
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-106

* C.ai(P#L*) An L* Processor for C#ai

D. McCracken
G. Robertson

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

October 11, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

TABLE OF CONTENTS

page
ACKNOWLEDGMENTS ii

ABSTRACT. iii

1. INTRODUCTION 1

2. DESIGN CONSTRAINTS FOR AN L* PROCESSOR 2

3. OVERVIEW OF P.L* 4

4. Pc.L* HARDWARE 6

Instruction Control 7

Stack Control 12

Possibilities for other Special Hardware 14

5. Ck AND CONTROL OF P.L* 15

6. THE L* KERNEL FOR P.L* 18

Type System. 19

Operand Communication. 19

Process Prefixes 20

Special Working Cells 21

The Code and Data Caches o . . 22

Increased Complexity of Kernel Code 22

Performance o o 23

REFERENCES 24

Appendix 1 - ISP DESCRIPTION OF Pc.L*. Al.l

Appendix 2 - CONTROL FLOW DIAGRAMS A2.1

Appendix 3 - CODING COMPARISONS WITH L*(G) A3.1

i

ACKNOWLEDGMENTS

Although this report and the basic design were principally carried

out by the listed authors, the primary idea of L* is due to Allen Newell.

A group composed of Allen Newell, Peter Freeman, Don McCracken, and George

Robertson has developed some of the concepts of L*-like kernel systems,

implemented several, and experimented with their use.

Robert Chen provided some very valuable assistance during the final

stages of the design effort, and both he and Peter Freeman contributed

generously to the editing of this report.

ii

ABSTRACT

The results of a preliminary design study for a specialized language

processor (P.X) for L* are presented. The objective of the study is to

give an example of a specialized processor for C.ai.

The L* processor is to run 20-30 simultaneous L* users with very

large address spaces at a speed improvement of better than 10 times a

typical PDP-10 L* system. Its cost should be low relative to the memory

resources of C.ai.

The design presented is that of an L* central processor (PcL*)

with a low-level instruction set (about the level of typical micro

code). Pc.L* is time-shared by a mini-computer that sits to the side,

so that each L* user sees himself as running on a base L* processor.

User contexts are switched by swapping processor status information in

Pc.L*.

Each L* user has complete access to the central processor status

through his address space. His machine code (microcode) can appear

anywhere in the large address space, but executes out of a fast cache

memory. It thus runs at microcode speeds. L* programs and data being

interpreted by the machine code are accessed explicitly from a second

cache memory. The initial L* kernel system will consist of ~> IK of

machine code, with some initial data and available space.

The low-level instruction set of Pc.L* does not contain any of

the more complex instructions (such as floating point arithmetic and

byte manipulation) that usually exist on large general purpose computers.

iii

These capabilities are meant to be written in machine code as needed

by each L* user. He thus gains considerable flexibility in the exact

nature of these higher level operations at the cost of increased pro

gramming effort and somewhat reduced efficiency compared to hard-wired

implementations.

The results of this preliminary design effort, although still un

clear in spots, shows that a specialized processor could run very large

L* systems on C.ai at 20-40 times the speed of a PDP-10.

iv

1. INTRODUCTION

Our objective is the design of a specialized processor to run L*

systems on C.ai. We call our processor P.L*. A thorough understanding

of. the context in which we are designing requires familiarity with C.ai as

presented in reference 1. Much of what follows, however, can be understood

with the knowledge that C.ai provides a processor such as P.L* with (1) a
22

port to a primary memory of up to 2 296-bit words of 550ns cycle time

accessible as 74, 148, 222 or 296 bits per access, (2) transfer capability

to and from the outside world, and (3) transfer capability to and from large

on-site secondary and tertiary memories.

Familiarity with kernel systems (reference 2) and L*(F) on the PDP-10

(references 2 and 3) is essential and assumed throughout. Without attempting

to summarize these papers, it is worth noting that the essential idea of L*

is the growth of arbitrary programming systems from a small kernel of machine

code (on present implementations) that permits rapid acquisition of higher-

level language facilities and system tools.

Throughout this report we use and assume familiarity with the PMS and
ISP notations as presented in reference 4.

2. DESIGN CONSTRAINTS FOR AN L* PROCESSOR

Several important design constraints for our L* processor are listed

below to provide a framework for the design.

1• The system running on an L* processor should be consistent with

L* design philosophy. This is actually a set of constraints, such

as a small sized L* kernel system, accessibility to the complete

L* machine as seen by its user, etc. A more complete enumeration

of the constraints is given in reference 2.

2. The L* userfs address space must be large (> 10 words), and large L*

systems must not experience drastic performance degradation

relative to small systems.

3. L* should run much faster than L*(G) on the PDP-10 (at least 10

times faster).

4. A single L* processor must support up to 20-30 simultaneous L*

users in a time-sharing mode with an allocated memory of 64k <~

1024 k words.

5. An L* processor should be inexpensive and simple to construct

relative to the cost (-̂ $10̂) of the C.ai large memory resources.

Subsequent L* hardware processors should be possible in the same

fashion as software versions are possible.

6. The L* processor should not be so complex that reliability is low.

7. The final design and building of the L* processor system must be

done in parallel with the rest of C.ai.

- 3 -

In connection with constraint 1, we had first to decide what it meant

to build an L* computer. The L* philosophy originally addressed building

systems on a given powerful machine (e.g. PDP-10) which has high level

capabilities already built into the instruction set. The decision we

made was to design toward a very fast low level instruction set, and then

allow more powerful capabilities to be built along with the growth of the

rest of an L* system. This basic approach is compatible with the hardware

technology (i.e. microprogramming). For example, floating point and byte

manipulation capabilities will have to be coded in the low-level machine

code of the L* processor.

Within this idea for growth of high-level capabilities lurks the

danger that certain desired advanced capabilities will be very difficult

to grow or will be grossly inefficient as compared to an equivalent hardware

implementation. Of course, this danger, if it is relatively insignificant as

we suspect, is favorably balanced by the freedom of the user to specify

the high level operations himself.

We will not state the effect each of the constraints had on the

design of the L* processor, but many such effects will be obvious as we

describe the design.

- 4 -

3. OVERVIEW OF P.L*

A PMS diagram (Figure 3.1) shows the overall structure of the L*

processor and its connection to the remainder of C.ai. In this section we

will give only a short description of the function of each component.

Later sections will describe them in more detail.

At the heart of the system is the part we call the L* central processor

(Pc.L*). The single L* user sees Pc.L* as the processor on which he is

running.

Between Pc.L* and the large C.ai memory are a simple address trans

lation control and two cache memories of about 2-4k words each, containing

images of parts of the large C.ai memory. One of the caches (the code cache)

is used essentially as a read-only memory to hold machine code instructions.

The second cache (the data cache) is explicitly accessed by the machine code

instructions to read and write L* data types. L* program lists appear as

data to the program list interpreter executing in machine code. Students

of microprogramming may choose to think of the machine code part as micro

code -- in essence it is, because it is fairly inefficient, unericoded, and

operates directly on the remaining hardware parts of the processor (e.g.,

registers). The address translation control of P.L* uses a single segment

relocation register and a segment protection register to map the 64k segments

of a single L* userfs virtual address space into a particular subset of the

64k segments allocated to P.L* by C.ai. The operation of the caches and the

address translation control is transparent to the L* user, who sees a uniform

virtual memory containing both instructions and data.

The overall control for running multiple users on the L* processor is

with the control computer, Ck. Ck has direct access to all the internal

working of Pc.L*, the two cache controllers, and the address translation mecha

nism of P.L*. This enables it to act as a time-sharing monitor for Pc.L*.

-4a-

I Mp)C.ai)

C.ai memory port^—\^

K(address translation

Mcache K(code cache), Mcache H K(data cache)

Pk(mini) IH
Mpk(Mp for Ck)

K(context swap)

Pc.L*

T(console)

T(local I/O)

^ 1 i n U link for interprocessor
communication

Figure 3.1: PMS of P.L* Overall Structure

-5-

4. Pc.L* HARDWARE

Figure 4.1 shows a PMS diagram of Pc.L*. At this level of detail,

we see that Pc.L* consists of three parts: the local registers, the

instruction control (which handles the main flow of instruction interpre

tation and execution), and the stack control (an adjunct for machine code

subroutine linkage which maintains a pushdown stack in parallel with in

struction execution).

Supplementary descriptions of Pc.L* are provided in Appendices 1 and

2: The ISP description in Appendix 1 is an attempt to describe the

operation of Pc.L* in considerable detail, and as such is the real heart

of this paper. The description's principal failing is the difficulty

of representing the interaction of parallel activities in a transparent

way (e.g., how the stack controller interacts with the control of in

struction execution). To display clearly the parallelism of control

flow, in Appendix 2 we have adopted a two-dimensional notation borrowed

from Register Transfer Module descriptions.

L(code bus)

L(data bus)

K(stack control)

Mr(local registers)

K(instruction control)

Figure 4.1: PMS of Pc.L*

-6-

INSTRUCTION CONTROL

Figure 4.2 shows the local registers in their separate identities

and their interconnections via the function unit, along with the various

control connections providing for instruction interpretation and execu

tion control.

The local registers contain all processor status information pertinent

to a single L* user, which means that a swap of the local register con

tents is sufficient to change the context of Pc.L* to a different L*

user job. The local registers appear as the first 128 words of the L*
24

user's address space. The remainder, up to 2 words, comes via the

cache and address translation control from a part of the large C.ai

memory.

The details of instruction execution are controlled fairly directly

from the fields of a 48-bit doubleword instruction. The wide instruction

provides direct control over the various substages of instruction execu

tion at a very low level. This makes the instruction set look like a

microcode instruction set, and in fact, one way to view the L* processor

is as a flexible microcoded processor. However, we will continue to

view it as a very fast machine with a simple, low level machine code.

The choice of the particular instruction set is based on some sample

coding of small parts of the L* kernel. It is to be expected that numerous

minor additions and alterations (and possibly some major ones) would take

place before final freezing of a design.

It is crucial (for reasons of accessibility of machine code by the

L* user) that machine code have the same general format as all other

words in the L* user's address space. Thus, machine code instructions

- 6 a-

S(sfurc)

"S(BA.d)~

S(Pcd)-

•S(Td);

i-S(LRd)-~S(LRda)

D(function un

S(LRsa) S(imode)

4M(BA)_]-
^M(ic)

4 = = = = C M (. S) _ _ J

— p i C T D l)] - -
M(SDl)

M(TD2)

L(code bus; address part)

L(code bus; data part)

— i — j ~ M (G 2) r -
{"_M(NCIT|I:

M(NC2)I

-L(data bus; address part)

L(data bus; data part)

control lines
A

I
I

K(instruction control)

M.stack(ST,SP,SH.SI<)

M(Register Array[0:111])

Note: Switches (S»s) are labeled by the instruction fields that control
them.

Note: The terms used in this figure are explained in Appendix 1.

Figure 4.2: FMS for Instruction Control

-7-

are pairs of words, and the address of each word has a type associated

with it just as does any other address in the user's address space.

(The type system is explained on p. 16).

Using a one instruction look-ahead scheme (also operating in parallel

with execution), an instruction is fetched from the code cache according

to the address in local register PC/Program Counter and read into local 1

registers NCl and NC2 (the Next Command registers). From there (except

for the special case of a control branch) the instruction is transferred

into local registers Cl and C2 where it is executed. See Appendix 2

for the control flow of the instruction interpretation process.

The most basic part of instruction execution is the register transfer

process via the function unit. There are two inputs to the function unit,

plus the specification of which function of its two inputs it is to perform

One of the inputs can be any one of the local registers (selected by the

LRsa/Local-Register-source-address field). The second input is the

local register T for normal mode instructions; in an immediate mode in

struction the second input is local register C2 (i.e., the second word

of the current instruction). Output from the function unit consists of

a result with result condition bits. The condition bits reside in the

local (status) register S and can be set according to the current function

unit result. The result itself can be sent to any or all of the local

registers PC/Program Counter, B A / B U S Address and T/Temporary. In in

structions which are not immediate-mode, the result can also be sent to

the local register selected by the LRda/Local-Register-destination-

address field.

-8-

Next in the instruction execution process come the conditional special

actions. The condition bits in an instruction specify a certain function

of selected status bits in the status (S) register. If the function value is

true, all the special actions specified by the bits in the special action

field are performed. Examples of special actions are: interrupt Ck, and

skip next instruction, etc. All of the condition bits but one are used to select

particular status bits in the S register. The remaining bit specifies

whether one of the selected status bits = 1 is sufficient to trigger the

special actions, or all of the selected status bits must be 1 before the

special actions are taken.

A third part of the instruction execution consists of the external

function control; e.g. read/write/pause functions for memory. Read or write

operations use local register BA as the bus address register, and local regis

ters TDl, SD1, TD2 and SD2 as the data registers. These operations, resulting

in main memory accesses, are initiated after the register transfer for the

current instruction has been completed. The pause bit causes execution of

the current instruction to be delayed until an active read or Write opera

tion, started in some previous instruction, has been completed.

There is one last thing that happens during instruction execution if

the local register ST (stack top) was selected as the source or destination

of the register transfer: the stack controller is initiated. Once initiated,

the stack controller proceeds, in parallel with continued instruction inter

pretation, to initiate the memory read or write operation and do the

stack pointer manipulation necessary to complete the push or pop of the

stack. The operation of the stack controller will be discussed in more

detail below.

-9-

STACK CONTROL

Figure 4.3 is a PMS diagram of the stack controller and its related

local registers and bus connections.

The stack controller is started into action by the appearance of the

local register ST as the source (indicating a pop) or the destination

(indicating a push) of a register transfer.

The particular format chosen for the stack is such that local register

ST holds the top element on the stack, but the top element also appears at

the top of the array forming the stack in main memory. This means that the

instruction control need not wait for a main memory operation for either a

push or a pop, and may continue with subsequent instructions while the

stack control takes charge of completing the stack operation. Of course,

the instruction control will have to wait if the stack control is still

completing the previous stack operation.

When the stack control is initiated, it first increments (for a push)

or decrements (for a pop) the main memory stack pointer (local register SP).

It then borrows control of the data bus from the instruction control (which

hopefully wasnft needing it anyway just then) to write from ST into main

L(data bus)

K(stack control)

M(ST/stack top)

M(SP/stack pointer)

M(SH/stack high boundary)

M(SL/stack low boundary)

M(S/status)

.Figure 4.3: PMS for Stack Control

-10-

meraory (push), or read into ST from main memory (pop).

Overflow and underflow detection are done one step ahead of the actual

error condition by comparisons of SP with the stack low boundary register

(SL) or the stack high boundary register (SH). The two conditions posted

in the status register (S) are: (1) overflow will occur on next push and

(2) underflow will occur on next pop. Thus, a stack operation can always

immediately proceed if the appropriate condition bit in S is not on, and

rechecking of the boundaries for the benefit of the next stack operation

can proceed in parallel with the current one.

An alternate stack scheme was ponsidered briefly which had several

stack top registers, and which allowed these to exist in an "empty" state (similiar

to the Burroughs B550Q. Although it is a more complicated scheme to control,

it would do better for a push-pop mixture which stays within several levels

since no main memory operations would be required. However, we felt that

more than just two or three stack top registers would be required to have

significant benefits for the L* kernel. Also, the scheme does not take

advantage of idle time of the data bus and the fact that the stack has a

high probability of residing in the cache. Even with these considerations,

we would not want to make a final decision on a stack algorithm without an

actual simulation of the system running typical L* programs.

-11-

POSSIBILITIES FOR OTHER SPECIAL HARDWARE

One of the bottlenecks in the system^as currently conceived, is the

high frequency of allocating and returning available space for the W cells,

mainly W, WHS and WHN. In fact, many of the kernel processes would reduce

to one or two instructions if it were not for the necessity of obtaining

inputs from and returning outputs to the operand stack W (operations which

often require allocating and deallocating cells from available space)* To

help here, we might add special control which essentially buffers the un

linking and linking of available space cells, allowing instruction inter

pretation to proceed in parallel. We might also consider a mechanism which

anticipates a space-exhausted condition and allocates additional bulk

available space in parallel with program execution. (This latter would be

difficult if we allow, as in conventional L* implementations, the space

exhausted condition to be handled by an arbitrary L* program).

Another possibility for further specialization of hardware would be to

transfer some of the machine-coded L* kernel into hardware. This we have

avoided in order not to bind the processor to conventions that

a particular L* user might want to modify to suit his own needs.

-12-

5. Ck AND CONTROL OF P.L*

The purpose of the control computer is to allow each L* user to gain

complete access to Pc.L*. To accomplish this, Ck provides the functions of

typical time-sharing monitors. It controls memory (both primary and secondary),

schedules, swaps user contexts, communicates with other special processors and

with AMOS (the operating system for C.ai), and handles local I/O devices (if

any). The PMS diagram showing the control computer as part of the whole

P.L* system was presented in Figure 3.1. This section describes how the

components of Ck provide the specified functions.

Primary memory management is accomplished by Ck communication with

AMOS and by Ck control of K(address translation). The address translation is done

by single segment relocation and segment protection registers which can be

set by Ck, A segment is a number of contiguous 64k blocks,

obtained from AMOS. The function of shuffling which is normally provided by

a segment-oriented time-sharing monitor is accomplished by Ck by requesting

AMOS to rearrange or shuffle P.L*fs memory mapping registers. To provide

more than 128 64k blocks, Ck will make use of AMOS1s swapping mechanisms.

A single user is, of course, limited to 128 blocks. A single user can

increase or decrease his allocation by requests to Ck. These requests are

honored by Ck requests to AMOS for new allocations. Thus all primary memory

management (allocation, swapping, shuffling, and segment relocation) is

accomplished by either communication with AMOS or by control of . K(address

translation).

Secondary memory management (for file storage) is handled by Ck which
in turn communicates with AMOS to have the transfers actually performed.

Scheduling of users for P.L* is not difficult because all I/O is done through

Ck <i.e., Ck does all interrupt handling). There are only two requirements:

-13-

(1) Ck must have a clock; and (2) communication from Pc.L* to Ck must have the side

effect of turning PC.L*'s run flag off. Existing scheduling algorithms should

work nicely. The PDP-10 DEC monitor has an adequate algorithm for scheduling

and could be used by Ck with only minor modifications.

Swapping user contexts is accomplished by Ck control of K(context swap).

The context swap controller will transfer the current local register array to

the primary memory of the current user. It will then mark the two caches

(data and code) as empty. This has the side-effect of causing the data cache

to write out any changed words not previously written. Ck can now change the

segment relocation and protection registers. Ck now causes K(context swap) to

read in the new userfs copy of the local register array. When K(data cache) and

K(context swap) have completed their work, the swap can be considered complete

and Ck can turn Pc.L*fs run flag on.

Communication with other special processors and with AMOS is provided

for by connecting Ckfs bus to the C.ai inter-processor trunk bus. Protocols

for this communication have not been established; but they should be simple.

Local I/O device handling presents no real problems. Local devices can

be attached to Ck if needed. I/O operations through Ck can be handled in much

the same way as UUOfs on the PDP-10.

Communication between Pc.L* and Ck is accomplished by dedicating a

portion (̂ 10 words) of Mr (local registers) for a communications area. Pc.L*

will have the ability to interrupt Ck with the side-effect of turning Pc.L*fs

run flag off. Ck can interrupt Pc.L* at any time because it can set and reset

Pc.L*fs run flag.

Considering the functions Ck must provide, we feel that a mini-computer

with a good interrupt structure such as the DEC PDP-11 would be adequate.

-14-

The hardware we would add to the PDP-11 — K(context swap), K(address translation)

a clock, local I/O, C.ai bus, Mr(local registers) — could almost all be added

directly through the Unibus. Some hardware modification might be desirable.

For instance, the trap vector for communications between Pc.L* and Ck should

probably be augmented with a control that causes a trap through a branch table

with the contents of the first word of the communications area as an index. More

hardware to speed up critical sections can probably be shown to be worthwhile.

-15-

6. THE L* KERNEL FOR P.L*

The basic approach in our design of an L* machine has been to take

an L* kernel like the ones that currently exist on the PDP-10 and PDP-11 and

implement it on a much faster, simpler processor of our own design. There was

no radical redesign of the L* kernel itself because its structure is largely

independent of the machine on which it is to run. A principal reason for this

independence is the fact that the kernel supplies initial data types and

operations which are so basic that they very likely already exist on any given

computer, or can be very simply composed from existing facilities.

That is, almost all computers of interest to us ("general purpose

computers11) have add instructions, logical operations, move instructions to

manipulate simple list structures, etc.

The simple, low-level nature of the facilities in our L* processor

(with a very few exceptions, such as a stack mechanism) are a result of the

fact that L* is not a single specific language system, but a base from which

it should be possible to grow many different systems. Thus, we have nothing

on which to base an a priori selection of more powerful facilities to be built

into the hardware. Instead, we are willing to grow more advanced facilities as

needed, from within the system, in the form of sequences of the given low-level

facilities. That is, we will add new "instructions11 to our machine by writing

"microprograms11 for them.

The L* kernel for our L* machine is not exactly like any of the L*

systems on the PDP-10 or PDP-11, since we were able to remove some constraints

forced by those machines. Thus, for example,we are able to have a unique

changeable type for each symbol. This type scheme was used in L*(F), but was

abandoned on going to L*(G) in favor of a more rigid but far less space-costly

scheme.

-16-

We will proceed by enumerating and briefly describing a few of the more

important ways the L* kernel was adapted to run on the above L* processor.

TYPE SYSTEM
24

The L* user sees a uniform virtual address space of up to 2 24 bit

words. Each address has a separate type associated with it, which can be

changed at will. The types are represented by small integers from the set

{1,3,5,...,511}, giving a maximum of 256 types. These small integers are

called type indexes because they are used to index into a type table which

contains a doubleword entry (head of a list) for each type currently in use.

The type index is actually stored (shifted right one binary position) in the

high order 8 bits of a physical 32-bit word, although this fact is transparent

to the user. To the L* user, the types appear to be "abstract" entities

since they are not stored anywhere in the memory space he sees. The limit

on the number of types imposed by the 8-bit type field may eventually be a

problem, for example, if we go from a simple type system to a hierarchical

one. Whereas the simple type scheme allows 256 different types, a four-

level hierarchical scheme might allow only, say, four alternatives at each of

four levels.

OPERAND COMMUNICATION

Kernel processes are written to deal directly with the L* operand

stack (list) W. In the PDP-10 and PDP-11 versions of L*, W was used to

communicate operands only in the context of the interpretation of a program

list. For execution of kernel processes from machine code (e.g., other kernel

processes or compiled code), operand communication through W was too slow,

so general registers were used instead. This was implemented by kernel

-17-

machine code routines called prefixes which transferred process inputs from W

to general registers and outputs from the registers back to W when in the

context of program list interpretation. In the C.ai L* kernel we are committing

ourselves to the belief that we can now afford to use W for operand communication

not only in program list context, but also in the low-level machine code context.

This decision provides a considerable reduction in complexity since it

removes the logical need for process prefixes. A disadvantage of the decision

is that some special kernel processes which for one reason or another cannot

use W for operand communication must have special conventions, effectively

making them non-accessible from program list context. Two prime examples are

C/L and E/L which are used for allocating and returning available space for the

working lists (including W itself).

PROCESS PREFIXES

In the section above on types we explained why process prefixes are no

longer logically required. Nevertheless, we do have process prefixes

because many of the kernel processes do such a small amount of processing

(e.g., "add two numbers") that a very large percentage of the machine code for

the processes is used for the manipulation of W to obtain inputs and store

outputs. By defining several prefixes, we have subroutinized the operand

communication. We have not, however, gone all the way to a scheme where'all

the inputs are transferred to registers, because that loses enough efficiency

to outweigh its benefits (we think). The definition of the prefix routines is as

follows:

The prefix routines receive a non-standard input (in some

register) which is the address of the main part of the process to be

executed (i.e., the part divorced from manipulation of W).

-18-

P01: Prefix routine for no inputs and 1 output.

Operation; Push W, then branch to main part of process (process stem).

PlO: For 1 input and no outputs.

Operation; Pop input W(0) into local register Rl, return working
cell to available space, then branch to process them.

Pll; For 1 input and 1 output.

Operation; Nothing. (Possibly Pll will be non-existent).

P12; For 1 input and 2 outputs.

Operation; Same as P01.

P20; For 2 inputs and no output.

Operation; Pop W(0) into Rl, W(l) into R2, return both working
cells to available space, then branch to stem.

P21; For 2 inputs and 1 output.

Operation; Pop W(l) into R2 (leaving W(0) in W), return cell
to available space, then branch to stem.

P22; For 2 inputs and 2 outputs.

Operation; Nothing. (Possibly P22 will be non-existent).

P31; For 3 inputs, 1 output

Operation; Pop W(l) into R2, W(2) into R3 (leaving W(0) in W),
return two cells to available space, then branch to stem.

SPECIAL WORKING CELLS

Some selected W cells plus some temporary working cells have very

special status by virtue of residing in the local register array. These cells

are the ones that can be directly addressed in the register transfer operations

of the machine code. However, in order not to let this fact limit accessibility

to these cells, we map the 128 local registers into the first 128 locations in

the main address space. This allows the L* user to access them via the data bus

in the same way as all the non-special cells residing in main memory.

-19-

THE CODE AND DATA CACHES

The speed of cache operation is so critical that we are virtually

forced to hardwire the cache algorithm, thus depriving the L* user con

trol over its operation. However, the L* user must be aware of the caches

since their performance can drastically affect execution speed.

The code cache is the more critical of the two caches since accesses

are made every instruction cycle. We would hope to choose a size for the

code cache that would virtually ensure that all active code can reside in

the cache at once. We are tacitly assuming (without real justification as

yet) that it will not be necessary for L* users to compile many high-level

programs into machine code, since such a strategy would be heavily penal

ized. The code cache size should be large enough to hold the entire L*

kernel (̂1 K of 48 bit words), plus a reasonable amount of extra space

(like a factor of 4) for additional primitives coded by the L* user.

Since the two independent caches both hold images from the same ad

dress space, there is the commonly known problem of double images. That

is, a user may have altered in the data cache a section of code whose old

version is still held in the code cache. This is not actually a serious

problem since it should happen relatively infrequently, and in any case

any inconsistency will last only to the end of the user's current time

slice. We have decided against a solution at the hardware level, so it

will be a case of "user beware."

-20-

INCREASED COMPLEXITY OF KERNEL CODE

In our quest for increased speed we have been forced to design an

instruction set processor which operates at a lower level and has more

direct control over the memory than a machine like the PDP-10. We also

have been forced to include in the design operations which proceed in

parallel with instruction interpretation, such as the stack control and

main memory read/write operations. A result of all this is that in

comparison with conventional L* systems, machine code instructions are

larger and more complex, and a great deal of thought must be given to

synchronizing the parallel operations and optimizing the degree of over

lap. Thus, we will probably end up with a kernel which is not nearly

as simple and easily understandable as conventional versions, and this

runs counter to the L* design philosophy. It remains to be seen just

how serious the consequences of this will be.

PERFORMANCE

In order to get a rough estimate of speed and code density for our

L* processor, we selected six interesting sections from the L* kernel.

We compared the coding for these with the equivalent PDP-10 code taken

from version 21 of the L*(G) kernel. The details of these comparisons

are presented in Appendix 3.

To summarize the results of the comparisons, we found (somewhat

surprisingly) that code density for the Pc.L* is roughly comparable to

that for L*(G) on the PDP-10. Code density on a PDP-11 is twice that of

a PDP-10. Execution speed for Pc.L* is between 40 and 75 times faster

-21-

than L*(G) under ideal cache conditions. Under worst conditions (i.e.,

no hits in either cache), execution speed for Pc.L* degrades to around

10 times faster than L*(G). We believe that, with good organization of

data and code, close to ideal cache conditions can be maintained.

-22-

REFERENCES

1. Bell, C. G., et al~, "C.ai: A Computing Environment for AI Research."
Carnegie-Mellon University, Computer Science Department,
April, 1971.

2. Newell, A., P. Freeman, D. McCracken, and G. Robertson, "The Kernel
Approach to Building Software Systems," to appear in the Computer Science
Research Review. Carnegie-Mellon University, 1971.

3. Newell, A., D. McCracken, G. Robertson, and L. DeBenedetti, "L*(F)
Reference Manual," Carnegie-Mellon University, Computer Science Department,
Jan. 1971.

4. Bell, C.G. and A. Newell, Computer Structures, McGraw-Hill, 1971.

Al.l

Appendix 1 - ISP DESCRIPTION OF Pc.L*

The operation of the two caches is not described in the ISP.

A reference to main memory using PC (e.g. M[PC]) is to be understood

as a reference to the code cache, and a reference using BA or SP is

actually a reference to the data cache.

A1.2

3
cm

• a
<0l

S 3

~l
CM
<*J|

« C |

01

O

V O 0 0

0 0

m o c

#•

a
a c

o
h 4

II
••

A A
m n o

O A A O
V r - r - V

»—i 0 0 o o r - <

r-
o o o
v C V V C N

o c r - *

o o r—

o o r -

CO r—

• t r—

o O O
w—» o

« w

0 5 h J I S

Ml
01
V|
=*

M q o« ui vi
wi at

• H | 0 Of Ml 01 Of
M a
M

01 oi
<U| oi •a oi
*q oi
w» oi
S3|.H|

~ 4 VI PI a* a
Ml'HI 0! VI OI W» W •H|w| Of 01 X M M l <ti» W| Ml 01 V| Of «* ei V| OI cn» H

« " 1 CM |

ri MfNi M 01 01 M VI Ml VI OI W| OI W VI -H| VI -HI
wi of wi of
<H| 01 •HI 01 Of M OI M| 01 01 M (til M» (til V| V| (til (01 (til 031 VI Q| V| <0| «?| Q|rH| Q|rH| OI OI 01X51 0| X * Of 6 | OI E | X X X X H 1̂ HI CO|

CN*

Ml Ml OI 01 V| 4 J |

r i < N | V* W|
• H | - H | M Ml OI Of 01 OI 01 01

V | 4 J | Ml Ml wi cm •H|.H|ncH«0| Of Of C|
oi oi (Oi (di
Ml M| Bf S| Q|

m ei oi
T J i ' d oi a ti aaiuiui

<0| A d

ei ̂ vi vi o«
S| XI X| (til OI 0| 01 OI VI U M sq 53| col

X Ml X (01 M n3| (til
ait*
PI CI

M OI si 0IX5| OI V| X l |

G |X* •H| Of W OI-HI U|
C M r q hJ|
01 U 01 <ti| (til <til VI V| VI
tot tni co|

0 | r - |

Ml M OI 01 VI VI
(01 wt
•HI *HI Of Of OI OI
0 3 0 5 |

{01 (01 OI 01
oi a

r » t — CM C N r - f \ |

U M M M M M M M M M M M M M M M

A A
r - r - A
0 ^ m T -

»• o

o o
V V O
rtl U V

cd a* cn
M M M

A A
/\ ro cn

c^i o O
V V

O r - f -

v « a
H H CO

M M M

cm
oi
VI
v O |

(fit
a
• a
01
a *

1̂

as

II ii n !l ii ll ti II II II ll II ll M II II

A A A A
t — t~/\A«-"«— A A A A 1 ^
t t r o o o »t m r o r o

O O O o •••••• •• F ^ n n p - r n
V V O O V V O O O „ P , r , ^ ^ , » - i r - ! r < n r n O r - (N n d ' l P
(N f N V V « - f N V V V V O » - (N ^ ^ l T i ^ ^ Q 0 ^ r T - r - T - T - r - t -
D C r - U o H C b S h 4 u - i w u - w - r u - w - w u - . — w - j u - . i - ^ w w w w - . w
U M M M M M M M M M ^ M ^ h J n ^ ^ ^ ^ ^ H H J ^ t J M M h-J

oi o» oi wi
<til

« g
M SI
-Mi ei

M <0| Of M 0| M Of <d E| M M 0 01 <0I »H|
ei hi M

L 4 (til Q l

h <w m
M VI 0» 0)1 (01 WlH X ei-H» -hi

» H | O f OI VI M CW X oi PI Ml'HI OI
VIM

OlHl 0|M Of «* 01 OI
mi o m
iHIhi otr-

A1.3

01 an
» H !

X I

X > ! <ti) (ti! VI v !

01 r-H 01 H
r*l -C1 C I 4 J |

01 (til X C I

jo <oi 01 • H I VI V | • H I

OI VI xa V I 01
col wi m XI - Q | V| OI M 4-1 HI VI x OI m X| oi 01 X1*H|
c/3i coi cm CI x oi X V I OI Of VI Wl C| V| 01 -Ml 01
<di (til 01 o» M C|

V I TJI a d 01 01 H Of 0»*H|
(ti l • H i • H I d a i PI Ml 01 (til

* l VI VI •HI • H I W l 01 CI Wl PI PI VI V| •1 OUI Of M M #1 01 a PI PI X VI-HI 01 >, OI %* V| M u °l oi (01 hi cm
4̂ 1 V|

>, OI %* V| OI Ml M C9 Wl (01 031 V I VI VI VI OI-HI M»-H| Olr-U d CI M M a d a o»hi a oi 01 OI 01 01 01 o» 01 Ot (01 PI 01 OI 01 V|-Q! M M X J M M M 4 J | C| M XI OI C | M e» M x i e i Ml M oi Of Ml Ml
M 4 J | C| M XI OI

M 01 OI >• PI P| 'HI •H| PI P| PI 01 -H|
(ti l v » 01 01 r C | 01 oi oi d ax
A

A A A A a A n r n n r n f ^ n m r o ^ n r o r n n r i n n n r n n m r o r n r n r n A A t - r - r - A A «~ *~ A A A A • •• •• •• •• • •• ••
r r A A ^ n r T ^ r r ^ n r r r r o o o o a D o o o n a o a D O D c o a c o D a ^ c D o o o c a u o o o o o ^

on m r - t - •• m ro ff „rr)(r)fr)rr) V
• • C O P O 0 0 0 0 C D 0 0 • • 0 0 C O • • • • r n ^ ^ r - ^ r ^ f ^ r ^ r ^ r ^ r ^ r ^ ^ r ^ r ^ r ^ r - ^ r - i r - » r - * r - » r»n r - n i—•» r - «

0 0 0 0 •• ••VVVVOOOOVVOOOOOOOO v O r ^ C X) C ^ C 3 r - C N O O ^ i n v j O f ^ a ^ C ^ O ^ C N O O ^ i n v D | ^ O D C ^ VVoooor-r-(N(NV V C N V V V V ^ r - r - r - r > j C N C N C N C N C > i r M C N C N C N o o o o o o P o r o o o c o o o o o

c q c u c o h h i o h w u u 9 5 ? 5 co co to co o s 0 s c & o s p 4 D 3 « « « p 3 O 3 « « p s p s «

M M M M M M M M M M M M M M M M ^ ^ J . J ^ ^ h l i J ^ ^ ^ ^ K J ^ h J ^ h J t J ^ J ^ ^ H l h l

II II II II II II H II II II II II II II |l II

A A A A
C N < N 0 0 0 0

CM C N
O O • • V V O O *c O V V
0 2 £ 4 CO E-i

A A A A
0 0 0 0 0 0 0 0

C N C N < N C N
* t

O O O O

V V V V r» r (N N o a o a
H W H 1 0 .

A A A A 0 0 0 0

^ 0 0 CM C N

C N C M t t

• • O O

O O V V V V «~ (N

C N U U

A A A A no 0 0 0 0 0 0

CM C N C N C N

t t

O O O O

V V V V
H CU S 3 h 3
CO CO CO CO

A A A A A A CO
OO 0 0 0 0 0 0 0 0 0 0 C N

C N C N CM C N C N C N • •
•• «* *» o o O O O O V V V V V V V 5 3

r— C N 0 0 C N C O •
W Of. ft H H H a

A A A A A A A A
m o o o o o o o o o o o o o o

A C N C N C N C N C N C N C N C N
0 0

C N O O O O O O O O ••vvvvvvvv
O CO 5 3 CO 5R CO CO v
C O C O C O S C i a - i C O t O S ^ S B

• xxxxsrrnrnsc

ll II II 1! II II H
A A A A
0 0 en A A ro m
CM C N O O O O C N C N

< N C N A A
O O O O 0 0 0 0

V V 0 0 V V C N C N
S B CO V V 5 S CO

• t

• • 5 5 CO • • O O

• • H H V V H 6-* H E-i R H as co 4
£ H Eh P * Cb • • cjj

CO CO M H H H CO CO 4 J |
a t * 3 5 * CK SB » C * <W

S t a t u s i s s i s t s r . f Q o a t
run data_read_in_progress/drip da ta_write_in_proq ress/dwip stack_overflow/sov stack_underflow/sun function_unit_result_zcrc/furz func tion_uni t_result_positive/furp function_unit_result_negative/furn
function_uni t_result_ovetflow/furo
inte rrupt_control_computer/int
stack_control_busy/scb
stack_control_bus_ request/scbr

S<0> taBBiaa^aaltSd s o > d i i a Egad Qfiscatifla in e E . 2 3 r . e s 5
s<2> ddia axils Q^exatisa i a sxagxsss
s<3> staci. axsiflQji en aext £asa
s<4> stack u n a s t f l s j * aa asxt EQE
s<5> csaditisns as
s<6> faactica aait tssalt
s<7> fax saxxsnt iastxactiQfl
S<3>
S<9>
S<1C>
S<11>

>

http://eE.23r.es5

instruction.vord_1 / i K O : 23>
instruction_word_2/i20:23>

roode/ffl
immediate.mode /imode

read.vrite.pause/rwp<0:4>
pause.bit/p
read.bit/rd
write.symbol.bit/vrs
write.type.bit/vrt

C1
C2

i1<0>
<mode=1)

i1<3:7>
rwp<0>
rwp<1>
rwp<2>
rwp<3>

aaifflal QL immediate icis

read.write_sinqle.double.bit/rwsd := rwp<4>

function_unit_function/fuf<0:3> i1<8:11>

parallel.destinaticn/pd<0:3> := i1<12: 15>
PC.aestination/PCd := pd<0>
BA.destination/EAd := pd<1>
T.destination/Td := pd<2>
Local.2egister_d€Stination/lRd := pd<3>

set_function.unit.resuit.condi tions/sfurc

Local_Register.sourc€.address/IRsa<0:6>

i1<16>

i1<17:23>

Local.Register.destination.address/LRda<0:6> i2<0:6>

condition.bits/c<0:8>
conditions.mode/cmode
condition.zero/cz
cond i ti on.po si t i ve/c p
condition.nega tive/cn
condition.overflow/co

special.action_bits/sa<0:7>
special.action.skip/sas
special.action.run.off/saro

i2<7:15>
c<0>
c<1>
c<2>
c<3>
c<4>
i2<16:23>
sa<0>
sa<1>

special.action.interrapt.ccatrol.coaputer/saint sa<2>

iomediate_data/id<0:23> « i2<0:23>

seacial action £o_nd.ifcisus
(- c m o d e a ((c z A f u r z) v (c p A f u r p) v (c n A f o r n) v (c c A f u r o)))

(c m o d e a (c z ^ f u r z) a (c p ^ f u r p) a (c n a f u r n) a (c o a f u r o))

(sacO v sad)

En.n£tio.n Unit -Enaction JCsfiniiisn
x1 fu x2 := ((fuf=0) 0 ;

(fuf=1) x1 9

(fuf=2) x2 m
f

(fuf=3) x2 • 2 {logical! ;
(fuf=U) x2 / 2 (logical) ;
(fuf=5) - x2 *

9 (fuf=6) x2 • f 1 ;
(fuf=7) x1 4- x2 ;
(fuf=9) - x1 A x2 ; (fuf=9) x1 V x2 ;
(fuf=10) x2 * 256 {logical}
(fuf=11) x2 / 256 Cloqical)
(fuf=12) -• x2 + 2 ;
(fuf=13) - x2
)

EioctiQD Unit Sesnli CaiculaJtifln
fu result/furO:23> : = (- i m o d e - (T fu LSlLBsa]<8s 31>) j

iaode - (id fu LRtLBsal<8:31>))

fiinctisa t s indices swclixsjiizaJkijEii o£ parallel actlsiJtx
Pause_until(b) := (~ b -* Pause_until(b))

E s M / S i i i t g functions
rw pause
bu s_free_pause

Pause_until(~(drip V dwip))
Pause_until(~(drip V dwip V scbr))

read_sinqle

read double

write_symbol_sinqle

wr it e_symbol_double

wr it e _ b o t h_s i nq le

write_both_double

(TD1<15:22> - MtPA]<0:7> ;
T D K 0 : H > - 0 ; TD1<23> «- 1
SD1 - H(PA]<8:31>)

(read_sinqle ;
7D2<15:22> «- M[PA*13<C:7> ;
TD2<0:14> - 0 ; TD2<23> - 1
SD2 - H[BA*1]<8:31>)

(HlEAl<8:31> - 5E1)

(write_symbol_sinql<> ;
M[EA*11<8:31> * 3D2)

(write_sywbol_sinqle ;
MlBA]<3:7> - TD1<15:22>)

(write_both_sinqle ;
HlEA*1]<8:31> - SD2 ;
HlBA*1K0:7> - TD2<15:22>)

>

run - ((C1OC2 «- NCloNC2 ; PC<0:22> - PC<0:22>+1 ; Next
p - rwpause; Next instruction_execution) ;

NC1ONC2 - MlPCK8:31>o?5tPC4l]<8: 31> ; Next
(PCdv(sacAsas)) - (NC1oNC2 «• H[PCl<8: 31>oH(POll<8:31> ;

PC<0:22> • PC<C:22> • 1 ; Next)
>

instrnction_execution := (

pea - PC - fur
DAd - BA - fur *
Td * T - fur 7
~ imode - (LRd

(LPsa = 12)

-imode a (LRda = 12) -* (

Pause.until(~scb); Next
scb • 1 ;
sun - trap(?); Next
sov • 0 ;
pop.stack ; Next
scb • 0) ;
Pa use.until(-scb); Next
scb • 1 ;
sov - trap(?); Next
sun - 0 ;
push.stack ; Next
scb * 0)

eusIi stack sfistaticfl

0 0

sfurc ((fur -0) - (furz - 1 ; furp «- 0 ; furn <- 0) ;
(fur*0 a -fur<0>) - (furz - 0 ; furp 1 ; furn «- 0) ;
(fur*C a f u r < 0 » - (furz * 0 ; furp ^ 0 ; furn <- 1)

); Next

-imode * (sac *
(saro -
saint

); Next

rd a ~rwsd
rd a rwsd
wrs a ~*rt a ~rwsd -
wrs a ~wrt a rwsd
wrs a wrt a -rwsd
wrs a wrt a rwsd -

run *• C ;
(run • 0 ; int *- 1))

(bus.free.
(bus.free,
(bus.free,
(bus.free.
(bus.free,
(bus.free.

.pause;
pause;
.pause;
.pause;
.pause;
pause;

Next drip
Next drip
Next dwip
Next dwip
Next dwip
Next dwip

read.single; Next drip • 0) ;
read.double; Next drip 0) ;
write.symbol.single; Next dwip *• 0) ;
write.symbol.double; Next dwip 0) ;
write.both.sinqle; Next dwip - 0) ;
write.both.double; Next dwip • 0) ;

Stack fipsiatiaas

push_stack := (

pop_stack := (

SP - SP • 1 ;
scbr • 1 ;
rwpause ; Next
P! [SPK8: 31> - ST ;
<SP > SH) - sov • 1 ; Next
scbr • C)

SP - SP - 1 ;
scbr • 1 ;
rwpause ; Next
3? - H[SP]<8:31> ;
(SP < SL) sun • 1 ; Next
scbr • 0)

A2.1

Appendix 2: CONTROL FLOW DIAGRAMS

I. Control Flow of Instruction Interpretation

ranch

K (PC <- FC+2) s

Kg(Instruction Execution)

Ks(NCl • NC2 <- M[Pc] • M[PC+1])

decision (PC-altered)
1

^branch

Ks(NCl_D NC2 <- M[PC] • M[PC+1])

K pm

K (PC «- PC+2)
" s

K K
s <

K = K
pm I
K
sm

111 K

PC-altered := PC-destination V (special-action-condition A special-action-skip)

A3.1

Appendix 3 - CODING COMPARISONS WITH L*(G)

On the following pages we display the code for six selected portions
of the L* kernel for both Pc.L* and PDP-10 L*(G).

Timing estimates for the code are listed to the left of each instruc

tion (in units of microseconds). For the Pc.L* code, a second number within

parentheses indicates how much longer an instruction would be delayed if

the previous read or write operation was a cache miss.

The language used for the Pc.L* should be self-explanatory, except

perhaps for the use of square brackets. They are used to delimit immediate

operands.

The assumptions made in estimating timings for the Pc.L* code, are:

(1) All instructions fetched by the instruction control are
present in the code cache.

(2) All references to the main memory stack are hits in the
data cache.

(3) A simple register transfer takes ̂ 50 ns (e.g., move).

(4) A register transfer with a non-degenerate function-unit-
function takes ̂ lOOns.

(5) A register transfer which alters PC, or a special action skip
adds ̂ 50 ns.

(6) A reference to the data cache takes ̂ 50 ns if it is present
in the cache, and ^600 ns if it must be copied from main
memory.

A3.2

Summary of Comparisons

(a) (b) (a) (b)
Time Estimate
on Pc.L*

(lisec)

Time on
PDP-10
L*(G)21
(usee)

No. of
48-bit
Pc.L*
Instructions

No. of
36-bit
PDP-10
Instructions

I
Interpret-Advance
cycle of program
list interpreter

1.05 42 12 17

II Push W .65 28 8 10

III Pop W .45 21 7 8

IV S (Get Symbol) .3 23 4 9

V N (Get Next) | .35 21 5
. . . :

8

VI R (Replace Symbol) I
- ~ J

1.15
. , •

66 17 25

A3. 3

1(a) Interpret-Advance Cycle of Program List Interpreter (for Pc.L*)

(Heart of L*L Language Interpretation)

Timing
Estimates Pc.L* Instructions
(p.secs)

.05 Interpret: BA <-WXS.S;Read

.05 T <-WIPTT.S

.1 (.55) Pause; BA <- T+TDl;Read

.05 Rl «-WXS.S

• 05

.1 (.50)

,15

,2 (.55)

,05

,05

ST <- PC

Pause; PC <- SDl

<-WXN.S-[ST0P];
<n zero result>
Skip

PC <- [Exit]

BA <-WXN.S;Read Double

Pause; <-SDl-[NIL];
<-i zero result> -> Skip
PC «- [Ascend]

WXS.S <-SD2

WXN.S <- SDl

Comments

Read type index of symbol to be
interpreted into TDl.

Get base of interpreter type table.

Read interpreter into SDl.

Symbol to be interpreted to Rl as
input to interpreter.

Save return address on stack.

Branch to interpreter.

Skip next instruction if WXN.s ̂
STOP

Go to exit from current context of
interpretation if WXN had STOP mark.

Read next program list cell.

Skip next instruction if link of
next cell is not NIL

Go to ascend if WXN.S.N=NIL.

Advance

.1
1.05 (j,sec

PC «- [Interpret] Branch back to interpret cycle.

A3.4

K b) . Interpret-Advance Cycle (L*(G)21)

2.09 $.I.P1: MOVE Rl, WXS ;get symbol to interpret into Rl

3.11 PUSHJ MSTKP, £LTI jcall routine to load type index

2.77 LSH Rl, -8 jget type map displacement

1.75 MOVEI Rl, TMAP (Rl) ;locate type map entry

3.18 POPJ MSTKP, ;return to interpreter

2.71 HRRZ Rl, (Rl) jget type index from type map entry

2.75 ADD Rl, WIPTT ;add base of interpreter type table

2.71 HRRZ R5, (Rl) jget interpreter from type table

2.09 MOVE Rl, WXS ;get symbol to be interpreted to Rl

3.39 PUSHJ MSTKP, (R5) ;call interpreter

2.09 $.I.P2: HRRZ R5, WXN ;get symbol in WXN to R5

1.79 CAIN R5, STOP jtest for end-of-current-execution mark

JRST $.I.P4 ;mark found, return to caller

2.71 HLRZ R5, (WXN) ;get next in WXN to R5

1.79 CAIN R5, NIL ;test if WXN.S.N £ NIL (not end of program
list)

JRST $.I.P3 ;end of list, ascend

2.85 HRR WXS, (WXN) ;advance to

3.20 HLR WXN, (WXN) ;next call on program list

1.47 JRST $.I.P1 ;branch back to interpret

~ 42 jjLsecs

A3. 5

11(a). Pushing of W (for Pc.L*)

Timing
Estimates
(pi sees)

Pc.L* Instructions

.1 PushW: BA,T <- WSPTT + [<type
index for t/l (type
list)>]; Read

.1 (.55) Pause; BA,Tl «- SD1; Read

.2 (.55) Pause; <- SDl-[NIL];<n result
zero> -> Skip

PC <-- [<space exhausted
code>]

.05

.05

.05

.05 (.45)

.05

.65 p,sec

BA <-T; Write Symbol

SDl <-W.N

SD2 <-W.S

BA <-Tl; Write Symbol
Double

W.N <- Tl

Comments

Address of 1st cell on t/l av.sp.
list to SDl

Get link of 1st av.sp. cell

Skip next instruction if space
not exhausted

Space exhausted-branch out to handle
condition

Unlink 1st cell

New cell gets copy of head of W

Link new cell to head of W

III (a). Popping of W (for Pc.L*)

• 05 PopW: BA,Tl <-W.N; Read
Double

.1 (.55) Pause; W.N <- SDl

.05

.1

.05 (.55)

.05

.05 (.50)

.45 p. sec

W.S <-SD2

BA,T <- WSPTT + [<type
index for t/l>]; Read

BA <r- Tl; Write Symbol

BA <- T

SDl <-Tl; Write Symbol

Read contents of 2nd cell on W

Copy contents of 2nd cell into
head cell

Address of 1st t/l av.sp. cell
to SDl.

Link previous 1st av.sp. cell to
cell to be returned.

Cell being returned becomes
1st av.sp. cell

A3.6

3.11 PushW: PUSHJ MSTKP, #C.L ;call routine to create T/L symbol

2.43 #C.L: HRRZ R5,WSPTT ;get current av.sp. type table
2.71 HRRZ Rl,$TL(R5) ;get ptr. to av.sp. list for T/L
2.71 HLRZ R4,(R1) ;get link of first av.sp. cell
1.79 CAIN R4,NIL ;test if av.sp. not exhausted
— JRST $C.L1 ;jump out if exhausted

2.71 HLRZ R4,(R1) ;get link to 2nd cell

3.29 HRRM R4,$TL(R5) ;unlink allocated cell from av.sp. list

3.18 POPJ MSTKP, ;return to PushW

2.86 MOVEM W, (Rl) ;copy head of W into new cell

2.58 HRL W,R1 ;link new cell to head
^28 usees.

111(b) I . Popping of W (L*(G)21)

2.09 PopW: HLRZ Rl ,W ;get address of 2nd cell on W

2.71 MOVE W,(R1) ;copy contents of 2nd cell into head cell

3.11 PUSHJ MSTKP,$E.L ;call routine to erase old 2nd cell

2.43 $E.L: HRRZ R5,WSPTT ;get current av.sp. type table

2.71 HRLZ R4,$TL(R5) ;get ptr. of av.sp. list to LH of R4

2.86 MOVEM R4,(R1) ;link av.sp. list to cell being returned

3.29 HRRM Rl,$TL(R5) ;make returned cell new head of av.sp. list

3.18 POPJ MSTKP, ;return from $E.L
~-"21 p,secs.

1Kb). Pushing. o£ W (L*(G)21)

A3.7

Timing
Estimates
(usees.)

.05

.1

.05

.1

.3 |jisecs

IV(a). S - Get the symbol of W(0) (Set signal cell) (for Pc.L*)

S:

Pc.L* Instructions Comments

BA <-W.S; Read Double Read symbol and next of W(0)
(.55) Pause; W.S *- SD2

WS.S <- SDl

PC <- ST

Symbol to W(0)

Next to signal cell

Return to caller

V(a). N - Get the next of W(0) (Set signal cell) (for Pc.L*)

.05

.1

.05

.05

.1

»35 (isecs

N: BA <-W.S; Read
/

(.55) Pause; BA <- SDl; Read

W.S <- SDl

(.55) Pause; WS.S «- SDl

PC <- ST

Read next of W(0). (W(0).N)

Read W(0) .N.N

W(0) <-W(0).N

WS.S <-W(0).N.N

Return to caller

A3. 8

2.09 Pll: HRRZ Rl ,W ; input W(0) to Rl

3.39 PUSHJ MSTKP, (R6) ;call process stem

2.71 $S: HLRZ R2,(R1) ;R2 <-W(0).N

2.71 HRRZ R1,(R1) ;output W(0),S in Rl

2.23 HRR WS,R2 ;set signal cell = W(0).N

3.18 POPJ MSTKP, ;return to Pll prefix routine

2.23 HRR W,R1 ;output from Rl into W

3.18 POPJ MSTKP, ;return to caller of process
^ 23 (jtsecs

V(b). N - Get next of W(0). (Set signal cell) (L*(G)21)

1.47 N • JSP R6,P11 ;call Pll prefix routine

2.09 Pll: HRRZ Rl ,W

3.39 PUSHJ MSTKP,(R6)

2.71 #N: HLRZ R1,(R1) ; output W(0).N in Rl

3.20 HLR WS,(R1) ;set signal cell = W(0).N.N

3.18 POPJ MSTKP, ;return to Pi 1

2.23 HRR W,R1

3.18 POPJ MSTKP,

21 |j.secs

IV(M. S - Get symbol of W(0). (Set signal cell) (L*(G)21)

1.47 S: JSP R6,p11 ;call prefix routine for 1 input, 1 output
_ processes

A3.9

VI(a). R - Replace symbol of W(0) by W(1). (for Pc.L*)
Timing

Estimates
(usees)

.05 R:

.1

P20:

.05

.05

.05

.05 (.50) Pause;

.05

.05 (.55) Pause;

.05

.1

.1 (.55) Pause;

.05

.05 (.50)

.1

.1 #R:

.05 (.35)

.1
1.15 usee

Pc.L* Instructions

T «- [fe]

PC <- [P20]

Comments

Branch to prefix P20

Prefix for routines with 2 inputs,
no outputs

BAffl 4 -W.N; Read Double Read 2nd cell on W

TO <- T

Rl <-W.S
Save T (process stem addr.)

W(0) input to Rl

BA,T2 <-SDl; Read Double Read 3rd cell on W
R2 <-SD2

W.N <- SDl

W.S <-SD2

BA,T <- WSPTT + [<T/L
type index>]; Read

BA <-T2; Write Symbol

BA <- T

SDl <- Tl; Write Symbol

PC <- TO

BA <-Rl+l

SDl «-R2; Write Symbol

PC «- ST

W(l) input to R2

Copy contents of 3rd W

Call into head cell of W

Locate T/L av.sp. list

Link av.sp. list to 3rd W cell

2nd W cell becomes head of av.sp. list

Branch to process stem

Input W(0) is in Rl

W(l) is in R2. D o the Replace.

Return to caller

A3.10

JSP R6, P20 ;call prefix routine for 2 inputs, no
outputs

HRRZ R2, W

<Pop W>

$W(0) input to R2

;(This is the code for Popping W
displayed on a previous page)

PUSH MSTKP, W

<Pop W>

;save W(l) input on stack

;(again, the code from previous page)

POP MSTKP, Rl

HRRZ Rl, Rl

;saved W(l) input to Rl

;zero link of Rl

EXCH Rl, R2

JRST (R6)

;W(0) input to Rl, W(l) input to R2

;branch to process stem

HRRM R2, (Rl)

POPJ MSTKP,

;replace symbol of W(0) by W(l)

;return to caller of R

R - Replace symbol of W(0) by W(l) (L*(G)21)

1

Security Classification
DOCUMENT CONTROL DATA - R & D

fSecurity Clas»i fi cat ion o! title, body of abatract and indexing annotation muat be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1. ORIGINATING ACTIVITY (Corporate author)

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2b. GROUP

3. REPORT TITLE

C.ai(P.L*) -- An L* Processor for C.ai

4. DESCRIPTIVE NOTES (Type of report a n d inclusive dates)

Scientific Report
5. AUTHOR(S) (First name, middle initial, last n a m e)

D. McCracken, G. Robertson
6. REPORT DATE

October 11, 1971
7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

49 4
8a. CONTRACT OR GRANT NO.

F44620-70-C-0107
6. PROJECT NO.

c.

d.

9a. ORIGINATOR'S REPORT NUMBER(S)

CMU-CS-71-106
8a. CONTRACT OR GRANT NO.

F44620-70-C-0107
6. PROJECT NO.

c.

d.

9b. OTHER REPORT NO(S) (Any other numbers that m a y be assigned
this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research
1400 Wilson Blvd. (SRMA)
Arlington, Va. 22209

13. ABSTRACT

The results of a preliminary design study for a specialized language processor
(P. i) for L* are presented. The objective of the study is to give an example of a
specialized processor for C.ai.

The L* processor is to run 20-30 simultaneous L* users with very large address
spaces at a speed improvement of better than 10 times a typical PDP-10 L* system. Its
cost should be low relative to the memory resources of C.ai0

The design presented is that of an L* central processor (Pc.L*) with a low-level
instruction set (about the level of typical microcode). Pc.L* is time-shared by a
mini-computer that sits to the side, so that each L* user sees himself as running on
a base L* processor. User contexts are switched by swapping processor status informa
tion in Pc.L*.

The results of this preliminary design effort, although still unclear in spots,
shows that a specialized processor could run very large L* systems on C.ai at 20-40
times the speed of a PDP-10.

D D ,F
N°oRvM.91473 ~

Security Classification

Security Classification

KEY WORDS
LINK A

ROLE I WT
LINK B

ROLE WT
LINK C

ROLE 1 WT

specialized processor

microcode

kernel

context-swapping

Security Classification

