
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SL238 - A SOFTWARE LABORATORY

INTERMEDIATE REPORT

U. Corn in U. Uulf

flay 1972

Carneg i e-Me11 on Un j vers i ty

Pittsburgh, Pennsylvania

IKI n*T- 8x 8 " P P o r ; t e d b u t h e Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-78-C-B1B7) and is
mon.tored by the Air Force Office of Scientific Research.

SL238 - A SOFTWARE LABORATORY 2

ABSTRACT

This report describes the resources and data structures of SL230

(Software Laboratory 230) and the designing of SL230 modules and

systems. SL230 is a simple, multiprocess, operating system used to

create an environment suitable for the construction of experimental

programming systems for educational and research uses.

SL238 - A SOFTWARE LABORATORY 3

INTRODUCTION

The similarity between many of the components of various systems

programs has often been noted but seldom exploited. Lexical

analyzers and syntax analyzers, for example, occur in all compilers

and to some extent in assemblers, editors, command interpreters, etc.

Yet they are generally re-written for each such system

(translator-writing systems, or compiler-compilers, have been the one

exception to this practice). This situation is especially annoying

to two groups of people to whom the present report is primarily

aimed: (1) the researcher who would like to quickly fabricate a

system in order to experiment with a single aspect of it in depth and

(2) the instructor who would like to assign programming problems on

some aspect of systems programming but which only make sense in the

context of a complete system. To illustrate this point, consider the

researcher (or student) who would like to (is assigned to)

investigate various compiler optimization strategies on the

tree-representation of a program. To do this, lexical analysis,

symbol table and space management, parser, tree-generation, and I/O

functions must first be written. None of these is essential to the

project at hand, and collectively they may be sufficiently

effort-consuming to make the project impractical.

This report describes the intermediate results of a project to

design a software laboratory (SL230) suitable for the study of

software systems.

SL230 - A SOFTWARE LABORATORY 4

The Physical Model

M
n

FIGURE I

SL238 - A SOFTWARE LABORATORY 5

THE PHILOSOPHY

The objective of SL238 is to create an environment within which

researchers and students may experiment with the construction of

software systems. The system accomplishes this by providing a large

number of functional "modules" together with a mechanism for flexibly

interconnecting them in various ways. The philosophy of the system

is a software analog of the hardware "macro-modules" of Clark [13 and

"register-transfer-modules" of Bell 121. Much of the philosophy for

the approach described below is due to Krutar [31; key ideas were

borrowed from Habermann and Jones [4] and from many discussions with

Per Br inch Hansen.

The philosophy of the SL238 environment results from

consequences of a particular physical model. The concepts implied by

that model are essential for the user to understand that environment.

That model is:

A (user) system is constructed from a number of

component modules. The module is a functional unit

receiving signals (data) from one of a number of wires,

cables or ports, performing some operations and (possibly)

generating output signals on other cables (or ports). The

cables connected to a module are fitted with standard

male/female connectors so that the output of any module may

be directed to the input of any other module by an

appropriate interconnection of their cables. Rather than

direct interconnection, a special "patch panel", similar to

SL230 - A SOFTWARE LABORATORY 6

an old-fashioned telephone switchboard, is provided to

facilitate the interconnections. Figure I illustrates this

mode I.

In this model modules do not know to whom or to what they are

connected. Internal names are used to reference ports for receiving

and sending information and the actual supplier or receiver is

specified externally by the particular cabling pattern established by

the user. This fact, coupled with the "standard connector"

assumption, permits the substitution of a module for a functionally

equivalent one (or network of ones) at any time.

The use of the system is best illustrated by a simple example.

Suppose one wished to construct a program to read text from a

paper-tape reader and print it on the teletype. Modules exist for

reading (characters) from the paper tape reader (PTREAD) and writing

(characters) on the teletype (TTYOUT) ™ they can be interconnected

as follows:

PTREAD

Suppressing the patch panel helps to clarify the diagram in more

complex examples, this configuration may be drawn simply as:

PTREAD TTYOUT PTREAD TTYOUT

Now suppose one would like to add pagination of the output. Further,

SL238 - A SOFTWARE LABORATORY 7

suppose there is a module (PAGER) which accepts input and passes it

along to its output, but also looks at each data item for a special

end-of-line (EOL) character and. after the nth occurance, inserts a

special upspace-the-paper (form-feed) character. If the original

connection is broken and reconnected as shown below, the desired

pagination will result.

PTREAD PAGER TTYOUT PTREAD PAGER TTYOUT

Suppose further that it is desired to get a character frequency

distribution in the text while the printing is going on. If a module

(CHRFQR) to do this exists, the following configuration might be

created:

CHRFRQ

PTREAD SPLIT PAGER TTYOUT PTREAD SPLIT PAGER TTYOUT

In this configuration, 'SPLIT* is a simple module which, when it

receives input, replicates that same input on each of two output

ports. Much more complicated configurations could be built in this

manner but this example has served to illustrate the general

philosophy.

Of course, software modules are not physical objects; they do

not have tangible cables dangling out of them. The patchboard does

not have a physical existence either. The acts of connection and

SL238 - A SOFTWARE LABORATORY 8

reconnect ion are not accomplished by physical acts but rather by

commands typed on a terminal. The precise syntax of these commands

is defined in the command language interpreter module (CLI) and may

change as more attention is paid to the human engineering aspects of

the system (which is considered to be a crucial aspect of the whole

project). However, the structure of these commands is intended to

reinforce the conceptual model presented above; thus the commands

mimic the things one would expect to do to modules physically wired

together — for example: connections may be made or broken at any

time, the complete "wiring list" may be displayed or individual wires

traced, the signals flowing along a particular cable may be

monitored, etc.

SL238 - A SOFTWARE LABORATORY 9

IMPLEMENTATION AND RESOURCES

The system model presented in the previous section might be

implemented in any one of a number of ways — each module could have

a subroutine or co-routine structure, for example. It was decided to

conetruct each module as an asynchronous (sequential) process. The

cabling and patchboard are implemented as a "mailbox11 message

buffering system. The system is implemented in two pieces: (1) a

small "kernel" which includes space management, process management,

and message hand I ing primi t ives, and (2) the modules.

The command language (CD for using SL238 is implemented as a

set of modules using the mechanisms provided by the kernel. It is in

no way different from, or more privileged than modules assembled by

the user. This construction philosophy permits the CL to be easily

modified, permits different versions of the CL for different ueers,

and permits the CL to be easily adapted to various configurations and

needs. Finally, the CL, being constructed from modules itself, forms

an advanced example of the use of the system and is discussed in a

later section on current systems and modules.

THE KERNEL

The kernel consists of a small number of data structures,

accessors, and routines for manipulating the structures. The data

structures used in the kernel are instances of a smaller number of

"classes" of structures (objects, lists of objects, semaphores, and

vectors).

SL238 - A SOFTWARE LABORATORY 18

The routines in the kernel are constructed such that each

performs an operation appropriate to a class of structures on any

instances of a member of that class. This operation is never

performed by any other routine. This is a working definition of the

term "clean11 used earlier. It should be noted that this definition

of clean conflicts with similar ones proposed elsewhere [71 in that

it implies a strong functional interdependency. It was chosen in

favor of a data semantic interdependency because of the clarity and

modifiability it affords.

The kernel has been purposely kept small (the entire kernel

consists of less than 288 PDP-11 instructions) allowing (1) the

design and implementation to be iterated. (2) the kernel itself to be

an object of study in a systems programming course, and (3) a usable

eubeet of the total system to be used on a minimal (4K) PDP-11

configuration.

The following is an English description of the data structures

and their associated manipulative routine supplied by the kernel.

(1) objects

An "object" is a data structure which is composed of 2tN (1 £ N

£ IB) words, two of which contain a link field (objects are

frequently chained together on lists), and a priority field (when on

a M e t , objects are always in priority order).

SL238 - A SOFTWARE LABORATORY 11

t

2tSIZE WORDS

I
All system objects have system defined names associated with the

offsets from the base address of the object. These names are always

used when accessing the areas of an object and are given beside the

locations in the diagrams of the objects (each block in a diagram

represents one word).

The routines for manipulating objects are:

a) get (n) allocate memory for an object of size 2t"n"
and return i ts address.

b) release (a,n) deallocate the space for an object whose
address is "a" and size is n. The value of
"release" is undefined.

c) copyold (a.n.b) copy the contents of an object whose base
address is "a" and size is 2t"n" words into
an object whose base address is "b"; exactly
2t"n" words will be copied. Return the base
address of "b".

create an object of size 2t"n" and make its
contents identical to those of "a"; return
the address of the new copy.

link the object whose base address is "a" on
to the list whose header address is "h". The
object will be linked into the proper
priority position on the list. Return the
address of "a".

remove the first object, that is the highest
priority one. from the list whose header
address is "h" and return the address of this
object.

g) ewap (hl,h2) delink the first object of the "hi" chain and
link it onto the "h2" chain; return the

LINK

PRIORITY

d) copy (a,n)

e) link (a,h)

f) del ink (h)

SL238 - A SOFTWARE LABORATORY 12

address of the swapped object.

(2) The "feasible" list, semaphores, and synchronization

A particular class of objects are called "DIB's", Dynamic

Information Blocks. DIB is the name given to what has been called a

"process description" in other systems, and contains relevent state

information for a process. The "feasible" list is a chain of all the

DIB's for processes which are ready to run. All other processes are

"pending on a semaphore" and these DIB's are chained on a list

associated with that particular semaphore. The reader is assumed to

be familiar with Dijkstra's P and V primitives and their use for

process synchronization [61.

SEflHDR

SEMCNT

SEMAPHORE FEASIBLE HEADER

HEADER

COUNT

HEADER

1
LINK

PRIORITY

LINK

PRIORITY

SL238 - A SOFTWARE LABORATORY 13

DIBLNK

DIBPRO

DIBNME

DIBSP

DIBSIB

DIBULK

OIBDLK

DIBPRT

DIB

LINK

PRIORITY

NAME

STACK REGISTER

POINTER TO MODULE

LINK FOR USER DIB LIST

LINK FOR MODULE DIBLIST

— PORT INFORMATION —

The routines which manipulate semaphores and the feasible list are:

sav8tart

P (sem)

V (sem)

saves the context of the current process on i ts
stack, saves the stack pointer of the current
process in its DIB, and initiates the process whose
DIB is at the top of the feasible list by
retrieving its stack pointer and restoring its
context from the stack.

Dijkstra's synchronization primitives.

(3) Messages, Mailboxes, Ports, and Communicati on

Processes communicate by sending and receiving objects called

"messages". Modules do not send messages directly to other modules

but rather to "ports". A port is a local (to the module) name for

one of the cables in the model — thus modules are not aware of which

other modules they receive messages from nor send messages to; they

are aware only of their own local port names.

SL238 - A SOFTWARE LABORATORY 14

The patchboard is implemented as numbered a set of "mailboxes"

— data structures which contain (among other things) a (possibly

empty) set of messages. Patchboard connections are accomplished by

making the "port information" portion of a process's DIB reference a

particular mailbox by its number.

MSGLNK

MSGPRI

HSGTYP

fISGDAT

A MESSAGE

LINK

PRIORITY

TYPE | SIZE

— USER DATA

MBXHDR

MSGSIZ MBXUSE

MBXACC

MBXLIM

MAILBOX

HEADER

MUTUAL
EXCLUSION
SEMAPHORE

ACTIVITY
SEMAPHORE

LIMIT
SEMAPHORE

The message hand Ii ng pr i m i t i ves are:

send (m,p)

receive (p)

A copy of the message whose base address is "m"
will be sent to the mailbox connected to port "p".
If the mailbox is currently full the sending
process, is suspended until space for the message
becomes available.

Return the address of a message in the mailbox
connected to port "p". The message is removed from
the mailbox. If no messages are currently in the
mailbox the process is suspended until a message is
sent to it.

SYSTEM FUNCTIONS

Although the kernel supplies all of the support facilities

necessary for the running process, there is a set of functions that

SL230 - A SOFTWARE LABORATORY 15

is useful to have in a common area where it may be shared by all the

modules. These functions are those which are either performed by

many modules (but too simple to be an independent module) or are best

performed with more access to system data structures.

The system functions are neither necessary for the operation of

the kernel nor do they form a permanently defined set. They exist

solely as a convenience for the user.

(1) Process creation functions

The kernel supplies routines to support processes but it does

not provide any means to create them or interconnect them. A module

could perform these activities but this might endanger the

reliability of the system. The process control functions are:

create (a fb 9c) create an incarnation of the module whose base
address is "a"; give it the name located in the 2
word area whose address is "b" and use the first 7
words of the area whose address is "c" as the DIB's
priority and its context values (if c»0, the
priority becomes the modules priority and the
context values are undefined). Link the DIB on the
feasible list and on the system DIB list. Return
value is the address of the new DIB.

connect (a,b,c) disconnect the Ath port of the DIB whose base
address is "b" from any connection and reconnect it
to the maiI box number "c". If "c" is 0, allocate a
new mailbox. Return values are the mailbox address
and number.

(2) Arithmetic functions

The PDP-11 is a mini-computer and does not supply all the

hardware arithmetic functions that are normally used by processes.

Rather than every module having its own routines, the most useful are

SL23B - A SOFTWARE LABORATORY IB

provided in the system functions (if the functions become available

as hardware, the modules can be changed to take advantage of it

and/or the system functions can be changed to be more efficient).

The arithmetic functions currently provided are:

multpy (a,b) unsigned integer multiply "a" times "b" and return
the double precision result.

multSB (a) has the result of "multpy(a,#S0)" ("#" denotes
octal)

divide (a,b) unsigned integer division of "a" by M b \ returning
a quotient and a remainder.

divSB (a) has the result of "divide (a,#50)".

log2 (a) calculate the log, base 2, of "a" and round it to
the next higher integer. Return value is the log
and the difference between "a" and 2t(first return
value).

power2 (a) calculate 2f"a M and return it.

(3) Conversion functions

The names in the DIB's and in the modules are in RADIX 50

(allowing 3 characters/word). The conversion functions from RADIX 50

and ASCII are:

conv50 (a) returns the RADIX 50 value of "a",

conasc (a) returns the ASCII value of "a".

SL238 - A SOFTWARE LABORATORY 17

MODULES

The modules are the basic building blocks of all SL23B systems.

As such there are several restrictions placed on the code and several

conventions that should be followed when modules are coded. A SL230

module (source file) is composed of 3 parts, (1) documentation (for

programmer use), (2) Static Information Block (SIB) and (3) the

executable code. A detailed description of the parts follows and an

example of a module is given in appendix A.

DOCUMENTATION

The documentation is a description of what the module does and

how to sucessfully interface the module to other modules. It gives

all the information that is externally visible (message formats, what

the module does,...) but it doesn't give the algorithms used or the

internally defined data structures. The format has the purpose of

ineuring that all information necessary for the proper use of the

module is available to the user. This forces the modules to be clean

(as defined earlier), the internal data is unavailable and it can hot

be used in assumed connections. The format consists of keywords and

descriptions (see the example in appendix A) . The following

describes what the keywords signify:

MODULE module name as given in the SIB

FUNCTION: English description of the function of the
module, exclusive of port information, message
formats and algorithms

PARAMETERS: the parameters of the module as given in the
SIB, which are: priority, stack size, dib size,
number of ports, and module size (approximate)

SL239 - A SOFTWARE LABORATORY 18

EXTERNAL: external variables referenced by the module.
These are given in the format:
<English name> (<system name>)
example:
TELETYPE INPUT STATUS REGISTER (T0KBS)

PORTS: description of the message format that is sent or
received through each port, including what the
module uses the port for. The format is:

<port number> <port name> <port function>

CONNECTIONS: modules that the module is "normally"
connected to. The format is:

"CONNECTIONS:
PORT MODULE

<PORT NUMBER> <MODULE NAME>:<PORT NUMBER CONNECTED T0>

ASSEMBLY: all the files with which the module must be
assembled, usually the files which define
interface languages (explained in a later
section) and assembly time options

SIB

The SIB is the name given to the object that contains the system

module data constants for a particular module. All SIB's are linked

on the system SIB list (SIBHED) and are available to all users. The

SIB is located at the head of a module's code and its format is:

SL238 - A SOFTWARE LABORATORY 19

SIB

SIBLNK

SIBPRI

SIBNME

SIBOSZ

SIBNPT

SIBMSZ

SIBDLK

SIBPRT

PORT FORMAT

MAIL BOX

PORT NAME

The contents of each field (at load time) must be:

SIBLNK - module size (in bytes). This value is used by the loader to

a I locate space.

SIBPRI - module priority

SIBNME - RADIX 58 value of the module name. (1)

LINK

PRIORITY

NAME

DIB SIZE |STACK SIZE

U OF PORTS| ENTRY PT

MODULE SIZE

MODULE DIB LIST

PORTS

SIBSSZ

SIBEPO

(1) If PALX11 is used, this value must be calculated. If MACX11 is
used then the .RAD58 directive may be used.

SL238 - A SOFTWARE LABORATORY 28

SIBSSZ - one byte value indicating the size of the stack necessary to

run an incarnation of the module. The value is the log

base 2 of the number of words in the stack. The minimum

value of the field is "5" resulting in a stack of 2t5 (-32

words) of which 28 words are required for system overhead

(hold the context when the process isn't running, interrupt

stacking, etc.) leaving 12 words free for the user

(subroutine calls, local storage, etc).

SIBOSZ - the log, base 2, of the number of words in a DIB of this

module. The minimum value of the field is "3" giving a DIB

of 2t3 (-8 words) but not allowing any ports, or at least

"4" (2t4 -IB words), allowing 4 ports.

SIBEPO - module entry point (offset from the SIBLNK field to the

first executable instruction).

SIBNPT - number of ports in the module.

SIBDLK - one word DIB list header, initial value 8. When the module

has incarnations, this field is the header for a list of

the DIB's.

SIBMSZ - one word size field, initial value, undefined. When the

module is loaded this field is given the value of the

number of words that the module actually has allocated to

it (not necessarily an intsger power of 2) .

SIBPRT - SIBNPT port entries, mailbox number is 8, the port name is

the RADIX 58 value of a 3 character name and may be 8.

SL230 - A SOFTWARE LABORATORY 21

CODE

The actual coding practices used in the modules are not

important as long as they do not violate certain restrictions and

conventione. These restrictions are imposed to insure that the

modules function properly in the software laboratory environment and

do not harm the system.

The most important set of restrictions centers on the

possibility of multiple incarnations of a module. This property of

SL238 modules forces all code to be pure and re-entrant. A pure

module, in this sense, has two implications: (1) the code must not

contain any instructions that alter other instructions in the module

and (2)the module must not contain any local storage.

Since local storage can not be located in the module, it must be

allocated from core when an incarnation of the module is first

started. There are two ways storage may be allocated:

1) from the stack

2) using a new section of core

Both of these methods work quite well and require about the same

amount of work.

To allocate from the stack, it is first necessary to start out

with a large enough stack. Ths first instructions (outside of any

and all loops) subtract the proper amount from the stack pointer (SP)

and save the SP in a register. Throughout the rest of the module the

local storage is referenced as indexed on the register.

SL238 - A SOFTWARE LABORATORY 22

To allocate local storage from core, a call on GET is done for

the required core and the address of the core is saved in a regieter.

It is accessed in the same manner as space on the stack.

Allocating from the stack is the preferable (possibly may become

required) method of allocating storage. Since the stack assigned to

a process is completely is defined, the system can easily control it.

This may become important when it is desired to implement a function

to delete an incarnation of a module. The major reason why the

delete function does not exist in the current version is the virtual

impossibility of deallocating all the space (such as messages, local

storage, etc.) an incarnation has. This problem has been given some

attention but no suitable (neat and easy) solution had been found

that did not involve a considerable overhead in the allocation and

deallocation process* (1)

Another restriction on the code is that it must be entirely

relocatable. This restriction results from the lack of hardware

relocation facilities on the PDP-11. The problems of writing

relocatable code are dicussed in the later secton on coding hints.

If the code in a module comforms to these restrictions, then

there will be no problems in running it under SL238 (once it is

debugged)•

1. A feasible solution appears to be one having the module deciding
when and if an incarnation can be deleted. This could be done with a
system function and a delete bit in each DIB.

SL23B - A SOFTWARE LABORATORY 23

Conventions

In the process of coding many modules there are certain coding

conventions that have been found to be useful. These conventions do

not actually affect the module code (other than in the conceptual

manner in which the modules are coded) and apply mostly to coding

done in PDP-11 assembly code (PAL11). They are not required but it

is adviseable to use them since they do make coding easier.

To facilitate the use of local storage it is desirable to use

direct assignments rather than numeric offsets. This allows two

things to be done, the format of the local storage may be changed

easily and the format is well described for later referencing. At

the start of a module, values are assigned to names and a description

given of the data. An example of this would be:

NAME «0

NUMBER -2

REFCNT -4

t RADIX 58 NAME t

t FILE NUMBER t

t NUMBER OF REFS t

The data would be acessed by an instruction like:

TST REFCNT(R5) ;ANY REFERENCES?

It is also desirable to use direct assignments of variables for

port assignments. This allows the assignments to be easily changed

and provides more information for anyone reading the code.

The kernel routines and system function, defined earlier in this

SL238 - A SOFTWARE LABORATORY 24

report, are accessed, on the PDP-11, by means of the TRAP and EMT

instructions (TRAP for kernel routines and EMT for system functions).

These instructions allow an argument which is used by the TRAP and

EMT routines to determine which routine is being called. Thus, if

the SEND routine is number 2 the calling instruction would look like:

TRAP 2

allowing position independent accessing of the routines.

The system data that a user might need has been defined in the

file SYHHED. In addition to defining the hardware registers (R0 -

R5, SP, PC, PS, I/O registers), SYflHED defines all the names of the

system data structures (SIB, DIB, messages, semaphores) with the

identifiers given in this report. SYMHED also defines a mnemonic and

gives the relavent information about the parameters and return values

for each argument of the TRAP and EUT functions. This allows the

kernel routines to be called by their name. By assembling SYMHED

with a module all that is necessary to access the send routine is to

code the instructon:

TRAP SEND

after setting up the parameters.

SYMHED defines the "interface" language between the module and

the kernel. An interface language is a defination of the

assumptions, structures, commands and conventions that exist between

two objects that interact with each other (such as kernel and module,

module and module). If a module is written that has a non-trivial

message format, a large set of possible commands, or uses a common

SL238 - A SOFTWARE LABORATORY 25

data format, it is best to create an interface file like SYMHED.

Defining interface languages in a file like SYMHED has a great

advantage over putting the assignments at the start of every module.

It is easier to access parts of a data structure using mnemonics and

it allows the format of the structurs to be changed with only the

cost of a reassembly instead of a change and reassembly of every

module that accesses that structure. Another advantage is having the

interface completely defined so other programmers can use it.

Hints

The following paragraphs describe several PAL11 oriented tricks

that can be used to ease the job of writing a module.

As someone who closely studied the SIB format may have noticed,

some of the information required would be non-trivial for the

programmer to calculate. Specifically this is the module size in the

location SIBLNK and the module entry point offset in the location

SIBEPO. An easy way to get these values is to have the assembler

calculate them. The module size is calculated by having a label at

the start of the SIB and one at the end of the module (after the last

instruction). The start of the module would have an assignment of

the form:

MODLNK«<LASTLABEL>-<FIRSTLABEL>

and the first word of the SIB would have the value of "MODSIZ".

Alternately, if the labels were "SIB" and "LAST" the start of the SIB

could look like:

SL238 - A SOFTWARE LABORATORY 28

SIB* .WORD LAST-SIB ;MODULE SIZE

The same technique can be used for SIBEPO. (see the example in

appendix B)

It is sometimes useful to assemble several modules together, so,

instead of putting a ".END" at the end of each module, it is usually

better to put the ".EOT" directive there. All currently existing

files follow this practice and for this reason the file "TAIL"

exists. It contains only one line, a ".END" statement.

Example: to assemble the module "DTACON" we find from the

documentation that it requires the files "SYMHED" and "DSKCOM"

assembled with it. The assembler command string would look like:

DTACON, /CDTACON«SYMHED, DSKCOM, DTACON, TAIL

NOTE: SYMHED must be the first file in the string since it defines

the hardware registers.

The lack of relocation hardware forces all modules to be

location independent. When a module is loaded, it can and will be

placed almost anywhere in core. On most machines this requirement

would place a great burden on the programmer and/or the programming

language. On the PDP-11 relocatable code is easy to write, the only

problems requiring care are accessing fixed addresses (the PS word,

I/O registers, etc) and accessing module information (such as command

vectore). On the PDP-11 this requirement is easy to fulfill due to

the ability to do indexing relative to the program counter (PC). The

SL238 - A SOFTWARE LABORATORY 27

only problems occur when it is desired to access a vector of data

within the module (such as a command vector) or when trying to access

a fixed location in core (such as the PS or I/O register).

A fixed address can be referenced position independently only by

the "deferred autoincrement on the PC" mode. This mode forces

absolute instead of relative addressing. The correct and incorrect

methods of referencing the PS would be:

MOV e#PS,-(SP) ;RIGHT (ABSOLUTE)
MOV PS.-(SP) ;WRONG (RELATIVE)

(NOTE: timing is identical)

Accessing module information (indexed by a register) involves

using the PC to find where the module is located and calculating

relative displacements. If it is desired to use a vector as a

command break (a vector indexed by a register the correct and

incorrect methods of coding are:

VECTOR: C0MMD1,CQMMD2

JMP ©VECTOR(R0) ;WRONG METHOD

ADD PC,R0 {CALCULATE POSITION
HERE: MOV VECTOR-HERE(RB),R0 ;GET RELATIVE OFFSET TO LABEL

ADD PC.RB ;MAKE IT ABSOLUTE
HERE2: JMP -HERE2(RB)

Explanation: RB has a value (even) that is to be used to index into

VECTOR. Since the module may be located anywhere in core using the

label "VECTOR" as an absolute value will pick up a word from core

that corresponds to where the assembler put the module (usually 8) .

SL238 - A SOFTWARE LABORATORY 28

Instead, the PC is added to R8 so that R8 points to the label "HERE"

offset by the amount that it formerly contained. The desired word is

picked up by indexing with the displacement from "HERE" to -VECTOR".

This is now the value of a label, as the assembler saw it. So the

initial process is repeated with the final instruction a "JMP" if the

process is for a command break or possibly a "MOV" or "CMP" if the

vector contained data.

SL238 - A SOFTWARE LABORATORY 23

DESIGN

Thus far, the discussion has centered on how to write a module

rather than what should go into it. From what has been said, it is

evident that SL238 will actually support almost any piece of

relocatable code that has a SIB on the front of it. This is due to

the impossiblity of checking or protection on the PDP-11. Designing

a module as if it was a stand-alone program is ignoring the resources

of the software laboratory. The entire concept of SL238 rests on the

general availability of small functional modules. Proper design of a

module is of the utmost importance so as to maximize its usefulness.

The guiding philosophy should be to design modules that are

globally useful. This means we want to design the modules small and

functionally simple. Complex functions are generated by connecting

many of these simple modules together. Unfortunately, there is a

lower limit upon the size of a module. At some point the overhead

involved in the system structures (DIB and stack, minimum - 48 words)

is bigger than the module. In most instances this is undesirable.

If modules this small are implemented, core is quickly lost through

fragmentation and cluttering. A module in this range should be

re-examined to see if it is really useful. If there are few uses for

it, then it possibly should be included as a subroutine in the module

that uses it. If there are many users the possibility of including

the module as a system function should be considered. An example of

a small module that can not reasonably do either of the alternatives

is the TTYIN module. This module is 32 words in length (18 of which

SL238 - A SOFTWARE LABORATORY 30

are the SIB) and is an independent module solely because it does I/O.

By having it do the I/O. other modules bscome more generally useful.

Modules should have a sizs on the order of 75 to 400 words.

(The figure 400 results from writing many modules and evaluating what

is contained in each. It is not an upper bound but rather a guide to

be used when designing modules.) If a module is larger than 400 words

it probably incorporates several functions that independent modules

should do. It should be examined to see whether it can be broken

down into smaller modules. An example of a " large" module is the

Command Language Interpreter (CLI). It has a size of 512 words and

consists mostly of special cases (the various commands). It would be

difficult to divide the CLI into separate modules due to the common

data base that the commands require and the fact that each individual

command is too small to be an independent module.

The normal condition for the existence of large modules is the

grouping together of several small sections of related code that are

all accessed in the same manner. A possible way to eliminate this

type of module is to provide a module that consists almost entirely

of ports and the code merely sends the incoming messages out the

various ports according to soms wsll defined rule. If the resulting

small modules are not generally useful it is not evident It Is worth

the effort (and overhead!) to do this.

Most modules occur in the context of a larger system or project

and are originally designed as a part of that system. Dividing a

system into modules can be done in many ways, not all of which are

deeirable. An example of modularizing a project is given in [93 in

SL238 - A SOFTWARE LABORATORY 31

what we consider to be one of the better ways to divide a system. A

system should be divided along functional boundaries instead of the

usual data flow boundaries. Functionally interdependent modules are

easier to change then data interdependent ones. Since we wish to

have the facility of easy changablity in the system, we must have the

modules functionally interdependent, keeping data interdependency

restricted to the messages that pass between two modules.

SL23B lends itself to functional interdependency. It is easy to

see this in terms of an I/O module. SL238 has two classes of I/O

devices, single character devices (teletype, link) and block devices

(disk, DECtape) • The I/O messages from different devices are not

identical. If a module were designed requiring a block formatted

input, it could not connect directly with a character oriented

device. By keeping the I/O functions independent we seem to be

losing access to some of the devices from a particular module.

Obviously all that is necessary is to insert a conversion module

between the two. If a module requires a particular type of I/O input

this is the type of solution that should be considered. The link

dedicated system provides us with an example of I/O type dependent

modules. If it would be desirable to send an ASCII file from the

PDP-18 to the PDP-11 the character would come into the 11 through the

link input module(LKHN). This module is single character oriented

so that if we wished to use PIP11 to transfer the file to disk a

direct connection could not be made. Instead, a character-to-buffer

module would have to be inserted between the two. Schematically this

looks I ike:

SL230 - A SOFTWARE LABORATORY 32

<
PIP LINBUF « LK1IN

*

BLOCK I/O CHARACTER LINK INPUT
MODULE ACCUMULATOR MOOULE

Doing input from the link this way allows the continued use of the

single character capabilities of the link and also allows us to

transfer files with a minimum of work- This solution would be

superior to writing a ney LK1IN module for it also generates the

LINBUF module which shouid be useful elsewhere. (the Sink system is

described in the following section on current systems)

As in most problems, the dividing of a project into modules

involves the making of various trade-offs. In the software

laboratory the desired end result is to havs as many useful modules

as possible. By checking on the kinds of existing ^oaules it is

(should be) possible to find most of the programming work done.

SL238 - A SOFTWARE LABORATORY 33

CURRENT SYSTEMS AND MODULES

At the present time there are two major systems that have been

designed; a command language system and a link oriented system (see

schematics in appendix B) . The command language system is designed

to provide the resources necessary to debug modules'and construct

systems. The human engineering aspect of the command language has

been given considerable attention and the commands are designed to

allow efficient use of the human resources available. The commands

are given in the documentation of the Command Language Interpreter

(CLI) module (see apendix D) and will not be given here.

The command language system can be easily extended if a user

wants it to be. If a new command or facility is desired, a new

module can be written to implement the command or an existing module

can be modified. There is nothing permanent about the current

version of the command language module other than the kinds of

commands that it provides. The current version is actually the third

one and represents a year of experimentation and use of other

vereions.

The link dedicated system is used to communicate with another

computer by means of a link connecting the two machines (currently

the link goes to a PDP-10). Since the PDP-11 is a small machine, the

second machine is used to edit and assemble PDP-11 files and the

binary output is sent to the PDP-11 over the link. Resources are

available in the link system to transfsr from the link to any other

SL238 - A SOFTWARE LABORATORY 34

block I/O device. This system allows the rapid debugging of modules

(or systems) since the power of a bigger computer is available to the

user. For a more exact description' of the link system, see the

schematic in appendix B and the description in appendix C.

In addition to the modules composing these two systems, there

are several others that have been written. The documentation of all

cuurrently existing modules is given in appendix D.

SL23B - A SOFTWARE LABORATORY 35

FUTURE PROJECTS AND SYSTEMS

There are only a few major projects left involving changes to

existing systems. They are outlined in the following paragraphs to

give examples of the kind of projects that could be considered. The

particular ones given are those for which a solution is thought to be

easily avaitable.

There are some changes that should be done to SL230 itself (as

opposed to modules). One of these is the addition of a delete

function. As was mentioned earlier in this report, this function is

not in the current version because of the difficulty in deallocating

the core assigned to a process.

Another major change to SL230 involves the manner in which a

system is initially loaded. In the current version, each system must

have its own system assembly since information about which modules

are loaded exists as a vector in the system. A better way to

initialize the system is to have the capability of using a load file

that specifies the modules to be loaded and the connections to be

made. This is easily implemented by using a subroutine. "DQEVER".

from the command language interpreter module. By making this routine

part of the system, all that is necessary to perform the proper

connections (and loadings) for a system is to give the routine the

correct data structure. The source of the data structure could be

anywhere and thus could be a file on an I/O device. This would allow

more efficient system loading and the system in core could be changed

more easily. It would also ease the implementation of a command

SL238 - A SOFTWARE LABORATORY 36

language with each system (the link system does not have command

language facilities).

Sometime, it might be desirable to change SL238 into a multiuser

eyetem. The PDP-ll fs available for this project were not big enough

for more than one user so a multi-user system could not be

implemented. Since SL238 is already designed as a multi-process

system, it would be a simple matter to have each user have one

process for his use. This would be the equivalent of the way most

current operating systems are implemented, but it would provent the

ueer from accessing most of the resources provided by SL230. of

SL238 (multiple feasible lists, a recursive defination of the kernel,

etc.) but they will not be discussed in this report.

There are many systems that could be designed for the software

laboratory. Most of the first systems built should have the purpoee

of building up the library of modules in addition xo ouildihg a

useful system. Among these projects are a few that can be done with

very little work, the modules that should be written are readily

apparent. One of these would be a text editor. The editor need not

be complex but should have a great deal of power. The actual design

of the modules will depend upon the type of editor used (text mode,

line mode, etc.) and the desired features of that type. It should,

however, contain modules that are common to all types of editors. A

possible design of an editor is:

SL238 - A SOFTWARE LABORATORY 37

TTYOUT ' *—\
SI LED

I/O

1 1

TTYIN ACCUtl EDITOR TTYIN ACCUtl EDITOR

BUFLIN I/O

I t I t
LINER 4MMM* LINBUF

The only modules that are not written are the three editoring

modules, EDITOR, LINER, SI LED. The first is the type dependent

editor controler, it is the one that scans the input and decides what

to do. Liner is a simple module that handles a list of strings (in

messages). SILED is a more sophisticated part of the editor. It

implements an "alter" command (a command which would allow the

internal editing of a line of text with a line mode text editor) and

would not be necessary for an initial version of the editor. All the

other modules exist in some form. This design is neither the only

possible design nor necessarily the best. It is one of the simpler

ones and should be easy to implement.

Other systems that could be implemented include assemblers,

compilers and text justification programs. Each of these should also

have several modules implemented for each function, such as several

symbol table modules, optimizers etc. Uhen several projects such as

these are completed there will be a useful library of modules

available for users.

SL238 - A SOFTWARE LABORATORY 38

APPENDIX A

This appendix contains an example of a module.

H0DULE LINBUF

FUNCTION: ACCUMULATE SINGLE CHARACTERS INTO BUFFERS. THIS

MODULE LOOKS LIKE AN INPUT I/O MODULE (BUFFER SIDE)

AND WILL CONVERT A SINGLE CHARACTER I/O MODULE INTO

A BUFFER ONE. TERMINATOR ON THE INPUT IS THE

CHARACTER CONTROL Z (626 ASCII DECMAL).

PARAMETERS: PRIORITY* 28880

STACK SIZE* 2t5

DIB SIZE* 2T4

NUMBER OF PORTS* 3

MODULE SIZE* 178 WORDS

PORTS: PORT NAME FUNCTION

8 I/O COMMAND INPUT PORT. A BLOC*
ORIENTED I/O COMMAND IS &CCEP7
THROUGH THIS PORT. FOR FORMATS SEE
DSKCOM.

I/O REPLY PORT

CHARACTER INPUT PORT. CHARACTER i5
THE FIRST BYTE IN THE DATA PART OF

THE MESSAGE

1
2

ASSEMBLY: SYMHED. DSKCOM

PAGE

SL23B - A SOFTWARE LABORATORY

;
;

BUFflDR-8

B U F C T - i

J
RECIVS.8

REPYS«i

INPUTS-2

;
LODSIB:

t******«***#«#*****«t

t BUFFER ADDRESS t

t BUFFER COUNT t

LODMDS-LODLST-LODSIB

LODEHPT«QSTRRT-LODSIB

I
• UORD LODMDS,28888

.WORD 46166.7716

.BYTE 5,4.L0DEI1PT,3

• UORD L0DM0S,8

.WORD 8 ,8 {PORT 8

• UORD 8 ,8 ;PORT 1

• UORD 8 , 8 {PORT 2

;"LINBUF"

;PflGE

SL238 - A SOFTWARE LABORATORY 48

QSTART:

;

;

RSTARTi

BDONEt

flDONE:

;

;
L0P2:

;

RENO:

REND2:

REND3:

;
;
;
HUNTHi

CLR
CLR
HOV
CLR
BR

nov

JSR
JSR
CUPB

BNE
JSR
CMPB

BNE

JSR
cnPB

JSR
BR

JSR

CMPB

BNE

nove

JSR

BR

CflPB

BEQ

CMPB

BEQ

TST
BNE

BR

-(SP)
-(SP)
SP,R2
R3
ADONE

tPKfil INTO THE STACK

jZERO R3

*-I,DEVCMD(R3) ;ERROR, AND TELL HIM SO
PC,CLTFR
PC,Ttir lL

PC,COUMM
R3,JRERDF

5 OPEN FOR iNPUT
;if uoy a m HIM A NEGATIVE NUMBER

JIF SO, OK

$HAVE THE NEXT, IS IT A READ?

jIF NOT, HE GOOFED!

?C,G£Y&YT
Ra^CTRZ

LCP2

PC,S£*DBF
R8,J?READF
HUNTH
#E0r,0EVCM0(R3)
PC.COUHM
REND2

;GET ONE 6YT£
;IS IT A CONTROL 2 (THE END)

; G O SEND THE CURRENT BUFFER

;UAS REPLY A READ? IF SO SEND EOF

R8,#CL0SZ
BDONE
R8,#RELESE
BDONE
R8
REND3
BDONE

;A CLOSE?
;IF SO, START OVER

;A RELEASE?
5 IF SO , START OVER
IAN ASSIGN?

;PAGE

SL238 - A SOFTWARE LABORATORY 41

;
;
;
PUTBYTt INC

BGT

I10VB
INC

RTS
I
;
GETBYTt riOV

TRAP

MOVB

MOVB

TRAP

nov

BIC

RTS

;
I PAGE

THE FOLLOWING IS THE GETBYTE ROUTINE

2(R2) ;INCCRENENT THECHARACTER COUNT

GETBUF , I F >B THEN NONE LEFT, GET HORE

RB,e(R2) |GET THIS BYTE

(R2) ,INC THE POINTER

PC ;RETURN

#INPUTS,R8

RECIV

nSGDAT(R8),-(SP)

nSGSI2(R8),Rl

RELEAS

<SPU,R8

#177680,R8

PC

{GET THE BYTE

;SAVE THE DATA

{RELEAS THE MESSAGE

SL238 - A SOFTWARE LABORATORY 42

GETBUF* MOV

JSR

criPB

BNE

nov

BNE

nov

novB

TRAP

nov

TRAP

nov

CLR

CLR
nov

nov

novB

TRRP

nov

O K S P S : nov

T S T

nov

nov

BR

BonBt nov

BR

;
SENDBFt TST

BEQ

RDD

BEQ
nov

CLR

CLR

BR

;
;
NOSTUF* nov

BEQ

CLR

novB

TRRP

SINK: CLR

CLR

nov

RTS

; P R G E

R8,-(SP)

PC,SENDBF

R8,#READF

BOMB

DEVLNK(R3),R8

OKSPS

R3,R8

f1SGSIZ(R3),Rl

RELERS

#4,R8

GET

R8,R3

<R8> +

<R8> +
#4,(R8)

#18,R8

R8,DEVSIZ(R3)

GET

R0,DEVLNK(R3)

#-776,2<R2)

<R0) +
R8,(R2)

<SP)+,R8

PUTBYT

5 SAVE THE DRTR BYTE

{SEND THE CURRENT BUFFER(IF ANY)

jREROF NEXT?

{IF NOT, BOMB

;GET THE BUFFER PROVIDED

;rtAYBE NO BUFFER?

{DITCH MESSAGE, IT HAY BE TOO SHALL

{WE NEED A SIZE 4 AND IT HAY BE SIZE 3

{FOUND OUT THE HARD HAY!

;HOU Ui HAVE THE RIGHT SIZE

{SAVE IT

{ZERO THIS HESS

{SIZE

{PUT IN THE SIZE

{GET THE BUFFER

{PUT IT IN THE MESSAGE

{RESTORE DATA

{PUT OUT THE CURRENT CHARACTER

R2,SP

HUNTH

{RESET THE STACK

(R2) ;WE DO HAVE A BUFFER, DON'T HE?

NOSTUFF {IF NOT, FORGET IT!

#776,2(R2> {SET COUNTER TO RIGHT VALUE

NOSTUFF {IF 8, THEN NOTHING TO OUTPUT

2<R2),*DEVLNK(R3) {HAKE THE COUNT IN THE BUFFER

2(R2) {ZERO THE WORLD

(R2)

counn

DEVLNK(R3),R8

SINK

DEVLNK(R3)

DEVSIZ(R3),R1

RELEAS

(R2) {ZERO POINTER

2(R2) {ZERO COUNT

#READF,R8

PC

SL238 - A SOFTWARE LABORATORY 43

;
;
t

;

OUTFIL: MOV
novB
MOV
TRRP

RTS

;
;
counri: JSR
;
;
INFIL: 110V

BEQ
riOVB
TRRP

OKMSG: MOV
TRRP

HOV
MOV

HOVB

RTS

9
;
;
LODLST:

R3.R8 ;SENO THE MESSAGE THAT ME HAflVE
#FILCffl),HSGTYP<R8> ;PUT IN A GOOD TYPE
#REPYS.«R8
SEND jSEND IT ON
PC

PC,OUTFIL

R3,R8 jNOU, RELERS THE MSG UE HAVE
OKMSG
f1SGSIZ(R8),Rl
RELEAS
#RECIVS,R8
RECIV jGET THE REPLY
R8,R3

DEVLNK(R8),Ri jPUT THE LINK IN Rl
DEVCnO(R8),R8
PC

SL238 - A SOFTWARE LABORATORY 44

APPENDIX B

T T Y O U T TTYItf

A

ACCULW

M A * M O O on

D J S P L Y

F L O O R

A

C L I

D I R M A N L O A D E R

* A

I/O M00UI£6S).

Schematic for the command language system.

SL238 - A SOFTWARE LABORATORY 45

TTYOUJl T T Y I N

A

A C U . M 1 0

A

A

A

L K I L N

D S K H A N

W C A T I N

A

M A X - E L A I O M

A _ A n /

L E X A M

L I N B U F

•N S

L K I O U T

P I P 1 1

D T A C O N

F I L M A N I

y A y/K

D T A C O N

A

F 1 L H A N O T A H A N

Schematic for the link dedicated system.

SL230 - A SOFTWARE LABORATORY 46

APPENDIX C
LINK DEDICATED VERSION

The link dedicated system is designed to provide facilities to
make the PDP-11 appear like a TTY to the PDP-10. It also provides
the mechanism to transport files both ways across the link. Input is
from the TTY and is accumulated in an accumulation module (ACUM11).
This module does all the echoing and handles control U f control 0 ,
rubout and line overflew For more information on exactly what
happens in each of these cases see the module itself (it should
suffice to say that the resuit is approximately the same thing as
would happen on the POP-10K ACUflll also provides another service,
it has several output ports for the string, one to the link and thus
the PDP-10 and one to the PDP-ll's port interchange module (PIP11).
It aleo has a port connected up to the link input accumulation module
(the link input is accumulated into lines to provide more efficient
buffering) and will send an altmode to this port if required. The
purpose of this is to free any message that is stuck in the
accumulation module because it wasn't terminated by a break character
(ex. 'CONFIRM:* from a LOGOUT). The ports are changed by control
characters:

fA - set port out so the string goes to the PDP-10
fB - set port out so the string goes to PIP11
tD - send an aitmode to link accumulation module

The PIP module, when initially loaded has the following symbolic
port assignments (see PIP documentation for explaination):

B - system initial load device. In SYSLDT -> DECtape,
SYSLDK »> disk

1 - alternate device (one not used as system load. SYSLDT
«> disk, SYSLDK => DECtape

2 - binary accumulation module. Input device for shipping
binary files over the link

3 - ASCII accumulation module. Input device for shipping
ASCII files over the link

4 - link output module. output device for shipping any
file to the PDP-10

5 - unassigned

The current binacm module allows only absolute binary files to
be shipped to the PDP-11. It should be noted that the commands for
each machine must be typed individual ly.

EXAMPLES:

shipping a binary file to the PDP-11

(1 «> disk, <character> «> control <character>)
tA Sswitch ACUM11 to send to the link
tC Istop anything running on the 10
.R PIP Istart PIP
*tBl;0:PIPll-BIN«2;0: Ireturn to 11, give PIP11 command

SL238 - A SOFTWARE LABORATORY 47

tATTY:/I«OSK:PIPll.BIN .back to 10, tell PIP to output file
to TTY

* !PIP done
* IPIP11 done

shipping an ASCII file to the PDP-11

ta
tc
.R PIP
*tBl;8:PIPll-Pll«3;B.
tATTY:/I«OSK:PIPll.Pll *

shipping a file to the PDP-18

tA
tc
.R PIP
vrf3SK:PIPll.Pll«-TTY:/A
tB4?8:*l;B:PIPll-Pll
*

If an error occurs during the transfer of a file, one of two
things will happen. If the binary accumulation module should stop
too soon (caused by a premature start block) then the rest of the
file M i l l be fumped on the TTY. The best thing to do is type control
0 on the TTY and when the file is really finished try again. The
other thing that can happen is that the binary module won't see the
start block and thus continue waiting for more input. This is
characterized by the fact that even after a long wait nothing
happens. Of course the problem may be that the PDP1B has gone down,
but for most purposes this is unlikely. In this case you either have
to reload the system or transfer another file over the link an hope
the module becomes unstuck.

Once a file is on the PDP-11 f e disk it is very easy to transfer
it to a DECtape so that it may be loaded using H U P .

EXAMPLES:
transfering files from disk to DECtape

(1«> disk, 8 -> DECtape)
*8;8:PIP11-BIN*1;8:PIP11-BIN

*/X«TT YIN-BIN, TT YOUT, ACUM11, ATOM

SL238 - A SOFTWARE LABORATORY 48

TTYIN BIN
TTYOUT BIN
ACUmi BIN
ATOM BIN

All the underscored parts are the print out of the PDP-11. The
second command is an example of the advanced form of PIP11 and makes
use of the fact that nothing is lost between commands.

SL238 - A SOFTWARE LABORATORY 49

APPENDIX D

MODULE LOADER

FUNCTIONS pdp-ii abcoluta binary loader, loads modulos Into cora fro*
a block oriontsd l/o input, for tha format of an
absoluta binary fila s a a tha papar tapa s o f t M a r a
loadar manual.

PARAMETERS: priority- 780
stacK slzs« 2t5

dib siza* 2t4

numbar of ports* 4

modulo siza- 261 261 Hords

PORTS: port
8

funct ion
command input port, tha sacond and third data
Mords ara assumad to contain tha fila nama
that tha modulo is in.
raply port, uhan tha modulo is loadad, tha addrass
is raturnad in tha first data Hord of tha massaga.
if a Tror occur ad, tha raply addrass is in tha
i/o paga or also 8. valid arrors ara:

valua raturnad arror
8 chaclcsum arror occurad
-1 no room in cora for modulo
-2 modulo siza trobla(too many blocks)
-2 modulo siza troublaCtoo fan blocks)

all othar mrror ara i/o orrors and tha i/o
arror numbar is raturnad. saa dskcom for
thasa valuta.
i/o output port, commands to tha i/o modulo ara
sant out this port.
i/o raply port, for massaga format saa dskcom.

CONNECTIONS:
port modulo

dirman:2

dirman:3

i/o modulo :8
i/o modulo ti

8
1

2

3

ASSEMBLY, symhod, dskcom

4

SL238 - A SOFTWARE LABORATORY 58

MODULE PTPil

FUNCTIONS does character, string and block mode i/o Hith the paper
tape punch, mode is determined by the message type in accordance
with atommg and dskcom. if block mode i/o then any output
oriented command are accepted and a reply is generated* an error
occurrs if a read or read oriented command is given (such as
read a block, read a directory) or if a directory oriented
command is given (delete a file).

PARAMETERS, priority 77771
stack sizes 2T5
dib size« 2t4
number of ports* 2
module size* 74 words

EXTERNALS paper tape punch data register (ppb)
paper tape punch status register (pps)
paper tape punch semaphore (hsp)

PORTS: port name function
e message input port, messages are received through

this port, if the type is 8, it is assumed to be
a single character type message (the
data in the low byte of the message data area.
if the type is positive, a string is assumed with the
first byte of data being the character (byte) count.
if the type is negative, a block oriented i/o is
assumed and a reply is sent out port 1
reply output port for block oriented i/o 1

ASSEMBLY, symhed, dskcom

SL238 - A SOFTWARE LABORATORY 51

MODULE PTREAD

FUNCTION: hand I • the input from tha papar tapa reader. Initiates the
ptr for input and waits on the ptr input semaphore, output is
single byte mode i/o.

PARAMETERS: priority* 17788
stack size* 2t5
dib sizes 2t4
number of portss 1
module sizes 32 words

EXTERNAL: ptr status register (prs)
ptr buffer register (prb)
ptr input semaphore (hsr)

PORTS: port name function
8 inp character output port, character is in the low

byte of the message

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 52

MODULE PTR11

FUNCTION: do block modo i/o on tho paper tapa raadar. Hill accapt any
block mode command as givan in NdskcomN but Hill return an
arror if an output is triad, of any sort
i.e. a write, opan for output, da lata, ate. or if
a directory is requested.

PARAMETERS: priority 77771
stack size« 2t5
dib size- 2t4
number of ports- 2
module size- 84 words

EXTERNAL: paper tape status register (prs)
paper tape reader data register (prb)
paper tape input semaphore (hsr)

PORTS: port
8

name funct ion
command input port, messages of the command
format (as given in dskcom) are input through
this port
data and command reply output port. 1

ASSEMBLY: symhod, dskcom

SL238 - A SOFTWARE LABORATORY 53

MODULE SINK

FUNCTION: the message bit bucket* all messages received are deleted,
never to be seem again.

PARAMETERS: priority* 777
stack size* 2t5
dib sizes 2t4
number of ports* 1
module size* 16 words

PORTS: port name function
6 message input port, any format of message

is allowed.

ASSEMBLY: symhed

- A SOFTWARE LABORATORY 54

MODULE FLOOR

FUNCTION: to soparato two groups of modules on tha faasibla list* this
modulo does a busy wait loop, it looks for a massaga on tha
input port by repeated, tests of empty, when a message is received
a 'p' is done on the floor semaphore, when released from
the semaphore, the input message Is sent out and a wait for
a new message is started.

PARAMETERS: priority- 488
stack size- 2t5
dib size- 2t4
number of ports- 2
module size- 32 words

EXTERNAL: floor semaphore (floor)

PORTS: port name function
8 message input port, the message may be any

format.
massage output port, the output message is the
same as the input message.

1

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 55

MODULE LK1IN

FUNCTION! to do i/o with tht link, input only, this modulo is
used for a "fast response" link, one that requires a
response within 288 to 880 micro-seconds. It requires
a special interrupt routine that fetches the data
byte into core before doing the "v" on the semaphore*
the semaphore Is used as the data counter, (i.e. a "v"
is done for every data byte).

PARAMETERS: priority. 18887
stack size> 2tS
dib size- 2t4
number of ports* 1
module size*

EXTERNAL: link 1 input status register (Inkaos)
link 1 input semaphore (lltsem)
link 1 temporary data buffer (Inkbf)
link 1 tmp data buffer size (Inksz)

PORTS: port name function
1 inp data output port* data is in the low

byte of the message

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 56

MODULE LK2IN

FUNCTION: to do i/o with tho link, input only, single
character Mode, this Module gets the data from the
link data register and thus requires only the
semaphore (see Iklin for a different kind of
link input.

PARAMETERS: priority. 18887
stack size* 2T5
dib size- 2t4
number of ports- 1
module size-

EXTERNAL: link 2 input status register (Inkbos)
link 2 input data register (Inkbob)
link 2 input semaphore (I2isem)

PORTS: port name function
1 inp data output port, data is in tha low

byte of the message

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 57

MODULE LK10UT

FUNCTIONi module to do io uith the link - output only.

PARAMETERS: priority- 18888
stack size- 2t5
dib size- 2t4
number of ports- 2
module size- 88 words

EXTERNAL: link 1 output command register (Inkaos)
link 1 output data regster (Inkaob)
link 1 output semaphore (llosem)

PORTS: port name function
8 data input port, if the type is zero then the

first and only the first byte of data is outputed
to the link, if the type is positive then
the first byte of data is assumed to be a count with
the data following, if the type is negative then it
the is assumed that the message is a file type
command (see dskcom for what these commands are).
if the command involves a directory or

a r e a l f i l e t h e n a n e r r o r c o n d i t i o n I s r e t u r n e d , a n

e r r o r c o n d i t i o n i s r e t u r n e d i f t h e c o m m a n d h a s t o d o w i t h

i n i t i a t i n g a f i l e , o t h e r w i s e t h e o n l y c o m m a n d a n y t h i n g i s

d o n e w i t h i s t h e w r i t f command w h i c h c a u s e s a b u f f e r

t o b e o u t p u t e d (t h e b u f f e r a d d r e s s i s t h e s e c o n d d a t a w o r d

a n d t h e f i r s t w o r d of t h e b u f f e r is a b y t e c o u n t)

1 f i l e command r e p l y p o r t

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 58

MODULE LK20UT

FUNCTION: module to do lo with tho link - output only.

PARAMETERS: priority 10800
stack siza» 2tS
dib size= 2T4
number of ports* 2
module sizes 80 words

EXTERNAL: I ink 2 output command register (Inkbos)
link 2 output aata ragster (Inkbob)
link 2 output semaphore (!2osem)

PORTS: port name function
8 data input port* if the type is zero then the

first and only tha first byte of data is outputed
to the link, if the type is positive then
the first byte of data is assumed to be a count with
tha data following, if the type is negative then it
the is assumed that the message is a file type
command (see dskcom for what these commands are).
if the command involves a directory or
a real file then an error condition is returned, an
error condition is returned if the command has to do with

initiating a fife, otherwise the only command anything is
done with is the writf command which causes a buffer
IO be outputed (the buffer address is the second data word
and the first word of the buffer is a byte count)

1 file command reply port

ASSEMBLY: symhed, dskcom

- A SOFTWARE LABORATORY 59

MODULE MAXEL

FUNCTION: module to convert internal format messages into external format
messages, the two types of messages affected are binary numeric and
radix 58 alphanumeric, it converts these into ascii characters,
(numeric is converted into octal) all
other messages are unaffected, the types are given in the interface
language file "atomrng". leading zeros (on numeric)
are deleted, as are trailing spaces on alphanumeric.

PARAMETERS: priority 1881
stack size* 2T5
dib size- 2t4
number of ports- 2
module size- 185 words

PORTS: port name function
8 data input port, the input has the relevant

data in the first word for numeric and first two
words for alphanumeric.
data output port, the first data byte is a character
count followed immediately by the characters

1

ASSEMBLY: symhed. atommg

SL230 - A SOFTWARE LABORATORY 6B

MODULE CLI

FUNCTION: to implement a command language for the software lab. the
teletype format of the commands is:

load command
I [<sib name>3 C [<unit number> ':'][<filna*e>)'>91

file name defaults to sib name, unit defaults to 0
multiple load* are separated by a
connect command

c C <dib na«&e>i i >./ <sib nai»e>K *<f <unit number>
H<fi»* name> J J lft9 <port number I

port name >3 < I 9 + f I cr>
if the terminator is then a new mailbox is gotten for the
connection and a command string of the same format is
expected after the (note: this command could contain
a new 'x' or '<-' so that the command can go on indef inately).
if the terminator was a '«-' the existing connection of the
left side (if any) is used, again the same format of string
is gotten for the connection.
the connect command saves almost all data between
commands, this allows a very strong default
structure (i.e. only the port need usually
be changed), a J so, the internal defaults
are:
all names default to the dib name, if is typed
(except the port name)
the file name defaults to the sib
name,

dd [< dib list>3
dispiy items about the dib(s) if no name
is given, dispiy the list of possible dibs
i.e. the names of all the dibs on the system
dib list

ds Usib list>)
dispiy characteristics of the sibs named, if no
name is given, the names of all the sib
on the system sib list are displied.

r
cause the floor to lift and the cli to hang itself up.

these commands will have the described result only if all the
connections shown are made,
examples:
c lexam:l<-pip,pip<l:pipll>:0
c maxel:8«-:l

these two commans connect the 0 th port of the pip
incarnation of the pip module to the 1st port of lexam
and the 1st port of pip to the 0th port of maxel.
note the use of the defaults.

SL238 - A SOFTWARE LABORATORY Bl

PARAMETERS: priority- 7800
stack siza- 2t6
dib siza- 2t6
number of ports- 6
module size- 512 words

EXTERNAL: system dib list (udibhd)
floor semaphore (floor)

PORTS: port name function
8 go command input port, lexemes of the commands

are accepted in this port, types are given in
atommg. all messages are assumed to be in
internal format, i.e. binary numbers, radix 58
character names.

1 ptr message output port, a number corresponding
to a particular condition is outputed tthrough
this port.

2 ok directory manager request port, requests
for the directory manager are output through this
port.

3 dir directory manager reply port.
4 floor output message port, when the

floor is to be lifted, a message is sent out
this port.

5 floor response port, whan it is desired to release
the cli a message is sent to this port. i.e. after
the cli sends a message o the floor out port 4
it waits for a reply on this port.

6 disply communication port, a message for displying
is sent out this port, the first data word contains
the second letter (in radix 58) of the command
and the third word contains the address of the
dib or sib (if any)

7 disply reply port, after sending a massage out
port 6 a reply is waited for on port 7

CONNECTIONS.
por t moduIe
8 lexam:l, lexam:8«atom-l, atom:8«accum:2
1 msgmod:8
2 dirman:8
3 dirmantl
4 floor:8
5 floor:l
6 disply:8
7 disply:!

ASSEMBLY: symhed, atommg

SL23B - A SOFTWARE LABORATORY 62

HODULE BUFLIN

FUNCTION: change buffers into lines, looks like a i/o device and connects
to a block i/o device, accepts commands and returns either
with a reply or a series of strings followed by a reply, terminators
of strings are carrage return (possibly followed by a line
feed, which Is includedin the string), a line feed (possibly
followed by a carrage return, which is included in the string) or
an altmode, if the buffer becomes full, the string is
sent on and a new string started.
•******undebugged*******

PARRHETERS: priority- 20888
stack size- 2T7
dib size- 2T*
number of ports- 4
module size- 228 words

PORTS: port name function
8 command input port, the commands are those given

for block i/o. only read-type, non directory
command generate non-error returns, if the command
is read, a buffer is read and then turned into
strings (type field is positive) where a string
has a byte count in the first data word ad the
charactrs in the following bytes,
command reply port, aso the string output port
i/o module command port, commands for the I/o
module are set out this port,
i/o reply port.

1
2

3

CONNECTIONS:
port
2
3

module
i/o module :8
i/o module si

ASSEMBLY: symhed. dskcom

SL238 - A SOFTWARE LABORATORY 63

MODULE PIPii

FUNCTION: tranfer files between two block oriented i/o devices, accepts
commands from the tty (through several modules) and
executes those commands, all commands shown are those that
would be typed on the tty. the command format is:
i<i tem>«-<item I ist>
<item list> ::« tern ! item V item list>
<item> ::- < specific ! specific item>
mspecifio ::» < symport number I unit number I fllenaeme I f i leex tens ion I

switch >
symport number ::• symbolic port number
unitnumber ::« number of device unit
<filename> ::« file name in directory
<fileextension> ::• '-' extension
<swtch> ::- V < 'I' I 'x' ! >z> I 'd> >

the switchs have the following result (all switches must be
on the left side to have any effect)

I - list the directory (ies) of the input devices (right side)
x - use the same file name as given for input
z - zero the directory of the output device
d - delete the files given as input

a typical command looks like:
0;JL:/x4-l;8: ttyin-bin, ttyout,accum,atom, lexam^cl I

(the defaults are the previous object used in that
position - possibly from the previous command line)

/l<-8ji: ,2: ,1;8: ,1:
/d«-0|0: tmp.bak, tmpl, tmp2
1;Is input.pll4-0:l:symhed.pll.atommg,cl I, tai I

PARAMETERS: priority-
stack size- 2t6
dib size- 2T5
number of ports- 12
module size- 600 word

SL238 - A SOFTWARE LABORATORY 64

PORTSi port
e

2,3

4,5
6,7
18,11
12,13
14,15

CONNECTIONS:
port
8
1

2,3
4-15

nam* function
command input port* this port is usad
to racaiva all commands* tha format of tha messages
is internal atom as given in atommg*
command response port* the response of the commands
is output to this port, normaally just a '*' is
output but when a directory is listed, it goes through
this port.
symbolic port 8. commands for the 8th device are sent
through these 2 ports, (see dskcom for formats)
symbolic port 1
symbolic port 2
symbolic port 3
symbolIc port 4
symbolic port 5

moduIe
Iexam:1, Iexam:8 to atom:l, atorn:8 to accum:2
maxel:8
any i/o module
any i/o modules

ASSEMBLY: symhed, atommg, dskcom

- A SOFTWARE LABORATORY 65

MODULE LINBUF

FUNCTIONi accumulate single characters into buffers, this module
looKs like an input i/o module (buffer side) and will
convert a single character i/o module into a buffer
one. the terminator on the input is the control z character,
(026 ascIi decmaI)

PARAMETERS: priority* 20000
stack size* 2t5
dib size* 2t4
number of ports* 3
module size* 170 words

PORTS: port name function
0 i/o command input port, a block oriented i/o command

is accept through this port, for formats
see dskcom.
i/o reply port
character input port, character is the first
byte in the data part of the message

1
2

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY BB

MODULE MS6M0D

FUNCTION: take a numeric input and convert it into a message.
the mmessages ara (currently) a and a •?• (in single
character format messages.

PARAMETERS: priority- 477
stack size* 2t5
dib size- 2t4
number of ports- 2
module size- 64 words

PORTS: port name function
0 command input port, the first word of the message

is used to determine which of the messages to
output.

1 message output port, the messages are in the
single character format (chracter in the first data
byte).

CONNECTIONS
port modules
0 cli:l
1 ttyouttO

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 67

MODULE RCUM18

FUNCTION: accumulate characters until a full line is in the
buffer and then output a string* a line is delineated by 1
of 6 things. (1) a carrage return is the input character (possibly
followed by a line feed, which would also be included in the
line). (2) a line feed is the input character (possibly
followed by a carrage return, which would also be included in
the line). (3) an altmode. (4) an asterisk ("*"), (S) a period
(N.N) or (6) a full buffer.

PARAMETERS: priority- 7777B
stack size- 2t7
dib size- 2t4
number of ports- 2
module size- 1B8 words

PORTS: port name function
8 inp character input port, messages with characters in

low data byte are received through this
port
string output port, the accumulated
strings are sent out this port, a byte count is
in the firstdata byte with the
characters following.

1 out

ASSEMBLY: symhed

SL230 - A SOFTWARE LABORATORY 68

MODULE PCUMii

FUNCTION: accumulate characters into strings, echoing the individual
characters, a string is comprised of characters followed
by a terminator (line feed, carrage return or altmode). if the
terminator is a line feed, a carrage return is also echoed
if a altmode. then a dollar sign ("$") is also echoed
or if a carrage return then a line feed is also echoed
if an attempt is made to input more than 80 characters
in a line, all characters which would make the count
exceed 80 are ignored and the bell on the tty is rung,
in addition, accum inplaments the special characters
control u, rubout, control c and control o. control u
causes the entire current line to be ignored and accum
to effectively restart with an empty buffer, rubout causes
the previous character to be lost, after echoing it between slashes
(the first slash is typed when the first rubout
is detected, and the last slash isn't typed until something
other than a rubout is typed, ex. "acdeedcbcde"
the buffer now contains "abode"), control
c causes a "v" to be done on the floor semaphore, this
is used to release the floor when it is desired to stop
the user modules from running.
conrol o causes a bit to be set so that the ttyout module
stops printing, this bit is cleared by accum
whenever a character is received.
in addition, there are control characters which determine
the output port, control a sends the accumlated lines
out the first output port, control b the second, and a
control d causes an altmode to be sent out the third
output port

PARAMETERS: priority 18887
stack size- 2t7
dib size- 2T4
number of ports- 3
module size- 288 words

EXTERNAL: floor semaphore (floor)
tty status word (ttysts)

SL238 - A SOFTWARE LABORATORY 69

PORTS: port name function
0 character input port, data is Ion byta of massaga.
1 character echo port, format is the same as port 0.
2 first string output port, first byte of message

is character count, characters are in the consecutive
bytes

3 second string output port, format same as port 2
4 third output port, only an altmode can be sent

out this port, the format of the message Is the
same as those of ports 2 and 3

CONNECTIONS!
port modules
0 ttyin
1 ttyout

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 78

MODULE ACCUM

FUNCTION: accumulate characters into strings, echoing the individual
characters, a string is comprised of characters followed
by a terminator (line feed, carrage return or altmode). if the
terminator is a line feed, a carrage return is also echoed
if a altmode, then a dollar sign (N$ N) is also echoed
or if a carrage return then a line feed is also echoed
if an attempt is made to Input more than 80 characters
in a line, all characters which would make the count
exceed 80 are ignored and the bell on the tty is rung.
In addition, accum inplaments the special characters
control u, rubout, control c and control o. control u
causes the entire current line to be ignored and accum
to effectively restart with an empty buffer, rubout causes
the previous character to be lost, after echoing It between slashes
(the first slash is typed when the first rubout
is detected, and the last slash isn't typed until something
other than a rubout is typed, ex. "acdeedcbcde"
the buffer now contains "abcde"). control
c causes a Mv" to be done on the floor semaphore, this
is used to release the floor when it is desired to stop
the user modules from running.
conroJ o causes a bit to be set so that the ttyout module
stops printing, this bit is cleared by accum
whenever a character is received.

PARAMETERS* priority- 10007
stack size- 2T7
dib size- 2T4
number of ports- 3
module size* 200 words

EXTERNAL: floor semaphore (floor)
tty status register (ttysts)

PORTS: port name function
0 character input port, data is low byte of message
1 character echo port, format is same as port 0
2 string output port, first byte of message

is character count, characters are In the consecutive
bytes

CONNECTIONS:
port modules
0 ttyin
1 ttyout

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 71

MODULE BINPXM

FUNCTION: accumulate Individual binary characters into an
absolute binary file (block oriented i/o). checks the
checksum of the file and elimentates unecessary characters, this
module acts just like a byte oriented loader that

puts the bytes into
buffers instead of core (retaining the control bytes).

PARAMETERS: priority 28068
stack size- 2t5
dib size* 2t4
number of ports* 3
module size* uords

PORTS: port name function
8 command input port, the input from this port is

a block oriented i/o command message, the command
generates a return (always) which is a error return
if the command is either directory oriented or
output oriented, (commands are gven in dskcom).
command reply port, replies to the block oriented
commands are sent out this port,
binary byte Input port* messages received through
this port are assumed to contain one binary byte
in the first byte of the data area.

1

2

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 72

MODULE ACUME

FUNCTION; accumulate characters until a full Una it in tha
buffer and than output a string, a Una is dalinaatad by 1
of 4 things, (1) a carrage return is the input character (possibly
followed by a line feed, which would also be included In the
line), (2) a line feed is the input character (possibly
followed by a carrage return, which would also be Included In
the line), (3) an altmode or (4) a full buffer.

PARAMETERSt priority- 77778
stack size- 2t7
dib size- 2t4
number of ports- 2
module size* 188 words

PORTS t port name function
8 Inp character input port* messages with characters In

low data byte are received through this
port
string output port, the accumulated
strings are sent out this port, a byte count is
in the firstdata byte with the
characters following.

1 out

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 73

•

MODULE SPLIT

FUNCTION! take an input Massaga and produca two copias of it.

PARAMETERS: priority- 777
stack siza- 2tS
dib siza- 2t4
number of ports- 3
module size- 28 uords

PORTS: port name function
8 message input port, input Is accepted through

this port.
1 first message output port. an exact copy of the

input message is sent out this port
2 second message output port, and exact copy of the

input message is sent out this port

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 74

MODULE DIRMAN

FUNCTION: to manage the sib list, this nodule handles all requests
to find, delete, or add modules to the running system.

PARAMETERS: priority 700
stack size- 2T5
dib size* 2t4
number of ports* 4
module size* 600 words

PORTS: port name function
8 req directory request port, a message is received on

this port that tells the directory manager what to do
valid request codes are
0 - lodnxt / load next sib on tape into core and link it onto

siblist, and return its adress. if the sib
is alreaady on the siblist the adr of the old
version will be returned

1 - f n d s i b / s e a r c h l i s t f o r s p e c i f i e d s i b a n d r e t u r n i t s a d r e s s

2 - f n d l o d / s e a r c h s i b l i s t f o r s p e c i f i e d s i b b a n d r e t u r n i t s

a d d r e s s , i f n o t f o u n d s e a r c h t a p e f o r s p e c i f i e d s i b ,

l o a d it, l i n k it on t h e s i b l i s t and r e t u r n

its adress.
3 - delsib / delete specified sib from siblist
4 - detail / delete all unused sibs from siblist

1 r e p r e p l y p o r t , t h e r e p l y m e s s a g e n o r m a l l y j u s t c o n t a i n s
t h e a d d r e s s of t h e r e q u i r e d sib. or Is p o s i t i v e ,
if a error occurs the r e t u r n code corresponds
to an address in the i/o page,
valid error codes are:

0 checksum error
-1 no more core
-2 too many blocks in tape sib
-3 not enough blocks in tape sib
-4 sib not found
-5 sib in use
-6 invalid request

2 lod loader communication port, messsae just contains
the filename of the module required.

3 cnt loader reply port, first word is 0 if an error, otherwise
it contains the address of the loaded module.

CONNECTIONS:
port module
2 loader:0
3 loader:!

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 75

nODULE FILHflN

FUNCTION! this module handles rafarancas to files, it
works in terms of directories and forms theinterface
between the user and the directory device controler.
an a tempt has been made to keep it device independent
and along this line it makes no assumptions about
the sizes of the directories or the positioning
of the entries in the directory, rather this information
comes from the individual device handler.

PARAMETERS: priority 777
stack size* 2TS
dib size* 2t4
number of ports* 4
module size* 378

PORTS: port name function
8 the format of the user input is (specifying only

the data)

tdevice I command t the command for the file handler
T******************T and the device number
t data words t any required data
t******************t

the required data varies with the command,
for the directory command a block number is needed
that tells which directory block is wanted
for the open and enter command a file name is
needed,and for the write command a buffer
address and size is needed

1 the user gets back the address of the filled buffer
even if its his, if the transfer was sucessful
and a 8 if an error occured with the next word
telling the source of error.

2 device controler output port, the format of the output
v a r i e s with t h e c o m m a n d , for m o r e i n f o r m a t i o n s e e
a device controler (dtacon)

3 device controler reply port.

CONNECTIONS:
port module : port number
8 user module
1 user module
2 devcon:8 (device controler)
3 devcon:! (device controler)

ASSEMBLY: symhed, dskcom

SL230 - A SOFTWARE LABORATORY 76

flODULE DTACON

FUNCTION: dec tap* device controler. it takes input fro* the file handler
in terms of a directory entry, the various commands cause
this module to read the directory, write it , update
it, read or write a block in a file, automatically
keeping track of space on the dectape.

PARAMETERS: priority- 777
stack size- 2t5
dib size- 2T4
number of ports* 2
module size- 568 words

PORTS: port name function

t unit t comd t
t***************t
t block number t
t***************T

the other formats and the replys are given in the
interface language file - "dskcom"

a command input port, the format of the command various
with the command, the simplest is the request for a
directory block, this command message has the format
o f: t****#**#*#*****t

1
2 dectape handler command ouput port, the message that

is sent out this port contains commands for the device
handler, see "dtahan" for the format of the messages,
device handler reply port

reply

3

CONNECTIONS:
port module : port number
8
1
2
3

filhan:2
filhan:3
dtahan:8
dtahan:!

ASSEMBLY: symhed, dskcom

- A SOFTWARE LABORATORY 77

MODULE DTAHAN

FUNCTION: module to handle the direct i/o with a dec tape.
doesn't do any work on the data received, justs put it in
the dectape registers and then waits on the dec tape i/o
semaphore, if an error occurs the operation Mill be repeated
before giving up.

PARAMETERS: priority* 10887
stack size* 2T5
dib size* 2t4
number of ports* 2
module size* 188 words

EXTERNAL: dectape connamd register (dtacmd)
dectape semaphore (decsem)

PORTS: port name function
8 command input port.the format of the

message in is:

t header t
t of t
t message t
/ /
/ /

T**«*****4ugu»********t
t dev num ! command t
T******ttt***********t a one word address
t block number t
t*******************t
t memory address t where in core it goes

t word count t negative of number of
t*********************t words to transfer
the commands are: 1*> read, 2*> write
all others are errors
reply port, when finished, a mssage is replyed
that indicates the status of the requested operation
if the operation suceeded then the command byte is
set to zero, otherwise if an error the byte is
negative and the second data word has the following
meaning:

SL230 - A SOFTWARE LABORATORY 78

bit

15
14
13
12
11
18
9
8

CONNECTIONS:
port modulo
8 dtacon:2
1 dtacon:3

meaning

error
parity error
mark track error
device is write locked
select error
block miss (a soft error)
data miss(bus was busy, soft error)
non-ex istant memory

ASSEMBLY: symhed. dskcom

SL238 - A SOFTWARE LABORATORY 79

NODULE DSKHAN

FUNCTION: module to handle the direct i/o with a disk
doesn't do any work on the data received, justs put it in
the disk registers and then waits on the disk i/o
semaphore, if an error occurs the operation will be repeated
before giving up.

PARAMETERS* priority- 1887
stack size* 2t5
dib size- 2t4
number of ports- 2
module size- 185 words

EXTERNAL: disk semaphore (dsksem)

PORTS: port name function
8 command Input port.the format of the

message in is:

t header t
t of t
t message t
/ /

/ /

t«***********«******t
t dev num I command t
t*******«***********t a one word address
t block number t
t***#«********«***#«T
t memory address t where in core it goes
t*****************«*t
t word count t negative of number of
t*«*****«*****«*****t words to transfer

the commands are: 1 » read, 2-> write
all others are errors

to allow word accessing of the disk an alternate form of tha
message is allowed, the difference is that
the commands are negative 1-3 with 3 bing the
write check.the alternate form of the message
is:

SL238 - A SOFTWARE LABORATORY 88

t
t
t
/
/

h«ad«r
of

message

t
t
t
/

/

t*******************t
t dav num ! command t
t*******************t a ona word address
t disk addrass t describing the location
t*******************t on disK desired
t dslc offset t offset to desired word
t*******************t
t memory address t where in core it goes

t word count t negative of number of
T*******************f words to transfer

the format of the internal disk address is

**
I I ! I

device track number block number
number 8 - 177 8 - 7
8 - 7

reply port, when finished a message is rep Iyed
that indicates the status of the requested operation
if the operation suceeded then the command byte is
set to zero, otherwise if an error the byte is
negative and the second data word has the following
meaning!
bit

15
14
13
12
11
18
9
8

meaning

error
parity error
mark track error
device is write locked
select error
block miss (a soft error)
data miss (bus was busy, soft error)
non-ex istant memory

CONNECTIONS:
port
8
1

modules
dskcom 2 (or dtacon:2)
dskcom 3 (or dtacorn 3)

ASSEMBLY: symhed. dskcom

SL238 - A SOFTWARE LABORATORY 81

MODULE DISPLY

FUNCTION: display ralavant information about sibs and
dibs, for sibs this includas tha names of all
incarnations and the port names, for dibs the
information is the parent sib name and the number
and name of all other dibs connected to each port

PARAMETERS: priority* 1888
stack size* 2t5
dib size- 2t4
number of ports- 3
module size- 388 words

PORTS: port name function
8 command input port, the first data word is

assumed to be a radix 58 command word,
if the second character of the command
is a "d" then the displaying is done for
a dib. otherwise for a sib. the second
word of the message is assumed to be the
addrress of the object to be displayed, if
the address is zero then the
names of all the possible objects is displaed.
(i.e. if the command was for dibs, then all
the dib names are displayed)

1 reply port, when finished processing the
command a reply is returned via this port,
the format has no meaning.

2 display output port, all the information
is oututed to this port for later processing,
the format is internal, i.e. radix 58 names, etc.

CONNECTIONS:
port module
8 cli
1 cli
2 maxel

ASSEMBLY: symhed, atommg

SL230 - A SOFTWARE LABORATORY 82

MODULE ATOM

FUNCTION: produce atoms from strings, an atom is defined as:
<atom>::« < id> I <numer ic> (<spac i a icharactar> I<breakcharac tar>
<id>::« <ietter> ! <id> (<ietter>!<number>)
<Ie 11er>::-abcde fghi JKImnopqrs tuvuxyz
<number>::-1234567898
<numer i c>:: -<number> I <numer i cxnumber>
<break characters:• <cr>)<lf>!<aitmode>i<last character>
<spec i a(charac ter>::-<otherw i se>

PARAMETERS: priority. 777
stack size- 2t5
dib size- 2t4
number of ports- 2
module size- 288

PORTS: port name function
8 string input port, low data byte is a character

count with tha characters in the consacutinva bytes
1 atom output port, for numeric, id or break charac tar

the low byte is a character count with characters in
consecutive bytes, for special characters the low
data byte is the character.

CONNECTIONS:
port
8

modules
accumulation modules (accum,acuml8,acumll,acume,Iinbuf)

ASSEMBLY: symhed, atommg

SL23B - A SOFTWARE LABORATORY 83

MODULE LEXRM

FUNCTION: convert atoms into internal format, internal format
depends on the type of the atom, for special characters and
break characters nothing is done, alphanumeric are converted
into radix 58 and numeric atoms (assumed to be in octal)
are converted into binary numbers

PARAMETERS: priority-
stack size- 2t5
dib size- 2T4
number of ports- 2
module size-

PORTS: port name
8
1

CONNECTIONS:
port
8 atom

function
atom input port,
lexeme output port

module

ASSEMBLY: symhed. atommg

SL238 - A SOFTWARE LABORATORY 84

MODULE TTYIN

FUNCTION: handle tha input from tha teletype, initiates the tty for input
and waits on the tty Input semaphore.

PARAMETERS: priority* 17780
stacK size* 2t5
dib size* 2t4
number of ports* 1
module size* 32 words

EXTERNAL: tty status register (tOlcs)
tty buffer register (tOlcb)
tty input semaphore (ttyrd)

PORTS: port name function
8 inp character output port, character is In the low

byte of the message

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 85

MODULE TTYOUT

FUNCTION: handle output to the teletype, simulates the
necessory functions for form feed (8 line feeds), vertical
tab (4 line feeds), horizontal tab (tab stops every 8
spaces) and control o (stop printing until control o bit is
cleared.

PARAMETERS: priority- 18888
stack size* 2t5
dib size* 2T4
number of ports* 2
module size* 158 words

EXTERNAL: tty status register (t8ps)
tty output buffer register (t8pb)
tty output semaphore (ttywrt)
tty status word (ttysts)

PORTS: port name function
8 input port, format is either a single character, string,

of buffer, if single character, then the character is
the low data byte, if a string, then the low data
byte is a character count with the characters in the
consecutinve bytes or if a buffer then the tty output
l o o k s like any other output only i/o device (see
the file dskcom for particulars)

1 reply port if input was a buffer mode message

ASSEMBLY: symhed, dskcom

SL238 - A SOFTWARE LABORATORY 86

riODULE OUTBIN

FUNCTION: to help calculate the radix 50 valuea of names by changing
tthe type of radix50 messages to numeric (binary) and
sending on two binary numbers (one for each three characters.

PARAMETERS: priority-
stack size- 2t5
dib size- 2U
number of ports- 2
module size- words

PORTS: port name function
0 mesage input port, only type of

alnb50 are affected by passing through
this module, (as given in atommg)

1 message output port

CONNECTIONS:
port module
1 maxeI:0

ASSEMBLY: symhed. atommg

SL238 - A SOFTWARE LABORATORY 87

B i bIiograpy

[1] Clark, W. f "Macromodular Computer Systems," SJCC 87.

[2] Bell, G., et al., "The Design, Description and Use of DEC
Register Transfer Modules (RTM)," Computer Science Department
Report, Carnegie-Mel Ion University, Oct. 1971.

C3] Krutar, R., private communication related to his Ph.d. thesis,
Carnegie-Mellon University, 1971.

[4] Jones, A. and Habermann, A. N., "Interprocess Communication
Mechanism," Internal Memo, Computer Science Department,
Carnegie-Mellon University, 1970

[5] Wulf, et al.. "Bliss Reference Manual," Computer Science
Department, Carnegie-Mellon University, revised April, 1971.

[6] Dijkstra, E., "Cooperating Sequential Processes," Technological
University, Eindhoven, 1965.

[7] Wirth, N., "Program Development by Stepwise Refinement," CACM,
Vol. 14, No. 4, (April, 1971).

[83 Bell, et. al., "C.mmp: The CMU Multimini processor Computer,"
Department of Computer Science, Carnegie-Mellon University,
August 1971.

t93 Denis, J. B., and Van Horn, E.C., "Programming Sematics for
MuItiprogrammed Computations," CACM 9, 3 (March 1966), 143-155.

[10] Dijkstra, E.W., "Cooperating Sequential Processes," Programming
Languages, (F. Genuys, ed.), Academic Press (1968), 43-112.

[113 Dijkstra, E.U., "The Structure of THE MultiprogramminG System,"
CACM 11, 5 (May 1968), 341-346.

[12] Hansen, P.B., (ed.), RC4000 Software Multiprogramming System,
A/S Regrvecentralen, April. 1969,. Falkoner. Alle 1, - Copenhagen F.
Denmark.

[13] Lampson, B.W., "Dynamic Protection Structures," Proc. AFIPS
Conf. 35 (1969) FJCC.

[14] Jones, A.K., Private Communication, Carnegie-Mellon University,
1971.

[15] Parnas, D.L., "Information Distribution Aspects of Design
Methodology," Special Report, Department of Computer Science,
Carnegie-Mellon University)February 1971)

SL238 - A SOFTWARE LABORATORY 88

[IB] Parnas, D.L., "A Technique for Software Module Specification
with Examples," Special Report, Department of Computer Science,
Carnegie-Mellon University (March 1971)

[17] Parnas, D.L., "On the Criteria to be Used in Decomposing
Systemsinto Modules," Special Report, CMU-CS-71-101, Department
of Computer Science, Carnegie-Mellon University (August 1971).

[18] Dijkstra, E., "A Constructive Approach to the Problem of Program
Correctness," BIT 8 (19B8).

[19] Wulf, et.al., "Bliss/11 Reference Manual," Department of
Computer Science, Carnegie-Mellon University, 1971.

[20] Hansen, P.B., "Short-term Scheduling in Multiprogramming
Systems," Third Symposium on Operating Systems Principles,
October 1971.

Security Classification
DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and Indexing annotation must be entered when the overall report la clasaitied)
1 • O R I G I N A Tl N G A C TI v t T Y (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1 • O R I G I N A Tl N G A C TI v t T Y (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2b. G R O U P

3. R E P O R T T I T L E

SL230 - A SOFTWARE LABORATORY: INTERMEDIATE REPORT

4 . D E S C R I P T I V E N O T E S (Type of report and Indue tve datee)

Scientific Interim
5. A U T H O R (S) (Flret name, middle initial, name)

W. Corwin, W. Wulf

« . R E P O R T D A T E

May, 1972
7a. T O T A L N O . O F P A G E S

89
7b. N O . O F R E F S

20
Be. C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769

9a, O R I G I N A T O R ' S R E P O R T N U M B E R (S)

c- 61102F 9b. O T H E R R E P O R T N O (S) (Any other numbere that may be a*aifried
thie report)

* 681304
10. D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

11. S U P P L E M E N T A R Y N O T E S

TECH OTHER
12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Va. 22209

This report describes the resources and data structures of SL230 (Software
Laboratory 230) and the designing of SL230 modules and systems. SL230 is a simple,
multiprocess, operating system used to create an environment suitable for the con
struction of experimental programming systems for educational and research uses.

DD ,F°RvM,.1473
Security Classification

