNME - RADIX 58 value of the module name. (1)

- - — - - - —_ _— - -

(1) If PALX1l is used, this value must be calculated.
used then the .RADSB directive may be used.

[f MACX11

S5L238 - A SOFTWARE LABORATORY 20

SIBSSZ - one byte value indicating the size of the stack necessary to

sSIBDSZ -

SIBEPO

run an incarnation of the moduie. The value is the leg
base 2 of the number of words in the stack. The minimum
value of the field is "5" resulting in a stack of 215 (=32
words) of which 28 words are required for system overhead
(hold the context when the process isn’t running, interrupt
stacking, etc.) leaving 12 words free for the user
(subroutine calls, local storage, etcl.

the log, base 2, of the number of words in a DIB of this
module. The minimum value of the field is "3" giving a DIB
of 2*3 (=8 words) but not aliowing any ports, or at least
"4" (2174 =15 words), allowing 4 ports.

module entry point {(offset from the SIBLNK field to the

first executable inastruction).

SIBNPT - number of ports in the module,

SIBOLK

SIBMSZ

SIBPRT

- one word DIB list header, initial value 8. UWhen the module

has incarnations, this field is the header for a list of
the DIB’s.

one word size field, initial value, undefined. When the
module is loaded this field is given the value of the
number of words that the module actually has allocated to

it (not necessarily an integer power of 2).

- SIBNPT port entries, mailbox number is 8, the port name is

the RADIX 58 value of a 3 character name and may be 8.

SL238 - A SOFTWARE LABORATORY 21

CODE

The actual coding practices used in the modules are not
important as long as they do not violate certain restrictions and
conventions. These restrictions are imposed to insure that the
modules function properiy in the softuare |aboratory environment and

do not harm the system.

The most important set of restrictions centers on the
possibility of multiple incarnations of a module. This property of
SL238 modules forces all code to be pure and re-entrant. A pure
modute, in this sense, has tuo implications: (1) the code must not
contain any instructions that alter other instructione in the module

and (2) the module must not contain any local storage.

Since local storage can not be located in the module, it must be
allocated from core when an incarnation of the module is first
started. There are two ways storage may be allocated:

1} from the stack
2) using a new section of core
Both of these methods work quite weli and require about the same

amount of work.

To allocate from the stack, it is first necessary to start out
With a large enough stack. The first instructions (outside of any
and all loops) subtract the proper amount from the stack pointer (SP)
and save the SP in a register. Throughout the rest of the moduie the

tocal storage is referenced as indexed on the register.

SL238 - A SOFTWARE LABORATORY 22

To allocate local storage from core, a call on GET is done for
the required core and the address of the core is saved in a register.

It is accessed in the same manner as space on the stack.

Allocating from the stack is the preferable {(possibly may become
required) method of allocating storage. Since the stack assigned to
& process is compietely is defined, the system can easilu control it.
This may bécome important when it is desired to implement a function
to delete an incarnation of a module., The major reason why the
delete function does not exist in the current version is the virtual
impossibility of deallocating ali the space (such as messages, |ocal
storage, et&.) an incarnation has. This problem has been given some
attention but no suitable (neat and easy) solution had been found
that did not involve a considerable overhead in the allocation and

deal location process. (1)

Anothar restriction on the code is that it must be entirely
relocatable. This restriction results from the lack of harduare
relocation facilities on the POP-11. The problems of wuwriting

relocatable code are dicussed in the later secton on coding hints.

If the code in a module comforms to these restrictions, then
there wWili be no problems in running it under SL238 (once it is
debugged) .

1. A feasible solution appears to be one having the module deciding
when and if an incarnation can be deleted. This couid be done with a
system function and a deiete bit in each DIB.

5L238 ~ A SOFTWARE LABORATORY 23

Conventions

In the process of coding many modules there are certain coding
conventions that have been found to be usefui. These conventions do
not actually affect the module code (other than in the conceptual
manner in which the modules are coded) and apply mostiy to coding
done in PDP-11 assembly code (PAL11). They are not required but it

is adviseable to use them since they do make coding easier,

To facilitate the use of local storage it is desirable to use
direct assignments rather than numeric offsets. This allows two
things to be done, the format of the local storage may be changed
easily and the format is uwell described for later referencing. At
the start of a module, values are assigned to names and a description

given of the data. An example of this would be:

Poeveveveseveseveteteveretevereven?

NAME =B s+ 1 RADIX 5@ NAME ¢
3 Meveieeteverctetetricioveronet
NUMBER =2 :+ 1 FILE NUMBER 4
1 Pt evesesene
REFCNT =4 :+ % NUMBER OF REFS ¢

Mevesesereievieieiniclin ieien
The data would be acessed by an instruction |ike:
TST REFCNT (R5} s ANY REFERENCES?
It is also desirable to use direct assignments of variables for

port assignments. This ailous the assignments to be easily changed

and provides more information for anyone reading the code,

The Kernel routines and system function, defined earlier in this

SL238 - A SOFTWARE LABORATORY 24

report, are accessed, on the PDP-11, by means of the TRAP and EMT

instructions (TRAP for Kernel routines and EMT for system functions).

These instructions allonw an argumeﬁt which is used by the TRAP. and

EMT routines to determine which routine is being called. Thus, if

the SEND routine is number 2 the calling instruction would look |ike:
TRAP 2

allouing poeition independent accessing of the routines.

The system data that a user might need has been defined in the
file SYMHED. In addition to defining the harduare registers (RB -
RS, SP, PC, PS, 1/0 registers), SYMHED defines all the names of the
system data structures (SIB, DIB, messages, seemaphores) wuwith the
identifiers given in this report. SYMHED also defines a mnemonic and
gives the relavent information about the parameters and return values
for each argument of the TRAP and EMT functions. This allous the
kerne! routines to be calted'bg their name. By assembliﬁg SYMHED
with a module all that is necessary to access the send routine is to

code the instructon:
TRAP SEND
after setting up the parameters.

SYMHED defines the "interface" !anguage between the module and
the Kernel. An interface language is a defination of the
assumptions, structures, commands and conventions that exist betueen
tuo objects that interact with each ather (such as Kernel and module,
module and module}. I1f a module is written that has a non-trivial

message format, a large set of possible commands, or uses a common

SL.238 - A SOFTWARE LABORATORY 25

data format, it is best to create an interface file |ike SYMHED.
Defining interface languages in a file like SYMHED has a great
advantage over putting the assignments at the start of every module.
It is easier to access parts of a data structure using mnemonics and
it atlous the format of the structure to be changed uith-only the
cost of a reassembly instead of a change and reassembly of every
module that accesses that structure. Another advantage is having the

interface'completelg defined so other programmers can use it.

Hints

The following paragraphs describe several PAL1l oriented tricks

that can be used to ease the job of uriting a module.

As someone who closely studied the SIB format may have noticed,
some of the information required would be non-trivial for the
programmer to calculate. Specifically this is the module size in the
location SIBLNK and the module entry paoint offset in the location
SIBEPO. An easy way fo get these values is to have the assembler
calculate them. The module size is calculated by having a labe! at
the start of the SIB and one at the end of the module (after the last
instruction)., The start of the module would have an assignment of

the form:
MODLNK =<L ASTLABEL >-<F IRSTLABEL >

and the first word of the SIB would have the value of "MODSIZ“.
Alternately, if the labels were "SIB" and "LAST" the start of the SIB

could look like:

SL230@ - A SOFTWARE LABORATORY 26

SIB: +WORD LAST-SIB $MODULE SIZE

The same technique can be used for SIBEPO. (see the example in

appendix B)

It is sometimes useful to assemble several modules together, sc,
instead of putting a ".END" at the end of each module, it is usually
better to put the ".EOT" directive there. All currently existing
fitles follow this practice and for this reason the file "TAIL"
existas. It contains only one line, a ".END" statement.

Example: to assembie the module "DTACON" we find from the
documentation that it requires the files "SYMHED" and "DSKCOM"

assembled with it. The aessembler command string would look !ike:
DTACUN,/CDTACDNGSYHHED,DSKCDH,DTACON.TAlL

NOTE: SYMHED must be the first file in the string since it defines

the hardware registers.

The lack of relocation harduware forces all modules to be
location independent. When a module is loaded, it can and will be
placed almost anywhere in core. On most machines this requirement
would place a great burden on the programmer and/or the programming
language. On the PDP-11 relocatable code is easy to urite, the oniy
problems requiring care are accessing fixed addresees (the PS word,
1/0 registers, etc) and accessing module information (such as command
vectors). On the PDP-11 this reqguirement is easy to fulflll due to

the ability to do indexing relative to the program counter (PC). The

SL238 -~ A SOFTWARE LABORATORY 27

only problems occur when it is desired to access a vector of data
Wwithin the module (such as a command vector) or when trying to access

a fixed location in core (such as the PS or 1/0 register).

A fixed address can be referenced position ihdependentlg only by
the "deferred autoincrement on the PC" mode. This mode forces
absolute instead of relative addressing. The correct and incorrect
methods of referencing the PS would be:

MOV a@#PS, - (SP) s RIGHT (ABSOLUTE)
MOV PS, - (SP) s WRONG (RELATIVE)
(NOTE: timing is identicall

Accessing module information (indexed by a register) invol!ves
using the PC to find uwhere the module is located and calculating
relative displacements. If it is desired to use a vector as a
command break (a vector indexed by a register the correct and

incorrect methods of coding are:

YECTOR: COMMD1,COMMDZ,......

JMP @VECTOR (RB) s WRONG METHOD
ADD PC,R@ ; CALCULATE POSITION

HERE: MOV YECTOR-HERE (R8) ,R8 ;GET RELATIVE OFFSET TO LABEL
ADD PC,R@ sMAKE 1T ABSOLUTE

HEREZ2: JMP -HEREZ (RB)

Explanation: RB has a value (even) that is to be used to index into
YECTOR. Since the module may be iocated anyuhere in core using the
label "VECTOR" as an absolute value will pick up a word from core

that corresponds to where the assembler put the module (usually 8).

SL23@8 - A SOFTWARE LABORATORY 28

Instead, the PC is added to RB so that RB points to the label "HERE"
offeset by the amount that it formerly contained. The desired word Ia‘
picked up by indexing with the displacement from"HERE" to "YECTOR".
This is nouw the value of a labal, as the assembler sau it. So the
initial process is repeated with the final instruction a "JWP" 1§ the
process. is for a command bresak or possibly a "MOV" or "CMP" if the

vactor contained data.

SL23@8 - A SOFTWARE LABORATORY 29

DESIGN

Thus far, the discussion has centered on how to urite a module
rather than what should go into it. From what has been said,. it is
evident that SL238 will actually support almost any piece of
relocatable code that hés a SIB on the front of it. Thie is due to
the impossiblity of checking or protection on the PDP-11. Designing
a module as if it was a stand-aione program is ignoring the resources
of the software laboratory. The entire concept of SL238 rests on the
general availability of small functional moduies. Proper design of a

module is of the utmost importance so as to maximize its usefulness.

The guiding philosophy should be to design modules that are
globally useful. This means ue want to design the modules small and
functionally simple. Complex functions are generated by connecting
many of these simple modules together. Unfprtunate?u. there is a
fower 1imit upon the size of a module. At some point the overhead
involved in the system structures (DIB and stack, minimum = 48 words)
is bigger than the module. In most instances this is undesirable.
If modules thie smal! are implemented, core is quickly lost through
fragmentation and cluttering. A module in this range should be
re-examined to see if it is really useful. I[f there are feu uses for
it, then it possibiy should be inciuded as a subroutine in the module
that uses it. If there are many users the possibility of including
the module as a system function should be considered. An example of
a small module that can not reasonably do either of the alternatives

is the TTYIN module. Thie module is 32.uurds in length (18 of which

SL238 - A SOFTWARE LABORATORY 30

are the SIB) and is an independent module solely because it does I/0.

By having it do the 1/0, other modules become more generaliy useful.

Modules should have a size on the order of 75 to 488 words.
(The figure 488 results from writing many modules ana evaiuating what
is contained in each. It is not an upper tound but rather a guide to
be used when designing modules.) If a moauie is larger than 488 words
it probably incorporates several functions that indapendent modules
should do. It should be examined to see whether it can be broken
down into smalier modules. An example of a "iarge" module is the
Command Language Interpreter (CLI). It has a size of 512 words and
consists mostly of special cases (the various commands). It wouild be
difficult to divide the CLl into separate moduies dues to the common
data base that the commands require and the fact that each individuél

command is too small to be an independent moduie.

The normal condition for the existence of large moaules is the
grouping together of several smal! sections of related code that are
all accessed in the same -manner. A possible way to eliminate this
type of module is to provide a module that consists almost entirely
of ports and the code merely sends the incoming messages out the
various ports according to some well defined rule. i the resulting
small modules are not generally useful it is not evident it is worth

the effort (and overhead!) to do this.

Most modules occur in the context of a larger system or project
and are originaliy designed as a part of that system. Dividing a
system into modules can be done in many ways, not all of which are

desirable. An example of modularizing a project is given in (8] in

SL238 - A SOFTWARE LABORATORY 31

What we consider to be one of the better ways to divide a system. A
system should be divided along functional boundaries instead of the
usual data fiow boundaries. Functionally interdependent modules are
easier to change then data interdependent ones. Since we Wish to
have the facility of easy changablity in the system, we must have the
modules functionalty interdependent, kKeeping data interdapendencg_

restricted to the messages that pass between two modules.

SL238 lends itself to functional interdependency. It is easy to
see this in terms of an 1/0 module. SL238 has two classes of 1/0
devices, single character devices (teletype, |ink) and block devices
(disk, DECtape}. The 1/0 messages from different devices are not
identical. If a module were designed requiring a block formatted
input, it could not connect directly with a character oriented
device. By keeping the [/0 functions independent we seem to be
losing access to some of the devices from a particuiar module.
Obviousiy all that is necessary is to insert a conversion module
between the two. If a module requires a particular tupe of 1/0 input
this is the tupe of solution that should be considered. The |ink
dedicated system provides us with an example of 1/0 type dependent
modules. If it would be desirable to send an ASCII file from the
PDP-18 to the PDP-11 the character would come into the 11 through the
link input module(LK1IN). This module is single character orienfed
so that if we wished to use PIPll to transfer the file to disk a
direct connection could not be made. Instead, a character-to-buffer
module would have to be inserted between the two. Schematically this

looks iike:

SL238 - A SOFTWARE LABORATORY 32

—
PIP LINBUF | —<——| LK1IN
——
BLOCK 1/0 CHARACTER LINK INPUT
MODULE ACCUMULATOR MOOULE

Doing input from the link this way allows the continued use of the
single character capabilities of the Iink and &iso zilcws us to
transfer files with a minimum of work. Tnis soiution would be
superior to uwriting a new LK1IN module for it aiso generates the
LINBUF module uwhich shouid be useful elsewhere. i(:ne .ink system is

described in the foliouing section on current sgete.si

As in most problems, the dividing of & project into modules
involves the making of variocus trade-offs. in the softuare
laboratory the desired end result is to have as many useful modules
as possible. By checking on the Kinaes of existing aWoauies it is

(should be) possible to find most of the programming Wwork done.

SL238 - A SOFTWARE LABORATORY 33

CURRENT SYSTEMS AND MODULES

At the present time there are two major systems that have been
designed; a command language system and a link oriented system (see
schematics in appendix B}. The command language system is deaigned
to provide the resources nescessary to debug modules' and construct
systems. The human engineering aspect of the command l|language has
been given considerable attention and the commands are designed to
allow efficient use of the human resources available. The commands
are given in the documentation of the Command Language Interpreter

{CL1) module (see apendix D) and wiill not be given here.

The command language system can be easily extended if a user
wants it to be. If a new command or facility is desired, a new
module can be written to implement the command or an existing module
can be modified. There is nothing permanent about the current
version of the command language module other than the Kinds of
commands that it provides. The current version is actually the‘third
one and represents a year of experimentation and use of other

versions.

The link dedicated system is used to communicate with another
computer by means of a link connecting the tuwo machines {(currently
the link goes to a PDP-18). Since the POP-11 is a smal! machine, the
second machine is used to edit and assemble PDP-11 files and the
binary output is sent to the PDP-11 over the link. Resources are

available in the link system to transfer from the |link to any other

SLZ23@ - A SOFTWARE LABORATORY 34

block 1/0 device. This system allows the rapid debugging of modules
‘(or systems) since the power of a bigger computer is available to the
user. For a more exact description’ of the |ink system, see the

schematic in appendix B and the description in appendix C.

In addition to the modules composing these tuo systems, there
are several others that have been written, The documentsation of ali

cuurrently existing modules is given in appendix DO.

SL238 - A SOFTWARE LABORATORY 35

FUTURE PROJECTS AND SYSTEMS

There are only a few major projects left involving changes to
existing systems. They are outlined in the following paragraphs to
give examples of the kind of projects that could be considersd. The
particular ones given are those for which a solution is thought to be

easily available,

There are some changes that should be done to SL238 itself (as
opposed to modules). One of these is the addition of a delete
function. As was mentioned earlier in this report, this function is
not in the current version because of the difficulty in deallccating

the core assigned to a process.

Another major change to SL23@ involves the manner in which a
system is initially loaded. In the current version, each system must
have its oun system assembly since information about which modules
are loaded exists as a vector in the system. A better way to
initialize the system is to have the capability of using a load file
that specifies the modules to be loaded and the connections to be
made. This is easily implemented by using a subroutine, "DOEVER",
from the command language interpreter module. By making this routine
part of the system, all that is necessary to perform the proper
connections f(and loadings) for a system is to give the routine the
correct data structure. The source of the data structure could be
anyuhere and thus could be a file on an 1/0 device. This would allow
more efficient system loading and the system in core could be changed

more easily. It would also ease the implementation of a command

SL238 - A SOFTWARE LABORATORY 36

janguage with each system (the link system does not have command

language facilities).

Sometime, it might be desirable to change SL238 into a multiuser
system. The POP-11’s avaiiable for this project were not big enough
for more than one user so a multi-user system couid not be
implemented. Since SL238 ie already designed as a multi-process
system, it wWwouid be a simple matter to have each user have one
process for his use. This would be the equivalent of the way most
current operating systems are implemented, but it ubuid provent the
user from accessing most of the resources provided by SL238. of
SL238 (multiple feasible lists, a recursive defination of the Kernel,

etc.) but they wili not be discussed in this report.

There are many suystems that could be designed for the software
jaboratory. Most of the first systems built should have the purpose
of building up the library of modules in addition <o ouilding a
useful system. Among these projects are a few that can oe done uith
very little work, the moduies that should be uritter, are readily
apparent.. Dne of these would be a text editor. The editor need not
be complex but should have a great deal of power. The actual design
of the modules will depend upon the tupe of editor used {text mode,
line mode, etc.) and the desired features of that type. It should,
however, contain modules that are common to all tuypes of sditors. A

possible design of an editor is:

SL238 - A SOFTWARE LABORATORY 37

TTYOUT < € < } 1/0
¥
SILED L |

+ l l BUFLIN 1/0

I | T

TTYIN |——] ACCUM |——]| EDITOR [wwwe| LINER |wwwe| LINBUF

The only modules that are not uwritten are the three editoring
modules, EDITOR, LINER, SILED. The first ie the type dependent
editor controler, it is the one that scans the input and decides what
to do. Liner is a simple module that handles a |list of strings (in
messages). SILED is a more sophisticated part of the editor. It
implements an "alter" command (a command wuhich would alioun the
internal editing of a line of text with a |line mode text editor) and
would not be necessary for an initial version of the editor. All the
other modules exist in some form. This design is neither the only
poesible design nor necessarily the best. It is one of the simpler

ones and should be easy to implement.

Other systems that could be implemented inctiude assemblers,
compifers and text justification programs. Each of these should also
have several modules implemented for each function, such as several
symbo! table modules, optimizers etc. When several projects such as
these are completed there wuiil be a useful library of modules

available for users.

SL238 - A SOFTWARE LABORATORY 38

APPENDIX A

This appendix contains an example of a module.

MODULE LINBUF

we e W wr

33 FUNCTION: ACCUMWULATE SINGLE CHARACTERS INTOD BUFFERS. THIS

) MODULE LOBKS LIKE AN INPUT 1/0 MODULE (BUFFER SIDE)
3 AND WILL CONVERY R SINGLE CHARRCTER 1/0 MOOULE INTO
33 A BUFFER ONE. TERMINATOR ON THE INPUT IS THE

3 CHRRACTER CONTROL 2 (826 ASCII DECMAL).

3

33 PRARAMEYERS: PRIORITY= 20888

i3 STACK 51ZE- 215

33 DIB SIZE= 2™

53 NUMBER OF PORTS= 3

33 MODULE SIZE= 17@ WORDS

33

33 PORTS: PORT NAME FUNCTION

b 8 1/C CONMAND INPUT PORT. A BLOCK

. ORIENTED I/ COMMAND IS ACCERT

i THROUGH THIS PORY. FOR FORRAYS SIE
53 DSKCOH.

i 1 1/0 REPLY PORT

i 2 CHRRACTER INPUT PORT. CHARACTER i3
3 THE FIRST BYTE IN THE DATR PARY OF
33 THE MESSAGE

33

53 ASSEMBLY: SYMHED, DSKCOM

; ; PAGE

SL230 - A SOFTWARE LABORATORY

H
3

3 T Y]
BUFADR=8B 3 T BUFFER ADDRESS Ll
;i T 4+
BUFCT=al ; T BUFFER COUNY L
) T 1)
3
RECIVS=8
REPYS=1
INPUTS=2
H
LODS1B:

H
LODNDS=1 ODLST-L.ODSIB

LODENPT=QSTART-LODSIB
H
.HORD LODMDS, 20808
.HORD 46166,7716 } "LINBUF*
.BYTE 5,4,LODENPT,3
.HORD LODMDS,8
.HORD 8,8 ;PORT 8
JMORD 0,8 ;PORT 1
JMORD 8,8 sPORT 2

; PAGE

39

SL230 - A SOFTWARE LABORATORY 48

}
QSTART:

H

1
RSTART:
BOONE:
ADONE:

LOP2:

REND:
REND2:

REND3:

e e we

UNTH:

s PAGE

CLR
CLR
nov
CLR
BR

Hov
JSR
JSR
nPB
BNE
JSR
Chee
BNE

JSR
cnrg
BEG
JSR
BR

JSR
ChPB
BNE
#1ove
JER
BR

CHPB
BEQ
CHPB
BEQ
TST
BNE
BR

-(5P)

—(5P)

SP,R2 ;POINT INTO THE STACK
R3 s ZERO R3

ADONE SSYART

#-1,DEVCHD(R3) ;ERROR, AND TELL HIN 50

PC,OLTFIC

P2, uafiL

RS, FOPIN ;OPEN FOR SNPUT

RSTAKY .UF NG, GIVE NIN @ NEGATIVE NUMBER
T, COUNN sIF 50, OK

R, MEADF sHAVE THE NEXY, IS IT A READ?
AR TA ;iF NOT, HE GOOFED!

7T, SETBYT SGEY ONE GYTE

K&, 4CTRZ ;15 IT A CONTROL 2 (THE END)
REND

FCLPUTAYT

LGPZ

PC, SENDBF ;G0 SEND THE CURRENT BUFFER
Ra, #READF sHAS REPLY R READ? IF 50 SEND EOF
HUNTH

¥EOF , DEVCND (R3)

PC,COUNN

REND2

RO, #CLOSZ jA CLOSE?

BDONE ;IF 50, START OVER

RE, FRELESE sR RELERSE?

BOONE ;IF 50 , START OVER

R& ;AN ASSIGN?

RENDS

BOONE

SL238 - A SOFTWARE LABORATORY 41

H

; THE FOLLONING IS THE GETBYTE ROUTINE

3

PUTBYT: INC 2(R2) s INCCRENENT THECHRRRCTER COUNT
86T GETBUF $1F >B THEN NONE LEFT, GET MORE
MOVB R®,e(R2) $GET THIS BYTE
INC (R2) ;INC THE POINTER
RTS PC s RETURN

H
H
GETBYT: MOV FINPUTS,RB

TRAP RECIV ;GET THE BYTE

MOVB NSGDAT(RG),-(SP) ;SAVE THE DRTA
MOVB NSGSIZ(RE),R1

TRAP RELEAS sRELERS THE NESSAGE
nov (SP)+,RE

8IC #177688,R8

RTS PC

s PAGE

SL238 - A SOFTWARE LABDRATORY 42

GETBUF: MOV RE, - (SP) ;SAVE THE DATR BYTE
JSR PC, SENDBF ;SEND THE CURRENT BUFFERCIF ANY}
CHPB RO, #SREADF jRERDF NEXT?
BNE BOMB ; IF NOT, BOMB
nov DEVLNK(R3) ,R® ;GET THE BUFFER PROVIDED
BNE OKSPS ;MAYBE NO BUFFER?
nov R3,RE ;DITCH MESSAGE, IT MAY BE TOO SMALL
MOVB MSGSIZ(R3),Rl ;HE NEED A SIZE 4 AND IT MAY BE SIZE 3
TRAP RELERS ;FOUND OUY THE HARD WAY!
nov #4,RE
TRAP GET ;NOW WE HAVE THE RIGHT SIZE
nov R8,R3 $SAVE IT
CLR (R8) + $2ERD THIS MESS
CLR RD) +
nov », (RB) ;S12E

nov #ia,RE
MOVB R8,DEVSIZ(R3) ;PUT IN THE SIZE
TRAP GET sGET THE BUFFER
Hov R8,DEVLNK(R3) ;PUT IT IN THE MESSAGE
OKSPS: MOV #-776,2 (R2)

18T {R8) +
nov R@, (R2)
Hov (5P)+,RE ;RESTORE DRTR
BR PUTRYT sPUT OUT THE CURRENT CHARACTER
;
BOMB: MOV R2,5P sRESET THE STACK
BR HUNTH
}
SENDBF: 7ST (R2) sWE DD HRVE A BUFFER, DON'T WE?
BEQ NOSTUFF 3+ IF NOT, FORGET IT{
ADD ¥776,2(R2) $SET COUNTER TD RIGHT VALUE
BEQ NOSTUFF s1F B, THEN NOTHING T0 OUTPUT
MoV 2(R2) , @DEVLNK (R3) sMAKE THE COUNT IN THE BUFFER
CLR 2(R2) "$ZERD THE WORLD
CLR (R2)
B8R counn

H
NOSTUF: nOv DEVLNK(R3),RE

BEQ SINK

CLR DEVLNK (R3)
HOvB DEVSI2Z(R3),R1
TRAP RELERS

SINK: CLR {R2) ;ZERD POINTER
CLR 2(R2) $ZERDO COUNT
HOV #RERDF ,RE
RTS PC

;s PAGE

SL230@ - A SOFTWARE LABORATORY 43

H
H
H
H
H
3
OUTFIL: nOV R3,R0 $SEND THE MESSAGE THAT WE HANVE

nove #EILCHD, NSGTYP (RO) $PUT IN A GOCD TYPE

Hov #REPYS, aRO

TRAP SEND $SEND IT ON
RTS PC

OUMNM: JSR PC,OUTFIL

P

INFIL: MOV R3,R8 sNON, RELERS THE %SG WE HAVE
BEQ 0KNSG
HOVE MSGSIZ(RE),R1
TRAP RELERS
OKMSG: MOV #RECIVS, RO
TRAP RECIV +GET THE REPLY
MoV RE,R3
nov DEVLNK(RB),R1 jPUT THE LINK IN RI
MOVB DEVCHD(R®),R®
RTS PC

ODLST:

SL238 - A SOFYTWARE LABORATORY 44

APPENDIX B
1
TTYYCoUT TTYIN
\
< ACCUM
A A
A "4
MAXE L MS&MOD ATOM
/N /N AN/
<
DISPLY S CLT < LE XAM
— K
FLOOR DIRMAN > LOADER
Y A

1/0 MODULE()

Schematic fdr the command language system.

SL230 - A SOFTWARE LABORATORY

45

TTYOUT TTY I N
AN Y
< ACUMLZ
< v
A Y
. SR— .
ACUMI® MAXEL— ATOMI LK.’lOkLT]
N
N , /_\L/ RARIR
AN > BINACM[Z LEXAM || [FILHANJ'
7 AN |
A __\\P\ vA YA
LKLIN J LINBUF 1,(PIPA1 L) | ||DTA CONi
j/ .. N3N
!Ds K HAN ._;‘_[DTA CON[ST|FILHAN lDTA HAN]

Schematic for the link dedicated system.

SL238 - A SOFTWARE LABORATORY 46

APPENDIX C
LINK DEDICATED VERSION

The {ink dedicated system is designed to provide facilities to
make the POP-11 appear like a TTY to the POP-18. It also provides
the mechanism to transport files both ways across the |ink. Input is
from the TTY and is accumulated in an accumulation module (ACUMil).
This modute does all the echoing and handles control U, control O,
rubout and line overficu. For more information on exactly wuwhat
happens in each of these cases see the module jtself (it should
suffice to say that the resuit is approximately the same thing as
wouia happen on the POP-18). ACUMI1 also provides another service,
it has several cutput ports for the string, one to the link and thus
the POP-18 and one to the POP-11"s port interchange module (PIP11),
It also has a port connected up to the Iink input accumulation modute
{the link input is accumulated into lines to provide more efficient
buffering) and will send an aitmode to this port if required. The
purpose of this is to free any message that is stuck in the
accumulation moduie because it wasn't terminated by a break character

(ex. 'CONFIRM:' from a LOGOUT). The ports are changed by control
characters: '

TA - set port out so the string goes to the PDP-18
M - set port out so the string goes to PIP11
D - send an a:tmode to |link accumulation module

The PIP module, whea initially loaded has the following symbolic
port assignments (see PiP documentation for exptaination):

8 - system initial load device. In SYSLODYT =»> DECtape,
SYSLDK => disk

1 alternate device (one not used as system load. SYSLDT

=> disk, SYSLDK => DECtape

2 - binary accumulation module. Input device for shipping
binary files over the |ink

3 - ASCl1 accumuiation module. [Input device for shipping
ASCII files over the link

4 - |ink output module. output device for shipping any
file to the PDP-18

5 - unassigned

The current binacm module allows onty absolute binary files to
be shipped to the PDP-11. 1t should be noted that the commands for
each machine must be typed individual ly.

EXAMPLES:
shipping a binary file to the POP-11

{1 => disk, <character> => control! <characters>)

A !switch ACUMLl to send to the link
1C Istop anything running on the 18
.R PIP Istart PIP

#1B81;8:PIP11-BINe2;8: !return to 11, give PIP1l command

SL238 - A SOFTWARE LABORATORY 47

PATTY: /1€DSK:PIP11.BIN !back to 18, tell PIP to output fiile

to TTY
% IPIP done
¥ IPIP11 done

shipping an ASCII file to the POP-il

*a

*c

.R PIP
w1B1;B:PIP11-P11¢3;0:
PATTY: /1€DSK:PIP11.P11
W

¥

shipping a file to the PDP-18

TA

1C
*»DSK:PIP11.P11«TTY: /A
1B4:B:€1;8:PIP11-P11
%

"

If an error occurs during the transfer of a file, one of tuwo
things will happen. [If the binary accumulation modufe should stop
too soon f{(caused by a premature start block) then the rest of the
file will be fumped on the TTY. The best thing to do is type control
0 on the TTY and when the file is realty finished try again. The
other thing that can happen is that the binary module won't see the
start block and thus continue waiting for more input. This is
characterized by the fact that even after a long wWait nothing
happens. 0Of course the problem may be that the POP18 has gone down,
but for most purposes this is unlikely, In this case you either have
to reioad the system or transfer another file over the |ink an hope
the module becomes unstuck.

Once a file is on the PDP-11's disk it is very easy to transfer
it to a DECtape so that it may be loaded using 11UP.

EXAMPLES:
transfering files from disk to DECtape

(1=> disk, B => DECtape)
%B:B:PIP11-BIN«1;0:PIP11-BIN

%/XeTTYIN-BIN, TTYOUT, ACUM11,ATOM

SL238 - A SOFTWARE LABORATORY 48

TTYIN BIN
TTYOUT BIN
ACUM11 BIN
ATOM BIN

Ail the underscored parts are the print out of the POP-11. The
second command is an example of the advanced form of PIPll and makes
" use of the fact that nothing is lost betusen commands.

SL238 - A SOFTWARE LABORATORY 43

APPENDIX D

MODULE LORDER

FUNCTION: pdp-1l abeolute binary loader. loads modules intc cora from
a block orisnted /0 input. for the format of an
absolute binary file san the paper tape softuare
loader manuel.

PARAMETERS: prioritys 788
stack mize= 215
dib size= 274
number of portss 4
moduls sizes 261 words

PORTS: port hame function

a command input port. the second and third data
words are assumed to contain the file name
that the module ix in,

1 repiy port. when the module iz loaded, the address
is raturned in the first data word of the meszage.
tf & srror occured, the reply address is in tha
i/o page or else B. valid errors are:

valus returned error

e checkzun error occured

-1 no room in core for moduie

-2 wodule size troble(too many blocks)
-2 module size trouble(too fen biocks)

&1) othar error are /o0 srrors and the i/o
error nusber is returned. sse dskcom for
these values.

2 i/o output port. commands to the (/0 modulae are
sent out this port.
3 i/o reply port. for message format sese dskcom.
CONNECTIONS:

port medule

e dirman:2

1 dirman:3

2 i/0 module 18

3 170 module i

RSSEMBLY: symhed, dskcom

«

S5L238 - A SOFTWARE LABORATORY 50

MODULE PTPL1

FUNCTION: does character, string and block mode /0 sith the paper
taps punch. mode is deatermined by the message {yps in accordence
with atommg and dskcom. |If block mode {/0 then any output
orisnted command are accepied and a reply is ganerated. an error
occurrs [f a read or read oriented comnand Iz given (such as
read a block, read & directory) or if a directory oriented
command is given (deiete a file).

PARAMETERS: prioritys 77771
stack sizex 215
dib xize= 214
number of portss 2
module size= 74 words

EXTERNRL: paper taps punch data ragister (pph)
paper tape punch status registar {(pps)
paper taps punch semaphore (hap)

PORTS: port name function

L weszage input port. messages are received through
this port. if{ the type is 8, it is assumed to be
a single character type message (the
data in the low byte of the messags data area.
if ths type is positive, & string is assumed with the
first byte of data being the character {(byte) count.
-if the type Is nagative, a block orlented i/o0 is
assumad and a reply is sent out port 1

i reply output port for block oriented i/o

ASSEMBLY: sywhed, dskcom

SL238 - A SOFTWARE LABORATORY 51

MODULE PTRERD

FUNCTION: handle the input irom the paper tape reader. initiates the
ptr for input and walts on the ptr input semaphors. output ix
single byte wods i/0.

PARAHETERS: prioritys 17780
stack xizes 215
dib size= 214
number of portss 1
module sizes 32 words

EXTERNAL: ptr status register (prs)
ptr buffer register (prb)
ptr input semaphors (hsr}

PORTS: port name function
8 inp character output port, character is in the iou

byte of the message

ASSENBLY: symhed

SL238 - A SOFTWARE LABORATORY 52

MODULE PTRI11

FUNCTION: do block mode i/o on the paper taps reader. wWili accept any
biock mode command as given in "dskcom™ but wmill return an
srror If an output is tried, of any sort
i.e. & write, open for output, delets, etc. or i
& directory is requested.

PARAMETERS: prioritys 77771
stack size= 215
dib sizes 274
nuwmber of portss 2
module 5izes 84 uords

EXTERNAL: paper tape status register (prs)
paper tape rsadsr data register (prb)

papesr tape input semaphors (hsr)

PORTS: port name function

8 command input port. wmeasages of the command
format (as given in dskcom) are input through
this port

1 data and command reply output port.

ASSEMBLY: symwhed, dskcom

SL238 - A SOFTWARE LABORATORY 53

MODULE SINK

FUNCTION: the massage bit bucket. all messages recelvad sre deleted,
never to be seem again.

PRRANETERS: prioriiys 777
stack sizas 215
dib sizen 214
number of portss 1
moduls size= 16 words

PORTS: port name function
8 meszage Input port. any format of message
is allouead.

ASSEMBLY: sywhed

SL238 - A SOFTWARE LABORATORY 54

MODULE FLOOR

FUNCTION: to separate two groups of modules on the feasibie Jist. this
module does & busy wait loop. it looks for & message on the
input port by repeated. tests of ampty. when a messags is receivad
a ’p' Is done on tha floor semaphors. when released from
the seamaphore, the input message is sant out and a wait for
& neu message s started.

PRRANETERS: priorilys 488
stack sizas 215
dib size= 274
number of portss 2
module sizes 32 words

EXTERNAL: {loor semaphore (flioor)

PORTS: port name function

8 message input port. the message may be any
format.
1 message putput port. the output message is the

same as the input messags.

ASSENBLY: symwhed

SL238 - A SOFTWARE LABORATORY 55

MODULE LK1IN

FUNCTION: to do i/o mith the link, input only. this module is
used for & "fast response” link, one that requires a
rezponse Within 208 to 888 micro-seconds. it requires
& special interrupt routine that feiches the data
byte into core bafors doing the "v" on the sesaphors.
the semaphors iz used as the deta counter, (i.e. & "v"
is done for avery data byte),

PARRMETERS: prioritys 18887
stack size= 215
dib sizes 214
nurbar of ports= 1
module xizes

EXTERNAL: 1ink 1 input stetus register (Inkaos)
link 1 input semaphore (|lisem)
link i temporary data buffer (Inkbf)
link 1 tmp data buffer size (Inksz)

PORTS: port name function
1 inp data output port. data iz in the low
byte of tha meusage

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 56

MODULE LKZIN

FUNCTION: to do i/0 with tha link, input only. single
character mode. this wodule gets the data from the
link data register and thus requires onty the
semaphore (ses lklin for & difterent kind of
|ink input.

PARRMETERS: prioritys 18887
stack size= 215
dib size= 214
nuwmber of portss 1
module xize=

EXTERNAL: link 2 input status register (Inkbos)
link 2 input data ragister (Inkbob)
link 2 input semaphors (i2isem)

PORTS: port name function
1 inp data output port. data is in the low
byte of the message

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 57

MODULE LK1DUY

FUNCTION: module to do io with the 1ink - output only,

PARRMETERS: prioritys

stack gizes
dih sizes=

humber of porta=

laaesg
215
214
2
88 words

EXTERNAL: link 1 output command register (Inkaos)
tink 1 outpul data regstar (Inkaob)
link 1 output semaphors (Ilosew)

PORTS: port name
8

1

function

data input port. if the type is zero then the

tirst and only the first byte of data is outputed

to the link. If the type is positive then

the first byte of data is assumed to be a count with
the data following. (f the type iz negative then it
the iz assumed that the message is & fije type
command (see dskcom for what these commands are).

if the command involves a directory or

a real file then an error conditlon is returned. an

error condition is returned if the command has to do with
Inttiating a file. otheruise the only command anything is

done With is the writf command which causes & buffer

to be outputed (the buffer address is the second data word

and the first uord of the buffer is a byte count)
file command reply port

RASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 58

MODULE LK20UT

FUNCTION: module to do ioc with the Iink — output only.

PRRANETERS: priority= 18008
stack sfzes 215
dit size= 214
number of portss 2
moduie size= 88 words

EXTERNAL: link 2 output command ragister (inkbos)
1ink 2 output aata resgster (inkbob)
link 2 output semaphors (lZomem)

PORTS: port name function

] data input port. if the type is Zero then the
first and only the first byte of data is outputed
to the 1ink. tf the type is positive then
the firgt byte of data is assumed to be a count wWith
the data following. if the type iz negative then it
the Is assumed that the message is a file type
comnand (see dekcom for what these commands are).

if the command invoives a directory or
a real file then an error condition is returnad. an

error condition is returned if the command has to do With
initiating 8 file, othernisa the only command anything is
gorie With is the writf command which causes a buffer
1o be outputes (the buffer addreus is the second data word
and the first word of tha bufier is a byte count)
1 file command reply port

ASSENBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 58

NODULE MRXEL

FUNCTION: moduie to convert intarnal format messzages into external format

messages. the two types of wessages affected are binary numeric and
radix S8 alphanumeric. it converts thease into ascii characters.
(numeric is convarted into octal) ali

other messages are unaffected. the types are given in the interface
language file “atommg”. leading zercs (on numeric)

are deletad, as are trailing spaces on aiphanumeric.

PARANETERS: prioritye 1881

PORTS:

stack sizes 21%
dib size= 214
number of portss 2
wmoduie sizes 165 words

port name function
] data input port. the input has the reilavent
data in the tirst word for numeric and first two
words for alphanumeric.
1 data output port. the first data byte is a character
count followed immediately by the characters

ASSENBLY: symhed, atommg

SL23@ - A SOFTWARE LABORATORY 66

HODULE CLI

FUNCTION: to implement & command ianguage for the softWare lab., the
teletyps format of the commands is:
foad commana
i [<sib namesll <’ [<unit number> ’1’1l<fiiname>}’>’]
file name dafauits to 3ib name, unit defaults to @
Miitiples ioads are separated by & 's=’
connect conmand
c [«dib name>i{ *,7 <sib name>l i *<' <unit number>
it YIl<tiio namex) ’>' 1 [?:’ <port number !
port nama >] < ’=* | ' | gr»
if the terminator is '=’ then a nau mailbox is gotten for tha
connection and a command string of the same format is
expected after the *=' (note: this command could contain
& nes *=’ or "+’ 50 that the command can go on indefinately).
if the terminator was & ’+«' the existing connaction of the
left side (if amy) is used. again the sama format of string
is gotten for the connection.
the connact command saves alwost all data betwean
compands. this alliows & very strong default
structure {i.e. oniy the pert need usually
be changed). aiso, the internal defaults
are: _
all names default to tha dib name, if is typed
{except the port name)
the fite name def&uits to the sib
name.
dd [< dib list>]
disply items about the dib(s) if no name
is glven, dispiy the list of poszibla dibs
f.@. the names of all the dibs on the system
dib list :
ds [<mib list>)
disply characteristics of the sibs named. if no
name is given, the names of all the sib
on the system sib list are displied.
r
cause the floor to 1ift and the cli to hang Itself up.
these commands will have the described result only if all the
connections shown are made.
examp los:
¢ lexam:lepip,pip<lipipll>:8
¢ maxeliBe:l
thase two commans connact tha 8 th port of the pip
incarnation of the pip moduie to the lst port of iexam
and the 1lst port of pip to the Bth port of maxel.
nots the use of the defaults,

SL238 - A SOFTWARE LABORATORY 61

PARANETERS: priority=

stack gizes
dib size=
number of ports= B

module sizes

7280
216

216

512 words

EXTERNAL: system dib !ist (udibhd)
tloor semaphors (floor)

PORTS: port
8

CONNECTIONS:
port
g

~SNDAEWON -

ASSENMBLY: symhed, atowmg

name function

go command input port. lexemes of the commands
ars accepted in this port. types ars given in
atommg. al) messages are assumed to be in
internal format, i.e. binary numbers, radix 58
character names.

ptr message output port. & number correspending
to a particular condition is outputed tthrough
this port,

ok directory manager request port. requests
for the directory manager are output through this
‘port.

dir dirsctory manager reply port.
floor output message port. when the
floor is to be lifted, a message iz sent out
this port.
floor reasponse port. when itis desired to release
the cli & message is sent to this port. i.e. after
the ¢li sends a message o the floor out port &
it waits for a reply on this port.
disply communication port. a message for dispiying
is sent out this port, the first data werd containe
the second letter (in radix 58) of the command
and the third Word containz the address of ths
dib or sib {if any)
disply reply port. after sending a message out
port & & reply is waited for on port 7

module

lexam:1l, lexam:8=atom-1, atom:B=accum:2

msgmod: B

dirman:d

dirmantl

floor:8

floor:l

disply:@

displysl

SL238 - A SOFTWARE LABORATORY 62

MODULE BUFLIN

FUNCTION: changs butfers into |ines. looks like a i/0 device and connects

to a block /0 device. accepts commands and returns either

With & reply or a seriex of strings followed by a reply. terminators
of atrings are carrage return (possibly followed by a line

feed, which iIs includedin the string), a 1ine feed (possibly
folloned by a carrage return, which is included in the string) or
an altmode, it the buffer becomes full, the string is

sent on and & new string started.

seerrrrundebuggedesssess

PRRRNETERS: priority= 28888

stack size= 217
dib sizes 214
number of ports= &
module size= 228 words

PORTS: port name function
8 command input port. tha commands are those given
for block /0. oniy read=typs, non directory
command gsnerate non-srror returns. |{ the command
is read, a buffer is read and then turned into
strings (type field is positive) where a string
has & byts count in the first data word ad the
charactrs in the foiloning bytes.
1 command reply port. aso tha string output port
2 i/o0 moduls command port. commands for the i/o
module are zet out this port,
3 i/o reply port.
CONNECTIONS:
port module
2 i/o module :8
3 I/0 module 11

ASSEMBLY: symwhed, dskcom

SL238 - A SOFTWARE LABORATORY 63

MODULE PIP1)

FUNCTION: tranter files betussn tuo block orianted i7o devices. sccepis
commands from the tty (through several modules) and
executes those commands. al! commands ghown are those that
wouid be typad on the tty. the command format Is:
i<itemsecitem list>
<item list> 1= tom | Item *,' item Iist>
<ttem> 1= < specific ! spacific item> _
mepecific> t:= <« symporthnumber | unitnumbar | filenaeme | flleextension |
sWitch >
symporthukber :t= symbolic port number *;’
unitnumber ::= number of device unit '3’
<filename> ::= fila name in directory
<filesxtension> ti= ’~? extension
<gHtch> 1:2 P/0 < PP | x| 2z | g s
the suWitchs have the follouing result (all switches must be
on the lsft side to have any sffect)
} - list the directory (ies) of the input devices (right side)
X - use the sames file name as given for input
Z - zearo the dirsctory of the output device
d ~ delate the files given as input
& typical command looks |ike:
B;1:/xe13B1ttyin-bin, ttyout, accum, atom, lexam,ci|
(the defaults are the pravious object used in that
position - possibly from the previcus command |ine)
/1eB31:,2:,1;8:,11
/deB; 8: tmp. bak, tmpl, tmp2
1iizinput.plleB;iisymhad.pll,atommg,cti, tait

PARRMETERS: prioritys
stack slzea 218
dib size= 215
number of portss 12
module sizes 688 word

SL230 - A SOFTWARE LABORATORY 64

PORTS: port name function
L] ‘command input port. this port Is used
to receiva all commands. the format of ths messages
is internal atom as given In atommg.
1 command response port, tha response of the commands
is output to this port. normaaliy just a 's* is
output but when a dirsctory is |isted, it goes through

this port.
2,3 _symbolic port 8. commands for the 8th device are sent
through thess 2 ports, (see dskcom for formats)
4,5 symbolic port 1
8,7 symbolic port 2
ig,11 symbolic port 3
12,13 symbolic port &
14,15 symbolic port &
CONNECTIONS:
port module
8 laxam:1, lexam:B to atom:l, atom:8 to sccumi2
1 maxei: @
2,3 any /o moduts

4-15 any i/o moduies

ASSEMBLY: sywhed, atommg, dskcom

SL238 - A SOFTWARE LABORATORY 65

MODULE LINBUF

FUNCTION: accumuiate single characters into buffers. this module
looks |ike an input i/o0 module (buffer side) and will
convert a singls character |70 module into & buffer
one. the terminator on the input iz the control z character,
(826 ascii decmal)

PRRANETERS: priority= 288080
stack size= 215
dib size= 214
number of ports= 3
module sizes= 178 words

PORTS: port name function
8 i/0 command input port. a block oriented /0 command
iz accept through this port. for formats
see dzkcom.
ifo reply port
2 character Input port. character Is the first
byte in the data part of the meszage

 od

ASSEMBLY: symhad, dskcom

SL238 - A SOFTWARE LABORATORY 66

NODULE MSGNMOD

FUNCTION: take & humeric input and convert It into a message.
the mmessages srs (currentiy) a "." and a *?" (in mingls
character formsat massages.

PRRANETERS: priority= 477
stack size= 215
dib sizes 214
number of portss 2
moduls nizes 64 words

PORTS: port name function

-] command Input port. the first word of the message
Is used to determine which of the messages to
output.

1 messags output port. the measages are in the
single character format (chracter in the first data
byte).

CONNECTIONS
port modules
] elisl
1 tiyout: 8

RSSENBLY: sywhad

SL238 - A SOFTWARE LABORATORY 67

HODULE ACunie

FUNCTION: accumulats characters until a full lins is in the
buffer and then output a string. a |ine is detineated by 1
of 6 things, (1) a carrage return is the input character (possibly
followad by & line fesd, which would aiso ba Included Iin the
line), (2) a line teed iz the input character (poasibly
foltowed by a carrage return, which would atso be includaed in
tha line), (3) an attmode, (4) an asterisk (“2"), (5) a peried
".") or (B) & full buffer.

PARRMETERS: prioritys 77770
stack mize= 217
dib sizes 2%
number of portg= 2
wmodule sizes 188 words

PORTS: port name function

] inp character input port. messages with characters in
low data byte ars received through this
port

1 out string output port. the accumulated

strings are sent out this port. a byte count is
In the firstdata byte kith the
characters following.

ASSEMBLY: sywhed

SL238 - A SOFTWARE LABORATORY 68

NODULE ACUMAL

FUNCTION: accumulate characters into strings, echoing the individual
characters. & string is comprised of characters followed
by a terminator (line feed, carrage return or aitmode). if the
terminator is & line fesd, & carrage return is also schoed
if a altmode, then a doliar sign ("$"} is &lso echoed
or It a carrage return then a lina tesd is also echoed
if an attempt iz made to input more than 88 characters
in a line, 81l characters which would make the count
oxcesd 88 are ignored and the bell on the tty is rung.
in addition, accum inplements the speclal characters
control 4, rubout, control ¢ and contro! o. contrel u
causes the entire current line to be ignored and accum
to sffectively rostart with an empty buifer. rubout causes
the previous character to ba lost, after echoing it bstussn siashes
(the first slash iz typed when the first rubout
is detected, and the last slash isn’t typed until something
other than & rubout is typed. ex. "acdeedchcde"
the buffer now containsg "abeds"). control
¢ causes a "v" to be dons on the {lioor semaphors. this
is used to release the floor when it is desired to stop
the user modules from running.
conrol o causes a bit to be set s0 that the ttyout module
stops printing. this bit is cieared by accum
whenever a character is received.
Iin addition, there are contirol characters which determine
the output port. control a sends the accumlated |ines
out the first output port, controi b the second, and a
conirel d causes an altmode tc be sent out the third
output port

PRARANMETERS: priority= 18287
stack sizex 217
dib size= 214
nuwber of ports= 3
moduie sizes 280 words

EXTERNAL: floor semaphors (floor)
tty status word (itysis)

SL238 - A SOFTWARE LABORATORY 69

PORTS: port name function

8 character input port, data is lou byte of massage.
1 character scho port, format is the same as port 0.
2 first string output port, first byte of message
i® charactar count, characters are in the gconsecutive
bytes
3 sscond string output port, format same as port 2
& third output port. only an altmode can be sent

out this port. the format of the message iz the
same as thoss of ports 2 and 3

CONNECTIONS:
port modu | es
e ttyin
1 ttyout

ASSEMBLY: symhed

51,238 - A SOFTWARE LABORATORY 7@

MODULE RCCUR

FUNCTION: accumulats characters into strings, echoing the individual
characters. a string is comprised of characters fotlowed
by a terminator (line feed, carrage return or altimods). |f the
terminator is a line feed, & carrage return is aizo echoed
if a altmode, then a dollar sign ("$") is also achoed
or if a carrage return then a tine feed is also echoed
i an attempt is made to input mors than 88 characters
in a tine, all characters which would make the count
sxcead 88 are ignored and the bell on the tty s rung,
In addition, accum inplementis the special characters
contre! u, rubout, control ¢ and control o. control u
causes the sntire current lins to be ignored and accum
to effectivety restart with an empty buffear. rubout causes
the previous character to be lost, atter achoing it hetwesn slashes
(the first slash Is typed when the first rubout
iz detected, and ths last slash isn't typed until something
other than a rubout is typed. ex. "acdesdcbcde”
the buffer non contains "abcde®). contret
c causes a4 "v" to be done on the ficor semaphors. this
iz used to release the floor shen {t is desired to stop
the user modules from running.
conro! o causes & bit to be set mo that the ttyout module
stops printing. this bit is cleared by accum
whenever & character is received.

PARAMETERS: prioritys 18887
stack size= 217
dib slizen 214
nuwber of ports= 3
module size= 288 words

EXTERNAL: floor semaphors (flocr)
tiy status register (ttysts)

PORTS: port name function

8 characier input port, data is low byte of message
1 character scho port, format is same as port 8
2 string output port, first byte of message
is character count, characters are in ths consecutive
bytes
CONNECTIONS:
port modu les
] ttyin
i ttyout

ASSENBLY: symhed

SL238 - A SOFTWARE LABORATORY 71

HODULE BINACH

FUNCTION: accumulate ind
absolute binary
checksum of the
module acts just

puts the bytes In
buffars instead

PARANETERS: prioritys
stack gizes
dib siza=
numbar of portss
medule sizes

PORTS: port name
e

ASSENBLY: symhed, dskcom

ividual binary characters into an

fite (block orisnted ¢/0). checks the

fite and elimentates unecessary characters. this
like a byte oriented lcader that

to

of core {(rataining the control bytes).

2e008
215
214

3

Words

function

command input port. the input from this port is

4 block orisnted i/0 command meszage. the command
gensrates & return {(aluays) which is & srror return
if the command is either directory orisnted or
output orisnted. {(commands are gven irn dskcom).
command reply port. replies to the block oriented
commands are sent out this port.

binary byte Input port. messages recelved through
this port are assumed to contain ene binary byte
in the first byte of the data area.

SL238 - A SOFTWARE LABORATORY 72

HODULE ACUNE

FUNCTION: accumutate charactars unti! a full line Is in the
buffer and then output a string. a line iz delineated by 1
of 4 things, (1) a carrage return (s the Input character (possibly
followed by a tine fead, which sould aiso ba included in the
linad, (2) & line feed is the input character (possibly
followed by a carrage return, which would aiso be Inctuded in
the 1ine), (3) an altmods or (&) & full buffer.

PARRNETERS: prioritys 77778
stack sizes 217
dib size= 214
number of ports= 2
wmodule sizes 188 Hords

PORTS: port name function

[] inp character input port. messages Wlth charscters In
low data byte ars received through this
port

1 out string output port. the accumuiated

strings are sent out this port. 2 byte count i
in the firstdate byte with ths
characters folloning.

ASSENBLY: sywhed

SL238 - A SOFTWARE LABORATORY 73

HODULE SPLIT

FUNCTION: take an input message and produce two copies of it.

PRRANETERS: prioritys 777

stack sizes 215
dib size= 214
number of portss 3
module sizex 28 words

PORTS: port name function

] massage input port. input is accepted through
this port.

1 first massage output port. an exact copy of the
input message is sant out this port

2 second message output port. and exact copy of the

input message is sent out this port

RSSEMBLY: sywhed

SL23@ - A SOFTWARE LABORATORY 74

HODULE DIRMAN

FUNCTION: to manage the sib list. this wodule handies all requests
to find, delets, or add modules to the running system.

PARANETERS: prioritys 788
stack size= 215
dib size= 214
number of portss &
module size= 688 words
PORTS: port name function
8 req directory request port. & message is recelved on
this port that telis the directory manager shat to do
valid request codes are
8 - lodnxt / toad next sib on taps into core and link it onto
siblist, and return iis adress. If the sib
i alreaady on the giblist the adr of the old
vergion will be returned
1 - fndsib / search list for specified sib and return Its adress
2 - fndlod / seadrch siblist for specified sibb and return its
address, if not found gearch tape for specified slh,
load tt, link it on the siblist and return
its adress.
'3 - delsib / delete specifiad sib from siblist
4 - delall / delete all unused sibs from siblist
1 rep reply port. the reply message normally Just containe
the address of the required sib, or Is positive.
if & error occurs the return code corresponds
to an address in the i/o pagse.
valid werror codes are:
8 checksum arror
=1 no wore corae
-¢ too many blocks in taps sib
~3 not enough biocks in tape =ib
-4 sib not tound
-5 sib in use
-6 invalid request
2 lod {oadar communication port. messsas just containa
the filename of the moduie required.
3 ent loader repty port. tirst word is B if an error, otheruise
it contains the address of the loaded moduis.
CONNECTIONS:
port moduie
2 toader: B
3 loader: 1

fASSEMBLY: sywhed

SL238 - A SOFTWARE LABORATORY 75

MODULE FILHAN

FUNCTION: this module handies refsrences to files. |t

works in terms o
batwesn tha user

f directories and forms theintarface
and tha directory davice controler.

an atempt has besn made to keep it device indepsndent

and along this |
tha sizes of the

ine it makes no assumptions about
directories or the positioning

of the eniriss in the directory. rather this Information

comas from the |

ndividual device handler.

PRARAMETERS: prioritys 777

stack sizex 215
dib siza= 214
number of portss 4§
module sizew 378
PORTS: port name function
8 the format of the user Input is (specifying only
the data)
Tdevice | command + the command for the file handier
Tix ke t and the device number
T data words T any requirad data
T * 1
the required data varies with the command.
for the dirsctory command a block number is nesded
that talls which directory block is wanted
for the open and enter command & file name is
needed,and for the write command a buffer
adddress and gize is needed
1 the user gets back the address of the filled buffar
sven if its his, if the transfer was sucessfui
end a B If an error occured With the next word
talling the source cf error. ’
2 device controler output port. the format of thae output
varies With the command, for more Information see
4 device controler {(dtacon)
3 device controler reply port.
CONNECTIONS:
port module : port number
] user module
1 ussr module
2 devcon:8 (device controter)
3 deveon:l (device controler}

ASSENMBLY: sywhed, dskcom

SL238 - A SOFTWARE LABORATORY 76

HODULE DTACON

FUNCTION: dectaps device controler. it takes input from the fils handier
in terms of a directory entry. the various commands cause
this module to read the dirsctory, write It , update
It, read or write a block in a file, automatically
kesping track of space on the dectape.

PARRNETERS: prioritys 777
stack size= 215
dib sizes= 2T4
number of portss 2
moduls sizes 568 words

PORTS: port name function
8 -command input port. the format of the command varlous

With the command. the simplest is the request for a
diractory block. this command message has the format
of: Tox 1)

T unit T comd 1T

t * 1)

1 block number *t

Tazesenerseseeist
tha othar formats and the replys are given in the
interface language flis - “dskcom”

1 reply
2 dectape handier command ouput port. the message that
is sent out this port contains commands for the device
handlsr. ses "dtahan" for the format of tha messages.
3 device handler reply port
CONNECTIONS:
port module : port number
] tilhan:2
1 filhan:3
2 dtahan:B
3 dtahan:1

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 77

NODULE DTRHAN

FUNCTION: module to handle the dirsct /0 with a dectaps.
dossn’t do any work on the data received, justs put it in
the dectape ragisters and then waits on the dectape |/o
semaphore. if an error occurs tha operation wifl be repeated
before gliving up.

PARAMETERS: priority= 18887
stack sizas 215
dib xize= 214
number of portsx 2
module size= 188 words

EXTERNAL: dectape connamd register (dtacmd)
dectape samaphore (decsem)

PORTS: port name tunction
8 command input port.the format of the
message in iss

EXREEEEEELESRE LR S EREK
T header L
T of T
T mazzage t
/ /
/ /
T FEFEEEREREESERT

1 dev num | command T
Tesxersersesereseraet 8 one word sddress
T block number 1

terrrrererrrsseeeest

1 wanory address t Where in core it goes
+ 1)

T word count T negative of number of
+ 8 T words to transter

the commands ara: l=> read, 2a=> urite
&l} othesrs are errors

1 reply port. when finished, a mssage is repiyed
that indicates the status of the requestsd oparation
"if the operation suceeded then the comsand byte is
set to zero, otherdise if an arror the byte is
negative and the sscond data word has the following
medn ing:

SL238 - A SOFTWARE LABORATORY 78

kit meaning
15 srror
14 parity error
13 mark track error
12 device iz urite locked
11 salect error
18 klock miss (a soft error)
9 data miss{bus was busy, soft error)
8 non-sxistant memory
CONNECTIONS:
port module
8 dtacon:2
1 dtacon:3

ASSENBLY: sywhed, dskcom

SL238 - A SOFTWARE LABORATORY 79

MODULE DSKHRN

FUNCTION: module to handle the direct /0 with & disk
dossn’t do any work on the dats received, justs put it in
the disk registers and then ualts on the disk /0
semaphore. if an error oeccurs the operation uill be repeated
befors giving up.

PARARMETERS: prioritys 1887
stack sizes 215
dib sizes 214
number of portss 2
module sizes 185 words

EXTERNAL: disk semaphors (dsksem)
PORTS: port name functlion

L] command input port.ths format of the
message in is:

BEREE
T header T
T of t
T mezsage t
/ /
/ /
Tz T

T dev num | command *

Tarszxsesensrsisrrsst a one word address

1t block number t

LE S o2 2 Y

T memory address T where in core it goes
Tossriussrsnsnsinsnst

T word count 1 negative of number of

ry

! *sxxt words to transfer

the commands are: ls> read, 2=> urite
all others are errors

to allon word accessing of the disk an altarnate form of the
massags Iz allowed. tha difference is that
the commands are negative 1-3 with 3 bing the

urlte check.ths atternate form of the message
ins

SL23@ - A SOFTWARE LABORATCRY 80

EEEREREERREERRRRE ARG N

t header t

T of t

1t massage T

/ /

/ /

Trxrerxxressiseereet

T dev num | command *

Tangpnk 1 a ons word address

1 disk address t describing the location
tesrsraesrbrestntist on disk deslired

t dsk ofiset 1 ofizseat to desired word
+ T

T memory address 1 whars in cors |t goes
T t

1 word count * negative of number of
T 1t words to transfer

tha format of the internal disk address is

FEEEEEEE %
1 1 ! ! !
FERE
device track number block number
nuttber 8- 177 8-7
B-7
1 reply port. when finishad a message is replyed

that indicates the status of the requasted operation
if the operation suceeded then thes command byte is
set to zero, otherwise if an error the byte is
negative and the second data word has the foliowing

medn ing!
bit meaning
15 error
14 parity srror
13 mark track error
12 device is write locked
i1 sslect srror
18 block miss (a soft error)
9 data miss(bus was busy, soft srror)
8 non-existant memory
CONNECTIONS:
port nodu les
8 dskeons2 (or diacon:2)
1 dskconi13 (or dtacon:3)

ASSENBLY: symhad, dskcom

SL238 - A SOFTWARE LABORATORY 81

MODULE BISPLY

FUNCTION: display relavent Information about sibs and

dibs. for =ibs this includes the names of ali
incarnations and the port names. for dibs the
information is the parent sib name and the number
and name of all other dibs connected to sach port

PARAHETERS: priority= 18088

stack slze= 215
dib siza= 214
numbar of ports= 3
moduie size= 388 words

PORTS: port name function

] comsand input port. the first data word is
assumed to be & radix 58 command word.
if the second character of the command
is & "d" then the disptaying is done for
a dib, otheruise for a sib. tha second
word of the message is assused to be the
addrress of the object to be dispiayed. if
the address iz zero than the
names of al) the possible objects is displaed.
(i.e. if the command uas for dibs, then ali
the dib names are dispiayed)

1 reply port., when finished processing the
command a reply is returned via this port.
the format has no meaning.

2 display output port. atl the informatlion
Is oututed to this port for ater processing.
the format Is intsrnal, t.e. radix 58 names, etc.

CONNECTIONS:
port moduie

] cli

1 clli

2 maxe |

ASSEMBLY: symhed, atommg

SL238 - A SOFTWARE LABORATORY 82

NODULE ATOM

FUNCTION: produce atoms from strings. an Atom is defined as:
<atom>:1= <id>l<numsric>l«<spacialcharacter>!<braakcharacter>
<id»i1= <lotter> | <id> («<latter>!<number>)
<latter>:inabedefghi jK Imnopgrs tuvixyz
<nhumber>:t=1234567898
<numer lg> 1 z<number> t cnumar | c><nunber>
<braakcharacters>iss <cr>l<i$>l<aitmodesl<last character>
<speciaicharacter>: iacotheruise>

PARRNETERS: prioritys 777
stack sizes= 215
dib size= 214
number of ports=s 2
module size= 208

PORTS: port name function

8 string input port. low data byte is a character
count With the characters in the consecutinve bytes
1 atom output port. for numeric, id or breakcharacter

the lon byte is & character count With characters in
consecutive bytes. for special characters tha low
data byte is the character.

CONNECTIONS:

port moduies
8 accumuiation moduies (accum,acumi®,acumil,acums, !inbuf)

ASSEMBLY: sywhued, atommg

SL238 - A SOFTWARE LABORATORY 83

MODULE LEXAM

FUNCTION: convert atoms into internal format. internal format
dapends on the igpo of the atom. for special characters and
break characters nothing Is done. alphanumeric are converted
Inte radix 58 and numeric atoms (assumed to be in octal)
are convaried into binary numbers

PARAMETERS: prioritys
stack sizes 215
dib size= 2%4
number of portss 2
wmodule mizes

PORTS: port name function

8 atowm input port.
i texems output port
CONNECTIONS:
port module
8 atom

ASSEMBLY: symhed, atommg

SL238 - A SOFTWARE LABDRATORY 84

MODULE TYVIN

FUNCTION: handie the input from the teletyps. initiates the tty for Iinput
and waits on the tty Input semaphore.

PARAMETERS: priority= 17788
stack sizes 215
dib size= 214
number of ports= 1
module slzes 32 vords

EXTERNAL: tty status register (tBks) -
tty buffer register (18kb}
1ty input semaphore (ttyrd)

PORTS: port name function
B inp charactar output port. character is In the lom
byte of the messags

ASSENBLY: sywhed

SL238 - A SOFTWARE LABORATORY 85

NODULE

TFYOUT

FUNCTION: handie output to the telstyps. similates the

necessory functions for form feed (8 line feeds), vertical
tab (4 line feeds), horizontal tab (tab stops every 8
spaces) and control o (stop printing untit control o bit is
clearsd.

PRRANETERS: priority= 18288

stack size= 215
dib size= 214
number of portss 2
module sizers 158 words

EXTERNAL: tty status register (tBps)

PORTS1

tty output buffer register (tBpb)
tty output samaphore (tiywrt)
tty status word (1tysts)

port name function
8 input port. format iz alther a single character, string,
of buffer. if single character, then the character Iz
the low data byte. i(f a string, then the low data
byte is & character count with the characters in the
consscutinve bytes or if a butfer then the tty output

looks like any other output only i/o device {(see

the file dskcom for particulars)
1 reply port if input was a buffer mods meszage

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 86

MODULE OUTBIN

FUNCTION: to help calculate ths radix 58 values of names by changing
tthe type of radix58 messages to numeric (binary} and
sending on two binary numbers (one for each thres characters.

PARAMETERS: priority=

stack sizes 218
dib size= 214
nurbar of poris= 2
module size= words

PORTS: port name function
8 mesage input port. only type of
ainbS8 are affected by passing through
this moduie. (as given in atommg)

1 messags output port
CONNECTIONS:
port module
1 maxei: B

ASSEMBLY: symhed, atommg

SLZ238 - A SOFTWARE LABORATORY 87

(1]
(21
[3]

[4]

(5]
(>}
(71

{8]

(3]

(14l
(11
(121
[131]

[14]

[15]

Bibliograpy

Clark, W., "Macromodular Computer Systems," SJCC 67.

Bell, G., et al., "The Design, Description and Use of DEC
Register Transfer Moduies (RTM)," Computer Science Department
Report, Carnegie-Melion University, Oct. 1971.

Krutar, R., private communication related to his Ph.d. thesis,
Carnegie-Mellon University, 13971.

Jones, A. and Habermann, A. N., "Interprocess Communication
Mechanism, " Internal Memo, Computer Science Department,
Carnegie-Melion University, 1978

Wulf, et al., "Bliss Reference Manual," Computer Science
Department, Carnegie-Mellon University, revised April, 1971.

Oi jkstra, E., "Cooperating Sequential Processes," Technological
University, Eindhoven, 1965.

Wirth, N., "Program Development by Stepwise Refinement," CACHM,
Vol. 14, No. 4, (Aprii, 1871).

Beli, et. al., "C.mmp: The CMU Muitiminiprocessor Computer,"
UDepartment of Computer Science, Carnegie-Mellon University,
August 1971.

Denis, J. B., and Van Horn, E.C., “"Programming Sematics for
Mul tiprogrammed Computations,” CACM 9, 3 (March 1966), 143-155.

Dijkstra, E.W., "Cooperating Sequential Processes," Programming
Languages, (F. Genuys, ed.}, Academic Press (19688), 43-112.

Oijkstra, E.W,, "The Structure of THE MuitiprogramminG System,"
CACM 11, S (May 1968), 341-346.

Hansen, P.B., {ed.), RC4088 Software Multiprogramming System,

.AlSuRegnecentralen,.ApnilUISSS,uFalkonen”Allenl,-Copenhagen F.

Denmark.

Lampson, B.W., "Dynamic Protection Structures," Proc. AFIPS
Conf. 35 (1969) FJCC.

Jones, A.K., Private Communication, Carnegie-Mel lon University,
1971.

Parnas, 0.L., "Information Distribution Aspects of Oesign
Methodology," Special Report, Department of Computer Science,
Carnegie-Mel lon University)February 1971)

SL238 - A SOFTWARE LABORATORY 88

[i6]

[17]

(18]

{19]

(201

Parnas, D.L., "A Technigue for Softuare Module Specification
with Examples," Special Report, Department of Computer Science,
Carnegie-Mellon University (March 1871}

Parnas, D.L., "On the Criteria to be Used in Decomposing
Systemsinto Modules," Special Report, CMU-CS-71-181, Oepartment
of Computer Science, Carnegie-Mellon University (August 1971).

Di jkstra, E., "A Constructive Approach to the Problem of Program
Correctness,”" BIT 8 (1968).

Wulf, et.al., "Bliss/ll Reference Manual," Department of
Computer Science, Carnegie-Mellon University, 1971.

Hansen, P.B., "Short-term Scheduling in Multiprogramming
Systems,” Third Symposium on Operating Systems Principles,
October 1971.

Security Classification

1. ORIGINATING ACTIVITY (Corporate authot,

DOCUMENT CONTROL DATA-RA&D

(Security clarsilication of title, body of abatract and indexing annotation muat be entered when the overall report is classitied)

Computer Science Departmen
Carnegie-Mellon University
Pittsburgh, Pa. 15213

3. RERPORT TITLE

SL230 - A SOFIWARE LABORATORY:

INTERMEDIATE REPORT

Scientific Interim

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

W. Corwin, W, Wulf

8. REPORY DATE

&. AUTHOR(S) (Firat name, middle initial, last nams)

May, 1972

8a. CONTRACYT OR GRANT NO.

2a, REPORT SECURITY CLASSIFICATION
UNCLASSIFIED
ab. GROUP
7a. TOTAL NO. OF PAGES 75, NO. OF REPS
89 20

F44620-70-C-0107

b, PROJECT NO.

9769
¢ 61102F

*“ 681304

10. DISTRIBUYTION STATEMENT

48, ORIGINATOR'S REPORT NUMBER({S)

96, OTHER REPORT NOI(S} {Any other numbers that may bs asalgned
this report)

11. SUPPLEMENTARY NOTES

Approved for public release; distribution unlimited.

TECH OTHER

13. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

Alr Force Office of Scientific Rsch (MM)
1400 Wilson Blvd,

Arlington, Va, 22209

This report describes the resources and data structures of SL230 (Software
Laboratory 230) and the designing of SL230 modules and systems,

multiprocess, operating system used to create an enviroument suitable for the con-
struction of experimental programming systems for educational and research uses.

SL230 1s a simple,

DD "3"..1473

Security Classification

