NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Guide to 15-1808

R. N. Chanan

Department of Computer Science
Carnegie-Mellon University

August, 1972

Contents
2. Introduction
4. Textbooks
7. Grades and Grading
8. Palicy Statement on Cheating
9. Computers and Cnmpuiing'
3. What is a "Selution” to a Problem?

11. Programming Problems: How 1a kecp these from ruining your
weekends and your heaith

12. How to Attack a Programming Assigninent
15. Array Walking

18. Some Words about Recursion

26. Preface to the Preblems

28. Computing the Greatest Common Divisor
38. Solving Quadratic Equations

33. A Birthday Problem

37. A Nest of Squares

48. Evaluating Ariihmelic Expressidns

48. A Monotane Sequénce

58. Gaussian Elimination

52. Matrix Multiplication

56. The Eight Queens Problem

57. The Towers of Hanoi

68. The Coin Problem

84. Counting Lattice Points

Introduction: Why and How this Guide Came to Be

I wrote these payes because blank expressions bother me! By that I mean, I don't
like to see a classroom filled with people who are either unwilling or unable to
answer a gquesiion and who manifest their state of mind by a sort of nebulous stare -
the blank expression. This unhappy situation is prabahly just as disconcerting 1o
students as it is o me. The reason for i, I think, relates to the nature af the
questions which I ask. They're meant to be non-trivial. I feel that class time is
valuable and shouldnt be wasted by simply presenting material which can be read from
a textbook. Instead, time should be spent discussing the implications and intent of
the assignment. This means answering guestions and solving probiems. Unfortunately,
existing course materials - textbooks and programming problems - don't seem to prompt
much inquiry as to either the implications or the intent of an assignment. Students
seem to think it's sufficient to simply read some assigned text and digest only its
content. Hopefully, this little guide will help change that attitude.

In the pages which follow, I've been critical of what seems 1o be about the best
material for an introductory course in computing. As I see it, the marketed
texibonks are abysmally bad. They tend not to provake much inquiry into what
programming is about, and frequently address nothing more than the syntax of a
programming language. Hence, I have iried to expose some essential ideas from amid
all the verbiage.

Note, however, that this guide is NOT a textbook. It was written to
specifically accompany 15-188 at CMU. Its primary purpose is to provoke questions
about programming and problem solving; nothing more, nothing less.

I also emphasize the importance of asking gquestions.
ASK QUESTIONS!

Guestions allow your instructors to talk about issues which are impaortant to you.
They can also prevent him from wasling your time while he discusses things you
already understand. This guide should prompt lots of questions.

Also included are some programming problems and their analyses. Each is
accompanied by a few sentences describing what motivated ‘me to inciude the problem
and what I expect you to learn from it. The lexis of complete, running PLAGD
programs accompany them all. Understand them!

There are even a few pages of motherly advice about haw ta allocate your time
while working on the problems, along with some words abaut how to prepare and submit
programs.

R. N. Chanon
August, 1972

~

Some YYords about 15-188

15-188 is offered every semester 1o students of engineering and science at CMU.
Because there are no prerequisites for 15-180@, and because both freshmen and graduate
students take the course, the backgrounds of the students are diverse - ta say the
least. Therefore, since essentially the only information your instructor has abaut
you is your name, it is vital that you ask questions about the material which you
don't understand - more abeut this later.

The purpose of this course is to teach you to solve problems using a digital
computer. By the end of the course, you should be able to:

1. Recognize when a computer is an appropriate tool for sclving a problem.

2. Define a problem precisely and formulate an explicit process for solving
it

3. Write such a process as a program in the PLAGO programming language.
4. Determine whether a program actually does the task it was intended to do.
5. When a program does not perform as expected, alter it so that it daes.

The course tries to present a large number of problems and asks how a computer
might be used 1o help solve them. Hente, problem salving and the use of a computer
as a tool to help solve problems is the rcal thrust of the course. The details of
creating syntactically correct PLAGO programs, punching or marking tacds, and
submitting programs are of only ancillary interest.

The course meets three times a week for one lecture and two problem
solving/question answer sessions - called recitation sessions. The lectures are
intended to present "general”, hut vital information about bath problem solving and
programming. They are not to be ignored. Recitation sessions will be used hy your
instructor to discuss PLAGOD, probiems, material trom the lectures, and, in general, .
anything of interest to the course. These sessions, however, should be driven by
guestions. If you dan't ask guestions, there are very few things which an instructor
can do except give guizzes, read to you {rom the texibook, or present more problems.
If you don't ask questions, recitation sessions become a waste of your time. If you
don't intend to ask any guestions, you might just as well not go to class. Your
presence will just add another warm body to an already over-heated classroom.

Besides class meetings, you are asked to write algorithms to solve several
prohlems and to represent these algorithms as PLAGO programs and o runa them on CMU's
computer. They are important. Do them!

Finally, 15-188 reguires that you take a final examination and a mid-term. See
the section which discusses grades and grading to find out how these exams and the
rest of your performance will be evaluated.

Textbooks: ¥Yhich to Buy and What They're Good For
“-- (Besides the obvious of coursel)

Buy These:

(1) A Short Introduction to the Art of Programming
by E. W. Dijksira

{2) PL/I Programming in Technological Applications
by G. F. Groner

(3) PLAGO/368 User's Manual

(4) A Guide to 15-188
by R. N. Chanon

YYhat they're good for:

The book by Dijkstra (referred to hercafter as EWD316) is the hest intraduction
to programming with which I am acquainted. It addresses what seem to be the
fundamental issues of the discipline in a clear, concise and carelul way. The text
isn't encumbered with the syntactic and semantic details of a particular programming
language. He emphasizes the task of finding and developing algorithms as THE
fundamental issue in programming. 1 think the book is excellent!

Unfortunately, as a texthook, EWD316 can be used in the wrong way. First of
all, material is presented in such a coherent way that a student might gain a false
sense of security aboul his understanding. It all looks so easy - especially in the
first three sections. Don't be mislcad, however. The text is somewhat like the
Bible in the sense that it is easy to read but difficult to understand in terms of
the real depth that is present. Even though the assignments from the book will be
short, study them carefully. Don't fall inte the trap of feeling “cheated” it you
think you understand the text after jusi one reading. The chances are, you really
dont]

Secondly, the book contains ioo few exercises. In the pages which follow, that
problem will hopefully be remcdied. :

The book by Groner, "PL/l Programming in Technaological Applications”, is meant
to be a source for information as to the syntax and semantics of the programming
language which you will nse to implement your aignrithms. It cantains numerous
completely warked examples, as well as carefully prepared summaries of the features
of the language. The examples are related to many algorithms which are commenly used
in engineering and science. Many of the algorithms, however, are paerly developed.
The book also contains an enormous amouni of verbiage which won't be relevant to the
caurse. Therefore, you shoull rely on your recitation insteucter to direct your
attention to those parts which are important.

Lectures

The leciures for 15-188 present information of general relevence to camputing,
problem solving, and the administration of the course. In the first twa categories,
most of the detail is omitted - rightly so - and left to the recitation sessions. In
particular, the lectures will tell you how to go about solving the problems. You may
not believe it, but the way you approach a programming assignment can have a
4remendous effect an the amount of time you spend on it. In the last categary,
announcemenis of due date changes for the programming problems are made. The
lectures are carelully planned 1o focus your attention on what we feel are the
important issues. They are imporiant. The lectures can also be inspirational -
indeed, there are those who believe that that's all a lecture can be.

Attend them.

Recitation Sessions

Recitation sessions should be driven by questions.

Enough! Be advised.

The PLAGO manual describes the dialect of PL/1 in which you will write your
programs. The syntactic and semantic descriptions arc clear, but the examples of
complete programs which appear in the appendix are bad.

Do you understand what the phrase "syntax of PL/C" means? Are you going to ask
about i?

Grades and Grading Policies

You will"have the following opportunities e EARN paoints:

sProgramming Problems

2 at 38 points 60
4 at 28 points 89
6 at 18 points 68

2008

xExams

Midterm (mean about 55-68) 188
Final (mean about 118-128) 280

3808
=Recitation
Recitation performance o4
=Basic points for semesier 558 points

You may earn bonus points for turning the 2@ and 38 point preblems in early:
1 point for each twao days
(upto a ceiling of twenty per-cent of the value of the problem)

You will have the following opperiunities to LOSE peints:

«Cheating: all credit for thé thing on which you were cheating
#«Turning problems in late:

1 point for each two days
»Computing too much:

one point for each doilar more than the limit
used in each month

The final grade will be assigned on the basis of the following scale

t

475.550 A
368-474 B
258-359 C
288-249 D |
808-288 R g

Policy Statemcnt on Cheating and Course Help

With regard to homework, quizzes, and exams, cheating wil! not be tolerated. Anyone
caught cheating on a problem will reccive zera credit for the problem. Anyone caught
cheating on an exam will recieve zera credit for the exam. It is recognized that
student B can cheat from student A wiihout A's knowledge. In such a case, A must
prove his innocence. Protect your hard work from parasites!

When you come to an exam, do NOT sit next to the people you have studied with.
Your argument that your answer is just like your friend's because you study together
will be much mere convincing if you don't sit together during an exam.

Soine students will find themselves unable to camnplete a problem on time or at
all. Such situations allow the student- three chaices: first, copy sameone else's
project and hope he is not caught; second, give up and put the course; third, see
your instructor. The second implics an R or a withdrawal, if possible. We intend
that the first case will also imply an R. Hence, the student’s logical choice should
be the third alternative (it can'l be worse). Your insiructor's door is always open,
and the results of a visit may prove beneficial.

Postponements of due dates are possible. If you turn in your assignments late
without discussing the situation with your instructor, your grade will be decreased
by an appropriate number of points (see ahnve).

You may discuss all problems (NOT exams!) unless atherwise specified by your
instructor. Student discussion is fruitful and encauraged, but all programs must be
written by the individual student. That is, you may talk with anyone (including your
instructor) about assigned problems, but the actual writing al the program must be
done by you.

Compuiers and Camputing

The programming language taught in this course is PLAGO (FORTRAN conversion will
be available at the end of the semester for those wha want it). PLAGO runs on CMU's
IBM 368 model 67. Unfortunately, computer time is a scarce resource and it is not
possible to provide each student with an unlimited amount of computer time.

Therefore, each student in 15-188 will be expected to plan his time so that he can
live within two kinds of restrictions:

1) A limit on the number of programs run each day. This will be enforced by the
360: after you have used up your limit, it won't run any more sf your pragrams.

2) A limit on the dollar value of your compuier usage each month. This will be
enforced by your instructor: you ldse one point for cvery extra dollar each
month. The cost of each program is printed at the end of each job, soc YOU can
keep track of your usage. The exact limits will be announced at the first
lecture. The cost limit will be generous - mast students should require only 75
per-cent of the allotment.

Note that these are upper limils and you are NOT guaranteed to be able to get this
much service. You are compeling with many olher users {or a resource that is in
short supply. Indeed, there will be times {especially the day betore a problem is
due) when the system tan't give as much service as is requested.

If you are excited about computing and want to work on extra problems of
personal interest, see your instructor. Ye will try to make arrangements for you to
use one of the less congested computers on the campus.

What is a "Selution” to a Problem?

A solution to a programming problem is a working, documented program. It must:

1) get the right answer, even on sperial cases and with bizarre sets of
data we might construct.

2) be reasonably efficient (don't go overboard on this point!)
3) include program documentation, ie. your working plans for the problem.

This documentation should contain:

1) About a page of undersiandable English prose explaining the
organization of your program, what the impartant variables are
used for, and the representation of the data (eg. "X is a FIKED
‘array of length 18 which contains the x coordinates of the

input™).

18

2) A list of the procedures you will use, with a short
description of what each does and how they are related.

3. A flow chart or structured description {as done often in

lecture) for each such procedure.

The credit for the problem will be split between the program and the
documentation as follows

if the problem The program The dacumentation

is worth... is worth... is worth...
38 28) 18
28 15 ° |
i9 8 2 |

n

Programming Problems - How to kcep these from ruining
. your weekends and your health

Each semesier, 15-188 students are required to write a number of programs.
These assignments differ from ordinary homework problems in that they require
complete, running, and correct programs as solutions. You can't turn in slipshad,
partially complete programs and expect much partial credit. This semester, your
pragrams are 1o be written in PLAGO - a dialect of PL/I. The programmming prublems
are important. Much of what you will learn from 15-188 will be a direct consequence
of the experiences you have as you write and debug solutions for them. Sadly enough,
however, students complain about the difficulty of the problems and that they have to
spend many hours finding and debugging solutions. My answer ta this complaint is
quite simple:

Your approach is probably wrong.

(That's not very comforting, but it's still my reply) With very lew exceptions, the
analysis required to solve the problems is simple, if you are willing to analyze the
problem systematically and completely. There is no need to spend vast amounts of
time. 1f, however, you do spend lots of lime sclving the problems, see your
recitation instructor and explain your difficulty. He might have some suggestians.

Despite rumors to the contracy, these programming assignments are intended to
force you io do the following:

(1) Find or understand an algorithm which solves the problem.
(2) Represent the algorithm as a PLAGO pragram.

{3) Debug the program.

(8) Convince yourself that the program solves the problem.

Items {1} and (4) are the most important issues in the abave process, in the
course, and in essentially ail of programming - and for which I can’t give you
algorithms. Itcms (2) and {3) can be handled in a fairly mechanical way and will
present only minor difficulties aiter you've written and run a few programs.

So, it would seem that the ohvious thing to do is to spend enough time to find a
complete and correct algorithm so that the remaining ilems require only minor
attention. An hour or two af thaught about the problem BEFORE writing any PLAGO
statements will probably save you several hours of the total time spent finding a
solution. Do this and your tenure as a student of 15-188 will only be a minar hassle

- who knows, you might even like it!

12

How to Attack a Programming Assignment

Imagine that you have becn assigned a problein - nat a keypunching exercise, but
a real programming problem. How can the problem be solved? Whole books have beer.
wrillen to help answer this question. One of the best is the small volume by George
Polya entitled "How to Solve It". I rccommend it as a general aid to analyzing the
programming problems. More specilically, I can offer several suggestions and refer
you to the programs in a later part of this guide. guide.

Things to do:
{1) Make sure that you undersiand what the problem asks.

Usually, the problems are posed fairly well. Hence, understanding what a
problem asks isn't difficult. However, be certain that you really
understand the problem statement before procecding to the next step.

{2) Find and understand an algorithm which solves the problem.

This is the most important part of the wheole processt It involves, among
other things, finding an appropriate data structure and control structure
for the prolilem.

(3) Cast your algorithm in a step-by-step way using the ideas of structured
prograinming.

This tends 1o clarify your ideas and will frequently paint out ditficulties
with your griginal algorithm. Never feel too proud to write a flowchart or
a sequence of structured statements. The stepwise refinement technique due
ta Dijkstra and Wirth is particularly appropriaie ta this step.

{(4) Write a PLAGO program which is equivalent to your flowchart or structured
stalements.

This step can be performed in a fairly mechanical way - it's easy. It is
sometimes helpful to write several drafts of the program. Embellish your
code with lots of informative comments. These comments are exceedingly
usefull Comments help you to understand the mess you've created if you
contract mono-nucleosis and must put the program aside for awhile. Your
final draft should be complete (including system cenirol cards). This

really means that if you are lucky enough to have a gir! {riend who is
willing to punch your cards for you, she should never have ta ask yuu what
characiers to punch.

(S) Go ta the third floar of Science Hall and punch or mark your cards.
This is annther easy step. Examine your cards carefully before you submit

them to make sure that thcy exactly represent your final draft. This quick
check can sometimes save you several submittals.

13

{6) Run your program.

I it doesn’t run correctly, correct it and run it again. Don't, however,

just change the program “randomly”, Think about what went wrong and haw
changes will affect the program. Repeat this pracess until you are

convinced that your program behaves as it should (see the comments belaw).
Make sure that you have considered all the spetial cases and nat just the
ones which our data gives youl

One final important point: TRY TO START WORKING ON A PROBLEM AS SOON AFTER IT IS

{ t There are almost always two problems pending at the same time.

Things not to do:

(1) Don't try writing a PLAGD program from scratch. It's almost certain to be
wrong. Do so at your own risk. It has been my experience that regardless
of the size or complexity of the problem, a set of structured statements or
flowcharts is helpful. Should you decide to ignore this warning, expect
the following things to happen:

(a) Your program wiil contain more syntactic and logical errors than the
carresponding result had you followed the steps abave.

{(b) You can expect 1o make many changes in the program before it finally
runs correctly - if it ever runs correctly.

{(t) You can expect to spend lois of time at the computation center
submitting programs and waiting for output. The computation center is
very dull, and, frankly, isn't a very pleasant place to be.

{d) Your program will be difficult to understand, not only by someone
else, but also by you.

(e) Your program will tend to be longer than the corresponding program
produced by the steps above. It will also tend to cost more to run.

() Your understanding of programming and probiem salving will tend to be
weaker than had you followed the above steps - hence your grades will
tend to be lower than they could have been.

That's all I have io say about this maiter. Be warned.

(2) Don't spend lots of time correcling and re-correcting a program that
doesn't work. The point of diminishing returns can approach quite rapidly
and you can easily waste time in an unfruitful pursuit. Time is best spent
making sure that your algorithms are correct!

14

{3) Don't wait until the day before a problem is due to start solving it. You
....are almast certain not fo have a soluliun in lime. Programming assignments
are not like ordinary homework exercises. Not only must you solve the
problem, but you must also compete fur a valuabie resource - computing time

- to demonstraie that your program is right. Instead, start step (1) on
the day the problem is announced, and finish it as soon after that as
possible.

(4) Don't iry te run programs the day before a problem is due. The user area
is mobbed by people who have neglected the problem. It is almast
impossible to get anything done under these circumstances.

That's all the motherly advice 1 wish to give abaut programming problems. Write
below the phrases from the above passages which you don't understand, and ask about
themn.

15

Array Walking

In addition to the simple variable, data may alsa be stored into objects known
as ARRAYs. An array is nothing more than a name - just like one for a simple
variable - which identifies a whole collection of simple variables. Names become
associated with array data structures by declaring them as such. Thus in PLAGO

DECLARE A(8:188) FIXED;

declares A to be an array of elements A(B), A(l), .. ., A{188) . Arrays are
particularly useful because the symbols which name array elements can frequently name
more than just one element. Thus

AD

names an element of A, designated by the value of I. Thus if the 181 elements of A
contain numeric values, the {ollowing fragment camputes, respectively, the minimum
and maximum values contained within A.

/» compute the maximum value in A and store it inta MAXA.
compute the minimum value in A and store it into MINA »/

/= set MINA and MAXA to the value of an elcment of A »/
MINA, MAXA = A(B) .

DO I =1 to 188;
IF A{l) < MINA THEN MINA = A{l);

ELSE IF A(I) > MAXA THEN MAXA = A{l);
END ;

This {ragment can be made more {lexible by noting that the upper bound of the DO
statement can be replaced by a variable, say N. This means that if 8 <= N <= 188

then only the first N clements of A will be examined for the maximum and the minimum.
Obviously, the lower bound, B, can be made a variable as welt {(say M)!

Now, suppose that we wish to rearrange the contents of A(B)... A{N) such that
these elements of A are in ascending order. There are many ways of doing this. One
way which every beginaing programmer learns is a methad called the SHUTTLE SORT. It
can be developed by, noling that the smallest element of A(B)..A(N) should pccupy
A(B)." This value can be found by computing the minimum of A{®)..A(N) and
interchanging the contents of A(B) with the element of A where it was found. Now, we
have a simpler, but similar situation. we must find the minimum af A(1)....A(N) and
again periorm the appropriate interchange. The pracess can be continued until we
have processed A{N-1} and A(N).

The first attempt at such an algorithm might be

16

DOI:=-BTON-I
IZIJI:I.'I';U‘E the index of the smallest
element of A{D), A{l+1),.., A(N) and

store that index into J;

interchange A(I) with A{J)
END ;

The interchange aperation is particularly straightforward.

/= interchange A(I} with A(J} »/

TEMP = A(l)
A(ly = AL)
A(J) = TEMP;

Now, to compute the index of the smallest element of A(l) through A(N), we write

/% assign J the value I, as a tentative index /»

J= 1

DO K =1+1TON;

IF A(K) < A(J) THEN J = K ;

END ;

Write this sorting program in PLAGO and run itt !}

There are many ways of sorting a sequence of values. Your recitation instructor
will undoubtedly mention several others. Be certain that you understand the above
program.

Exercises:

(1) Compute the mean, median and standard deviation of A(B)..A(N).
{2) Compuie the sum of A{B).. A(N)

(3) Compute the greatest common divisor of A(3),...A(N).

{4) Compute the least commen multiple of A(E)...A(N).

(5) Rewrile the ollowing programs se that data is processed from the contents of
arrays rather than as input values

a) The Birthday Problem

b} The GCD Preblem

17

L] » »

Arr-z‘!‘ys come in infinitely flavors, depending upon their dimensionality. Thus,
the array A above was a onc-dimensional array. A twa-dimensional array, B, might be
declared as

DECLARE B(25,38) FLOAT ;

Such an array can be visualized as a two dimensianal table of simple variables having
25 rows and 38 columns. Thus B(517) names the item in the fifth row and the
seventeenth column. You should gain a mastery of systematically storing and
retrieving values frem such arrays. As an exampie aof such a computation, suppose
that the variable N contains an integer value such that 1<:N<:25 and that the
elements in the first N rows of the first N columns contain values.

Compute the sum of the elements AlL1), A(2.2)... A(N,N) and store the result
inta MDS. Also compute the sum of the elements A{LN), A(2N-1),...A{N,1) and
store this value inio S5D5;

Clearly, we have
Set MDS and SDS to B;
Por each row of B, say I (i:12,..N) add
to MDS B(1]) and add to SDS the value
B(IN+1-I):
Hence the fragment
MDS, 5DS = B ;
DOI-=1TON;
MDS = MDS +B(lI)
SDS = SDS + BN + 1 - I}

Exercises:

(1) Write programs which input {output) values to {from) variously dimensioned
arrays. ‘ .

(2) Write programs, which test square arrays for
a) symmeiry
b) diagonal dominance

c) whether or not the array is a Latin Square or a magic square.

18
Some Words About Recursion

In EWD316, Dijkstra devoles a chapter to discussing several ways of writing
programs which correspond to recurrence relations. Skim the chapter before you read
the text below.

There are many recursive definitions which arise in mathematics. A definition of
N-factorial can be expressed as:

g1
Nl = N « (N - I} where N is an integer greater
than B

The Fibonacci sequence from Chapter 1 of the baok by Forsythe et ai. can also be
defined recursively

P =1

1

F =1

2

F :F +F for N> 2
N N-1 N-2 .

Recursive definitions occur quite irequently in numerical analysis. One such
definition delines the Chebyschev polynomials of the first kind (bear with me pleasel)
They are:

T (X) = 1
8
T) = X
1

TH)s2aXaT (K-T (K.N>1
N N-1 N-2

Now, the ohvious guestion is:
How can recursive definitions be used to write programs.

The answer is frequently gquite simple. Since PLAGO allows procedures to call
themselves, recursive procedures can be written by following these steps:

(1) Explicitly test for the cases where a closed form result can be returned and
return the value as appropriate.

13

(2) For all the remaining cases, call the procedure recursively with the
.. appropriate arguments.

Thus the procedure T which computes the value of the N-th Chebyschev polynemial at X
can be written as:

.. PROCEGURE ("X, N Y RETURNS (FLOAT 7 .o~~~
_ DECLARE X FLOAT, N FIXED 4.

JIF N = 0 THEN RETURN (1.0) ».

IF N = 1 THEN RETURN [X) 4.

~ RETURN (2 * X * TEXy, N=-11-7 (Xe N~ 2)) e
TEME T 4. '

Study the above procedure carefully.
To help clarify some of these ideas, consider the following exercise.

On the following few pages, are lots of copies of the above procedure. Cut them

out, and staple them fogether so that you have a booklet of identical pages, each
page contsining just one copy of the procedure. (That's right, cut out the next

few pages and staple them together!) Notice that at the fop af each are two

boxes, one labelled N and another labelled X. These boxes will contain

appropriate values for N and X. Noew simulate the execution of T where X equals 4
and N equals 4.

Do this by first writing the above values in the boxes at the top of the
first page of your booklet. Simulate the procedure. Clearly, in arder to return
the required valve for T, other evaluations of T must be made. Do this by
marking the function call that will be made (just put an arraw under T{XN-1} }
and then turn to the next page where there is s new copy of T. Insert the
appropriate values for N and X in the boxes { N = 3, X = 4) and execute this
procedure. Continue this process until a procedure can be executed to
completion. In this case, simply write the value to be returned in the upper
right corner of the sheet; TEAR IT OUT (That's right!); and flip to the
immediately preceding page and write the value you wrote in the corner of the
sheet that was torn out of the book beneath the marker you left behind. That's
the value of the marked caill Continue evaluation by flipping 1o a clean copy of
T or going back to a previous copy of T. The whale process terminates when the
first page has a value in the upper right corner.

Can you think of another way of simulating a recursive procedure? (Hint: Consider
stacking the values of X and N, similar to the way values were stacked in the

20

discussion of arithmetic expressions.)

Recursive procedures have lhe property that they are usually short and concisely
represent a compuialion. They also have the property of cxecuting rather slowly {
there are notable exceptions to that observation, hawever, cf. The Marriage Problem).
Therefore, it is frequently, to your advaniage to try to represent recursive
algorithms as non-recursive ones, AFTER the recursive algorithm seems o behave
properly. Several of the Problems address exactly this issue.

-21 -

Teo PRUCKDLRE (Xy, N) RECURSIVE RETURNS { FLUAT) ,.
TPCLARE X FLGLATy N FIXTD 4.
N

x T

RETURN {2 &« X & T { Xe N =1) =T ¢ Xe N =210 ,.

L N = 0 THRA RETURN { 1.0) 4.

IF ™ I o¥hizon RETURN { X) 4.

~END T 4.

e e I et e T S —

Teo PIOCEDURE (Xy N) RECURSIVE RETURNS (FLOAT) ,.
JeCLARE X FLUAT, N FIXED ,.

O THriN RETURN { Lo) 4. N ::
1 THEN RETURN { X) 4. X]

ARTURM (2 % X 2 T (X9 N~ 1L V=T [X¢ge N=2 1)) 4

[F N

Ir N

Teo PRUCEFDURE | Xy N) RECURSIVE RETURNS (FLOAT) ,.

VECLAME X FLCAT e N FIXel s N E
x [— 1

L THEN RETURN { X } 4.

i

LF o~

PETURN (2 % X T ([Xy N =1)1 =T Xy N=2 1) s

r'Nl.} T T e

-22 P

———Leo PHOCEDURE (X, N) RECURSIVE REFURNS (FLOAT) ,.
... DECLARE "X FLUAT, N FIXCD ,. SRR

It N = 0 THEN RETUZN { 1.0) ,.

T TUUE R TR RETURN € X) ’e - X :

RETURWN (2 » x & T x’“‘,f;"—I'-)- = ('"i-."ﬁ_—"' Sy

t e

"Te. PIOCEDURE (Xy, N) RECURSIVE RETURNS | FLOAT) ,.
UECLI\RE X FLUAT, N FIXED___'__QM__

o _IF N_= O THEN_RETURN_(1.0) 4. _ N T

IE N = LTHEN RETURN (X) .. X [
R[‘.TUNN (2 ¥ X & 7T ‘ x' N - 1) -_'I__,_,(_.:S_!_H___-___Z____)____)"- -
ENC T .

Tooe PRECEGURE (Xy N _) RECURSIVE _RETURNS { FLDAT) ,.

VECL~RE X FLOAT, N FIXED 4 N SR

CIF v =0 THEN RETUAN (712077 .

THRRN T 2 2 X F T (N TS UTE O x N = 2T) .

CCTFTN =71 THEN RETURN (TKX) e

f'lvl” T [

Teo PROCEDU

DFCLARE X

TN

IF N = 1

RE (Xo N) RECURSIVE RETURNS. {_FLOAT)
N

x I——/1

FLUAT. N FIXLD ve

THEN RETURN T X7 'y,

RETURN

2% X & T [Xy N = 1"

“THEN RETURN { 1.0 .

)

T END T ,. T
T Te. PROCEDURE (Xs N)} RECURSIVE RETURNS { FLOAT) ,.

DECLARE X FLUAT, N FIXED 5o . _

LF._N_= 0 THEN RETURN_(_ 1.0 1 . N l:::l

[F N_= 1 THEN_RETURN (X) 9. X [——7]

RETURN { 2 %= X * T { Xy N =11 =T { Xe N~ 2)) re ..
o END T e

Yo T OX NI

Teo PROCEDURL (Xy W) RECUASIVE _RETURNS { FLUAT

LGECLARE X FLCAT, N FIXED 4.

)

TTEN =1

THEN RETURN (1.0)

2 X T ({ X N -1

THEN RETURN (X)} 44

Yy -7

Nt::]

x 1

-y

Xy

N -2

LK.

_24 -

T-. PROCEDURE (Xo N) RECURSIVE RETURNS { FLOAT) ,.
OECLARE X FLOATy N FIXED 4. e
e N
[N = 0 THEN RETURN (1.0) 7.~

RETURN 0 2 * X * T (Xy N= 1) - T{ Xe NS 270

IF'N =1 THEN RETURN (X7} .

CEND T, LT

"Te. PRUCEDURE (Xy N) RECURSIVE RETURNS (FLOAT) ,.
DECLARE_ X FLUAT, N FIXED 4. B

IE N = 0 THEN RETURN_ (1.0) 5. . N L[—_-]

[F_N = 1 THEN RETURN (X) +.. X [

RETURN (2 * X % T (Xy N = 1) =T (Xe N~ 2)Y gu ___

Tee PRUCEDURE _(_Xo_ N) RECURSIVE RETURNS (FLOAT) ;. -

DECLARE X FLCAT, N FIXED 4. N ::,)
TF N = 0 THEN RETURN (1.0) s«

[F N = 1 THEN RETURN [X } 4.

PETURN (2 *# X # T (Xe N =1) =T (Xeg N=2 1) 4.

FisD T 4.

—25 -

rﬂﬁmpggqhuug;m(_xt_n_1_aecuasxvswnaruaws { FLUAT)
DECLARF X FLOLAT, N FIXLD ,. — '

e e o N
- IE N = 0 THEN RETURN (1.0y ,.

TIF NT=TT THEW RETURM { X | X :

Te. PRUCEDURE (X, N) RECURSIVE RETURNS I FLOAT) ,.
DECLARE X FLUAT, N _FIXED , e e _—

—— _IEN.= 0 THEN RETURN (1.0 ,. . N [
o IEN = L THEN RETWRN (X) 4. X [

RETURN (2 # X # T (Xg N = 1) =T 0 Xo N.=2)) 4o

LEND T ee

Tes PRUCEDURC { Xy N) RECURSIVE_RETURNS { FLOAT) 4.
TTIF N = 0 THEN RETURN T 1.0 ,L 7
_ D O I

T TETN =71 THEN RETURN (X) 4.

PETURN (2% X # T (X, N =117 =T (X, N22) ,.

FN T ge

26

Preface to the Problems

The programs which accompany the following problems were all run as PLAGO
programs. Each compiled and executed correctly. Hopelully, these programs will
serve as models as well as objects subject to criticism. Several of the problems
make reference to an introductory text by Forsythe, Organick, Keenan, and Stenberg.

The book:

"Computer Science: A First Course”

is on reserve in the library.

] L] »

Because of the limited character set which can be printed by the line printer
from which you will receive listings of your programs, the following PL/I characters

are printed as indicated

PL/ Printer
o : NE
> GT
< LT
-> NG
=< NL
<z LE
>z GE

- NOT
i OR

L CAT

Always punch the characters appearing in the left-hand column, NEVER the anes in the
right-hand column. '

One minor difficulty which you might encounter has to do with the programming
notation used by Dijkstra in EWD316 and the notation required by PL/I. These
ditficulties arise because, in many cases, both use the same notation to mean
slightly diflerent things. The most imporiant of these are listed below.

(1) The assignment operator in PL/1 is =" and nat =, However, statements having
multiple left parts in PL/I are written with the left parts separated by commas

I.J.K=B;mean:l:=]:=l(:=8;

27

{2) The while clause which Dijkstra uses is of the form

while B€ do -
in PL/I.\i?s equivalent is
DO WHILE (B¢£)
(3) The repeat statement

repeat rj gﬂchE;

has only several messy equivalents in PL/I. One such equivalent is a form of the DO
statement which uses a variable called REPEAT

1 DO REPEAT - B, 8 BY 8 WHILE (~B€),
Another, more straightforward equivalent is

R:1
DO WHILE { R|-8¢)

R : 6
END;

Study both of these forms and find several of your ou situations where either of the
above wiil fail?

(4) Dijkstra uses begin and end to parenthesize statements. In PL/1, BO; and END;
parenthesize statements and BEGIN; and END; delimit blocks!

28

Computing the Greatest Common Divisor
Why P've included this problem:

It provides an example of some of the difficulties and shows some aof the
technigues one encounters when iransforming a structured description into a
running program.

The algorithm first described can easily be made a part of a program which
camputes the GCD of a sequence of pairs of positive integers, thereby
praviding a simple example of a complete program, including all the
input/output statements.

The Problem:

On page 37 of EWD3I6 is a program which computes the grealest common divisor of
two positive integers. Suppnse we wish to extend this program so that it computes
the greatest common divisor of arbitrarily many pairs of pasitive integers. One way
ol doing this involves punching the sequence of pairs into data cards. We can
terminate the sequence by following the last pair of integers by a pair of zerus.
Hence, an aigorithm which solves the problem might be.

input values for A and B;

while A is not equal to B do
begin

print the values of A and B;

compute the GCD of A and B and
leave the result in GCD;

print the value of GCD;
input values for A and B;

end ;

A PLAGD program which is equivalent to this description is

Ges PROCEDURE CPTICNS (MAIN) ,.

_/* PRINT THE VALUES OF A SECUENCE OF PAIRS GF POSITIVE INTEGERS */

/% AND THEIR GREATEST COFMMON DIVISORS. THE INPUT WILL — Y A
/% BE TERFINATED BY A PAIR OF ZERQS */

CECLARE (A, B, GCD) FIXED ,.
/* _INPUT VALUES FOR A AND B %/

29

GET LISY (A, B Y ee
0C WHILE (A NE 0 € B NE O } ve
/% PRINT THE VALLUES OF A AND B */

- T SKIP LUIST (A = ¥y &, * /B = T8 e
j+ CCMPUTE TFE GCO CF ATAND B AND LEAVE "TRE RESULT IN GCD */

CC wHILE { A NE B Y 1.
__,ﬂ,“ESP!E}Lﬁwlﬁ.ﬁlwbnl_:;___ﬂm.

A = A—":.lB e
CENC_4s

B""B"‘A'o
__END 4.

END e
GCL = A_»-

e e —— e — [

/+ PRINT THE VALLE CF THE GCD CF A_AND B */

pLT LIST (¢ GCC = 'y GCC } ve

s vt o S ——— e e v s e e e e e
) ee

T GET LIST U as 8
ENC v
ENC v

Exercise:

(1) Write and run a PLAGO program which prints the values of a sequence of pairs of
positive integers and their greatest common divisors and their smallest comman
multiples. The input should be terminated by a pair af zerps. Use the program on
page 41 of EWD3I6. Your solution should include the set of stepwise refinements
which led to the program.

(2) PLAGD has a special built-in function called MOD which does the following

MOD(sel, se2) has the value of the remainder
of the division sel/se2

For example

MOD(28, 7} equals 6;
MO 2, 6) equals 2

If you are allowed to use only the MOD function and no ather arithmetic operations,
how would the GCD program change? Rewrite it using only the MOD function {comparisans
of variables are still allowed, but not of mare complicated expressions)

38

Solving Quadratic Equations
Why l've\ included this problem:

Little mathematical background is neceded ta understand the prablem. Hence,
the development can concentrate on programming issues.

The Problem

The equation
AsXsx2+BuX+C:-8

can be solved, when A is not equal to B by

—B+nr-VB-B-—4-A:E

2 A
We wish to write a program which will accep , as its input, values for A, B, and C,
and produce, as output, the values of the roat or roots of the equation. Thus, a
first description of the solution might be

input values for A, B, and G;
output values of A, B, and G;

solve A w X w2+ B X +C:8,
and output the values of the
roots along with the case
which was solved;

Several situations arise, huwever, in attempting to solve the equation. First, if A

is not egual to B, the formula applies. If not, and B is not equal to 8, then the
equation is linear in X and has a root which is -C/B. 1f B - 8 and C is not equal to

8 then no eguation is represented. YWe might wish to print some kind of error message
to accompany this case. Finally, if A: B and B = 8 and C = 8, an identity is
represented. Again, a message might be appropriate as part of the output.

A refinement cf the third statement might he
/o solve A s X 2 2 + B X+ C:=8a/

if A not equal ta 8 then
solve the gquadratic using the formula;
end
else if B not equal to 8 then
begin

31

solve the linear eguation;
glse if C not equal to B then

print a message saying that no
equation is represented;

end

else

print a message saying that an identity
is represented (B:8)

end

The guadratic .furmuia may be evaluated by cbserving that it
: B, there is one real root
BsB-4x A« C{ > 8, therec are 2 real roots

< B, there are 2 complex roats

Henee the final program is

CUAD.. PRGCECURE OPTIONS{ MAIN) .
'DECLARE (A, By C, DISC, SCD) FLOAT ,.

T?MTKPGT”VIfﬁﬁg'Fﬁﬁ‘i?“i:”fﬁﬁ"c**f"';'“

GET LIST A, 8y, C) »e

WA, CUTPUT VALUES GF A, By AND C %/

T SRIPTIST 1T E = hy V7B =7 8 7= T T T T

Jo SCLVE A & X #% 27+ 8 % X & C'= 0 AND OUTPUT THE VALUES OF THE */
/% RCCTS WITH THE CASE WHICH WAS SCLVED . o */

IF ANE O TREN e
~ DGy,

DISC = 8 *# B — 4 A% C ve
IF CISC = O THEN

i bkt

/* TRERE IS CNE REAL ROCT %/ _

PUT SKIP LIST (* THERE IS ONE REAL ROOT WHICH EQUALS 1, -B/2/A),.

32

IF CISC GT O THEN
/* THERE ARE ThD REAL ROCTS #/ "~ — 777

- DCye
SCO = SCRT { DISC) .
PUT SKIP LIST (¥ THERE ARE TWO REAL ROOTS,', (-8B + SQD)/2/A,
" ANC 'y ~(B ¢+ SQD) / 2 /7 A) 4.
Cm mERD T T e m e -
ELSE

/* TFERE ARE TwG COMPLEX ROCTS */

CC .
B 4 {3 S 2 £ o
PUT SKIP LIST (' THERE ARE TWO COMPLEX ROUTS.*,
<B/278y 4%, SCD/2/Ay* ¥ T Yy VAND Y,
~B/2/As * ~ %y SQ0/2/Ay * * IV) .

END'-
END v
TTELSE TF 8 NETOTTHENT T TTTT T TmmmmrTmr ot o -
PUT SKIP LIST (' THERE IS CNE REAL ROOT - LINEAR CASE 'y -C / B),.
E—LSE - = - - . c—— e e am = - o

IF C NE O THEN

PUT SKIP LIST { *//// NG EQUATION IS REPRESENTED ////') ,.

' E!:'lS’ST"S'kTP_fTS' —(7 TRE TOENTTTY 0 = 6 15 REPRESENTED *) ..
END vo N

33

A Birthday Problem
YWhy I'\(_e: included this problem:
Its analysis is straightferward.

The computations in the final program must be arranged so that overflows do
not occur at intermediate stages of computation.

The Problem:

Suppose that K persans are gathered in a room. What is the probahility that at
least two of the persons were born on the same day of the year? {Ignore the
possibility of anyane being born on February 29)

The problem can be analyzed by nofing that the answer equals

"the probability that no two
1 - {persons in the room were born
on the same day of the year

The quaniity in braces is now just the number of ways K persons can have different
birthdays divided by the tatal number of ways K persons can have birthdays, ie.

365 » 364 = .. = (365 - K + 1)

365 =« K
Note: Those students warried about the relevance of this problem may wish to consider
the solution to the following:

An electronic assembly contains X components, each of which will {ail sometime
during the next N time periods. The assembly will continue fo operate if anly
single components fail in a time period, but will fail it more than one
component fails in a time period. What is the probability that the assembly
will fail? Let N be 365 to be definite!

The solution to this prablem can be extended to allow il te compuie a sequence af
probabilities, ie. we wish to print the values of N positive K's (the number of
people in the room) and for each K, the probability that at least two of them were
born -on the same day of the year. The values of K are to be read from data cards.
Preceding the first value for K is a positive integer, N, corresponding to the number
of times K is o be assigned a new value, implying a new camputation of the
probability.) :

The first stage in the development might be

input a value 1o N;

34

while N > 8 do
_begin
fiput a value to X;

output the value of K;

compute the value of the probability that
at least two people, among K, were born
on the same day of the year. Store this
value into PROB;

output lhe. vajue of PROB;

N:=N-1
end

The details of developing all the parts of the design, except the computation of PROB
are straightferward. They appear in the final program. However, the task of
computing PROB requires more analysis.

Several cases are apparent. First, if the value of K is less than 2, the
probability of two peaple being born on the same day of the year is, of course, zero.
Further, if there are more than 365 peopie in the room, the probability that at least
two were born on the same day of the year is 1. In the remaining cases, the formula
can be calculated. Thus, we have

/= compute the probability for K and store it into PROB »/

it K < 2 then PROB == B
else it K > 365 then PROB = 1
lse

[+ compuie the formula »/

The formula can ﬁnw be refined as follows. We select DEN to represent the value of
the denominatar and NUM ta represent the value of the numerator. Bath can initially
be set to 1 to get

NUM := DEN =];

I=1

while [<: K do
begin
NUM := NUM » (366 - I}
DEN = DEN » 365;
1:=1+1;
end ;

PROB := 1 - NUM / DEN;

The final program is now

35

BCAY.. PRCCECURE COPTICONS [MAIN) ,.

/% REAC A VALUE INTO N, INDICATING THE NUMBER OF TIMES A VALUE
/7% TC BPE REAC INTC K. PRINT FACH K ALCNG WITH THE PRCUBABILITY THAT*/
/% AT LEAST TwC GF K PEOPLE IN A RCCM WERE BORN CN The SAME LAY

/* CF THE-YEAR.

DECLARE (Iy Ny K) FIXED 4.
DECLARE (NULM, CEN, PROB) FLOAT ,.

/% INPUT A VALUE FOR N */

GET LISTYT (N) ,.
0C WHILE { N GT 0) .

/% INPUT A VALUE FOR K %/
GET LIST { K } .
/% OUTPUT VALUE OF K */
PUT SKIP LIST { * K = 'y K) 4.

/% CCMPUTE THE PROBABILITY FGR K AND STORE THE
/* CCMPUTE THE PROBABILITY FUR K AND STCRE THE

IF K LT 2 THEN PROB = 0 4.

ELSE IF K GT 365 THEN PRCB = 1 ,.
ELSE
BC .
NUMy, DEN = 1 4.
T = 1 ¢

DC WHILE | I LE K) e

NUM = NUM * [366 = I)} 4.
DEN = CEN * 3565 ,.
I=I+1’-

END 5.
PRO8 = 1 - NUM / DEN s
END +.

PUT SKIP LISY (7% PROB = ¥, PRCB } +a
N = N - 1 re
ENE |)

END .

K = ' 2
PRCE = 2.73973E-03
K = 7
BRGCB = 5.62351&*02
K = ST 20
prCg = . 4,11438E-01
K = 30

RESULY

RESULT IN PRUB

CUNCITIUN *OVERFLCW® SIGNALLEC (N STATEMENT 15

CONDITICN *ERRCR' STGNALLED IN STATEMENT 15

CUNCITICN *FINISH® SIGNALLED IN STATEMENT 15,

36

Unfortunately, this PLAGD program will fail for several values aof K. The reason
for this is that the finite capacily of a storage cell is exceeded during an
intermediate calculation (EWD3IG, p.26). This explains the peculiar message in the
output, It's not difficult to see that if K is, say, 75, the value at the
denominator exceeds 182158, which exceeds the default magnitude of a FLOAT variahle.

A much better way of performing the calculations would be to initialize PROB to
1 and within the loop compute:

PROB := PROB » (366 - 1) / 365

This assures us that intermediate calculations will not lead ta results which are
extremely large.

Exercise:

(1) Medify the program using the ahove suggestion. Could the suggestion lead to
other kinds of difficuities?

{2) Consider the follawing simple problem:

Suppose you wish to compute the distance between two points in a plane. Let the
coordinaies of the first point be represented in the variables X1 and Y1 and
those of the second in X2 and Y2. The formula

(X1 - X2) ww 2 + (Y1 - Y2) wn 2

computes the value we want. Now suppose that you are guaranteed that the
distance between the twa points will not raisc the overflow condition. How can
you guarantee that no intermediate calculation in the above formula - or a
madification of it - will raise the overflow condition?

Develop a PLAGO program which computes the distance between pairs of points. The
input should contain a value for N, as the first value of the input, followed by N
groups of four values, corresponding to the coordinates of two points. The pragram
should output the values of these coordinate pairs along with the distance which
separates the fwo points.

(3) Modify the program from exercise (2) so that the value of the shortest{longest)
distance is printed at the end of the output.

37

A Nest of Squares
Why I've included this prablem:

This problem shows how an algorithm can be transformed into a lower echelon
algorithm just by recognizing a simple property.

The Problem:
Suppose that a family of squares, 5(8), 5{1), .. . S(I), .. is defined so
that the area of sguare 5{I} equals :
(I +1) % A, where A is positive and real.
Suppose further that this family of squares is centered at the origin of a

two-dimensional coordinate system with sides parallel to the X and Y axes. For
example:
Y

N

Y
o

L.

Now imagine that the variables X and Y define the respective X and Y coordinates
of some point. What is the index of the smallest square which contains the paint
(LY)?

For example, it A is 1, X is 4, and Y is 3, then the index of the smallest
square conlaining (4.3} is 63 - S(B3) is the smallest square containing {4,3).
(convince yoursell that this is true before going on)

This problem can be analyzed in several ways. One way is to notice that since
each sguare is symmetric about the X and Y axes, the smallest square in our family

38

containing (X,Y) alsv contains the smallest square centered at the origin with sides
parallel to the axes, and with (X.Y) on its boundary. Hence the area of each square
in the family (starting with the smallest) can be compared with the area of the
square with {X.Y) on its boundary - call this square 5. The first square whose area

is greater than or equal te the area of 5 is the square whose index answers our
guestion.

More concisely, we might write:
ASQ<«area of sguare with point (X,Y)
on its boundary;

I =8;
while area of S{I) < ASQ compute 1< + 1

INDEXe. PRCCECLRF CPTICNS (MAIN) .

MECLARE (Xy Yy A, ASQ) FLCAT, (L) FIXED 4.
/7 GRAB SOME INPUT VALLES ANC PRINT THiM */

TUGET LEST (A, X, Y} se
PUT LIST(';-=" A«p 'X‘-", X. 'Y':"Y' te

T/ CUMPUTE THE ARFX CF THE SNALLEST SQUARE CONTAINTNG (XyY) o/

ASO = 4 & MAx{ ABS (X), ABS {Y)) 28 2 44

Jx T MPUT. THE INREX CF TFL SMALLEST SQUART CUNTAINEING (X, Y)

o= 1 BY T wWHILF (_ASC_E_‘[A = Ll___'__._ L
LA '.:.. T Tt T T

B B T .

7% 1T CONTAINS THEE VALUT WE ARE AFT =P 4e0 SCy PRINT IT %/

PUT LIST (*TADEX OF SMALLEST SQUAPE CCATAINING (X,Y) IS ',

b /

END TNDEX s

33

The more intrepid analyst, however, might notice that there zre infinitely many
values_of [for which this inequality holds:

(area of S) <= A= (l +1)
Solving this for | yields
(areaof S) f A -1 <:1L

Clearly the left side can be compuled. Therefore, it we can compute the value af the
smallest integer which is greater than or equal 1o the left side, aur question is
again answered!

The following program does just this. Why? Think of some other ways af solving
this problem.

[NUEX.. PROCECURE OPTIONS (WAIN) se o R
CECLARE (Xy Ys Ay ASQ) FLUGAT, (1) FIXEC s

/¥ GRAB_SOME INPUT VALUES AND PRINT THEM */
GET LIST (Ay Xe Y) ve .
N = = Y) . o
PUT LIST (A = ', Ay "X = vy Xy 1y 3

/% CONMPUTE THE AREA OF THE SMALLEST SGUARE CONTAINING (XeY) */
1t = CEIL t [4 * MAX({ ABSI(X), ABSLY)) % 2) [/ A - 1.} e .

£ WE RINT IT =/
* ONTAINS THE VALUE WE ARE AFTER.«. S50, P
’ PII..TCLISI' {VINDEX OF SMALLEST SCUARE CONTAINING (X,¥) 1S *y 1)

EnNU INDEX ¢

L)

48

Evaluating Arithmetic Expressions
A quiz similar to the following was given during a 15-188 lecture. Try it.
Don't spend more than 18 minutes.
The variables in the follewing expressiuns have the values indicated

in the table:

A B'c| Elll JIH

3]aj7]3]1]2]
Evaluate each of the folluwir;g expressions:
Expression 1:

A+B+C/I1/1/1«K-BsC
Expression 2:

AsB+C-({E+K/5)aa{3-1)u(J-22{(C+A))
Expression 3:

(A+B+C/1/1/1uK-BuC)sB+C-(E+K/S)ws(3-1)
w(J-2e(C+A))-K+J-Ew(A-BeKe(C-E/1)-4a(l
+K-C)})+(C-5+K/J/1-2)ual+B-J/{C-E-J)+Aw

K-Bea{(({(J+C)s(K-4)/J-1)=C-1)))sE+A}

The results of the quiz are easy to describe. Almost everyone evaluated the
first expression correctly; about half the studenis evaluated the second expression
correctly; and no one evaluated the third expression correctly! WHY. 1f you examine
the three expressions, you should note that the only essential difference between
them is their lengths. All the arithmetic operations are frivial. Probably the
reason siudents had so much trouble with the last expression was because they didn't
have a very careful bookkeeping system which would tell them when to perform
arithmetic and on what to perform it. The methods described in your textbook I find
rather clumsy (you may not). Therefore, 1 have written a flowchart which evaluates

91

arithmelic expressions by scanning them from left to right without ever re-scanning
any parl of the expression.

The llowchart which follaws - an informal but precise one - does this by
systematically posiponing arithmetic operations until they can be performed. This is
accomplished with the aid of an OPERATOR STACK and an OPERAND STACK.

Before you proceed, take a look at the flawchart. Pay special attention ta the
comments.

Let me demonstrate the flowchart by using it to evaluate the expression:
AxB+C-(E+K/5)s{3-1)x(J-2%(C+A))

where the variables have the values tabulaied belaw

]
2

The algorithm begins by inserting the symbol - to the right of the rightmost symbaol

in the arithmetic expression. This symbel - sometimes called a “right tertninator™ or
“right turnstile” - simply signals the end ot the arithmetic expression. Betore
proceeding, arm youself with a bunch of small slips of paper. Make sure that each

slip tan fit inside the labelied squares on the page follawing the flowchart. Next,

place some kind of pointer (a pencil mark will do) beneath the leftmost symbaol in the
expression. By symbol we mean a variable name or constant ar arithmetic operator or
parenthesis.

c

B E|
4 | 1

K
7. 3 19

4
!
i
"
!
t

Now, determine whether the symbol is a variable name or a constant. In the
example, the symbol is a variable name, A. So, "push" the vaiue of the variable name
onto the OPERAND STACK. This amounts to simply joiting the value of A on a slip of
paper and placing this slip on top of the pile (possibly empty) of slips inside the
square labelled OPERAND STACK. Next, advance the pointer one symbal to the right and
follow the flowchart until you find the iest box which inquires as ta the PRECEDENCE
of the newly scanned operator. This box asks whether the precedence of the scanned
operator is grealer than the precedeoce of the operator at the top of the OPERATOR
STACK. By convention, we say that an empty stack and a left-parenthesis have lower
precedence than all the nperators. Hence we copy the symbol " onto a slip of paper
and “push” it onta the OPERATON STACK. Again, move the painter one symbol to the
right; scan B; push its value onto the OPERAND STACK; mave the painter one symbaol to
the right; and scan '+ Here, note that "+ has lower precedence than s’ (which is
the top of the OPERATOR STACK). Because of this circumstance, "pap" the top ot the
OPERATOR STACK 1o OP, ie. mave the siip on top of the OPERATOR STACK 1o the square
called OF; "pop” the top of the OPERAND STACK ta ROP; and "pop” the top of the
OPERAND STACK to LOP. Next, perform the arithmetic operation "OP" on “LOP" and “ROP”
and write the result on a new slip of paper. Push this value onta the OPERAND STACK
and throw away the slips in OP, ROP, and LOP.

42

What we have just done has been to compute the product of A and B, with the
result now on the OPERAND STACK. Now comparc the precedence of the scanned symbal
with the precedence of the symbol at the top of the GPERATOR STACK. Again since the
OPERATOR STACK is empty, simply push the '+' onto the OPERATOR STACK.

The Table which follows is a sequence of “snapshots” describing the process by
which the expression is cvaluated. Note particularly how parenthesized
sub-expressions are handled! Observe that when the flowchart stops that the value of
the expression is the single value left in the OPERAND STACK! Don't let yourself get
bogged down. The flowchart is straightforward but somewhat tedious. It might be
helpful for you to look at the flowchart again before proceeding.

Snapshots of the Evaluation Process for
AwB+C-(E+K/S)s(3-1)s(J-2(C+A))}
where

A.BIC]}EII‘J‘K

3 |al7 3|1 |2 |

Note that the top of the OPERAND STACK and the top
of the OPERATOR STACK is always the leftmost symbal
in the appropriate column.

Scanned LOP OP ROP OPERAND OPERATOR
Symbol | STACK | STACK
A 3 i

- 3 .

B 43 »

+ 3 = q

+ i 12 +

cC- 712 +

- % 12« 7

- 1' 19 -

¢ 19 (-

E 319 (-

18 313 + -
18 3 13 f+ (-

918 313 [+ (-

319 +f -

2319 (-
19 (

5 13 l

5 18 !

519 -
5 19 (ww -
3518 (es-
3519 - {we-
' 13519 L
5 19 { we
' 2519 (ws -
2513 iwa-
19
| 25 19 .-
25 19 (= -
22519 |(=-
22518 |-(=-
222519 |-(»-

i
1

1222519 {x-(=-
222519 i,.c-.
722253{(.4.-
72225mi+(.4..
372225q+(.4..

222519 (- (-

18222519 - (»-

a4

) 2 . 182251 (-
)i 2822513 { -(»-
) 2 - 28/ 2519 (n-

) } 182513 (-

) . 182519 |-

- l 25 =« -1B[19 .

- | 458 13

- 19 - -458

S 1463

It should be clear that the .ﬂownhart doesn't behave properly for expressions
containing unary '+’ and - sign. Fix the flowchart to handle this case.

Muodity the algorithm so that some special path and exit are followed in the
event that the expression is discovered to be syntacfically incorrect.

- 45

START

append 4 to the right of the expression

¥

position pointer to the leftmost symbol

¥

F symbol is

F

not_j;)—l T

symhol a variable
or a constant?

T

F symBo! is (? T

i
'

Y

push value onto
OPERAMD STACK

push symbol onto
OPERATOR STACK

F symbol

precedence of scanned
> precedence of
top of OPERATOPR STACK?

F symbol

is)} ?:)lT

pop top of

to NP

T OPERATOR STACK

=

push scanned
symbol onto
OPERATOR STACK

pop top of
OPERATOR
STACK to 0P

v

pop top
(OPERAND
to ROP

v

rbop top
OPERAHND
to LOP

o

evaluate LOP OP ROP,
push value of result
onto OPEZAND STACK,

of
STACK

of
STACK

Y _¥

—
iﬁsopathT
S

pop top of OPERAND
STACK to ROP

L

pop top of OPERAMD

STACK to LCP

|

.

onto NPERAND STACK,

evaluate LOP OP ROP,
push value of the result
throw
away contents of LAP NP PNP

| e]

v

pop top of OPERATN™

STACK to NP

]
|

e meemard

throw away contents of
LOP OP ROP

|advance painter one

symhbol to the riche 3

A

- J,
{ H

46

F_(OPERATOR STACK not empty‘D—lT

pop top of OPERATOR
STACK to 0P

v

peop top of OPERAND
STACK to NCP

v

pop top of COPERAMD
STACK to LOP

v

evaluate LOP OP 0P,

push value of result onto
the OPFRAMNND STACK and
throw away the contents of
LOP 0P NOP

@

47

EXPRESSION

LOP opP n

OPERATOR STACK OPERAND STACK

48

A Monoione Sequence
Why T've included this problem:
Algorithms which solve this problerm seem not to be immediately obvious, but
can be developed in a step-wise way. [think that's a good property for a
programming problem 1o have.

The problem has some interesiing generalizations.

The problem:

Put simply, if you have a linear.array A, containing N different real values,
tind the length of the longest monolone increasing subsequence. The book by Forsythe
et al. discusses this problem on pages 191-193. Read and understand that material
before going on.

Write structured statements which correspond to the flowchart on page 139.
Now study the PLAGD program on the next page.

Rewrile it so that it compuies the length of the langest monotone DECREASING
sequence. Follow the notation and suggestions of exercise 4 on page 198.

Modify the program again so that it not only produces the length of the langest
monoione increasing seguence, but also produces an instance of such a sequence.
Exercise 4 on page 158 suggesis a way of doing this. Creale the subsequence by
putting it into the first MAXINC elements of an array called MS.

Make sure you can prove the results in exercises 2 and 3 on page 198.

Can you think of other, more or less efficient, algorithms which salve the
problem? :

439

MAIN.. PROCEDURE GPTIONS (MAIN) 4o
CECLARE _(A(50)y N) FIXED 4.

/% CCMPUTE THE LENGTH OF THE LCNGEST MCNCTONE INCREASING SEQUENCE =/
/* IN A{l)eead(N) */

MCNSEQ.. PRCCECURE (A&, N) RETURNS { FIXED) .
CECLARE { Jy Ky A(N), BIN)sN, MAXINC) FIXED ..

/* SET LENGTF CF LCNGEST INITIAL SEQUENCE TQ 1 #*/

MAXINC = 1 4
CC J =1 TON 4o
B(J} = 1 +o
DC K = 1 TG J =1 +o

/% IF A{K) 1S LESS THAN A{J) AND THE LENGTH OF THE LCNGEST */
/% MCNCTONE INCREASING SECUENCE ENCING WITH AlK] ECUALS &/
/% CR 1S GREATER THAN THE LCNGEST SEQUENCE CURRENTLY ENCING */
/* WITH A{J), THEN LENGTHEN THE SECLENCE ENDING wITH AC)) */

1IF A(K) LT ALJ)} THEN
IF B{J)} LT B(K) + 1 THEN
BtJd) = B(KY + 1 oo

ENE'-
IF MAXINC LT 2(J) THEN MAXINC = B(J) s
END o+~

RETURN (MAXINC) 4.
END MCNSEC »a.

BC WHILE (1) oo
GET LIST (Mo { ALIN BO T = 1 TGO N)) .
PUT LEIST ('FTHE SECUENCE'y | ACLIY DU I =1 TO N}
" HAS A LCNGCEST MCNCTONIC INCREASING SURSEQUENCE UF LENLTHSY,
MCNSEQ(Ay N)) 4o
END [
END MAIN 5.

58

Gaussian Elimination
Why Ive included this problem:

Gaussian Elimination is a well known and important technigue for solving
systems of simultaneous linear equations. - every student of .15-188 should
know it

A Gaussian Elimination program in PLAGO requires that you know how to
systematically operate on the rows and columns of an array. These
techniques you should- know.

The Problem:

Both the problem of solving sets of linear equations and the method of Gaussian
Elimination are discussed in the book by Forsythe, et al. (pp. 333-349).

Read and understand that material before proceeding.
Write structured statements corresponding o the flowchart on page 349.

Compare your siructured statements with the body of the procedure, GAUSS, whaose
text follows.

GAUSS does not perform the partial pivoting operations described in the
flowchart on page 349. Change the program so that it docs perform this kind of
pivoting.

It has been suggested that elimination could be performed so that all
coefficients both below and ABOVE the main diagonal are eliminated. This would mean
that the entire "back solution” process could be removed. Rewrite part of the
program 1o do this. Compare the number of arithmetic operations required by bath
methods. That's right, compare them. Which method is mare efficient? Can you think
of any other reason why one method is better than the other?

MAIN.. PROCECURE OPTIONS({ MAIN) ,.
DECLARE (Al25, 25)s C(25), X(25), EPS, TEMP, MULP) FLOAT,
{ Noe Iy Jo Ko Ly LY) FIXED ,. ' S

/% INPUT EPSs Ny Ay AND C */

GET LIST (EPS, Ny ({ A(I,J) DC J =1 TO N)
CCIN 00 I =1 TON) } 4o

PUT LIST (((A{I,J) DO 4 = 1 TON),t/9,
CIVOO I =1 TOND) ,a

51

ELIVN..
DDI=1“GN'11
CC J =1 +# 1 TCN .
[F ABS({ A(l,I)) LE EPS THEN
CCye
DC L = I + 1 8Y 1 WrILE (ABSt All,I)) LE EPS & L Lt
[F ASS(A(L,I)) GY EPS THEN
[}C’.
LCLL = T TC N e
TEMP = AlI'Ll) te
5(!|L1' = A[LpL].) ve
A(Llel = Yl:v"p v

END s
TEMP = ClI) se
CLry = CIL) ¢«
CLLY = TEMP .
ENE e
E‘C [X
IF ARSI A([,))} LE EPS TEEN
DC' -
PUT SKIP LIST | *SINGULAR SYSTEM/Z//Y) 4e
STUP 4
ENC v
END 5

MULP = AlJeI) 7 ALLsl) 4.
6C kK = 1T + 1 TO N s
AJ,K) = AlJ,K) - MULP = AlLToK) +e
END o
ClJ) = C(J) = CU1) * MULP .
ENE v
ENC ELIM .

[F ABS{ A(N,N)) LE EPS THEN
NG 1
PUT SKIP LIST ('SINGULAR SYSTEM////') ra
STCP ¢«
END 1«

/% PERFCRM THE BACKSOLVING PROCESS */

BACKSOLVe

DC I = N BY -1 10 1 ,.

X(1) = CUI) os
O J=NBY -LTOI ¢+ 1.
X(I) = X{I} = X{J) * AlLed) se
END 4.

X(I) = X{1) 7 AlleD) oo

ENC BACKSCLV e

PUT DATA ({ x(I1) DO I =1 TON) v
END v

o2

Matrix Muitiplication

Why I've included this problem:

Maitrix multiplication is a useful thing to know.
Recent work in the area of computational caomplexity has revealed some new
and more efficient algorithms for performing matrix multiplication. I

think they are interesting. 1 also think they form the basis of some good
programming exercises.

The Problem:

The product of matrix A, having M rows and N columns, and matrix B, having N
rows and P columns, is a matrix, G, having M rows and P columns, where

N

Con = Auy* Er#

J=!

That's alll
The procedure called, DEFN, which follows, performs exactly this computation.
Unfortunately, as M, N, and P grow large, the number of computations grows
"very” large. In particular, if M:N:P, the number of multiplications alone equals N

cubed! Hence, enormous amounts of time can be spent muitiplying even relatively small
matrices.

Question: Are there better ways of multiplying matrices.

As it turns out, it wasn't until 1968 that any significant improvement was made
over just the definition. At that time, 5. Winograd presented a method which can

53

multiply matrices with about half the number of multiplications used by the
definition. He achieved this saving by noting that real mulliplication is
commutative and that some of the multiplications could be traded for additions. The
method is based on the following identity:

5 L N/2] [N/2]

Z*‘h,f‘ bk = Z (Aepiyes 76 i)~
]«Z/ f:,

(Auy2p "2

ns2]
- Ay mHa 2y

where X means the greatest integer Y X.

If N is even then the left side is just the ik-th element of C. Otherwise the
product

A,«,’,A/ *Dp ke

must be added to thr expression.

Admittediy, the expressions look much more complicated than the original
definition. The savings accrue by observing that the last twa sums are dependent
upon [and K respectively and need be computed just ance at the beginning of the
program. Thereaiter, the number of muitiplications is halt that required by the
definition.

Compute an "operation count” oi exactly the number of additions and
multiplications that would be required by both methads. These computations should be
functions of M, N, and P.

The procedure called YWINDGRAD multiplies two matrices using Winograd's method.
Study it.

)

54

For what values of M, N, and P would you expect WINOGRAD ta execute mare rapidly
than DEFN? Note that M, N, and P will be larger than you might expect. Why?

Can you imagine situations where the accuracy of the results from YWINOGRAI wouid
be poorer than those from DEFN?

In 1969, in a paper by Strassen, ("Gaussian Elimination is Not Optimal ",
Numerische Mathematik 13, pp 354-356) a method was presented which could multiply two
2 x 2 matrices using just 7 multiplications instead of the usual 8, and which didn't
require that multiplication be commutative. His identities look just awful. And
here they are:

C
21 22 21 22 21 22
then !

C : Q@ -0 - 0 + 0

11 1 2 5 7

c = 0 -0

12 4 1

C = 0 + 0

21 2 3

C : =g -0 + 0 + 0

22 2 4 5 6

where

¥] = (A -A) B

1 1n 12 22

a = {A -A) B

2 21 22 11

a : A (B +B)

3 22 1 21

a A (B +B)

4 1 12 22

Q = (A +A){(B -B)
5 1 22 2 1
a = {A +A)}(B +B)
6 11 21 1n 12
a2 = {A +A (B +B)
7 12 22 21 22

Strassen provides no molivation or intuition as to how he ever found these. Hawever,
everywhere I've ever seen these things presented, the commentator has suggested a
different mnemonic device ta help reconstruct them. Find ane for yourselll These
identities can be used to mulliply matrices of any size il they are used recursively

on matrices whose elements are themselves matrices. Try writing such a program.
You'll learn much.

55

/% MATRIX MULTIPLICATICN BY THE STANCATL DEFINITIUN */
CEFN.. PRCCECURE { A, By, Co My Ny P) e

CECLARE (Iy Je Ky ¥y Ny P) FIXED 1.
NECLARE (A{*,%), Bl*,%), C(*,*)) FLUAT ,.
CECLARE (T) FLCAT ,.

NESTee CC I =1 TU M ,.

CC K =1 TOP se
T = 0 s
CC J = 1 TC N .
T =T #+ A(IlJ‘ * B(J'K’ e
ENE 4.
C(!qK, = T ’e

ENC NEST .

END CEFN 4.

7% MATRIX MLLTIPLICATION USING wINGGRAD'S METHOL %/
WINCGRAC .. PRCCEDURE (A, B, Co Moy Ny P) 4e

CECLARE (M, Ny Py I, Jy Ky N2) FIXED,
B8 FIXEC o
{ A(#,%), B(x,%), Cl*,%), ALIM}, BK(P)) FLOAT ,.

/% CCMPUTE THE SUuMS OF THE THINGS WE WANT TO THRCW AWAY */
N2 = 2 % FLCGR (N/ 2} »e
CC T =1 T ¥ »a

T = D e
0 J = 1 BY 2 TC N2 4.
T = 1 + AtI,J) * A(I, J + 1} ».
ENC o

ATI(LY = T ¢«

ENC 1.

CCK=1T0P ¢
T = 0 LY
En J = 1 BY 2 TO N2 s
T = T 4 B(JyK) * B(J ¢ 1K} 9
ENC L)

PR = { N2Z.NE N) v
wiRKee CC 1 = 1 TC M »o

CC K =1 TO P 1.

[F BB THEN T = AlI.N) * BINK) e
ELSE T = 0 4o
CC J = 1 BRY 2 TC A2 o
JPL = J + 1 re :
T = T ¢ (alleJd) ¢ B{JPLsKY)}® (AlLlydPL) ¢ BlIeRY) e
ENE 9w

Ci{l,K} = T = ALLI) - BKEK)Y 4.
ENG mWCRKes

¢eNC WINCGRALC .

The Eight Queens Problem
Why I'v'é included this problem:
This problem has been analyzed in a step-wise way which is instructive.

Its solution can be expressed recursively.

The Problem:

Dijkstra has devoted a chapter to the problem of the eight queens. Read and
understand tl':a__t chapter before you proceed with the text below.

Dijkstra chose to find all the ways of positioning eight queens on a chess board
so that no queen was attacked by any other. The program below, again by Dijkstra,
can be used to find just one solution to the problem. How can it be modified so that
all possible solutions are found? Study the program carefully. Its data structures
are the same as the program in EWD3I6.

Exercise

Suppose the problem is generalized to consider a rather stylized chess board

consisting of N x N squares on which we wish 1o place N queens so that none is under
attack. Modify the program to solve this problem. Are there any statements you can
make about the existence or non-existence of solutions for arbitrary N?

TYRYCeo PRCCEDURE (J) 4.0
DECLARE (I, J) FIXED 4o

DC I = 1 TO 8 WHILE { NGTSAFE) s N
TUSAFE s MY EBU L 4T ECH T - J) 4.
IF SAFE THEN
GUTS..
DO 4o . .
TTATTY . BOI#JY, CUI-J) = 0 ».
Xtd) = 1 »0
"IF J LT 8 THEN
BO L X J
" SAFE = 0 .
CALL TRYCL{ J + 1 } s
T TTTENE ..
IF NOTSAFE THEN ALI), BLI ¢ J)o C(I = J} =1 4o
TTEND GUTSe.
END yo
" ENC TRYC .

57

The Towers of Hanoi

Why I've included this problem:

This problem can be solved by a short, natural, recursive algorithm which
you should understand.

The problem has a nice generalization which 7 like.

The Problem:

Dijkstra devotes a section of EWD3I6 to this problem. His discussion, however,
is somewhat more tedious than the one which follows. Read the text below, through
the recursive solution to the problem. Then, read the section from EWD316. Finally,
examine the program which solves the generalization to the problem.

Suppose that three spikes are driven into a flat board and that N

doughnut-shaped discs have been arranged on ane of the spikes with the smallest disc
on top lo the largest disc on the bottom. The diagram illustrates the situation.

it

I
|

e
e —
T

il

;
i

'
L35 73T W UL 7 i S TR PP PILTR i R TR R R R S SR — e i d

The cbject of the game is to transier all the discs fram the starting spike ta one of

the other spikes so that they are left in the same order - smallest on top to largest

on the bottom. The discs, hawever, may only be moved one at a time from one spike to
another so long as a disc never rests on another disc of smalier diameter. That's

the game!

The problem is to write a pragram that will produce a sequence of moves which
will tell a player how to mave each disc.

58

Clearly, if we have just one disc, the sequence of moves is trivial. Just move
the one disc to one of the other spikes (designated as the finish spike).

If we have two discs, the sityation is almost the same, except that the tap disc
must be moved to the intermediate spike; the bottom disc to the finish spike ; and
tinally the disc on the intermediate spike to the finish spike.

This suggests that to move N discs, we should:

{1) Move N - 1 discs from the start spike ta the intermediate spike.
(2) Nave disc N {rom the start spike to the finish spike.

(3) Mave N - 1 discs from the intermediate spike to the finish spike.

The following program does exactly this.

HCeo PROCECURE CPTIONS (MAIN) ,.

HANCT.. PROCEDURE { Ny Sy Is F) 4.
CECLARE (Ny Sy Iy F) FIXED 9o ,
/¥ FANC1 CCMPUTES AND PRINTS A SEQUENCE OF MOVES WHICH TRANSFERS x/
/% A PILE CF { N) DISCS FRCM A START SPIKE, Sy TO A FINISH SPIKE, */
/* Fy USING SPIKE, [, AS INTERMEDTATE STORAGE. %/

TF N = 1 TreEn 77
PUT SKIP LIST (*MOVE DISC *, 1, ' FROM 'y 5, * TC 'y F) ,.
—eLsE AR rLveE U
CC +. o
CALL HANDI { N - 1, Sy Fy 1) 4a
PUT _SKIP_LIST { *MCVE DISC 'y Ny ' FROM 'y Sy * TO 'y F) 4.
- CALL HANOT T N =1, Ty Sy £ 4.
ENC '. - . — - o — - R — - . PR — o
ENC HANCI ,. |

CECLARE { N) FIXED 4.

CC wHILE (1 =1) ,. L
T CGET LIST (N7 ,. T T

CALL HANCI{ Ny 192¢3) ,. o L - _

END ¢4 T - o '

ENC KC 4o

Could the 'PUT LIST" statement which specifically says to move disc one be
eliminated?

What is the minimum number of moves necessary to move N discs? Find a farmula which
is a function of N and prove that it is correct.

Find a non-recursive algorithm which solves this problem. Which do you feel is the
superior? YWhy?

59

MAIN.. PROCECURE OPTIONS | MAIN } o+
CECLARE (I, Ng¢ NSPIKES, Sy Fy ISN [5C)) FIXEL 4.

GENHAN.. PROCECURE (N, NSPIKES, S F) ee
CECLARE™{ I, Ns NSy NSPIKES, S, F, FT } FIXED .
[E N LE NSPIKES - 1 THEN
DO v
DC I = 1TON=-1 ve
:u; LIST (*MOVE DISC *y 1, * FROM 1, S¢ Y TG 'y ISKIINY e
NG .. r FRUR Ty _

PUT LIST { 'MOVE DISC *, Ny * FROM 'y S5y ! TC 'y F } oge

0C I = N - 1BY -1 TO 1 ».
PUT LIST (*MOVE DIESC *y I, * FROM o ISNCD), * TC %0 B0 e
ENC 1. o - ' T ‘
FENC 4=
ELSE
WCRKe.s DC e
FT = ISN (1) »e
CISN(1) = F 4.
TALL GENHANT N<1, N3PTKES, S+ FTV 4.
PLUT SKIP LIST (' MOVE CISC '+ N o t FROM Y, Sy " TC 'Yy F) 9.
ISN(LY = S 5. -) D
CALL GENHAN { N-1, NSPIKES, FTe F) e
ISN(L) = FT 4o T
ENC GENKFAN 4.

CC WHILE { 1) s0
GET LIST (N, NSPIKES, Ss¢ F } ore
J = l e
DC I = 1 TC NSPIKES +»
IE I NE S & I NE F THEN
CC 1o
ISN{J) = 1 »e
J = J ¢+ 1 te
ENC »» '
ENC s
PUT SKIP LIST { *N= vy N, ¥ ONSPIKES= T7ONSPIKESs *S= 9 S
k= 1, F) s
CALL GENRANL Ny NSPIKESe Se F) 9o
ENC v
END “AIN '

Suppose the problem is modified so that we allow a parameter which specifies the
number of spikes the game will have. Thus the original game is a special case of of
this mare general one - in that game, the number of spikes was equal to 3.

What is the minimum number of moves necessary to move the N discs if you are
allowed to vse NSPIKES spikes?

A program follows which performs this camputation. Can it be shartened? How?

YWhat would a non-recursive algorithm look like?

68

The Coin Problem
Why I've inciuded this problem:
This problem has a very natural and intuitive recursive salution which can
suggest a non-recursive solution which isn't guite so intuitive. [think
you should see it.
The problem also generalizes nicely.
The Problem:

Determine the number of distinct ways an arbitrary number of cents, A, can be
“changed” in terms of half dollars, quarters, dimes, nickels and pennies. For
exampie, 16 cents can be changed in exactly six ways, as:

(1} 16 pennies
(2) 11 pennies and 2 nickels
(3) 6 pennies and 2 nickels
(4) 1 penny and 3 nickels
(5) 6 pennies and 1 dime
{(6) 1 penny and 1 nickel and 1 dime
How can the problem be analyzed? Consider first the notation:
N,
A
which is interpreted as:

“the number of ways of changing A cents with coins having maximum denomination C
cents”

Thus the original problem is to find the value represented by the symbol

50
N,

since we wish to change A cents with coins having maximum denomination 58 cents.

Now opbserve that
50 25 25 _ 25 25
/VA :/\/A +/VA'rU+/\//4‘2*f0+" . /\/A 'i;*;,

What does this mean? Just this: the number of ways of changing A cents equals the
number of ways of changing A cents without any half dollars plus the number of ways

61

of changing A cents using one hali dollar plus the number of ways using two half
dollars and so0 on.

Now note that each sub-problem on the right is similar to the problem with which
we started except that there are fewer coin denominations ta consider! Now natice
these eguations:

24 1Y O
/\/A = \/A ”"/\/A-z;*”' ’*/\/ F;J 95
ré=

"o 4 .
/\/A:' /\/A */\/A-mf'”‘+/\/ Z [x o

5 |
/"/A - /\/r/ + /\/A’/:'-' F e 7+ A/-/é‘/*—l;

What is the value of each term on the right of the last equation? Just 1. Surprise!
In any case, the following prugram uses a recursive procedure to solve this prohlem
based on the preceding analysis. Understand it.

CHANGE.. PRCCEDURE CPTICNS (MAIN) .
CECLARE CCINS(S) FIXEC ,.
LECLARE A FIXED s.
WAYS.. FRLCEDLRE [N, A) RETURNS | FIXEC)} oo
CECLARE (Ny A, TOVALy I) FIXED 4.
IF N = 1 THEN RETURN (1) -
ELSE
EL rra
TCTaL = WaYS { N = Ty A) 4e
oC I = 1 BY 1 TO FLCCR L &/ CCINS (N)) 4
TCTAL = TOTAL + WAYS (N - 1, A - I ¥ COINST N)) e
END ¢
RETLRN (" TOTAL) .
END ya
END WAYS se

CLINS(Y)
CLINSH)

1l v« COINS(?) =5 5. COINS(3) = 10 v CU[NS("! = 25 1.
50 ¢

CO WHILE (1 = 1) ¢
TCETLIST (A) s
PLT LIST (* THE AMOUNT °s Ay
* CAN BE REPRESENTED IN ' WAYS(Sy A)y ' WAYS') 4.
ENC s+
ENC CHANGCE e

62

Which program would execute more efficiently for large values of A? Which
program. would be easier to cxplain to someone who had never considered the problem?

Suppose that we wish to add a third parameter ta WAYS, ie
WAYS(ND, N, A)

where ND elements of COINS will contain distinct coin denominations in ascending
order, such that COINS(1) always equals 1. Thus the ariginal problem would just be

WAYS (3, 5, A)

for some amount A. This generalization allows one dollar bills, five dollar hills,

ten dollar bills, etc. io be considered in the computation of the number af ways of
changing an amount A. Which of the above programs can easily be modified to handie
this generalization? Write a non-recursive procedure which computes WAYS{ND, N, A).
(Hint: use the elements of an array to behave like the controlled variables of a nest
of B0-loops)

Suppose you wished to compute not only the number of distinct ways of changing
an amount A, but also precisely whai those ways are. YYhat problems arise when you
attempt to change the programs?

L » =

A PARTITION of a positive inleger, A, is a sequence of positive integers whose sum is
A. Use the ideas of the above programs to write bath recursive and non-recursive
programs which compute the partitions of A so that no computed partition is a
permutation of some other partition.

63

Try simulating the behavior of the program for a few simple examples. Then
observe that the following program also solves the prublem.

CHANGE.. PRCCEDURE CPTICNS (MAIN) .

WAYS T PRCCECURE (C'A) RETURNS (FIXEC) .
CECLARE (A, Ils 12, 13, 14, TOTAL) FIXED ».
TCTAL = C +a

NESTo. CC I1 = 0 BY 1 TC FLCOR (A /7 50) s

CC [2 = O BY 1 TC FLCCR (({ A - Il * 50) / 25) 4.

DC I3 = C BY L TO FLCCR {{ A - Il *# 50 - 12 * 25 } / 10) .
i TP T4 =0 BY 1 TG FUTCR U~

(A - [1 * 50 - 12 *# 25 - I3 % 10) /7 5} +a
TCTAL = TOTAL + 1 . ' ‘
ENC NEST e
RETURN (TCTAL) +e
ENE WAYS 4. _

CECLARE (A) FIXED yo
1

CC WHFILE (1 = 1) s+

GET LIST A) .

PLY LIST { * A = ¢, A, * CAN BE CHANGEC IN ', WAYS (A)y ' WAYS') 4.
’. -— -

END 4. T

ENC CHANGE 4.

Ty

64

Counting Lattice Points
Why I've included this problem:

This problem has a very natural recursive salution. [think you should see
it.

The Probiem:

We can define a lattice point in N-dimensional cartesian space as a set of N
coordinates which are all integers. For example, in 2-space (just a plane) (-2, 8)
is a lattice point but (5, 2) is not a lattice point. The problem can now he
stated.

How many lattice points are contained in an N-dimensional hypersphere of radius
R, centered at the origin.

That is, it N describes the dimension of the space and R describes the radius of the
hypersphere, the algorithm should produce the number aof lattice points within the
hypersphere.

Consider first the cases which can be visualized. If N is B, then there is
exactly one lattice point, the origin, regardless of R.

If N is 1, then our space is just a line centered at 8, and the number of
lattice points is just 2 » FLOOR(R) + 1. Another way of viewing the problem would
be to count all the answers to the zero-dimensional problems which accur at the
origin and to the right and leht of the origin for integer I such that Rwe2 - [xa2 is
greater than or equal to B. That is, count the origin just once and then count the
points on either side, recognizing that this value is just twice the number to the
right, say.

If N is 2, then our space is a plane, and the hypersphere is a circle of radius
R, centered at the origin. Thus, the lattice points are all {w,v) such that u
squared plus v squared is less than or equal to R sgquared and where u and v are bath
integers. Another view regards the problem in ierms of a bunch of one-dimensional
problems , jie. count the number of lattice points on the x-axis and add to this
twice the number of lattice points in the upper semi-circle.

The three dimensional case is thus just a bunch of two dimensional problems.

The program which follows periorms the desired computations. Study it. Note
that Rxe2 is passed as a parameter rather than just R. Why.

Find a non-recursive salution to this problem. Be carefull

Simulate the recursive structure of this pragram by maintaining your own stack.

65

LATTICE.. PRCCECURE OPTIGNS { MAIN) 4o
POINTS.. PRCCEDURE (N, RS) RETURNS { FIXED) 1.
/% POINTS COMPUTES THE NUMBER OF LATTICE POINTS IN AN N-CIMENSIONAL®/

/% HYPERSPHERE OF RADIUS SCRT(RS) =/
DECLARE (N)} FIXEDy (RS) FLOAT .
CECLARE (S) FIXEC r»
[F N = O THEN RETURN [1) s

ELSE
CC v« A .
—-wm - - e 2 pEINTS U N-1y RS) se
00O I = 1 BY 1 WRILE (I *= I LE RS) ..
g = § + 2 * PCINTS { N-1, RS - I = 1) 4.
END [)
ENC e

RETURN { S } se
" END POINTS,.
DECLARE (N) FIXED , (RS) FLOAT ».
o6 WHEILE U1 = 1) e
GET LIST (Ny RS) 4.
PUT LIST (*CIMENSION = *o Ny ° RADIUS SQUARELD = '+ RSy
* NUMBRER CF LATTICE PCINTS = f,"PQIﬂISN(lﬂ)!_(Esl)j ve
—eNE T P LATIAMLE !
ENC LATTICE ».

