
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CIP Working Paper #211

PRELIMINARY RESULTS WITH A SYSTEM
FOR AUTOMATIC PROTOCOL ANALYSIS

D. A. Waterman and A. Newell
May, 1972

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

A computer program for automatic protocol analysis (PAS-I) is

described in detail. The task of protocol analysis is that of inferring

from the verbalizations given by a human while solving a problem the time

course of his states of knowledge about the task. PAS-I works only with

the task domain of cryptarithmetic puzzles and incorporates a specific

theory of problem solving (as described in Newell and Simon, Human

Problem Solving). The input to PAS-I is the transcription of the human's

verbalizations (as tape recorded), segmented into topics. The program

does a linguistic analysis from the input text to produce a sequence of

semantic elements; these are then subjected to several stages of processing,

including hypothesizing the information processing operations that the

subject performed to produce the semantic knowledge that he appears to have

at each moment of time. The final output is a problem behavior graph (PBG)

which is the trajectory of the subject through the problem space of possible

knowledge states. The performance of PAS-I on three examples of behavior is

presented and analysed: 100 topic segments of subject SI on the crypt­

arithmetic task, DONALD+GERALD=ROBERT; 43 further topic segments on Si on

the same task; and 128 topic segments (the entire session) of subject S4

on DONALD+GERALD.

PRELIMINARY RESULTS WITH A SYSTEM FOR AUTOMATIC PROTOCOL ANALYSIS*

D. A. Waterman and A. Newell
May, 197 2

The study of the information processing that occurs in human problem

solving often involves a form of data analysis called protocol analysis,**

The subject is instructed to talk during a problem solving session, uttering

whatever is concerning him at each moment. His verbal behavior is recorded

on audio tape, together with appropriate indicators of relevant non-verbal

behavior, and a transcript is made which becomes the primary source data.

Inferences, based on the content of the utterances, are then made about the

information processes which must have occurred. When the information pro­

cessing of the subject is used as a basis for proposing a formal model (usually

a program), the adequacy of the model can be assessed by comparing the trace

of the behavior of the model with the protocol and the information inferred

from it.

This use of the term protocol is within the general use of the term in

psychology, where it designates the time course of an experimental session,

usually described qualitatively. But the emphasis on verbal behavior and on

This research was supported in part by Research Grant MH-07732 from the
National Institutes of Health and in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-0107) which
is monitored by the Air Force Office of Scientific Research.

*
There have been many studies, not even counting the early ones such as
Bunker's (1945), A sample: Bartlett, 1958; Baylor, 1971; Bree, 1968;
DeGroot, 1965; Eastman, 1969; Feldman, 1963; Frijda and Meertens, 1969;
Johnson, 1964; Laughery and Gregg, 1962; Newell, 1968; Newell and Simon,
1961, 1963, 1965, 1972; Paige and Simon, 1968; Reitman, 1965; Wagner
and Scurrah, 1971 and Winikoff, 1968.

- 2 -

the analysis of content is somewhat idiosyncratic to the use of the term in

cognitive psychology. Protocol analysis has not been formalized, and the

question of its essential nature and the extent of its biases and inadequacies

have been discussed only to a limited extent (e.g., DeGroot, 1965). Intertwined

in this discussion has been the issue of the relation of protocol analysis to

the so-called introspective method, used extensively in an earlier era of

psychology and linked most strongly to the Wurzburg school (Humphrey, 1951).

In this paper we describe a system (called PAS-I) for the automatic

analysis of protocols and give initial results of our work with this system.

The analysis we use is patterned after a particular style of protocol analysis

developed for the task of cryptarithmetic, and to a lesser extent for symbolic

logic and chess (Newell and Simon, 1972). PAS-I is limited to working within

a single task domain, cryptarithmetic. A cryptarithmetic problem is a type

of puzzle, simple enough to be solved in a short period of time, yet complex

enough to require interesting problem solving activity to effect its solution.

Throughout this paper we refer to a system for automatic protocol analysis,

although we realize the system will eventually involve extensive man-computer

interaction. We deem it inappropriate to view our problem primarily as one

of creating a man-machine system (Waterman and Newell, 1971) . We prefer to

approach the task as one of building a system for fully automatic analysis,

realizing that the end product will be an extremely sophisticated tool for

the scientist to use.

- 3

Reasons for Automation

There exist several quite distinct reasons for automating protocol

analysis, of which the following three seem the most basic.

Efficiency. A large amount of effort is involved in makiig an analysis

by hand. This has amounted to hundreds of prime scientist hours for tens of

minutes of behavior. The upshot is that relatively few analyses of any detail

yet exist. Automatization would make it possible to produce many analyses,

including numerous variations, and this appears to be an essential condition

for protocol analysis to become a generally useful tool.

Objectivity. Automatic analysis may help attain objectivity of inference.

Currently, a human makes the transcription from tape, utilizing an unidentified

amount of intelligence that involved in understanding natural language.

Then, in making each inference from the content of the transcribed utterance

further inferential processes are used, their extent and depth depending on

the intelligence and care of the analyst. Thus, the auxiliary information

that goes into the analysis is essentially uncontrolled.

A basic strategy of science to cope with complex systems is to create

measuring instruments that map system behavior into highly constrained and

simple spaces (usually numerical). Psychology, in attempting this strategy,

has tended to use human beings as instruments, e.g., the use of panels of

judges to quantify concepts such as hostility, tension, cohension, neuroticism,

etc. In all of these attempts, including current protocol analysis, the instru-

ment-cum-human remains an unanalyzable system, hence a fundamental source of

error. The tendency in psychology has been to accept this state of affairs and

to focus on the reliability of the human instrument by replication. Automati­

zation might offer an alternative route to objectification, by building

mechanical (hence repeatable and determinable) schemes for going directly

from the uncontrolled environment to final summary judgments of scientific

importance.

Representation of support. Another reason for automating protocol

analysis is related to objectivity, but distinct from it. The nature of the

support that a protocol offers to a proposed model (or hypothesis) is given

by a complex web of arguments, which simultaneously demonstrate the adequacy

of the model and the inadequacy of various plausible alternatives. Currently,

there exists no way of representing the total state of support (or non-support).

Working with protocols is somewhat analogous to a trial at law in which

various arguments are brought forth sequentially, without ever confronting

the whole. Automatization, by forcing formalization, may make possible a

representation of the total evidence marshalled by a protocol in support of a

given model or hypothesis.

It is premature to worry about the extent to which these three

goals can be achieved, or are in process of being achieved, by the results

to be given here. Enumerating them serves, rather, to make explicit the context

in which the present effort is being conducted.

Area of Application

There are at least three vantage points from which the present work can

be viewed. The first, explicated above, is the attempt to formalize protocol

analysis in the service of better cognitive psychology. The second is

- 5 -

artificial intelligence. Automating protocol analysis requires capturing

in mechanism heretofore exclusively human intellectual functions. The

programs that accomplish this will be efforts in artificial intelligence,

presumably as interesting as chess playing and theorem proving programs.

The third vantage point is the study of language. A program for automating

protocol analysis must, perforce, extract information from natural language.

In linguistics, although something approaching adequate analysis currently

exists for phonemic and syntactic structure, the same can hardly be said

for the full arc from utterance to understanding. Thus, a program for

understanding the information conveyed in a protocol, may be of linguistic

interest.

The present paper is addressed exclusively to the first concern — the

psychological one. A companion paper (Waterman and Newell, 1971) addresses

itself to the question of artificial intelligence,* though in equally

preliminary form. The work is not yet so far advanced nor so firm in its

approach that it is time for any linguistic observations.

The paper is organized as follows. Section II describes in outline

form the theory of human problem solving that operates as a theoretical sub­

structure to the system of analysis. Not surprisingly, the power of the

analysis stems primarily from this underlying substantive theory. Section III

briefly describes the total scope of protocol analysis, delineating the

parts of the analysis we are currently attempting to handle automatically.

The companion paper contains references to related artificial intelligence programs. 1

- 6 -

Section IV gives a detailed description of the PAS-I analysis program.

Section V presents some preliminary results of the program just described

and discusses the adequacy of a number of its aspects. The concluding section,

VI, gives an indication of how the system can be extended.

- 7 -

II. THEORETICAL SUBSTRUCTURE

The theory, in brief outline here, is expounded at length

in Newell and Simon (1972); earlier versions also exist (Newell, 1967,

1968; Newell and Simon, 1965). We are only concerned with the theory as

it applies to the class of puzzles called cryptarithmetic problems (Brooke,

1963). A typical task with instructions is shown in Figure 1. It was given

to Subject S3, whose protocol will form the basis for most of our illustra­

tions and whose analysis has been accomplished manually (Newell, 1967; Newell

and Simon, 1972). The task itself is symbolic in nature, drawing on the

subjectfs past knowledge of arithmetic and elementary algebra; solution time

varies from five minutes to several times that long,for people with college

educations and some quantitative aptitude.

Structure of Problem Solving

Knowledge states. We assume human problem solving takes place by search

in a problem space. The elements of this space are the possible states of knowl­

edge the subject can have about the task. This space can be generated in a

grammar-like way, so that a state of knowledge can be viewed as an expression

in some language of what the subject knows when he is at a particular point

in the space. This language is idiosyncratic to the subject and to his general

state of learning and experience up to the point of the problem solving session.

It reflects the basic relations and properties the subject can distinguish

about the task.

- 8 -

D O N A L D
G E R A L D

R O B E R T

D = 5

The above expression is a simple arithmetic sum in disguise.
Each letter represents a digit, that is, 0, 1, 2, 9.
Each letter is a distinct digit. You are given that D represents
the digit 5; thus, no other letter may be 5.

What digits should be assigned to the letters such that when
the letters are replaced by their corresponding digits the above
expression is a true arithmetic sum?

Please talk all the time while you work, saying whatever is on
your mind at each moment, however fragmentary, trivial, apparently
irrelevant, impolitic, or indiscreet. Whenever you fall silent
for more than a moment the experimenter will ask you to "please
talk."

Figure 1. Instructions for Cryptarithmetic Task

- 9 -

Operators. Besides states of knowledge, the problem space also includes

a set of operators. These define operations the subject can perform on

knowledge at a particular state i*.o yield new knowledge hence to move to

a new knowledge state. Operators need not be applicable in every state of

knowledge, since an operator could require types of information not currently

available. A subject will have a small finite set of these operators, which

constitutes his sole means for making headway in solving the problem. Like

the states of knowledge, the operators used during a particular problem solving

session are idiosyncratic to the subject and his current state of learning and

experience.

Problem Behavior Graph. The behavior of the subject over time can be

described as a sequence of operator applications that create a string of

incrementally changing states of knowledge. In short, his behavior is

describable as search through the problem space. This search will terminate

when the subject arrives at a state of knowledge that includes the solution

(and the knowledge that it is the solution) . The plot of this search is called

the Problem Behavior Graph (PBG) . Two representations of a fragment of a PBG for

the cryptarithmetic problem DONALD+GERALD=ROBERT are shown in Figure 2, along

with brief definitions of the operators and elements of the problem space used

in the illustration. The conventional representation, where boxes represent

knowledge states and horizontal lines the operators applied to produce new

knowledge states, is given as example (a) of Figure 2. The group representation,

used by the system described in this paper, is given as example (b) of Figure 2. Here

a circle represents the application of an operator, and the knowledge elements

immediately preceding and following the circle represent the inputs and outputs

of the operator. Note that the knowledge state at any point in the graph is

the conjunction of all output elements on the path from the given point back

to the beginning of the graph.

- 10 -
<EC ALL RECALL

D D = 5 CI C1=0 PC 1 T=0 AV6 G- -1 AVL L - 2 PC 2 R»5 TDR5 R*5 D = 5 C1=0
C2*1

G- -1 L - 2 R»5 R*5

G--1 AVL L* -3 PC 2 R=7 G--1 L * -3 R=7

(a) Conventional Representation

L -3 L-3 R=7
C2=1

(b) Group Representation

Knowledge Operators

- equal RECALL recall element
KEY: -—assign equal PC process column

* not equal AV assign value
TD test digit

FIGURE 2. Two Representations of a Problem Behavior Graph (PBG)

- 11 -

The problem behavior graph for a specific problem solving occasion

asserts two empirical propositions, namely, (1) the subject's knowledge of

the task can be restricted to the limited basis given by the elements of the

problem space, and (2) all changes in knowledge can be described as the

operation of a fixed set of information transformations.

Not all the subject's knowledge about the problem is expressed directly

in the problem space. The subject has much knowledge that is constant

throughout the experimental session, and does not show up explicitly in the

definition of the space, e.g., basic knowledge of arithmetic. He may have

information that is generated within a node of the space, but is entirely

local to that node, e.g., various temporary states of attention. The subject

also has information about the course of his search through the problem space

so-called path information — which allows him to avoid repeating the same path

twice and to return to a prior knowledge state to begin search in a new
direction.

Production system. The problem behavior graph makes relatively weak

statements about the subject's behavior, since it simply posits the. operators

that occur in the search and provides no explanation of why a particular

operator occurred at a particular time. This additional specification is given

by a production system, which is a collection of rules, each of the form

condition -» action .

This is read: if the condition is true of the current knowledge state

then perform the action. The action is a sequence of one or more

- 12 -

operators of the problem space. Without loss of generality, the action could

always be exactly one operator, in which case just one production would be

needed to specify the operator of any node of the PBG.

The productions are given in the order of priority in which they are

to be evoked. Thus, the first condition in the list, starting from the top,

that is true of the current knowledge state leads to the evocation of the

corresponding action. The processes is then repeated with the (now) modified

knowledge state. It will be seen that this forms a complete system for

specifying behavior over time.

To be concrete, consider a production system with two rules:

(1) PC fail ->FL(*COL), AV(*L)

and (2) (*L = * D) ->FC(*L), PC (*COL) .

The symbols preceded by an asterisk (*) are variables: *L for letters,

*D for digits and *COL for columns. Now consider the first knowledge element

in the PBG of Figure 2, (D = 5) . This element is an instance of (*L = *D) ,

and thus invokes production (2) above. This in turn invokes the operator FC

(which, like FL, is an attention directing operator and is not shown in the

PBG of Figure 2) . FC finds column 1, and then PC is evoked on *COL, which

now has this value, and produces the result shown in Figure 2, namely (T = 0)

and (C2 = 1). Now the production system repeats itself. This time (2) is

again satisfied (still by D = 5) and FC finds column 6. However, when PC is

applied it fails to produce new information. Thus, on the next cycle (1) is

evoked, which leads to FL selecting a letter from the current column (say G)

and AV assigning it a value (G <- 1) . Thus, we see how a system of productions

can lead to a continuing sequence of operator evocations that select at each

node of the PBG the operator to be applied.

13 -

Sources of Problem Solving

Both the problem space and the production system are given, thus

providing a description of the behavior of the subject from which other

properties follow. In a qualitative way it is clear where problem

spaces come from. The basic capabilities for discrimination and

operation must be available in the subject's repertoire prior to the

experimental session. The actual space can be already available (e.g.,

as in chess, where the subject has already played many chess games), or

it can be constructed at the initiation of the experimental session from

the perceived characteristics of the situation plus the instructions.

Empirically, the problem spaces used by subjects for cryptarithmetic bear

a close relation to the way the task is described in the instructions.

The operators of the problem space correspond to actions or behaviors

the subject can evoke reliably to obtain relevant ends. They do not neces­

sarily correspond to elementary behaviors (e.g., to a single reaction), but

may be extended sequences of contingent actions. The important criterion

is that an operator provides, from the subject's viewpoint, a reliable process

that produces a result with known properties. In essence, it is a subroutine.

The source 8f the individual productions is less clear. The basic

question is whether the production system is really the appropriate repre­

sentation of the subject's information processing system. Production

systems have exactly the same logical scope as any other general programming

language, thus any set of contingent behaviors describable by production

systems can also be described by any general programming langague. Still, each

production appears to represent an act of learning and to generate a bit of

locally adaptive behavior which is meaningful even in isolation.

The productions take the current knowledge state as input, without

discriminating between the various types of memory systems available.

It appears to be possible to distinguish an immediate working

memory or short term memory (STM) from a long term memory (LTM) , from an

external memory (EM) . It does not appear possible in the sort of subject

controlled problem solving covered by the theory to distinguish the various

image stores (e.g., visual or auditory) or the modality of various memories.

The theory is sensitive to the important operational specifications of these

various memories (such as their capacities, read and write times, and accessing

schemes), and provides a partial explanation of various features of the problem

space and production system in terms of these specifications (Newell and Simon,

1972, Chapter 14).

- 15 -

The segmentation process is actually a relatively simple form of parsing.

III. THE SCOPE OF PROTOCOL ANALYSIS

Figure 3 gives a representational scheme that serves as the basis for

our current attempts to develop automatic techniques for protocol analysis.

The figure proposes a set of representations that are constructed on the

basis of the audio tape to produce the total psychological model. The repre­

sentations are compatible with the manual analysis used for S3 on

DONALEri-GERALD=ROBERT (Newell and Simon, 1972) .

Basic Representations

From an experimental session an audio tape is produced, which contains

the speech utterances, along with additional signals that encode experimental

events (clock signals, etc.). This audio tape constitutes the primary data

to be analyzed.

Linguistic representations. The first intermediate representation,

the linguistic one, can be subcategorized into two parts. The first, the

lexical representation, consists of a sequence of words, including any

additional notations for experimental events, prosodic features, and para-

linguistic features. This continuous stream of words is segmented into

topic segments, which are short phrases or fragments containing only a single

task topic. This refined lexical representation is called the topic repre­

sentation and performs primarily an attention directing role by providing

a reference scheme for designating various parts of the verbal stream.

Semantic representation. The next representation, the semantic one,

consists of a set of semantic elements which can be arranged in a time

ordered sequence. There are two main classes of elements: problem space

16 -

STRUCTURE BEHAVIOR

PRODUCTION
SYSTEM

PROBLEM
SPACE

INTEGRATED

TRACE

I
PBG

Node

SEMANTIC

GROUP
Protogroup
Operator Group

I
ELEMENT

Knowledge
Operator
Indicator

LINGUISTIC
RULES

LINGUISTIC

TOPIC
Segment

LEXICAL
Word
Prosodic Feature
Paralinguistic Info.

TAPE
Audio

Figure 3. Representations for Protocol Analysis

17 .

elements and indicator elements. The problem space elements are subdivided

into knowledge elements, which represent the knowledge the subject has about

the problem, and operator elements, which represent the action he takes to

produce new knowledge. The indicator elements describe the relations between

one or more problem space elements.

The semantic elements can be arranged into functional units or groups.

An operator group consists of an operator together with its input and output

knowledge elements. The protogroup is simply an initial hypothesis of the

components of an operator group.

Integrated Behavior Representations. The first form of integrated repre­

sentation is the Problem Behavior Graph (PBG). It is a tree structure (recall

Figure 2a) in which the nodes represent states of knowledge at a given point

in time and the branches represent the application of an operator at that time

to change the knowledge state. If we orient the tree as shown in Figure 2, then

time runs across the page and down. The tree structure arises because subjects

abandon information (due to discovered error, irrelevance, or forgetting) and

return to prior states of knowledge.

The knowledge state at a node is given by a list of all the knowledge

elements true at that time. Associated with each node are the knowledge

elements created by the operator element just applied. Then the total

knowledge state is obtained by taking the conjunction of all knowledge

elements from the given node, working back to the first node of the tree.

This implies that the operator elements are incremental in nature, each

operating on only a small subset of the total knowledge present. It also

admits the possibility that contradictory, or otherwise variant, information

can exist in the knowledge state.

- 18 -

Both the semantic elements and the PBG depend on the existence of the

problem space, which defines the allowable types of knowledge and operator

elements. The problem space is not a behavior representation, but rather a

static representation of the structure of the subject's knowledge. We show

it in Figure 3 to the left of the sequence of behavior representations.

The second integrated representation, the trace, relies on the production

system, which is another static representation of the structure of the subject's

information processing system. The production system generates the trace,

which is a sequence of the information in various memories (especially STM and

EM, since LTM changes slowly) at each instant together with the productions

evoked by this information. The trace is a linear sequence in time, since the

returns to prior knowledge states that give the PBG its tree-like shape show

up simply as additional instances of transformations.

Assessment representations. The PBG plus the production trace provides

a detailed description of the integrated behavior of the problem solving system

representing the subject. The final step is to measure the adequacy of the

model. This consists of assessing the amount of behavior explained by the model

(the PBG at one level, the production system at the next), and the number and

types of errors encountered.

Generally, one thinks of the derivation of the representation in Figure 3

as follows. The audio tape yields a lexical representation which is segmented,

and then processed to yield semantic elements. These elements are grouped and

incorporated into the PBG, which is then analysed to yield the production

- 19 -

system and its trace. But the derivation need not proceed

this way entirely, since information from all parts of the analysis may be

needed to take a particular inferential step at any level. For instance, to

resolve the referent to the word, IT, one may on one occasion need to know

the prior sentence, but on another occasion need to know that the subject is

working on column 4 (which may not have been mentioned directly in recent

sentences), and on yet another occasion need to know that the only possible

value of IT is the letter D because it can be concluded that IT is 5 and that

the subjectfs knowledge state contains D = 5. Thus the strategy of analysis

is a relatively fluid aspect of the total system. In fact, a generally valid

principle is that all levels must be brought forward simultaneously, so that

each has available a maximal amount of contextual information.

Data Analysis Tasks

The system of representations exhibited in Figure 3 indicates the total

scope of protocol analysis as we now see it. Various scientific tasks exist when

information is available about some of the representations in the figure and

it is desired to obtain information about the other representations.

To each pattern of,given information there corresponds a characteristic task

of data anlysis. If the structure representations are given and also the

behavior data at the bottom, then the task is that of behavior description.

If the behavior representations are given, but not the structural representation^,

then the tasks are those of induction. If the structure is given and also the

behavior at the top, then the task is that of predicting the behavior at more

detailed levels. When all representations are given, the task is that of

verification. For all such tasks, there arises the further task of determining

- 20 -

and representing the success of the analysis made. All these tasks, though

distinct, are closely related and together are the essence of what we call

protocol analysis.

These data analysis tasks vary widely in difficulty and types of analysis

required. Since all parts of the analysis are interdependent, we operate in

a highly experimental mode, continually defining and redefining partial systems

to account for an everwidening range of information and tasks. We do not view

any particular component as more than a tentative hypothesis, which may or

may not survive subsequent iterations. In this way we expect to evolve a system

for automated analysis.

The present scheme tackles only some of the tasks implicit in Figure 3.

It takes as given the topic representation and the problem space, and attempts

to create the semantic elements and the PBG. The difficult problem of going

from the audio tape to the lexical level is put to one side, as is the problem

of the induction of the problem space or the production system. Two central

problems are retained: (1) extracting task relevant content from the linguistic

representation; and (2) inferring from the extracted content the relevant

knowledge state of the subject at each point in time. We refer to this as

the task of describing behavior according to a given theoretical scheme.

Starting with the segmented text (the topic representation), rather than

the stream of ungrouped words (the lexical representation) is an appropriate

restriction. Currently available initial representations (transcriptions pre­

pared in the usual way by listening to the audio tape) contain only lexical data

and not prosodic data. The latter is required to pose the task of topic

segmentation in a reasonable form.

A more careful statement of these various analysis tasks can be found in
the companion paper (Waterman and Newell, 1971).

- 21 -

In SNOBOiI H T 8 ° n ^ h e
u

P D P - 1 0 a t C M U - linguistic processor is coded in SN0B0L4 and the rest of the system in LISP 1.5, with communication existing
stZTl f T ' " i 8 d i S C * X t t a k 6 S r O U 8 h l * 1 2 s e c o n ^ Per to^ic
9 S c o n H f

 t h * a y S " ; a b ° U t 3 S e C ° n d s f ° r l i n 8 u i ^ i c processing and 9 seconds for the remainder.

IV. DETAILED STRUCTURE OF PAS-I

The data analysis strategy used in implementing Protocol Analysis

System I (PAS-I)* is shown by the flow diagram in Figure 4. As seen from

the figure, the system contains four major components: the Linguistic

Processor, the Semantic Processor, the Group Processor, and the PBG Generator.

Linguistic Processor

The Linguistic Processor operates on a single topic segment at a time,

producing for each segment one or more semantic elements. These elements,

taken together, represent the meaning of the segment. This linguistic process

operates in isolation from other knowledge in the system, using only the infor­

mation in the single input segment. As a result only simple inferences can be

made; thus many of the elements produced contain ambiguous or incomplete

information.

Semantic elements. The semantic elements used in the system are given

in Table 1, together with their intended interpretation. They constitute a

particular definition of a problem space, essentially that used in the manual

analysis of S3. A subset of these elements, marked with asterisks, require

more contextual information than do the others and consequently are generated

at a later stage of the analysis by the Semantic Processor.

Linguistic analysis. We use a simple scheme of linguistic analysis,

based on a key-word grammar. This analysis consists of searching for (generally)

Topic
Segments

[two D's]
[each D is 5]
[therefore, T is zero]

LINGUISTIC
PROCESSOR

Semantic
Elements

(NUM D2)
(EQ D 5)

(THEREFORE)(EQ T 0)

SEMANTIC PROCESSOR

Step 1

Temporal
Integration

Step 2

Normal­
ization

Step 3
Extract
Next
Protogroup

Protogroup
Op:(PC1)
Kn: (BECAUSEOF (EQ D 5)(EQ T 0))

C1 = 0
D = 5

\ N T I

PBG

GENERATOR

PBG
Information

Group

Op: (PC 1)
ln:((EQC1 0)(EQD5))
Out:(EQT0)

Extract next
Element

Determine
Unknowns
Mechanism

Origin
Mechanism

K H

GROUP PROCESSOR

Figure 4. Flow Diagram of PAS-I

S E M A N T I C E L E M E N T S

KNOWLEDGE MEANING OPERATORS MEANING

(LETTER 1)

0>I(' IT d)

(n.s tj)

(IN Y d)

(EVEN Y)

(ODD ?))

(EQ V d)

(PEQ Y CF)

(GREATER Y D)

(SMALLER V d)

(CIN .7

(GOUT DOOL)

(MEQ Y d 2 . . .) *

(NEQ J> ,:/)*

(AEQ Y d) *

(CON!) E

(HECAUSEOF p7 p)̂**

An occurrence. «>f
the letter £

An occurrence of
the digit d

u is added to
something

v is in column d

Y is even

Y is odd

Y equals D

One possible value
for v is D

Y is greater than d

V is smaller than /•/

The carry into column
a o l is d

The carry out of
column o o l is d

V must equal either

v is not equal to d

V is assumed to' have
the value d

If is true then e t)

is true

Pn is true because p, is true

is an operator with inputs
r>2 and output

(FC Y) Find a column
containing v

(NUM I d) the number of

I 9 a is <i

(PLUS u u 2 is added to u 2

(EQC (PLUS u ^ u g l i l y) plus equals u.^

(COUNT I) Count the number of

(RECALL Y)* Recall the value
of 0

(PC ri)* Process column

(GN £) * Generate possible
values for I

(IG c?)* Ignore the carry o

(AV Y) * Assign some value
t:o v

(FA Find the antecedent
of element e

(FN e) * Find the negative of the
antecedent of e

(TD v d) * Test if Y can be
equal to d

(TE e) ' k Test if e can
be true

INDICATORS

(OR)

(IF)

(AND)

(YES)

(NEC)

(WNOT)

(QUES)

(THEN)

(BECAUSE)

(UNLESS)

(ASSUME)

(DIFFICULT)

(THEREFORE)

(CORRECTION)

(INSTEADOF)

(PLACE l o o)

letter
d : digit
c : carry
v : letter
u : letter

e : knowledge element
p : list of problem space elements

l o o : location
c o l : column indicator, such as (PLUS A A)

Table 1. Examples of Semantic Elements Used in PAS-I
(Not all knowledge elements are shown.***)

These elements are generated by the Semantic Processor rather than the Linguistic Processor.
*** T h O S C e l e m e n t s represent intermediate knowledge and thus do not appear in the PBG.

For each knowledge element shown above not tagged with an asterisk there exist two
corresponding elements, the negation and the assumption, prefixed with N and A
CRFATrR1Vely' e X a m p l e ' N G R E A T E R AGREATER are the corresponding elements for

-24-

noncontiguous strings of keywords, classifying them semantically, and trans­

lating them into the appropriate semantic elements. We do not use contextual

or semantic information to resolve ambiguities during the linguistic analysis,

except on a very local level within a segment., Instead, we pass these

ambiguities, usually in the form of incomplete or ambiguous semantic elements,

down the line to be resolved by a later stage of the system that does make

use of contextual or semantic information* The rationale is that there already

exists in the system a very powerful mechanism- for inferring information

totally omitted from the text. Consequently much is gained by applying this

mechanism to the somewhat simpler problem of resolving ambiguities in existing

semantic elements.

The reasons for using a key-word approach to the linguistic analysis

are two-fold. First, the language of the subject is fragmented and not

completely grammatical. The task of building an adequate grammar for such

utterances is an open problem*, Thus, an appropriate grammar is not readily

available, although a grammar substantially more sophisticated than the grammar

used here could be constructed. The second reason is that the system makes

extensive use of semantic analysis* The cryptarithmetic task provides a

somewhat restricted universe of discourse, and a strong semantic component exists

in the form of the problem solving theory. Consequently, the strong

semantic analysis tends to compensate for the realtively weak linguistic

analysis used.

The Origin Mechanism, discussed in detail later.

- 25 -

Grammar. The grammar used by the Linguistic Processor is given in

Figure 5 in a modified BNF notation. Linguistic classes are represented by

names in angle brackets, and those classes marked with an asterisk(*) repre­

sent semantic elements. A class is defined by giving its name at the left,

followed by colon-equal (: =) followed by the sequence that defines the class

in terms of words or other classes. A vertical bar (|) indicates a dis­

junction, a number-sign (#) indicates the beginning of a string, while a dash

(-) or the absence of a blank between two items of the sequence indicates

concatenation. A blank between two items means that any arbitrary string

of words may exist between them. Thus if we have the definitions:

<eq> := <letterXprep> <digit> | #CHANGE<letter> <digit>
<prep> := AS | FOR-THE

<letter> := D | R
<digit> := 2

then D FOR THE 2, USE D AS THE NUMBER 2, CHANGE R 2, and CHANGE R TO 2

are all examples of the class eq, while D IS FOR THE 2, CHANGE THE R TO 2,

and SO CHANGE R TO 2 are not examples of this class. The test for a class

proceeds from left to right through a string, with the first match defining

the values of the class variables. Thus in D AS R FOR THE 2 the test for

eq yields D as the letter, AS as the prep and 2 as the digit.

The grammatical analysis proceeds in the order shown in Figure 6. For

example, the test for <ciri> precedes the test for <cout> and the test for

<negp> precedes all other tests. The tests within each box are applied in order

until either an instance of a class is found (in which case the remaining

classes in the box are skipped) or all the tests have been applied. Note that

the tests for <neg>, <digit> and <letter> are applied as many times as necessary

The dash (-) indicates concatenation between two words, while the absence
of a blank indicates concatenation between either a word and a word class
or two word classes.

- 26 -

* <cm>
* <cout>
<carryeq>

* <greater>
* <smaller>
* <even>
<evenl>
<even2>

* <odd>
<oddl>
<odd2>

* <eqc>
<eqcl>

<eqc2>
<peq>
<eq>

<plus>

<place>

<pls>
<num>
<in>
<fc>
<count>
<ltr>
<sum>

<letdigs>
<letdig>
<optletdig>
<optdigit>
<optnumber>
<add>
<equals>
<digits>

* <letter>
* <digit>

* <therefore>

<carryeq> INTO <sum>
<carryeq> FROM <sum>

<letter>UH<digit>

<letdig>

INTO <carryeq> <sum> | <carryeq> <sum> INTO
FROM <carryeq> <sum> | <carryeq> <sum> FROM

<digit> <carry> <digit> | <carry> <digit> | <digit> <carry> | <carry>
= <sum> <large> <optdigit> | <ltr> <large> <optdigit> | <large> <digits>
• <sum> <small> <optdigit> | <letter> <small> <optdigit> |
<pronoun> <small> <optdigit>

= <evenl> | <even2>
• <sum> <equals> EVEN <optnumber> | <ltr> <equals> EVEN <optnumber>
<add> <digit> <equal> EVEN <optnumber>
<oddl> | <odd2>
<sum> <equals> ODD <optnumber> | <ltr> <equals> ODD <optnumber>
<add> <digit> <equal> ODD <optnumber>
<eqcl> | <eqc2>
<sum> <equal> <sum> | <sum> <equal> <optletdig> |
<digits> <equals> <sum> | <ltr> <equals> <sum>
<add> <digit> <equal> <digit> <optnumber>
<ltr> <poseq> <digits> | MIGHT <letter> <equal> <optdigit>
<carryeq> | <letter><prep> <digit> | <letter> <equal> <optdigit> |
<letter> 1S <digits> | <pronoun> <equals> <digit> | <digit><prep><ltr>|
<make> <ltr> <optdigit> | <letter><digit>
CHANGE<letter> <digit>
<twoxletdig>1S | <letdigs><ad> <letdigs> | <letdig>AND
<digit><commaxdigit>
<location> <locl> | IN<location> | COLUMN PRECEEDING |
<loc2>HAND | THE<loc2>
<ad> <letdigs> | AND<letdig>
<digitxletdig> !S
HAVE <letdig>
HAVE <letter> ?
HOW-MANY <letter>

<pronoun> <letter> | <letter> <pronoun> | <letter> | <pronoun>
<letdigsxad> <letdigs> | <twoxletdig>1S | <letdig>AND <letdig>
<digitxcommaxdigit>
<letdig> I <pronoun>
<letter> | <digit>
<digit> | <letter> | < >
<digit> | < >
NUMBER | < >
<ad> j AND
<equal> | 'S
<digit> | <pronoun>

A|B|D|E|G|L|N|O|R|T|LETTER
<dig>110 111112 113114 115 116 117118 j19 1201
ZERO|TWO|THREE|NINE|NUMBER
THEREFORE | #SO | IN-THAT-CASE | IN-WHICH-CASE | WHICH-WILL-MEAN
WHICH-WILL-MAKE | WHICH-MEANS | WHICH-LEAVES | WHICH-WOULD-MEAN |
IMPLIES | MIGHT-INDICATE | AUTOMATICALLY

- 27 -

* <if>
* <assume>

* <di££icult>
<correction>
<then>
<neg>
<wnot>
<yes>
<or>
<because>
<insteadof>
<unless>
<and>
<ques>

IF | SUPPOSE | S'POSE | AS-SOON-AS | IN-ORDER-TO | THAT'S-ASSUMING
ASSUME | ASSUMES | ASSUMING | ASSUMPTION | ASSUMED | LET | USING |
<self> <raake>
DIFFICULT | DIFFICULTY | TROUBLE | DILEMMA | MISSING
INSTEAD | OR-RATHER | #RATHER | I'M-SORRY
THEN | THAT-MEANS I THIS-IMPLIES
CANNOT | NOT | NO | N'T | BAD-GUESS
DEPENDING-ON-WHETHER-OR-NOT
YES I YEAH | TRUE
#OR | OR<letdig>
BECAUSE | SINCE
INSTEAD-OF
UNLESS
#AND

= ?

<pronoun>

<equal>

<carry>
<location>

<prep>
<poseq>
<make>
<large>
<small>
<locl>
<loc2>
<dig>
<ad>
<self>
<two>
<comma>
< >

: ITSELF I IT | THAT
NUMBER | LETTER
IS | EQUAL | EQUALS | BECOMES | BE |
EQUALING | =
CARRY I CARRIES | CARRIED | CARRYING
OTHER | SIDE | SECOND | FIRST | LEFT
PRECEEDING | FOLLOWING
FOR | OR | AS | FOR-THE
CAN-BE | COULD-BE | MIGHT-BE
MAKE| MAKING | MADE | MAKES
LARGER | GREATER | BIGGER | MORE
SMALLER | LESS
SIDE I COLUMN
LEFT | RIGHT
0|l|2|3|4|5|6|7|8|9
PLUS | +
I | WE
'TWO I 2

| SOMETHING | THIS | THESE | THOSE | THEY | THEM

WAS | WERE ARE I BEING

RIGHT | THERE GERALD

Figure 5. Grammar Used by the Linguistic Processor
(The classes marked with an asterisk represent semantic elements.)

I
START <neg>

<c in>
<cout>
<carryeq>

10

FINISH <place>
<ques>
< >

<digit>
<letter>

<greater>
<smaller> <eqc1> <even 1 >
<odd 1>

<eqc1>

+

8
<therefore>

|<then><because>
<if ><assume>

<insteadof >
<correction>

<yes><unless>
<and><cr>
<diff icult >

<wnot>

< n u m >
<plus>

<peq>
< e q >
<eqc2>
<odd 2>
< even 2>
<pls>

oo

FIGURE 6. Flow Diagram for Linguistic Analysis

- 29 -

to recognize all instances of these classes in the segment.

To illustrate more clearly the control flow shown in Figure 6 consider

the topic segment BECAUSE I DO N'T WANT TO. BE CARRYING 1 INTO THAT E + 0

COLUMN. The test for <neg> is applied and matches the N'T, which is then

removed from the segment. The test for <neg> is again applied but to the

shortened segment. This fails, so control passes to block 2 where the test

for <cin> is applied and matches the string CARRYING 1 INTO THAT E + 0.

This string is also removed from the segment, and control passes to block 6 where

the indicated tests are applied to the segment, which is now BECAUSE I DO

WANT TO BE COLUMN. These fail, as do all the other tests except <because> in

block 8. The result is the set of semantic elements (BECAUSE) (NEG) (CIN 1 (PLUS E

The control flow in Figure 6 reflects our current hypotheses about the

number and kinds of different classes which can occur in a single segment.

It is closely tied to the definitions of the linguistic classes; consequently,

as the grammar is extended and refined, the control flow must be redefined
in some corresponding way.

Segment processing. Figure 7 illustrates the operation of the linguistic

processor on three segments taken from S3. Example (a) is a simple phrase

which leads to a single knowledge element, namely that G is an even number.

Example (b) shows a more complex analysis in which several elements are extracted,

including indicators. The last example illustrates that more than one problem

space element can be extracted from a single segment, although normally a

segment contains only one topic. The *C in this example stands for an unknown

carry. Note that not all words of a segment participate in the parse

in a positive way.

30 -

Segment

Analysis:

[G HAS T O BE AN E V E N N U M B E R .]

< let ter > <equa l>

< l t r > <equa ls> / <optnumber>

^<even 1 >

< e v e n >

Elements: (E V E N G)

(a.)
Segment: [BECAUSE I DO N'T WANT TO BE CARRYING 1 INTO THAT E O COLUMN

<becouse> <neg>

Analysis:

<dig>
I

<carry> <digit>

<carryeq>

< le t ter>
I

<letdig>

<letter>
I

<letdig>

< le td igs> < a d > < | e t d i g s >

<sum>

Clements: (BECAUSE) (NEG)

<cin>-

(C I N 1 (PLUS E 0))
(b.)

Segment: [AND THE 1 I AM CARRYING GIVES ME A' 9 FOR THE E , 1 L . i | \ / i J

< d i g > \ / < l e t te r>

Analysis:

< a n d > < d i g >
I

<digit> <car ry>

^<carryeq >
I

< e q >

<digi t> <prep> < l t r >

Elements: (AND) (EQ MC 1)
(c.)

(EQ E 9)

FIGURE 7. Operation of the Linguistic Processor

T

- 3J -

The grammar of Figure 5 is based on several kinds of knowledge beyond

that of basic English, There is the task of cryptarithmetic, which determines

many of the terms used. There is the definition of the problem space, which

dictates the set of meaningful semantic elements, and thus which sorts of

grammatical classes much be included. Finally, general knowledge of how

people compose spontaneous speech determines another set of classes, especially

those involved in tying parts of the verbal stream together (e.g., the con­

versational use of "if" or "therefore11;.

Semantic Processor

The next stage after the Linguistic Processor is the Semantic Processor

(recall Figure 4). In this stage the semantic elements from the Linguistic

Processor are arranged into tentative operator groups, called protogroups.

Many of the semantic elements do not survive this stage in explicit form,

either because they are assimilated into more specific elements or because they

indicate input or output relations, and become represented in the structure of

the grouping.

We assume that each of the knowledge elements used by the subject must

be the ouput of somq operator element or the recall of an element previously

produced by an operator. Thus when an operator produces an output, all of

the operator's inputs must be known to the subject. Similarly, the outputs of

an operator are known to the subject the moment they are produced. These

considerations lead to the following representational principle:

The stream of semantic elements can be represented by a sequence

of disjoint segments, called operator groups (or just groups)»

consisting of a single operator with its inputs and outputs, such

that each input knowledge element was produced earlier as the output

of some operator.

- 32 -

The operator group principle does not reflect any particular assumptions

about memory structure. Assumptions about a division of current knowledge

between a short-term memory, a long-term memory and an external memory (such as

a scratch pad) must be added. They will affect accessibility of the various

knowledge elements in the current knowledge state. PAS-I does not yet have an

explicit model of a memory structure. In effect we assume the following con­

tinuity principle: that knowledge once produced is available in the knowledge

state thereafter.

Temporal integration. Semantic processing occurs in several steps, each

identified with the application of certain classes of rules. Figure 8 shows

these steps in conjunction with a specific example. The semantic elements,

as delivered by the Linguistic Processor, are to the left. In the first step

sequences of elements are put together using the set of rules given in Table 2.

In this table each line to the left of the arrows represents a set of knowledge

elements (i.e., the knowledge extracted from a single segment), and each line

to the right, the set resulting from the application of the rule. Note that some

rules contain more than one line; these reflect relationships existing between

segments. The single-line rules reflect relationships within a segment. Step 1,

temporal integration, consists of applying these rules to each set of knowledge

elements produced by the Linguistic Processor. The rules applied to a particular

set are all those applicable using the ordering shown in the table. Thus rule 2

is applied to the result obtained from the application of rule 1. For a multi-line

rule to be applicable not only must the first line of the rule apply to the set,

but also the remaining lines must apply to the sets following the one in question.

Ordering and contiguity are relevant between lines which form a rule but are

Initial
Semantic Elements

'PLUS L L)
(BECAUSE)(EQ C2 1)
iODD R)
HQ R 1)
(DIGIT 3) S T E P *
(NEG)(DIGIT 5)
(.DIGIT 7)
(OR)(DIGIT 9)
'EOCCPLUS D G)R)
CASSUME)(DIGIT 9)
(AND)(EQ D 5)
(THEREFORE)(EQ G 3)(OR)(DIGIT 4)
(AND)

(COUT KPLUS 0 E))
(THEREFORE)(LETTER G)
(NEG)(EQ G 4)
(?)
'..PLUS 0 E)
(EQ E 0)
(DIGIT 9)
(IF)(EQ E 9)
(THEN)(EQ *C 1)

STEP

(PLUS L L)
(BECAUSE)(EQ C2 1)
(ODD R)
(MEQ R 1 3 7 9)
(NEQ R 5)
(EQC(PLUS D G)R)
(AEQ *L 9)
(AND)(EQ D 5)
(THEREFORE)(MEQ G 5 4)
()
(EQ C6 1)
(THEREFORE)(EQ G *D)
(NEQ G 4)
()
(PLUS 0 E)
(NEQ E 0 9)
(IF)(EQE9)
(THEN)(EQ *C 1)

33

(PLUS L L)
(BECAUSE0F(EQ C2 1)(ODD R))
(NEQ R 1 3 7 9)
(NEQ R 5)
(EQC(PLUS D G)R)
(BECAUSEOF((AEQ *L 9)(EQ D 5))(NEQ G 3 4))
()
(BECAUSEOF(EQ C6 1)(EQ G *D;)
(NEQ G 4)
I)
(PLUS 0 E)
(NEQ E 0 9)
(CONDfEQ E 9)(EQ *C 1))

STEP 3

Protogroups

(PLUS L L)
(BECAUSEOF(EQ C2 1)(ODD R))
(NEQ R 1 3 1 9)
(NEQ R 5)

(EQC(PLUS D G}R)
(BECAUSEOF((AEQ *L 9)(EQ D 5)) (MEQ G 3 4))

(BECAUSEOF(EQ C6 1)(EQ G *D))
(NEQ G 4)

(PLUS 0 E)
(MEQ E 0 9)
(COND(EQ E 9)(EQ *C 1))

rirst
prote­
in rcun

second
proto­
group

third
proto­
group

fourth
proto­
group

Figure 8. Example of Semantic Processor Operation

- 34 -

(.type (PLUS I. 1.
2. (PLS dig)
3. (PLS d)
4. (PLS I)
5. (NEG) (e<?s I d)
6. (NEG) (GREATER I d)
7. (NEG) (SMALLER I d)
8. (NEG) (DIGIT d)
9. (NEG) (LETTER Z)

—>

(PLUS £«)
*C 2£gO (EQ

(EQ *L d)
(LETTER I)
(NEQ I d)
(NGREATER I d)
(NSMALLER I d)
(NDIGIT d)
(NLETTER I)

(type (PLUS I.

10.
11

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

(ASSUME) (LETTER I)
(THEREFORE) (LETTER I)

(ASSUME)
(ASSUME)
(ASSUME)
(ASSUME)
(ASSUME)
(THEREFORE)
(THEREFORE)

(equ I d)
(GREATER I d)
(SMALLER I d)
(DIGIT d)
(LETTER I)

(DIGIT d)
(LETTER I)

(car d (PLUS I. I.))
(EQ
(EQ

I dj
I dp

(INSTEADOF) (DIGIT <f„)
(OR) (DIGIT d2)

—»

—>

—>

—>

(OPIO (FA(EQ £ *D))() (EQ I. *D))
(AEQ *D) ' 1

(AEQ J d)
(AGREATER I d)
(ASMALLER I d)
(AEQ *L d)
(AEQ I *D)
(THEREFORE) (EQ *L d)
(THEREFORE) (EQ I *D)
(EQ Cnd)
(NEQ Z d„) (EQ Z d)
(MEQ Z d^ d)

22. (EQ I d)
(DIGIT a >

(EQ I d2)

23. (EQ I d)
(DIGIT a2)

(EQ I dJ
(DIGIT ay

(DIGIT d> ,)
(NEG) (DfGIT d.)
(DIGIT i) *

(DIGIT dffl)

(DIGIT d.)
(DIGIT

(DIGIT d)
(NEQ J d?)

24. (EQ Z. d)
(DIGIT a2) -> (MEQ Z d 7 d9... d m)

1 6 m
(DIGIT d)

m

- 35 -

25. (MEQ I ai d2 ... dm) _» (PEQ l dn)
(PEQ I dp

(PEQ I d)
(MEQ I d9 ... d)

where: type = EVEN , ODD , GREATER , SMALLER
dig = *D , 1 , 0
equ = EQ , PEQ
oar CIN , COUT
eqs = EQ , PEQ , AEQ

Table 2. Rules for Temporal Integration: Step 1
of the Semantic Processor.
(Z- stands for any letter, d any digit, and

the carry defined by the rule context.)

- 36 -

ignored within a line. For example, rule 8 applies to any set containing both

(NEG) and (DIGIT d) in any order, while rule 22 applies only to contiguous

sets arranged in the order shown.

The basis for the rules in Table 2 is partly linguistic, partly con­

versational, and partly based on the fact that a subject operating within the

problem space seems to respond rationally to certain elementary aspects of

the situation. For example, Rule 23 in Table 2 says to interpret (EQ R 7)

followed by (DIGIT 9) as (MEQ R 7 9), i.e., as the statement that R must equal

7 or 9. Two assumptions are involved here. The first is that the dangling

digit (9) is associated with the R. This is based primarily on linguistic

premises. The second is that the relation is one of disjunction. The

exclusion of conjunction is based on rational grounds -- that is, it doesn't

make sense to say that R could be 7 and 9. It is possible that a correction

was indicated something equivalent to "R is 7 ... no, it's 9." But in

general there will be additional linguistic indicators associated with a

correction, such as a word indicating negation.

Normalization. At the beginning of the second step the indicator elements

left are those associated with establishing input and output relations:

(THEREFORE), (IF), (THEN), (BECAUSE), (OR), etc. A series of ordered rules,

given in Table 3, assimilates this information into elements of the form

(BECAUSEOF ...) (COND ...) and (OPIO . . .) . These transformations effect a

normalization that simplifies the inference problem occurring later in the

analysis.

Thus (EQ Id) must appear in a set directly preceding a set containing
(DIGIT d£ • 1

We assume the subject is operating within the so-called augmented problem
space (Newell and Simon, 1972).

- 37 -

RULES

1 (THEREFORE) A 2

(THEREFORE) A 3

Ai
2. (THEREFORE) A 2

A]

3. (THEREFORE)(EQC

Ai
4. (BECAUSE) A 2

5. (BECAUSE) A L

A 2

6. < I F> Al
(BECAUSE) A 2

(BECAUSEOF A 1 A 2)
(BECAUSEOF A 2 A 3)

(BECAUSEOF Aj A 2)

(BECAUSEOF A : (EQC ...))

(BECAUSEOF A 2 A x)

(BECAUSEOF A x A 2)

(BECAUSEOF A 2 A x)

? (THEREFORE) A :

(BECAUSE) A 2

8 > (IF) (NEG)
(THEN) (NEG) K 2

(BECAUSEOF A 2 A 2)

(OPIO (FN K r) K x K 2)

9. (IF)(AEQ...)
Ai (BECAUSEOF (AEQ ...) Aj)

10. (IF) A x

A 2
(COND Aj A 2)

H . (AEQ...)
(IF) A 2

(BECAUSEOF (AEQ ...) A 2)

Ai
12. (IF) A 2

(COND A 2 A 2)

Ai
13. (THEN) A 2

* (BECAUSEOF A x A 2)

- 38 -

14.
(OR) K 2

(WNOT) K 3

(OR)

(COND K 3 Kj)
(COND K 3 K 2)
(COND Kk K 2)
(COND K 2)

15.
(MEQ I d1 d 2)
(WNOT) K :

(OR) K 2

(COND Ki (EQ
(COND Kj (EQ
(COND K 2 (EQ
(COND K 2 (EQ

I di))
I d2))

I di))

I d2))

DEFINITIONS
A± = A sequence of knowledge elements from adjacent sets of semantic

elements, where each set is connected to the adjacent ones
through the (AND) indicator.

Ki 5 A single knowledge element (its negation is represented by K).

Table 3. Rules for Normalization: Step 2 of the Semantic Processor

- 39 -

This will eventually be extended to include the (OR) indicator.

In Figure 8 the empty elements are those indicated by () .

Examples of applications of some of the rules illustrated in Table 3

are given in Figure 8. Note that in Table 3 represents a sequence of

knowledge elements from sets connected through the (AND) indicator.* For

example, rule 2 can be applied to the sets

(EQ C6 0) (YES)

(AND)(EQ G2)

(AND) (EQ D 5)

(THEREFORE)(EQ R 7)

(AND) (EQ C7 0) (QUES)

to produce (BECAUSEOF ((EQ C6 0)(EQ G 2)(EQ D 5)) ((EQ R 7)(EQ C7 0))). This

is interpreted as "Because C6=0, G=2 and D=5, we know that R=7 and C7=0.',f

BECAUSEOF and OPTO are temporary knowledge elements used to convey information

from the Semantic Processor to the Group Processor. COND, on the other hand,

is a permanent knowledge element; it is incorporated intact into the PBG.

Grouping. In the third step grouping takes place and a

tentative operator group, called the protogroup, is produced. This protogroup

is defined to be the largest consecutive sequence of elements that contains no

empty elements,** no more than one operator element, and at least one non-empty

element. Thus a sequence of empty elements cannot be grouped and will instead

be interpreted as a single empty element. In the example of Figure 8, four

protogroups are produced as output.

- 40 -

Group Processor

The output of the last step of semantic processing is a single protogroup

(recall Figure 4). This protogroup is revised and refined during the next

stages of analysis (Determine Unknowns Mechanism and Origin Mechanism) to

produce one or more operator groups, which are then incorporated into the

current PBG by the PBG Generator. Then the cycle starts again: a new protogroup

is created, refined, and incorporated into the PBG. If any of the knowledge

elements in a protogroup are not used (i.e., are not incorporated into the PBG)

they are saved and defined as part of the next protogroup. Thus knowledge

elements occurring between two operators have a chance to be included in the

protogroup for each operator.

Determine Unknowiff Mechanism. Many of the elements produced by the Linguistic

Processor are incomplete, that is, they contain variables, denoted *L, *D, *"C,

etc. Examples of these occurred in Figures 7 and 8. The Linguistic Processor

provides partial information for these variables by placing them in restricted

domains, e.g., the set of digits (*D), the set of letters (*L), the set of

carries (*C), or the set of sums (*X) . The job of the Determine Unknowns

Mechanism is to discover the values of these variables.

An informal description of the heuristics employed by the Determine

Unknowns Mechanism is given in Table 4. This mechanism requires information

about the current knowledge state of the subject, and thus must access the PBG.

Furthermore, it must be able to assess the possibility of a given knowledge element

being derived from a column. To do so it uses a basic routine, also used in

later parts of the program, for deducing values from a column, given any of

several variations of input information (i.e., the scientist's version of PC,

the column processor).

- 41 -

I I .

Ill,

IV,

V.

If the incomplete element is a knowledge element, match it against the
elements comprising the current knowledge state. If an identical element
is found, use it.

If the incomplete element is a process column operator, match the known
letters in the element against the letters of each column. Pick the
column with the most letter matches. In case of ties, pick the column
most recently processed.

If the incomplete element is a knowledge element (other than BECAUSEOF or
COND) not in the current knowledge state, compile a list of columns which,
through processing, could possibly produce the element. Base the list on
information about letter matches and the columns most recently processed.
Process each column on the list, in a one-step attempt to produce an ele­
ment which matches the incomplete one. The first match obtained is the
one used.

If the above steps fail, then attempt to generate an element which matches
the incomplete element, based on the current knowledge state but independent
of column processing, i.e., (ODD R) and (GREATER R 7) leads to (EQ R 9).

If the incomplete element is BECAUSEOF or COND then:
a. If the right part of the element has unknowns, attempt to fill them

in as in I, II, III, and IV above. For this calculation, all ele­
ments (without unknowns) from the left part are considered part of
the current knowledge state.

b. If the left part has unknowns, and the right part still has unknowns
or contains either PEQ or AEQ, then attempt to fill in the left part
as in I and II above.

Table 4. Heuristics Employed by Determine Unknowns Mechanism
(See Figure 9 for specific examples.)

- 42 -

Figure 9 shows examples of input and output sequences for the

Determine-Unknowns Mechanism, which includes the use of all five heuristics from

Table 4. The various sequences are annotated to show the information source

and the heuristic applied.

Origin Mechanism. The primary goal of the Origin Mechanism is to infer

the problem space elements that are missing frcm the topic segments and to

infer the values of the unknown variables that the Determine Unknowns Mechanism

failed to determine. A secondary goal is to produce a set of operator and

knowledge elements that mutually satisfy the conditions of the operator-

group principle. We assume semantic elements are arranged as operator

groups with a full complement of input and output elements. Thus, from the

existence of a knowledge element, we can infer the existence of an operator

that produced it; and from an operator we can infer the existence of its

inputs and outputs. The proliferation of conjectured operators and knowl­

edge elements is terminated either because the knowledge elements already

exist in the kndwledge state of the subject or because the operators do not

require further inputs. An example of this latter case in cryptarithmetic

is the assignment operator (AV)» which needs no inputs.

Table 5 gives knowledge elements from the augmented problem space

for cryptarithmetic (Newell and Simon, 1972), and with each element are

listed the operators capable of producing the element. This table forms

the basis for inferring new elements. There is a relatively trivial

solution to this construction problem if all unexplicit operators are

assumed to be assignments -- i.e., all knowledge elements are simply assumed

to be stipulated. The difficulty with this solution is its failure to

explain how subjects happen to stipulate things that are the results of

various computational and inferential processes. That is, if the current

Information Source

Knowledge State: (EQ D 5)(EQ CI 0)(EQ T 0)(SMALLER N 3)(ODD R)(GREATER R 7)(EQ C3 1)

Display:

c6 c5 c4 c3 c2 cl
D O N A L D

+ G E R A L D

R O B E R T

Column Last Processed: 1

Input/Output Sequences

Heuristic
I (GREATER *L 7)

(EQ T *D)

Examples
=>
=>

(GREATER R 7)
(EQ T 0)

II (PLUS D *L)
(EQC (PLUS 5 5)*L) =>

=>
(PLUS D D)
(EQC (PLUS 5 5)T)

III (EQ C2 *D)
(MEQ E *D 9) => (EQ C2 1) column 1 processed

(MEQ E 0 9) column 5 processed

IV (EQ R *D)
(MEQ N *D *D) ->

•->
(EQ R 9)
(MEQ N 1 2)

V (BECAUSEOF (EQ *C 1)(ODD *L))
(COND (EQ A 4) (EQ E *D)) (BECAUSEOF (EQ *C 1)(ODD R))

(COND (EQ A 4)(EQ E 9))

Figure 9. Examples of Input and Output for the
Determine Unknowns Mechanism
(See Table 4 for definitions of the heuristics.)

- 44 -

KNOWLEDGE ELEMENTS OPERATORS

EQ PC, GN, IG, FA, TD, TE, AV
PEQ PC, GN, FA
MEQ PC, GN, FA
NEQ FN, TD, TE, PC
AEQ FA, AV
EVEN PC, FA, TD, TE
ODD PC, FA, TD, TE
GREATER PC, FA, TE
SMALLER PC, FA, TE

Table 5. Knowledge Elements and the
Operators for Generating Them

45
knowledge state of a subject contains (EQ E 8) and (EQ L 3) and the

subject says (EQ A 4), it could be assumed either that an assignment

operator (AV) produced (AEQ A 4) or that a column processor (PC) derived

it from column 3 (i.e., from A + A = E) . While coincidence is on the

side of AV, rationality is on the side of PC.

When a set of elements is inferred, each such construction must remain

tentative to some degree. The ultimate test of validity does not lie in

the immediately surrounding data situation and the heuristics used there,

such as giving precedence to PC over AV, but in the way the entire protocol

analysis appears when finished.

Figure 10 shows the flow diagram for the current version of the Origin

Mechanism. We always infer from a knowledge element the existence

of an operator with associated inputs,and never infer from an operator the

existence of its inputs and outputs. The rationale is that we can save

operators with no apparent inputs or outputs, and use them to guide later

searches for operators. Thus, the process illustrated in Figure 10 starts

with a knowledge element that has no operator. The Origin Mechanism en­

gages in a breadth-first heuristic search for the missing operator, consider­

ing possibilities that could have led to the given knowledge element, that is,

possible combinations of operators with specific inputs. In actuality, not

all sets are considered as this would lead to an excessively large search

tree. The following rather powerful heuristic is used to prune the search

tree: for the PC operator both the carries but only one unknown letter in a

column may be hypothesized as an input. Thus to obtain (EQ B 2) from (PC 4),

either N or R could be hypothesized to be some value, but not both. Consequent!

if both N and R are unknown then (PC 4) cannot be considered capable of

producing (EQ B 2).

At present this feature is not implemented.

r Table of
Knowledge Elements

and Applicable
Operators

Protogroup

0p:(?)
Kn: (EQ R 7)

Extract
Next Element Determine

Knowledge (EQ R 7) Unknowns
Element

Element
i *
(EQ R 7)

i
Generate

All
Input-

Operator
Set

Possibilities

— r ~

Input-Operator Sets

Input
"}(EQ C2 1)
|(EQ L 3)

(EQC2 0-
(EQ L 3) -
(EQ C6 IV
(EQ6 1) '

:(PC 2)
»

(EQ C6 OV
(EQ 6 2) -

:(PC 6)
m

:(pc 6)

Select
Input-Operator

Set Which is
Most Compatible

with the
Current Situation

PBG
Information

Current Knowledge State

Selected Set

(EQ C21)'
(EQ L 3) '

:(PC 2)

Generate
All

Input-Operator
Sets

for each
Input

! R

/\
[Group

(EQ R 7)

/(EQD5KEQ CIOUEQ C30KEQ C7 0 K E Q C 2 1)
(EQ C2 1) (EQ L 3)

I I
(RECALL C2) (AV L)

FIGURE AO. Flow Diagram of the Origin Mechanism

47 -

These operator-input combinations constitute a set of hypotheses

about how the element could have been produced. The Origin Mechanism then

selects one of these hypotheses for further exploration. To explore the hypoth­

esis it must take each of its inputs, which is a knowledge element itself, and

determine its origin. These inputs may be identical to elements already in the

knowledge state, or may require the additional step of hypothesizing an

operator and obtaining yet another set of input elements whose origins need

to be accounted for.

At each stage of the search one hypothesis (an operator with specific

inputs) is selected for further exploration. Three factors are responded

to in this selection. First, positive credit accrues for using inputs

already in the current knowledge state, these being called used-inputs.

Second, negative credit accrues for using inputs that require further

hypothesizing, these being called unused-inputs. Third, no credit accrues

to an operator that is easily satisfied, in particular AV which has no

inputs to be satisfied. The decision function currently in use is:

Choose to maximize: ((3 x used-inputs) - unused-inputs)

Break ties according to order: PC, GN, TD, IG, AV.

Figure 11 illustrates the operation of the Origin Mechanism. The

current knowledge state is given at the top of the figure. Under it and

heading the tree is the knowledge element (EQ A 4) which is given as input

to the Origin Mechanism. At the first level three separate hypotheses

that could have produced (EQ A 4) are generated, two involving the processing

of column 3, each with a different set of inputs, and one involving assign­

ment. These hypotheses were rated as shown by the subscripts on the

operators. Note that at each level the hypothesis selected is the one with

Knowledge State: (EQ D 5)(EQ CI 0) (EQ C7 0)
Operator Group: Operator (PC 6) Elements (EQ A 4)(EQ E 9)

(EQ C30)

((EQ A 4)

(PC 3)_ 3 (PC 3) > j A V A) 0

(EQC4 0) (EQE8)/ (EQC3 1)

C 3) 0

(EQ C4 0) (EQ E 9) \
\

(IG C 3) 0 (AV C3) 0 (IG C 4) 0 (AV C 4) 0 (AV E) 0 UAV
\

(16 C4) 0/(AV C 4) 0 (PC 5) . 2 \ (AV E) 0)

FIGURE 11. Example of Origin Mechanism Operation

(EQ C6 1) (EQ C5 1)

(AV C6) 0 (AVC5) 0

- 49

the highest rating. The encircled branches show the path chosen to represent
the origin of (EQ A 4).

PBG Generator

The final stage of PAS-I produces the problem behavior graph. This

graph is generated incrementally, by taking the current PBG and adding to

it the next operator group. Time continuity is important, since a key

issue is whether or not the new information is consistent with the old;

inconsistent information is not allowed and leads to a restructuring of the

PBG.

The input to the PBG Generator is an operator group, i.e., an operator

with a set of inputs and outputs. Actually, a set of operator groups are

given, corresponding to a complete investigation by the Origin Mechanism.

For example, in the case of Figure 11, four groups would be presented, one

for (PC 3), one for (AV C3), one for (IG C4) and one for (AV E).

Backing up. We assume the subject traces some trajectory in the

problem space. For this to be tree structured, as in Figure 2, the subject

must return to prior states of knowledge at various times during the course

of the trajectory. In cryptarithmetic this can happen for a number of reasons.

First, the subject may discover a contradiction in his current solution. He

will then abandon the information which initiated the contradiction,

returning to some prior point in the problem space. He does not necessarily

forget this information, rather he abandons it. The difference is that in

abandoning the information he removes it from the current knowledge state,

as in forgetting, but retains the knowledge that it was abandoned.

Table 6 defines the pairs of elements which may result in a conflict,

assuming both elements of the pair are describing the same letter. The I's

indicate that a conflict is possible, the O's that a conflict is not possible

- 50 -

EQ AEQ

Second Element of the Conflict Pair

PEQ NEQ MEQ EVEN ODD GREATER SMALLER

C
o

-P

O)
W

•r-l

EQ

AEQ

PEQ

NEQ

MEQ

EVEN

ODD

GREATER

SMALLER

1

1

0

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Table 6. Conflict Matrix
(1: conflict possible,
0: conflict not possible.)

(by definition) . For example, if (EQ R 6) is currently active in the PBG and

(PEQ R 3) is then added to the PBG the element pair is (EQ R 6) , (PEQ R 3), which

has an entry of 1 in Table 6 indicating that a conflict is possible. In this case

a conflict exists; in fact the only case where a conflict won't exist with the

pair EQ,PEQ is when both elements use the same digit, i.e., as in (EQ R 6),

(PEQ R 6). However, if the element pair is (PEQ R 3),(EQ R 6), meaning that

now the PEQ element is already in the PBG and the EQ is being added, the entry

in Table 6 is 0. Thus no conflict occurs (by definition) regardless of the

values used for the digits.

A second reason for backing up in the problem space is the abandonment

of (perceived) irrelevant information. Unlike the issue of contradictory in­

formation, the pressures toward this stem from the limited memory capacities

of the human. Human long-term memory, though it has adequate capacity, is

much too slow in its acquisition rate compared to the rate at which new nodes

in the problem space can be generatedw Consequently when information not yet

acquired in long-term memory is discovered to be irrelevant it will simply

be abandoned.

A third reason is that relevant information can occasionally be for­

gotten. However, this occurs rarely in situations where the subject is self

paced, as in the problems under discussion here. The subject will generally

employ a strategy that is not self-destructive, i.e., that permits sufficient

time to remember the relevant information called for by the strategy.

Restructuring rules. The above digression into the underlying theory pro­

vides the rationale for the rules used in the construction of the PBG. These

rules, together with a set of explanatory definitions, are given in Table 7.

The rules are in the form of an ordered set of production rules (Waterman,

1970), and are applied by comparing a vector composed of the current state

vector values with the left side of each rule, restructuring according to the

action specified by the right side of the first rule matched. They are

- 52 -
DEFINITIONS

STATE VECTOR: (variables affecting the PBG-restructuring rules)
state vector = (TYPE HAVETD HAVEFN INCLUDE)

where

TYPE = the type of restructuring problem, i.e., SIMILARITY or
CONFLICT.

HAVETD

HAVEFN

INCLUDE

and

the question "is the second knowledge element of the
similarity or conflict pair a TD element?11, i.e., T or F,

the question ffis the second knowledge element of the
similarity or conflict pair a FN element?", i.e., T or F.

the question "are all output elements of cnl included
in those of cn2?", i.e., T or F.

cnl designates the operator which produced the first
knowledge element of the similarity or conflict pair,
cn2 designates the operator which produced the second
knowledge element of the similarity or conflict pair.

ACTIONS: (restructuring operations on the PBG)

BLOCK REJECTION:

INCREMENTAL REJECTION:

COPYING:

CHAINING:

a restructuring involving returning to a previous
knowledge stage by abandoning all nodes including
and beyond cnl.

a restructuring by abandoning only the node cnl

restructuring in which cn2 is not abandoned

restructuring in which cnl is redefined to be
the earliest node in the graph which produces
an AEQ element used as input to the original cnl
node.

CURRENT RULES

(a). (SIMILARITY * F T) ->

(b). (CONFLICT * F *) ->

(c). (CONFLICT * * *) ->

BLOCK REJECTION, COPYING

BLOCK REJECTION, COPYING, CHAINING

BLOCK REJECTION, CHAINING

Note: These rules are applied in the order shown, where the first
applicable rule defines the restructuring action taken. The
left side of each rule refers to the current set of values
comprising the state vector. An asterisk (*) indicates that
the value of the state vector variable is irrelevant.

Table 7. Rules for PBG Construction

organized as production rules to facilitate the process of expanding and re­

fining them. The rules can be extended two ways: by rule manipulation, i.e.

adding, deleting, or redefining rules, and by state vector expansion, i.e.,

adding new variables to the state vector. We envision a system that will

ultimately require a large complex set of heuristics for restructuring, thus

the rules given in Table 7 represent only a first approximation to the re-

quired set.

Restructuring, as defined by the rules in Table 7, leads to a graph

which is tree-structured. As remarked earlier, the current knowledge state

can be obtained by taking the conjunction of all elements which are the out­

puts of operators, starting from the current node back to the root. In the

standard PBG orientation (in which time runs horizontally from left to right

and then down) this consists of all the output elements lying along the lower

(growing) edge of the tree. These elements are called the currently active

output elements, and their nodes are called the currently active nodes* In

the tree at the bottom of Figure 12 (used as an example below), the set of

currently active nodes is indicated by the heavy line.

Example of PBG generation. The operation of the rules of Table 7 can

be understood most easily by means of a simple example. Figure 12 shows a

list of operator groups and the PBG generated by applying these rules. This

is an artificial example, constructed to show the operation of all of the

rules in a short sequence. Each restructuring in the figure is labeled with

the rule used and the nodes responsible.

The first restructuring in Figure 12 is based on similarity and takes

place after the eighth operator group is incorporated into the PBG. Note

that nodes 5,6 and 7 are abandoned but node 8 is copied and saved as node 8 1.

llllT^1^^ r ru e n t r U l 6 S d ° n 0 t C O n t a i n incremental rejection (see will be inrl d°n thxs restructuring technique has been implemented and will be included in later versions of the system.

Initial or Given
Knowledge State: (EQ D 5}(EQ C1 0)(EQ C 7 0 M E Q C2 1)

Operator Groups:

Problem Behavior Graph:
2 3

Operator Inputs Outputs
1 (RECALL D) () (EQ D 5)

(RECALL CI) () (EQ CI 0)
3. (RECALL C2) () (EQ C21)
4. (PC 1) () ()
5. (FC T) () ()
6. (FC D) () (IN D 6)
7. (COUNT R) () (NUM R 3) CO (PC 1) () ()
9. (AV A) () (AEQ A 4)
10. (IG C3) () (EQ C3 0)
11. (PC 3) (EQ C3 OKAEQ A 4) (EQ E 8)
12. (PC 5) () (MEQ E 0 9)
13. (FC L) () (IN L 2)
14. (AV L) () (AEQ L I)
15. (PC 2) (EQ C2 1KAEQ L 1) (EQ R 3)
16. (RECALL C7) () (EQ C7 0)
17. (TD C7 1) (EQ C7 0) (NEQ C7 1)
18. (FN (EQ C7 1)) (NEQ C7 1) (NEQ R 3)
19. (AV L) () (AEQ L 3)
20. (PC 2) (EQ C2 1MAEQ L 3) (EQ R 7)

4 5 6 7 8

3 R's
© rule (a) in Table 7

cnl =node 4
cn2=node 8

C3 = 0 C 3 = 0 E = 8
A — 4

14 15

12

© rule (b) in Table 7
cnl =node 11
cn2=node 12

E = 0v9

(p ^ 5 ^ (P^Z)

E=0v9 C7=0 C7 = 0 C7?MC7*1

rule (c) in Table7
cnl =node 15
cn2=node 18

FIGURE 12. Example of PBG Generation

After the 12th operator group is grown a restructuring based on

conflict occurs since (EQ E 8) is inconsistent with (MEQ E 0 9), Here,

nodes 9 and 10, as well as 11, are abandoned since node 9 created on assign­

ment element used as input by node 11. After the 18th operator

group is grown another restructuring based on conflict takes place, since

(NEQ R 3) is inconsistent with (EQ R 3). This leads to the abandonment

of nodes 14 through 18.

Let us now reconsider the input to the PBG Generator. This input

is a collection of operator groups, rather than a single one,

since the Origin Mechanism produces a chain of groups in the process of

filling in missing elements. Each chain is headed by a group located

in time. This is the group holding as output the initial knowledge element

that triggered the Origin Mechanism. The other groups are only bounded

in time: they occur before the heading group and after their inputs are

produced. Assimilation of these groups into the PBG requires some

additional

assumptions. The basic assumption is that all the groups

in the chain occur after time Ĵ , the time when the previous node was added

to the PBG. Thus the groups in the chain are incorporated into the PBG,

one at a time, starting with the last one created by the Origin Mechanism

and ending with the heading group. One exception to this assumption

currently exists. If a group in the chain is similar to a currently active

node in the PBG (i.e., the group inputs are a subset of the node inputs and

the operators are identical) then the group is integrated into the PBG by

adding its output to the outputs of the similar node. The assumption

^LlhJ Syttem
 I 3 1 " 8 ± n s ° P h i s t i c a t i ° n , this assumption will include a large number of exceptions.

- 56 _

only applies to groups which are similar to recently grown nodes. An exampl

of integrating a group into the PBG in this manner is shown in Figure 13,

where group 5 (with an hypothesized operator) is similar to node 3. Groups

similar to currently active nodes which were not recently grown are handled

by similarity restructuring as shown in Figure 12.

Control Structure of the Total System

The overall structure of the computation involves updating the PBG

to time _t before processing the protogroups formed from the utterance at

time _t. The PBG represents the best estimate, at the given point in the

computation, of what the subject knows. As we have seen in the Group

Processor, this estimate is used extensively to infer the meaning of the

current utterance and to infer from it additional knowledge the subject has

and operators he has used.

The dependence on a current estimate of the subject's knowledge

implies that the computation cannot be organized in a sequential fashion,

such that each stage of processing (Linguistic, Semantic, Group, PBG)

is completed as a separate pass. However, in PAS-I the Linguistic Processor

and the first two stages of the Semantic Processor are independent

of the PBG and make use only of the current utterance. This is a feature

of the current heuristics used in PAS-I. It will not hold, for instance,

if we want the system to reanalyse the raw utterance (the initially given

topic segment) after obtaining from the Origin Mechanism an hypothesis about

what the subject might actually have said.

If the node has inputs or outputs it must be one of the last six nodes
grown to be considered "recent," otherwise it must be one of the last
three nodes grown.

- 57 -

Ini t ial or Given
Knowledge State (EQ D 5 M E Q C1 0) (E Q C7 0)

Operator Groups:

(H stands for
hypothesized)

Operator Inputs Outputs

1. (RECALL D) () (EQ D 5)
2. (RECALL CI) () (EQ CI 0)
3. (PC 1) (E Q D 5 K E Q C 1 0) (EQ T 0)
4. (AV L) () (AEQ L I)
5. (PC 1 H) (EQ D 5)(EQ C1 0) (EQ C2 1)
6 . (AV A) () (AEQ A 4)

D=5 T=0
C1*0 C2«1

FIGURE 13. PBG Generation with Similar Groups

v

- 58 -

Thus the structure of the processing is to bring forward in time

as complete a picture as possible of the subject's current state of knowledge.

This means that changes in this picture provided by later evidence could

invalidate earlier processing. PAS-I does not yet involve a recycling of

the computation to do over again the processing of earlier parts of the

protocol. The types of changes that can occur in PAS-I, such as restructuring

of the PBG, do not yet require this.

- 59 -

V. PRELIMINARY RESULTS

We are now ready to present some results of runs with PAS-I. At

this early stage, interest focuses on the operation of the system; consequently

summary statistics of how well the system performs are of secondary importance.

Our approach is to run the system on protocols already analyzed by hand, and

to note and discuss various similarities and differences.

We present three examples. The first is an initial segment of the

protocol with S3. This is the one used primarily in developing the system.

The second is a subsequent segment of S3, following directly after the

initial one. The third example is a protocol for another subject, S4, on

the same task, DONALD+GERALD=~-ROBERT. These three examples provide a reason­

able picture of the state of the current system.

Performance on Bl-100 of S3

We present in Appendix I the output of PAS-I on the first 100 topic

segments of the protocol for S3. Section 1.1 of Appendix I gives the initial

linguistic and semantic processing. Each topic segment taken as input is

listed (Bl, B2, etc.). Immediately below each input topic segment is given

the results of applying the Linguistic Processor to the topic segment in

isolation. Just below this is the output of the first two stages of the

Semantic Processor, the stages which perform integration and normalization.

This output does not occur with each topic segment, since the Semantic

Processor can put together the information in several segments. We associate

the output of the first two stages of the Semantic Processor with the last

This text is exactly as it occurs in the original manual analysis (Newell,
1967), except for the following typographic conventions which provide vari­
ous separations and disambiguations: (1) the plural of NUMBER is written
with 'S, (2) !S, 1LL, fM, 1 RE, and N fT are written with an extra space in
front, e.g., I'M -* I % and DON'T -> DO N'T, (3) certain negative contrac­
tions are expanded, e.g., CAN'T -» CAN N'T, and (4) A used as an article is
rewritten A' .

- 60 -

topic segment it uses. For example, the output for topic segments B6 and

B7 has the following format:

B6. Sixth topic segment.

Initial semantic elements for sixth topic segment.

B7. Seventh topic segment.

Initial semantic elements for seventh topic segment.

B6-7. (Processed semantic elements for segments B6 and B7).

Section 1.2 of Appendix I gives the trace of PAS-I as it conducts

the remainder of the analysis: selecting a protogroup from the list of

processed semantic elements, determining unknowns and origins, and growing

the PBG. At the beginning of each major cycle of this analysis the name

of the extracted protogroup is printed, with a tentative identification

of its knowledge elements and operators. The source of the conjecture of

the operator is printed with each operator. For example in the first proto­

group, B5-7, the operator (PC 1) is conjectured from the existence of the

semantic element (NUM D 2).

The system takes each element of the protogroup in turn and applies

the appropriate mechanisms: the Determine Unknowns Mechanism, if variables

are present, and (in all cases) the Origin Mechanism. Intermediate results

provided by the Determine Unknowns Mechanism are printed out when they occur.

The result for each element is an origin list consisting of the set of operator

and knowledge elements to be grown onto the PBG. Each evocation of the PBG

Mechanism is noted by printing the disposition of the element under con­

sideration — e.g., a new node was grown (NDi for operator nodes and Ki for

knowledge elements), the node was recognized as an old one, a conflict was

detected, etc.

61

Thus the entire course of the processing of PAS-I can be followed via

sections 1.1 and 1.2 of Appendix I. A graphical representation of the final

PBG is shown in Figure 14.* The PBG was folded to get it on a single page;

one should imagine it stretched out, as shown in the dot-graph at the bottom

of the figure.

Comparison of PBG's. To obtain some feeling for the quality of

PAS-I on these first 100 nodes, we compare its output with the PBG produced

manually from the same information. Ultimately, each step (i.e., linguistic

processing, integration, normalization, grouping, determining unknowns, etc.)

of the processing must be evaluated, but we must be careful in doing so. Many

early stages are weak precisely because they are compensated for by later

stages. Conversely, improving the response of early stages is futile unless

later stages have mechanisms that use the additional information. Thus,

the appropriate strategy for evaluation is to start with the final results

and work backward into the system in an attempt to diagnose the causes of

good or bad performance.

Figure 15 gives the PBG for the first 100 topic segments as produced by the

original manual analysis (Newell and Simon, 1972) in the notation of PAS-I.

Comparing two PBG's requires putting their nodes into correspondence and making

judgments about the degree of equivalence between corresponding nodes and the

status of the extra nodes occurring in each PBG (i.e., nodes in PAS-I with no

correspondent in the manual analysis and vice versa). Besides correspondence

between nodes (operator groups) we need to compare the PBG's on the positions

and occurrences of backups. Backup comparison is accomplished after

This graph is a manually drawn version of the graph produced by PAS-I on the printer. '

8

C3«0 C 3 * 1 C3*1 Eeven

FIGURE 14. PBG by PAS-I for S3 on BI-IOO

OOT
GRAPH

* EQ
* NEQ

— AEQ
»v MEQ
> GREATER

' Similarity Backup
Conflict Backup

FIGURE 15. PBG from Manual Analysis for S3 on Bl
(in Pas-I notation)

- 64-

first placing the nodes in correspondence according to their content.

Section 1.3 of Appendix I shows the correspondence between the two PBG's

and records for each node and backup point an indication of its status (corre-

.<?ond and agree, extra node in PAS-I, etc) and an indication of the source of

the difficulty. This diagnosis of source is necessarily rough, being based

on a judgment of what would have to be different in order to avoid the error.

Table 8 gives a summary of the comparison revealed by section 1.1 of

Appendix I. It lists separately each of the distinct types of correspondence,

and segregates backups from nodes. The categories are mostly self-explanatory,

except for the second where a PAS-I node is subsumed in a manual node. This

category arises because PAS-I nodes often correspond to something implicitly

assumed to occur within a manual node. For example, PAS-I posits a RECALL

operation for variables whose values are given (D = 5), whereas the manual

analysis simply takes the recall of the value as occurring within the appropriate

PC. The most elaborate example is the detailed working out of GN by PAS-I, where

each separate act of generation is represented by a separate node. In contrast,

the manual analysis lumps all the steps together. This permits PAS-I to

localize correctly the occurrence of a TD operator that detects that R cannot

be 5 (B28) while generating all odd digits for R. Also, PAS-I posits certain

attentional operators (FC and FL) that occur in the manual analysis at the next

stage in the production system. Thus, subsumed nodes reflect design decisions

in PAS-I that make its grain somewhat finer in places than that of the manual

analysis.

Of the 30 total items in Table 8, 43 are in essential agreement

(14 + 25 + 4) , 34 exhibit some sort of disparity, and 3 items can be excluded

as irrelevant. In section 1.4 of Appendix I, we have annotated each of

these disparities (including the excluded cases). From these annotations can

- 65 -

Types of Correspondence Code Number
Nodes correspond and agree =n 14
PAS-I nodes subsumed in Manual node s 25
Nodes correspond, agree/disagree 1
Nodes correspond and disagree CM

Extra PAS-I nodes +pn 3
Extra Manual nodes +mn 17

62
Backups correspond and agree =b 4
Extra PAS-I backups +pb 1
Extra Manual backups +mb 10

15
Cases excluded from consideration X 3

80

Table 8. Comparison between PBG of PAS-I and
Manual Analysis for S3 Bl-100 on D+G=R
(see Appendix 1.1).

- 66 -

Both PAS-I and the manual analysis obtain (AV R) -> (AEQ R 7) for B61.

PAS-I makes nothing out of B62-B65 and then gets (PC 2) -> (EQ L 3) for

B66-71. However, the manual analysis argued as follows:

1. Something is happening at B62-65, probably a (PC 2), since
that is what would follow (AEQ R 7).

1.1. The phrasing "BACK HERE11 in B61 helps localize the PC at
column 2 rather than elsewhere.

2. B63 indicates that an error was made in (PC 2).

3. The result of the error is to make the path (AV R), (PC 2) fail.

4. B65 indicates that the judgment of error was seen to be in error,
and thus the path is correct.

be read off the occurrences of program deficiencies that caused the

disparities (one deficiency can cause several disparities, as counted in

Table 8). Table 9 lists these deficiencies, tying them to the number of items

to which they contribute. The total number of items (38) exceeds the actual

number (34), since several deficiencies can participate in a single item. We

discuss each of the deficiencies briefly.

The Linguistic Processor failed clearly on three occasions. Some of

these constitute (from our present vantage point) genuine difficulties, where

the inferences used by the human analyst are complex. The one case where

PAS-I simply failed was B62-B65:

B61. SO WE fLL START BACK HERE AND MAKE IT A 7.
B62. NOW IF THE —
B63. OH, I 'M SORRY, I SAID SOMETHING INCORRECT HERE.
B64. I fM MAKING --
B65. NO, NO, I DID N'T EITHER.
B66. R IS GOING TO BE A 7,
B67. THEN THIS WILL BE 7
B68. AND THAT WILL BE 7.
B69. AND IT !S THE L fS THAT WILL HAVE TO BE 3 fS,
B70. BECAUSE 3 + 3 IS 6
B71. + 1 is 7.

- 67 -

Deficiencies

Linguistic Processor (LP)

No output

Wrong output

Semantic Processor (SP)

Merge two separate operators

Origin Mechanism (OM)

Not seek origin of operator arguments

Not take immediate context into account

Wrong treatment of IG operator

Grow PBG Mechanism (GPBG)

Merge two separate operators

Not use clue for merging: Redundant output

Not use clue for backup: Information unused

Missing concepts (-C)

Goals

Experimenter

Minor difficulties (Minor)

Backup to middle of compound operator GN

Number of disparities
produced

4

5

2

1

2

1

10

1

1

8

2

1

38

Table 9. PBG Disparities caused by PAS-I Deficiency
for PAS-I vs Manual Analysis for S3 Bl-100
on D+G=R (see Appendix 1.1).

- 68 -

4.1 B66-71, which carries out the path successfully, supports this.

4.2 The language of B66 weakly supports this, though "IS GOING
TO BE11 is often used in other contexts.

4.3 The language of B69 more strongly supports this.

5. The language of B69 indicates that the error satisfies "*L HAS TO
BE 3" where *L is not the letter L.

6. The subject has just returned from trying (EQ R 3) and finding that
it cannot be (B57). Therefore the error (upon which the detection
of error was based) was that R was 3.

7. If R had been taken to be 3, then TD would have produced an
indication of an error (at B63).

8. Since R was assigned 7 (not 3), the original error must have been
to derive from (EQ R 7) the value 3 by (PC k) and then to confuse
the letter for which this was to be the value (namely, to see it
as the value for R, rather than the value of L).

9. The correction of the error was to see that the value just derived
(3) was to be assigned to L and not R, hence that the TD on R and
3 was inappropriate.

10. If the above is posited, namely (PC 2) -> (EQ *L 3) (EQ R 3)
followed by (TD R 3) -> (NEG), then the language in the portion
under consideration becomes interpretable and we can complete (in
paraphrase at least) the fragmentary phrases:

B62. NOW IF THE (R IS 7, THEN I GET 3
B64. I fM MAKING (THE R A 3 AGAIN, WHICH CAN N'T BE)

The above line of reasoning may not be conclusive, for the phrasing is

indeed obscure. In any event, we want PAS to be able to construct such a line
of reasoning.

Giving PAS-I such a capability requires substantial additions. First,

PAS-I must be given the concept that a subject can make errors, be aware of

them, and reveal this awareness in the varbalizations. Second, the notion of

errors must be enlarged to include the misassignment of letters to digits on

an occasion to occasion basis. Without these conceptual additions PAS-I could

not hope to tackle this inference problem.

- 69 -

The second substantial failure of the Linguistic Processor is at
B72-73:

B72. NOW, IT DOES N'T MATTER ANYWHERE WHAT THE L fS ARE EQUAL TO
B73. SO I fM INDEPENDENT OF L WHEN I GET PAST THE SECOND COLUMN HERE.

The Linguistic Process detects the letter L and the negation in B72, and the

letter L and the column reference in B73, producing

B72. (NEG) (EQ L *D)

B73. (THEREFORE) (LETTER L) (PLACE SECOND)

From this point on some sort of disparity is almost inevitable, and its details

are not really interesting. To rectify this, PAS-I must be given the relevant

concepts behind the attentional operators FC, Fl and FNC — since the subject

may use information about where letters occur, which columns are independent of

which letters, etc. Although PAS-I makes use of a few such notions (as in dis­

tinguishing COUNT from PC), it is still relatively weak in this area.

The third failure of the Linguistic Processor occurs right at the end

of the run (B98-100) . At B98 it fails to use the grammatical clue of an

article (AN) to infer from IF E HAS GOT TO BE AN -- to (EVEN E) rather than

just (EQ E *D) . This is the one place where a purely grammatical clue is

critical (if indeed the inference is sound). The two following phrases

(B99-100) make it clear that S3 applied some operators, while giving no

indication of which: NOW, WAIT A SECOND, I GOT SOMETHING OUT OF THIS. The

Linguistic Processor extracts nothing from this. Thus PAS-I misses the final

branch of the manual PBG completely, though the failure is mitigated since

the crucial information used in the manual analysis occurs after the end of

the run (at B101-103).

- 70 -

The Semantic Processor appears to be responsible for only one

disparity. At B35 the manual analysis sees the derivation of (EVEN G) and

then a repeat of this at B36 leading to detecting the possibility of the

carry. The Linguistic Processor picks up both of these adequately and keeps

them separate as processed semantic elements. However, when the protogroup

is selected it uses one of these as evidence for an operator and the other

as evidence for knowledge elements, thus producing a single protogroup.

After this there is no hope of separating the two. Examination of the

language shows that there is no direct linguistic evidence for two operations,

and that the inferences made in the manual analysis come from the knowledge

elements, the order in which they occur, and the phrasing in B36, "I fM

LOOKING AT ••«," which supports the notion of re-consideration. The basic

conflict in interpretation is that sometimes clues about the order of elements

are to be ignored and sometimes are critical. PAS-I still treats order

information too uniformly.

The Origin Mechanism contains three deficiencies, each quite distinct.

None require conceptual advances in PAS-I, though they do require additional

mechanism. One revealed as a disparity at B92, is that PAS-I does not handle

the subject's ignoring of values entirely satisfactorily. PAS-I posits an

operator (IG x) when the subject ignores a value that he should have known

(e.g., a carry). Given the role of operators, this makes ignoring into an active

process that produces values that are remembered, just as if done by PC or AV.

The second deficiency, revealed at B83, is that our processing strategy

of working with an updated PBG as the context for inference (the loop in

Figure 4) is incomplete. PAS-I holds the context fixed while it generates

the origin list for a particular knowledge element. Normally this works

- 71 -

quite well. However, a problem can arise if an element being developed on

one branch of the search tree is needed to provide context for an element

being developed on a separate branch. In fact this is what happened at B83,

where PAS-I developed the origin of (EQ C5 1) to be (AV C5) , not taking into

account the development the development of (EQ E 9) in another part of the

tree, which implied that (EQ C5 1) was produced by (PC 5) with (EQ E 9) given.

The third deficiency, revealed at B76, is that PAS-I does not seek

the origin of arguments to operator elements. The example at B76 is the origin

of the letter 0 in (FC 0), which is the first appearance of 0 in the protocol.

If we had chosen to represent this argument by a knowledge element (LETTER 0),

then the Origin Mechanism would automatically have asked what produced

(LETTER 0) . To be able to answer such a question requires that

PAS-I have some operators that produce letters as output, e.g., that a PC

on a column can also produce an awareness of the letters in that column.

In the present case, there is no reasonable source of awareness of the letter

0, and an alternative hypothesis would have been required to explain why

column 5 was processed. The problem is not limited to letters, but applies

to all direct arguments, such as the column in (PC 1) and the digits and letter

in (TD R 3). Its solution appears to involve the creation of goal elements,

such as (GET R), which is another type of element that has not yet been added

to the system.

Three deficiencies were uncovered in the PBG Mechanism, accounting

for 12 disparities in Table 9. By all odds the most important deficiency

(accounting for 10 of the 12 disparities) was the merging of two identical

PC operations, where the manual analysis distinguished a reconsideration.

- 74 -

Performance of the Linguistic and Semantic Processors, The compari­

son just made between the manual and automatic PBG's does not give the full

picture. An independent judgment can be made about the adequacy of the

Linguistic Processor to extract all the task relevant information from the

topic segment and of the Integration and Normalization stages of the Semantic

Processor to produce semantic elements that have all the information possible

as input to the rest of the system. As we noted earlier, improvement of

these early stages would be productive only if the remainder of the system

could take advantage of it0

Figure 16 shows a graph of the results produced by the Linguistic Processor

based on a judgment, for each topic segment in section 1.1 of the appendix, of

whether the correct semantic elements have been extracted and whether addi­

tional elements are missing. The judgments are necessarily tentative, since

we are not relating the elements to how they were used by later stages of

the system. Thus, of the 100 topic segments, four were excluded (by the

decision not to encode Experimenter utterances), 10 were seriously missed

and 86 were basically satisfactory (OK). Often, however, some elements were

missed, even though the essential elements seemed to be extracted. Thus,

the 86 satisfactory cases split into 58 that appeared complete and 28 where

more information could have been obtained. In the figure we have also

mapped the completely satisfactory elements into those that actually pro­

duced semantic elements as output (51) and those where the Linguistic Pro­

cessor (properly, in our judgment) decided that nothing could be obtained (7).

An example of the latter occurs at B91: LET 'S SEE --, which was processed

as (?).

- 75 -

100 LINGUISTIC
PROCESSOR

100 Excluded: 4
a

Missed: 10 Semantics:?

OK: 86

Connection: 1

Seporotion: 2

Complete: 58 Elements/51

Null:

((Incomplete: 28 Semontics: 15

Connection: 7

n Seporotion: 6

FIGURE 16. Performance of Linguistic Processor on BI-IOO for S3.

- 76 -

The errors are categorized according to whether they involved a

semantic element, a connection between semantic elements, or an indication

of a separation between elements. An example of a complete miss on a

semantic element occurs at B50:

B50. IT 'S NOT POSSIBLE THAT THERE COULD BE ANOTHER LETTER IN
FRONT OF THIS R IS IT ?

(NEG) (PEQ *L *D) (LETTER R) (QUES)

Although a substantial amount of information was extracted, the Linguistic

Processor completely missed the notion of IN FRONT OF, and, with it, any

possibility of a correct interpretation later. The reason for the miss is

that the grammar is incomplete, and the total system is weak with respect

to locations of tokens in the display. ^

An example of missing a connection, this time where the ba^ic trarte-%

lation was judged satisfactory, occurs at B25:

B24. ANY TWO NUMBER 'S ADDED TOGETHER HAS TO BE AN EVEN NUMBER

B25. AND 1 WILL BE AN ODD NUMBER

(ODD (PLUS *X 1))

The AND is used to infer that an addition of 1 is being mentioned. The

Linguistic Processor does not also infer a connection to B24, as it does

elsewhere when it extracts (AND) as an indicator element.

An example of missing a separation occurs at B37, also in a basically

satisfactory case:

B37. OH , PLUS POSSIBLY ANOTHER NUMBER .

(PLS *D)

- 77 -

The exclamation, OH, indicates (possibly) that something was seen that had

not been seen previously, hence that the processing may have backed up or

repeated. The system does not extract information about separation, thus

the number of cases where separation information is missed gives an indica­

tion of whether adding such a capability to the system would be worthwhile.

The Linguistic Processor delivers an output for each input topic

segment. Thus, the Semantic Processor is executed 100 times in dealing

with the first 100 segments. It produces only 66 processed semantic ele­

ments, which are shown in the graph of Figure 17. Information was completely

missed or misinterpreted in 16 cases whereas the remaining 50 were basically

satisfactory, although, as with the Linguistic Processor output, a subset

of these (here 9) had some additional elements missing.

The Semantic Processor must accept the initial semantic elements

provided to it, and in many cases cannot improve on the input, either

because the input is already satisfactory or because it is in error and

there is no information from which to make a recovery. Figure 18 classifies the

output of the Semantic Processor according to whether the output was es­

sentially unchanged from the input (-), whether it was improved (+) or

whether it was degraded («). As can be seen, those elements which did not

undergo significant change consist not only of satisfactory elements (29),

but also of incomplete elements (6) and missed elements (8) . The im­

provements, on the other hand, were made to inputs that were basically

satisfactory, where the missing elements either did not add anything sub­

stantial or were compensated for by the inferences made (this happened

mostly on inferences to connections). All of the improvements became

elements judged to be satisfactory (so that 29 +12 = 41, the number of

OK-complete elements in Figure 17).

- 78 -

100 SEMANTIC
[PROCESSOR

66 Missed: 16

OK: 50

Semantics: 13

0 Connection: 2

, Separation: 1

y <
i

1 #
.Null! 3 _

Incomplete: 9 . Semantics: 3

I .Connection: 5 _

(
Reparation: 1

FIGURE 17. Performance of Semantic Processor on Bl-IOOfor S3.

- 79 -

100 SEMANTIC
PROCESSOR]

66 p (
(.OK-Incomplete: 6

(fMissed: 8

• + 1 2 «
OK- Incomplete: 12

^ - 1 1 — , OK-Incomplete: 3

Missed: 8

FIGURE 18. Changes Produced by Semantic Processor

on BI-IOO of S3.

- 80 -

Figures 16-18 are not meant to be definitive representations of the

adequacy of the system. They are presented simply to give an indication

of how the Linguistic and Semantic Processors are functioning as measured

against direct judgments of what the linguistic input data permits.

Performance of the Determine Unknowns Mechanism. Unknowns are

created primarily by the Linguistic Processor, and are passed on to

later stages of the system which attempt to determine their proper values.

For this problem of anaphoric reference, the sources of knowledge are

not just the previous linguistic context, but the entire task

environment. Table 10 summarizes the performance of PAS-I on the

first 100 topic segments. There were 39 instances in which an unknown was

created. Actually, unknowns sometimes get replaced with new unknowns of

different scope (see B79-80), and these intermediate unknowns are not counted

in the table. On the other hand, there are several places where essentially

the same task of determining unknowns shows up repeatedly and each of these

is counted separately (see especially B23-30).

Of the 39 total instances, there were 31 successful determinations and

8 failures. Of these 8, 3 were associated with one of the Linguistic

Processor errors analysed earlier (at B71-73), 3 more were associated with

failures to produce anything that showed up in the PBG, and 2 were associated

with the analysis of B74-78. This latter involved the analysis of the effects

of possible carries out of column 5 on the value of G(i.e., G = 1 or 2) and was

all subsumed into a single node in the manual analysis, so that the failure

to determine the unknows did not effect our overall evaluation of how well

the PAS-I PBG matched the manual one.

- 81 -

+ (DU) + (0M) + (SPG) + (tot.) -(none) -(LP) -(tot)
*COL 3 2 0 5 0 0 0
*c 2 3 0 5 0 0 0
*D 3 1 0 4 3 1 4
*L 8 2 2 12 2 1 3
*X 5 0 0 5 1 0 1
Total 21 8 2 31 6 2 8

Total

5

5

8

15

6

39

+ (DU) Correctly determined in Determine-Unknowns Mechanism
+(0M) Correctly determined in Origin Mechanism
+(SPG) Correctly determined in Selection of Protogroup Mechanism
-(none) No value determined
-(LP) Incorrect value determined due to error in Linguistic Processor

Table 10. PAS-I performance on determining unknowns
for S3 Bl-100 on D+G=R.

- 82 -

It can be seen from Table 10 that most of the determinations (21) are

made in the Determine Unknows Mechanism. In a few cases (8), the Determine

Unknows Mechanism is unable to determine the value, but it can be done by the

Origin Mechanism hypothesizing an element. For instance, at B19-22 the

Determine Unknowns Mechanism cannot find the value of the *C in:

(BECAUSEOF ((EQ *C 1)) ((ODD R)))

However, the Origin Mechanism hypothesizes (PC 2) with an input of (EQ C2 1),

which essentially determines that the value of *C is C2.

In a very few cases (2) an unknown is determined by the mechanism

that puts together the protogroup (called SPG in Table 10). An example

occurs at B47:

(PC 6) from (EQC (PLUS 5 *L) 3)

When a protogroup is formed an attempt is made to infer the exact form of the

operator. In the case above it was possible to determine that the operator

was (PC 6), even though the source information had an unknown, *L. In effect,

the value of the unknown was determined (to be G), though in fact the value

is not needed for further processing and so is not actually symbolized

internally. In general, the value of an unknown is determined exactly only

when it is needed for further processing; often it is simply assimilated

into the overriding inference being made.

The operator inference made by the protogroup selection mechanism gives

rise to the possibility of intermediate unknowns as mentioned earlier. An

example occurs at B79-80;

(PC *C0L) from (EQC (PLUS *L *L) *D)

- 83 -

From (EQC ...) an inference is made that a PC occurred; since there is no

information about the letters or digits (i.e., just *L's and *D's occur) the

system generates simply (PC *COL), thereby creating a new unknown. Leter, the

Origin Mechanism determines this to be (PC 5) .

The ability of PAS-I to deal with anaphoric references, while

undoubtedly capable of much improvement, does not appear to be a limiting

factor in the current system. However, improvements will certainly be required

as the scope of the system increases.

Summary. The behavior of PAS-I on the first 100 topic segments of

S3 does indeed produce a PBG and one with quite reasonable features. It

differs from the manually produced PBG for the same protocol in a number

of ways* One striking feature is the diversity of these disparities,

so that we have already reached the place where we must tune PAS-I up,

bit by bit. Each new mechanism (or modification of an old one) will

account for only a small improvement in the quality of the total perform­

ance. Where this is not the case (as in the missing notion of goals),

it is because of an inconp leteness that is deliberate at this stage of

development.,

- 84 -

Performance on B101-143 of S3

Appendix II presents the output of PAS-I on the next 43 topic segments of

the protocol of S3 in the same manner as in Appendix I: Section II.1 gives the

initial linguistic and semantic processing; section II.2 gives the trace of PAS-I

as it selects protogroups, makes the appropriate inferences, and grows the PBG.

We can conduct the same comparison of the behavior of PAS-I with the manual

analysis as we did for the first 100 topic segments. Figure 19 gives the PBG

of PAS-I, drawn from the output in the Appendix. Figure 20 gives the PBG from

the manual analysis (Newell and Simon, 1972) . It is a rather messy part of the

protocol. S3 is concerned with whether E is 0 or 9, having forgotten that T is

already 0. The trace is quite discontinuous as S3 drops back on several occasions to

check and revise prior inferences (the three segments on the left side of

Figure 20) . The main part of the problem solving is concerned almost exclusively^

with columns 3 and 5, the two columns containing E, and thus there is ample

opportunity for confusion even in the manual analysis.

Tables 11 and 12 summarize the comparison. They were derived in the same

fashion as Tables 8 and 9, though we have omitted the detailed material from

Appendix II. Table 11 gives the number of agreements and disagreements between

the two PBG's. It confirms what is clear from a visual inspection of Figures

19 and 20: that performance is much more degraded than in the first 100 topic

segments, especially with respect to the shapes of the PBG (the pattern of back­

ups) . Only five out of 30 items concerning nodes were in agreement, though another

9 had at least partial agreement, usually the operator. Also, only 1 out of 8

items concerning backups were in agreement. However, from our vantage point we are

- B€ -

a
' • V

b
8106.1

d

L—9 R * 9

D = 5 R > 5

BI37 B139 B I 4 0 B I42

C2 = I Rodd D = 5 R>5 Rodd R=7v9 R=7v9 R ~ 7

KEY
= EQ
NEQ
— AEQ
-v r.'EQ
> GREATER
< SMALLER

« = J Similarity Backup
— Conflict Backup

B9S B99 BIOO

E even E = 2 v4
Bi01 v 6 v8 BI03

E=0 v 9 E even £ * 9

B115 BUG BUT BUS

E even £ even E =0
BI20 D I 2 3 C 5 = 0 ?

C5 = 0 N < 3
BI24

A * - ? A — ? E =? 0 = p
BI25 B I20 BIL' 0 BI3 I

FIGURE 2 0 . PBG from Manual Analysis for S3
on B I 0 0 - 1 4 3 (in PAS-I notation)

E - 0 A = 5 0=6 AA5

\

F

- 87 -

Table 11. Comparison between PBG of PAS-I and
Manual Analysis for S3 B101-143 on D+G=R.

Types of Correspondence Code Number

Nodes correspond and agree =n 5

PAS-I nodes subsumed in manual node s 0

Nodes correspond, agree/disagree =^n 9

Nodes correspond and disagree ^n 1

Extra PAS-I nodes +pn 4

Extra Manual nodes +mn 11
30

Backups correspond and agree =b 1

Backups correspond and agree/disagree =^b 0

Extra PAS-I backups + pb 0

Extra Manual backups +mb 7
8

Cases excluded from consideration x 0
38

- 88 -

Deficiencies

Linguistic Processor (LP)

No output

Semantic Processor (SP)

Origin Mechanism (OM)

Not seek origin of operator arguments

Not seek origin for partial elements

Weak inference program

Not work forward

Grow PBG Mechanism (GPBG)

Merge two separate operators

Not use clue for merging: Redundant output

Not use clue for backup: Information unused

Not attend to order

Missing Concepts (-C)

Goals

Repeating

Planning

Minor difficulties (Minor)

Not expand conditional

Number of disparities
produced

6

0

2

1

7

4

7

1

2

1

2

5

4

1

43

Table 12. PBG Disparities caused by PAS-I Deficiencies for
PAS-I vs Manual Analysis for S3 B101-143 on IH-G=R.

- 89 -

B106

B107

B108

RATHER

LET 'S SEE , HOW DID I ARRIVE AT THE POINT OF THAT ?

THIS IS GOING TO BE A LITTLE CONFUSING TO START TRYING TO

TRACE BACK HERE .

B109: WHAT 'S THE REASONING HERE ?

The manual analysis relies heavily on a reconstruction of what must have

happened, given that the subject assigned (AEQ L 9) at B105 (which PAS-I also detects)

In column 2, since there is a carry from column 1, 1 +L + L « R implies

It should be clear that we are not conducting a test of the program, in the sense
that psychologists use the term. PAS-I is still at an early stage of develop­
ment and each application to a new protocol can be expected to turn up simple
bugs, minor conceptual problems, and incomplete aspects. What counts at this
stage is whether the program can be brought to run on the new material with
only minor debugging and adaptation, and without invalidating the runs on prior
material. This is what happened on the extension to B101-143 of S3 and to the
protocol of S4 on DONALIHGERALD, discussed in the next section. Since the
program had been conceived in complete interaction with the first 100 topic
segments, it was conceivable that it had become over specialized. Thus,
extension to new protocols was certainly of critical importance.

much more impressed that the program could operate at all with new material

given that all the tuning occurred on the first 100 topic segments.*

The critical information is given in Table 12, which provides a list of

the deficiencies in the various components of PAS-I that contribute to the

disparities between the manual and automatically generated PBG's. As in

Tables 8 and 9, the total number (43) shown in Table 12 is somewhat larger

than the number of disparities (38) shown in Table 11, since there are several

cases of multiple participation.

There is a single failure of the Linguistic Processor, again showing

that PAS-I has strict limits on the subtlety of language it can handle.

The difficult passage occurs at B106-109:

-90 -

that R must also be 9 if L is 9. But this is not possible, hence L cannot

be 9 -- but then R is not 9 either, thus removing the source of the contra­

diction. It is understandable that the subject could be confused, and hence

the confusion exhibited in B106-109 above acts as a confirmation that some such

processing must have occurred. The Linguistic Processor is simply unable to do

anything with B106-109; hence there are no clues to support a processing inference

such as the above. As a result, there is nothing for the Origin Mechanism to

work with later on and PAS-I misses the entire episode.

Several different deficiencies of the Origin Mechanism contributed to the

disparities between the two PBGs. Only one of these, the failure to seek the

origin of operator arguments, also showed up in the first 100 segments. A second

deficiency is that the Origin Mechanism does not attempt to discover the origin

for any elements that are incomplete or partial. In the case in point (B122),

the earlier stages produced (AEQ A *D) in response to a clear linguistic phrase:

THAT IS, JUST ASSUME SOME VALUE FOR A. But, since the Unknowns Mechanism could

not find a specific value for *D (indeed there was none to be found), the knowl­

edge element was simply abandoned. PAS-I might have been able to do something

with B120-123 if it had insisted on keeping this element and incorporating it into

the PBG. Actually, it is unclear what the overall effects of such a change

in PAS-I would be, since changing it to seek the origin of partial elements

opens a pandora's box of other cases where the proper behavior is to ignore

partial elements.

The largest category of deficiencies in the Origin Mechanism concerns

weaknesses in its inference capability. These actually constitute four different

situations, each with their own etiology (B115, B116, B126-129 and B132). The situ­

ation around B128 will suffice for an illustration. The program correctly gets

that (PC 5) produces (EQ E 0) (ND66) . This carries the implication both that

(EQ C5 0) and (EQ C6 0) . The Origin Mechanism considers only the possibility

- 91 -

that (EQ C6 0) was determined prior to the (PC 5) under consideration and this

leads it off on a fantasy about what happened at (PC 6) and (AV G) . The Origin

Mechanism is not yet able to consider that (EQ C6 0) was derived from (PC 5)

along with (EQ E 0). It is able to consider that (EQ C6 0) is derived from

(IG C6) , as we have seen in other places, but has no way to prefer this hypothesis

when there is another path of actual computation that yields the result.

The final type of deficiency in the Origin Mechanism is a general lack of

working forward -- of saying 11 if such and such occurred what would probably

have resulted.11 Indeed, describing the inference mechanism as an origin

seeking mechanism indicates the one-sided nature of the present scheme. An

example arises in connection with the B120-123 sequence just discussed. Even

if the program kept (AEQ A *D) and sought its origin successfully as (AV A) ,

it would probably need to work forward to get (PC 3) and then (PC 5) . There

is a clue in B123 that mentions E, but without some assumptions of using an

assignment, one would not get to the processing of both columns 3 and 5. This

reveals the difficulty in working forward: it involves predicting the future

behavior from current behavior. This level of theory is not available in the

assumption that the subject is working in a given problem space. The problem

space dictates only the possibilities for forward movement, not which ones

will occur. The more stringent constraints are available in the production

system. Thus, to work forward with any generality implies developing and carrying

forward a current estimate of the production system as well as the PBG.

However, some minimal working-forward inference schemes that rest on

obvious tenets of behavior could possibly be added to this stage of data

analysis without evoking a complete production system.

A variety of deficiencies of the mechanism for growing the PBG were involved

in the performance of Figure 19. Most of these are familiar from the first 100

- 92 -

topic segments: merging two separate operators into a single operator (either

by merging or by recognition); not merging when it should; and not using

deliberate clues for the existence of a backup. The overwhelming difficulty

is over-merging, which is a sequence of the way S3

seesaws back and forth on columns 3 and 5, and drops back to repeat earlier

sequences. The one new type of deficiency is the weakness in ordering the

elements in the Origin List when building the PBG. The inference tree, as

developed by the Origin Mechanism, puts some constraints on growing the tree:

if the output of A is the input of B, then A must come before B. But there are

no additional heuristics to determine an order beyond this. In the example

that occurred (B101-102), PAS-I failed to connect the (PC 5) at ND53 with the

(TE (NEQ E 9)) at ND52 due to not seeking the origin of operator arguments.

However, it still wished to posit the (PC 5), which it simply put after the TE.

It might have been able to decide that (PC 5) must have occurred before (TE...)

on the basis of the general semantics of TE and PC.

Extension to topic segments B101-143 revealed two additional basic

concepts not yet incorporated into PAS-I. (The lack of the concept of a

goal also contributed here, as it did in the first 100 segments.)

The really important missing concept was that of repeating a sequence of prior

inferences in order to check them out. This is clearly what the subject is

doing at three places in Figure 20. Not having this concept, PAS-I can only

stumble around, recognizing old elements in the PBG and suppressing them. The

second missing concept is that of a plan. This is the underlying difficulty

at B120-123 (though we have used B120-123 to illustrate some other defi­

ciencies) . The manual analysis sees the subject as working forward at a

symbolic level, not attempting to compute actual values, but only considering

the general scheme of the inference steps. PAS-I has no notion of this and hence

could not deal adequately with such behavior, even if the other deficiencies

- 93 -

were corrected.

The only minor deficiency was the discovery (at B132) that the conditional

element (COND...) does not get detached into two parts: a positing of the

antecedent and the production of the consequent. This has a major impact on

the total performance, since PAS-I cannot make further use of the knowledge

elements, which are locked up inside the conditional expression. But this

problem is not difficult to solve.

Performance on Bl-128 of S4

To provide a third example of the performance of PAS-I, we ran it on a second

subject, S4, using the same problem (DONALIH-GERALD=ROBERT) . This protocol was

analysed in Newell and Simon (1972), though no PBG was developed there. The

subject is a relatively good problem solver, taking only 12 minutes to solve the

problem and generate a protocol of 128 topic segments. Three changes were made in

the transcribed protocol where it seemed that either a transcription error was

made or that the subject said one thing but meant something else. Appendix

III gives the output of PAS-I on the entire protocol in the usual two parts:

The program does, of course, work on other cryptarithmetic tasks. We have
run it on the task CROSS+ROADS=DANGER (Newell and Simon, 1972, Chapter 7).

Both the automatic and manual analyses were made on this protocol of 128
segments. Later we discovered that the actual protocol contained 130
segments, the missing segments being SO WE KNOW THAT R MUST BE AN ODD NUMBER
and BECAUSE THE TWO D'S ADDED TO 10. These segments belonged between B65
and B66 in S41s protocol, and their omission led to (ODD R) being inferred
in the wrong place in the manual analysis (see B71 in Figure 22).

G was changed to D in B16, A was changed to L in B56, and 5 plus 5 was
changed to 4 plus 4 in B87.

- 94 -

Section III.l shows the output of the Linguistic Processor and the first two stages

of the Semantic Processor; section III.2 shows the basic cycle from protogroup

formation through determining unknowns and finding origins to growing the PBG.

Figures 21 and 22 give the PBG1s of PAS-I and a manual analysis, the latter being

done by one of us (AN) to form a basis for comparison. Table 13 gives a

summary of the comparison of the two PBGs. We omit not only the detail of the

comparison from the Appendix, but also the table showing the deficiencies of

the particular parts of the program. The prior two tables (9 and 12) have shown

the pattern of deficiencies. Many of the deficiencies already identified

repeat themselves and some new ones appear. Nothing appears to be gained by

further detailed enumeration.

Two things are important about this third run. The first is that PAS-I

was able to carry out an analysis on a new protocol by a different subject

with only a small amount of further debugging and adaptation. The second is to

note what changes were required. The most extensive were additions to the

grammar. Given the nature of the Linguistic Processor this was expected. The

grammar is adapted rather closely to the individual subject and makes no

pretense of being a general grammar; it does not even differentiate between

the rules expected to be constant over subjects and those expected to be

idiosyncratic. However, the additions to the grammar and problem space were

not extensive, as Figure 23 shows. In addition, a slight rerouting in the

top level of the grammar was required (recall Figure 6) . Almost no other

changes were made to PAS-I further down stream, except to add rules in the

Semantic Processor to take care of the new elements provided by the grammar

additions (EQR, MEQR, BETW, REMAIN) . No changes were made to the basic

inference parts of the program. Thus PAS-I on S4 is essentially the same

program as was used on S3.

FIGURE 21. PBG by PAS I for S4 81-128 on D+G =R

BIO B I 6 818 B I 9

FIGURE 22. PBG by Manual Analysis for S4 BI-128 on D+G =R

- 97 -

Types of Correspondence Code Number

Nodes correspond and agree =n 11

PAS-I nodes subsumed in manual node s 12

Nodes correspond, agree/diaagree =^n 9

Nodes correspond and disagree ^n 10

Extra PAS-I nodes +pn 7
Extra Manual nodes +mn 21

70

Backups correspond and agree =b 4

Backups correspond and agree/disagree =^b 0

Extra PAS-I backups +pb 0

Extra Manual backups -hub _6
10

Cases excluded from consideration x _7
87

Table 13. Comparison between PBG of PAS-I and Manual Analysis
for S4 Bl-128 on D+G=R.

98 -

* <MEQR>

* <EQR>

* <BETW>

* <REMAIN>

<SIZE>

<OPTLETTER>

<LOCATION>

* <ASSUME>

* <CARRY>

= <LETTER> <EQUAL> <DIGIT> <DIOIT> <SIZE> <OPTLETTER>

= <LETTER> <EQUAL> <DIGIT> <SIZE> <OPTLETTER>

= <LETTER> <EQUAL> BETWEEN <DIG> <DIG>

= REMAINING <DIG>

= <LARGE> | <SMALL>

= <LETTER> | < >

= THIRD | FOURTH | FIFTH | SIXTH

= GUESS | AT-MOST

= ADDING

(a) . Grammar

KNOWLEDGE

(MEQR u2 (PLUS u2 (PLUS ^ u))

(EQR u1 (PLUS u2 ug))

(BETW I d1 d2)

(REMAIN d1 d2 . ..)

MEANING

is u2 plus or plus

Uj is u2 plus

I can have any value from d^ through d2

the unused digits are dj* d^ ...

(b). Semantic Elements

Figure 23. Additions to Grammar (see Figure 5)
and Problem Space (see Table 1) needed to apply
PAS-I to S4 on Bl-128. In (a) the dotted lines
indicate extensions to existing classes, and classes
marked with an asterisk represent problem space
elements. In (b) u stands for a letter, carry,
or digit, I a letter, and d a digit.

- 99 -

VI. CONCLUSION

We have presented the initial results of a system for automatic protocol

analysis, using a system called PAS-I. We view it as the first step toward a

practical system the cognitive psychologist can use to analyse the detailed

time course of a subject's developing knowledge as revealed in his concurrent

verbalizations.

In our estimation, the results shown here provide a demonstration of the

basic feasibility of the project for the task environment of cryptarithmetic.

The success is due to some special circumstances, no doubt. The language of

the subjects, though free, is quite simple. Where it does become complex the

system has difficulties with it. The task itself, though posing genuine

problems for our subjects, is simple enough so that incorporating its semantics

into a computer program is possible with reasonable effort. Furthermore,

the results are not yet of a quality to compete with manual analysis. They

do approach it however, turning out an analysis that appears to be essentially

correct over stretches of the protocol that are not too difficult to interpret

manually. A correction of some of the simpler deficiencies and a method of

resetting the state of knowledge, so that deficiencies do not propagate, would

produce a system much closer in quality to manual analysis.

The program is partial and incomplete in several distinct ways, each

worth noting. First, the program is task specific to cryptarithmetic. No

program can be task independent, since knowledge of the task environment is one

of the basic sources of knowledge that permits inferences to the subject's knowl­

edge. Thus, to seek task independent analysis programs is chimerical. What can

be sought are representations of task dependent knowledge that permit using the

programs on different tasks. Although some of the task aspects in PAS-I Were

factored into rules, no attempt was made to do this systematically.

- 100 -

The second way the program is specialized is in the analysis

task it performs: it does only the task of behavior description given, a complete

representation of the problem space. The scientist working with a protocol is

hardly limited to this one concern. As noted in Section III, he is also concerned

with behavior description at the level of production systems as well as the PBG; with

the induction of various structures that represent the human subject (linguistic

mechanisms, the problem space and the production rules); with making detailed predictions

given the structures and higher level behavioral descriptions; and with comparing and

evaluating the structures and descriptions obtained over sets of subjects and sets

of tasks. The selection of the task of behavior description for PAS-I was not made

because it was the easiest of all of these, but because it contained a central

kernel of the whole problem — interpreting natural language and inferring the

subject's knowledge state. All the other data analysis tasks have their own

separate difficulties; none seems unapproachable given the success with PAS-I to

date (see Waterman and Newell, 1971, for more discussion).

In a somewhat separate category is the extension of the program back toward

the speech signal. The transcriptionist who listens to the audio tape and provides

the lexical representation (and the punctuation for the topic segmentation) makes use

of an analysis that duplicates that of PAS-I in indefinite ways. Ultimately

one wants the automatic analysis to begin prior to transcription to remove

that source of uncontrolled interpretation. The difficulty of doin£ speech

recognition is well recognized and makes this aspect of extension heavily

dependent on progress in a more basic artificial intelligence task.

The third incomplete aspect is the quality of the current analysis. As

already noted, it is not the case that only one or two key features are deficient

in PAS-I. Rather, an almost indefinite set of deficiencies contribute to the

limited quality of its output. As the prior discussion indicated, these range

from major to minor in terms of the amount of program modification and augmen­

tation required to remove them. With every added protocol analysis a few

- 101 -

additional deficiencies will come to light. This is hardly a situation to be

deplored however. The development of a complex tool such as PAS-I is a long term

accretion of continually more adequate inference and analysis mechanisms. The main

tactical question if how long to continue working with a given program framework

and when to recast the entire system in a more flexible and efficient form. A

more strategic issue is whether there are some fundamental deficiencies of the

approach that imply complete rethinking of how protocol analysis should be mechanized.

With the limited experience to date we have not turned up any indications that

our current approach needs extensive revision or rethinking.

The linguistic phase of PAS-I constitutes a special issue. As noted, it is

deliberately simple and hardly matches the sophistication of current systems like

Winograd (1971) or Woods (Woods and Kaplan, 1971). We are rather pleased with the

performance of the linguistic phase of the system. Yet, it is clear that a much

better grammar is required to work with the places where the Linguistic Processor

failed. We do retain some skepticism, however, since the real issue in those

missed linguistic phrases is extracting the semantics, and it is unclear that

a more adequate parse takes us very far along that road. That is, the difficulties

in handling the parts of the protocol that the Linguistic Processor missed starts

with the Linguistic Processor, but does not end there. They constitute obscure

parts of the protocol that provide difficulty for manual analysis as well.

The fourth way the program is incomplete is in its emphasis on

providing a fully automatic analysis, rather than being developed as an inter­

active tool to be used by scientists. Our basic reason for this choice is to

focus development on the central inference and interpretation problems, without

being distracted by issues of communication and display. It is clear, however,

that recasting into a form where PAS-I does what it can while the human user

- 102 -

monitors the analysis, correcting and augmenting it, would provide an excellent

tool. It would minimize the impact of an existing set of deficiencies, since

the user would simply substitute his own recognitions, inferences,and decisions

whenever required. The essence of objectivity would remain, since the parts of

the analysis provided by rule and by human analysis could be labeled. Later

conclusions could be traced back to determine their dependence on the evidence

and to assess its status. Constructing such an interactive PAS does not present

major technical problems, though it is not without interest as a computer science

development.

The final specialization of the system is its dependence on a particular

theory of human problem solving. PAS is not a general purpose, theoretically

neutral, data analysis device. It is to be contrasted, for instance, with the

General Inquirer (Stone, Dunphy, Smith, Olgivie, 1966), where the conceptual commit­

ments built into the program are essentially methodological. Thus, PAS does not

provide a tool for protocol analyses based on different or absent theoretical

conceptions. For its commitment PAS obtains a much more powerful analysis than

would be possible otherwise. It must be admitted that the authors, having a sub­

stantial interest in the cognitive theory incorporated in PAS, designed the current

version, PAS-I, for their own use in connection with the theory. Thus, we have little

interest in moving the development in theoretically neutral ways.

PAS-I contains only limited aspects of the existing theory of human problem

solving and that theory will, no doubt, continue to be developed. Thus, extensions

to PAS will be required to incorporate additional knowledge from the theory. Some

of these will occur naturally with the extension of the scope of PAS, e.g., the

incorporation of production systems. Others, e.g., a theory of short and long term

memory, could be added even to the present level of analysis.

- 103 -

Development of PAS in all of the ways indicated above appears promising,

both in terms of payoff and in terms of feasibility. Effort cannot be applied

in all directions at once, and it is not clear at this time which aspects will

receive intensive attention.

- 104 -

REFERENCES

1. Bartlett, F. C , Thinking. New York: Basic Books, 1958.

2. Baylor, G. W., Program and protocol analysis on a mental imagery task,
Proceedings of the Second International Joint Conference on Artificial
Intelligence, The British Computer Society, 1971.

3. Bree, D., The Understanding Process as seen in Geometry Theorems,
Unpublished phD Dissertation, Carnegie-Melion University, 1968.

4. Brookes, M., 150 Puzzles in Cryptarithmetic. New York: Dover, 1963.

5. DeGroot, A. D., Thought and Choice in Chess. The Hague: Mouton, 1965.

6. Dunker, K., On problem solving, Psychological Monographs, Whole No. 270, 1945.

7. Eastman, C , Cognitive Processes and ill-defined problems: A case study from
design, in D. E. Walker and L. M. Norton (Eds.) Proceedings of the First
International Joint Conference on Artificial Intelligence, 1969. Available
from the Association for Computing Machinery.

8. Peldman, J.., Simulation of behavior in the binary choice situation, in
E. Feigenbaum and J. Feldman (Eds.) Computers and Thought. New York:
McGraw-Hill, 1963.

9. Frijda, N. H. and Meertens, L. A., A simulation model of human information
retrieval, in The Simulation of Human Behavior, Proceedings of a NATO
Symposium, Paris, 1967. Paris: Dunod, 1969.

10. Humphrey, L., Thinking. New York: Wiley, 1951.

11. Johnson, E. S., An information processing model of one kind of problem
solving, Psychological Monographs, Whole No. 581, 1964.

12. Laughery, K. R. and Gregg, L. W., Simulation of human problem-solving
behavior, Psychometrika, 1962, .27, 265-282.

13. Newell, A., On the analysis of human problem solving protocols, in J. C. Gardin
and B. Jaulin (Eds.) Calcul et Formalisation dans les Sciences de L!Homme.
Paris: Centre National de la Recherche Scientifique, pp 146-185, 1968.

14. Newell, A., Studies in Problem Solving: Subject 3 on the cryptarithmetic
task: DONALEH-GERALD=ROBERT. Pittsburgh: Carnegie-Mellon University, 1967.

15. Newell, A. and Simon, H. A., An example of human chess play in the light
of chess playing programs, in N. Weiner and J. P. Schade (Eds.) Progress
in Biocybernetics, (Vol. 2). Amsterdam: Elsevier, 1965.

16. Newell, A. and Simon, H. A., GPS, a program that simulates human thought,
in E. Feigenbaum and J. Feldman (Eds.) Computers and Thought, New York:
McGraw-Hill, 1963.

17. Newell, A. and Simon, H. A., Computer simulation of human thinking,
Science, 1961, 134, 2011-2017.

- 105 -
18. Newell, A. and Simon, H. A., Human Problem Solving. Englewood Cliffs:

Prentice-Hall, 1972.

19. Paige, J. and Simon, H. A., Cognitive processes in solving algebra word
problems, in B. Kleinmuntz (Ed.), Problem Solving. New York: Wiley, 1966.

20. Reitman, W., Cognition and Thought. New York, Wiley, 1965.

21. Stone, P. J., Dunphy, D. C , Smith, M. S., and Ogilvie, D. M., The General
Inquirer. » Cambridge, Mass: MIT Press, 1966.

22. Wagner, D. A. and Scurrah, M. J., Some characteristics of human problem
solving in chess, Cognitive Psychology, 1971, 2, 454-478.

23. Waterman, D. A., Generalization learning techniques for automating the
learning of heuristics, Artificial Intelligence, 1970, I, 121-170.

24. Waterman, D. A., and Newell, A., Protocol analysis as a task for artificial
intelligence, Artificial Intelligence, 1971, 2, 285-318.

25. Winikoff, A., Eye Movements as an Aid to Protocol Analysis of Problem Solving
Behavior, Unpublished PhD Dissertation, Carnegie Institute of Technology, 1967.

26. Winograd, T., Understanding Natural Language, Cognitive Psychology,
1972, 3, 1-191.

27. Woods, W. A. and Kaplan, R. M., The Lunar Sciences Natural Language Information
System, Report 2265, Cambridge, Mass: Bolt, Beranek and Newman, 1971.

1-1
APPENDIX I

1.1. PAS-I Linguistic and Semantic Processor
Output for S3 Bl-100 on D+G=R.

Bl. EACH LETTER HRS ONE AND ONLY ONE NUMERICAL VALUE —
(?)

B2. EXP : ONE NUMERICAL VALUE .
(EXP)

B3. THERE ARE TEN DIFFERENT LETTERS
(?)

B4. AND EACH OF THEM HAS ONE NUMERICAL VALUE .
(AND)

<Bi-4>. ((?))

B5. THEREFORE , I CAN , LOOKING AT THE TWO D 'S —
(THEREFORE) (NUM 0 2)

<B5>. ((THEREFORE) (NUM D 2))

B6. EACH 0 IS 5 ;
(EQ D 5)

B7. THEREFORE , T IS ZERO .
(THEREFORE) (EQ T 0)

<B6-7>. ((BECAUSEOF ((EQ D 5)) ((EQ T 8))))

B8. SO I THINK I >LL START BY WRITING THAT PROBLEM HERE .
(THEREFORE)

<B8>. ((?))

B9. I >LL WRITE 5 , 5 IS ZERO .
(EQC (PLUS 5 5) 8)

<B9>. ((EQC (PLUS 5 5) 8))

B18. NOW , DO I HAVE ANY OTHER T 'S ?
(FC T)

<B18>. ((FC T))

Bll. NO .
(NEG)

<Bli>. ((?))

B12. BUT I HAVE ANOTHER D .
(IN 0 *COL)

<B12>. ((IN D *COD)

B13. THAT MEANS I HAVE A' 5 OVER THE OTHER SIDE •
(THEN) (IN 5 *COL) (PLACE OTHER)

<B13>. ((THEN) (IN 5 *COD)

1-2

B14. NOW I HRVE 2 A 'S
(NUM R 2)

<B14>. ((NUM A 2))

B15. AND 2 L 'S
(AND) (NUM L 2)

<Bi5>. ((AND) (NUH L 2))

B16. THAT ARE EACH «
(?)

B17. SOMEWHERE —
(?)

B18. AND THIS R —
(AND) (LETTER R)

<B16-18>. ((?))

B19. 3 R 'S —
(NUM R 3)

<B19>. ((NUM R 3))

B28. 2 L 'S EQUAL AN R —
(EQC (PLUS L L) R)

<B20>. ((EQC (PLUS L L) R))

B21. OF COURSE I 'M CARRYING A' i .
(EQ *C 1)

B22. WHICH WILL MEAN THAT R HAS TO BE AN ODD NUMBER .
(THEREFORE) (ODD R)

<B2i-22>- ((BECAUSEOF ((EQ #C 1)) ((ODD R))))

B23. BECAUSE THE 2 L 'S —
(BECAUSE) (NUM L 2)

<B23>. ((BECAUSE) (NUM L 2))

B24. ANY TWO NUMBER 'S ADDED TOGETHER HAS TO BE AN EVEN NUMBER
(EVEN (PLUS *D *D))

<B24>. ((EVEN (PLUS *D #D)))

B25. AND 1 WILL BE AN ODD NUMBER •
(ODD (PLUS *X 1))

B26. SO R CAN BE 1 ,
(THEREFORE) (PEQ R 1)

B27. 3 ,
(DIGIT 3)

B28. NOT 5 ,
(NEG) (DIGIT 5)

B29. 7 ,

1-3

B3i. EXP : WHAT ARE YOU THINKING NOW ?
(EXP)

B32. NOW G —
(LETTER G)

<B3i-32>. ((?))

B33. SINCE R IS GOING TO BE AN ODD NUMBER
(BECAUSE) (ODD R)

B34. AND D IS 5 ,
(AND) (EQ D 5)

B35. G HAS TO BE AN EVEN NUMBER .
(EVEN G)

<B33-35>. ((BECflUSEOF (AND ((ODD R)) ((EQ D 5))) ((EVEN G))))

B36. I 'M LOOKING AT THE LEFT SIDE OF THIS PROBLEM HERE WHERE IT SAYS D + G •
(PLUS D G) (PLACE LEFT)

<B36>. ((PLUS D G))

B37. OH , PLUS POSSIBLY ANOTHER NUMBER ,
(PLS *D)

B38. IF I HAVE TO CARRY 1 FROM THE E + 0 •
(IF) (COUT 1 (PLUS E 0))

<B37-38>. ((COND ((EQ C6 1)) ((EQ *C *D))))

B39. I THINK I 'LL FORGET ABOUT THAT FOR A' MINUTE .
(?)

B48. POSSIBLY THE BEST WAY TO GET TO THIS PROBLEM IS TO TRY DIFFERENT POSSIBLE SOLUTIONS .
(?)

B41. I >M NOT SURE WHETHER THAT WOULD BE THE EASIEST WAY OR NOT .
(NEG) (NEG)

B42. WELL , IF WE ASSUME —
(IF) (ASSUME)

<B39-42>. ((?))

B43. IF WE ASSUME THAT L IS , SAY , i ,
(IF) (ASSUME) (EQ LI)

(DIGIT 7)
B30. OR 9 .

(OR) (DIGIT 9)

<B25-38>. ((BECAUSEOF ((ODD (PLUS *X i))) ((PEQ R 1))))

<B25-38>. ((BECflUSEOF ((ODD (PLUS #X 1))) ((PEQ R 3))))

<B25-3B>. ((BECflUSEOF ((ODD (PLUS *X 1))) ((PEQ R 5))))

<B25-38>. ((NEQ R 5))

<B25-30>. ((BECflUSEOF ((ODD (PLUS *X 1))) ((PEQ R 7))))

<B25-30>. ((BECflUSEOF ((ODD (PLUS *X 1))) ((PEQ R 9))))

<B25-38>. ((MEQ R 1 3 7 9))

1-4

B44. WE >LL HAVE 1 • 1 THAT 'S 3 OR R —
(PLUS i 1) (EQ R 3)

B45. WE >LL PUT IN A' 3 HERE ,
(DIGIT 3)

<B43-45>. ((PLUS i I) (BECAUSEOF ((AEQ Li)) ((EQ R 3))))

B46. AND ONE HERE .
(AND)

<B46>. ((?))

B47. WELL , 5 PLUS SOMETHING HAS TO EQUAL 3 IN THAT CASE —
(THEREFORE) (EQC (PLUS 5 *L) 3)

<B47>. ((THEREFORE) (EQC (PLUS 5 *L) 3))

B48, I SUPPOSE IT >S —
(IF)

B49. WELL , NOT , ~
(NEG)

<B48~49>. ((?))

B58. IT 'S NOT POSSIBLE THAT THERE COULD BE ANOTHER LETTER IN FRONT OF THIS R IS IT ?
(NEG) (PEQ *L *D) (LETTER R) (QUES)

<B50>. ((NEQ *L *D) (LETTER R) (QUES))

B51. IS IT OR NOT ?
(NEG) (QUES)

B52. EXP : NO .
(EXP)

B53. IT >S NOT ~
(NEG)

B54. ALL RIGHT —
(?)

B55. SO IF —
(THEREFORE) (IF)

<B51-55>. ((?))

B56. IF THAT COULD N'T BE A' 13 ON THE LEFT SIDE .
(IF) (NEG) (PEQ *L 13) (PLACE LEFT)

B57. THEN R CANNOT BE 3 .
(THEN) (NEG) (EQ R 3)

<B56-57>. ((OPIO (FN ((EQ *L 13))) ((NEQ *L 13)) ((NEQ R 3))))

B58. R HAS TO BE A' NUMBER GREATER THAN 5 ,
(GREATER R 5)

B59. WHICH MEANS THAT IT CAN BE EITHER 7
(THEREFORE) (PEQ *L 7)

B68. OR 9 .
(OR) (DIGIT 9)

B6i. SO WE 'LL START BACK HERE AND MAKE IT A' 7 .
(THEREFORE) (ASSUME) (EQ *L 7)

1-5

B71. + i IS 7 .
(EQC (PLUS *X i) 7)

<B7i>. ((EQC (PLUS *X 1) 7))

B72. NOW , IT DOES N'T MATTER ANYWHERE WHAT THE L 'S ARE EQUAL TO —
(NEG) (EQ L *D)

B73. SO I 'M INDEPENDENT OF L WHEN I GET PAST THE SECOND COLUMN HERE •
(THEREFORE) (LETTER L) (PLACE SECOND)

<B72-73>. ((BECAUSEOF ((NEQ L *D)> ((EQ L *D))))

B74. BUT NOW I KNOW THAT G HAS TO BE EITHER 1
(EQ G 1)

B75. OR 2 ,
(OR) (DIGIT 2)

B76. DEPENDING ON WHETHER OR NOT E + 0 IS GREATER THAN 18
(WNOT) (GREATER (PLUS E 0) IB)

B77. OR GREATER THAN 9 ,
(OR) (GREATER *L 9)

<B74-77>. ((PLUS E 0) (GREATER (PLUS E 0) 18) (COND ((GREATER (PLUS E 0) 10)) «EQ G !>>»

<B74-77>. ((COND ((NGREATER (PLUS E 0) 10)) ((EQ G 2))))

<B58-61>. ((BECflUSEOF ((GREATER R 5)) ((PEQ #1 7))))

<B58-61>. ((BECAUSEOF ((GREATER R 5)) ((PEQ *L 9))))

<B58-61>. ((MEQ *L 7 9))

<B58-6i>. ((BECAUSEOF ((MEQ *L 7 9)) ((AEQ *L 7))))

B62. NOW IF THE —
(IF)

B63. OH , I 'M SORRY , I SAID SOMETHING INCORRECT HERE .
(CORRECTION)

B64. I >M MAKING —
(ASSUME)

B65. NO , NO , I DID N'T EITHER .
(NEG) (NEG) (NEG)

<B62-65>. ((?))

B66. R IS GOING TO BE A' 7 ,
(EQ R 7)

B67. THEN THIS WILL BE 7 ,
(THEN) (EQ *L 7)

B68. AND THAT WILL BE 7 ,
(AND) (EQ *L 7)

B69. AND IT 'S THE L 'S THAT WILL HAVE TO BE 3 'S ,
(AND) (EQ L 3)

<B66-69>. ((BECAUSEOF ((EQ R 7)) (AND ((EQ *L 7)) (AND ((EQ *L 7)) ((EQ L 3))))))

B7B. BECAUSE 3 + 3 IS 6
(BECAUSE) (EQC (PLUS 3 3) 6)

<B7B>. ((BECAUSE) (EQC (PLUS 3 3) 6))

1-6

<B74-77>. ((COND ((GREATER *L 9)) ((EQ G 1))))

<B74-77>. ((COND ((NGREATER *L 9)) ((EQ G 2))))

B78. NOW I HAVE THIS 0 REPEATING HERE IN THE SECOND COLUMN FROM THE LEFT
(IN 0 *COL) (PLACE SECOND) (PLACE LEFT)

<B78>. ((IN 0 *CQD)

B79. THAT IS , ITSELF PLUS ANOTHER NUMBER EQUAL TO ITSELF •
(EQC (PLUS *L *L) *D)

<B79>. ((EQC (PLUS #L *L) *D))

B80. THIS MIGHT INDICATE THAT E WAS ZERO —
(THEREFORE) (PEQ E 0)

<B80>. ((THEREFORE) (PEQ E 0))

B81. IN FACT , IT MIGHT HAVE TO NECESSARILY INDICATE THAT .
(?)

B82. I >M NOT SURE .
(NEG)

<B8i-82>. ((?))

B83. OR , E COULD BE 9
(OR) (PEQ E 9)

<B83>. ((PEQ E 9))

B84. AND I WOULD BE CARRYING 1 ,
(AND) (EQ *C 1)

B85. WHICH WOULD MEAN THAT I WAS THEN CARRYING 1 INTO THE LEFT HAND COLUMN .
(THEREFORE) (THEN) (EQ *C 1) (PLACE LEFT)

<B83-85>. ((BECAUSEOF (AND ((EQ E 9)) ((EQ *C 1))) ((EQ *C 1))))

B86. EXP : WHAT ARE YOU THINKING NOW ?
(EXP)

B87. I WAS JUST TRYING TO THINK OVER WHAT I WAS JUST —
(?)

B88. ABOUT THE POSSIBILITY —
(?)

<B86-88>. ((?))

B89. THE IMPLICATIONS OF AN 0 + ANOTHER NUMBER EQUALING AN 0 ,
(EQC (PLUS 0 *L) 0)

<B89>. ((EQC (PLUS 0 *L) 0))

B90. AND WHAT THAT NECESSARILY IMPLIES .
(AND) (THEREFORE)

B91. LET 'S SEE —

1-7

B92. I HAVE TWO A 'S EQUALING AN E .
(EQC (PLUS A A) E)

<B92>. ((EQC (PLUS A A) E))

B93. THEREFORE , E HAS TO BE AN EVEN NUMBER ,
(THEREFORE) (EVEN E)

B94. BECAUSE I KNOW I 'M NOT CARRYING 1 .
(BECAUSE) (NEG) (EQ *C 1)

<B93~94>. ((BECAUSEOF ((NEQ #C i>> ((EVEN E))))

B95. OF COURSE , THIS ALL GOING ON THE ASSUMPTION THAT R IS 7 —
(ASSUME) (EQ R 7)

<B95>. ((AEQ R 7))

B96. R COULD BE 9 ALSO .
(PEQ R 9)

<B96>. ((PEQ R 9))

B97. WELL , MAYBE I 'LL JUST CONTINUE TO TRY TO WORK THIS THROUGH AGAIN
(?)

<B97>. ((?))

B98. IF E HAS GOT TO BE AN —
(IF) (EQ E *D)

<B98>. ((IF) (EQ E *D))

B99. NOW , WAIT A' SECOND .
(?)

B188. I GOT SOMETHING OUT OF THIS .
(?)

<B99-180>. ((?))

(?)

<B98-9i>. ((?))

1-8
APPENDIX I

1.2. PAS-I Group Processor and PBG Mechanism
Output for S3 Bl-100 on D+G=R.

B5-7 PROTOGROUP

ELEMENTS : (((THEREFORE))
((BECflUSEOF ((EQ D 5)) ((EQ T 8)))))

OPERATOR : (PC 1) FROM (NUM D 2)

ORIGIN LIST : ()

ORIGIN LIST : (((RECALL 0) NIL (EQ D 5))
((RECflLL CD NIL (EQ CI 8))
((PC 1) ((EQ D 5) (EQ CI 8)) (EQ T 8)))

(RECflLL D) GROWN AS NDi
(EQ D 5) GROWN AS Kl

(RECALL CI) GROWN AS ND2
(EQ CI 8) GROWN AS K2

(PC 1) GROWN AS N03
(EQ T 8) GROWN AS K3

B9 PROTOGROUP

ELEMENTS : ()

OPERATOR : (PC 1) FROM (EQC (PLUS 5 5) 8)

((PC 1) NIL NIL) MERGED WITH ND3

BIB PROTOGROUP

ELEMENTS : ()

OPERATOR : (FC T) FROM (FC T)

(FC T) GROWN AS ND4

B12-14 PROTOGROUP

ELEMENTS : (((IN D *COD)
((THEN) (IN 5 *C0D))

OPERATOR : (PC 3) FROM (NUM A 2)

((IN D *COD) IS ((IN D 6))

ORIGIN LIST : (((FC D H) NIL (IN D 6)))

(FC D) GROWN AS ND5
(IN 0 6) GROWN AS K4

((THEN) (IN 5 *COD) IS ((THEN) (IN D 6))

ORIGIN LIST : ((ND5 NIL (IN D 6)))

((FC D) NIL (IN D 6)) RECOGNIZED AS ND5

(COUNT A) GROWN AS ND6
(NUM A 2) GROWN AS K5

1-9

B15 PROTOGROUP

ELEMENTS : (((AND)))
OPERATOR : (PC 2) FROM (NUM L 2)

ORIGIN LIST : ()

(COUNT L) GROWN AS ND7
(NUM L 2) GROWN AS K6

B19-22 PROTOGROUP

ELEMENTS : (((NUM R 3))
((BECAUSEOF ((EQ *C 1)) ((ODD R)))))

OPERATOR : (PC 2) FROM (EQC (PLUS L L) R)

ORIGIN LIST 2 (((COUNT R H) NIL (NUM R 3)))

(COUNT R) GROWN AS ND8
(NUM R 3) GROWN AS K7

((BECAUSEOF ((EQ *C 1)) ((ODD R>>>> IS
((BECAUSEOF ((EQ *C 1)) ((ODD R))))

ORIGIN LIST : ((ND1 NIL (EQ D 5))
(ND2 NIL (EQ CI 0))
((PC i H) ((EQ D 5) (EQ Ci 8)) (EQ C2 i H)>
((PC 2) ((EQ C2 1 H)) (ODD R)))

((RECALL D) NIL (EQ D 5)) RECOGNIZED AS ND1

((RECALL CI) NIL (EQ CI 0)) RECOGNIZEO AS ND2

((PC 1 H) ((EQ D 5) (EQ CI 0)) (EQ C2 1 H)) MERGED WITH ND3
(EQ C2 1) GROWN AS KS

(PC 2) GROWN AS ND9
(ODD R) GROWN AS K9

B23-38 PROTOGROUP

ELEMENTS : (((BECAUSE))
((EVEN (PLUS *D *D)))
((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 1))))
((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 3))))
((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 5))))
((NEQ R 5))
((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 7))))
((BECAUSEOF ((ODO (PLUS *X 1))) ((PEQ R 9))))
((MEQ R i 3 7 9)))

OPERATOR : (PC 2) FROM (NUM L 2)

ORIGIN LIST : ()

((EVEN (PLUS *D *D))) IS ((EVEN (PLUS L L)))

ORIGIN LIST : (((PC 2) ((EQ C2 1)) (EVEN (PLUS L L))))

((PC 2) ((EQ C2 i)) (EVEN (PLUS L L))) MERGED WITH ND9
(EVEN (PLUS L L>> GROWN AS K18

<(BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 1)))) IS

1-10

B33-38 PROTOGROUP

ELEMENTS : (((BECAUSEOF (AND ((ODD R)) ((EQ D 5>>> ((EVEN G))))
((COND ((EQ C6 1)) ((EQ *C *D>>>>)

OPERATOR : (PC 6) FROM (PLUS D G)

ORIGIN LIST : (((IG C6 H) NIL (EQ C6 8 H))
(ND1 NIL (EQ D 5))
((PC 6) ((EQ C6 B H) (EQ D S) (OOO R)) (EVEN G>))

((BECflUSEOF ((ODO R)) ((PEQ R 1))))

ORIGIN LIST : (((GN R H) ((ODD R)) (PEQ R. i>>)

(GN R) GROUN AS ND1B
(PEQ R 1) GROWN AS Kii

((BECflUSEOF ((ODD (PLUS *X i))) ((PEQ R 3)))) IS
((BECflUSEOF ((ODD R>) ((PEQ R 3))))

ORIGIN LIST : (((GN R H) ((ODD R) (PEQ R i)) (PEQ R 3)))

(GN R) GROWN AS ND11
(PEQ R 3) GROWN AS K12

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 5)))) IS
((BECAUSEOF ((ODD R)) ((PEQ R 5))))

ORIGIN LIST : (((GN R H) ((ODD R) (PEQ R 1) (PEQ R 3)) (PEQ R 5)))

(GN R) GROWN AS ND12
(PEQ R 5) GROWN AS K13

ORIGIN LIST : ((ND1 NIL (EQ D 5))
((TD R 5 H) ((EQ D 5)) (NEQ R 5)))

((RECALL D) NIL (EQ D 5)) RECOGNIZED AS ND1

(TD R 5) GROWN AS ND13
(NEQ R 5) GROWN AS K14

PBG CONFLICT : (NEQ R 5) VS (PEQ R 5)

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 7)>>) IS
((BECAUSEOF ((ODD R)) ((PEQ R 7))))

ORIGIN LIST : (((GN R H) ((ODD R) (NEQ R 5) (PEQ R 1) (PEQ R 3)) (PEQ R 7)))

(GN R) GROWN AS ND15
(PEQ R 7) GROWN AS K15

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 9)))) IS
((BECAUSEOF ((ODD R)) ((PEQ R 9))))

ORIGIN LIST : (((GN R H) ((ODD R) (NEQ R 5) (PEQ R 1) (PEQ R 3) (PEQ R 7)) (PEQ R 9)))

(GN R) GROWN AS ND16
(PEQ R 9) GROWN AS K16

ORIGIN LIST . (((GN R H) ((PEQ R i) (PEQ R 3) (PEQ R 7) (PEQ R 9)) (flEQ R 1 3 7 9)) >

(GN R) GROWN AS ND17
(NEQ R 1 3 .7 9) GROWN AS K17

1-11
(IG C6) GROWN AS ND18
(EQ C6 0) GROWN AS K18

((RECRLL D) NIL (EQ D 5)) RECOGNIZED RS ND1

(PC 6) GROWN RS ND19
(EVEN G) GROWN RS K19

((COND ((EQ C6 1)) ((EQ *C *D)))) IS
((COND ((EQ C6 1)) ((EQ C6 1))))

ORIGIN LIST : (((NOTICE C6 H) NIL (PEQ C6 D))

(NOTICE C6) GROWN RS ND28
(PEQ C6 1) GROWN RS K28

PBG CONFLICT : (PEQ C6 1) VS (EQ C6 8)

B43-45 PROTOGROUP

ELEMENTS : (((BECflUSEOF ((flEQ L i>) ((EQ R 3)))))
OPERfiTOR : (PC *COL) FROM (PLUS i 1)

ORIGIN LIST : (((flV L H) NIL (flEQ Li))
((PC 2 H) ((flEQ L 1) (EQ C2 D) (EQ R 3)))

(RV L) GROWN RS ND22
(flEQ L 1) GROWN RS K21

(PC 2) GROWN RS ND23
(EQ R 3) GROWN RS K22

B47 PROTOGROUP

ELEMENTS : (((THEREFORE)))

OPERATOR : (PC 6) FROM (EQC (PLUS 5 *L) 3)

ORIGIN LIST : ()

(PC 6) GROWN RS N024

B58 PROTOGROUP

ELEMENTS : (((NEQ *L *D) (LETTER R) (QUES)))
OPERATOR ; ()

((NEQ *L *D) (LETTER R) (QUES)) IS ((NEQ D *D) (LETTER R) (QUES))

ORIGIN LIST ; ()

B56-61 PROTOGROUP

ELEMENTS : (((OP 10 (FN ((EQ *L 13))) ((NEQ *L 13)) ((NEQ R 3))))
((BECflUSEOF ((GREATER R 5)) ((PEQ *L 7))))
((BECAUSEOF ((GREATER R 5)) ((PEQ *L 9))))
((MEQ *L 7 9))
((BECAUSEOF ((MEQ «L 7 9)) ((flEQ *L 7)))))

OPERATOR : ()

((OP 10 (FN ((EQ *L 13))) ((NEQ *L 13)) ((NEQ R 3)))) IS
((OPIO (FN (EQ C7 1)) ((NEQ C7 D) ((NEQ R 3))))

1-12

ORIGIN LIST ; (((RECflLL C7) NIL (EQ C7 8))
((TD C7 1 H) ((EQ C7 0)) (NEQ C7 1)>
((FN (EQ C7 1)) ((NEQ C7 1)) (NEQ R 3)))

(RECflLL C7) GROWN AS ND25
(EQ C7 8) GROWN AS K23

(TD C7 1) GROWN AS ND26
(NEQ C7 1) GROWN AS K24

(FN (EQ C7 i)) GROWN AS ND27
(NEQ R 3) GROWN AS K25

PBG CONFLICT : (NEQ R 3) VS (EQ R 3)

PBG CONFLICT : (NEQ R 3) VS (PEQ R 3)

((BECAUSEOF ((GREATER R 5)) ((PEQ *L 7)))) IS
((BECAUSEOF ((GREATER R 5)) ((PEQ R 7))))

ORIGIN LIST : (((RECflLL C7> NIL (EQ C7 8))
(ND1 NIL (EQ D 5))
((PC 6 H) ((EQ C7 8) (EQ D 5)) (GREATER R 5))
((GN R H) ((GREATER R 5) (ODO R>> (PEQ R 7)))

(RECALL C7) GROWN AS ND28
(EQ C7 8) GROWN AS K26

((RECALL D) NIL (EQ D 5)) RECOGNIZED AS ND1

(PC 6) GROWN AS ND29
(GREATER R 5) GROWN AS K27

PBG CONFLICT : (GREATER R 5) VS (PEQ R 1)

(GN R) GROWN AS ND32
(PEQ R 7) GROWN AS K28

((BECAUSEOF ((GREATER R 5)) ((PEQ *L 9)))) IS
((BECflUSEOF ((GREATER R 5)) ((PEQ R 9))))

ORIGIN LIST : (((GN R H) ((ODD R) (GREATER R 5) (PEQ R 7)) (PEQ R 9)))

(GN R) GROWN AS ND33
(PEQ R 9) GROWN AS K29

((MEQ *L 7 9)) IS ((MEQ R 7 9))

ORIGIN LIST : (((GN R H) ((PEQ R 7) (PEQ R 9)) (MEQ R 7 9)))

(GN R) GROWN AS N034
(MEQ R 7 9) GROWN AS K38

((BECAUSEOF ((MEQ *L 7 9)) ((flEQ *L 7)))) IS
((BECAUSEOF ((MEQ R 7 9)) ((AEQ R 7))))

ORIGIN LIST : (((AV R H) ((MEQ R 7 9)) (AEQ R 7)))

(AV R) GROWN AS ND35
(AEQ R 7) GROWN AS K3i

B66-78 PROTOGROUP

1-13

ELEMENTS : (((BECflUSEOF ((EQ R 7)) ((EQ L 3))))
((BECflUSEOF ((EQ R 7)) (<EQ *L 7)>)>
((BECflUSEOF ((EQ R 7)) ((EQ *L 7))))
((BECAUSE)))

OPERATOR : (PC *COL) FROM (EQC (PLUS 3 3) 6)

ORIGIN LIST 2 ((ND35 ((MEQ R 7 9)) (AEQ R 7))
((IG C3 H) NIL (EQ C3 8 H))
((PC 2 H) ((EQ C3 8 H) (AEQ R 7) (EQ C2 D) (EQ L 3)))

((AV R) ((MEQ R 7 9)) (AEQ R 7)) RECOGNIZED AS ND35

(IG C3) GROWN AS N036
(EQ C3 8) GROWN AS K32

(PC 2) GROWN AS ND37
(EQ L 3) GROWN AS K33

((BECAUSEOF ((EQ R 7)) ((EQ *L 7)))) IS
((BECAUSEOF ((EQ R 7)) ((EQ R 7))))

ORIGIN LIST : ((ND35 ((MEQ R 7 9)) (AEQ R 7)))

((AV R) ((MEQ R 7 9)) (AEQ R 7)) RECOGNIZEO AS ND35

ORIGIN LIST : 0

B71-73 PROTOGROUP

ELEMENTS : (((BECAUSEOF ((NEQ L *D)) ((EQ L *D)))))
OPERATOR : (PC *COL) FROM (EQC (PLUS *X 1) 7)

((BECAUSEOF ((NEQ L *D)) ((EQ L *D)))) IS
((BECAUSEOF ((NEQ L *D)) ((EQ L 3))))

ORIGIN LIST 2 (((OP ?) ((NEQ L *D)) (EQ L 3)))

(OP ?) GROWN AS ND3S
(NEQ L *D) CANNOT BE GROWN
(EQ L 3) GROWN AS K34

B74-78 PROTOGROUP

ELEMENTS i (((GREATER (PLUS E 0) 10) (COND ((GREATER (PLUS E 0) 18)) ((EQ G 1))))
((COND ((NGREATER (PLUS E 0) 18)) ((EQ C 2))))
((COND ((GREATER *L 9)) ((EQ G 1))))
((COND ((NGREATER #L 9)) ((EQ G 2))))
((IN 0 *COL>>)

OPERATOR 2 (PC 5) FROM (PLUS E 0)

ORIGIN LIST 2 (((PC 6 H I) NIL (COND ((GREATER (PLUS E 0) 18)) ((EQ G 1)))))

(PC 6 H I) GROWN AS ND39

(COND ((GREATER (PLUS E 0) 18)) ((EQ G 1))) GROWN AS K35

ORIGIN LIST 2 (((PC 6 H I) NIL (COND ((NGREATER (PLUS E 0) 18)) ((EQ G 2)))))

(PC 6 H I) GROWN AS ND48
(COND ((NGREATER (PLUS E 0) 18)) ((EQ G 2))) GROWN AS K36

((COND ((GREATER *L 9)) ((EQ G 1)))) IS
((COND ((GREATER *L 9)) ((EQ G 1))))

1-14
ORIGIN LIST : (((PC 6 H I) NIL (COND ((GREATER *L 9)) ((EQ G 1)))))

(PC 6 H I) GROWN AS ND41
(COND ((GREATER *L 9)) ((EQ G 1))) GROWN AS K37

((COND ((NGREATER *L 9)) ((EQ G 2)))) IS
((COND ((NGREATER *L 9)) ((EQ G 2))))

ORIGIN LIST : (((PC 6 H I) NIL (COND ((NGREATER *L 9)) ((EQ G 2)))))

(PC 6 H I) GROWN AS ND42
(COND ((NGREATER *L 9)) ((EQ G 2))) GROWN AS K38

((IN 0 *COL>) IS ((IN 0 5))

ORIGIN LIST 2 (((FC 0 H) NIL (IN 0 5)))

(FC 0) GROWN AS ND43
(IN 0 S) GROWN AS K39

(PC 5) GROWN AS ND44

B79-88 PROTOGROUP

ELEMENTS : (((THEREFORE) (PEQ E 0)))

OPERATOR : (PC #COL) FROM (EQC (PLUS *L *L) *D)

ORIGIN LIST : (((PC 5 H) NIL (PEQ E 8)))

(PEQ E 8) GROWN AS K48

B83-85 PROTOGROUP

ELEMENTS : (((PEQ E 9))
((BECAUSEOF (ANO ((EQ E 9)) ((EQ *C 1))) ((EQ *C 1)))))

OPERATOR : ()

ORIGIN LIST : (((PC 5 H) NIL (PEQ E 9)))

(PEQ E 9) GROWN AS K41
((BECAUSEOF (AND ((EQ E 9)) ((EQ *C 1))) ((EQ *C 1)))) IS
((BECAUSEOF ((EQ E 9) (EQ *C i)) ((EQ C6 1))))

ORIGIN LIST : (((AV E H) ((PEQ E 9)) (AEQ E 9))
((AV C5 H) NIL (AEQ C5 1 H))
((PC 5 H) ((AEQ C5 1 H) (AEQ E 9)) (EQ C6 D))

(AV E) GROWN AS ND45
(AEQ E 9) GROWN AS K42

(AV C5) GROWN AS ND46
(AEQ CS 1) GROWN AS K43

(PC 5) GROWN AS ND47
(EQ C6 1) GROWN AS K44

B89 PROTOGROUP

ELEMENTS : ()
OPERATOR : (PC 5) FROM (EQC (PLUS 0 *L) 0)

1-15

B92-96 PROTOGROUP

ELEMENTS : (((BECAUSEOF ((NEQ *C 1)) ((EVEN E))))
((REQ R 7))
((PEQ R 9)))

OPERATOR : (PC 3) FROM (EQC (PLUS R R) E)

((BECflUSEOF ((NEQ *C 1)) ((EVEN E)))) IS
((BECRUSEOF ((NEQ *C 1)) ((EVEN E))))

ORIGIN LIST : (((TD C3 i H) ((EQ C3 0)) (NEQ C3 1 H))
((PC 3) ((NEQ C3 1 H)) (EVEN E)))

(TD C3 1) GROWN RS ND48
(NEQ C3 1) GROWN RS K45

(PC 3) GROWN RS ND49
(EVEN E) GROWN RS K46

PBG CONFLICT : (EVEN E) VS (REQ E 9)

PBG CONFLICT : (EVEN E) VS (PEQ E 9)

ORIGIN LIST : ((ND35 ((MEQ R 7 9)) (REQ R 7)))

((AV R) ((MEQ R 7 9)) (REQ R 7)) RECOGNIZED RS ND35

ORIGIN LIST : ((ND33 ((PEQ R 7) (GREATER R 5) (ODD R)) (PEQ R 9)))

((GN R) ((PEQ R 7) (GREATER R 5) (ODD R)) (PEQ R 9)) RECOGNIZED AS ND33

B98 PROTOGROUP

ELEMENTS : (((IF) (EQ E *D)))
OPERATOR : ()

((IF) (EQ E *D)) IS ((IF) (EQ E «D))

ORIGIN LIST : 0

*** PAS-I FINISHED ***

((PC 5) NIL NIL) MERGED WITH ND47

1.3.

1-16
APPENDIX I

Comparison between PBG of PAS-I and Manual Analysis for S3 Bl-100
on D+G--R (see Tables 8 and 9) .

PAS-I Analysis

B5-7

1.

2.

3.

4.

5. BIO

ND1

ND2

ND3

ND4

6. B12-14 ND5

7. ND6

8. B15 ND7

9. B19-22 ND8

10.

11. ND9

12.

(RECALL D)

(RECALL CI)

(PC 1)

(FC T)

(FC D)

(COUNT A)

(COUNT L)

(COUNT R)

(PC 2)

(no backup)

13. B23-30 (=ND9) (PC 2)

14. ND10 (GN R) -» (PEQ R 1)

15. ND11 (GN R) -» (PEQ R 3)

16. ND12 (GN R) -» (PEQ R 5)

17. ND13 (TD R 5)

18. ND14 = ND13 (backup)

19. ND15 (GN R) -» (PEQ R 7)

2 0. ND16 (GN R) -» (PEQ R 9)

21. ND17 (GN R) -» (MEQ 1 3 7 9)

2 2. (no backup)

2 3. B33-38 ND18 (IG C6)

2 4. ND19 (PC 6)

Manual Analysis

Bl-4

B5-7

(Ask Exp
about rules)
Sub (PC 1)

Sub (PC 1)

(PC 1)

B8-19 In PS

In PS

Sub FL in PS

Sub FL in PS

Sub FL in PS

(GET R)

B20-22 (PC 2)

(backup)

B23-25 (PC 2)

B26-30 Sub (GN R)

Sub (GN R)

Sub (GN R)

B28 (TD R 5)
(during (GN R)
(backup implicit)
Sub (GN R)

Sub (GN R)

(GN R)

(backup)

B31-35 Sub (PC 6)

(PC 6)

Agreement*

s

s

s

s

s

s

s

s

+mn -C

=n

4mb GPBG

+mn GPBG

s

s

s

3 n

= b
s

s

= n

+mb GPBG

s
= n

See Tables 8 and 9 for key.

1-17

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

PAS-I Analysis

(no backup)

ND20 (NOTICE C6)

ND21 = ND20 (backup)

B43-45 ND22 (AV L)

ND23 (PC 2)

B47 ND24 (PC 6)

(no backup)

B56-61 ND25 (RECALL C7)

ND26 (TD C7 1)

ND27 (FN (EQ C7 1))

(backup)

ND28 (RECALL C7)

ND29 (PC 6)

ND30 = ND28 (backup)

ND31 = ND29 (for backup)

ND32 (GN R) -> (PEQ R 7)

ND32 (GN R) -> (PEQ R 9)

ND34 (GN R) -> (MEQ R 7 9)

ND35 (AV R)

(no backup)

Manual Analysis

(backup)

B36-39 (PC 6)

Sub (PC 6)t

(backup)

B40-43 (AV L)

B44 (PC 2)

B45-47 (PC 6)

B48 (GET C7 = 1)

B49-50 (ASK EXP)

(backup)
B51-53 (ASK EXP)

Sub (ASK EXP)

B54-57 (FN (EQ C7 1)) in PS
(backup)

(backup)

B58 Sub (PC 6)

(PC 6)

(no backup)

B59-60 Sub (GN R)

Sub (GN R)

(GN R)

B61 (AV R)

B62 (PC 2)

B63-64 (TD L 3)

(backup)

Agreement

+mb SP

+mn SP

s

=b

=n

=n

=n

+mn -C

+mn -C

+mb -C

x

s

s

=b

x

s

=n

+pb Minor

s

s

s

=n

«=n

+mn LP

+mn LP

+mb LP

1-18

PAS-I Analysis Manual Analysis Agreement

51. B66-70 ND36 (IG C3) Sub (PC 2) s

52.. ND37 (PC 2) B65 (PC 2) =n

53. B66--71 (TD L 3) +mn LP

54. B71-73 ND38 (OP ?) +pn LP,GPBG

55. B74-78 ND39 (PC 6 H I) B72--75 (PC 6) =n

56. ND^O (PC 6 H I) Sub (PC 6) s

57. ND41 (PC 6 H I) Sub (PC 6) s

58. ND42 (PC 6 H I) Sub (PC 6) s

59. ND43 (FC 0) B76-•77 (GET C6) OM,-C

60.

B79-

ND 44

80 (=ND44)

(PC 5) -» (PEQ E 0)
(PEQ E 9)

(PC 5) -> (PEQ E 0)

B78--80 (PC 5) -> (EQ E 0) GPBG

61. (no backup) (backup) +mb GPBG

62. ((?)) B81--82 (PC 5) -> (EQ 0) +ran GPBG

63.

B83-85 (=ND44)

(no backup)

(PC 5) (PEQ E 9)

(backup) +mb GPBG

64. ND'45 (AV E) -H> (EQ E 9) B83--84 (PC 5) -> (EQ E 9) OM,GPBG (AV E) -H> (EQ E 9)
(EQ C5 1)

OM 65. ND 46 (AV C5) -» (EQ C5 1) +pn OM

66. ND47 (PC 5) ̂ (EQ C6 1) B85 (PC 5) ̂ (EQ C6 1) =n

67. (no backup) (backup) +mb GPBG

68. (=ND47) (PC 5) B86--90 (PC 5) -hnn GPBG

69. B92-• 94 ND48 (TD C3 1) +pn OM

70. ND49 = ND50 (backup) (backup) =b

71. ND50 = ND48 (backup) (no backup) +pb

1-19

PAS-I Analysis Manual Analysis Agreement

72. ND51 (PC 3)

(=ND35) (AV R) -» (AEQ R 7)

(=ND33) (GN R) -» (PEQ R 9)

(no backup)

B91-93 (PC 3)

B94 (CHK (EQ C3 0))

B95 (PC 2)

B95.1 (CHK (AEQ R 7))

B96-97 (GN R) (PEQ 7 9)

(backup)

B98 (PC 3) -> (EVEN E)

=n

+mn -C

+mn -C

+mn -C,GPBG

+mn -C

+mb -C

+mn LP
B98.1 (GN E) -* (MEQ 2 4 6 8) +mn LP

B99 (TD E)
(during (GN E))

(backup)

+mn LP

+mb LP

73.

74.

75.

76.

77.

78.

79.

80.

81.

1-20

APPENDIX I

1/4. Annotation of Disparities between PAS-I and Manual Analysis for S3 Bl-100
on D+G=R.

Item

1- Excluded. PAS-I did not recognize any of the conversation with the

experimenter; Manual created a node labeled EXP. Not a relevant

difference.

10. Extra Manual Node. PAS-I does not have notion of a goal (here GET).

Goals play an anomolous role in manual PBG (is it an operator?), though

they are well defined at the level of the production system.

12. Extra Manual Backup, PAS-I merges the second (PC 2) -> (ODD R) with

the first one (ND9), thus doesn't see the backup.

13. Extra Manual Node. Part of error described in item 12.

22. Extra Manual Backup. Manual analysis took the non-use of 1,3,7,9, as opposed

to (ODD R) as an indication that line of attack has been abandoned.

Remark of EXP, ignored by PAS-I, was taken as reinforcing this

interpretation.

25. Extra Manual Backup. PAS-I pooled the two branches of the PBG, which

were still separate semantic elements, into a single protogroup, using

one (B33-35) as evidence for knowledge elements and the other (B36)

as evidence for (PC 6).

26. Extra Manual Node. Part of error described in item 25.

32. Extra Manual Node. PAS-I does not have the notion of a goal (see

item 10).

33. Extra Manual Node. PAS-I does not have the notion of (ASK X).

34. Extra Manual Backup. Since PAS-I does not recognize interaction with

the experimenter, it does not recognize a negative answer as termination

of a branch, hence as backup.

1-21

Excluded. Both PAS-I and Manual recognize the input of (EQ C7 0) and

its effect on the existing situation. PAS-I does not have the notion

of experimenter input (as in item 33 as well) and attributes this to

(RECALL C7) — which is as good as can be expected under the circum­

stances. Actually, proper assessment of PAS-I interpretation on this

item requires taking items 36 (TD) and 37 (FN) into account, which show

that the interpretation is in essential agreement with the manual analysis

Excluded. Manual backs up in two stages, inserting state (but not an

operator) at the point of realization of R / 3. PAS-I does the back up

all in one step. In the dual representation of the PBG, where nodes

are states of knowledge, it seemed to make sense to interpolate this

extra stage, but it is an anomolous feature of the manual PBG. PAS-I,

on the contrary, simply makes the return all in one step. Not a

relevant difference.

Extra PAS-I Backup. The return from C7 ^ 1 (hence R ̂ 3) terminates

before the node where (GN R) -» (PEQ R 3) , but after the node (GN R) ->

(PEQ R 1), since this is not contradicted. The next step reveals

that R > 5, hence a further backup to before (GN R) -> (PEQ R 1) is

required. In the manual analysis return is made immediately to the

latter point, since (GN R) ±§ a single node. The difficulty is that to

obtain a correct handling of (GN R) in co-occurrence with (TD R) PAS-I

has lost the unifying character of all the GN's, namely, that they

constitute a single process and that one cannot branch out of the middle

it. (The coroutine structure with TD is a different situation altogether).

1-22

Item

48. Extra Manual Node. The Linguistic Processor failed to obtain any

information for B62-65, thus obtaining no indication of (PC 2) -»

(EQ L 3) followed by (TD L 3) -> (NEQ). The manual analysis interpreted

this by means of a rather substantial inference, since B62-65 is

entirely free from content references.

49. Extra Manual Node. Part of error described in item 48.

50. Extra Manual Backup. Part of error described in item 48.

51. Extra Manual Node. Actually part of error described in item 48, though

it shows up later. TD is reflected in the verbalizations only when a

contradiction is detected; when the assignment is all right, usually

no overt indication occurs. The occurrence of confirming TD's is

inferred at the level of the production system by needing a uniform

decision rule in order to get TD evoked for all the contradictory cases.

However, in this case the manual analysis posited a TD that failed

(B66-71); hence, when the path was being retraced, it posited a TD

that was confirming, even though there was no direct evidence in the

verbal behavior.

54. Extra PAS-I Node. At least two joint errors occurred. The Linguistic

Processor misinterprets B72 and the Semantic Processor combines this with

the reference to L in B73 to derive the notion that because L is not

equal to something it is equal to something(else). This is combined

with inappropriate protogrouping, which puts (BECAUSE 3 + 3 IS 6) in

one protogroup and (+ 1 is 7) in the next. Bad topic segmenting would

appear to be involved as well (which, of course, is taken as a given in

this analysis). Thus, PAS-I grows an unknown operator (OP ?) with output

(EQ L 3). A final chance for assimilating the operator to the prior

operator (PC 2) which also produced (EQ L 3) is not seized, since the

1-23

Item

mechanism for responding to redundancies in the PBG (here two produc­

tions of (EQ L 3) in a row) is inadequate.

59. PAS-I and Manual Disagree on a Node. Partly the difficulty is that

PAS-I does not have goals, so cannot set up (GET C6). However, the

alternative that PAS-I comes up with (FC 0) is directly at variance

with any interpretation involving working backward from C6. The

failure of PAS-I (since there is no evidence at all for a concern with

Q) stems in part from not being concerned about the origin of the

letter in (FC *L). It should insist that there is a prior generation

of a letter *L before a subject will do (FC *L).

60. PAS-I and Manual both Agree and Disagree on a Node. They agree in

positing (PC 5) and in obtaining a result about E = 0. They disagree

in that PAS-I says the result is (PEQ E 0)(PEQ E 9) and Manual says

the result is (EQ E 0). Assessment of B80, on which (EQ E 0) is based,

indicates that it could just as well have been (PEQ E 0) . However, the

(PEQ E 9) arises from the merging of (PC 5) -> (PEQ E 9) from B83-85 with the

(PC 5) -> (PEQ E 0) from B78 and from B79-80. Thus PAS-I merged all

three indications of (PC 5) into a single node, whereas Manual kept

them all separate and detected backups (items 61 and 63) between each of

them. The difficulty is identical to that discussed in item 12, since it

developed nodes on the origin list for all three operations.

61. Extra Manual Backup. Part of error described in item 60.

62. Extra Manual Node. Part of error described in item 60.

63. Extra Manual Backup. Part of error described in item 60.

Item
64, PAS-I and Manual Disagree. PAS-I, having combined all its processing

of COL 5 to yield (PEQ E 0)(PEQ E 9), interprets the occurrence of (EQ C6 1)

at B85 as implying that E was determined to be 9, hence that this occurred

by an assignment (AV E 9), rather than by (PC 5). The production of

(EQ C5 1) was taken to be by (AV C5 1), partly because there was no

(PC 5) to impute it to, but also because PAS-I does not take into account

partial outputs within a protogroup. That is, the PBG is grown in

pulses where each ORIGIN-LIST-full is determined by processing all the

items from a protogroup. Thus, it did not determine the

origin of (EQ C5 1) given (EQ E9) (whence it would have posited another

(PC 5)), but did it in parallel with (EQ E 9), hence posited (AV C5 1).

This latter difficulty is remediable, but without clearing up the former

error (producing (PEQ E 9)) would still not behave correctly at this stage.

65. Extra PAS-I Node. Part of error described in item 64.

67. Extra Manual Backup. PAS-I merges the (PC 5) at B89 with the (PC 5) at B85

(ND46), thus not being able to see the backup, as well as not seeing the

second (PC 5). This is identical to the error at item 12.

68. Extra Manual Node. Part of the error described in item 67.

69. Extra PAS-I Node. PAS-I, in order to understand that the subject said

that C3 ̂ 1 (B94), posited a TD operation, working on (EQ C3 0), which

was produced by (IG C3). There are several difficulties here. First,

PAS-I uses TD with respect to carries and the manual analysis did not.

Second, since PAS-I was prepared to use (EQ C3 0) as input to (TD C3),

it is not clear that it should require TD to produce the answer again

in order to get (EVEN E) . The statement of (NEQ C3 1) could be taken

simply to be subsumed within (PC 3) . Third, however, PAS-I does not

treat (IG X) correctly, since its product (here (EQ C3 0)) should be assumed

to be a silent value, not one that is then continuously available.

Thus, (IG C3) -> (EQ C3 0) should at least be posited again. Of course,

1-25

Item

there is evidence (B94 again) that C3 obtains the value 0 not by

ignoring it but by a deliberate act of processing. This leads to an

alternative hypothesis, namely that the subject realizes that he has

been assuming the C3 = 0 and that this leads him to check it, so that

he does (PC 2) with (AEQ R 7) to obtain (EQ C3 0) again. This is the

inference made in the manual analysis, using the language of B95 as

additional evidence.

71. Excluded. An extra node is included in the new path, which is a copy

of (TD C3 1), in order to have that information included in the new

total knowledge state. This is true generally in repetition of nodes

at a backup; this is the only situation that occurred where more than

one node had to be copied.

73. Extra Manual Node. PAS-I does not have goals, hence could not posit

(CHK X) . However, this is also part of the error described in item 69.

74. Extra Manual Node. Part of the error described in item 69.

75. Extra Manual Node. PAS-I does not have goals, hence could not posit

(CHK . . .) . However, PAS-I also identifies the semantic elements con­

cerned with R with the prior elements in the PBG, thus not creating any

current action concerned with R.

76. Extra Manual Backup. Part of error described in 75 and 73, since a

backup cannot occur without the intervening elements existing.

78. Extra Manual Node. The Linguistic Processor fails to extract enough

information, though it does get (EQ E *D) . In B98 it does get a knowledge

element concerned with E, but then fails to infer from the article AN

that the knowledge element is undoubtedly (EVEN E) . This is the only

example in the present material of a specifically grammatical clue.

Since there is no way to complete the extracted knowledge element (i.e.,

1-26

Item

to determine the unknown *D), the element is simply abandoned by the

Origin Mechanism. The two following topic segments (B99, B100) simply

provide a guarantee that some operators were applied. PAS-I has no

provision currently for extracting such information at the linguistic

stage. Actually, the key knowledge for the manual analysis comes from

B101-103, which is beyond the limits of the test run.

79. Extra Manual Node. Part of the error described in 78.

80. Extra Manual Node. Part of the error described in 78 (though the manual

inference is quite tentative in any event).

1-27
APPENDIX I

.5. Analysis of Linguistic and Semantic Processors
by PAS-I for S3 Bl-100 on D4-G=R (see Figures 16, 17, and 18),
where se: semantic element, cn: connection, and sp: separation.

Linguistic Processor Semantic Processor
Bl Ok, complete, null
B2 Excluded
B3 Ok, complete, null
B4 Ok, complete, null

Bl-4
B5 Ok, incomplete, se

B5
B6 Ok, incomplete, se
B7 Ok, complete, el

B6-7
B8 Ok, incomplete, se

B8
B9 Ok, incomplete, cn

B9
BIO Ok, complete, el

BIO
Bll Ok, complete, el

Bll
B12 Ok, incomplete, cn

B12
B13 Ok, complete, el

B13
B14 Ok, incomplete, sp

B14
B15 Ok, complete, el

B15
B16 Ok, incomplete, se
B17 Ok, complete, null
B18 Ok, complete, el

B16-18
B19 Ok, complete, el

B19
B20 Ok, complete, el

B20
B21 Ok, incomplete, sp
B22 Ok, complete, el

B21-22
B23 Ok, complete, el

B23
B24 Ok, incomplete, se

B24
B25 Ok, incomplete, cn
B26 Ok, complete, el
B27 Ok, complete, el
B28 Ok, complete, el
B29 Ok, complete, el
B30 Ok, complete, el

Ok, complete, null, =

Ok, complete, el, +

Ok, complete, el, +

Ok, complete, null, +

Ok, incomplete, cn, =

Ok, complete, el, =

Missed, se, -

Ok, incomplete, cn, =

Ok, complete, el, =

Ok, incomplete, sp, =

Ok, complete, el, =

Ok, incomplete, cn, -

Ok, complete, el, =

Ok, incomplete, cn, -

Ok, complete, el, =

Ok, incomplete, se, =

Missed, cn, - (creating B24-25)

Linguistic Processor
1-28

Semantic Processor

B31 Excluded
B32 Ok, complete, el

B33 Ok, complete, el
B34 Ok, complete, el
B35 Ok, incomplete, se

B36 Ok, complete, el

B37 Ok, incomplete, sp
B38 Ok, complete, el

B39 Ok, incomplete, sp
B40 Ok, complete, null
B41 Ok, complete, null
B42 Ok, complete, el

B43 Ok, complete, el
B44 Ok, complete, el
B45 Ok, incomplete, se

B46 Missed, se

B47 Ok, complete, el

B48 Missed, se
B49 Ok, incomplete, cn
B50 Missed, se

B51 Ok, complete, el
B52 Excluded
B53 Ok, complete, el
B54 Ok, complete, null
B55 Ok, complete, el

B56 Ok, complete, el
B57 Ok, complete, el

B58 Ok, complete, el
B59 Ok, complete, el
B60 Ok, complete, el
B61 Ok, incomplete, se

B25-30 Ok, complete, el,
B25-30 Ok, complete, el,
B25-30 Ok, complete, el,
B25-30 Ok, complete, el,
B25-30 Ok, complete, el,
B25-30 Ok, complete, el,

B31-32 Missed, se, -

B33-35 Ok, complete, el, +

B36 Ok, complete, el, +

B37-38 Ok, complete, el, +

B39-42 Ok, incomplete, cn,

B43-45 Ok, complete, el, +

B46 Missed, se, =

B47 Ok, complete, el =

B48-49 Missed, se, =

B50 Missed, se, =

B51-55 Missed, se, -

B56-57 Ok, complete, el, =

B58-61 Ok, complete, el,
B58-61 Ok, complete, el,
B58-61 Ok, complete, el,
B58-61 Ok, complete, el,

1-29
Linguistic Processor Semantic Processor

B78

B79

B80

B81
B82

B83

B84
B85

B86
B87
B88

B89

B90

B91

Ok, incomplete, se

Missed, se

Ok, complete, el

Missed, se
Ok, complete, el

Ok, complete, el

Ok, complete, el
Ok, complete, el

Excluded
Ok, incomplete, se
Ok, incomplete, se

Ok, incomplete, se

Ok, complete, el

Ok, incomplete, sp

B62-65 Missed, se,

B66-69 Ok, complete, el, +

B70 Ok, complete, el, =

B71 Ok, complete, el, =

B72-73 Missed, se, =

B74-77 Ok, complete, el, =
B74-77 Ok, complete, el, =
K74-77 Ok, complete, el, =
H74-77 Ok, complete, el, =

273 Ok, complete, el, +

B79 Missed, se,, =

B80 Ok, complete, el, =

B81-82 Missed, se, =

B83 Ok, complete, el, =

B84-85 Ok, incomplete, se, -

B86-88 Missed, se, -

B89 Ok, complete, el, +

Missed, cn, -

B90-91 Ok, complete, null, +

B62 Ok, complete, el
B63 Ok, complete, el
B64 Ok, coitrplete, el
B65 Ok, incomplete, cn

B66 Ok, complete, el
B67 Ok, incomplete, se
B68 Ok, complete, el
B69 Ok, incomplete, se

B70 Ok, complete, el

B71 Ok, complete, el

B72 Missed, se
B73 Missed, se

B74 Ok, incomplete, sp
B75 Ok, complete, el
B76 Ok, complete, el
B77 Ok, complete, el

1-30

Linguistic Processor Semantic Processor

B92 Ok, complete, el

B93 Ok, complete, el
B94 Ok, complete, el

B95 Ok, incomplete, cn

B96 Ok, incomplete, cn

B97 Missed, sp

B98 Ok, incomplete, se

B99 Missed, sp
B100 Missed, cn

B92 Ok, complete, el, =

B93-94 Ok, complete, el, =

B95 Ok, complete, el, +

B96 Ok, complete, el, +

B97 Missed, sp, =

B98 Ok, incomplete, se,

B99-100 Missed, se, =

1-31

APPENDIX I
.6. Determination of unknowns by PAS-I

for S3 Bl-100 on D+G=R (see Table 10)

1. »COL +(DU)

2. *COL +(DU)

3. *C +(OM)

4. *D +(DU)

5. * D
F(DU)

6. *X *(DU)

7. *X +(DU)

8. *X +(DU)

9. *X +(DU)

10. *X +(DU)

11. *C +(DU)

12. *D +(DU)

13. *COL + (OM)

B12-14 ((IN 5 -*COL))
(IN D G)

((THEN) (IN 5 *COL))
(IN D 6)

B19-22 ((BECAUSEOF ((EQ *C 1)) ((ODD R)))
(EQ CI 1)

B23-30 ((EVEN (PLUS *D *D)))
(PLUS L L)

((BECAUSEOF ((ODD (PLUS * X 1))) ((PEQ R 1))))
^ (ODD 11)

((BECAUSEOF ((0$D (PLUS *X 1))) ((PEQ R 3))))
(ODD R)

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 5))))
(ODD R)

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 7))))
(ODD R)

((BECAUSEOF ((ODD (PLUS *X 1))) ((PEQ R 9))))
(ODD R)

B33-38 ((COND ((EQ C6 1)) ((EQ *C *D))))
(EQ C6 1)

B43-45 (PC *COL) from (PLUS 1 1)
(PC 2)

14. *L * (S P G) B47 (PC 6) from (EQC (PLUS 5 *L) 3)

15. *L -(LP) B50 ((NEQ *L *D) (LETTER R) (QUES))
(NEQ D *D)

16. *D • (none)

17. *L +(DU)

18. * L +(DU)

19. *L +(DU)

B56-61 ((OPIO (FN ((EQ *L 13))) ((NEQ *L 13)) ((NEQ R 3))
(EQ C7 1) (NEQ C7 1)

((BECAUSEOF ((GREATER R 5)) ((PEQ *L 7))))
(PEQ R 7)

20. *L +(DU)

21. *L +(DU)

22. *L +(DU)

23. *L +(DU)

24. *COL +(OM)

25. *L +(DU)

26. *X - (none)

27. *D -(none)

28. *D -(LP)

29. *L -(none)

30. *L -(none)

31. *C0L +(DU)

32. *L +(0M)

33. *L +(OM)
34. *D +(OM)
35. *C +(0M)

36. *C +(DU)

37. *L +(SPG)

38. *C +(OM)

39. *D -(none)

1-32

B66-70 (PC *COL) from (EQC (PLUS 3 3) 6)
(PC 2)

((BECAUSEOF ((EQ R 7)) ((EQ *L 7))))
(EQ R 7)

B71-73 (PC *COL) from (EQC (PLUS *X 1) 7)
(OP ?)

((BECAUSEOF ((NEQ L *D)) ((EQ L *D))))
(NEQ L *D) (EQ L 3)

B74-78 ((COND ((GREATER *L 9)) ((EQ G 1))))
(GREATER *L 9)

((COND ((NGREATER *L 9)) ((EQ G 2))))
(NGREATER *L 9)

((IN 0 *COL))
(IN 0 5)

B79-80 (PC *COL) from (EQC (PLUS *L *L) *D)
(PC 5)

B83-85 ((BECAUSEOF (AND ((EQ E 9)) ((EQ *C 1))) ((EQ *C 1))))
(EQ C5 1) (EQ C6 1)

B89 (PC 5) from (EQC (PLUS 0 *L) 0)

B92-96 ((BECAUSEOF ((NEQ *C 1)) ((EVEN E))))
(HEQ C3 1)

B98 ((IF) (EQ E *D))
(EQ E *D)

((BECAUSEOF ((GREATER R 5)) ((PEQ *L 9))))
(PEQ R 9)

(B56-61) ((MEQ *L 7 9))
(MEQ R 7 9)

((BECAUSEOF ((MEQ *L 7 9)) ((AEQ *L 7))))
(MEQ R 7 9) (AEQ R 7)

II-l
APPENDIX II

. 1. PAS-I Linguistic and Semantic Processor
Output for S3 B101-143 on D+G=R.

B181. E HPS TO BE AN EVEN NUMBER
(EVEN E)

<B181>. ((EVEN E))

B182. RND E + 0 = 0 —
(AND) (EQC (PLUS E 0) 0)

<B182>. ((RND) (EQC (PLUS E 0) 0))

B183. E CANNOT BE 9 .
(NEG) (EQ E 9)

<Bi03>. ((NEQ E 9))

B184. EXP : WHAT ARE YOU THINKING NOW ?
(EXP)

<B184>. ((?))

B1B5. I 'M GOING BACK OVER THESE L 'S HERE AND TRY TO THINK UHflT UOULO HAPPEN IF THEY
(ASSUME) (EQ L 9)

<B185>. ((AEQ L 9))

B186. RATHER —
(CORRECTION)

B187. LET >S SEE , HOW DID I ARRIVE AT THE POINT OF THAT ?
(QUES)

B188- THIS IS GOING TO BE A' LITTLE CONFUSING TO START TRYING TO TRACE BACK HERE .
(?)

B1B9. WHAT >S THE REASONING HERE ?
(QUES)

<B186-189>, ((?))

B118. I 'M THINKING IN THE BACK OF MY MIND WHAT THIS R WAS .
(EQ R *D)

<B118>. ((EQ R *D))

Bill- I DECIDED THAT R HAD TO BE GREATER THAN 5 ,
(GREATER R 5)

<Blii>. ((GREATER R 5))

B U 2 . BECAUSE THAT WAS GIVEN
(BECAUSE)

<Bli2>. ((?))

II-2

B113. AND R + G ,
(AND) (PLUS R G)

<B113>. ((AND) (PLUS R G))

B1I4. OR RATHER , D + G = R .
(CORRECTION) (EQC (PLUS D G) R)

<B114>. ((CORRECTION) (EQC (PLUS D G) R))

B115- I KNOW YOU 'RE WONDERING WHAT I 'M THINKING .
(?)

<Bii5>. ((?))

B116. I >I1 STILL TRYING TO LOOK AT THIS SECOND COLUMN HERE , WHERE E + 0 « 0 ,
(EQC (PLUS E 0) 0) (PLACE SECOND)

<Bii6>- ((EQC (PLUS E 0) 0))

BU7. AND A + A = E •
(AND) (EQC (PLUS A A) E)

<B117>. ((AND) (EQC (PLUS A A) E))

BU8. THEN AGAIN , THAT >S ASSUMING THAT N IS LESS THAN 3 ,
(IF) (SMALLER N 3)

B119- BECAUSE I DO N'T WANT TO BE CARRYING 1 INTO THAT E + 0 COLUMN .
(BECAUSE) (NEG) (CIN 1 (PLUS E 0))

<B118-119>. ((BECAUSEOF ((NEQ C5 1)) ((SMALLER N 3))))

B12B. I THINK I 'LL TRY ONCE MORE HERE —
(?)

B121. JUST TRYING TO SORT OF BLUFF MY WAY THROUGH THIS .
(?)

<B128-121>. ((?))

B122. THAT IS , JUST ASSUME SOME VALUE FOR A ,
(ASSUME) (LETTER A)

<B122>. ((OPIO (FA (EQ E *D)) NIL ((EQ A *D))))

B123. SO I CAN GET THAT E .
(THEREFORE) (LETTER E)

<B123>. ((AEQ A *D))

B124. I CAN DO BETTER THAN THAT •
(?)

B125, I —
(?)

<B124-125>- ((?))

II-3

B126. I KNOW THAT E + 0 HAS TO EQUAL 0 ,
(EQC (PLUS E 0) 0)

<Bi26>. ((EQC (PLUS E 0) 0))

B127. AND , AT MOST , 0 IS GOING TO BE 9 ;
(AND) (ASSUME) (EQ 0 9)

B128. IN WHICH CASE E WOULD BE ZERO .
(THEREFORE) (EQ E 0)

<B127-128>. ((BECAUSEOF ((AEQ 0 9)) ((EQE8))))

B129. IF E IS ZERO .
(IF) (EQ E 8)

<B129>. ((IF) (EQ E 8))

B138. A + A —
(PLUS A A)

<B138>. ((PLUS A A))

B131. BUT A CAN N'T EQUAL 5 —
(NEG) (EQ A S)

<B13i>. ((NEQ A 5))

B132. THAT IS , A + A WOULD EQUAL E
(EQC (PLUS A A) E)

<B132>. ((EQC (PLUS A A) E))

B133. AND IF E WERE ZERO ,
(AND) (IF) (EQ E 8)

B134. A WOULD HAVE TO EQUAL 5 ;
(EQ A 5)

<B133-134>. ((COND ((EQ E 8)) ((EQ A 5))))

B135. BUT A CAN N'T EQUAL 5 .
(NEG) (EQ A 5)

<B135>. ((NEQ A 5))

B136, AND ~
(AND)

B137. SEE ~
(?)

<B136-137>. ((?))

B138. I DECIDED THAT R HAD TO BE AN ODD NUMBER
(ODD R) '

B139. AND HAS TO BE GREATER THAN 5 ,
(AND) (GREATER *L 5)

II-4

BUB. WHICH LEAVES ONLY 7
(THEREFORE) (DIGIT 7)

B141. AND 9 .

(PLS 9)

<B138-14i>. ((BECAUSEOF (AND ((ODD R)) ((GREATER #L 5))) ((PEQ *L 7))))

<B13S-141>. ((BECAUSEOF (AND ((ODD R)) ((GREATER *L 5))) ((PEQ *L 9))))

<B138-14i>. ((MEQ *L 7 9))

B142. I THINK THAT REASONING IS CORRECT .
(?)

B143. WELL , AT WORST I HAVE ONLY TWO SOLUTIONS TO WORK ON IN THAT CASE , STARTING FROM THAT POINT
(?)

<B142-143>. ((?))

II-5
APPENDIX II

.2. PAS-I Group Processor and PBG Mechanism
Output for S3 B101-143 on D+G=R.

B181-183 PROTOGROUP

ELEMENTS : (((EVEN E>)
((AND))
((NEQ E 9)))

OPERATOR : (PC 5) FROM (EQC (PLUS E 0) 0)

ORIGIN LIST : ((ND51 ((NEQ C3 1)) (EVEN E)))

((PC 3) ((NEQ C3 1)) (EVEN E)) RECOGNIZED AS NDSi

ORIGIN LIST : ()

ORIGIN LIST : (((TE (NEQ E 9) H) ((EVEN E)> (NEQ E 9)))

(TE (NEQ E 9)) GROWN AS ND52
(NEQ E 9) GROWN AS K47

(PC 5) GROWN AS ND53

B185 PROTOGROUP

ELEMENTS : (((AEQ L 9)))
OPERATOR : ()

ORIGIN LIST : (((AV L H) NIL (AEQ L 9)))

(AV L) GROWN AS ND54
(AEQ L 9) GROWN AS K48

PBG CONFLICT : (AEQ L 9) VS (EQ L 3)

PBG CONFLICT : (AEQ L 9) VS (EQ L 3)

B118-1U PROTOGROUP

ELEMENTS : (((EQ R *D))
((GREATER R 5»)

OPERATOR : ()

((EQ R *D>) IS ((EQ R 7))

ORIGIN LIST : (((AV R H) ((MEQ R 7 9)) (AEQ R 7)))
(AV R) GROWN AS NDS6
(AEQ R 7) GROWN AS K49

ORIGIN LIST : ((ND31 ((EQ D 5) (EQ C7 8)) (GREATER R 5)))

((PC 6) ((EQ D 5) (EQ C7 8)) (GREATER R 5)) RECOGNIZED AS ND31

B113 PROTOGROUP

ELEMENTS : (((AND)))
OPERATOR : (PC *COL) FROM (PLUS R G)

ORIGIN LIST : ()

II-6

B114 PROTOGROUP

ELEMENTS : (((CORRECTION)))

OPERATOR : (PC 6) FROM (EQC (PLUS 0 G) R)

ORIGIN LIST : ()

(PC 6) GROWN AS ND57

B116 PROTOGROUP

ELEMENTS : ()

OPERATOR : (PC 5) FROM (EQC (PLUS E 0) 0)

(PC 5) GROWN AS N058

B117-119 PROTOGROUP

ELEMENTS : (((RND))
((BECAUSEOF ((NEQ C5 1)) ((SMALLER N 3)))))

OPERATOR : (PC 3) FROM (EQC (PLUS A A) E)

ORIGIN LIST : ()

ORIGIN LIST : (((OP ?) ((NEQ C5 i>> (SMALLER N 3)))

(NEQ C5 1) ORIGIN UNKNOWN
(OP ?) GROWN AS N059
(SMALLER N 3) GROWN AS K58

(PC 3) GROWN AS ND68

B122-123 PROTOGROUP

ELEMENTS : (((OPIO (FA (EQ E *D)) NIL ((EQ A *D))))
((AEQ A *D)))

OPERATOR : ()

((OPIO (Ffl (EQ E *D)) NIL ((EQ A *D)))) IS
((OPIO (FA (EQ E *D)) NIL ((EQ A *D))))

ORIGIN LIST : (((FA (EQ E #0)) NIL (EQ A #0)))

(FA (EQ E *D)) GROWN AS ND61
(EQ A #0) GROWN AS K51
(FA (EQ E *D)) CANNOT BE GROWN

((AEQ A *D)) IS ((AEQ A *D))

ORIGIN LIST : ()

B126-129 PROTOGROUP

ELEMENTS : (((BECAUSEOF ((REQ 0 9)) ((EQ E 8))))
((IF) (EQ E 0)))

OPERATOR : (PC 5) FROM (EQC (PLUS E 0) 0)

ORIGIN LIST : (((AV 0 H) NIL (AEQ 0 9))
((AV G H) NIL (AEQ G 2 H))

II-7
(NDi NIL (EQ 0 5))
((PC 6 H) ((flEQ G 2 H) (EQ D 5) (EQ R 7)) (EQ C6 6 H>>
((PC 5) ((EQ C6 0 H) (AEQ 0 9)) (EQ C5 0 H))
((PC 5) ((EQ C5 8 H) (AEQ 0 9)) (EQ E 8)))

(AV 0) GROWN AS ND62
(AEQ 0 9) GROWN AS K52

(AV G) GROWN AS ND63
(AEQ G 2) GROWN AS K53

((RECALL D) NIL (EQ 0 5)) RECOGNIZEO AS NDI

(PC 6) GROWN AS ND64
(EQ C6 8) GROWN AS £54

(PC 5) GROWN AS N065
(EQ C5 8) GROWN AS K55

(PC 5) GROWN AS ND66
(EQ E 8) GROWN AS K56

ORIGIN LIST : ((ND66 ((AEQ 0 9) (EQ C5 8)) (EQ E 8)))

((PC 5) ((AEQ 0 9) (EQ C5 8)) (EQ E 8)) RECOGNIZED AS ND66

B138-135 PROTOGROUP

ELEMENTS : (((NEQ A 5))
((EQC (PLUS A A) E))
((COND ((EQ E 8)) ((EQ A 5))))
((NEQ A 5)))

OPERATOR . (PC 3) FROM (PLUS A A)

ORIGIN LIST : ((NDI NIL (EQ D 5))
((TD A 5 H) ((EQ D 5)) (NEQ A 5)))

((RECALL 0) NIL (EQ D 5)) RECOGNIZED AS NDI

(TD A 5) GROWN AS ND67
(NEQ A 5) GROWN AS K57

ORIGIN LIST : ()

ORIGIN LIST : (((AV C4 H) NIL (AEQ C4 i H))
((PC 3) ((AEQ C4 i H)) (COND ((EQ E 8)) (EQ A 5))))

(AV C4) GROWN AS ND68
(AEQ C4 1) GROWN AS K58

(PC 3) GROWN AS ND69

(COND ((EQ E 8)) (EQ A 5)) GROWN AS K59

ORIGIN LIST : ((ND67 ((EQ D 5)) (NEQ A 5)))
((TD A 5) ((EQ D 5)) (NEQ A 5)) RECOGNIZED AS ND67

Bi38-14i PROTOGROUP

ELEMENTS : (((BECAUSEOF (AND ((ODD R)) ((GREATER *L 5))) ((PEQ *L 7))))
c I S ^ H ((0 D D R)) <(CREflTER *L 5»> <«» £ 2 ! »

OPERATOR s ()

II-8

((BECflUSEOF (AND ((ODD R>) ((GREATER *L 5))) ((PEQ *L 7)))) IS
((BECAUSEOF ((ODD R) (GREATER R 5)) ((PEQ R 7).)))

ORIGIN LIST : ((ND32 ((ODD R) (GREATER R 5)) (PEQ R 7)))

((GN R) ((ODD R) (GRERTER R 5)) (PEQ R 7)) RECOGNIZED AS ND32

((BECAUSEOF (AND ((ODD R)) ((GREATER *L 5))) ((PEQ *L 9)))) IS
((BECAUSEOF ((ODD R) (GREATER R 5)) ((PEQ R 9))))

ORIGIN LIST : ((ND33 ((PEQ R 7) (GREATER R 5) (ODD R>) (PEQ R 9)))

((GN R) ((PEQ R 7). (GREATER R 5) (ODD R)> (PEQ R 9)) RECOGNIZED AS ND33

((MEQ *L 7 9>> IS ((MEQ R 7 9))

ORIGIN LIST : ((ND34 ((PEQ R 9) (PEQ R 7)) (MEQ R 7 9)))

((GN R) ((PEQ R 9) (PEQ R 7)) (MEQ R 7 9)) RECOGNIZED AS ND34

PAS-I FINISHED ***

II. 3.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

17.

18.

19.

20.

Comparison between
B101-143 on D+G=R.

PAS-I

B101-103 (=ND51

ND52

II-9
APPENDIX II

PBG of PAS-I and Manual Analysis for S3

B105

11. B114

12.

13.

14. B116

15.

16. B117-119

B120-123

ND53

ND54

ND55

B110-111 ND56

(=ND31)

Analysis

(PC 3) -* (EVEN E)

(TE (NEQ E 9)) ->
(NEQ E 9)

(PC 5)

=ND55 (backup)

(AV L) -» (AEQ L 9)

(AV R) -» (AEQ R 7)

(PC 6) -*
(GREATER R 5)

Manual Analysis

B101-102 (PC 5) -* (PEQ E 0 9)

B103 (TD E 9) -» (NEQ E 9)

B103.1 (backup)

B104-105 (AV L) -> (AEQ L 9)

B106 (PC 2) -» (EQ R 9)

B106.1 (TD R 9) -» (NEQ R 9)

B106.2 (backup)

B107 (backup)

B110 (GET R)

=^n OM

«n

=^n OM.GPBG

=b

=n

+mn LP

+mn LP

+mb LP

+mb LP

LP,-C

ND57 (PC 6)

(no backup-up)

ND58 (PC 5)

ND59 (OP ?)
(SMALLER N 3)

ND60 (PC 3)

(no backup)

ND61 (FA (EQ E *D))

Bll (PC 6) -»
(GREATER R5)

B114.1 (backup-up)

B115 (PC 3) -» (EVEN E)

B116 (PC 5) ->
(EQ E 0)(?EQ C5 0)

B117.1 (GET (EQ C5 0))

BUS (PC 4) -»
(SMALLER N 3)

B119.1 (backup)

B120-122 (AV A) -* (AEQ A x)

B123 (PC 3) -» (EQ E y)

=^n -C

-hnb -C,LP

=^n OM

=4n OM

+mn -C

==n OM

=^n OM

+mb GPBG

=5̂ n -C,OM

+mn -C,OM

11-10
PAS-I Analysis

21.

37.

38.

(=ND32)

(=ND33)

(=ND34)

B123.1

B124 (no backup)

ND62 (AV 0) (AEQ 0 9) B125-127

ND63 (AV G) -» (AEQ G 2)

ND64 (PC 6) -> (EQ C6 0)

ND65 (PC 5) -» (EQ C5 0)

ND66 (PC 5) -» (EQ E 0) B128

B129

ND67 (TD A 5) -» (NEQ A 5) B131

(no backup) B131.1

ND68 (AV C4) -> (AEQ C4 1)

ND69 (PC 3) -> (COND B132
((EQ E 0))((EQ A 5)))

(=ND67) (TD A 5) -> (NEQ A 5) B135

Manual Analysis

(PC 5) -» (? 0)

(backup)

(AV 0) -> (AEQ 0 9)

(no backup) B136

B137-138

B139

(GN R) -> (PEQ R 7)

(GN R) -» (PEQ R 9)

(GN R) -*
(MEQ R 7 9)

B140-141

B142-143

+mn -C,OM

+mb GPBG

=n

+pn OM

+pn OM

+pn OM,GPBG

(PC 5) -» (EQ E 0) =n

(PC 3) -> (EQ A 5) +mn OM

(TD A5)-» (NEQ A 5) =n

(backup) +mb GPBG

+pn OM

(PC 3) -» (EQ A 5) =^n Minor

(TD A 5) -» (NEQ A 5) +mn GPBG
(backup)

(PC 2) -» (ODD R)

+mb GPBG

+mn -C.GPBG

(PC 6) -* (GREATER R 5) +mn -C,GPBG

(GN R) -» (MEQ R 7 9) +mn -C,GPBG

(AV R) ->
(AEQ R 7) (AEQ R 9)

+mn -C,GPBG

B143.1 (backup-up)

22. B126-129

23. B126-129

24.

25.

26.

27.

28.

29. B130-135

30.

31.

32.

33.

34.

35. B138-141

36.

11-11

APPENDIX II

1. B101-102. There is agreement on the occurrence of (PC 5), though PAS-I does
not get much else.

(1) The error in order, putting ND53 (PC 5) after ND52 (TE) comes from the

fact that PAS puts all hypothesized elements before the element for

which there is direct information. PAS does not see any connection

between the PC and the TE, so has no way to order them.

(2) The manual inference that (PC 5) -» (PEQ E 0 9) is based on four
pieces of evidence:

(a) (EVEN E) is obtained from (PC 3) (PAS gets this).

(b) B102 implies (PC 5) (PAS gets this).

(c) B103 implies S3 got a contradition, hence TD

(PAS gets this too, although it calls it TE, rather than TD).

(d) The contradiction comes from (EVEN E). But why select out 9?

Only if one had concluded from (PC 5) that E could be 9.

Therefore the right inference was to (PEQ E 9). There is no

evidence that the subject actually at that point derived

(PEQ E 0 9) . It is possible that he derived (EQ E 9), but

this is not in accord with reality, nor with later acceptance

of (EQ E 0) . In fact, one can give an argument that (PEQ E 0 9)

is probably wrong. If that had been the inference, then what

should have followed was the inference to (EQ E 0). Instead,

the subject backed way down.

(3) PAS hypothesizes the TE in order to account for the (NEQ E 9) ; however,
it does not define TE (nor TD) in such a way as to require inputs to
it, which would force it to see (PC 5) as generating some information.
Hence (PC 5) hangs unattached.

Annotation of Disparities between PAS-I and Manual Analysis
for S3 B101-143 on EH-G=R. 7

11-12

(4) PAS does not in general ask the question: given that an operator

occurred; what might it have produced that would fit into what is

happening.

2. B103. TE is simply a more generalized version of TD (as it was originally

defined for PAS); hence there is agreement here.

3. ND53. See discussion under line 1.

4. B103.1. This is an example where leaving the node at the end of the exploration

is wrong. (AEQ L 9) is not done and then it is discovered that it conflicts with

(AEQ L 3) ; 9 becomes free due to (NEQ E 9) and the situation is backed up to start

over.
i>-9. .B106-109. The manual analysis argues as follows:

(1) (AEQ L 9) leads to processing column 2, (PC 2), which leads to (EQ R 9),

which is in contradiction to (AEQ L 9), so that it will be seen by

S3 via TD.

B106 RATHER is confirming evidence that the contradiction was

seen.

(2) This is a peculiar contradiction, in that it leads to rejecting (EQ R 9) ,

which then relieves the contradiction, making 9 free again. In addition

the subject meant to assign 9 to R (AEQ R 9) and not to L. But R being
9 has just been implicated in a contradiction.

(3) All the above leaves the subject somewhat confused (no model of what it

means internally to be confused, just a judgment that the situation is

confusing).

B107 and B108 clearly indicate confusion on the subject's part,

which is taken as confirming evidence.

II- 13

The topic segments B106, B107 and B108 are too indefinite for the Linguistic

Processor to obtain anything. Therefore, PAS simply attempts no other inferences.

To obtain (PC 2) (TD R 9) it must work forward assuming that certain processing

is obvious (see Newell and Simon, 1972, for a discussion of the notion of obvious­

ness) . This it is not yet prepared to do. To get it by working backward, it would

have to detect a contradiction directly from RATHER and then try to work back­

wards to the origin. This is a conceivable route, but is not yet available.

10. B110-111. There are two failures here. One is that PAS does not have the

concept of a goal, thus cannot obtain (GET R) . Related to this is that the

Linguistic Processor does not pick up the question character of B110, and so

creates only (EQ R *D) . The second error stems from the failure to get TD on

(AEQ L 9) ; thus, PAS sees R as determined to be 7 (from PEQ R 7 9) and (AEQ L 9)).

Thus hypothesizes an (AV R) where it should not have (and would not have) .

11. B111-B114. Both PAS and the manual analysis get (PC 6), though PAS does

not hang onto (GREATER R 5) but assimilates it back to a prior node. This

reveals a general deficiency of PAS, that it does not consider that a subject

may repeat a path that is still a separate processing. This relates to the

recognition mechanism being too undiscriminating. The manual analysis glosses

over the the slip at B113 (R + G) and sees Blll-114 as a single occurrence of

PC; PAS, on the other hand, takes this as a separation.

12. B114.1 The manual analysis sees that subject as having gone back, reviewed

the derivation of R and then returned to the advanced point in the PBG. This

kind of movement is not yet admitted by PAS. A small part of this is reflected

in the recognition mechanism, but the most important part is simply that PAS still

assumes continuous movement on the tree, with the only breaks being backing down.

13. B115. The manual analysis takes B115-117 together to infer (PC 3) and (PC 5),

decid ing on the order on the basis of B118-119. PAS gets both of these PC's

11-14

(at lines 17 and 14 respectively), but takes the order as it is given in the

topic segments. Actually, the evidence isn't really good either way, e.g., it

could have gone (PC 5), (PC 3), (PC 5) and then (PC 4) just as well as (PC 3) (PC 5)

(PC 4). It is a little difficult to get from (PC 3) to (PC 4), since the

connection is via C5 and the (PC 4) involves C5 as well.

14-15. B116-117.1. Both get the (PC 5). There is nothing direct in the topic

segment that indicates the output of PC. The manual analysis works backward

from B118: N < 3 implies C5 = 0 implies E = 0 implies this must have come from

(PC 5). Since (below) PAS fails to get the operator, getting on (OP ?) instead

of (PC 4), it does not run through the same path seeking the origin of the inputs

to (PC 4) that produced (SMALLER N 3), etc.

16. B117-119. It is clear that PAS had available the information needed to get

(PC 4), but currently PAS insists on stringent criteria of explanation. Given

column 4 is the only column with N and given that an output was produced, PAS still

will not propose (PC 4) if it cannot see exactly how the inference came about.

This deficiency is easily corrected, though it is unclear how many errors of the

other kind (stating a given column when it shouldn't be) would be generated, or

whether it is possible to develop intermediate criteria.

PAS also declares (NEQ C5 1) to be of unknown origin. This is due to a

lack of hypotheses about where negative information comes from. PAS should

know (but doesn't) to try transforming NEQs on carries to EQs on their comple­

ments (if the values are 0 or 1) .

17. ND60. See discussion on item 13.

18. B119.1. The manual analysis infers a backup from the language of B120 and

the fact that nothing in the subsequent period rests on (EQ E 0) , (EQ C5 0) or

(SMALLER N 3). PAS misses the language entirely. This is first of all an

deficiency in the Linguistic Processor, but more generally, there are no

mechanisms yet in PAS for taking account of explicit backup indicators. That is,

11-15

PAS infers backup only from implicit information about contradictions and
similarities in the PBG.

19-21. B120-123. The manual analysis interpreted the subject as going through

a processing with symbolic variables, essentially a planning sort of operation.

PAS found a way of saying the essential matter, namely, the subject's being

concerned that A being equal to some digit is the determiner of E being equal

to some digit: (FA (EQ E *D)) -H> (EQ A *D) . This rates some credit. On the

other hand, it clearly didn't get as far as the manual analysis, namely to see

what processing was producing that, namely (PC 3) . The assumption that (PC 5)

also occurred is based on assuming that the subject will proceed with the proc­

essing he has been doing (and this is explicitly stated in B120). Actually,

the utterances from B126-127 would appear to be support. PAS, as discussed

earlier, does not run forward in time, and could only get to (PC 5) if something

has issued from it that would have demanded an origin. This is a deficiency of

the current scheme. A second concern about the behavior of PAS here is why it

did not get (AV A), since B122 is quite clear. This goes back to a rule in the

Semantic Processor that introduces (OPIO ...) from (ASSUME) (LETTER A) , (THEREFORE)

(LETTER E) . This maintains the knowledge about assumption in B123, (AEQ A *D),

which subsequently disappears when there is not way to determine the *D. (Recall

that PAS perfers to throw away information if it cannot make absolutely definite

sense out of it -- a somewhat extreme and inappropriate form of behavior.) It is

not clear that the translation into (OPIO ...) is totally appropriate.

22. B124-129. For the manual analysis B124 provides direct linguistic indication

of backup (I CAN DO BETTER THAN THAT) , which, as noted already, PAS is insensi­

tive to. In addition, for the manual analysis there is the repeated processing

of (PC 5) and (PC 3) that occurs subsequently; these are in the opposite order

11-16

as before (when 3 was first, then 5), but this is to be explained by the reversal

on what is assumed (A then, 0 here). PAS misses this, but does pick up the

indication of inconsistency in the assignment of 9 and 0 when it is already

assigned to L. Thus, it gets the backup, but for the wrong reason, since

(AEQ L 9) should not be there.

23-27. B126-129. Both the manual analysis and PAS pick up the production of

(EQ E 0) by (PC 5) (item 27) . The manual analysis sees this as following directly

upon (AEQ 0 9). PAS, on the other hand, cannot generate (EQ E 0) from (PC 5) and

(AEQ 0 9) alone without hypothesizing the values of a carry, whose origin must

then also be explained. This leads to a fantasy in which the key link is

(EQ C6 0) (from which follows (EQ C5 0) by (PC 5)), involving (PC 6) and (AV G) .

Actually, PAS is right in not deriving (EQ E 0) and the manual analysis is

deficient. The probably correct path is:

(PC 5) -> (PEQ E 0 9)

(GN E) -> (PEQ E 9)

(TD E 9) -) (NEQ E 9) (because (EQ 0 9)

(GN E) -> (EQ E 0)

That is, mixed up in the processing of (PC 5) is the knowledge of exclusion of

9 for E from 9 from 0 and this is not part of the subprocess that is PC

11-17

28-33, B130-135. The utterances are quite clear on what happened: the subject

takes (EQ E 0) and processes column 3, getting (EQ A 5), which leads to a con­

tradiction since (EQ D 5). The subject repeats the calculation, and this is

done deliberately enough so there is little doubt that it is a repetition and

not just a second reporting. Each step of the way has a topic segment clearly

devoted to it. PAS has no difficulty with the general interpretation of the

parts, but scrambles everything together. There are several deficiences involved.

(1) Currently TD does not insist that its negated element, here (NEQ A 5),

be generated by some operator. In essence it is enough that from
(EQ D 5) and TD (NEQ A 5) follows.

(2) There is no mechanism yet for detaching the conditional expression,
given that its antecedent is satisfied.

(3) PAS simply puts together all the identical elements in the vicinity,

so that the two occurrences of (NEQ A 5) are not taken as separate,

and the occurrence of (PLUS A A) and (EQC (PLUS A A)) are not taken

as separate. In general such order and repetition indifference is

functional, since the subject often says things in varying orders

and with inadvertent repetitions. Here the strategy backfires.

Items (1) and (2) are relatively minor; item (3) is more major, since changing

the ordering and repetition rules will have any side effects.

34-38. B136-B141. PAS ends its PBG at the end of this branch, while the manual

analysis sees a backup to a review of the derivation of R and then a backup-up

to return to the consideration of E. PAS picks up the information from the text

adequately, and sees the relations between its parts:

11-18

((BECAUSEOF ((ODD R) (GREATER R 5))((PEQ R 7))))

((BECAUSEOF ((ODD R) (GREATER R 5))((PEQ R 9))))

Its failure not to take this to the same conclusion as the manual analysis st

from two deficiencies:

(1) It does not see the use of (ODD R) and (GREATER R 5) as requiring

regeneration. Thus, PAS does not have the idea of reviewing and

recomputing data already in the PBG.

(2) Though it does imply the occurrence of (GN R) for the above,

corresponding to the manual analysis (line 37), it recognizes

it as ND34 and assimilates it into the tree. The identification

is in fact correct, but, again, the lack of a notion of repeating

a processing keeps it from becoming explicit.

III-l
APPENDIX III

III.l. PAS-I Linguistic and Semantic Processor
Output for S4 Bl-128 on D+-G=R.

Bl. EXP : NOW — NOW THAT YOU ARE BECOMING SO — SO GOOD AT THIS —
(EXP)

B2. HU —
(?)

B3. EXP : YOU MUST REMEMBER THAT WE WANT TO HEAR EVERYTHING THAT YOU THINK .
(EXP)

B4. UM — HM •
(?)

B5. EXP : ESPECIALLY WHEN YOU DECIDE TO — NOT TO DO SOMETHING AND GO ON TO SOMETHING ELSE •
(EXP)

B6. YES .
(YES)

B7. EXP : HERE IS ANOTHER PROBLEM , I WILL GIVE YOU THAT D IS 5 IN THIS PROBLEM . PLEASE TALK (EXP)

<Bi-7>. ((?))

B8. WELL D —
(LETTER D)

<B8>. ((LETTER 0))

B9. GIVING D 5
(EQ D 5)

BIO. AUTOMATICALLY MAKES T A' ZERO ,
(THEREFORE) (EQ T 8)

<B9-18>. ((BECAUSEOF ((EQ D 5)) ((EQ T 8))))

Bll. COULD YOU MAKE T A' ZERO ?
(EQ T 8) (QUES)

<Bii>. ((EQ T 8))

B12. EXP : T IS A' ZERO .
(EXP)

<B12>. ((?))

B13. BECAUSE 5 PLUS 5 IS EQUAL TO 18 ,
(BECAUSE) (EQC (PLUS 5 5) 18)

<B13>. ((BECAUSE) (EQC (PLUS 5 5) 18))

B14. AND THAT >S SIMPLE FROM THE PROBLEM .
(AND)

B15. AND LOOKING AT THE LEFT MOST COLUMN
(AND) (PLACE LEFT)

<B14-15>. ((?))

B16. YOU CAN SEE THAT R IS EITHER 1 OR 2 GREATER THAN D
(MEQR R (PLUS D 1) (PLUS 0 2)) '

III-2

<B16>. ((MEQR R (PLUS 0 i) (PLUS 0 2)))

B17. BUT THAT DOES N'T SEEM TO HELP VERY MUCH AT THIS POINT
(NEG)

<B17>. ((?))

B18. IN THE SECOND COLUMN HAVING THE TUO L 'S EQUAL ,
(EQ L *D) (PLACE SECOND)

<B18>. ((EQ L *D))

B19. AND ALSO THE TUO A 'S EQUAL IN THE THIRD COLUMN ,
(AND) (EQC (PLUS A A) *D) (PLACE THIRO)

<B19>. ((AND) (EQC (PLUS A A) *D))

B28. DOES N'T SEEM TO HELP TOO MUCH AT THIS POINT EITHER .
(NEG)

<B28>- <(?))

B21- KNOWING THAT THE TUO L 'S ARE EQUAL ,
(EQC (PLUS L L) *D)

<B21>. ((EQC (PLUS L L) *D))

B22. IF I JUST TOOK A' GUESS AT ONE OF THE L 'S ,
(IF) (ASSUME) (LETTER L)

<B22>. ((IF) (AEQ L *D>)

B23, THIS —
(?)

B24. THIS MIGHT GIVE ME SOME INSIGHT INTO HOU ABOUT -
(?)

B25. HOU TO GO ABOUT THE PROBLEM .
(?)

<B23-25>. ((?))

B26. SO JUST TO GUESS L A' 3 COULD BE SOME HELP .
(THEREFORE) (ASSUME) (EQ L 3)

<B26>- ((THEREFORE) (AEQ L 3))

B27. COULD YOU MAKE L A' 3 ?
(EQ L 3) (QUES)

<B27>. ((EQ L 3))

B28. EXP : L IS 3
(EXP)

<B28>. ((?))
III.3

B29. THAT WOULD MAKE R A* 6 .
(THEREFORE) (EQ R 6)

<B29>. ((THEREFORE) (EQ R 6))

B30. WOULD YOU MAKE R A' 6 ?
(EQ R 6) (QUES)

<B38>. ((EQ R 6))

B31. EXP : R IS 6 .
(EXP)

<B31>, ((?))

B32. AND THAT MUST MAKE G A' 1 ,
(AND) (THEREFORE) (EQ G 1)

B33. BECAUSE G MUST BE EITHER A' ZERO
(BECAUSE) (EQ G B)

B34. OR ft' i ,
(OR) (DIGIT 1)

<B32-34>. ((BECAUSEOF ((MEQ G O D) ((EQ G 1))))

B35. FOR D PLUS G TO BE EQUAL TO R .
(EQC (PLUS D G) R)

<B35>. ((EQC (PLUS D G) R))

B36. AND YOU KNOW THAT T IS ZERO .
(AND) (EQ T 8)

B37. SO THAT MAKES G A* 1 .
(THEREFORE) (EQ G i)

<B36-37>. ((BECAUSEOF ((EQ T 8)) ((EQ G 1))))

B38. EXP : G IS 1 .
(EXP)

<B38>. ((?))

B39. AND TO HAVE 0 PLUS E EQUAL TO 0 ,
(AND) (EQC (PLUS 0 E) 0)

<B39>. ((AND) (EQC (PLUS 0 E) 0))

B48. THIS MEANS THAT E IS 1 LESS —
(EQR *L (PLUS E i)>

<B48>. ((EQR *L (PLUS El)))

B4i. IT MEANS THAT E MUST BE 9 .
(THEREFORE) (EQ E 9)

III-4

<B4i>. ((THEREFORE) (EQ E 9))

B42- UOULD YOU MAKE E A' 9 ?
(EQ E 9) (QUES) -

<B42>. ((EQ E 9))

B43. EXP : E IS 9 •
(EXP)

B44. ALSO IN ROBERT .
(?)

<B43-44>. ((?))

B45. AND THAT MAKES THE GUESS OF L A' 3 A' BAD GUESS
(AND) (NEG) (EQ L 3)

<B4S>. ((AND) (NEQ L 3))

B46. BECAUSE THE TWO A *S CANNOT BE EQUAL TO 9
(BECAUSE) (NEG) (EQC (PLUS A A) 9)

<B46>. ((BECAUSE) (NEG) (EQC (PLUS A A) 9))

B47. SINCE THEY MUST BE A' UHOLE DIGIT
(BECAUSE)

<B47>. ((?))

B48. SO L MUST BE SOME OTHER DIGIT GREATER THAN 5 ,
(THEREFORE) (GREATER L 5)

<B48>. ((THEREFORE) (GREATER L 5))

B49. IN ORDER TO HAVE THE TWO A 'S EQUAL TO 9 .
(IF) (EQC (PLUS A A) 9)

<B49>. ((IF) (EQC (PLUS A A) 9))

B58. THE TWO —
(?)

<B58>. ((?))

B51- A MUST BE 4
(EQ A 4)

<B51>. ((EQ A 4))

B52. IN ORDER TO HAVE THE TWO ADD TO 9 •
(IF) (IN 9 *COL)

<B52>. <(IF) (IN 9 *COD)

III-5

B53. WOULD YOU MAKE A A> 4 ?
(EQ A 4) (QUES)

<B53>. ((EQ A 4))

B54. EXP : A IS 4 .
(EXP)

<B54>. ((?))

B55. AND KNOWING THAT THE TWO L 'S ADO TO SOME NUMBER GREATER
(AND) (GREATER (PLUS L L) 18)

<B55>. ((AND) (GREATER (PLUS L L) 18))

B56. L MUST BE EITHER 6 ,
(EU L 6)

B57. 7 ,
(DIGIT 7)

B58. OR 8 .

(OR) (DIGIT 8)

<B56-58>. ((PEQ L 6))

<B56-58>. ((PEQ L 7))

<B56-58>. ((PEQ L 8))

<B56-58>. ((MEQ L 6 7 8))

B59. AND GIVEN THAT THE D IS 5 ,
(AND) (EQ D 5)

<B59>. ((AND) (EQ D 5))

B68. AND KNOWING THAT THE TWO 0 'S —
(AND) (NUM 0 2)

<B68>. ((AND) (NUM 0 2))

B61. 0 MUST BE ~
(EQ 0 *D)

<B6i>. ((EQ 0 *D))

B62. YOU CAN N'T TELL ~
(NEG)

<B62>. ((?))

B63. KNOWING THAT 0 PLUS 9 IS EQUAL TO 0
(EQC (PLUS 0 9) 0) '

<B63>. ((EQC (PLUS 0 9) 0))

III-6
664. MUST MAKE N PLUS R SOME NUMBER GREATER THAN 10 ,

(THEREFORE) (GREATER (PLUS N R) IB)

<B64>. ((THEREFORE) (GREATER (PLUS N R) 18))

B65. IN ORDER TO MAKE THE FIFTH COLUMN COME OUT CORRECTLY
(IF) (PLACE FIFTH)

<B65>. ((?))

B66. SO UE COULD TRY MAKING R —
(THEREFORE) (ASSUME) (EQ R *D)

<B66>. ((THEREFORE) (AEQ R *0))

B67. R MUST BE 1 GREATER THAN D —
(EQR R (PLUS D D)

<B67>. ((EQR R (PLUS D 1)))

B68. NO ,

(NEG)

<B68>. ((?))
B69. R DOES N'T HAVE TO BE 1 GREATER THAN D •

(NEG) (EQR R (PLUS D 1>>

<B69>. ((NEQR R (PLUS D 1)))

B78. R MUST BE SOME NUMBER BETUEEN 6 AND 9
(BETM R 6 9)

<B7B>. ((PEQ R 6))

<B78>. ((PEQ R 7))

<B78>. ((PEQ R 8))

<B78>. ((PEQ R 9))

<B7G>. ((MEQ R 6 7 8 9))

B7i. AND THE OTHER —
(AND)

<B71>. ((?))

B72. THE ONLY ODD NUMBER IN THAT RANGE IS 7 .
(EQ *L 7)

B73. SO COULD YOU CHANGE R TO A' 7 ?
(THEREFORE) (EQ R 7) (QUES)

<B72-73>. ((BECAUSEOF ((EQ *L 7)) ((EQ R 7))))

B74, EXP : CHANGE R FROM 6 TO 7 . R IS 7 •

III-7
(EXP)

B75. CRN SEE NOW THAT THE FIRST THREE COLUMNS ARE CORRECT ,
(?)

B76. BUT THAT DOES N'T NECESSARILY MEAN THAT THEY 'RE THE CORRECT DIGITS FOR THE PROBLEM
(NEG)

<B74-76>. ((?))

B77. N NOW MUST BE ~
(EU N *D)

B78. THE ONLY NUMBERS LEFT ARE 2 ,
(UIGIT 2)

B79. 6 ,
(DIGIT 6)

B88. AND 8 .

(PLS 8)

<B77-8fl>. ((PEQ N 2))

<B77-88>. ((PEQ N 6))

<B77-80>, ((PEQ N 8))

<B77-80>. ((MEQ N 2 6 8))

B81. AND THEY MUST GO TO 0 ,
(AND) (LETTER 0)

<B8i>. ((AND) (LETTER 0))

B82. N ,

(LETTER N)

<B82>. ((LETTER N))

B83. AND B .
(PLS B)

<B83>. ((LETTER B))

B84. I CAN NOW SEE AN ERROR IN THE THIRD COLUMN .
(PLACE THIRD)

<B84>. ((?))

B85. E ,

(LETTER E)

<B85>. ((LETTER E))

B86. COULD YOU CHANGE E TO AN 8 ,
(EQ E 8)

<B86>. ((EQ E 8))

187. BECAUSE 4 PLUS 4 IS — IS NOT EQUAL TO 9 .
(BECAUSE) (NEG) (EQC (PLUS 4 4) 9)

III-8

B88. EXP : I MILL CHANGE E FROM 9 TO 8 . E IS NOW 8
(EXP)

<B88>. ((?))

B89. SO THE NUMBERS NOW REMAINING ARE 2 ,
(THEREFORE) (REMAIN 2)

B98. 6 ,
(DIGIT 6)

B91. AND 9 .
(PLS 9)

<B89-9i>. ((THEREFORE) (REMAIN 2 6 9))

B92- AND THEY MUST GO TO THE LETT —
(AND)

<B92>. ((?))

B93. THE LETTERS 0 ,
(LETTER 0)

<B93>. ((LETTER 0))

B94. B ,

(LETTER B)

<B94>. ((LETTER B))

B9S. AND N .
(PLS N)

<B95>. ((LETTER N))

B96. AND SEEING THAT 0 PLUS 8 IS EQUAL TO 0 —
(AND) (EQC (PLUS 0 8) 0)

<B96>. ((AND) (EQC (PLUS 0 8) 0))

B97. MUST MAKE E A' 9 ,
(THEREFORE) (EQ E 9)

<B97>. ((THEREFORE) (EQ E 9))

B98. FOR REASONING WHICH I GAVE PREVIOUSLY .
(?)

B99. SO THAT MUST MAKE SOME OTHER DIGIT WRONG .
(THEREFORE)

<B98-99>. ((?))

B188, SO WE COULD CHANGE E BACK TO A' 9

<B87>. ((BECAUSE) (NEG) (EQC (PLUS 4 4) 9))

III-9

Biei. AND MAKE L AN 8 .
(AND) (EQ L 8)

<B181>. ((AND) (EQ L 8))

B102. COULD YOU CHANGE E TO 9 AGAIN
(EQ E 9)

<B102>. ((EQ E 9))

B183. AND MAKE L AN 8
(AND) (EQ L 8)

<B183>. ((AND) (EQ L 8))

B184. IN ORDER TO HAVE THE FIRST TWO COLUMNS COME OUT CORRECTLY ?
(IF) (QUES)

B185. EXP : CHANGE E FROM 8 TO 9 . E IS NOW 9
(EXP)

<B184-1B5>. ((?))

B186. L FROM 3 TO 8 .
(DIGIT 3) (DIGIT 8) (LETTER L)

<B106>. ((DIGIT 3) (DIGIT 8) (LETTER L>>

B187. EXP : L FROM 3 TO 8 . L IS NOW 8 .
(EXP)

<B107>. ((?))

B188. SO THE REMAINING DIGITS ARE NOW 2 ,
(THEREFORE) (REMAIN 2)

B109. 3 ,
(DIGIT 3)

B118. AND 6 .
(PLS 6)

<I188-118>. ((THEREFORE) (REMAIN 2 3 6))

Bill- IF N WERE 6 ,
(IF) (EQ N 6)

1112. THEN B WOULD BE 3 ,
(THEN) (EQ B 3) '

B113. AND CARRYING 1 INTO THE NEXT COLUMN ,
(AND) (EQ *C 1)

<B111-113>.' ((COND ((EQ N 6)) (AND ((EQ B 3)) ((EQ *C 1)))))

B114. WOULD ONLY LEAVE 2 FOR THE 0 .
(EQ 0 2)

(THEREFORE) (EQ E 9)

<B108>. ((THEREFORE) (EQ E 9))

III.10

<B114>. ((EQ 0 2))

B115. RND 2 PLUS 9 IS EQUAL TO 11 ,
(AND) (EQC (PLUS 2 9) 11)

<B115>. ((AND) (EQC (PLUS 2 9) ID)

B116. PLUS THE CARRY IS EQUAL TO 12 ,
(EQ *C 12)

<B116>. ((EQ *C 12))

B117. MAKING THE SECOND 0 THE REQUIRED 2 .
(EQ 0 2)

<B117>. ((EQ 0 2))

B118. AND ADDING 1 TO THE LAST COLUMN ,
(AND) (EQ *C 1)

<B118>. ((AND) (EQ *C D)

B119. AND MAKING THE PROBLEM COME OUT CORRECTLY .
(AND)

<B119>. ((?))

B128. SO IF YOU MAKE N A' 6 ,
(THEREFORE) (IF) (EQ N 6)

B121. B A> 3 ,
(EQ B 3)

B122. AND 0 A' 2 ,
(AND) (EQ 0 2)

<B128-122>. ((COND ((EQ N 6)) (AND ((EQ B 3)) ((EQ 0 2)))))

B123. I BELIEVE THAT SOLVES IT .
(?)

B124. EXP : N IS 6 . B IS 3 . 0 IS 2 . IS THAT YOUR SOLUTION ?
(EXP)

B125. YES •
(YES)

B126. EXP : RIGHT . THAT IS THE CORRECT SOLUTION .
(EXP)

B127. OK .
(?)

B128. EXP : I AM GOING TO CHANGE THE TAPE .
(EXP)

<B123-128>. ((?))

III-ll
APPENDIX III

PAS-I Group Processor and PBG Mechanism
Output for S4 Bl-128 on EH-G-R.

B8-11 PROTOGROUP

ELEMENTS : (((LETTER D))
((BECAUSEOF ((EQ 0 5)) ((EQ T 0))))
((EQ T 0)))

OPERATOR : ()

ORIGIN LIST : ()

ORIGIN LIST : (((RECALL D) NIL (EQ D 5))
((RECALL CI) NIL (EQ Ci 0))
((PC 1 H) ((EQ 0 5) (EQ CI 0)) (EQ T 0)))

(RECALL 0) GROWN AS NDI
(EQ D 5) GROWN AS Kl

(RECALL Ci) GROWN AS ND2
(EQ Ci 0) GROWN AS K2

(PC 1) GROWN AS ND3
(EQ T 0)- GROWN AS K3

ORIGIN LIST : ((ND3 ((EQ CI 0) (EQ D 5)) (EQ T 0)))

((PC 1) ((EQ CI 0) (EQ 0 5)) (EQ T 0)) RECOGNIZED AS N03

B13 PROTOGROUP

ELEMENTS : (((BECAUSE)))
OPERATOR : (PC i) FROM (EQC (PLUS 5 5) 10)

ORIGIN LIST : ()

((PC 1) NIL NIL) MERGED WITH ND3

B16 PROTOGROUP

ELEMENTS : (((MEQR R (PLUS D 1) (PLUS D 2))))
OPERATOR : ()

ORIGIN LIST : (((OP ?) NIL (MEQR R (PLUS D 1) (PLUS D 2))))

(OP ?) GROWN AS ND4
(MEQR R (PLUS D 1) (PLUS D 2)) GROWN AS K4

B18-19 PROTOGROUP

ELEMENTS : (((EQ L *D))
((AND)))

OPERATOR : (PC 3) FROM (EQC (PLUS A A) *D)

((EQ L *D)) IS ((EQ L *D))

ORIGIN LIST : ()

ORIGIN LIST : ()

111-12
(PC 3) GROWN RS ND5

B21-22 PROTOGROUP

ELEMENTS : (((If) (flEQ L *D)>)

OPERATOR : (PC 2) FROM (EQC (PLUS L L) *D)

((IF) (flEQ L *D)) IS ((IF) (flEQ L *D))

ORIGIN LIST : ()

(PC 2) GROWN AS ND6

B26-27 PROTOGROUP

ELEMENTS : (((THEREFORE) (flEQ L 3))
((EQ L 3)))

OPERATOR : ()

ORIGIN LIST : (((AV L H) NIL (AEQ L 3)))

(AV L) GROWN AS N07
(AEQ L 3) GROWN AS K5

ORIGIN LIST : ((N07 NIL (AEQ L 3)))

((AV L) NIL (AEQ L 3)) RECOGNIZEO AS N07

B29-30 PROTOGROUP

ELEMENTS : (((THEREFORE) (EQ R 6))
((EQ R 6)))

OPERATOR : ()

ORIGIN LIST : (((IG C2 H) NIL (EQ C2 8 H))
(ND7 NIL (AEQ L 3 H>)
((PC 2 H) ((EQ C2 8 H) (AEQ L 3 H)) (EQ R 6)))

(IG C2) GROWN AS ND8
(EQ C2 8) GROWN AS K6

((AV L) NIL (AEQ L 3 H>) RECOGNIZEO AS N07

(PC 2) GROWN AS N09
(EQ R 6) GROWN AS K7

ORIGIN LIST : ((ND9 ((AEQ L 3) (EQ C2 8)) (EQ R 6)))

((PC 2) ((AEQ L 3) (EQ C2 8)) (EQ R 6)) RECOGNIZEO AS N09

B32-37 PROTOGROUP

ELEMENTS : (((BECAUSEOF ((MEQ 6 8 1)) ((EQ G 1))))
((BECAUSEOF ((EQ T 8)) ((EQ G 1)))))

OPERATOR : (PC 6) FROM (EQC (PLUS 0 G) R)

ORIGIN LIST : (((RECALL C7) NIL (EQ C7 8))
(ND1 NIL (EQ D 5))
((PC 6) ((EQ C7 8) (EQ D 5) (EQ R 6)) (MEQ G 8 D)
((GN G H) ((MEQ G 8 X) (EQ T 0)) (EQ G 1)))

111-13

B48-49 PROTOGROUP

ELEMENTS : (((THEREFORE) (GREATER L 5))

(RECALL C7) GROWN AS ND10
(EQ C7 8) GROWN AS K8

((RECALL D) NIL (EQ D 5)) RECOGNIZED AS NDI

(PC 6) GROWN AS NDii
(MEQ G 0 1) GROWN AS K9

(GN G> GROWN AS ND12
(EQ G 1) GROWN AS K18

ORIGIN LIST : ((ND12 ((EQ T 8) (MEQ G 8 1)) (EQ G 1)))

((GN G) ((EQ T 6) (MEQ G 8 1)) (EQ G D) RECOGNIZED AS ND12

B39-42 PROTOGROUP

ELEMENTS : (((AND))
((EQR *L (PLUS El)))
((THEREFORE) (EQ E 9))
((EQ E 9)))

OPERATOR : (PC 5) FROM (EQC (PLUS 0 E) 0)
ORIGIN LIST : ()

((EQR *L (PLUS E 1))) IS ((EQR *L (PLUS El)))
ORIGIN LIST : ()

ORIGIN LIST : (((AV E H) NIL (AEQ E 9)))

(RV E) GROWN AS ND13
(AEQ E 9) GROWN AS Kil

ORIGIN LIST : ((ND13 NIL (AEQ E 9)))

((AV E) NIL (AEQ E 9)) RECOGNIZED AS ND13

(PC 5) GROWN AS ND14

B45-46 PROTOGROUP

ELEMENTS : (((AND) (NEQ L 3))
((BECAUSE) (NEG)))

OPERATOR : (PC 3) FROM (EQC (PLUS A A) 9)

ORIGIN LIST : (((PC 3) ((EQ E 9)) (EQ C3 1 H))
((PC 2 H) ((EQ C3 1 H)) (NEQ L 3)))

(PC 3) GROWN AS ND15
(EQ C3 1) GROWN AS K12

(PC 2) GROWN AS ND16
(NEQ L 3) GROWN AS K13

PBG CONFLICT ; (NEQ L 3) VS (AEQ L 3)
ORIGIN LIST : ()

111-14

B51-53 PROTOGROUP

ELEMENTS : (((EQ A 4))
((IF) (IN 9 *COD)
((EQ A 4)))

OPERATOR : ()

ORIGIN LIST : (((IG C4 H) NIL (EQ C4 8 H))
((PC 3 H) ((EQ C4 8 H) (EQ E 9) (EQ C3 D) (EQ A 4)))

(IG C4) GROWN AS ND21
(EQ C4 8) GROWN AS K15

(PC 3) GROWN AS ND22
(EQ A 4) GROWN AS K16

((IF) (IN 9 #COD) IS ((IF) (IN E 5))

ORIGIN LIST : (((FC E H) NIL (IN E 5)))

(FC E) GROWN AS ND23
(IN E 5) GROWN AS K17

ORIGIN LIST : ((ND22 ((EQ C3 1) (EQ E 9) (EQ C4 8)) (EQ A 4)))

((PC 3) ((EQ C3 1) (EQ E 9) (EQ C4 8)) (EQ A 4)) RECOGNIZED AS ND22

B55-59 PROTOGROUP

ELEMENTS : (((AND))
((PEQ L 6))
((PEQ L 7))
((PEQ L 8))
((MEQ L 6 7 8))
((AND) (EQ D 5)))

OPERATOR : (PC 2) FROM (GREATER (PLUS L L) 18)

ORIGIN LIST : ()

ORIGIN LIST : (((GN L H) ((NEQ L 3) (GREATER L 5)) (PEQ L 6)))

(GN L) GROWN AS ND24
(PEQ L 6) GROWN AS K18

ORIGIN LIST : (((GN L H) ((NEQ L 3) (GREATER L 5) (PEQ L 6)) (PEQ L 7)))

(GN L) GROWN AS ND25
(PEQ L 7) GROWN AS K19

ORIGIN LIST : (((GN L H) ((NEQ L 3) (GREATER L 5) (PEQ L 6) (PEQ L 7)) (PEQ L 8)))

((IF)))
OPERATOR ; (PC 3) FROM (EQC (PLUS A A) 9)

ORIGIN LIST : (((OP ?) NIL (GREATER L 5)))

(OP ?) GROWN AS ND28
(GREATER L 5) GROWN AS K14

ORIGIN LIST : ()

((PC 3) NIL NIL) MERGED WITH ND18

111-15
(GN L) GROWN AS ND26
(PEQ L 8) GROWN AS K28

ORIGIN LIST : (((GN L H) ((PEQ L 6) (PEQ L 7) (PEQ L 8)) (MEQ L 6 7

(GN L) GROWN RS ND27
(MEQ L 6 7 8) GROWN RS K21

ORIGIN LIST : ((NDI NIL (EQ D 5)))

((RECRLL D) NIL (EQ D 5)) RECOGNIZED RS NDI

(PC 2) GROWN RS ND28

B 6 8 - 6 1 PROTOGROUP

ELEMENTS : (((RND))
((EQ 0 *D>>)

OPERRTOR : (PC 5) FROM (NUM 0 2)

ORIGIN LIST : ()

((EQ 0 *U>) IS ((EQ 0 *D>>

ORIGIN LIST : ()

(PC 5) GROWN RS ND29

B63 PROTOGROUP

ELEMENTS : ()

OPERRTOR : (PC 5) FROM (EQC (PLUS 0 9) 0)

((PC 5) NIL NIL) MERGED WITH ND29

B64 PROTOGROUP

ELEMENTS : (((THEREFORE)))

OPERATOR : (PC 4) FROM (GREATER (PLUS N R) 18)

ORIGIN LIST : ()

(PC 4) GROWN RS ND38

B66-67 PROTOGROUP

ELEMENTS : (((THEREFORE) (REQ R *D))
((EQR R (PLUS D 1))))

OPERATOR : ()

((THEREFORE) (AEQ R #D>> IS ((THEREFORE) (REQ R *D))

ORIGIN LIST : ()

ORIGIN LIST : (((OP ?) NIL (EQR R (PLUS D 1))))

(OP ?) GROWN RS ND31
(EQR R (PLUS D i>) GROWN RS K22

B69-78 PROTOGROUP

111-16

ELEMENTS : (((NEQR R (PLUS 0 1)))
((PEQ R 6))
((PEQ R 7))
((PEQ R 8))
((PEQ R 9))
((MEQ R 6 7 8 9)))

OPERATOR : ()

ORIGIN LIST : (((OP ?) NIL (NEQR R (PLUS 0 1))))

(OP ?) GROWN AS N032
(NEQR R (PLUS 0 1)) GROWN AS K23

PBG CONFLICT : (NEQR R (PLUS 0 D) VS (EQR R (PLUS 0 D)

ORIGIN LIST t (((RECALL C7) NIL (EQ C7 8))
(ND1 NIL (EQ 0 5))
((PC 6 H) ((EQ C7 8) (EQ 0 5)) (PEQ R 6)))

(RECALL C7) GROWN AS ND34
(EQ C7 8) GROWN AS K24

((RECALL 0) NIL (EQ 0 5)) RECOGNIZED AS ND1

(PC 6) GROWN AS ND35
(PEQ R 6) GROWN AS K25

ORIGIN LIST : ((ND1 NIL (EQ D 5))
(ND34 NIL (EQ C7 8))
((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 7)))

((RECALL 0) NIL (EQ D 5)) RECOGNIZED AS N01

((RECALL C7) NIL (EQ C7 0)) RECOGNIZED AS ND34

((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 7)) MERGED WITH ND35
(PEQ R 7) GROWN AS K26

ORIGIN LIST : ((ND1 NIL (EQ 0 5))
(ND34 NIL (EQ C7 8))
((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 8)))

((RECALL D) NIL (EQ D S)) RECOGNIZED AS ND1

((RECALL C7) NIL (EQ C7 8)) RECOGNIZED AS ND34

((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 8)) MERGED WITH ND35
(PEQ R 8) GROWN AS K27

ORIGIN LIST : ((ND1 NIL (EQ D 5))
(ND34 NIL (EQ C7 8))
((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 9)))

((RECALL D) NIL (EQ D 5)) RECOGNIZED AS ND1

((RECALL C7) NIL (EQ C7 8)) RECOGNIZEO AS ND34

((PC 6 H) ((EQ D 5) (EQ C7 8)) (PEQ R 9)) MERGED WITH ND35
(PEQ R 9) GROWN AS K28

ORIGIN LIST : (((GN R H) ((PEQ R 6) (PEQ R 7) (PEQ R 8) <PEQ R 9)) (MEQ R 6 7 8 9))

(GN R) GROWN AS N036
(MEQ R 6 7 8 9) GROWN AS K29

III.17

B72-73 PROTOGROUP

ELEMENTS : (((BECAUSEOF ((EQ *L 7)) ((EQ R 7)))))
OPERATOR : ()

((BECAUSEOF ((EQ *L 7)) ((EQ R 7)))) IS
((BECAUSEOF ((EQ R 7)) ((EQ R 7))))

ORIGIN LIST : (((AV R H) ((MEQ R 6 7 8 9)) (AEQ R 7)))

(AV R) GROWN AS ND37
(AEQ R 7) GROWN AS K30

B77-83 PROTOGROUP

ELEMENTS ; (((PEQ N 2))
((PEQ N 6))
((PEQ N 8))
((MEQ N 2 6 8))
((AND) (LETTER 0))
((LETTER N))
((LETTER B)) >

OPERATOR : ()

ORIGIN LIST : (((GN N H) NIL (PEQ N 2)))

(GN N) GROWN AS ND38
(PEQ N 2) GROWN AS K31

ORIGIN LIST : (((GN N H) NIL (PEQ N 6)))

((GN N H) NIL (PEQ N 6)) MERGED WITH ND38
(PEQ N 6) GROWN AS K32

ORIGIN LIST : (((GN N H) NIL (PEQ N 8)))

((GN N H) NIL (PEQ N 8)) MERGED WITH ND38
(PEQ N 8) GROWN AS K33

ORIGIN LIST : (((GN N H) ((PEQ N 2) (PEQ N 6) (PEQ N 8)) (MEQ N 2 6 8)))

(GN N) GROWN AS ND39
(MEQ N 2 6 8) GROWN AS K34

ORIGIN LIST : ()

ORIGIN LIST : ()

ORIGIN LIST : ()

B85-87 PROTOGROUP

ELEMENTS : (((LETTER E))
((EQ E 8))
((BECAUSE) (NEG)))

OPERATOR : (PC 3) FROM (EQC (PLUS 4 4) 9)

ORIGIN LIST : ()

ORIGIN LIST 2 (((AV E H) NIL (AEQ E 8)))

III-18
(RV E) GROWN RS ND48
(REQ E 8) GROWN RS K35

PBG CONFLICT j (REQ E 8) VS (REQ E 9)

ORIGIN LIST : ()

(PC 3) GROWN RS ND42

B89 -91 PROTOGROUP

ELEMENTS : (((THEREFORE) (REMRIN 2 6 9)))
OPERRTOR : ()

ORIGIN LIST : (((OP ?) NIL (REMRIN 2 6 9)))

(OP ?) GROWN RS ND43
(REMRIN 2 6 9) GROWN RS K36

B93-97 PROTOGROUP

ELEMENTS : (((LETTER 0))
((LETTER B))
((LETTER N))
((AND))
((THEREFORE) (EQ E 9)))

OPERRTOR : (PC 5) FROM (EQC (PLUS 0 8) 0)

ORIGIN LIST : ()

ORIGIN LIST : ()

ORIGIN LIST : ()

ORIGIN LIST : ()

ORIGIN LIST : (((RV E H) NIL (REQ E 9)))

(RV E) GROWN RS N044
(REQ E 9) GROWN RS K37

PBG CONFLICT : (REQ E 9) VS (REQ E 8)

(PC 5) GROWN RS N046

B188-183 PROTOGROUP

ELEMENTS i (((THEREFORE) (EQ E 9))
((RND) (EQ L 8))
((EQ E 9))
((AND) (EQ L 8)))

OPERRTOR t ()

ORIGIN LIST ; ((ND45 NIL (REQ E 9)))

((RV E) NIL (REQ E 9)) REC0GNI2ED RS ND45

ORIGIN LIST : (((AV L H) NIL (REQ L 8)))

(RV L) GROWN RS ND47
(REQ L 8) GROWN RS K38

111-19
ORIGIN LIST : ((ND45 NIL (AEQ E 9)))

<(flV E) NIL (flEQ E 9)) RECOGNIZED AS ND45

ORIGIN LIST : ((ND47 NIL (AEQ L 8)))

((AV L) NIL (AEQ L 8)) RECOGNIZED AS ND47

BIOS PROTOGROUP

ELEMENTS : (((DIGIT 3) (DIGIT 8) (LETTER D))
OPERATOR : ()

ORIGIN LIST : ()

B188-118 PROTOGROUP

ELEMENTS : (((THEREFORE) (REMAIN 2 3 6))
((COND ((EQ N 6)) (AND ((EQ B 3)) ((EQ #C 1)))))
((EQ 0 2))
((AND))
((EQ *C 12))
((EQ 0 2))
((AND) (EQ *C 1>))

OPERATOR : (PC *CQL) FROM (EQC (PLUS 2 9) 11)

ORIGIN LIST : (((OP ?) NIL (REMAIN 2 3 6)))

(OP ?) GROWN AS N048
(REMAIN 2 3 6) GROWN AS K39

((COND ((EQ N 6)) (AND ((EQ B 3)) ((EQ *C 1))))) IS
((COND ((EQ N 6)) ((EQ B 3) (EQ C5 1))))

ORIGIN LIST : ((ND1 NIL (EQ D 5))
(ND2 NIL (EQ Ci 0))
((PC 1 H) ((EQ 0 5) (EQ CI 0)) (EQ C2 1 H))
((PC 2 H) (CEQ C2 1 H) (EQ L 8)) (EQ R 7 H))
((IG C4 H) NIL (EQ C4 8 H))
((PC 4 H) ((EQ R 7 H) (EQ C4 0 H)) (COND ((EQ N 6)) (EQ B 3)))
((PC 5 H I) NIL (COND ((EQ N 6)) ((EQ C5 1)))))

((RECALL D) NIL (EQ D 5)) RECOGNIZEO AS ND1

((RECALL CI) NIL (EQ CI 8)) RECOGNIZED AS ND2

(PC 1) GROWN AS ND49
(EQ C2 1) GROWN AS K48

(PC 2) GROWN AS NOSO
(EQ R 7) GROWN AS K41

(IG C4) GROWN AS ND51
(EQ C4 8) GROWN AS K42

(PC 4) GROWN AS ND52
(COND ((EQ N 6)) (EQ B 3)) GROWN AS K43

(PC 5 H I) GROWN AS ND53
(COND ((EQ N 6)) ((EQ CS 1))) GROWN AS K44

LIST : (((PC 4 H) ((EQ R 7) (EQ C4 0)) (COND ((EQ N 6)) (EQ B 3)))
((PC 4 H) ((EQ R 7) (EQ C4 0)) (COND ((EQ N 6)) (EQ C5 1))))

111-20

((PC 4 H) ((EQ R 7) (EQ C4 8)) (CONO ((EQ N 6)) (EQ B 3))) MERGED UITH ND52
(COND ((EQ N 6)) (EQ B 3)> GROWN RS K45

((PC 4 H) ((EQ R 7) (EQ C4 8)) (COND ((EQ N 6)) (EQ C5 1))) MERGED WITH NDS2
(COND ((EQ N 6)) (EQ C5 1>> GROWN RS K46

ORIGIN LIST : (((RV 0 H) NIL (REQ 0 2)))

(RV 0) GROWN RS ND54
(REQ 0 2) GROWN RS K47

ORIGIN LIST : ()

((EQ *C 12)) IS ((EQ C6 1))

ORIGIN LIST : (((PC 5 H) ((EQ E 9) (EQ 0 2)) (EQ C6 D))

(PC 5) GROWN RS ND55
(EQ C6 1) GROWN RS K48

B128-122 PROTOGROUP

ELEMENTS : (((COND ((EQ N 6)) (AND ((EQ B 3)) ((EQ 0 2))))))
OPERATOR : ()

ORIGIN LIST : (((PC 4 H) ((EQ R 7) (EQ C4 8)) (COND ((EQ N 6)) (EQ B 3)))
(ND54 NIL (COND ((EQ N 6)) ((EQ 0 2)))))

((PC 4 H) ((EQ R 7) (EQ C4 8)) (COND ((EQ N 6)) (EQ B 3))) MERGED WITH ND52
(COND ((EQ N 6)) (EQ B 3)) GROWN AS K49

((AV 0) NIL (COND ((EQ N 6)) ((EQ 0 2)))) REC0GNI2ED AS NDS4

*** PAS-I FINISHED ***

III.3.

111-21

APPENDIX III

Comparison between PBG of PAS-I and Manual Analysis for S4
Bl-128 on D+G=R.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

B8-11

B16

B26-27

B29-30

B32-37

PAS-I Analysis

ND1

ND2

ND3

ND4

B18-19 ND5

B21-22 ND6

ND7

ND8

ND9

ND10

ND11

(RECALL D) -> (EQ D 5)

(RECALL CI) -* (EQ CI 0)

(PC 1) -» (EQ T 0)

(OP ?) -» (MEQR (+ D 1)
(+ D 2))

(PC 3)

(no backup)

(PC 2)

(no backup)

(AV L) -> (AEQ L 1)

(IG C2) -* (EQ C2 0)

(PC 2) -* (EQ R 6)

(RECALL C7) -> (EQ C7 0)

(no. backup)

(PC 6) -» (MEQ G 0 1)

Manual Analysis

Bl-7 (Exp instructions)
B8-14

B15-17

B18

B19-20

B21

B22

B26-27

B29-30

B32

ND12

(no backup)

(GN G) -» (EQ G 1)

B33

B36

B37

(PC 1) -» (EQ T 0)

(PC 6) -» (MEQ (+ D 1)
(+ D 2))

(PC 2)

(PC 3)

(backup)

(PC 2)

(AV L)

(backup)

(AV L) -* (AEQ L 1)

(PC 2) -» (EQ R 6)

(PC 6) -> (EQ G 1)

(backup)

(PC 6) -» (MEQ G 0 1)

(GN G) -> (AEQ G 0)

(TD G O) - * (NEQ G 0)

(backup)

(GN G) -> (EQ G 1)

Agreement

s

s

=n

+mn

=n

-hnb

=n

-hnn

-hub

=n

=n

s

+mn

-hnb

=n

+mn

+mn
-hnb

=n

111-22

PAS-I Analysis Manual Analysis Agreement

23. B39-42 ND13 (AV E) -> (AEQ E 9) B39-42 +pn

24. ND14 (PC 5) (PC 5) -» (EQ E 9) =^n

25. B45-46 ND15 (PC 3) -> (EQ C3 1) B44 (PC 3) -* (NEQ C3 0)

26. ND16 (PC 2) -» (NEQ L 3) B45 (FA C3) -» (NEQ L 3)

27. (backup) (backup) rib

28. ND17 = ND13 (PC 5) -» (EQ E 9) X

29. ND18 = ND15 (PC 3) -» (EQ C3 1) X

30. ND19 = ND16 X

31. B48-49 ND20 (OP ?) (GR L 5) B48 (PC 2) -+ (GR L 5)

32. B51-53 ND21 (IG C4) -» (EQ C4 0) B50-53 s

33. ND22 (PC 3) (EQ A 4) (PC 3) .-* (EQ A 4) =n

34. ND23 (FC E) -> (IN E 5) +pn

35. B55-59 ND24 (GN L) -> (PEQ L 6) B55-58 s

36. ND25 (GN L) -» (PEQ L 7) s

37. ND26 (GN L) -> (PEQ L 8) s

38. ND27 (GN L) -» (MEQ L 6 7 8) (GN L) -» (MEQ L 6 7 8) =n

39. ND28 (PC 2) +pn

40. B59 (PC 6) -hnn

41. B60-63 ND29 (PC 5) B60 (PC 5) -» (FREE 0) =^n

42. (no backup) (backup) +mb

43. B63 (PC 5) -» (EQ C5 1) +mn

44. B64 ND30 (PC 4) B64 (PC 4) -* (GET R) ^ n

45. B66 (AV R) +mn

46. (no backup) (backup) -hnb

47. B66-67 ND31 (OP ?) -» (EQR R (+ D D) B67 (PC 6) -* (EQ R (+ D 1))

111-23

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

PAS-I Analysis Manual Analysis

B69-7 0 ND32 (OP ?) -> (NEQR R (+ D 1))

(backup) (backup)
=ND32

(RECALL C7) -> (EQ C7 0)

Agreement

ND33

ND34

ND35

s

=b

x

(PC 6) -* (PEQ R 6) (PEQ R 7) B70
(PEQ R 8)(PEQ R 9)

ND36 (GN R) -» (MEQ R 6 7 8 9)

B72-73 ND37 (AV R) -» (AEQ R 7)
B71

B72-73

B75-76

B77
B77-83 ND38

ND39

(GN N) -» (PEQ N 2) (PEQ N 6)
(PEQ N 8)

(GN N) -» (MEQ N 2 6 8)

(PC6) (MEQ R 6 7 8 9) =n

(PC 2) —> (ODD R)
s

-hnn
(GN R) (EQ R 7)

(PC 1) —> OK -Him
(PC 2) —> OK -hnn
(PC 3) —» OK -hnn
(PC 4) —> (GET N) -hnn

s

B78

B81
(GN FREE) -* (REMAIN 2 6 8) =£i
(AV 0 N B)

(PC 4)
+mn

+mn
B85 -87 ND40 (AV E) -» (AEQ E 8) B84 (PC 3) -» (NEQ E 9) =4n

(backup) (backup) =b
ND41 = ND40

X
ND42 (PC 3) B85-•86 (PC 3) -» (EQ E 8) =^n

B89--91 ND43 (OP ?) -» (REMAIN 2 6 9) B89-91 (GN FREE) -* (REMAIN 2 6 9) £i
B92-95 (AV 0 N B) •hnn

B93-97 ND44 (AV E) (AEQ E 9) B96 (PC 5) -» (EQ E 9)
B97 (TD E 9) -> (NEQ E 8) -hnn

111-24

PAS-I Analysis

73. (backup)

74. ND45 = ND44

75. ND46 (PC 5)

76.

77. B100-103 ND47 (AV L) -» (AEQ L 8)
j

78. B108-118 ND48 (OP ?) -* (REMAIN 2 3 6)

79. ND49 (PC 1) -» (EQ C2 1)

80. ND50 (PC 2) -» (EQ R 7)

81. ND51 (IG C4) -> (EQ C4 0)

82.

83. ND52 (PC 4) -> (COND (EQ N 6)
(EQ B 3)

(COND (EQ N 6)
(EQ C5 1

84. ND53 (PC 5)

85. ND54 (AV 0) -* (AEQ 0 2)

86. ND55 (PC 5) -» (EQ C6 1)

Manual Analysis Agreement

B99 (FA E) -hnn

(backup) =b

x

B100 (PC 3) -> (EQ E 9) +mn
(EQ C3 1) J

B101 (PC 2) -» (EQ L 8) £i

B108-110 (GN FREE) -» (REMAIN 2 3 6)

+pn

+pn

+pn

Bill (AV N) -> (AEQ N 6) -hnn

B112-113 (PC 4) -» (EQ B 3) =^n

+pn

B114 (GN 0) -» (EQ 0 2) <£n

B115-117 (PC 5) -> (EQ 0 2) (EQ C6 1) =n

B118 (PC 6) -> OK -Hon

72.

Socuritv Classification
DOCUMENT CONTROL DATA - R & D

'Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. originating activity (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2 a . REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE

Preliminary Results with a System for Automatic Protocol Analysis

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Scientific Final
5- AUTHOR(S) (First name, middle initial, last name)

Donald A. Waterman and Allen Newell

6- REPORT DATE

May 1972
7 a . TOTAL NO. OF PAGES

181
7b. NO. OF REFS

27
8 a . CONTRACT OR GRANT NO.

F44620-70-C-0107
b. PROJ EC T NO.

9769
c 61102F

*• 681304

9 a . ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES

TECH OTHER
12. SPONSORING MILI TARY ACTIVITY

Air Force Office of Scientific Research (If!)
1400 Wilson Blvd.
Arlington, Va. 22209

13. ABSTRACT

A computer program for automatic protocol analysis (PAS-I) is described
in detail. The task of protocol analysis is that of inferring from the verbal­
izations given by a human while solving a problem the time course of his states
of knowledge about the task. PAS-I works only with the task domain of crypt­
arithmetic puzzles and incorporates a specific theory of problem solving (as
described in Newell and Simon, Human Problem Solving) . The input to PAS-I is
the transcription of the human's verbalizations (as tape recorded), segmented
into topics. The program does a linguistic analysis from the input text to
produce a sequence of semantic elements; these are then subjected to several
stages of processing, including hypothesizing the information processing opera­
tions that the subject performed to produce the semantic knowledge that he
appears to have at each moment of time. The final output is a problem behavior
graph (PBG) which is the trajectory of the subject through the problem space of
possible knowledge states. The performance of PAS-I on three examples of
behavior is presented and analysed: 100 topic segments of subject SI on the
cryptarithmetic task, DONALD+GERALD=ROBERT; 43 further topic segments on SI on
the same task; and 128 topic segments (the entire session) of subject S4 on
DONALD+GERALD.

D D , F ° R
V
M
6 5 1 4 7 3 < P A G E ' >

S/N 0101-807-6801 Security Classification

