
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

BLISS/11 REFERENCE MANUAL

A BASIC LANGUAGE FOR THE IMPLEMENTATION OF
SYSTEM SOFTUARE FOR THE PDP-11

U. UULF
J. APPERSON
R. BRENDER *
C. GESCHKE
P. KNUEVEN >v
C. UEINSTOCK
J. ZARRELLA
D. UILE

COMPUTER SCIENCE DEPARTMENT
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

MARCH 1, 1972

* DIGITAL - EQUIPMENT CORP, MAYNARD MASS. (B17S4)

THIS UORK UAS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY
OF THE OFFICE OF THE SECRETARY OF DEFENSE (F4462B-7B-C-B187) AND
IS MONITORED BY THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH. THIS
DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE* ITS
DISTRIBUTION IS UNLIMITED.

CONTENTS

I. LANGUAGE DEFINITION

1.1.1 MODULES
1.1.2 BLOCKS AND COMMENTS
1.1.3.- LITERALS
1.1.4 * NAMES
1.1.5 THE "CONTENTS OF" OPERATOR
1.1.6 POSITION AND SIZE MODIFIER
1.1.7 DEFAULT POSITION AND SIZE
1.1.8 DATA REPRESENTATION
1.1.9 EXAMPLES
1.2.1 EXPRESSIONS
1.2.2 SIMPLE EXPRESSIONS
1.2.3.1 CONTROL EXPRESSIONS
1.2.3.2 CONDITIONAL EXPRESSIONS
1.2.3.3 LOOP EXPRESSIONS
1.2.3.4 ESCAPE EXPRESSIONS '
1.2.3.5 CHOICE EXPRESSI ONS
1.2.3.6 CO-ROUTINE EXPRESSIONS
1.3.1 DECLARATIONS
1.3.1.1 STORAGE (AN INTRODUCTION)
1.3.1.2 STRUCTURE (AN INTRODUCTION)
1.3.1.3 ACTUAL DECLARATION SYNTAX
1.3.2 MEMORY ALLOCATION
1.3.3 MAP DECLARATION
1.3.4 BIND DECLARATIONS
1.3.5 STRUCTURES
1.3.6 ROUTINES
1.3.7 LABEL DECARATION
1.3.8 MACROS
1.3.9 UNDECLARE DECLARATION
1.3.18 CALLING SEQUENCE DECLARATIONS
1.3.11 LINKAGE DECLARATION
1.3.12 SIGNAL EXPRESSION

II. SPECIAL LANGUAGE FEATURES

11.1.1 SPECIAL FUNCTIONS
11.1.2 MACHINE LANGUAGE

II I.SYSTEM FEATURES

111.1.8 COMPILATION CONTROL
111.1.1 COMMAND SYNTAX
111.1.2 MODULE HEAD
111.1.3 SUITCHES DECLARATION
III. 1.4 ACTIONS

111.2 ERROR REPORTING

INTRODUCTION

BLISS-11 IS A PROGRAMMING LANGUAGE FOR THE PDP-11. IT IS
SPECIFICALLY INTENDEO TO BE USED FOR IMPLEMENTING "SYSTEM
SOFTWARE". AS SUCH IT DIFFERS FROM OTHER LANGUAGES IN SEVERAL
SIGNIFICANT WAYS.

1. HIGHER LEVEL LANGUAGES DERIVE THEIR SUITABILITY FOR A PARTIC-
UALR PROBLEM AREA - FORTRAN/ALGOL FOR MATHEMATICS, SNOBOL
FOR STRINGS, GPSS FOR SIMULATIONS, ETC - BECAUSE THEY PROVIDE
TO THE USER A VOCABULARLY AND SET OF CONVENTIONS APPROPRIATE
TO THAT PROBLEM AREA; WE VIEW'"IMPLEMENTATION LANGUAGES" IN A
SIMILAR WAY - AS APPLICATION LANGUAGES WHERE THE APPLICATION
IS A PARTICULAR BRAND OF HARDWARE. AS SUCH, AN IMPLEMENTATION
LANGUAGE MUST REFLECT THE CAPABILITIES AND ARCHITECTURE OF
ITS MACHINE.

2. INPUT/OUTPUT IS NOT A PART OF BLISS-11. I/O CAN BE
DONE DIRECTLY IN THE LANGUAGE MUCH AS AN ASSEMBLY PROGRAM
MIGHT, OR THROUGH SUBROUTINE CALLS.

3. EVERY ATTEMPT HAS BEEN MADE TO GIVE THE USER EXPLICIT CONTROL
OVER THE CODE HE GENERATES AS HE CHOOSES, WHILE PROVIDING
MAXIMUM CONVENIENCE OTHERWISE.

4. THERE ARE NO EXPLICIT OR IMPLICIT DATA MODES OTHER THAN
THE 16 BIT BINARY WORD. DATA MODES ARE ESSENTIALLY USER
DEFINED VIA THE STRUCTURE MECHANISM WHICH ALLOWS THE USER TO
SET OR COMPUTE AN ALGORITHM FOR DATA ACCESS.

5. CLEARLY BLISS-11 IS A CLOSE RELATIVE OF BLISS-18 FOR THE
PDP-18 AND SHARES MANY OF THAT LANGUAGES BIASES TOWARD
TREATMENT OF IDENTIFIERS, LACK OF GOTOES, IMPORTANCE OF
STRUCTURES, ETC. THE INTERESTED READER MAY FIND IT USEFUL
TO EXAMINE THE DIFFERENCES BETWEEN THE TWO LANGUAGES AND
HOW THESE ARE A REFLECTION OF THE DIFFERENCES IN THE MACHINES
THEMSELVES.

LIBRARIES

I. LANGUAGE DEFINITION

1.1.1 MODULES

A MODULE IS A PROGRAM ELEMENT WHICH MAY BE COMPILED INDEPEND
ENTLY OF OTHER ELEMENTS AND SUBSEQUENTLY LOADED UITH THEM TO
FORM A COMPLETE PROGRAM.

MODULE ::- BLOCK/
MODULE-HEAD BLOCK 'ELUDOM'

MODULE-HEAD»»- 'MODULE' NAME (PARAMETERS)-

A MODULE MAY REQUEST ACCESS TO OTHER MODULES' VARIABLES AND
FUNCTIONS BY DECLARING THEIR NAMES IN EXTERNAL DECLARATIONS.
A MODULE PERMITS GENERAL USE OF ITS OUN VARIABLES AND ROUTINES
BY MEANS OF GLOBAL DECLARATIONS. THESE LINES OF COMMUNICATION
BETWEEN MODULES ARE LINKED BY THE LOADER PRIOR TO EXECUTION. A
COMPLETE PROGRAM CONSISTS OF A SET OF COMPILED MODULES LINKED BY THE
LOADER. WHEN LOADING A NUMBER OF MODULES, IT IS NECESSARY THAT AT
LEAST ONE MODULE CONTAIN A MODULE HEAD. THIS IS REQUIRED TO
SET UP A STACK. NOTE THAT THE ELUDOM TO TERMINATE THE MODULE
IS OPTIONAL. ALL THAT IS REQUIRED IS THAT THE BLOCK WHICH
BEGINS AFTER THE MODULE DECLARATION IS CORRECTLY TERMINATED.

— T H E <PARAMETERS> FIELD OF A MODULE DEFINITION IS USED TO CONTROL
THE COMPILATION. SEE SECTION 111.1.3 FOR A DESCRIPTIVE LIST
AND DEFAULTS.

EXAMPLE:

!THE START MODULE FOR BLISS IS COMPILED IN FRONT OF A
!NUMBER OF OTHER BLISS MODULES.

MODULE START (STACK-048,SYNTAX)-
BEGIN

END*
ELUDOM (THIS LINE IS OPTIONAL

IT IS CONVENIENT TO LEAVE OUT THE ELUDOM IF, FOR EXAMPLE, YOU
WISH TO ADD A PARTICULAR MODULE HEAD TO AN ALREADY EXISTING BLOCK.
THE SOURCE FILE FOR THE MODULE HEAD SHOULD PRECEDE THE BLOCK
FILE IN YOUR COMMAND STRING AND THE TERMINAL ELUDOM NEED NOT BE
APPENDEO AT THE END.

1.1.2 BLOCKS AND COMMENTS

A BLOCK IS AN ARBITRARY NUMBER OF DECLARATIONS FOLLOUED BY AN
ARBITRARY NUMBER OF EXPRESSIONS ALL SEPARATED BY SEMICOLONS
AND ENCLOSED IN A MATCHING BEGIN-END OR "(" - ") H PAIR.

BLOCK 'BEGIN' BLOCKBOOY 'END* / (BLOCKBODY)
BLOCKBOOY tt- DECLARATIONS EXPRESSIONS
DECLARATIONS t:- /DECLARATION;/

DECLARATIONS; DECLARATION*
COMPOUNDEXPRESSION ::- 'BEGIN' EXPRESSIONS 'END' /

(EXPRESSIONS)
EXPRESSIONS iVE/LABEL:E/ Ej EXPRESSIONS
COMMENT ti- / ! RESTOFLINE ENDOFLINESYMBOL/

X STRINGWITHNOPERCENT X

COMMENTS MAY BE ENCLOSED BETWEEN THE SYMBOL I AND THE END OF THE
LINE ON WHICH THE ! APPEARS. HOWEVER, A ! MAY APPEAR IN THE
QUOTED STRING OF A LITERAL, OR BETWEEN TWO X SYMBOLS, WITHOUT
BEING CONSIDERED THE BEGINNING OF A COMMENT. LIKEWISE, A X
ENCLOSED WITHIN QUOTES WILL BE CONSIDERED PART OF A STRING.

AS IN ALGOL THE BLOCK INDICATES THE LEXICAL SCOPE OF THE NAMES
DECLARED AT ITS HEAD. HOWEVER, IN CONTRAST TO ALGOL, THERE IS
AN EXCEPTION. THE NAMES OF GLOBAL VARIABLES AND ROUTINES HAVE
A SCOPE BEYOND THE BLOCK AND ALTHOUGH THEY ARE DECLARED WITHIN
THE MODULE, THE EFFECT, FOR A MODULE CITING THEM IN AN EXTERMAL
DECLARATION, IS AS IF THEY WERE DECLARED IN THE CURRENT BLOCK.

1.1.3 LITERALS

TUO BASIC DATA ELEMENTS ARE RECOGNIZED FOR THE PDP-11: THE
IB BIT UORD AND THE 8 BIT BYTE. LITERALS ARE NORMALLY CONVERTED
TO A SINGLE UORD, BUT MAY IN FACT END UP IN EITHER OF THE TUO
FORMS DEPENDING ON USAGE.

LITERAL ::- NUMBER/QUOTEOSTRING/PLIT
NUMBER ::- DECIMAL/OCTAL
DECIMAL ;:« DIGIT/DECIMAL DIGIT
OCTAL ::- #OIT/OCTAL 01T
OIT ::- 8/1/2 — 11
DIGIT ::- 8/1/2 — /9

NUMBERS (UNSIGNED INTEGERS) ARE CONVERTED TO BINARY MODULO
THE DATA SIZE. THE BINARY NUMBER IS 2'S COMPLEMENT AND IS
SIGNED. OCTAL CONSTANTS ARE PREFIXED BY THE SHARP SIGN, U.

QUOTEDSTRING "STRING"/'STRING'

QUOTED-STRING LITERALS MAY BE USED TO SPECIFY BIT PATTERNS
CORRESPONDING TO THE 8-BIT ASCII CODE FOR PRINTING GRAPHIC
CHARACTERS ON THE EXTERNAL I/O MEDIA. STRINGS OF ONE OR
TUO CHARACTERS MAY BE USED FREELY AS CHARACTER CONSTANTS.
LONGER STRINGS MAY BE USED IN OUN AND GLOBAL DECLARATIONS
AS VALUES FOR THE NAMESIZEVALUE (SEE SECTION 1.3.2). STRINGS
ENCLOSED IN DOUBLE QUOTE UILL ALUAYS BE RIGHT JUSTIFIED WITH
THE FIRST BYTE OF THE FIRST UORD 8 IN THE CASE OF STRINGS UITH
AN ODD NUMBER OF CHARACTERS.

WITHIN A QUOTED STRING THE QUOTING CHARACTER " IS REPRESENTED
BY TUO SUCCESSIVE OCCURRENCES OF THAT CHARACTER.

1.1.3.1 POINTERS TO LITERALS

A PLIT IS A POINTER TO A LITERAL UORD UHOSE CONTENTS ARE SPECIFIED
AT COMPILE TIME; E.G., PLIT 3 IS A POINTER TO A UORO UHOSE CONTENTS
UILL BE SET TO 3 AT LOAD TIME.

PLIT ::- PLIT PLITARG
PLITARG ::- LOAD-TIME-EXPRESSION /

LONG-STRING /
TRIPLE

TRIPLE tr- (TRIPLE-ITEM-LIST)
TRIPLE-ITEM-LI ST ::« TRIPLE-ITEM / TRIPLE-ITEM, TRIPLE-ITEM-LI ST
TR IPLE-1TEM »t - LOAD-TIME-EXPRESSI ON /

LONG-STRING /
DUPLICATION-FACTOR. PLITARG

DUPLI CAT ION-FACTOR 1: - COMPILE-TI ME-EXPRESS I ON

ftNOTEt "PLIT (3)+4" HAS 2 PARSESt PLIT LOAD-TIME-EXPRESSION
AND PLIT TRIPLE + EXPRESSION

THE LATTER CHOICE IS USED. HENCE, "PLIT (3)+4" IS THE SAME
AS "(PLIT 3)+4".

A PLIT MAY POINT TO A CONTIGUOUSLY STORED SEQUENCE OF LITERALS -
LONG STRINGS AND NESTED LISTS OF LITERALS ARE ALSO ALLOUED.
THE VALUE OF

PLIT (3,5,7,9)

IS A POINTER TO 4 CONTIGUOUS UORDS CONTAINING 3,5,7 AND 9 RESPEC
TIVELY. A LONG STRING (> 2 CHARACTERS) IS ALSO A VALID ARGUMENT
TO A PLIT.

PLIT "THIS ALLOCATES 12 UORDS"

ALLOCATES 12 UORDS OF 8-BIT ASCII CHARACTERS.

THE ARGUMENTS TO PLITS NEED ONLY BE CONSTANT AT LOAD TIME: PLITS
ARE THEMSELVES LITERALS, THUS NESTING OF PLITS IS ALLOUED (UITH
THE INNER PLITS ALLOCATEO FIRST):

EXTERNAL A,B,C,
BIND Y - PLIT (A, PLIT (B,C), PLIT 3, "A LONG STRING", 5+9*3)t
IS SUCH THAT:
. YtBJ - A; ..YU) - B> .(.Ytll+l) - C
..YC23 - 3j .YE31 - "A "j .Y(4) - "LO"» ,Y(51 - "NG"|
.YC10] - 32}

IN ADDITION, ANY ARGUMENT TO A PLIT CAN BE REPLICATED BY SPECIFYING
THE NUMBER OF TIMES IT IS TO BE REPEATED: E.G.

PLIT (7:3)

PRODUCES A POINTER TO 7 CONTIGUOUS UORDS, EACH OF UHICH CONTAINS
THE VALUE 3. DUPLICATED PLITS ARE ALLOCATED ONCE, IDENTICAL
PLITS ARE NOT POOLED - HENCE,

BIND X - PLIT (3J PLIT A, PLIT A, 2: (2,3)):

IS SUCH THAT:

..X[0] - ..Xdl - ..X(2) - ..XI3) - A:
.X[0] - .Xtl] - .X[21 NOT - .X(31j
.X(4) - .XE61 - 2; .XC5) - .XE71 - 3»

NOTE: THE LENGTH OF EVERY PLIT (IN UORDS) IS STORED AS THE
UORD PRECEDING THE PLIT. HENCE, IN THE LAST EXAMPLE, .XI-1I - 8.

1.1.4 NAMES

SYNTACTICALLY AN IDENTIFIER, OR NAME, IS COMPOSEO OF A SEQUENCE
OF LETTERS AND/OR DIGITS, THE FIRST OF UHICH MUST BE A LETTER.
CERTAIN NAMES ARE RESERVED AS DELIMITERS, SEE APPENDIX A.
SEMANTICALLY THE OCCURRENCE OF A NAME IS EXACTLY EQUIVALENT TO
THE OCCURRENCE OF A POINTER TO THE NAMED ITEM. THE TERM
"POINTER" UILL TAKE ON SPECIAL CONNOTATION LATER UITH RESPECT
TO CONTIGUOUS SUB-FIELDS UITH1N A UORD, HOUEVER, FOR THE
PRESENT DISCUSSION THE TERM MAY BE EQUATEO UITH "ADDRESS".
THIS INTERPRETATION OF NAME IS UNIFORM THROUGHOUT THE LANGUAGE
AND THERE IS NO DISTINCTION BETWEEN LEFT AND RIGHT HAND VALUES.
CONTRAST THIS UITH ALGOL UHERE A NAME USUALLY, BUT NOT ALUAYS,
MEANS "CONTENTS OF".

THE POINTER INTERPRETATION REQUIRES A "CONTENTS OF" OPERATOR,
AND "." HAS BEEN CHOSEN. THUS .A MEANS "CONTENTS OF LOCATION A"
AND ..A MEANS "CONTENTS OF THE LOCATION UHOSE NAME IS STOREO IN
LOCATION A". TO ILLUSTRATE THE CONCEPT, CONSIDER THE ASSIGN
MENT EXPRESSION

P - E

THIS MEANS "STORE THE VALUE COMPUTED FROM E INTO THE LOCATION
UHOSE POINTER IS THE VALUE OF P". (FURTHER DETAILS ARE GIVEN IN
1.2.2.) THUS THE ALGOL STATEMENT "A :- B" IS URITTEN "A-.B". IT
IS IMPOSSIBLE TO EXPRESS IN ALGOL BLISS EXPRESSIONS SUCH ASi
"A-B\ "A-..B", ".A-.B", ETC.

NOTE: BLISS-11 CURRENTLY ACCEPTS THE LEFT-ARROU
CHARACTER AS THE ASSIGNMENT OPERATOR AS UELL AS THE
EQUAL SIGN AS DESCRIBED IN THIS MANUAL.

THE FOLLOUING IDENTIFIERS ARE INITIALLY DECLARED IN THE
BLISS-11 COMPILER:

R8 - REGISTER 0
Rl - REGISTER 1
R2 - REGISTER 2
R3 - REGISTER 3
R4 - REGISTER 4
RS - REGISTER 5
DP - REGISTER S: THE DISPLAY REGISTER
SP - REGISTER 6: THE STACK REGISTER
PC - REGISTER 7: THE PROGRAM COUNTER
VREG - REGISTER 8: THE VALUE REGISTER

1.1.5 THE "CONTENTS OF" OPERATOR

THE OPERATOR "." IS A UNARY OPERATOR USED TO DESIGNATE THE
CONTENTS OF THE LOCATION NAMED BY ITS OPERAND. THAT LOCATION
MAY BE IN CORE MEMORY OR ONE OF THE REGISTERS. THUS IF
"X" IS THE NAME OF A UORD OF MEMORY, THEN ".X" NAMES ITS
CONTENTS, AND "..X" NAMES THE CONTENTS OF THE UORD POINTED AT
BY THE CONTENTS OF LOCATION X. SIMILARLY, IF R IS DECLARED
A REGISTER NAME, THEN \R" DESIGNATES THE CONTENTS OF THAT
REGISTER.

1.1.6 POSITION AND SIZE MODIFIER

THE BLISS-11 LANGUAGE PROVIDES THE FOLLOUING NOTATION AS A
MODIFIER TO EITHER THE "CONTENTS OF" OR ASSIGNMENT OPERATORSi

<POSITION,SIZE>

THE POSITION AND SIZE TOGETHER NAME A FIELD UHICH BEGINS
"POSITION" BITS FROM THE RIGHT HAND SIDE OF THE NAMED BYTE
AND EXTENDING "SIZE" BITS TO THE LEFT. THUS .X<8,8> DESIGNATES
THE CONTENTS OF THE BYTE AT LOCATION X AND .X<0,16> DESIGNATES
THE CONTENTS OF THE UORD AT LOCATION X.

ON THE PDP-11/2B THE SIZE MAY NOT EXCEED 16 BITS AND THE
FIELD MAY NOT CROSS UORD BOUNDRIES.

UHEN USED UITH THE ASSIGNMENT OPERATOR THE NAMED FIELD IS USED
AS THE DESTINATION OF THE RIGHT HAND SIDE. THE CONTENTS OF
OTHER BITS IN A UORD ARE NOT AFFECTED.

EXAMPLES:

X-.Y<0,8> :
X-.Y<8,8> ?
X-. (Y+l)<0,8> j{EQUIVALENT TO PREVIOUS LINE
X-. (Y-l)<16,8> f!EQUIVALENT TO PREVIOUS LINE
X<8,2>-1 j

NOTE THAT THE POSITION AND SIZE NOTATION FUNCTIONS VERY
SIMILIARLY TO THAT OF BLISS-10. HOUEVER, THE LEGAL BLISS-10
ASSIGNMENT

X-Y<3,2> ;

HAS NO INTERPRETATION IN BLISS-11 SINCE THERE IS NO UAY TO
TREAT THE POSITION AND SIZE AS DATA AT EXECUTION TIME. (A
SYNTAX ERROR UILL BE REPORTED IN SUCH A CASE.) IN MOST
CASES, THE RESULTING INTERPRETATION IS THE SAME IN BOTH
LANGUAGES, HOUEVER.

SIMILARLY, NOTE THAT THE EXPRESSION

Y<-. (IF .X THEN U<3,2> ELSE V<4,2>)

IS AN INCORRECT USAGE OF POINTERS IN BLISS-11.

NOTE THE SEMANTICS OF

.X<0,8>.-.Y

DIFFERS FROM

(.X)<0,8>«-.Y

IN THE FIRST CASE THE POSITION-SIZE MODIFIER IS ASSOCIATED
UITH THE CONTENTS OPERATOR (".") UHILE IN THE SECOND CASE
IT IS ASSOCIATED UITH THE ASSIGNMENT OPERATOR. SEE SECTION
1.1.9 FOR FURTHER EXAMPLES.

1.1.7 DEFAULT POSITION AND SIZE

IN THE ABSENCE OF A POSITION-SIZE MODIFIER THE COMPILER ASSUMES
A POSITION OF ZERO AND A SIZE EQUAL TO THAT GIVEN AT THE TIME OF
ALLOCATION OF THE NAME. REGISTERS HAVE A SIZE OF 16 BITS.
MEMORY HAS A SIZE OF EITHER 8 OR 16.

1.1.8 DATA REPRESENTATION

ALL UORD VALUES ARE NORMALLY TREATED AS TWOS-COMPLEMENT SIGNED
INTEGERS. CERTAIN OPERATORS, EG. . (DOT), LEQU, ETC.,
TREAT THE UORD AS AN UNSIGNED INTEGER VALUE.

ALL BYTE QUANTITIES ARE NORMALLY TREATED AS UNSIGNED INTEGERS
RANGING BETUEEN 0 AND 255 IN VALUE.

ALL BOOLEAN TESTS DEPEND ON THE LOU-ORDER BIT OF THE UORD OR
FIELD BEING TESTED. THE RELATIONAL OPERATORS GENERATE A FULL
UORD 8 OR 1 AS THEIR VALUE, UHEN REQUIREO TO YIELD A VALUE.
ZERO REPRESENTS FALSITY, AND ONE REPRESENTS TRUTH.

1.1.9 EXAMPLES

THE FOLLOWING EXAMPLES OF BLISS-11 SOURCE TEXT ANO THE CORRES
PONDING MACHINE LANGUAGE EQUIVALENT IS OFFERREO TO ILLUSTRATE
SOME OF THE IMPLICATIONS OF THE PRECEOING SECTIONS.

BLISS-11 PAL11

(R,R1,R2 ARE REGISTER NAMES)

A - B, MOV #B,A

A - ,Bj MOV B.A

A <0,8>- Bt MOVB #B,A

A <8,8>- .B; MOVB B.A

A <B,8>- .B<8,8>; MOVB B,A

A - .B<8,8>» CLR R
BISB B.R
MOV R.A

(.A)<8,8> - .B<8,8>; MOV A.R
MOVB B+1,«R

.A - .Bj MOV B,«»A

,A<8,8> - .B; CLR R
BISB A.R
MOV B,<sR

(.A)<8,8> - .B MOV A.R
MOVB B,«R

A - ..B; MOV eB.A

A - ..B<B,8>j CLR R
BISB B.R
MOV «R,A

A - .(.B)<8.8>, NOV B.R
CLR Rl
BISB «R,R1
flOV Rl.A

A - . (B+l)<0,8>, CLR R
BISB B+1,R
MOV R.A

A<0,8> - .(B+l)<8,8>. MOVB B+l.A

(A+l)<8,8> - .B<8,8>» MOVB B+l.A+l

(A+.C)<0,8> - .B<0,8>+ljCLR Rl
BISB B,R1
INC Rl
MOV C.R2
MOVB R1.A(R2)

1.2.1 EXPRESSIONS

EVERY EXECUTABLE FORM IN THE BLISS LANGUAGE (THAT IS, EVERY FORM
EXCEPT THE DECLARATIONS) COMPUTES A VALUE. THUS ALL COMMANDS
ARE EXPRESSIONS AND THERE ARE NO "STATEMENTS" IN THE SENSE O F
ALGOL OR FORTRAN. IN THE SYNTAX DESCRIPTION E IS USED AS AN
ABBREVIATION FOR EXPRESSION.

E M - SIMPLEEXPRESSION / CONTROLEXPRESSION

1.2.2 SIMPLE EXPRESSIONS

THE SEMANTICS OF SIMPLEEXPRESSIONS IS MOST EASILY DESCRIBED IN
TERMS OF THE RELATIVE PRECEDENCE OF A SET OF OPERATORS, BUT
READERS SHOULD ALSO REFER TO THE BNF-LIKE DESCRIPTION IN 4.1.
THE PRECEDENCE NUMBER USED BELOW SHOULD BE VIEUED AS AN ORDINAL,
SO THAT 1 MEANS FIRST AND 2 SECOND IN PRECEDENCE. IN THE FOL
LOWING TABLE THE LETTER E HAS BEEN USED TO DENOTE AN ACTUAL
EXPRESSION OF THE APPROPRIATE SYNTACTIC TYPE, SEE APPENDIX A.

PRECEDENCE EXAMPLE

COMPOUNOEXPRESSION

BLOCK

E8(E1,E2,...,EN)

NAME (E1,E2,...,EN1

NAME

LITERAL

,E
.E<E1,E2>

EltE2

El ROT E2

6

6

-E

E1+E2

E1-E2

SEMANTICS

THE COMPONENT EXPRESSIONS
ARE EVALUATED FROM LEFT
TO RIGHT AND THE FINAL
VALUE IS THAT OF THE
LAST COMPONENT EXPRESS-
SION.

A FUNCTION CALL, SEE I.3.G.

A STRUCTURE ACCESS,
SEE 1.3.5.

A POINTER TO THE NAMED
ITEM, SEE 1.1.4.

VALUE OF THE CONVERTED
LITERAL, SEE 1.1.3.

VALUE POINTED AT BY E,
POSSIBLY MODIFIED BY POSITION
AND SIZE El AND E2. (El
AND E2 MUST EVALUATE TO
COMPILE TIME CONSTANTS.)

El SHIFTED ARITHMETI
CALLY BY E2 BITS. SHIFT
IS LEFT IF E2 IS POSI
TIVE, RIGHT IF NEGATIVE.
E2 MUST EVALUATE TO A CONSTANT
AT COMPILE TIME. (TEMPORARILY)

ROTATE El BY E2 BITS.
ROTATE LEFT IF E2 IS PQSITIVE,
RIGHT IF NEGATIVE. E2 MUST BE
A COMPILE TIME CONSTANT.

NEGATIVE OF E,

SUM OF E'S.

DIFFERENCE BETWEEN El
AND E2.

[NOTE ALL ARITHMETIC IS CARRIED OUT MODULO 2(1B) WITH A RESIDUE
OF -2(15). ALL ARITHMETIC IS INTEGER; WHEN FLOATING POINT
ARITHMETIC IS INTRODUCED IT WILL BE BY MEANS OF SPECIAL
OPERATORS, VIZ., FMPR, FDVR, FNEG, FADR, FSBR.l

PRECEDENCE EXAMPLE SEMANTICS

7 El EQL E2

7 El NEQ E2

7 El LSS E2

7 El LEQ E2

7 El GTR E2

7 El GEQ E2

7 El EQLU E2
7 El NEQU E2
7 El LSSU E2
7 El LEQU E2
7 El GTRU E2
7 El GEQU E2

8 NOT E

9 El ANO E2

10 El OR E2

11 El XOR E2

11 El EQV E2

12 El E2
E1<E3,E4>.-E2

OR

El - E2
E1<E3,E4>-E2

El - E2

NOT (El - E2)

El < E2

NOT (El > E2)

El > E2

NOT (El < E2)

UNSIGNED VERSIONS OF THE
RELATIONAL OPERATORS, IE,
TREAT El AND E2 AS 16 BIT
UNSIGNED INTEGERS

BITUISE COMPLEMENT OF E

BITUISE ANO OF E'S

BITUISE INCLUSIVE OR OF E*S

BITUISE EXCLUSIVE OR

BITUISE EQUIVALENCE

THE VALUE OF THIS EXPRESSION IS
IOENTICAL TO THAT OF E2, BUT AS
A SIDE EFFECT THIS VALUE IS
STORED INTO THE PARTIAL UORD
POINTED TO BY El; UITH ASSOCI
ATIVE USE OF -, THE ASSIGNMENTS
ARE EXECUTEO FROM RIGHT TO LEFT.
THUS El - E2 - E3 MEANS El -
(E2 - E3).

\ IN GENERAL, THERE IS NO
GUARANTEE REGARDING THE ORDER
IN UHICH A SIMPLE EXPRESSION IS
EVALUATED OTHER THAN THAT PRO
VIDED BY PRECEDENCE AND NESTINGi
THUS (R - 2% .R * (R - 3)) MAY
EVALUATE TO 8 OR 9, SINCE THE
OPTIMIZATION STRATEGIES MAY
CAUSE THE EXPRESSION .R TO BE
EVALUATED BEFORE OR AFTER (R-3),
DEPENDING ON CONTEXT.

/
/

/
/

/

THE READER SHOULD REFER TO THE PDP-11 REFERENCE MANUAL FOR A
COMPLETE DEFINITION OF THE ARITHMETIC OPERATORS UNDER VARIOUS
SPECIAL INPUT VALUE CONDITIONS.

NOTE: AS OF THIS DATE (15 DEC) THE FOLLOWING OPERATORS ARE
NOT YET IMPLEMENTED:

ROT ROTATE
EQLU
NEQU
LSSU UNSIGNED RELATIONALS
LEQU
GTRU
GEQU

\
\

\
\

ON TARGET MACHINES UITH SPECIAL HARDUARE OPTIONS, ADDITIONAL
OPERATORS MAY BE INTRODUCED CORRESPONDING TO THOSE OPERATIONS.
PRIME EXAMPLES ARE.

(UITH PDP-11/45)

FNEG E FLOATING NEGATION

6 El FADR E2 FLOATING ADDITION

8 El FSBR E2 FLOATING SUBTRACTION

cn

El FMPR E2 FLOATING MULTIPLICATION

5 El FDVR E2 FLOATING DIVISION

5 El FREM E2 FLOATING REMAINDER

6 FIX E FIX A FLOATING VALUE

6 FLOAT E FLOAT A FIXED VALUE

EXAMPLES.

A - .B+.Ct2;
C - .B<1,2>;
X - .B+(Y-.Z/2),

1.2.3.1 CONTROL EXPRESSIONS

THE CONTROLEXPRESSIONS PROVIDE SEQUENCING CONTROL OVER THE
EXECUTION OF A PROGRAM; THERE ARE FIVE FORMS;

CONTROLEXPfESSION JJ- CONDITIONALEXPRESSION / LOOPEXPRESSION /
CHOICEEXPRESSION / ESCAPEEXPRESSION / COROUTINEEXPRESSION

1.2.3.2 CONDITIONAL EXPRESSIONS

CONDI TIONALEXPRESSION t-i- IF El THEN E2 ELSE E3

El IS COMPUTED AND THE RESULTING VALUE IS TESTED. IF IT IS TRUE,
THEN E2 IS EVALUATED TO PROVIDE THE VALUE OF THE CONDITIONAL
EXPRESSION, OTHERWISE E3 IS EVALUATED.

CONDI TIONALEXPRESSI ON tt- IF El THEN E2

THIS FORM IS EQUIVALENT TO THE IF-THEN-ELSE FORM UITH 0
REPLACING E3. HOUEVER, IT DOES INTRODUCE THE "DANGLING ELSE"
AMBIGUITY. THIS IS RESOLVED BY MATCHING EACH ELSE TO THE MOST
RECENT UNMATCHED THEN AS THE CONDITIONAL EXPRESSION IS SCANNED
FROM LEFT TO RIGHT.

EXAMPLES;

IF ,X<8,1> THEN J - .K ELSE J-.L;

J - (IF .X<8,1> THEN .K ELSE .L);!SAME EFFECT AS PREVIOUS

IF .L THEN
BEGIN. ENO

ELSE
BEGIN END

; !BLOCKS ALLOU MULTIPLE STATEMENTS

POSITION - .POSITION + (IF .CHAR EQL #11 XTAB* THEN 8 ELSE 1) |

1.2.3.3 LOOP EXPRESSIONS

THE VALUE OF EACH OF THE SIX LOOP EXPRESSIONS IS -1, EXCEPT
WHEN AN EXITLOOP OR LEAVE IS USED, SEE 2.3.4.

LOOPEXPRESSION ::- WHILE El 00 E2

THE El IS COMPUTED AND THE RESULTING VALUE IS TESTED. IF IT
IS TRUE, THEN E2 IS COMPUTED AND THE COMPLETE LOOPEXPRESSION
IS RECOMPUTED} IF IT IS FALSE, THEN THE LOOPEXPRESSION EVALU
ATION IS COMPLETE.

LOOPEXPRESSION:: -UNTIL E3 DO E2

THIS FORM IS EQUIVALENT TO THE WHILE-DO FORM EXCEPT THAT El IS
REPLACED BY N0T(E3).

LOOPEXPRESSION:t-DO E2 WHILE El

THE EXPRESSIONS E2,E1 ARE COMPUTED IN THAT SEQUENCE. THE VALUE
RESULTING FROM El IS TESTED: IF IT IS TRUE, THEN THE COMPLETE
LOOP EXPRESSION IS RECOMPUTED: IF IT IS FALSE, THEN THE LOOP-
EXPRESSION EVALUATION IS COMPLETE.

LOOPEXPRESSION::-DO E2 UNTIL E3

THIS FORM IS EQUIVALENT TO THE DO-WHILE FORM EXCEPT THAT El IS
REPLACED BY N0T(E3).

LOOPEXPRESSION::-INCR NAME FROM El TO E2 BY E3 DO E4

THIS IS A SIMPLIFIED FORM OF THE ALGOL 68 FOR-LOOP. THE "NAME"
IS DECLARED TO BE A REGISTER OR A LOCAL FOR THE SCOPE OF THE
LOOP. THE EXPRESSION El IS COMPUTED AND STORED IN NAME. THE
EXPRESSIONS E2 AND E3 ARE COMPUTED AND STORED IN UNNAMED LOCAL
MEMORY WHICH FOR EXPLANATION PURPOSES WE SHALL NAME U2 AND U3.
ANY OF THE PHRASES "FROM El" "TO E2" OR "BY E3" MAY BE OMITTED—
IN WHICH CASE DEFAULT VALUES OF El - 8, E2 - 2tl6-l, E3 - 1 ARE
SUPPLIED. THE FOLLOWING LOOPEXPRESSION IS THEN EXECUTEO:

BEGIN REGISTER NAME; LOCAL U2,U3, U2-E2; U3-E3;
UNTIL .NAME GTR.U2 DO (E4; NAME-.NAME+.U3)
END

THE FINAL FORM OF A LOOPEXPRESSION IS:

LOOPEXPRESSION::-OECR NAME FROM El TO E2 BY E3 DO E4

THIS IS EQUIVALENT TO THE INCR-FROM-TO-BY-DO FORM EXCEPT THAT THE FINAL
LOOP IS REPLACED BY

BEGIN REGISTER NAME; LOCAL U2,U3| U2-E2» U3-E3;
UNTIL .NAME LSS .U2 DO (E4; NAME-.NAME - .U3)
END

IF ANY OF THE FROM, TO, OR BY PHRASES ARE OMITTED FROM A DECR EXPRESSION,
DEFAULT VALUES OF El-8, E2—2tl5, AND E3-1 ARE SUPPLIED. NOTICE THAT
IN BOTH FORMS THE END CONDITION IS TESTED BEFORE THE LOOP, HENCE THE LOOP
IS POTENTIALLY EXECUTED ZERO OR MORE TIMES.

EXAMPLES:

LINK-.BEGINNINGOFLINKEOLIST,
UHILE. .LINK NEQ 8 DO BEGIN LINK-..LINK END; IFIND LAST ITEM

ION LIST

1ADD UP FIRST N NUMBERS
SUM-8;
I NCR J FROM 1 TO .N DO SUM-.SUM+.J:

1.2.3.4 ESCAPE EXPRESS IOUS

THE ESCAPE EXPRESS I OUS PERMIT CONTROL TO LEAVE ITS CURRENT
ENVIRONMENT. THERE ARE THREE FORMS:

ESCAPEEXPRESSION::- LEAVE LABEL UITH E /
EXITLOOP E /
RETURN E /
LEAVE LABEL

ANY EXPRESSION MAY BE LABELED BY PRECEEDING IT UITH THE LABEL
NAME AND A COLON. UITHIN A LABELED EXPRESSION, CONTROL MAY BE
CAUSED TO LEAVE THE EXPRESSION AND YIELO THE GIVEN VALUE AS THE
VALUE OF THE EXPRESSION.

THE LEAVE EXPRESSION MUST OCCUR UITHIN THE CONTROL SCOPE
OF THE LABEL NAMED, THE SAME LABEL MAY ONLY BE USEO ONCE UITHIN
THE LEXICAL SCOPE OF ITS DEFINITION.

EXITLOOP IS A SPECIAL CASE UHICH EXITS THE SCOPE OF THE
INNERMOST LOOP CONTROL SCOPE UHICH CONTAINS IT. THE VALUE
BECOMES THE VALUE OF THE EXITED LOOP.

RETURN EXITS THE ROUTINE BODY AND PASSES THE GIVEN VALUE AS THE
VALUE OF THE ROUTINE.

IF THE "UITH E" IS MISSING THEN "UITH 8" IS PRESUMEO.

EXAMPLES:

IFIND INDEX OF FIRST SPACE IN LINE IMAGE OF 88 CHARACTERS
!INDEX IS -1 IF NONE FOUND

INDEX*-INCR J FROM 8 TO 79 DO IF . (LINE+. J)<8,8> EQL #48
THEN EXITLOOP .J;

!HOU TO ^BRANCH" TO NEXT ITERATION IN A LOOP
INCR J FROM 1 TO 188 DO

L2:(...

IF .CONDITION THEN A.EAVE L2j!EXIT THE COMPOUND UHICH
!IS THE LOOP BODY,IE.,

) t ! JUMP TO THE END OF THE
!ITERATION (IF ANY).

•FIND FIRST ZERO ELEMENT OF A 2-D ARRAY
L3: (INCR I FROM 1 TO .IMAX DO
I NCR J FROM 1 TO .JMAX DO

IF .ARRAY [.I,. J] EQL 8 THEN (I I-. I; JJ-. J» LEAVE L3) i.

1.2.3.5 CHOICE EXPRESSIONS

CHOICEEXPRESSION::- CASE E OF SET EXPRESSI ONSET
TES

EXPRESSIONSET it- /E/;EXPRESSIONSET/E;EXPRESSIONSET

THE EXPRESSION E IS EVALUATED AND USED TO SELECT THE E-TH
EXPRESSION OF THE FOLLOWING SET TO EXECUTE. THE FIRST EXPRESSION
IS EXECUTED IF E EQUALS 0, THE SECOND IF E EQUALS l.ETC. THE VALUE
OF THE CASE EXPRESSION IS UNDEFINED IF E IS LESS THAN ZERO OR
GREATER THEN THE NUMBER OF EXPRESSIONS.

EXAMPLES.

"SUPPOSE TYPE (.CHAR)-0 IF .CHAR IS A NUMBER, 1 IF A LETTER,
! 2 IF IGNORABLE, EQ. SPACE, TAB, AND 3 OTHERWISE.
!COLLECT A FORTRAN STYLE IDENTIFIER, WITH COUNT BEING THE LENGTH

COUNT-0;
IF TYPE (.CHAR) EQL 1 THEN

DO,
CASE TYPE (.CHAR) OF

SET
((ID+.COUNT)<0,8>-.CHAR;COUNT-.COUNT+1); ICASE-0
((ID+.COUNT)<0,8>-.CHAR;COUNT-.COUNT+1); ICASE-1
0; ICASE-2
EXITCONDITIONAL ICASE-3
TES

WHILE(CHAR-NEXTCHARFROMINPUT(); 1);

CHOICEEXPRESSION::- SELECT E OF NSET NEXPRESSIONSET

TESN

NEXPRESSIONSET.:- / NE / NE, NEXPRESSIONSET

NE::- EiE / OTHERWISE:E/ALWAYS:E
THIS FORM IS SOMEWHAT SIMILAR TO THE CASE EXPRESSION EXCEPT THAT
THE EXPRESSION IN THE NEXPRESSIONSET ARE NOT THOUGHT OF AS BEING
SEQUENTIALLY NUMBERED—INSTEAD EACH EXPRESSION IN THE NEXPRES
SIONSET IS TAGGED WITH AN "ACTIVATION" EXPRESSION. SUPPOSE UE
HAVE THE FOLLOWING SELECT EXPRESSION

SELECT El OF NSET E4: E5; E6: E7j E8: E9j ElBi
Ell TESN

THEN THE EXECUTION PROCEEDS AS FOLLOWS: FIRST El IS
EVALUATED, THEN E4, E6, E8, AND E18 ARE EVALUATEOf CORRESPON
DINGLY E5 IS EVALUATED IF AND ONLY IF E4 IS EQUAL TO El,
ETC. AS WITH THE CASE EXPRESSION, THE ORDER OF

EVALUATION OF THE NSET ELEMENTS IS NOT DEFINED AND THE VALUE OF
THE ENTIRE EXPRESSION IS THAT OF THE LAST ONE TO BE EXECUTED
AT EXECUTION TIME. THUS, THE VALUE OF THE COMPLETE SELECT
EXPRESSION IS UNIQUELY DETERMINED ONLY IN THE CASE THAT THE
ELIST CONTAINS PRECISELY ONE ELEMENT.

AN EXCAPE EXPRESSION IS ILLEGAL WHERE ITS EXECUTION WOULD IMPLY
EXCAPE FROM AN NSET-TESN ENVIRONMENT.

IN PLACE OF ONE OF THE SELECTION EXPRESSIONS, E(4), E(6), ETC. ONE
OF THE TWO RESERVED WORDS OTHERWISE OR ALWAYS MAY BE USED, E.G.,
"ALWAYS:E(9)". THE EXPRESSION FOLLOWING AN "OTHERWISE:" WILL BE
EXECUTED JUST IN THE CASE THAT NONE OF THE PRECEDING SELECTION
CRITERIA WERE SATISFIED. THE EXPRESSION FOLLOWING AN "ALWAYS:"
WILL ALWAYS BE EXECUTED INDEPENDENT OF THE SELECTION CRITERIA.
IN THE FOLLOWING EXAMPLE

Z-SELECT .X OF
NSET
1:E1;
7:E2;

OTHERWISE:E3:
36:E4;

ALWAYS:E5i
94: E6
TESN

(1) El UILL BE EXECUTED IF .X-l OR .Y-l, THEN (2) E2 UILL BE EXECUTED IF
.X-7 OR .Y-7, THEN (3) E3 UILL BE EXECUTEO IN THE CASE NEITHER El NOR E2
UAS EXECUTED, I.E., .X NOT - TO 1, .Y NOT - TO 1, .X NOT - TO 7,
AND .Y NOT - TO 7, THEN (4) E4 UILL BE EXECUTED IF .X-3S OR .Y-3B,
THEN (5) E5 UILL ALUAYS BE EXECUTED, AND FINALLY (6) ES UILL BE
EXECUTED IF .X-94 OR.Y-94. THE VALUE ASSIGNED TO Z UILL BE THAT
OF E5 UNLESS .X-94 OR .Y-94 IN UHICH CASE THE VALUE ASSIGNED TO
Z UILL BE THAT OF E(8).

- NOTE THAT ALTHOUGH OTHERWISE AND ALUAYS MAY BE PLACED IN ANY NSET-ELEMENT,
IT MAKES NO SENSE TO USE MORE THAN ONE OTHERUISE OR TO USE AN
OTHERUISE AFTER AN ALUAYS SINCE IN THESE CASES THE LATTER OTHER
UISE »S CAN HAVE NO EFFECT.

EXAMPLE:

•SUPPOSE UE HAVE A TELETYPE INPUT ROUTINE
SELECT .CHAR OF NSET

#15:
#11:

!CR-> ECHO LF
!TAB-> ECHO SPACES

TESN

1.2.3.8 CO-ROUTINE EXPRESSIONS

THE ABILITY TO CREATE AND COMMUNICATE BETUEEN CO-ROUTINES IS
VERY DESIRABLE. HOUEVER, CONSIDERATION IS DEFERRED UNTIL A
PROPOSAL CAN BE UORKEO OUT UITH THE MONITOR GROUP.

1.3.1 DECLARATIONS

ALL DECLARATIONS, EXCEPT HAP AND SUITCH, INTRODUCE NAMES EACH OF
UHICH IS UNIQUE TO THE BLOCK IN UHICH THE DECLARATION APPEARS.
EXCEPT UITH STRUCTURE AND MACRO DECLARATIONS, THE NAME INTRODUCED
HAS A POINTER BOUND TO IT.

THE DECLARATIONS ARE:

DECLARATION::-ROUTINEDECLARATION/
STRUCTUREOECLARATION/
BINDDECLARATION/
MACRODECLARATION/
ALLOCATIONDECLARATION/
MAPDECLARATION/
LABELDECLARATION/
UNDECLARATION/
CALLSEQDECLARATION/
SIGNALDECLARATION

BEFORE PROCEEDING UITH A DETAILED DISCUSSION OF THE DECLARATIONS
UE SHALL GIVE AN INTUITIVE OVERVIEU OF THE EFFECT OF THESE DECLARATIONS.

1.3.1.1 STORAGE (AN INTRODUCTION)

A BLISS-11 PROGRAM OPERATES UITH AND ON A NUMBER OF STORAGE
"SEGMENTS". A STORAGE SEGMENT CONSISTS OF A FIXEO AND FINITE
NUMBER OF "UORDS", EACH OF UHICH IS COMPOSEO OF A FIXED AND
FINITE NUMBER OF "BITS" (IS FOR THE PDP-11/28).

IN PRACTICE A SEGMENT GENERALLY CONTAINS EITHER PROGRAM OR DATA,
AND IF THE LATTER, IT IS GENERALLY INTEGER NUMBERS, FLOATING
POINT NUMBERS, CHARACTERS, OR POINTERS TO OTHER DATA. TO A
BLISS-11 PROGRAM, HOUEVER, A SEGMENT MERELY CONTAINS A PATTERN OF
BITS.

SEGMENTS ARE INTRODUCED INTO A BLISS-11 PROGRAM BY DECLARATIONS,
CALLED ALLOCATION DECLARATIONS, FOR EXAMPLE:

GLOBAL G;
OUN X,Y [SI, Z:
LOCAL P [1883 j
REGISTER Rl, R2|
ROUTINE F(A,B) - .At.B;

EACH OF THESE DECLARATIONS INTRODUCES ONE OR MORE SEGMENTS AND
BINDS THE IDENTIFIERS MENTIONED (E.G.* G, X, Y, ETC.) TO THE
NAME OF THE FIRST BYTE OF THE ASSOCIATED SEGMENT. (THE FUNC
TION DECLARATION ALSO INITIALIZES THE SEGMENT NAMED "F" TO THE
APPROPRIATE MACHINE CODE.)

THE SEGMENTS INTRODUCED BY THESE DECLARATIONS CONTAIN ONE OR MORE
UORDS, UHERE THE SIZE MAY BE SPECIFIEO (AS IN "LOCAL PL1881"),
OR DEFAULTED TO ONE (AS IN "GLOBAL G{"). THE IDENTIFIERS INTRO
DUCED BY A DECLARATION ARE LEXICALLY LOCAL TO THE BLOCK IN
UHICH THE DECLARATION IS MADE (THAT IS, THEY OBEY THE USUAL
ALGOL SCOPE RULES) UITH ONE EXCEPTION - NAMELY, "GLOBAL" IDEN
TIFIERS ARE MADE AVAILABLE TO OTHER, SEPARATELY COMPILED MODULES.
SEGMENTS CREATED BY OUN, GLOBAL, AND FUNCTION DECLARATIONS ARE
CREATED ONLY ONCE AND ARE PRESERVED FOR THE DURATION OF THE EX
ECUTION OF A PROGRAM. SEGMENTS CREATED BY LOCAL REGISTER DECLAR
ATIONS ARE CREATED AT THE TIME OF BLOCK ENTRY AND ARE PRESERVED
ONLY FOR THE OURATION OF THE EXECUTION OF THAT BLOCK. REGISTER
SEGMENTS DIFFER FROM LOCAL SEGMENTS ONLY IN THAT THEY ARE ALLO
CATED FROM THE MACHINE'S ARRAY OF 6 GENERAL PURPOSE (FAST) REG
ISTERS. RE-ENTRY OF A BLOCK BEFORE IT IS EXITED (BY RECURSIVE
FUNCTION CALLS, FOR EXAMPLE) BEHAVES AS IN ALGOL, THAT IS, LOCAL
AND REGISTER SEGMENTS ARE DYNAMICALLY LOCAL TO EACH INCARNATION OF
THE BLOCK.

THERE ARE TUO ADDITIONAL DECLARATIONS UHOSE EFFECT IS TO BIND
IDENTIFIERS TO NAMES, BUT UHICH DO NOT CREATE SEGMENTS;
EXAMPLES ARE:

EXTERNAL S;
BIND Y2 - Y+2, PA - P+.A;

AN EXTERNAL DECLARATION BINDS ONE OR MORE IDENTIFIERS TO THE NAMES
REPRESENTED BY THE SAME IDENTIFIER OECLARED GLOBAL IN ANOTHER,
SEPARATELY COMPILED MODULE. THE BIND DECLARATION BINDS ONE OR MORE
IDENTIFIERS TO THE VALUE OF AN EXPRESSION AT BLOCK ENTRY TIME.
AT LEAST POTENTIALLY THE VALUE OF THIS EXPRESSION MAY NOT BE
CALCULABLE UNTIL RUN TIME - AS IN 'PA - P+.A' ABOVE.

1.3.1.2 DATA STRUCTURES (AN INTRODUCTION)

TUO PRINCIPLES UERE FOLLOUEO IN THE DESIGN OF THE DATA STRUCTURE
FACILITY OF BLISS:

-THE USER MUST BE ABLE TO SPECIFY THE ACCESSING ALGORITHM
FOR ELEMENTS OF A STRUCTURE,
-THE REPRESENTATIONAL SPECIFICATION AND THE SPECIFICATION
OF ALGORITHMS UHICH OPERATE ON THE INFORMATION REPRESENTED
MUST BE SEPARATED IN SUCH A UAY THAT EITHER CAN BE MODIFIED
UITHOUT AFFECTING THE OTHER.

THE DEFINITION OF A CLASS OF STRUCTURES, THAT IS, OF AN ACCESSING
ALGORITHM TO BE ASSOCIATED UITH CERTAIN SPECIFIC DATA STRUCTURES,
MAY BE MADE BY A DECLARATION OF SOMEUHAT THE FOLLOUING FORM:

STRUCTURE <NAME>UFORMAL PARAMETER LIST>1 - E

PARTICULAR NAMES MAY THEN BE ASSOCIATED UITH A STRUCTURE CLASS, THAT IS
UITH AN ACESSING ALGOITHM, BY ANOTHER DECLARATION OF SOMEUHAT THE FORM:

MAP <NAME> <NAME LIST>

CONSIDER THE FOLLOUING EXAMPLE:

BEGIN
STRUCTURE ARY2U, J] - (.ARY2+(. I-l)*18+(. J-l));
OUN X[100],Y(188),Z(1881:
MAP ARY2 X:Y:Zj

XI.A, .Bl «- .Y[.B,.A1;

END:

IN THIS EXAMPLE HE INTRODUCE A VERY SIMPLE STRUCTURE, ARY2, FOR TUO
DIMENSIONAL (18X18) ARRAYS, DECLARE THREE SEGMENTS UITH NAMES
'X\ 'Y\ AND *Z' BOUND TO THEM, AND ASSOCIATE THE STRUCTURE CLASS
'ARY2' UITH THESE NAMES. THE SYNTACTIC FORMS "X[E1,E2I" AND
"Y[E3,E4]M ARE VALID UITHIN THIS BLOCK AND DENOTE EVALUATION
OF THE ACCESSING ALGORITHM DEFINED BY THE ARY2-STRUCTURE DECLARATION
(UITH AN APPROPRIATE SUBSTITUTION OF ACTUAL FOR FORMAL PARAMETERS).

ALTHOUGH THEY ARE NOT IMPLEMENTED IN THIS UAY, FOR PURPOSES OF
EXPOSITION ONE MAY THINK OF THE STRUCTURE DECLARATION AS DEFINING
A FUNCTION UITH ONE MORE FORMAL PARAMETER THAN IS EXPLICITYLY
MENTIONED. FOR EXAMPLE, THE STRUCTURE DECLARATION IN THE PREVIOUS
EXAMPLE:

STRUCTURE ARY2II,J) - (.ARY2+(.I-l)*18+(.J-l))j

CONCEPTUALLY IS IDENTICAL TO A FUNCTION DECLATION

FUNCTION ARY2(F0,F1,F2) - (.F0+(.F1-1)*18+(.F2-1)) j

THE EXPRESSIONS "Xt.Af.Bl" AND "Y[.B,.A]M CORRESPOND TO CALLS ON
THIS FUNCTION - I.E., TO "ARY2(X, .A, .B)" AND "ARY2(Y, .B,. A)".

SINCE, IN A STRUCTURE DECALARTION, THERE IS AN IMPLICIT, UN-NAMED
FORMAL PARAMETER, THE NAME OF THE STRUCTURE CLASS ITSELF IS USED TO
DENOTE THIS "ZERO-TH" PARAMETER. THIS CONVENTION MAINTAINS THE
POSITIONAL CORRESPONDENCE OF ACTUALS AND FORMALS. THUS, IN
THE EXAMPLE ABOVE, ".ARY2" OENOTES THE VALUE OF THE NAME OF THE
PARTICULAR SEGMENT BEING REFERENCED, AND 'X[.A,.B]' IS EQUIVALENT TO:

(X+(.A-l)fcl8+(.B-D)

THE VALUE OF THIS EXPRESSION IS A POINTER TO THE DESIGNATED ELEMENT OF
THE SEGMENT NAMEO BY X.

IN THE FOLLOUING EXAMPLE THE STRUCTURE FACILITY AND BIND DECLARATION
HAVE BEEN USED TO ENCODE A MATRIX PRODUCT (Z(I.J) - X*Y). IN THE
INNER BLOCK THE NAMES »XR' AND 'YC ARE BOUND TO POINTERS TO THE
BASE OF A SPECIFIED ROU OF X AND COLUMN OF Y RESPECTIVELY. THESE
IDENTIFIERS ARE THEN ASSOCIATED UITH STRUCTURE CLASSES UHICH ALLOU
ONE-DIMENSIONAL ACCESS.

BEGIN
STRUCTURE ARY2II.J] - (.ARY2+(.I-l)*10+(. J-l)).

ROUtll - (.ROU+.I-l),
COLtJ] - (.COL+<.J-1)*10;

OUN X Q88], Ytl88],Ztl88];
MAP ARY2 X:Y»Z,

INCR I FROM 1 TO IB DO
BEGIN BIND XR - XI. 1,13, ZR - ZM.lli MAP ROU XR1ZR1

INCR J FROM 1 TO 18 DO
BEGIN
REGISTER T; BIND YC-Ytl,.Jl| MAP COL YC;
T «- j
INCR K FROM 1 TO 18 DO T «- .T+.XRC.K1*.YC[.K1,
ZRt.J] «- .Tj
ENO;

END;

END

1.3.1.3 THE ACTUAL DECLARATION SYNTAX

THE EXAMPLE DECLARATIONS IN THE PRCEOING TWO SUB-SECTIONS ARE
VALID BLISS SYNTAXj HOWEVER, THEY DO NOT REFLECT THE COMPLETE
POWER OF THE DECLARATIVE FACILITYIES. THE FOLLOWING SECTIONS
(3.2 - 3.5) ARE DEFINITIVE PRESENTATIONS OF THE ACTUAL SYNTAX
AND SEMANTICS OF THESE DECLARATIONS. THE ACTUAL DECLARATIONS
PRESENTED IN THE FOLLOWING SECTIONS DIFFER FROM THE EXAMPLES
GIVEN PREVIOUSLY IN THAT THEY ADMIT GREATER INTERACTION BETWEEN
THE ALLOCATION DECLARATIONS AND STRUCTURE DECLARATIONS.

1.3.2 MEMORY ALLOCATION

THERE ARE FIVE BASIC FORMS OF ALLOCATION OECLARATIONi

ALLOCATION DECLARATION it- ALLOCATETYPESIZE MSIDLIST
ALLOCATETYPESIZE.:- ALLOCATESIZE ALLOCATETYPE/ALLXATESIZE ALLOCATETYPE CALLT
ALLOCATSIZE::- /BYTE/UORD
ALLOCATETYPE ::- GLOBAL/REG ISTER/OUN/LOCAL/EXTERNAL
MSIDLIST ::- MS IDELEMENT/MSIDELEMENT, MS IDLI ST
MSIDELEMENT STRUCTURE SIZEDCHUNKS
STRUCTURE ::- / STRUCTURENAME
SIZEDCHUNKS ::- SIZEOCHUNK/SIZEOCHUNK, SIZEDCHUNKS
SIZECHUNK ::- IDCHUNK/IDCHUNK [EL I ST)
IDCHUNK ::- NAME/NAME: IDCHUNK

AS UITH MOST OTHER DECLARATIONS, THE ALLOCATION DECLARATIONS
INTRODUCE NAMES UHOSE SCOPE IS THE BLOCK IN UHICH THE DECLARATIONS
OCCUR. REGISTER AND LOCAL DECLARATIONS CAUSE ALLOCATION OF STORAGE
AT EACH BLOCK ENTRY (INCLUDING RECURSIVE AND QUASI-PARALLEL ONES),
AND CORRESPONDING DE-ALLOCATION ON BLOCK EXIT. STORAGE FOR OUN
AND GLOBAL DECLARATIONS IS MADE ONCE (BEFORE EXECUTION BEGINS)
AND REMAINS ALLOCATED DURING THE ENTIRE EXECUTION OF THE PROGRAM.
EXTERNAL DECLARATIONS DO NOT ALLOCATE STORAGE, BUT CAUSE A LINKAGE
TO BE ESTABLISHED TO STORAGE DECLARED UITH THE SAME NAME IN A
GOLBAL DECLARATION OF ANOTHER MODULE. SPACE FOR ALLOCATION IS
TAKEN FROM CORE FOR LOCAL, OUN, AND GLOBAL DECLARATIONS, AND
FROM THE MACHINE'S HIGH SPEED REGISTERS FOR REGISTER DECLARATIONS.
ALLOCATESIZE SPECIFIES UHAT UNIT SIZE IS TO BE ALLOCATED. IF
THIS IS NOT PRESENT THEN UORD IS ASSUMED.

THE INITIAL CONTENTS OF ALLOCATED MEMORY IS NOT DEFINED AND SHOULD
NOT BE PRESUMED.

EACH MSIDELEMENT DEFINES A SET OF IDENTIFIERS AND SIMULTANEOUSLY
MAPS THESE IDENTIFIERS ONTO A SPECIFIED STRUCTURE. (IF THE
STRUCTURE PART IS EMPTY, THE DEFAULT STRUCTURE 'VECTOR' IS ASSUMED,
SEE SECTION 3.5). EACH SIZED CHUNK ALLOUS, BY INTERACTION UITH
THE ASSOCIATED STRUCTURE OF THE MSIDELEMENT, SPECIFICATION OF THE
SIZE OF THE SEGMENT TO BE ALLOCATED - AND THE VALUES OF THE
"UNDOTTED STRUCTURE FORMALS" TO BE USED IN ACCESSING AN INSTANCE
OF THE STRUCTURE (AGAIN, SEE 1.3.5).

1.3.3 MAP DECLARATION

MAP DECLARATION ti.- MAP MSIDLIST/MAP CALLTYPE MSIDLIST

THE MAP DECLARATION IS SYNTACTICALLY AND SEMANTICALLY SIMILAR TO AN
ALLOCATION DECLARATION EXCEPT THAT NO NEU STORAGE OR IDENTIFIERS ARE
INTRODUCED. THE PURPOSE OF THE MAP DECLARATION IS TO PERMIT RE
DEFINITION OF THE STRUCTURE AND ELIST INFORMATION ASSOCIATED UITH
AN IDENTIFIER (OR SET OF IDENTIFIERS) FOR THE SCOPE OF THE BLOCK
IN UHICH THE MAP DECLARATION OCCURS.

1.3.4 BIND DECLARATIONS

BI NO OECLARATI ON if BIND EQUIVALENCELI ST
EQUIVALENCELI ST ts- EQUI VALENCE/EQUI VALENCE, EQUI VALENCEL I ST
EQUIVALENCE ::- MSIOELEMENT - E

A BIND DECLARATION INTRODUCES A NEW SET OF NAMES UHOSE SCOPE IS THE
BLOCK IN WHICH THE BIND DECLARATION OCCURS, AND BINDS THE VALUE OF
THESE NAMES TO THE VALUE OF THE ASSOCIATED EXPRESSIONS AT THE TIME
THAT THE BLOCK IS ENTERED. NOTE THAT THESE EXPRESSIONS NEEO NOT
EVALUATE AT COMPILE TIME.

3.5 STRUCTURES

STRUCTURE DECLARATION .:« STRUCTURE NAME STRUCTUREFORMALLIST
- STRUCTURESIZE E

STURCTUREFORMALLI ST .:- / [NAMELIST]
STRUCTURESIZE ::- / IE]

STRUCTURE DECLARATIONS SERVE TO DEFINE A CLASS OF DATA STRUCTURES
BY DEFINING AN EXPLICIT "ACCESS ALGOITHH", E, TO BE USED IN
ACCESSING ELEMENTS OF THAT STRUCTURE. THE CLASS OF STRUCTURES
INTRODUCED BY SUCH A DECLARATION IS GIVEN A NAME UHICH HAY BE
USED AS THE STRUCTURE NAME IN AN ALLOCATION DECLARATION OR MAP
DECLARATION.

THE ACCESSING ALGORITHM, E, MAY NOT CONTAIN ANY DECLARATIONS.

THE NAMES IN THE STRUCTURE FORMAL LIST ARE FORMAL PARAMETER
IDENTIFIERS UHICH ARE USED IN TUO DISTINCT UAYS:

1. "DOTTED" OCCURRENCES OF THE FORMAL NAMES POSITIONALLY
CORRELATE UITH THE VALUES OF EL I ST ELEMENTS AT THE SITE OF A
STRUCTURE ACCESS. (RECALL THAT A STRUCTURE ACCESS IS
SYNTACTICALLY NAME [ELIST].) THESE ARE REFERRED TO
AS "ACCESS FORMALS" AND "ACCESS ACTUALS" RESPECTIVELY.

2. "UNDOTTEO" OCCURRENCES OF THE FORMAL NAMES POSITIONALLY
CORRELATE UITH THE VALUES OF THE ELI ST ELEMENTS AT THE SITE
OF THE DECLARATION UHICH ASSOCIATED THE VARIABLE NAME UITH
THE STRUCTURE CLASS. THESE ARE REFERRED TO AS "INCARNATION
FORMALS" AND "INCARANATION ACTUALS" RESPECTIVELY.

IN ADDITION TO THE EXPLICIT FORMAL NAMES, THE STRUCTURE NAME, IN
"DOTTED" FORM, IS USED AS AN ACCESS FORMAL TO DENOTE THE NAME OF
THE SPECIFIC SEGMENT BEING ACCESSED (THAT IS, TO DENOTE THE
POINTER TO THE BASE OF THE SEGMENT).

IF PRESENT, THE STRUCTURE SIZE, I.E., £EJ, IS USEO TO CALCULATE
(FROM THE INCARNATION ACTUALS) THE SIZE OF THE SEGMENT TO BE ALLOCTEO
BY AN ALLOCATION DECLARATION. AFTER SUBSTITUTION OF INCARNATION
ACTUALS, THIS EXPRESSION MUST EVALUATE TO A CONSTANT AT COMPILE TIME.

THE SIMPLE EXAMPLE OF A TWO-DIMENSIONAL ARRAY GIVEN IN SECTION 3.1.2
MIGHT NOU BE UR1TTEN:

BEGIN , _
STRUCTURE ARY211, J) - 11 >v J) (. ARY2+ (. I-l)>vJ+(. J-l));
OUN ARY2 X:Y.ZQ8,18) j

X [.A, .B) .YI.B,.A)j

END j

THE DEFAULT STRUCTURE VECTOR, MENTIONED IN SECTION 3.2 IS
DEFINED BY

STRUCTURE VECTOR II) - [II(.VECTOR + ,I)<8,16>|

IF DEFAULTED, THE SIZE PART OF A STRUCTURE DECLARATION ([I*J]
IN THE ABOVE EXAMPLE) IS DEFAULTED TO THE PRODUCT OF THE INCARNATION
ACTUALS (X:YtZ[18,18) IN THE ABOVE EXAMPLE).

1.3.6 ROUTINES

ROUTINEDECLARATION::- ROUTINE NAME(NAMELIST) - E /
ROUTINE NAME - E

THE ROUTINE DECLARATION DEFINES THE NAME TO BE THAT OF A POTEN
TIALLY RECURSIVE AND RE-ENTRANT FUNCTION UHOSE VALUE IS THE
EXPRESSION E. THE SYNTAX OF A NORMAL SUBROUTINE-LIKE FUNCTION
CALL IS

Pit:- PI (ELIST) / PI 0
ELIST::- E / ELIST, E

UHERE PI IS a PRIMARY EXPRESSION. CLEARLY, PI MUST EVALUATE
TO A NAME UHICH HAS BEEN DECLARED AS A ROUTINE EITHER AT COMPILE
TIME OR AT RUN TIME. THE NAMES IN THE NAME-LIST OF THE DECLARA
TION DEFINE (LEXICALLY LOCAL) NAMES OF FORMAL PARAMETERS UHOSE
ACTUAL VALUES ON EACH INCARNATION ARE DETERMINED BY THE ELIST AT
THE CALL SITE. ALL PARAMETERS ARE IMPLICITLY ALGOL "CALL-BY-
VALUE" ; BUT NOTICE THAT CALL-BY-REFERENCE IS ACHIEVED BY SIMPLY
PRESENTING POINTER VALUES AT THE CALL SITE. PARENTHESES ARE
REQUIRED AT THE CALL SITE EVEN FOR A ROUTINE UITH NO FORMAL PARA
METERS SINCE THE NAME ON ITS OUN IS SIMPLY A POINTER TO THE ROUTINE.

DECLARATION::- GLOBAL ROUTINE NAME (NAMELIST) - E/
GLOBAL ROUTINE NAME - E

A ROUTINE NAME IS LIKE AN OUN NAME IN THAT ITS SCOPE IS LIMITED
TO THE BLOCK IN UHICH IT IS DECLAREO AND ITS VALUE IS ALREADY
INITIALIZED AT BLOCK ENTRY. THE PREFIX GLOBAL CHANGES THE SCOPE
OF THE ROUTINE TO THAT OF THE OUTER BLOCK OF THE PROGRAM ENVEL
OPING ALL THE MODULES. NOTE THAT THIS INHIBITS A GLOBAL ROUTINE
FROM ACCESS TO REGISTER NAMES DECLARED OUTSIDE IT.

DECLARATION::- EXTERNAL NAMEPARLIST /
FORUARD NAMEPARLIST

NAMEPARLIST::- NAMEPAR / NAMEPARLIST, NAMEPAR

NAMEPAR::- NAME (E) / NAME

EXTERNAL AND FORUARD EACH TELL THE COMPILER HOU MANY PARAMETERS,
GIVEN BY E*, ARE EXPECTED BY AN UNDECLARED ROUTINE NAME. FOR
UARD IS FOR ROUTINES DECLARED LATER IN THE CURRENT BLOCK AND
EXTERNAL IS FOR ROUTINES FROM ANOTHER MODULE. THE COMPILER
PERMITS THE NUMBER OF ACTUAL PARAMETERS IN A ROUTINE CALL TO BE
GREATER THAN, EQUAL TO, OR LESS THAN TO THE NUMBER OF FORMALS DECLARED.
(SEE SECTION IV. 1.2 FOR AN EXPLANATION OF HOU ARGUMENTS ARE PASSED
ON A ROUTINE CALL. IT UILL INDICATE THE RESULT UHICH OCCURS
UHEN THE NUMBER OF ARGUMENTS PASSED IS NOT THE SAME AS THE NUMBER OF
FORMAL PARAMETERS IN THE ROUTINE DECLARATION.) A DEFAULT VALUE OF
ZERO IS SUPPLIED IF "(E)" IS MISSING.

>vCLEARLY E MUST EVALUATE TO A CONSTANT AT COMPILE TIME,

1.3.7 LABEL DECLARATION

LABELOECLARATION::- LABEL LABELLIST

LABELLIST»«- NAME/NAME, LABELLIST

LABELS ARE USEO SOLELY IN CONJUNCTION UITH THE ESCAPE EXPRESSIONS.
EACH NAME TO BE USED AS A LABEL MUST BE SO DECLARED AT THE HEAD
OF THE BLOCK CONTAINING THAT USAGE.

1.3.8 MACROS

IN ORDER TO FACILITATE PROGRAM READABILITY AND MODIFIABILITY, A
MACRO SYSTEM IS EMBEDDED IN BLISS. THE SYSTEM ALLOWS NESTED MACRO
DEFINITION AS WELL AS ITERATIVE AND RECURSIVE FORMS OF EVALUATION.
SYNTAX FOR MACRO DECLARATION:*

DECLARATION ::-MACRO OEFINITIONLIST
DEFINITIONLIST ::-DEFINITION /DEFINITIONLIST,DEFINITION
DEFINITION ::-NAME FIXEOPARMS ITERATEDPARMS-STRING 8
FIXEDPARMS :: -/ (NAMEL 1ST)
ITERATEDPARMS ::-/[]/ [NAMEL ISTJ

THE ESSENTIAL FUNCTION OF THE MACRO SYSTEM IS TO REPLACE THE
THE MACRO NAME AND ITS ACTUAL-PARAMETER LIST (WHEREEVER THE NAME
OCCURS WITHIN ITS SCOPE IN THE PROGRAM) BY ITS BODY, WITH ACTUAL-
PARAMETERS SUBSTITUTED FOR FORMALS. THE BODY IS CONSIDERED TO BE
A STRING OF "ATOMS"--NAMES, LITERALS AND DELIMITERS—AND IS THEREFORE
INDEPENDENT OF EDITING SYMBOLS—BLANKS, CR,LF,AND BLISS COMMENTS
—ONCE THE ATOMS ARE DETERMINED AT MACRO DECLARATION TIME.

THE FORMAT OF THE MACRO CALL IS SIMPLY THE MACRO-NAME FOLLOWED
BY THE BRACKETED ACTUAL-PARAMETER LIST. THE BRACKETS MUST BE ONE
OF THE PAIRS: 0, [), <>, AND THE ACTUAL-PARAMETERS MUST BE SEPARATED
BY COMMAS. THE ACTUAL PARAMETERS THEMSELVES MAY BE ARBITRARY
STRINGS OF ATOMS: HOWEVER, OCCURRENCES OF THE BRACKETS: 0 , • , <>,
AND MUST BE NESTED.* ALL MACROS IN ACTUAL-PARAMETER LISTS ARE
EXPANDED BEFORE FORMAL/ACTUAL BINDING.*

LET: MACRO SUBSTITUTE-BODY(1) 8,
SIMPLE(F(1),...F(N))-B0DY(2) 8,
PASS NOBODY (3) 8,
RECURSIVE(F(1),...F(N)) []-B0DY(4) 8,
ITERATE01[(l),...nN))-BODY(S) 8,
ITERATED2(F (1) F (N» H tl>....; K H N -BODY (6) 8,

REPRESENT THE CANNONICAL FORMS OF MACRO DEFINITIONS PERMITTED IN
BLISS. LET "MNAME (ACl),...,A(K))" REPRESENT A TYPICAL MACRO CALL,
WHERE THE A d) ARE ACTUALS. THE REPLACEMENT ALGORITHM VARIES
ACCORDING TO THE FORM OF THE DECLARATION:

1. SUBSTITUTE: THE BODY REPLACES THE MACRO NAME:

2. SIMPLE: OCCURRENCES OF F(I) IN BODY(2) ARE REPLACED BY A d) ;
BODY(2) IS SUBSTITUTED FOR THE CALL. UNSPECIFIED ACTUALS DEFAULT
TO THE EMPTY EXTRA ACTUALS ARE IGNORED BUT A WARNING MESSAGE

IS ISSUED.

* UNLESS QUOTED—SEE "SPECIAL FUNCTIONS".

3. PASS: THE BODY REPLACES THE MACRO-NAME (AND PARAMETER LIST)
ONLY IF AN ACTUAL-PARAMETER LIST IS SPECIFIEO; OTHERUISE, THE
MACRO IS REPLACED BY THE EMPTY ATOM. IF AN ACTUAL-PARAMETER LIST
IS SPECIFIED, THE SPECIAL FUNCTION *REMAINING MAY BE USED IN
BODY(3) TO STAND FOR ACTUAL-PARAMETER LIST UITH OUTER BRACKETS
REMOVED AND THE "DEFAULT SEPARATOR" REPLACING THE COMMAS.*

4. RECURSIVE: IF A(N) IS NOT SPECIFIED, THE EMPTY ATOM REPLACES
THE CALL. OTHERUISE, Ad) IS BOUND TO F(I) (1-1 TO N). THE
REMAINING ACTUALS—A(N)+l,... ,A(K)—DEFINE THE SPECIAL FUNCTION
^REMAINING MENTIONEO ABOVE, UHICH IS AVAILABLE FOR USE IN BODY(4).
NOTE: A RECURSIVE CALL UITHIN THE BODY IS PERMITTED, NOT REQUIRED.**

5. ITERATED1: IF A(N) IS NOT SPECIFIED, THE EMPTY ATOM REPLACES THE
CALL. OTHERUISE, A(I) IS BOUND TO HI) (1-1 TO N), AND ^REMAINING
IS DEFINED AS IN THE RECURSIVE FORM. THE BODY IS OUTPUT. IF
A2N IS NOT SPECIFIED, THE EXPANSION TERINATES. OTHERUISE, THE
"DEFAULT SEPARATOR"* IS OUTPUT, Id) TAKE ON THE STRINGS A
(21), AND THE BODY IS OUTPUT. THE PROCESS CONTINUES ITERATIVELY
UNTIL THE ACTUAL-PARAMETER LIST IS EXHAUSTED (AUN) IS NOT SPECIFIED,
FOR SONE J), PRODUCING INSTANCES OF BODY, SEPARATOR, BODY...
SEPARATOR, BODY.

8. ITERATED2: THE FIXED FORMALS ARE BOUND TO THE FIRST N ACTUAL-
PAR AMETERS—A(I) TO F d) . THE EXPANSION THEN BEHAVES AS IF A
MACRO SIMILAR TO ITERATED1 UERE DEFINED; I.E., THE ITERATIVE
EVALUATION IS PERFORMEO UITH BINDINGS Id) TO A(N)+I+JM (ON
THE JTH ITERATION).

DEFAULT SEPARATOR:

THE SEPARATOR GENERATED IS ALUAYS A FUNCTION OF THE BLISS CONTEXT
UHICH PRECEDES THE MACRO CALL. IF SOME CASES, BRACKETS ARE AUTOMATICALLY
GEERATED AROUND THE REPLACEO MACRO CALL.

PRECEDING CONTEXT GENERATED SEPARATOR GENERATED BRACKETS

SEPARATOR: , OR ; , OR ;
LEFT BRACKETS:

BEGIN OR (IN A BLOCK

OR COMPOUND
SET OR NSET

u <
DECLARATORS:

ALLOCATING, MACRO, MAP
EXTERNAL AND BIND

ROUTINE, GLOBAL ROUTINE,

STRUCTURE

tf«V>YtfnV>Y>V>YVtoV

*SEE "DEFAULT SEPARATOR" ABOVE.
**EXTENSIONS TO RECURSION MAY BE EXPECTED.

PRECEDING CONTEXT GENERATED SEPARATOR GENERATED BRACKETS

STRUCTURE NAME IN A
MAPPING DECLARATION

PLIT 0

OF AFTER CASE SET TES

OF AFTER SELECT NSET TESN

EXPRESSION OR NAME
OPERATOR

0
THE SAME OPERATOR

SPECIAL FUNCTIONS:

1. ^REMAINING: IN ANY MACRO OF THE FORMS B0DY(3)-B00Y(8) ABOVE, THE
ACTUAL PARAMETERS NOT YET BOUND IN A MACRO EXPANSION. THE
BRACKETS ARE REMOVED FROM THE PARAMETER LIST? THE SEPARATOR
BETWEEN THE PARAMETERS IS DETERMINED FROM THE CONTEXT OF THE
USE OF THE FUNCTION.

2. 8LENGTH: THE NUMBER OF ACTUALS PASSED IN THE CURRENT MACRO CALL.

3. 8COUNT: THE DEPTH OF RECURSION OF A RECURSIVE MACRO (1ST
CALL IS DEPTH 8) OR THE (8-ORIGIN) ITERATION COUNT OF AN
ITERATIVE MACRO (THE NUMBER OF DEFAULT SEPARATORS UHICH HAVE BEEN
PROOUCED).

4. 8QUOTE: THE ATOM FOLLOUING THE 8QUOTE LOSES ITS NORMAL MEANING
IN THE CURRENT CONTEXT:

A. MACRO BODY DEFINITION: MUST QUOTE «, 8QUOTE, AND 8UNQUOTE
IF THEIR USE AT MACRO DEFINITION TIME IS NOT DESIRED;

B. MACRO ACTUAL-PARAMETER LIST EVALUATION: MUST QUOTE MACROS
EXPANSION IS TO BE SUPPRESSED UNTIL AFTER ACTUAL SUBSTITUTION
INTO THE BODY AND BRACKETS UHICH ARE NOT PROPERLY NESTED.

5. 8UNQU0TE: THE ATOM FOLLOUING THE SUNQUOTE IS "EVALUATED" ONE
LEVEL IN A MACRO BODY SPECIFICATION. THE FIRST LEVEL OF EVALUATION
CAUSES NAMES TO BECOME "LEXEMES"—E.G. A LOCAL VARIABLE—; THE SECOND
CAUSES MACROS TO BE EVALUATED.

6. 8STRING: A PARAMETER LIST MUST BE PASSED. THE STRING VALUES
OF THE LIST ARE CONCATENATED TO FORM A STRING (A SINGLE ATOM). NAMES
HAVE THEMSELVES AS STRING VALUES; NUMBERS HAVE THEIR ASCII
EQUIVALENT.

7. 8NAME: A PARAMETER LIST MUST BE PASSED. THE STRING VALUES OF
IS DETERMINED AS FOR 8STRING. THE RESULTING
STRING IS USED AS A NAME (IDENTIFIER)—ITS FORMAT MUST BE
ACCEPTABLE TO THE LOADER (NOT NECESSARILY THE COMPILER).

flACRO HBYTE-8,88, SPOSITION AND SIZE OF HIGH-ORDER BYTE
LBYTE-0,88, [POSITION AND SIZE OF LOU-ORDER BYTE
TAB-OUTPUT(#14)8, 1CALL OUTPUT ROUTINE TO SEND A TAB

A<LBYTE>-.B<HBYTE> IMOVE A BYTE

MACRO OUTERR(NUM.MSG) -
OUTSTRING(PLIT(8STRING('ERR*,NUM.*:',MSG))8;

%USE THIS MACRO TO CALL AN OUTPUT ROUTINE UITH A POINTER
TO AN ERROR MESSAGE AS THE ARGUMENT %

OUTERR(4/INVALID DATA') IS EQUIVALENT TO

OUTSTRING(PLIT('ERR4: INVALID DATA'))

MACRO COND (BOOLMEXP) tl -
IF BOOL THEN EXP EL (^REMAINING) COND (8REMAINING)8$

MACRO EL •-ELSE*5 "GENERATE ELSE ONLY IF PARAMETER IS NON-EMPTY
% CALL COND UITH PAIRS OF BOOLEAN EXPRESSIONS AND EXPRESSIONS.
THE RESULT AT EXECUTION TIME IS THE BOOLEAN EXPRESSIONS
ARE EVALUSTED UNTIL ONE IS TRUE THEN THE CORRESPONDING
EXPRESSION IS EXECUTED'/

COND (,B,A-.X,.X OR .Y, FCT(.M))
GENERATES

IF .B THEN A-.X
ELSE IF .X OR .Y THEN FCT (.M)

MACRO FLAGS (FLAGUORD) [FLAGNAME1 -
BIND FLAGNAME-FLAGU0RD<8C0UNT,1>8;

% THIS BINDS VARIOUS FLAG NAMES TO INDIVIDUAL BITS
IN THE SPECIFIED UORD %

FLAGS(X,LIST,ERR,OPT, PIC)
GENERATES

BIND LIST-X<0,1>;
BIND LRR-X<1,1>;
BIND 0PT-X<2,1>;
BIND PIC-X<3,1>;

MACRO REV(X) []-REV(^REMAINING) CC(SREMAINING) X8;
CC[]-,8; JGERERATE COMMA ONLY IF PARAMETER IS NON-EMPTY

^REVERSES THE PARAMETER LIST %

REV CA.B.C.D) GENERATES D,C,B,A

MACRO INITLOCALARRAY (NAME) CI -
LOCAL NAME [8LENGTH-1];
LOAD (NAME,8REMAINING)8;

MACRO LOAD(BASE)[VALUE]-
BASE WCOUNT)-VALUE*;

INITLOCALARRAY (A,4*3,7,0,1)
GENERATES

LOCAL A[51;
A[0] - 4 ;
A [13-3;
A [21 -7;
A [33-85
A [4] -1

1.3.9 UNDECLARE DECLARATION

DECLARATION:: -UNDECLARE NAMEL I ST

THE IDENTIFIERS ARE IN THE NAMEL I ST BECOME UNDEFINED UITHIN THE
SCOPE OF THE DECLARATION.

1.3.18 CALLING SEQUENCE DECLARATIONS

<CALLSEQUENCE DECLARATION>

LINKAGE < I DENT IFI ERxCALL TYPE> UCALL ARGLIST>)

<CALL TYPE>
<CALL ARGLIST>

BLISS/EflT/TRAP
::-<CALL ARGTYPE>

<CALLARGTYPE>
<CALLARGLIST>,<CALLARGTYPE>

..-STACK /
REGISTER <INTERGER>

THE LINKAGE DECLARATION SERVES TO DEFINE THE FOLLOUING IDENTIFIER
AS THE NAME OF A PARTICULAR TYPE OF CALLING SEQUENCE. IN ADDITION
TO THOSE DEFINABLE BY THE USER THERE ARE TUO LINKAGE TYPES,
FORTRAN AND INTERRUPT, UHICH ARE PREDEFINED.

(FORTRAN, INTERRUPT AND ANY IDENTIFIES DECLARED AS ABOVE ARE
CALLED LINKAGE KEYUORDS.)

1.3.18.1 FORTRAN LINKAGE

IN BRIEF, THE FORTRAN LINKAGE IS COMPATIBLE UITH THE PDP-11/20
FORTRAN IV SO THAT FORTRAN COMPILEO ROUTINES MAY CALL BLISS
COMPILED ROUTINES ANO VICE-VERSA. NOTE THAT FORTRAN USES A
CALL-BY-REFERENCE METHOD OF PARAMETER PASSING UHILE BLISS USES
CALL-BY-VALUE. THE BLISS CODER MUST EXPLICITLY ACCOMODATE
THE FORTRAN COMVENTION (SEE SECTION FOR FURTHER DISCUSSION.)

(NOTE THAT THE FORTRAN LINKAGE IS INHERENTLY NON-REENTRANT SINCE
FORMAL PARAMETERS ARE PASSED IN A MANNER THAT IS EFFECTIVELY LIKE
AN OUN ARRAY RATHER THAN A LOCAL ARRAY.)

1.3.10.2 INTERRUPT LINKAGE

THE INTERRUPT LINKAGE SPECIFICATION IS APPROPRIATE ONLY TO ROUTINE
DECLARATIONS. IT DECLARES THAT THE ROUTINE UILL BE ENTERED AS
A RESULT OF AN INTERRUPT OR TRAP. NOTE THAT THIS DECLARATION
ONLY COMPILES A ROUTINE FOR SERVICING INTERRUPTS. THE USER MUST
SEPARATELY ARRANGE TO ESTABLISH THE ROUTINE NAME AND DESIRED
STATUS UORD IN THE APPROPRIATE INTERRUPT VECTOR.

AN INTERRUPT ROUTINE MAY NOT HAVE ANY EXPLICITLY DECLARED
FORMAL PARAMETERS. HOWEVER IT HAS TUO IMPLICITLY DECLARED
FORMAL PARAMETERS, OLDPC AND OLDPS, UHICH MAY BE USED TO ACCESS
THE PROGRAM COUNTER AND PROCESSOR STATUS SAVED ON THE STACK
BY THE INTERRUPT HARDUARE.

1.3.18.3 BLISS LINKAGE

THE BLISS LINKAGE ALLOWS THE USER TO SPECIFY THAT CERTAIN
VALUES WILL BE PASSED TO A SUBROUTINE ON THE EXECUTION
STACK UHICL OTHERS MAY BE PASSED IN THE HARDWARE REGISTERS.
IN THE DECLARATION, THE KEYWORDS STACK OR REGISTER MAY BE
USED TO DESIGNATE THE METHOD OF ARGUMENT TRANSMISSION FOR
THE CORRESPONDING ARGUMENT. FOR EXAMPLE,

LINKAGE SST-BLISS(STACK,REGISTER 2)

SPECIFIES THAT THE FIRST ARGUMENT GOES ON THE STACK AND THE
SECOND IS PASSED IN REGISTER 2. AN ABSOLUTE INTEGER IN THE
RANGE 8 TO 5 INCLUSIVE MAY BE USED FOR THE REGISTER NUMBER.

ANY ARGUMENTS IN ADDITION TO THOSE DEFINED IN THE CALL WILL BE
AUTOMATICALLY PASSED ON THE STACK. THE DEFAULT LINKAGE FOR ALL
ROUTINE CALLS AND DECLARATIONS IS EQUIVALENT TO THE SPECIFICATION

LINKAGE BLISS11-BLISSO;

THAT IS, ALL ARGUMENTS ARE NORMALLY PASSED ON THE STACK.

1.3.18.4 EMT AND TRAP LINKAGE

tEMT AND TRAP CALLING LINKAGES ARE NOT CURRENTLY OEFINABLE.
EMT AND TRAP SPECIAL FUNCTIONS ARE AVAILABLE AS DESCRIBED IN
SECTION II.

THE GOAL IS TO BE ABLE TO CONVENIENTLY INTERFACE TO DOS,RSX,
OR OTHER OPERATING SYSTEM TRAP HANDLERS. THE VARIETY OF
RESPONCES TO EMT'S BY DOS, FOR EXAMPLE, HAS POSED CERTAIN
PROBLEMS IN MEETING THIS OBJECTIVE. AS AN INTERIM MEASURE,
A SET OF SYSTEM MACROS WILL BE PROVIOED FOR INVOKING MONITOR
SERVICES. THESE ARE OUTSIDE OF THE SCOPE OF THIS DOCUMENT]

1.3.11 LINKAGE DECLARATIONS

ONCE AN IDENTIFIER HAS BEEN DEFINED TO BE A LINKAGE DECLARATION
KEYWORD, IT HAY BE USED IN THE FOLLOUING UAYS UITHIN THE SCOPE
OF ITS DECLARATION.

1.3.11.1 ROUTINE TYPING

PRECEEDING THE ROUTINE KEYWORD IN A ROUTINE DECLARATION. IN
THIS CONTEXT THE NAMED LINKAGE TYPE DESIGNATES THE CONVENTIONS
THAT UILL BE USED TO CALL THE ROUTINE BEING DECLARED, AND HENCE
GOVERNS THE ENTRY AND EXIT CONVENTIONS NEEDEO TO COMPILE THE
ROUTINE. FOR EXAMPLE:

BEGIN

FORTRAN ROUTINE MAX(A,B)«...
• • •

END

1.3.11.2 LINKAGE ATTRIBUTE FOR IDENTIFIERS.

FOLLOUING ONE OF THE KEYWORDS EXTERNAL, GLOBAL, OWN, OR MAP AND
FOLLOWED BY A MS IDLI ST. THE EFFECT IS TO SPECIFY THAT WHEN
AN IDENTIFIER SO DECLARED IS USED SYNTACTLY AS THE NAME OF A
ROUTINE CALL, THEN THE DECLAREO CALLING SEQUENCE WILL BE USED
TO EFFECT THAT CALL.

EXAMPLE:

FORWARD FORTRAN A,B;
EXTERNAL INTERRUPT LPT,DSK,B72;
BYTE OWN FORTRAN BYTEVECTOR F[1881;

1.3.11.3 "LOCAL" CALL SEQUENCE DESIGNATION

WHEN THE LINKAGE NAME IS ITSELF USED SYNTACTICALLY AS A ROUTINE
NAME IN A ROUTINE CALL EXPRESSION, THE THE FIRST ARGUMENT IS
EVALUATED AT RUN-TIME AND INTERPRETED TO DESIGNATE THE ROUTINE
ENTRY POINT TO BE CALLED. THE REMAINING ARGUMENTS ARE PASSED
TO THE MANED ROUTINE IN THE MANNER REQUIRED BY THE LINKAGE DEFINITON,

EXAMPLE:

FORTRAN(.(TRANSFERVECTOR+.I),PARI,PAR2)

I I . SPECIAL LANGUAGE FEATURES

THE PREVIOUS CHAPTER DESCRIBES THE BASIC FEATURES OF THE BLISS-11
LANGUAGE. IN THIS CHAPTER UE DESCRIBE ADDITIONAL FEATURES UHICH
ARE HIGHLY MACHINE AND IMPLEMENTATION DEPENDENT.

11.1.1 SPECIAL FUNCTIONS

A NUMBER OF FEATURES HAVE BEEN ADDED TO THE BASIC BLISS-11
LANGUAGE UHICH ALLOU GREATER ACCESS TO THE PDP-11 HAROUARE
FEATURES. THESE FEATURES HAVE THE SYNTACTIC FORM OF FUNCTION
CALLS AND ARE THUS REFERRED TO AS "SPECIAL FUNCTIONS". CODE
FOR SPECIAL FUNCTIONS IS ALUAYS GENERATED IN LINE.

11.1.1.1 TRAP AND EUT SPECIAL FUNCTIONS - NOT YET IMPLEMENTED

<TRAP/EMT CALL> i:- EMT(<INTEGER><REST OF ARGS)/
TRAP (<I NTEGERxREST OF ARGS)

<REST OF ARGS> ::- /
E/
E,<REST OF ARGS>

AN EMT OR TRAP SPECIAL FUNCTION IS SYNTACTICALLY A FUNCTION
CALL UITH AT LEAST ON PARAMETER. THE FIRST (AND POSSIBLY ONLY)
PARAMETER MUST EVALUATE AT COMPILE-TIME TO A VALUE IN THE RANGE
0 TO 255 INCLUSIVE. THIS VALUE IS INCORPORATED INTO THE LOU
BYTE OF THE EMT/TRAP INSTRUCTION ITSELF. THE REMAINING ARGUMENTS,
(IF ANY) ARE EVALUATED AND PUSHED ONTO THE STACK PRIOR TO THE
EMT/TRAP INSTRUCTION. IT IS ASSUMED THAT THE ARGUMENTS ARE REMOVEO
FROM THE STACK FOLLOUING RETURN FROM THE EMT/TRAP.

11.1.1.2 STACKADJUST FUNCTION - NOT YET IMPLEMENTED

THE SPECIAL FUNCTION STACKADJUST IS A COMPILER DIRECTIVE BY
UHICH THE USER ADVISES THE COMPILER HE HAS PERFORMED AN
OPERATION UHICH HAS, UNKNOWN TO THE COMPILER, EXPLICITYLY
ADJUSTED THE EXECUTION STACK BY A CERTAIN AMOUNT. THE FUNCTION
REQUIRES ONE ARGUMENT UHICH EVALUATES TO AN EVEN CONSTANT A
COMPILE-TIME.. THE VALUE OF THE FUNCTION IS THE VALUE OF THE CONSTANT.

AN EXAMPLE USAGE IS

SP.-, SP+STACKADJUST (-4)

UHICH RESERVES TUO UORD ON THE STACK.

THIS SPECIAL FUNCTION MAY ALSO BE USEFUL IN CONJUNCTION UITH
THE INLINE AND EMT/TRAP SPECIAL FUNCTIONS.

11.1.2 MACHINE LANGUAGE

INLINE(TEXTLITERAL)

THE SPECIAL FUNCTION INLINE IS A SIMPLE GENERAL ESCAPE MECHANISM
TO ALLOU THE PROGRAMMER TO EMBED MACHINE LANGUAGE CODE IN HIS
BLISS-11 PROGRAM. IT'S USE IS HIGHLY MACHINE AND CONTEXT DEPENDANT
AND EXTREME CAUTION IS RECOMMENDED. IT IS INTENDED PRIMARILY AS
A MEANS TO CONTINUE PROGRAM DEVELOPMENT UHILE A COMPILER BUG OR
LANGUAGE DEFICENCY IS BEING HANDLED.

THE TEXT STRING IS SAVED AS IS FOR OUTPUT IN THE COMPILED
ASSEMBLY SOURCE. WHEN OUTPUT A CARRIAGE-RETURN/LINE FEED IS
APPENDED TO THE LINE. ONLY ONE ASSEMBLY LINE PER INLINE
EXPRESSION IS PERMITTED.

A WARNING MESSAGE WILL ALWAYS BE GIVEN WHEN USING THIS CONSTRUCT.

EXAMPLE:

SCORE EMT TO DOS %
INLINE ("MOV #188,-(SP)"){
INLINE("EMT 41")

11.1.3 COMMUNICATION UITH MONITOR

ADDITIONAL SPECIAL FORMS MAY BE INTRODUCED TO FACILITATE
COMMUNICATION UITH THE MONITOR AND/OR IOX.

III. SYSTEM FEATURES

111.1.8 COMPULATION CONTROL

THE ACTIONS OF THE COMPILER UITH RESPECT TO A PROGRAM MAY BE
CONTROLLED BY SPECIFICATIONS A) IN THE INITIAL INPUT STRING FROM
A TTY, B) IN THE MODULE HEAD, OR C) BY A SPECIAL SUITCHES DECLARATION.
NOT ALL ACTIONS CAN BE CONTROLLED FROM EACH OF THESE PLACES, BUT
MANY CAN.
SOME ACTIONS ONCE SPECIFIED HAVE A PERMANENT EFFECT UHILE THE
EFFECT OF OTHERS CAN BE MODIFIED (SUCH AS LISTING CONTROL). THE
TABLE IN SECTION 111.1.4 GIVES A LIST OF VARIOUS COMPILER ACTIONS
AND THE ASSOCIATED SUITCH AND/OR SOURCE LANGUAGE CONSTRUCTS UHICH
MODIFY THOSE ACTIONS. THIS LIST IS SUBJECT TO CHANGE.

III.1.1 COMMAND SYNTAX

THE GENERAL FORMAT OF THE INITIAL COMMAND TO BLISS-11 IS:

LSTDEV: FILE. EXT«-SORCDEV: FILE. EXT,..., SORCDEV: FILE. EXT

THE "LSTDEV:FILE.EXT" MAY BE OMITTED UITH THE IMPLICATION THAT
THE CORRESPONDING FILE IS NOT TO BE GENERATED. THE ".EXT" MAY
BE OMITTED ON ANY OF THE FILE SPECIFICATIONS AND FOLLOUING
DEFAULTS UILL BE ASSUMED:

LISTING FILE: Pll
SOURCE FILE: Bll

AS UITH OTHER DEC CUSP'S, SUITCHES OF THE FORM /X (X-A,B Z) MAY
BE PLACED ANYUHERE IN A COMMAND STRING.

THE LISTING FILE IS PROPERLY FORMATTED FOR IMMEDIATE ASSEMBLY
BY PALX11 OR MACX11.

.1.2 MODULE HEAD - NOT YET IMPLEMENTED

AS EXPLAINED IN 1.1.1 THE SYNTAX FOR A MODULE IS

MODULE ::- MODULE NAME (PARAMETERS) - E ELUDOM

THE 'PARAMETERS' FIELD MAY CONTAIN VARIOUS INFORMATION UHICH UILL
AFFECT THE COMPILER'S ACTION UITH RESPECT TO THE CURRENT PROGRAM.
THE SYNTAX OF THIS FIELD IS

PARAMETERS ::- PARAMETER / PARAMETER,PARAMETERS

THE ALLOUED FORMS OF 'PARAMETER' ARE GIVEN IN TABULAR FORM IN
SECTION II1.1.4 UNDER THE COLUMN HEADED "MODULE HEAD SYNTAX".

UHEN THE COMPILED CODE IS TO BE RUN UNDER THE DOS MONITOR, NO
STACK DECLARATION IS REQUIRED. THE DOS LOADER INITIALIZES THE
SP REGISTER TO POINT JUST BELOU THE LOUEST UORD OF THE PROGRAM.

111.1.3 SUITCHES DECLARAT I ON

DECLARATION it- SWITCHES SWITCH LIST
SWITCH LIST tt- SWITCH / SWITCH, SWITCH LIST

THE SWITCHES DECLARATION ALLOWS THE USER TO SET VARIOUS SWITCHES
WHICH CONTROL THE COMPILER'S ACTIONS. THE EFFECT OF A SWITCHES
DECLARATION IS LIMITED TO THE SCOPE OF THE BLOCK IN WHICH THE
DECLARATION IS MADE. THE VARIOUS ALLOWED FORMS OF 'SWITCH' ARE
GIVEN IN TABULAR FORM IN SECTION 111.1.4 UNOER THE COLUMN HEADED
"SUITCHES DECLARATION".

111.1.4 ACTIONS

COMMAND
SWITCH

/L

/-L

/N & /-N

/X

MODULE HEAO
SYNTAX

*LIST

NOLIST

NOERS

SYNTAX

'SWITCHES'
DECLARATION

*LIST

NOLIST

NOERS

ACTION

ENABLE LISTING OF THE SOURCE
TEXT. THIS SWITCH IS ASSUMED
TRUE INITIALLY.

DISABLE LISTING OF THE SOURCE TEXT.

00 NOT PRINT ERROR MESSAGE
ON THE TTY.

SYNTAX CHECK ONLY! NO CODE
WILL BE GENERATED - THIS
SPEEDS THE COMPILATION
PROCESS AND IS THEREFORE USEFUL
DURING THE INITIAL STAGES
OF PROGRAM DEVELOPMENT.

COMMAND
SUITCH

MODULE HEAD
SYNTAX

SWITCHES
DECLARATION

ACTION

/O ^OPTIMIZE ^OPTIMIZE BECAUSE OF THE POSSIBILITY OF
COMPUTED ADDRESSES IN BLISS
PROGRAMS, IT IS NOT POSSIBLE
FOR THE COMPILER TO DETERMINE
WHETHER OPTIMIZATION OF SUB
EXPRESSIONS IS POSSIBLE ACROSS
V S IN A COMPOUND EXPRESSION.
THEREFORE THE COMPILER OPERATES
IN TWO MODES - ONE IN WHICH IT
DOES OPTIMIZE SUCH COMMON SUB
EXPRESSIONS AND ONE IN WHICH
IT DOES NOT.
WHEN THE 'OPTIMIZE'
SWITCH IS TRUE THE COMPILER
ATTEMPTS TO OPTIMIZE ACROSS A
"{". THE DEFAULT MODE IS FOR
THE SWITCH TO BE TRUE.

/-0 NOOPTIMIZE NOOPTIMIZE SETS THE OPTIMIZATION
SWITCH (SEE ABOVE TO FALSE.

^REPRESENTS THE DEFAULT STATE OF MODULE HEAD AND SWITCH
DECLARATIONS

III.2 ERROR REPORTING

COMPILER ERROR MESSAGES ARE OF THE FORM:

;TYPE#NNN a L.NNNN1 LtNNNN2 L.NNNN3
{MESSAGE

WHERE

TYPE IS EITHER "WARN" FOR AN INFORMATIONAL OR WARNING
MESSAGE AND IS NOT FATAL TO THE COMPILATION, OR

"ERR " FOR A FATAL ERROR. SYNTAX ONLY PROCESSING
CONTINUES AFTER A FATAL ERROR MESSAGE.

NNN IS THE ERROR NUMBER

MESSAGE IS THE ACTUAL ERROR OR WARNING MESSAGE. (THIS
MAY BE SUPPRESSABLE IN THE FUTURE.)

THE SPECIAL CHARACTERS AND LINE NUMBERS FOLLOWING THREE
PIECES OF INFORMATION ABOUT THE LOCATION OF THE ERROR:

* AND L:NNNN1 GIVE THE POINT IN THE TEXT WHERE THE ERROR WAS
DETECTED,

t AND L:NNNN2 GIVE THE BEGINNING OF THE OPENING OF THE CURRENT
CONTROL SCOPE IN WHICH THE ERROR IS DETECTED,

m AND L:NNNN3 GIVE THE END OF THE LAST CONTROL SCOPE SUCCESS
FULLY COMPLETED PRIOR TO THIS ERROR.

IF ANY OF THE SPECIAL CHARACTERS OVERLAP, THEN PRIORITY IS GIVEN
AS THEY ARE LISTED ABOVE.

EXAMPLE:

;BB8B1 BEGIN X<-(B«-.C,.Y*(.A+.B),.Y Z);

{ERR #866
{MISSING OPERATOR

* L:l L:l L:l

Security Classif ication

DOCUMENT CONTROL DATA - R & D
(Security ctn*a ideation of title, body of abstract and indexing annotation must be entered when the ovorell report is classified)

1. O R I G I N A T I N G A C T I V I T Y (Corporate author)

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2b. G R O U P

3 . R E P O R T T I T L E

BLISS/11 REFERENCE MANUAL

4 . D E S C R I P T I V E N O T E S (Type of report and inclusive datee)

Scientific Interim
5 . A U T H O R (S) (First name, middle Initial, Imat name)

W. Wulf, J # Apperson, R. Brender, C. Geschke, P. Knueven, C. Weinstock,
J. Zarrella, D. Wile

6 . R E P O R T D A T E

March 1, 1972
[7A. T O T A L N6. 6F P A G E S

63
7 6 . N O . O F R E F S

8O. C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
9769

b. P R O J E C T N O .

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S)

CMU-CS-72-114

61102F
d. 681304

9b, O T H E R R E P O R T N O (S) (Any other number e that may ba aaalgnad
thie report)

10. D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

11. S U P P L E M E N T A R Y N O T E S

TECH, OTHER
1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

13. A B S T R A C T

This document describes the BLISS implementation language as written for the
PDP-11. BLISS is a language specifically designed for use as a tool in imple
menting large software programs. Special attention is given in the language de
sign to the requirements of the systems programming task, such as: space and
time efficiency, the representation of data structures, the lack of run-time
support facilities, flexible control structures, modularization, and parameteri
zation of programs.

D D , F R \ , 1 4 7 3
Security Classification

Security Classification
14.

K E Y W O R D S

L I N K A L I N K 8

R O L E W T R O L E W T R O L E
L I N K C

Security Classification

