
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Guide to 15-100

H. N. Chanon

Department of Computer Science
Carnegie-Mellon University

August, 1972

Contents

2. Introduction

4. Textbooks

7. Grades and Grading

8. Policy Statement on Cheating

9. Computers and Computing

9. What is a "Solution" to a Problem?

11. Programming Problems: How to keep these from ruining your

weekends and your health.

12. How to Attack a Programming Assignment

15. Array Walking
18. Some Words about Recursion

26. Preface to the Problems

28. Computing the Greatest Common Divisor

30. Solving Quadratic Equations

33. A Birthday Problem

37. A Nest of Squares

40. Evaluating Arithmetic Expressions

48. A Monotone Sequence

50. Gaussian Elimination

52. Matrix Multiplication

56. The Eight Queens Problem

57. The Towers of Hanoi

60. The Coin Problem

64. Counting Lattice Points

2

Introduction: Why and How this Guide Came to Be

I wrote these pages because blank expressions bother me! By that I mean, I don't
like to see a classroom filled with people who are either unwilling or unable to
answer a question and who manifest their state of mind by a sort of nebulous stare -
the blank expression. This unhappy situation is probably just as disconcerting to
students as it is to me. The reason for it, I think, relates to the nature of the
questions which I ask. They're meant to be non-trivial. I feel that class time is
valuable and shouldn't be wasted by simply presenting material which can be read from
a textbook. Instead, time should be spent discussing the implications and intent of
the assignment. This means answering questions and solving problems. Unfortunately,
existing course materials - textbooks and programming problems - don't seem to prompt
much inquiry as to either the implications or the intent of an assignment. Students
seem to think it's sufficient to simply read some assigned text and digest only its
content. Hopefully, this little guide will help change that attitude.

In the pages which follow, I've been critical of what seems to be about the best
material for an introductory course in computing. As I see it, the marketed
textbooks are abysmally bad. They tend not to provoke much inquiry into what
programming is about, and frequently address nothing more than the syntax of a
programming language. Hence, I have tried to expose some essential ideas from amid
all the verbiage.

Note, however, that this guide is NOT a textbook. It was written to
specifically accompany 15-100 at CMU. Its primary purpose is to provoke questions
about programming and problem solving; nothing more, nothing less.

I also emphasize the importance of asking questions.

ASK QUESTIONS!

Questions allow your instructors to talk about issues which are important to you.
They can also prevent him from wasting your time while he discusses things you
already understand. This guide should prompt lots of questions.

Also included are some programming problems and their analyses. Each is
accompanied by a few sentences describing what motivated 'me to include the problem
and what I expect you to learn from it. The texts of complete, running PLAGO
programs accompany them all. Understand them!

There are even a few pages of motherly advice about how to allocate your time
while working on the problems, along with some words about how to prepare and submit
programs.

R. N. Chanon
August, 1972

3

Some Words about 15-180

15-100 is offered every semester to students of engineering and science at CMU.
Because there are no prerequisites for 15-100, and because both freshmen and graduate
students take the course, the backgrounds of the students are diverse - to say the
least. Therefore, since essentially the only information your instructor has about
you is your name, it is vital that you ask questions about the material which you
don't understand - more about this later.

The purpose of this course is to teach you to sulve problems using a digital
computer. By the end of the course, you should be able to:

1. Recognize when a computer is an appropriate tool for solving a problem.

2. Define a problem precisely and formulate an explicit process for solving
it.

3. Write such a process as a program in the PLAGO programming language.

4. Determine whether a program actually does the task it was intended to do.

5. When a program does not perform as expected, alter it so that it does.

The course tries to present a large number of problems and asks how a computer
might be used to help solve them. Hence, problem solving and the use of a computer
as a tool to help solve problems is the real thrust of the course. The details of
creating syntactically correct PLAGO programs, punching or marking cards, and
submitting programs are of only ancillary interest.

The course meets three times a week for one lecture and two problem
solving/question answer sessions - called recitation sessions. The lectures are
intended to present "general", but vital information about both problem solving and
programming. They arc not to be ignored. Recitation sessions will be used by your
instructor to discuss PLAGO, problems, material from the lectures, and, in general,
anything of interest to the course. These sessions, however, should be driven by
questions. If you don't ask questions, there are very few things which an instructor
can do except give quizzes, read to you from the textbook, or present more problems.
If you don't ask questions, recitation sessions become a waste of your time. If you
don't intend to ask any questions, you might just as well not go to class. Your
presence will just add another warm body to an already over-heated classroom.

Besides class meetings, you are asked to write algorithms to solve several
prohlems and to represent these algorithms as PLAGO programs and to run them on CMU's
computer. They are important. Do them!

Finally, 15-100 requires that you take a final examination and a mid-term. See
the section which discusses grades and grading to find out how these exams and the
rest of your performance will be evaluated.

4

Textbooks: Which to Buy and What They're Good For
(Besides the obvious of course!)

Buy These:

(1) A Short Introduction to the Art of Programming
by E. W. Dijkstra

(2) PL/I Programming in Technological Applications
by G. F. Groner

(3) PLAGO/368 Users Manual

(4) A Guide to 15-188
by R. N. Chanon

What they're good for:

The book by Dijkstra (referred to hereafter as EWD316) is the best introduction
to programming with which I am acquainted. It addresses what seem to be the
fundamental issues of the discipline in a clear, concise and careful way. The text
isn't encumbered with the syntactic and semantic details of a particular programming
language. He emphasizes the task of finding and developing algorithms as THE
fundamental issue in programming. I think the book is excellent!

Unfortunately, as a textbook, EWD316 can be used in the wrong way. First of
all, material is presented in such a coherent way that a student might gain a false
sense of security about his understanding. It all looks so easy - especially in the
first three sections. Don't be mislead, however. The text is somewhat like the
Bible in the sense that it is easy to read but difficult to understand in terms of
the real depth that is present. Even though the assignments from the book will be
short, study them carefully. Don't fall into the trap of feeling "cheated" if you
think you understand the text after just one reading. The chances are, you really
don't!

Secondly, the book contains too few exercises. In the pages which follow, that
problem will hopefully be remedied.

The book by Groner, "PL/I Programming in Technological Applications", is meant
to be a source for'information as to the syntax and semantics of the programming
language which you will use to implement your algorithms. It contains numerous
completely worked examples, as well as carefully prepared summaries of the features
of the language. The examples are related to many algorithms which are commonly used
in engineering and science. Many of the algorithms, however, are poorly developed.
The book also contains an enormous amount of verbiage which won't be relevant to the
course. Therefore, you should rely on your recitation instructor to direct your
attention to those parts which are important.

5

Lectures

The lectures for 15-100 present information of general relevence to computing,
problem solving, and the administration of the course. In the first two categories,
most of the detail is omitted - rightly so - and left to the recitation sessions. In
particular, the lectures will tell you how to go abuut solving the problems. You may
not believe it, but the way you approach a programming assignment can have a
tremendous effect on the amount of time you spend on it. In the last category,
announcements of due date changes for the programming problems are made. The
lectures are carefully planned to focus your attention on what we feel are the
important issues. They are important. The lectures can also be inspirational -
indeed, there are those who believe that that's all a lecture can be.

Attend them.

Recitation Sessions

Recitation sessions should be driven by questions.

Enough! Be advised.

6

The PLAGO manual describes the dialect of PL/I in which you will write your
programs. The syntactic and semantic descriptions arc clear, but the examples of
complete programs which appear in the appendix are bad.

Do you understand what the phrase "syntax of PL/C" means? Are you going to ask
about it?

Grades and Grading Policies

You wilPhave the following opportunities to EARN points:

•Programming Problems

2 at 38 points
4 at 28 points
6 at 18 points

68
88
68

288

*Exams

Midterm (mean about 55-68) 188
Final (mean about 118-128) 288

388

•Recitation

Recitation performance

*Basic points for semester

58

558 points

You may earn bonus paints for turning the 28 and 38 point problems in early:

1 point for each two days

(upto a ceiling of twenty per-cent of the value of the problem!)

You will have the following opportunities to LOSE points:

•Cheating: all credit for the thing on which you were cheating

•Turning problems in late:

1 point for each two days

•Computing too much:

one point for each dollar more than the limit
used in each month

The final grade will be assigned on the basis of the following scale

475-558 A
368-474 B
258-359 C
288-249 D
888-288 R

8

Policy Statement on Cheating and Course Help

With regard to homework, quizzes, and exams, cheating wil! not be tolerated. Anyone
caught cheating on a problem will receive zero credit for the problem. Anyone caught
cheating on an exam will recieve zero credit for the exam. It is recognized that
student B can cheat from student A without A's knowledge. In such a case, A must
prove his innocence. Protect your hard work from parasites!

When you come to an exam, do NOT sit next to the people you have studied with.
Your argument that your answer is just like your friend's because you study together
will be much more convincing if you don't sit together during an exam.

Some students will find themselves unable to complete a problem an time or at
all. Such situations allow the student'three choices: first, copy someone else's
project and hope he is not caught; second, give up and put the course; third, see
your instructor. The second implies an R or a withdrawal, if possible. We intend
that the first case will also imply an R. Hence, the student's logical choice should
be the third alternative (it can't be worse). Your instructor's door is always open,
and the results of a visit may prove beneficial.

Postponements of due dates are passible. If you turn in your assignments late
without discussing the situation with your instructor, your grade will be decreased
by an appropriate number of points (see above).

You may discuss all problems (NOT exams!) unless otherwise specified by your
instructor. Student discussion is fruitful and encouraged, but all programs must be
written by the individual student. That is, you may talk with anyone (including your
instructor) about assigned problems, but the actual writing of the program must be
done by you.

Computers and Computing

The "programming language taught in this course is PLAGO (FORTRAN conversion will
be available at the end of the semester for those who want it). PLAGO runs on CMU's
IBM 360 model 67. Unfortunately, computer time is a scarce resource and it is not
possible to provide each student with an unlimited amount of computer time.
Therefore, each student in 15-100 will be expected to plan his time so that he can
live within two kinds of restrictions:

1) A limit on the number of programs run each day. This will be enforced by the
360: after you have used up your limit, it won't run any more of your programs.

2) A limit on the dollar value of your computer usage each month. This will be
enforced by your instructor: you lose one point for every extra dollar each
month. The cost of each program is printed at the end of each job, so YOU can
keep track of your usage. The exact limits will be announced at the first
lecture. The cost limit will be generous - most students should require only 75
per-cent of the allotment.

Note that these are upper limits and you are NOT guaranteed to be able to get this
much service. You are competing with many other users for a resource that is in
short supply. Indeed, there will be times (especially the day before a problem is
due) when the system can't give as much service as is requested.

If you are excited about computing and want to work on extra problems of
personal interest, see your instructor. We will try to make arrangements for you to
use one of the less congested computers on the campus.

What is a "Solution" to a Problem?

A solution to a programming problem is a working, documented program. It must:

1) get the right answer, even on special cases and with bizarre sets of
data we might construct.

2) be reasonably efficient (don't go overboard on this point!)

3) include program documentation, i.e. your working plans for the problem.

This documentation should contain:

1) About a page of understandable English prose explaining the
organization of your program, what the important variables are
used for, and the representation of the data (e.g. "X is a FIXED
array of length 10 which contains the x coordinates of the
input").

IB

2) A list of the procedures you will use, with a short
description of what each does and how they are related.

3. A flow chart or structured description (as done often
lecture) for each such procedure.

The credit for the problem will be split between the program and the
documentation as follows

If the problem The program The documentation
is worth... is worth... is worth...

38 28 18
28 15 5
IB 8 2 I

_ i

11

Programming Problems - How to keep these from ruining
your weekends and your health

Each semester, 15-108 students are required to write a number of programs.
These assignments differ from ordinary homework problems in that they require
complete, running, and correct programs as solutions. You can t turn in slipshod,
partially complete programs and expect much partial credit. This semester, your
programs are to be written in PLAGO - a dialect of PL/I. The programming problems
are important. Much of what you will learn from 15-100 will be a direct consequence
of the experiences you have as you write and debug solutions for them. Sadly enough,
however, students complain about the difficulty of the problems and that they have to
spend many hours finding and debugging solutions. My answer to this complaint is
quite simple:

Your approach is probably wrong.

(That's not very comforting, but it's still my reply.) With very few exceptions, the
analysis required to solve the problems is simple, if you are willing to analyze the
problem systematically and completely. There is no need to spend vast amounts of
time. If, however, you do spend lots of time solving the problems, see your
recitation instructor and explain your difficulty. He might have some suggestions.

Despite rumors to the contrary, these programming assignments are intended to
force you to do the following:

(1) Find or understand an algorithm which solves the problem.

(2) Represent the algorithm as a PLAGO program.

(3) Debug the program.

(4) Convince yourself that the program solves the problem.

Items (1) and (4) are the most important issues in the above process, in the
course, and in essentially all of programming - and for which I can't give you
algorithms. Items (2) and (3) can be handled in a fairly mechanical way and will
present only minor difficulties after you've written and run a few programs.

So, it would seem that the obvious thing to do is to spend enough time to find a
complete and correct algorithm so that the remaining items require only minor
attention. An hour or two of thought about the problem BEFORE writing any PLAGO
statements will probably save you several hours of the total time spent finding a
solution. Do this and your tenure as a student of 15-100 will only be a minor hassle
- who knows, you might even like it!

12

How to Attack a Programming Assignment

Imagine that you have been assigned a problem - not a keypunching exercise, but
a real programming problem. How can the problem be solved? Whole books have been
written to help answer this question. One oi the best is the small volume by George
Polya entitled "How to Solve It". I recommend it as a general aid to analyzing the
programming problems. More specifically, I can offer several suggestions and refer
you to the programs in a later part of this guide, guide.

Things to do:

(1) Make sure that you understand what the problem asks.

Usually, the problems are posed fairly well. Hence, understanding what a
problem asks isn't difficult. However, be certain that you really
understand the problem statement before proceeding to the next step.

(2) Find and understand an algorithm which solves the problem.

This is the most important part of the whole process! It involves, among
other things, finding an appropriate data structure and control structure
for the problem.

(3) Cast your algorithm in a step-by-step way using the ideas of structured
programming.

This tends to clarify your ideas and will frequently point out difficulties
with your original algorithm. Never feel too proud to write a flowchart or
a sequence of structured statements. The stepwise refinement technique due
to Dijkstra and Wirth is particularly appropriate to this step.

(4) Write a PLAGO program which is equivalent to your flowchart or structured
statements.

This step can be performed in a fairly mechanical way - it's easy. It is
sometimes helpful to write several drafts of the program. Embellish your
code with lots of informative comments. These comments are exceedingly
useful! Comments help you to understand the mess you've created if you
contract mononucleosis and must put the program aside for awhile. Your
final draft should be complete (including system control cards). This
really means that if you are lucky enough to have a git! friend who is
willing to punch your cards for you, she should never have to ask yuu what
characters to punch.

(5) Go to the third floor of Science Hall and punch or mark your cards.

This is another easy step. Examine your cards carefully before you submit
them to make sure that they exactly represent your final draft. This quick
check can sometimes save you several submittals.

13

(6) Run your program.

If j t doesn't run correctly, correct it and run it again. Don't, however,
just change the program "randomly". Think about what went wrong and how
changes will affect the program. Repeat this process until you arc
convinced that your program behaves as it should (see the comments below).
Make sure that you have considered all the special cases and not just the
ones which our data gives you!

One final important point: TRY TO START WORKING ON A PROBLEM AS SOON AFTER IT IS
ASSIGNED AS POSSIBLE, AND DON'T BE AFRAID TO WORK ON TWO PROBLEMS AT ONCE! ! ! ! ! !
! ! There are almost always two problems pending at the same time.

Things not to do:

(1) Don't try writing a PLAGO program from scratch. It's almost certain to be
wrong. Do so at your own risk. It has been my experience that regardless
of the size or complexity of the problem, a set of structured statements or
flowcharts is helpful. Should you decide to ignore this warning, expect
the following things to happen:
(a) Your program will contain more syntactic and logical errors than the

corresponding result had you followed the steps above.

(b) You can expect to make many changes in the program before it finally
runs correctly - if it ever runs correctly.

(c) You can expect to spend lots of time at the computation center
submitting programs and waiting for output. The computation center is
very dull, and, frankly, isn't a very pleasant place to be.

(d) Your program will be difficult to understand, not only by someone
else, but also by you.

(e) Your program will tend to be longer than the corresponding program
produced by the steps above. It will also tend to cost more to run.

(f) Your understanding of programming and problem solving will tend to be
weaker than had you followed the above steps - hence your grades will
tend to be lower than they could have been.

That's all I have to say about this matter. Be warned.

(2) Don't spend lots of time correcting and re-correcting a program that
doesn't work. The point of diminishing returns can approach quite rapidly
and you can easily waste time in an unfruitful pursuit. Time is best spent
making sure that your algorithms are correct!

14

(3) Don't wait until the da/ before a problem is due to start solving it. You
are almost certain not to have a solution in time. Programming assignments
are not like ordinary homework exercises. Not only must you solve the
problem, but you must also compete for a valuable resource - computing time
- to demonstrate that your program is right. Instead, start step (1) on
the day the problem is announced, and finish it as soon after that as
possible.

(4) Don't try to run programs the day before a problem is due. The user area
is mobbed by people who have neglected the problem. It is almost
impossible to get anything done under these circumstances.

That's all the motherly advice I wish to give about programming problems. Write
below the phrases from the above passages which you don't understand, and ask about
them.

15

Array Walking

In addition to the simple variable, data may also be stored into objects known
as ARRAYs. An array is nothing more than a name - just like one for a simple
variable - which identifies a whole collection of simple variables. Names become
associated with array data structures by declaring them as such. Thus in PLAGO

DECLARE A(0:100) FIXED;

declares A to be an array of elements A(0), A(l), ... , A(100) . Arrays are
particularly useful because the symbols which name array elements can frequently name
more than just one element. Thus

A(I)

names an element of A, designated by the value of I. Thus if the 101 elements of A
contain numeric values, the following fragment computes, respectively, the minimum
and maximum values contained within A.

/* compute the maximum value in A and store it into MAXA.
compute the minimum value in A and store it into MINA */

/* set MINA and MAXA to the value of an element of A */

MINA, MAXA = A(0) ;

DO I = 1 to 100;
IF A(I) < MINA THEN MINA -- A(I) ;

ELSE IF A(I) > MAXA THEN MAXA = A(I);
END ;

This fragment can be made more flexible by noting that the upper bound of the DO
statement can be replaced by a variable, say N. This means that if 0 <= N <= 100
then only the first N elements of A will be examined for the maximum and the minimum.
Obviously, the lower bound, 0, can be made a variable as well (say M)!

Now, suppose that we wish to rearrange the contents of A(0),..., A(N) such that
these elements of A are in ascending order. There are many ways of doing this. One
way which every beginning programmer learns is a method called the SHUTTLE SORT. It
can be developed by. noting that the smallest element of A(0),...,A(N) should occupy
A(0).' This value can be found by computing the minimum of A(0),..,A(N) and
interchanging the contents of A(0) with the element of A where it was found. Now, we
have a simpler, but similar situation, we must find the minimum of A(1),...,A(N) and
again perform the appropriate interchange. The process can be continued until we
have processed A(N-l) and A(N).

The first attempt at such an algorithm might be

16

DO I = 8 TO N - 1;

compute the index of the smallest
element of A(I), A(M),..., A(N) and
store that index into J;

interchange A(I) with A(J);
END ;

The interchange operation is particularly straightforward.

/* interchange A(I) with A(J) */

TEMP = A(I);
A(I) -- A(J);
A(J) r TEMP;

Now, to compute the index of the smallest element of A(I) through A(N), we write

/* assign J the value I, as a tentative index /*

J = I;
DO K = I + 1 TO N;
IF A(K) < A(J) THEN J = K ;
END ;

Write this sorting program in PLAGO and run it! ! !

There are many ways of sorting a sequence of values. Your recitation instructor
will undoubtedly mention several others. Be certain that you understand the above
program.

Exercises:

(1) Compute the mean, median and standard deviation of A(0)...A(N).

(2) Compute the sum of A(0)... A(N)

(3) Compute the greatest common divisor of A(8),...,A(N),

(4) Compute the least common multiple of A(C)^.,A(N).

(5) Rewrite the following programs so that data is processed from the contents of
arrays rather than as input values

a) The Birthday Problem

b) The GCD Problem

17

* * *

Arrays come in infinitely flavors, depending upon their dimensionality. Thus,
the array A above was a one-dimensional array. A two-dimensional array, B, might be
declared as

DECLARE B(25,30) FLOAT ;

Such an array can be visualized as a two dimensional table of simple variables having
25 rows and 30 columns. Thus B(5,17) names the item in the fifth row and the
seventeenth column. You should gain a mastery of systematically storing and
retrieving values from such arrays. As an example of such a computation, suppose
that the variable N contains an integer value such that 1<-N<=25 and that the
elements in the first N rows of the first N columns contain values.

Compute the sum of the elements A(l,l), A(2,2),..., A(N,N) and store the result
into MDS. Also compute the sum of the elements A(1,N), A(2,N-1),...,A(N,1) and
store this value into SDS;

Clearly, we have

Set MDS and SDS to 0;

For each row of B, say I (i=lt2,...,N) add
to MDS B(I,I) and add to SDS the value
B(I,N+1-I);

Hence the fragment

MDS, SDS = 0 ;

DO I * 1 TO N;
MDS = MDS +B(I,I);
SDS = SDS + B(N + 1 - I);

Exercises:

(1) Write programs which input (output) values to (from) variously dimensioned
arrays.

(2) Write programs, which test square arrays for

a) symmetry

b) diagonal dominance

c) whether or not the array is a Latin Square or a magic square.

18

Some Words About Recursion

In EWD316, Dijkstra devotes a chapter to discussing several ways of writing
programs which correspond to recurrence relations. Skim the chapter before you read
the text below.

There are many recursive definitions which arise in mathematics. A definition of
N-factorial can be expressed as:

8! ; 1
N! = N » (N - 1)! where N is an integer greater

than 8

The Fibonacci sequence from Chapter 1 of the book by Forsythe et al. can also be
defined recursively

F = 1
1

F = 1
2

F = F • F for N > 2
N N-l N-2

Recursive definitions occur quite frequently in numerical analysis. One such
definition defines the Chebyschev polynomials of the first kind (bear with me please!)
They are:

T (X) = 1
0

T (X) s X
1

T (X) : 2 § X • T (X) - T (X), N > 1
N N-l N-2

Now, the obvious question is:

How can recursive definitions be used to write programs.

The answer is frequently quite simple. Since PLAGO allows procedures to call
themselves, recursive procedures can be written by following these steps:

(1) Explicitly test for the cases where a closed form result can be returned and
return the value as appropriate.

19

(2) For all the remaining cases, call the procedure recursively with the
appropriate arguments.

Thus the procedure T which computes the value of the N-th ChebyscheV polynomial at X
can be written as:

; V "PROCEDURE (Yf N) RETURNS"! FLOAT
DECLARE X FLOAT* N F I X E D t .

I F N * 0 THEN RETURN (1.0) f .

I F N « 1 THEN RETURN 1 X) >.

RETURN I 2 * J * T I X t N - 1) - T (Xt N - 2 I) t .
"EKC T f

Study the above procedure carefully.

To help clarify some of these ideas, consider the following exercise.

On the following few pages, are lots of copies of the above procedure. Cut them
out, and staple them together so that you have a booklet of identical pages, each
page containing just one copy of the procedure. (That's right, cut out the next
few pages and staple them together!) Notice that at the top of each are two
boxes, one labelled N and another labelled X. These boxes will contain
appropriate values for N and X. Now simulate the execution of T where X equals 4
and N equals 4.

Do this by first writing the above values in the boxes at the top of the
first page of your booklet. Simulate the procedure. Clearly, in order to return
the required value for T, other evaluations of T must be made. Do this by
marking the function call that will be made (just put an arrow under T(X,N-1))
and then turn to the next page where there is a new copy of T. Insert the
appropriate values for N and X in the boxes (N = 3, X = 4) and execute this
procedure. Continue this process until a procedure can be executed to
completion. In this case, simply write the value to be returned in the upper
right corner of,the sheet; TEAR IT OUT (That's right!); and flip to the
immediately preceding page and write the value you wrote in the corner of the
sheet that was torn out of the book beneath the marker you left behind. That's
the value of the marked call! Continue evaluation by flipping to a clean copy of
T or going back to a previous copy of T. The whole process terminates when the
first page has a value in the upper right corner.

Can you think of another way of simulating a recursive procedure? (Hint: Consider
stacking the values of X and N, similar to the way values were stacked in the

28

discussion of arithmetic expressions.)

Recursive procedures have the property that they are usually short and concisely
represent a computation. They also have the property of executing rather slowly (
there are notable exceptions to that observation, however, cf. The Marriage Problem).
Therefore, it is frequently, to your advantage to try to represent recursive
algorithms as non-recursive ones, AFTER the recursive algorithm seems to behave
properly. Several of the Problems address exactly this issue.

- 21

. . I'ftOChMtjRfe (X, N > RfeCURSIVE RETURNS < FLOAT)
ot-CLA^H X FL i iAT , H F IXGU , ,

N |
i l M = 0 THt-rt RLTURN (1.0) t .

X 1 1
IF iM = I THr. i RETURN (X)

<f;TUU.M (? * X * T (X . N - l) - T (X , N - 2) > ,

l-no r , .

T . . PKOChDUKt: (X . N) RECURS IV6 RETURNS (FLOAT) , .
UtCLARC X FLtiAT» N F IXED

[F im = 0 I'HHN RETURN (1.0) /\| [

IT \i = 1 THt.\ RtTURN (X) , . X L

Kt-TUK.v I 2 * X * T I X i N • 1 I - T i X i N - 2 I)

T t .

. . PKliCtrOORC (X . N) RECURSIVE RETURNS (FLOAT) » .
' tCL~He X F L C A T , N H X t U . ,

N 1 ,1
IF N = o th»:n RETURN { 1.0) , ,

X L . 1
IF N = I THtrN RfcTURN (X I f
^f.TUH^ (2 * X * T { X , N - l) - T (X , N - 2)) » .

f-.Mi: T , .

- 22

X « J» OC fc m ... X * N _) RECURSIVE RETURNS (F L O A T)
OFCLARE X "FLOAT, N F I X E D t . , — —,

_ n I
I I - N » 0 THEN RETURN (1.0) t . _ _ _ _ _

- - - - X 1 1
I F N = 1 TH5.1 RETURN (X) , .

r e t u r n " (?. * x * T~C~xT~n~ . - ~i") r ~ f " (" Y , " n ~ - 2 >

ENO T

T . . M.\()Cf:DURt (X . N) RECURSIVE RETURNS (FLOAT)
DECLARE X FLOAT t N F I X E D t .

_J£...N._f _P__IHEN. R E T U R N . (1 . 0) . , . /\] I • 1

. . _ l _ F N * .1,, THEN RETURN . L . X_ 1 X 1 1

KfcTUil.N (2 » X • T (X , N - l) - T (X . N.-_2„..).„

T-jf._PR' !f".r.nL'«C_ (X , N) RECURSIVE RETURNS (FLOAT) ,
MECL*R£ X F L O A T , N F I X t U . .

_ ... N I J
I F IK = 0 TH«IN RETURN (1.0) » .

_ _ _ „ . X L I
I F N = 1 THtN RETURN (X) , .

R i f fu«N~(2 * X * T (" x 7 ~ N ~ - ~ I " T - _ t (X," N " - " > "))

t-Mt? T •.

- 23 -

I± i_£«QCfcmJHl : . („ X , _ N >.RECURSIVE RETURNS (FLOAT)
UFCLARF X F L O A T , N F I X E D

U- N = 0 THEN RWuRN "{ 1 .0) *.

T f ~ n ~ ^ ~ T T h e n " r e " t u r n T x " i , .

RETURN I 2 * X * T I X i N - i ' ')"""- Y T " x ' t ~ N ~ 2 T

ENO~T

T.~.""PRiiCtDUKb "(X ,~N) RECURSIVE RETURNS (FLOAT)
DECLARE X FLUAT > N F I X E D

IF N = 0 THEN RETURN (_ 1 . 0 .) „., . N . 1 " 1

I F N « 1 THfcN_RETURN J . „X J L » • X I I

RETURN (2 » X * T (X , N - 1) - T l . X f . . . N _ - J .).

END T t .

T . . PRMCfrPURC (X . N) RECURS. IVE_RETURNS (FLOAT) . ,
DtCLARt" X "FLOAT t N HXfcU » . , .

. . N I J
IF H = 0 THEN RETURN (1.0) » . _ _ ,

T F "N = 1 THENRETURN (X)
X I

- 24 -

T . . PRlKj LDjj,Rb_J__X - t_N_) RfiCURSIVE RETURNS (FLOAT)
OFCLARE X F L O A T , N F I X E D ~

_ _ . N I 1
I I - N = 0 THEN RETURN (1 .0) " , . " ' " "

_ V I 1
I F N = I THEN RETURN (X) ' 1

RETURN (2 * X * T (X , N ~ - 1 ~ t " T x , ~ N ~ 2 " ") "

END T

T . . PaUCFDURfc (X , N) RECURSIVE RETURNS (F L O A T)
DECLARE X F L U A T , N F I X E D

I F N = 0 THEN RETURN < 1.0) f\| L

J L L J L J L J L i H J ^ J L E J U K N J . . . X . J _ _ f . _ ... X £

RETURN (2 * X • T (X , N - l) - T (X . N - 2)

tNO T , .

T . . PRUChDtiRE (X . N) RECURSIVE RETURNS (FLOAT) ,
DECLARE X F L O A T , N F IXED , . . .

• N I J

I F N = 0 THEN RETURN (1.0) ,
, _ X I I

I F N = 1 THEN RETURN (X) , .
RETURN (2 * X * " " t T " X 7 " N ~ - T (x , N - 2) ")

hND T , ' .

- 25

T . « PROCEDURE (X , _ N) RECURSIVE RC TURNS (FLOAT)
DECLARE X F L O A T , N F I X E D . ,

, , - - N |
I M = O THEN RETURN (1 .0) t . , ,

- X \ -1
I F N = I THErf RETURN (X)

RETURN (? •* X * T { ~ x 7 N - 1 ~) F~ (~ x,~" N " - ~ 2)

£N0 r , .

T . . PROCFDURfc (X , N) RECURSIVE RETURNS (FLOAT)
DECLARE X Ft tjAJ_._M j c l j^Pn_ j

J . F_N . »_.0_„TH.F.N_ RET URN. (. 1 . 0 . .) . . . , . . /\] I •]

. I F N = . . I _ T H t N RETURN (X) X 1 I

RETURN (2 * X • T (X . N - 1) - T_ (X... N_-._2)

»}ND T

T . . PROCEDURE (X , N) RECURSIVE RETURNS (FLOAT)
O .CLMKE X" F L O A T , N F IXED . . .

_ _._ ...N I J
I F N = 0 THEN RETURN (1.0) , . , ,

_ X 1 I
I F N = 1 THEN RETURN (X) » .
RE TURN (2 *~X~*"T~(T , ' N* - " 1 T -~ T (X . N - 2))

2 6

Preface to the Problems

The programs which accompany the fallowing problems were all run as PLAGO
programs. Each compiled and executed correctly. Hopefully, these programs will
serve as models as well as objects subject to criticism. Several of the problems
make reference to an introductory text by Forsythe, Organick, Keenan, and Stenberg.
The book:

"Computer Science: A First Course"

is on reserve in the library.

« « •

Because of the limited character set which can be printed by the line printer
from which you will receive listings of your programs, the following PL/I characters
are printed as indicated

PL/I Printer

NE
GT
LT
NG
NL
LE
GE
NOT
OR
CAT

Always punch the characters appearing in the left-hand column, NEYER the ones in the
right-hand column.

* « «

One minor difficulty which you might encounter has to do with the programming
notation used by Dijkstra in EWD316 and the notation required by PL/I. These
difficulties arise because, in many cases, both use the same notation to mean
slightly different things. The most important of these are listed below.

(1) The assignment operator in PL/I is V and not V . However, statements having
multiple left parts in PL/I are written with the left parts separated by commas

>
<

<=
>=

I

I I

I, J , K = B; means I » J » K » 8;

27

(2) The while clause which Dijkstra uses is of the form

while {RE do

in PL/I, its equivalent is

DO WHILE (#£);

(3) The repeat statement

repeat until (BE;

has only several messy equivalents in PL/I. One such equivalent is a form of the DO
statement which uses a variable called REPEAT

1 DO REPEAT = 0, 0 BY 0 WHILE);

Another, more straightforward equivalent is

R = 1;
DO WHILE (Rh<8fc);

R = 8;
END;

Study both of these forms and find several of your ou situations where either of the
above will fail?

(4) Dijkstra uses begin and end to parenthesize statements. In PL/I, DO; and END;
parenthesize statements and BEGIN; and END; delimit blocks!

28

Computing the Greatest Common Divisor

Why I've included this problem:

It provides an example oi some of the difficulties and shows some of the
techniques one encounters when transforming a structured description into a
running program.

The algorithm first described can easily be made a part of a program which
computes the GCD of a sequence of pairs of positive integers, thereby
providing a simple example of a complete program, including all the
input/output statements.

The Problem:

On page 37 of EYVD316 is a program which computes the greatest common divisor of
two positive integers. Suppose we wish to extend this program so that it computes
the greatest common divisor of arbitrarily many pairs of positive integers. One way
of doing this involves punching the sequence of pairs into data cards. We can
terminate the sequence by following the last pair of integers by a pair of zeros.
Hence, an algorithm which solves the problem might be.

input values for A and B;

while A is not equal to 8 do
begin

print the values of A and B;

compute the GCD of A and B and
leave the result in GCD;

print the value of GCD;

input values for A and B;
end ;

A PLAGO program which is equivalent to this description is

G . . P R O C E D U R E C P T I C N S (M A I N) F .

O F P A I R S O F P O S I T I V E I N T E G E R S * /

' • - B E T I R ? I N A J E D B Y A P A I R O F Z E R O S * '

D E C L A R E I A , B , G C D) F I X E D t•

. . / * ^ ? A ! T . . V A ^ 6 S F O R A A N D B */

29

• •

t •

G E T L I S T < A , e)

D C " W H I L E " (A N E 0 £ B N E 0) . .

/ * P R I N T T H E V A L U E S O F A A N D B * /

pTj T ~- s - K - j -p -YfST" f « A ~ , A , • ~7~8~~~*T 8 ~)

/ * C C P P U T E T E E G C D ~ C F " A ~ A N D 8 A N O L E A V E T H E R E S U L T I N G C O * /

C O W H I L E (A N E B)
D C W H I L E (A G T B) _

E N C ,

O C W H I L E (B G T A) v .

8 = " B " ~ - A • •

E N D " " " " '

G C C _ . .

/ * P R I N T T H E V A L L E C F T H E G C D C F A, A N D B _ * /

P U T L I S T (' G C C = G C C) , • _

" G E T L I S T T A . ei)
E N C _ _

Exercise:

(1) Write and run a PLAGO program which prints the values of a sequence of pairs of
positive integers and their greatest common divisors and their smallest common
multiples. The input should be terminated by a pair of zeros. Use the program on
page 41 of EWD316. Your solution should include the set of stepwise refinements
which led to the program.

(2) PLAGO has a special built-in function called MOD which does the following

MOD(sel, se2) has the value of the remainder
of the division scl/sc2

For example

M0D(28, 7) equals 6;
M0D(2, 6) equals 2

i .u- Mnn fnnr-tinn and no other arithmetic operations,
If you are allowed to use only the MODilun t.on and no ^ (c o m p a r i s o n s

how would the GCD program change? Rewrite it using, oniy'
of variables are still allowed, but not of more complicated expressions.)

38

Solving Quadratic Equations

The equation

A * X * * 2 + B * X + C : 8 .

can be solved, when A is not equal to 8 by

- B + o r - V B * B - 4 * A * C

2 * A
We wish to write a program which will accep , as its input, values for A, B, and C,
and produce, as output, the values of the root or roots of the equation. Thus, a
first description of the solution might be

input values for A, B, and C;

output values of A, B, and C;

solve A * X * * 2 + B * X + C = 8,
and output the values of the
roots along with the case
which was solved;

Several situations arise, however, in attempting to solve the equation. First, if A
is not equal to 8, the formula applies. If not, and B is not equal to 8, then the
equation is linear in X and has a root which is -C/B. If B = 8 and C is not equal to
8 then no equation is represented. We might wish to print some kind of error message
to accompany this case. Finally, if A = 8 and B = 8 and C = 8, an identity is
represented. Again, a message might be appropriate as part of the output.

A refinement of the third statement might be

/* solve A * X * » 2 + B * X + C : 8 * /

if A not equal to 8 then
begin
solve the quadratic using the formula;
end

else if B not equal to 8 then
begin

Little mathematical background is needed to understand the problem. Hence,
the development can concentrate on programming issues.

The Problem

Why I've included this problem:

31

solve the linear equation;
-end

else if C not equal to 0 then
begin
print a message saying that no

equation is represented;
end

else
begin
print a message saying that an identity

is represented (8=0);
end

The quadratic formula may be evaluated by observing that if

I

B * B - 4 * A * C
I

Hence the final program is

= 0, there is one real root
> 0, there are 2 real roots

< 0, there are 2 complex roots

C U A D . . P R C C E C U R E O P T I O N S * M A I N) T .

D E C L A R E (A T B F C T D I S C * S C O) F L O A T 9 »

/ * 1 N P O T V A L U r r F (J R " T F ~ B R ~ A W ~ E ~ * /

G E T L I S T < A T " B » C) ~ " " "

/ * O U T P U T V A L U E S ~ 0 F ~ A T ~ B * A N D ~ C ~ V "

" P U R S K I P I T S T I • A « • T A T - # T ~ E ^ ^ r T 7 ~ f m i r z ~ ~ ~ < r R , T ~

/ • S O L V E A * X * * 2 " + B ~ ~ * R T ? " C " I 0 " A N D O U T P U T T H E " V A L U E S O F T H E * /

/ * R C O T S K I T * - T H E C A S E W H I C H W A S^ S O L V E D * /

I F A N E 0 J H E J R F _

~ DC,/""*"

/ * S C L V E T H E " Q U A C R A T I C W I T H T H E F O R M U L A * '/" ' .

D I S C " » " B " * "B • 4 * " A * " C V .

I F D I S C = 0 T H E N _

/ • T H E R E I S C N E R E A L R O O T * /

P U / S K I P L I S T < • T H E R E I S O N E R E A L R O O T W H I C H E C U A L S . t - B / 2 / A) T

3 2

I F C I S C G T 0 T H E N

. D C ^

S C O = S G R T < O I S C)

P U T S K I P L I S T " (• T H E R E " A R E T W O R E A L R O O T S , « , (- B + S Q D J / 2 / A

• A N C • , - (B • S Q O) / 2 / A) , .

E L S E _

/ * T H E R E A R E T W O C O M P L E X R O O T S * /

C C t . _
S C C » S~CRt"('"-' O f ' S C f f . " " " * ' "
P U T S K I P L I S T (• T H E R E A R E T W O C O M P L E X R O O T S , ' ,

- 8 / 2 / A , S C D / 2 / A , • * I • A N D « ,

- B / 2 / A , • - » , S Q D / 2 / A , • • ! •) » .

E N D , .

E N D , .

E T S T * T F " (T ~ N 6 0 " T H E N * "

P U T S K I P L I S T (• T H E R E I S O N E R E A L R O O T - L I N E A R C A S E • , - C /

E L S E " " " " ~ " " "

I F C N E 0 T H E N

P U T S K I P L I S T (* / / / / N O E Q U A T I O N I S R E P R E S E N T E D / / / / •) , .

E L S E _ _

H P U T " ~ S K " T P " L O T ^ " R T P R E S E N T E D •) , .
E N D • •

33

A Birthday Problem

Why I've included this problem:

Its analysis is straightforward.

The computations in the final program must be arranged so that overflows do
not occur at intermediate stages of computation.

The Problem:

Suppose that K persons arc gathered in a room. What is the probability that at
least two of the persons were born on the same day of the year? (Ignore the
possibility of anyone being born on February 29)

The problem can be analyzed by noting that the answer equals

{ the probability that no two ^
persons in the room were born
on the same day of the year

The quantity in braces is now just the number of ways K persons can have different
birthdays divided by the total number of ways K persons can have birthdays, i.e.

365 * 364 * ... * (365 - K + 1)

365 ** K
Note: Those students worried about the relevance of this problem may wish to consider
the solution to the following:

An electronic assembly contains K components, each of which will fail sometime
during the next N time periods. The assembly will continue to operate if only
single components fail in a time period, but will fail if more than one
component fails in a time period. What is the probability that the assembly
will fail? Let N be 365 to be definite!

The solution to this problem can he extended to allow it to compute a sequence of
probabilities, i.e. we wish to print the values of N positive K's (the number of
people in the room) and for each K, the probability that at least two of them were
born on the same day of the year. The values of K are to be read from data cards.
Preceding the first value for K is a positive integer, N, corresponding to the number
of times K is to be assigned a new value, implying a new computation of the
probability.

The first stage in the development might be

input a value to N;

34

while N > 8 da
begin
input a value to K;

output the value of K;

compute the value of the probability that
at least two people, among K, were born
on the same day of the year. Store this
value into PROB;

output the value of PROB;

M » N • 1;
end

The details of developing all the parts of the design, except the computation of PROB
are straightforward. They appear in the final program. However, the task of
computing PROB requires more analysis.

Several cases are apparent. First, if the value of K is less than 2, the
probability of two people being born on the same day of the year is, of course, zero.
Further, if there arc more than 365 people in the room, the probability that at least
two were born on the same day of the year is 1. In the remaining cases, the formula
can be calculated. Thus, we have

/* compute the probability for K and store it into PROB */

j i K < 2 then PROB := 0
else, if K > 365 then PROB := 1

else
/* compute the formula */

The formula can now be refined as follows. We select DEN to represent the value of
the denominator and NUM to represent the value of the numerator. Both can initially
be set to 1 to get

NUM :« DEN := 1;

I » 1;

while I <= K do
begin
NUM := NUM * (366 - I);
DEN DEN « 365;
I » I + 1;
end ;

PROB := 1 . NUM / DEN;

The final program is now

35

BDAY . . PRCCECURE OPTIONS (MAIN) , .

/* READ A VALUE INTO N, I N D I C A T I N G THE NUMBER OF TIMES A VALUE IS */
/* TC BE REAC INTO K. PRINT EACH K ALCNG WITH THE PRCBABIL ITY THAT*/
/* AT LEAST TWC CF K PEOPLE IN A RCCM WERE HORN C.N THE SAME DAY */
/* CF THE YEAR. */

DECLARE (I t N, K) F IXED , .
DECLARE (NLM, DEN, PROB) FLOAT , .

/* INPUT A VALUE FOR N */

GET L I S T (N) , .

DC WHILE (N GT 0) , .

/ • I N P U T A VALUE FOR K */

GET L I S T (K) , .

/* OUTPUT VALUE OF K */

PUT SK IP" L 1ST (* K = • , K) , •

/* COMPUTE THE PROBABILITY FOR K ANO STORE THE RESULY
/* COMPUTE THE PROBABILITY FOR K AND STORE THE RESULT IN PROB */

I F K LT 2 THEN PROB = 0
ELSE IF K GT 365 THEN PRCB =

ELSE
DC , .
NUM, DEN = 1
1 = 1 , .

OC WHILE I 1 L£ K I i .
NUM = NUM * "(366 - I ")
DEN = OEN * 365 , .
1 = 1 + 1 , .
END

PROB = 1 - NUM / OEN
END , .

PUT SKIP L I S T '("• PROB"= ' , PRCB V , . "
N = N - 1 , .
ENC , .

END , .

K *
pRce =
K =
HRCB =
K =
PRCB =
K -

2 .73973E-03
7

5 .62357E-02
20

4.11438E-01
30

CUNCIT ICN 'OVERFLOW' SIGNALLEC IN STATEMENT 15

CONOIT ICN • ERRCR' SIGNALLED" IN STATEMENT 15

CONDITION ' F I N I S H ' SIGNALLEO IN STATEMENT 15,

36

Unfortunately, this PLAGO program will fail for several values of K. The reason
for this is that the finite capacity nf a storage cell is exceeded during an
intermediate calculation (EWD316, p.26). This explains the peculiar message in the
output. It's not difficult to see that if K is, say, 75, the value of the
denominator exceeds 10**158, which exceeds the default magnitude of a FLOAT variable.

A much better way of performing the calculations would be to initialize PROB to
1 and within the loop compute:

PROB := PROB * (366 - I) / 365

This assures us that intermediate calculations will not lead to results which are
extremely large.

Exercise:

(1) Modify the program using the above suggestion. Could the suggestion lead to
other kinds of difficulties?

(2) Consider the following simple problem:

Suppose you wish to compute the distance between two points in a plane. Let the
coordinates of the first point be represented in the variables XI and Yl and
those of the second in X2 and Y2. The formula

(XI - X2> ** 2 + (Yl - Y2) ** 2

computes the value we want. Now suppose that you are guaranteed that the
distance between the two points will not raise the overflow condition. How can
you guarantee that no intermediate calculation in the above formula - or a
modification of it - will raise the overflow condition?

Develop a PLAGO program which computes the distance between pairs of points. The
input should contain a value for N, as the first value of the input, followed by N
groups of four values, corresponding to the coordinates of two paints. The program
should output the values of these coordinate pairs along with the distance which
separates the two points.

(3) Modify the program from exercise (2) so that the value of the shartest(longest)
distance is printed at the end of the output.

37

A Nest of Squares

Why I've included this problem:

This problem shows how an algorithm can be transformed into a lower echelon
algorithm just by recognizing a simple property.

The Problem:

Suppose that a family of squares, S(8), S(l) S(I), ... is defined so
that the area of square S(I) equals

(I + 1) * A, where A is positive and real.

Suppose further that this family of squares is centered at the origin of a
two-dimensional coordinate system with sides parallel to the X and Y axes,
example:

Y

r ' 6°

. OX

_ >
r ' 6°

. OX

_ >

• •

X

Now imagine that the variables X and Y define the respective X and Y coordinates
of some point. What is the index of the smallest square which contains the point
(X,Y)?

For example, if A is 1, X is 4, and Y is 3, then the index of the smallest
square containing (4,3) is 63 - S(63} is the smallest square containing (4,3).
(convince yourself that this is true before going on)

This problem can be analyzed in several ways. One way is to notice that since
each square is symmetric about the X and Y axes, the smallest square in our family

38

containing (X,Y) also contains the smallest square centered at the origin with sides
parallel to the axes, and with (X,Y) on its boundary. Hence the area oi each square
in the family (starting with the smallest) can be compared with the area of the
square with (X,Y) on its boundary - call this square S. The first square whose area
is greater than or equal to the area of S is the square whose index answers our
question.

More concisely, we might write:

ASQ*-area of square with point (X,Y)
on its boundary;

I <R 8 ;
while area of S(I) < ASQ compute I-*-1 + 1 ;

I N D E X . . P R C C E C L R F C P T I C N S (M A I N)

N E C L . A R E (X , Y , A , A S 0 1 F I C A T , (I) F I X E O

/ * G C £ B $ ° _ M E I N P U T V A L U E S A N C P P . I N T T H F . M * /

~ ~ ~ G C T L F S T " (A X , Y) T •

? U T _ L J S T (_ ' « = ' » A , ' X - * , X , ' Y - ' T Y I , . _

/ * " C O M P U * T £ ' F H E " A R F A C F T H E S M A L L E S T S Q U A R E C P \ T A I N T N G ~ (X F Y) ' • > "

A S Q = 4 * M A X A P S (X) , A B S (Y)) ** 2 T .
/ * R I M ? U T : T H E I N H E X C P T H F S M A L L E S T S C U A R ? C O N T A I N I N G (X , Y) » /

[, 0 _ I = 1 B Y _ > _ H I L _ F _ (_ * S C _ G T A * I) . .

£ N > " , T '
J _ = _ I - 1 , . _
/ * I C O N T A I N S ^ H F ' " V A ' L O ' E W E A R E A F T C P ~ I . « S C , " F M H * /

P O T L I S T (' I N D E X O F S M A L L E S T S Q U A P E C O N T A I N I N G (X , Y) I S 1 • I) , .

FR'ND I N D E X t .

39

The more intrepid analyst, however, might notice that there 3re infinitely many
values, of I (or which this inequality holds:

(area of S) <-- A • (I + 1)

Solving this for I yields

(area of S) / A - 1 <= I.

Clearly the left side can be computed. Therefore, if we can compute the value of the
smallest integer which is greater than or equal to the left side, our question is
again answered!

The following program does just this. Why? Think of some other ways of solving
this problem.

INDEX, PRQCECURE 0 P J J L O N S J . P A I J U -
OFXHRE (X t V t A, ASQ) FLGAT.

/* r . H A B SO»c ' N P " T VALUES AND. PR,
GET L IST (A , X , Y)

J L S -
(I) FIXEC
NT THEM *i

t'UT L IST (1A • X = • Y = Y)
SQUARE CONTAINING /• COV?MJTT THE AREA OF THE SMALLEST _

I - C E I L I (4 » MAX(ABS ULt_ABS_LY_?— L .** f . ! . . C
T v V c ^ T ^ ^ T H r ^ J T ^ E ARE AFTER SO. PRINT IT

?LJ L IST (•INDEX OF SMALLEST SQUARE

(X , Y)
L L t

*/

END INDEX

48

Evaluating Arithmetic Expressions

A quiz similar to the following was given during a 15-188 lecture. Try it.
Don't spend more than 10 minutes.

The variables in the following expressions have the values indicated
in the table:

A B C E I J K

3 4 7 3 1 18

Evaluate each of the following expressions:

Expression 1:

A + B * C / I / I / I * K - B * C

Expression 2:

A * B * C - (E + K/ 5) * » (3 - I) « (J - 2 * (C + A))

Expression 3:

(A + B * C / I / I / I « K - B * C) * B + C - (E + K/ 5) M (3 - I)

• (J - 2 * (C * A)) - K * J - E « (A - B » K » (C - E / I) - 4 « (I

• K - C)) * (C - 5 * K / J / I - 2) « * I + B - J / (C - E - J) + A *

K - B * (((((J + C) « (K - 4) / J - I) * C - I))) « E * A)

The results of the quiz are easy to describe. Almost everyone evaluated the
first expression correctly; about half the students evaluated the second expression
correctly; and no one evaluated the third expression correctly! WHY. If you examine
the three expressions, you should note that the only essential difference between
them is their lengths. All the arithmetic operations are trivial. Probably the
reason students had so much trouble with the last expression was because they didn't
have a very careful bookkeeping system which would tell them when to perform
arithmetic and on what to perform it. The methods described in your textbook I find
rather clumsy (you may not). Therefore, I have written a flowchart which evaluates

41

arithmetic expressions by scanning them from left to right without ever re-scanning
any pact of the expression.

The flowchart which follows - an informal but precise one - does this by
systematically postponing arithmetic operations until they can be performed. This is
accomplished with the aid of an OPERATOR STACK and an OPERAND STACK.

Before you proceed, take a look at the flowchart. Pay special attention to the
comments.

Let me demonstrate the flowchart by using it to evaluate the expression:

A * B + C - (E + K/ 5) * * (3 - I) * (J - 2 * (C + A))

where the variables have the values tabulated below

B
i

Cl
i

E I J K

4
• '\

7: 3 1 to

18

The algorithm begins by inserting the symbol - to the right of the rightmost symbol
in the arithmetic expression. This symbol - sometimes called a "right terminator" or
"right turnstile" - simply signals the end of the arithmetic expression. Before
proceeding, arm youself with a bunch of small slips of paper. Make sure that each
slip can fit inside the labelled squares on the page following the flowchart. Next,
place some kind of pointer (a pencil mark will do) beneath the leftmost symbol in the
expression. By symbol we mean a variable name or constant or arithmetic operator or
parenthesis.

Now, determine whether the symbol is a variable name or a constant. In the
example, the symbol is a variable name, A. So, "push" the value of the variable name
onto the OPERAND STACK. This amounts to simply jotting the value of A on a slip of
paper and placing this slip on top of the pile (possibly empty) of slips inside the
square labelled OPERAND STACK. Next, advance the pointer one symbol to the right and
follow the flowchart until you find the test box which inquires as to the PRECEDENCE
of the newly scanned operator. This box asks whether the precedence of the scanned
operator is greater than the precedence of the operator at the top of the OPERATOR
STACK. By convention, we say that an empty stack and a left-parenthesis have lower
precedence than all the operators. Hence we copy the symbol V onto a slip of paper
and "push" it onto the OPERATOR STACK. Again, move the pointer one symbol to the
right; scan B; push its value onto the OPERAND STACK; move the pointer one symbol to
the right; and scan V. Here, note that V has lower precedence than V (which is
the top of the OPERATOR STACK). Because of this circumstance, "pop" the top of the
OPERATOR STACK to OP, i.e. move the slip on top of the OPERATOR STACK to the square
called OP; "pop" the top of the OPERAND STACK to ROP; and "pop" the top of the
OPERAND STACK to LOP. Next, perform the arithmetic operation "OP" on "LOP" and "ROP"
and write the result on a new slip of paper. Push this value onto the OPERAND STACK
and throw away the slips in OP, ROP, and LOP.

42

What we have just done has been to compute the product of A and B, with the
result now on the OPERAND STACK. Now compare the precedence of the scanned symbol
with the precedence of the symbol at the top of the OPERATOR STACK. Again since the
OPERATOR STACK is empty, simply push the V onto the OPERATOR STACK.

The Table which follows is a sequence of "snapshots" describing the process by
which the expression is evaluated. Note particularly how parenthesized
sub-expressions are handled! Observe that when the flowchart stops that the value of
the expression is the single value left in the OPERAND STACK! Don't let yourself get
bogged down. The flowchart is straightforward but somewhat tedious. It might be
helpful for you to look at the flowchart again before proceeding.

Snapshots of the Evaluation Process for

A » B * C - (E * K / 5) * » (3 - I) » (J - 2 * (C * A))

where

A B C | E
i

I J K

3 4 i
7 3

1 CO
 IB

Note that the top of the OPERAND STACK and the top
of the OPERATOR STACK is always the leftmost symbol
in the appropriate column.

Scanned LOP OP ROP OPERAND
Symbol i STACK

A | 3

3

B I 14 3

12

7 12

12 +

19

19

3 19

3 19

OPERATOR
STACK

(-

• {

la 3 is * (-

10 3 19 / • < -

5 18 3 19 / • (-

3 19
1

• (-

2 3 19 • (-

19 (-

5 19

5 19 -

5 19 ** -

5 19 (» » -

3 5 19 (« » -

3 5 19 - (*« -

1 3 5 19 - (» » -

5 19 (*» -

2 5 19 (« » -

2 5 19 ; »* -

19 -

25 19 * -

25 19 < * -

2 25 19 (• -

2 25 19 - (• -

2 2 25 19 - (• -

2 2 25 19 * - (*

2 2 25 19 ! (• - (<

7 2 2 25 19 i (• - (

7 2 2 25 19 + (« -

3 7 2 2 25 1 19 • (• •
!

2 2 25 19 ! (* - (

18 2 2 25 19 * - (»

44

2 m 18 2 25 19 - (« -

28 2 25 19 - (• -

2 - 28 25 19 (» -

•18 25 19 (* -

-18 25 19 « -

25 • -18 19

-458 19

19 - -458

469

I T S H O U L D B E CLEAR THAT T H E FLOWCHART DOESN'T B E H A V E PROPERLY FOR E X P R E S S I O N S

C O N T A I N I N G U N A R Y V A N D '•' S I G N . F I X T H E FLOWCHART TO HANDLE TH IS C A S E .

M O D I F Y T H E A L G O R I T H M SO THAT S O M E SPECIAL P A T H A N D E X I T A R E FOLLOWED I N T H E

E V E N T T H A T T H E E X P R E S S I O N I S D I S C O V E R E D TO B E SYNTACT ICALLY INCORRECT.

append H t o the r i ^ h t o f the e x p r e s s i o n

~ i —
p o s i t i o n p o i n t e r t o t h e l e f t m o s t symbol

- i . — =

ymbol i s no t

• R < 5

ymbol a v a r i a b l e
o r a c o n s t a n t ?

symbol i s (?

push symbol o n t o
OPERATOR STACK

j

push v a l u e o n t o
OPERAND STACK !

5

symbol

p r e c e d e n c e o f scanned
symbol > p r e c e d e n c e o f \ T
t o p o f OPERATOR STACK?

pop t o p o f
OPERATOR
STACK t o OP

push scanned
symbol o n t o
OPERATOR STACK

pop t o p o f
OPERATOR STACK

t o OP

pop tc
0PERAt
t o ROI

>p o f
10 STACK
>

R pop t o p o f
OPERAND STACK
t o LOP

s OP a (

pop t o p o f OPERAND
STACK t o ROP

pop t o p o f OPERAND
STACK t o LOP

e v a l u a t e LOP OP ROP,
push v a l u e o f r e s u l t
o n t o OPERAND STACK,
t h r o w away c o n t e n t s o f
LOP OP ROP

e v a l u a t e LOP OP n 0 P ,
push v a l u e o f the r e s u l t
o n t o OPERAND STACK, t h r o w
away c o n t e n t s o f L^P np nnp

I
pop t o p o f OPERATOR

H STACK t o J
f .advance p o i n t e r one

•Sjsymbol t o t h e r\jzht j

\c

©
JL

46

I
PERATOR STACK no t e m p t y ? ^ - ^ T

pop t o p o f OPERATOR
STACK t o OP I
pop t o p o f OPERAND
STACK t o ROP

pop t o p o f OPERAND
STA^K t o LOP

e v a l u a t e LOP op ROP,
push v a l u e o f r e s u l t o n t o
t h e OPFRAnn STACK and
t h r o w away the c o n t e n t s o f
LOP OP ROP

- ^ S T O P)

47

L O P O P R O P

1 I * *

O P E R A T O R S T A C K O P E R A N D S T A C K

E X P R E S S I O N

48

A Monotone Sequence

Algorithms which solve this problem seem not to be immediately obvious, but
can be developed in a step-wise way. I think that's a good property for a
programming problem to have.

The problem has some interesting generalizations.

The problem:

Put simply, if you have a linear.array A, containing N different real values,
find the length of the longest monotone increasing subsequence. The book by Forsythe
ct al. discusses this problem on pages 191-199. Read and understand that material
before going on.

Write structured statements which correspond to the flowchart on page 199.

Now study the PLAGO program on the next page.

Rewrite it so that it computes the length of the longest monotone DECREASING
sequence. Follow the notation and suggestions of exercise 4 on page 198.

Modify the program again so that it not only produces the length of the longest
monotone increasing sequence, but also produces an instance of such a sequence.
Exercise 4 on page 198 suggests a way of doing this. Create the subsequence by
putting it into the first MAXINC elements of an array called MS.

Make sure you can prove the results in exercises 2 and 3 on page 198.

Can you think of other, more or less efficient, algorithms which solve the
problem?

Why I've included this problem:

49

M A I N . . PROCEDURE GPTIONS (MAIN) , .
DECLARE. (A (5 0) , N) F IXED , .

/* COMPUTE THE LENGTH OF THE LONGEST MONCTONE INCREASING SEQUENCE */
/* IN A (1) . . . A (N) */

MCNSEO. . PRCCECURE (A , N) RETURNS (F I X E D) , .
CECLARE (J » K, A (N) , 8 (N) , N , MAXINC I F IXEO , .

/* SET LENGTH CF LONGEST I N I T I A L SEQUENCE TO 1 */

MAXINC = I , .
CO J = I TO N » .
B (J) * 1 , .

OC K • 1 TO J - 1 » .

/* IF A (K) IS LESS THAN A (J) AND THE LENGTH OF THE LCNGEST */
/* MCNCTONE INCREASING SEQUENCE ENDING WITH A (K) EQUALS */
/* CR IS GREATER THAN THE LCNGEST SEQUENCE CURRENTLY ENDING */
/* WITH A (J) , THEN LENGTHEN THE SECUENCE ENDING WITH A (J) */

IF A (K) LT A (J) THEN
IF P (J) LT B (K) • I THEN

B U) = B (K) * l , .
ENC*.

I F MAXINC LT 8 (J) THEN MAXINC - B (J)
END , .

RETURN (MAXINC > t .
END MCNSEC , .

OC WHILE (1) , .
GET L I S T (N t (A (I) DO I - 1 TO N))
PUT L I S T (•THE SEQUENCE' , (A (I) DU I = 1 TO N) ,
» HAS A LCNGEST MCNCTONIC INCREASING SUBSEQUENCE UF LENGTH*,

MCNSEQ(A, N)) ,•
END , .
ENO MAIN , .

58

Gaussian Elimination

M A I N . . PROCEDURE OPTIONS(MAIN) t .
DECLARE (A (2 5 f _ 2 5) f C (2 5) , X (2 5) f EPS. TEMP, MULP) FLOAT,

i N. I t J t Kt Lt~ L I) F IXED ••"

/* INPUT EPSt N f At AND C */

GET L I S T (EPSt N f ((A (I f J) DC J = 1 TO N) ,
C (I I 00 I » 1 TO N)) , .

PUT L I S T { ((A U , J > DO J * I TO N >••/•,
C U T " DO I « 1 TO N I)

Gaussian Elimination is a well known and important technique for solving
systems of simultaneous linear equations. - every student of 15-188 should
know it.

A Gaussian Elimination program in PLAGO requires that you know how to
systematically operate on the rows and columns of an array. These
techniques you should know.

The Problem:

Both the problem of solving sets of linear equations and the method of Gaussian
Elimination are discussed in the book by Forsythe, et al. (pp. 333*349).

Read and understand that material before proceeding.

Write structured statements corresponding to the flowchart on page 349.

Compare your structured statements with the body of the procedure, GAUSS, whose
text fallows.

GAUSS does not perform the partial pivoting operations described in the
flowchart on page 349. Change the program so that it docs perform this kind of
pivoting.

It has been suggested that elimination could be performed so that all
coefficients both below and ABOVE the main diagonal are eliminated. This would mean
that the entire "back solution" process could be removed. Rewrite part of the
program to do this. Compare the number of arithmetic operations required by both
methods. That's right, compare them. Which method is more efficient? Can you think
of any other reason why one method is better than the other?

Why I've included this problem:

51

E L I F . .

D O I = I ' T - & N - I , .

C C J = I • 1 T C N , .

I F A3S< A (I , I)) L E E P S T H E N

C C , .

D C L = I • 1 B Y 1 W H I L E (A8S(A { 1 , 1)) L T E P S I L I T N

I F A B S (A (I _ , I)) G T E P S T H E N

D C .

C C L I » ' T T C N , .

T E M P = A (I , L I) , .

A (I , L I) = A (L , L 1) , .
A (L , L L) = T E M P

E N O , .

T E M P = C (I) , .

C (I) = C (L) , .

C (L) = T E M P , .

F . N C , .

E N D , .

I F A B S T A L L , I)) L E E P S T H E N

D C , .

P U T S K I P L I S T { • S I N G U L A R S Y S T E M / / / / *) , .

S T O P

E N C , .

E N O , .

M U L P = A (J , I) / A L L , I) , .

C C K = I • I T O N , .

A (J , K) = A (J , K) - M U L P * A (I , K) , .

E N D , .

C (J) * C (J) - C U) * M U L P , .

E N C , .
E N C E L I M

I F A8S(A (N , N)) L E E P S T H E N

no , .
P U T S K I P L I S T (' S I N G U L A R S Y S T E M / / / / ') , .

S T O P , .

E N D , .

/ * P E R F O R M T H E B A C K S O L V I N G P R O C E S S * /

B A C K S O L V . .

D C I * N B Y - 1 T O I , .

X (I) - C (I) , •

C O J » N B Y - 1 T O I • I » .
X (I) = X (I) - X (J) * A (I , J) , .

E N O , .

X (I) = X I I) / A U , 1) , .
E N C B A C K S C L V , .

P U T D A T A | (< I I) 00 I « 1 T O N 1 1 .

E N O , .

52

Matrix Multiplication

Matrix multiplication is a useful thing to know.

Recent work in the area of computational complexity has revealed some new
and more efficient algorithms for performing matrix multiplication. I
think they are interesting. I also think they form the basis of some good
programming exercises.

The Problem:

The product of matrix A, having M rows and N columns, and matrix B, having N
rows and P columns, is a matrix, C, having M rows and P columns, where

That's all!

The procedure called, DEFN, which follows, performs exactly this computation.

Unfortunately, as M, N, and P grow large, the number of computations grows
"very" large. In particular, if M=N=P, the number of multiplications alone equals N
cubed! Hence, enormous amounts of time can be spent multiplying even relatively small
matrices.

Question: Are there better ways of multiplying matrices.

As it turns out, it wasn't until 1968 that any significant improvement was made
over just the definition. At that time, S. Winograd presented a method which can

Why I've included this problem:

53

multiply matrices with about half the number of multiplications used by the
definition. Hê achieved this saving by noting that real multiplication is
commutative and that some of the multiplications could be traded for additions. The
method is based on the following identity:

2 L W 2 J

y In/21

t'"

where X means the greatest integer Y X.

If N is even then the left side is just the ijc-th element of C. Otherwise the
product

must be added to thr expression.

Admittedly, the expressions look much more complicated than the original
definition. The savings accrue by observing that the last two sums are dependent
upon I and K respectively and need be computed just once at the beginning of the
program. Thereafter, the number of multiplications is half that required by the
definition.

Compute an "operation count" of exactly the number of additions and
multiplications that would be required by both methods. These computations should be
functions of M, N, and P.

The procedure called WINOGRAD multiplies two matrices using Winograd's method.
Study it.

54

For what values oi M, N, and P would you expect WINOGRAD to execute more rapidly
than DEFN? Note that M, N, and P will be larger than you might expect. Why?

Can you imagine situations where the accuracy of the results from WINOGRAD would
be poorer than those from DEFN?

» * *

In 1969, in a paper by Strassen, ("Gaussian Elimination is Not Optimal ",
Numerische Mathematik 13, pp 354-356) a method was presented which could multiply two
2 x 2 matrices using just 7 multiplications instead of the usual 8, and which didn't
require that multiplication be commutative. His identities look just awful. And
here they are:

c \ / A A \ / B B \

12 \ 11 12 \ J11 12
C = A A I B B

22/ \2\ 22J \2\ 22 J

-. Q - Q — Q + Q
1 3 5 7

= a - a
4 1

•- Q • Q
2 3

: - Q - Q + Q + Q
2 4 5 6

= (A - A) B

11 12 22
= (A - A) B

21 22 11
• A (B + B)

22 11 21
A (B + B)

11 12 22
- (A + A) (B - B)

11 22 22 11
• (A • A) (B • B)

11 21 11 12
= '(A • A) (B • B)

12 22 21 22

Strassen provides no motivation or intuition as to how he ever found these. However,
everywhere I've ever seen these things presented, the commentator has suggested a
different mnemonic device to help reconstruct them. Find one for yourself! These
identities can be used to multiply matrices of any size if they are used recursively
on matrices whose elements are themselves matrices. Try writing such a program.
You'll learn much.

then

where
Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

55

/* MATRIX KLLT I P L I C A T I C N BY THE STANDATC D E F I N I T I O N */

C E F N . . PRCCECURF (A, B, C , *9 N , P) . .

CECtA«*E (I t J t K, V, N, P) F IXED , .
DECLARE (A (* , *) , B (* , *) , C (* , *) > FLOAT
CECLARE (T) FLCAT

N E S T . . CC I - 1 TO V t .
CC K = 1 T O P , .

T = 0 , .
CC J = 1 TO N
r = T • A (I , J) * B (J , K)
ENC . .
C(I , K) = T

ENC NEST
ENO CEFN , .

/* MATRIX PLLT I P L I C A T KIN USING WINCGRAD'S *ETHOC */

W I N C G R A C PROCEDURE (A , 8 , C , M» N» P) t .

CECLARE (ff Nt P» I » J • K, N2) F I X E D ,
BB F IXEC ,

(A (* , *) f B (* , *) , C (* . *) t A I (M) t BK(P)) FLOAT

/* CCMPUTE THE SUMS OF THE THINGS WE WANT TO THROW AWAY

N2 = 2 * FLCOR (N / 2)
Cf I » M O F

T = 0 , .
CO J = 1 BY 2 TC N2
T = T • AI I , J) * A (I , J • 1) , .
ENC t .

A I (I) = I t .
ENC

CC K = 1 TO P
1 = 0 , .

CO J = 1 BY 2 TO N2 » •
T = T • B (J , K) * e (J • 1 ,K)
ENC , .

?K (K) = T , .
ENC

PR = { N2.NE N)
WGHK.. CC I = 1 TC M , .

CC K M 10 P i .
I F BB TrEN T * A (I , N) * B (N , K) , .

ELSE T = 0
CC J = I PY 2 TC N2 t -

J P l = J • I , . e . » x

T = T • (A (I , J) • B (J P l . K)) * < A (I , J P 1 > • B (J t K)
E N C

C (I , K > = T - A I < I) - BK(K>
ENC WORK,.

tNC WINCGRAC t .

56

The Eight Queens Problem

Why I've included this problem:

This problem has been anal/zed in a step-wise way which is instructive.

Its solution can be expressed recursively.

The Problem:
Dijkstra has devoted a chapter to the problem of the eight queens. Read and

understand that chapter before you proceed with the text below.
Dijkstra chose to find all the ways of positioning eight queens on a chess board

so that no queen was attacked by any other. The program below, again by Dijkstra,
can be used to find just one solution to the problem. How can it be modified so that
ail possible solutions are found? Study the program carefully. Its data structures
are the same as the program in EWD316.

Exercise
Suppose the problem is generalized to consider a rather stylized chess board
consisting of N x N squares on which we wish to place N queens so that none is under
attack. Modify the program to solve this problem. Are there any statements you can
make about the existence or non-existence of solutions for arbitrary N?

T R YC•• PROCEDURE (J I , .
DECLARE 1 I , J) F IXED

DC I * I TO 8 WHILE (NOTSAFE)
SAFE * ALL) £~B"(I • J) £ C (I - J) , .
I F SAFE THEN

G U T S . . "
DO_ , .

A (I f , "8(I +J"f, C (I -J T = 0 , . " *
XIJ)J> I_ , .

I F " j X T 8 T H E N

co t .
SAFE ' - ' O f '

CALL TRYCT J • I)
~ T m ~ .

IF_NOTSAFE THEN A D) , BU • J) , C (I _ - J I = 1 , .

ENO , .
END TRYC

57

The Towers oi Hanoi

The object of the game is to transfer all the discs from the starting spike to one of
the other spikes so that they are left in the same order - smallest on top to largest
on the bottom. The discs, however, may only be moved one at a time from one spike to
another so long as a disc never rests on another disc of smaller diameter. That's
the game!

The problem is to write a program that will produce a sequence of moves which
will tell a player how to move each disc.

This problem can be salved by a short, natural, recursive algorithm which
you should understand.

The problem has a nice generalization which T like.

The Problem:

Dijkstra devotes a section of EWD316 to this problem. His discussion, however,
is somewhat more tedious than the one which follows. Read the text below, through
the recursive solution to the problem. Then, read the section from EWD316. Finally,
examine the program which solves the generalization to the problem.

Suppose that three spikes are driven into a flat board and that N
doughnut-shaped discs have been arranged on one of the spikes with the smallest disc
on top to the largest disc on the bottom. The diagram illustrates the situation.

Why I've included this problem:

58

Clearly, if we have just one disc, the sequence of moves is trivial. Just move
the one disc to one of the other spikes (designated as the finish spike).

If we have two discs, the situation is almost the same, except that the top disc
must be moved to the intermediate spike; the bottom disc to the finish spike ; and
finally the disc on the intermediate spike to the finish spike.

This suggests that to move N discs, we should:

(1) Move N • 1 discs from the start spike to the intermediate spike.

(2) Nove disc N from the start spike to the finish spike.

(3) Move N - 1 discs from the intermediate spike to the finish spike.

The following program does exactly this.

H C PROCEDURE OPTIONS (MAIN) , .

HANCI•• PROCEDURE < N» S , I* F) » .
CECLARE J N , S , I , F) F IXEO , .

7 * HANCI COMPUTES"AND PRINTS A SEQUENCE OF MOVES WHICH TRANSFERS */
/* A P I L E CF < N) DISCS FRCM A START S P I K E , S , TO A F I N I S H S P I K E , */
/* F, USING S P I K E , " I , AS INTERMEDIATE STORAGE. */

17 N T HEN "
PUT SKIP L I S T (•MGVEJMSC 1, • FROM •, S , • TC F) , .
ELSE

CC , .
CALL HANOI < N - 1, S , F, I) , .

PUT SKIP L I S T < 'MOVE DISC ' , N, * FROM Sj^ ^ T O _ ' , J) , .
CALL HANOI (N - ~ T , T V S , F) " , .

ENC , . _
ENC HANCI , .

CECLARE (N) F IXED
C C W H J L E (1 = 1) , .

TE"T L I S T <~N"1 , . "
CALL HANCI (N , 1 , 2 , 3) , .
ENO ,

ENC HC , .

Could the 'PUT LIST statement which specifically says to move disc one be
eliminated?

What is the minimum number of moves necessary to move N discs? Find a formula which
is a function of N and prove that it is correct.

Find a non-recursive algorithm which solves this problem. Which do you feel is the
superior? Why?

59

M A I N . . PROCEDURE OPTIONS (MAIN) , .
CECLARE (I , N» N S P I K E S , S , F, I S N (5C)) F I X E C , .

GENHAN.• PROCECURE (N , NSP IKES , S , F) , •
CECLARE (I , N , NS, NSPIKES, S , F, FT) F I X E D , .
I F N LE NSPIKES - 1 THEN
DO , .
DC 1 = 1 TO N - l , .
PUT L I S T ('MOVE OISC » , I , • FROM •, S , • T O I S N (D) , .

ENC , . " " " " '"' "

PUT L I S T I •MOVE OISC •, N , • FROM •, S , • T O •, F) , .

DO I = N - I BY - I T O 1 , .
PUT L I S T (•MOVE DISC I , • FROM •, I S N (I) , • T C •, F)
ENC , .
ENC , .
ELSE " - - -

WORK.. DC , .
FT = ISN (I) , .
I S N t l) = F , •

" C A L L G E N H A N I N * - I , N S P I K E S " , S , F T T V .
P U T S K I P L I S T (» M O V E D I S C » , N , • F R O M • , S , ' T C F I

I S M 1) = S , .
CALL GENHAN { N - l , NSPIKES , F T , F) , .
I S N (l) = FT , .
ENC feCRK , . _ _

CO WHILE (1) , .
GET L I S T (N , N S P I K E S , S , F) , .
J = 1 , .
DC I = 1 TC NSPIKES , .

I F I NE S € I NE F THEN
CC , .
I S N (J) = I , .
J 3 J • I , •
ENC , .

ENC , .
PUT SKIP L I S T ("*NV » , " N , * N"5P~IKE~S= *T NSP I K E S , • S = •, S ,
•F» •, F) , •
CALL GENHAN! N , NSPIKES , S , F) , .
ENC , .

END MAIN , .
Suppose the problem is modified so that we allow a parameter which specifies the

number of spikes the game will have. Thus the original game is a special case of of
this more general one - in that game, the number of spikes was equal to 3.

What is the minimum number of moves necessary to move the N discs if you are

allowed to use NSPIKES spikes?

A program follows which performs this computation. Can it be shortened? How?

What would a non-recursive algorithm look like?

6B

Why I've included this problem:

This problem has a very natural and intuitive recursive solution which can
suggest a non-recursive solution which isn't quite so intuitive. I think
you should see it.

The problem also generalizes nicely.

The Problem:

Determine the number of distinct ways an arbitrary number of cents, A, can be
"changed" in terms of half dollars, quarters, dimes, nickels and pennies. For
example, 16 cents can be changed in exactly six ways, as:

(1) 16 pennies
(2) 11 pennies and 2 nickels
(3) 6 pennies and 2 nickels
(4) 1 penny and 3 nickels
(5) 6 pennies and 1 dime
(6) 1 penny and 1 nickel and 1 dime

How can the problem be analyzed? Consider first the notation:

c
N,

which is interpreted as:

"the number of ways of changing A cents with coins having maximum denomination
cents"

Thus the original problem is to find the value represented by the symbol

So
A

since we wish to change A cents with coins having maximum denomination 56 cents.

Now observe .that

What does this mean? Just this: the number of ways of changing A cents equals the
number of ways of changing A cents without any half dollars plus the number of ways

The Coin Problem

61

of changing A cents using one half dollar plus the number of ways using two half
dollars and^so on.

Now note that each sub-problem on the right is similar to the problem with which
we started except that there are fewer coin denominations to consider! Now notice
these equations:

A/5- A// + '.•hNfi.&us

What is the value of each term on the right of the last equation? Just l. Surprise!
In any case, the following program uses a recursive procedure to solve this problem
based on the preceding analysis. Understand it.

CHANGE. . PROCEDURE CPTICNS (MAIN) , .
CECLARE COINS! 5J F I X E C » .

C EC I APE A F IXED ,".
K A Y S . . FRLCEDLRE (N, A) RETURNS (F I X E C) , .

DECLARE (N , A , TOTAL , I) F I X E D , .
IF N - 1 THEN RETURN (1) , .
ELSE

CC , .
TOTAL = WAYS (N T , A) , .
DC I • 1 BY I TO FLCCR (A / CCINS (N)) , .

TOTAL - TOTAL • WAYS (N - i , A - I * COINS! N)
ENO , .

RETURN (T O T A L) , .
END , .

ENC WAYS
C C I N S (l) = 1 , - C O I N S ! ?) = 5 , . C O I N S ! *) = 10 , . C O I N S K)
CCINS I 5) = 50 , .

CO WHILE (1 * 1) , .
GET " L I S T (A) , .
PUT L I S T (• THE AMOUNT A ,

• CAN BE REPRESENTED IN » , WAYS(5, A) , • WAYS
ENC

ENC CHANGE , .

62

Which program would execute more efficiently for large values of A? Which
program would be easier to explain to someone who had never considered the problem?

Suppose that we wish to add a third parameter to WAYS, i.e.

WAYS(ND, N, A)

where ND elements of COINS will contain distinct coin denominations in ascending
order, such that COINS(l) always equals 1. Thus the original problem would just be

WAYS (5, 5, A)

for some amount A. This generalization allows one dollar bills, five dollar bills,
ten dollar bills, etc. to be considered in the computation of the number of ways of
changing an amount A. Which of the above programs can easily be modified to handle
this generalization? Write a non-recursive procedure which computes WAYS(ND, N, A).
(Hint: use the elements of an array to behave like the controlled variables of a nest
of DO-loops)

Suppose you wished to compute not only the number of distinct ways of changing
an amount A, but also precisely what those ways are. What problems arise when you
attempt to change the programs?

* * *

A PARTITION of a positive integer, A, is a sequence of positive integers whose sum is
A. Use the ideas of the above programs to write both recursive and non-recursive
programs which compute the partitions of A so that no computed partition is a
permutation of some other partition.

63

T ry simulating the behavior ol the program for a few simple examples. Then
observe that the following program also solves the problem.

CHANGE. . PROCEDURE CPTICNS (MAIN) , .

WA"YT.T P P C C E C U R E f A,) RETURNS (F I X E C) , .
DECLARE (A , U , 12 , 13, 14, TOTAL) FIXfcD , .
TCTAL = C , .
N E S T . . CC I I = 0 BY 1 TC FLOOR 1 A / 5.0)

CC 12 = 0 BY I TC FLOOR ((A - 11 * 50) / 25) , .
DC 13 =_C HY I TO FLCCR (t A - I I * 50 - 12 * 25) / 10 I , .
DL 14 • 0 BY 1 TO FLCCR T " "

(A - I I * 50 - 12 * 25 - 13 * 10) / 5) , .
TCTAL « TOTAL + 1 , .
ENC NEST , .

RETURN (TOTAL)
END WAYS , .

CECLARE (A) F IXED
CC WHILE (1 = 1) , .
GET L I S T (A) , .
PLT L I S T (• A = •, A , • CAN BE CHANGFD IN » , WAYS (A) , • WAYS') .

END , . "
ENC CHANGE , .

64

Counting Lattice Points

This problem has a very natural recursive solution. I think you should see
it.

The Problem:

We can define a lattice point in N-dimensional cartesian space as a set of N
coordinates which are all integers. For example, in 2-space (just a plane) (-2, 8)
is a lattice point but (.5, 2) is not a lattice point. The problem can now be
stated.

How many lattice paints are contained in an N-dimensional hypersphere of radius
R, centered at the origin.

That is, if N describes the dimension of the space and R describes the radius of the
hypersphere, the algorithm should produce the number of lattice points within the
hypersphere.

Consider first the cases which can be visualized. If N is 8, then there is
exactly one lattice point, the origin, regardless of R.

If N is 1, then our space is just a line centered at 8, and the number of
lattice points is just 2 * FL00R(R) + 1. Another way of viewing the problem would
be to count all the answers to the zero-dimensional problems which occur at the
origin and to the right and left of the origin for integer I such that R**2 - 1**2 is
greater than or equal to 8. That is, count the origin just once and then count the
paints on either side, recognizing that this value is just twice the number to the
right, say.

If N is 2, then our space is a plane, and the hypersphere is a circle of radius
R, centered at the origin. Thus, the lattice points are all (u,v) such that u
squared plus v squared is less than or equal to R squared and where u and v are both
integers. Another view regards the problem in terms of a bunch of one-dimensional
problems , i.e. count the number of lattice points on the x-axis and add to this
twice the number of lattice points in the upper semi-circle.

The three dimensional case is thus just a bunch of two dimensional problems.

The program which follows performs the desired computations. Study it. Note
that R**2 is passed as a parameter rather than just R. Why.

Find a non-recursive solution to this problem. Be careful!

Simulate the recursive structure of this program by maintaining your own stack.

Why I've included this problem:

65

t • L A T T I C E . . PRCCECURE OPTICNS (MAIN)
P O I N T S . . PROCEDURE (N, RS) RETURNS (F I X E D) , .

/* POINTS COMPUTES THE NUMBER OF L A T T I C E POINTS IN AN N-DIMENSIONAL*/
/* HYPERSPHERE OF RADIUS SCRTI RS) */ "

DECLARE (N) F I X E D , (RS > FLOAT , .
DECLARE (S) F IXEC , .
IF N = 0 THEN RETURN (1) , .

ELSE
CC , . _
S =" POINTS'" (~ N - 1 , "RS")

DO I = 1 BY I WHILE (I * I LE RS)
S = S *"2 * POINTS { N - l , RS - I * I) , .

ENC , .
ENC , . '

RETURN (S) , .
END " P O I N T S , T

DECLARE (N) F IXEO , (RS) FLOAT , .
" DC WHILE (1 = 1) , .

GET L I S T (N , RS) , .
PUT L I S T (•DIMENSION * *, N, • RAOIUS SQUARED = RS,

_ • NUMBER CF L A T T I C E PCINTS = •, POINTS ((N) , (R S))) , .

ENC L A T T I C E , .

