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ABSTRACT

The results of a preliminary design study for a specialized language
processor (P.2) for L* are presented. The objective of the study is to
give an example of a specialized processor for C.ai.

The L* processor is to run 20-30 simultaneous L* users with very
large address spaces at a speed improvement of better than 10 times a
typical PDP-10 L* system. Its cost should be low relative to the memory
resources of C.ai,

The design presented is that of an L* central processor (Pc,L*)
with a low-level instruction set (about the level of typical micro~
code)., Pc.L* is time-shared by a mini-computer that sits to the side,
so that each L* user sees himself as running on a base L* processor,
User contexts are switched by swépping processor status information in
Pc.L%,

Each L* user has complefe access to the central processor status
through his address space. His machine code (microcode) can appear
anywhere in the large address space, but executes out of a fast cache
memory. It thus runs at microcode speeds. L* programs and data being
interpreted by the machine code are accessed explicitly from a second
cache memory. The initial L* kernel system will consist of ~ 1K of
machine code, with some initial data and available space.

The low-level instruction set of Pc.L* does not contain any of
the more complex instructions (such as floating point arithmetie and

byte manipulation) that usually exist on large general purpose computers.
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These capabilities are meant to be written in machine code as needed
by each L* user. He thus gains considerable flexibility in the exact
nature of these higher level operations at the cost of increased pro-
grammiﬁg effort and somewhat reduced efficiency compared to hard-wired
implementations.

The results of this preliminary design effort, although still un-
clear in spots, shows that a specialized processor could run very large

L* systems on C.ai at 20-40 times the speed of a PDP-10.
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1. INTRODUCTION

Qur objective is the design of a séecialized processor to run L¥
systems on C.ai.* We call our processor P.L*. A thorough understanding
of the context in which we are designing requires familiarity with C.ai as
presented in reference 1. Much of what follows, however, can be understood
with the knowledge that C.ai provides a processor such as P.L* with (1) a
port to a primary memory of up to 222 296-bit words of 550ns cycle time
accessible as 74, 148, 222 or 296 bits per access, (2) transfer capability
to and from the outside world, and (3) transfer capability to and from large
on-site secondary and tertiary memories,

Familiarity with kernel systems (reference 2} and L*(F) on the PDP-10
(references 2 and 3) is essential and assumed throughout. Without attempting
to summarize these papers, it is worth noting that the essential idea of L*
is the growth of arbitrary programming systems from a small kermel of machine
code (on present implementations) that permits rapid acquisition of higherw

level language facilities and system tools.,

s

Throughout this report we use and assume familiarity with the PMS and
ISP notations as presented in reference 4.
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2. DESIGN CONSTRAINTS FOR AN L¥* PROCESSOR

Several important design constraints for our L* processor are listed

below to provide a framework for the design.

1. The system running on an L* processor should be consistent with
L* design philosophy. This is actually a set of constraints, such
as a small sized L* kernel system, accessibility to the complete
L* machine as seen by its user, etc. A more complete enumeration
of the constraints is given in reference 2.

2. The L* user's address space must be large (& 106 words), and large L*
systems must not experience drastic performance degradation
relative to small systems.

3. L* should run much faster than L*(G) on the PDP-10 (at least 10
times faster).

4, A single L* processor must support up to 20-30 simultaneous L¥*
users in a time-sharing mode with an allocated memory of 64k ~
1024 k words.

5. An L* processor should be inexpensiVE and simple to construct
-relative to the cost (rv$107) of the C.ai large memory resources.
Subsequent L* hardware processors should be possible in the same
fashion as software versions are possible.

6. The L* processor should not be so complex that reliability is low.

7. The final design and building of the L¥* proceséor system must be

done in parallel with the rest of C.ai.
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In connection with constraint 1, we had first to decide what it meant
to build an L* computer. The L* philosophy originally addressed building
systems on a given powerful machine (e.g. PDP-10) which has high level
capabilities already built into the instruction set, The decision we
made was to design toward a very fast low level instruction set, and then
allow more powerful capabilities to be built along with the growth of the
rest of an L* system. This basic approach is compatible with the hardware
technology (i.e. microprogramming). For example, floating point and byte
manipulation capabilities will have to be coded in the low-level machine
code of the L#¥ processor.

Within this idea for growth of high~level capabilities lurks the
danger that certain desired advanced capabilities will be very difficult
to grow or will be grossly inefficient as compared to an equivalent hardware
implementation. Of course, this danger, if it is relatively insgignificant as
we suspect, is favorably balanced by the freedom of the user to specify
the high level operations himself.

We will not state the effect each of the constraints had on the
design of the L* processor, but many such effects will be obvious as we

describe the design.
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3. OVERVIEW OF P,L*

A PMS diagram (Figure 3.1} shows the overall structure of the L¥
processor and its connection to the remainder of G.ai. In this section we
will give only a short description of the function of each component.

Later sections will describe them in more detail.

At the heart of the system is the part we call the L* central processor
(Pc.1*), The single L* user sees Pc.L* as the processor on which he is
running.

Between Pc.L* and the large C.ai memory are a simple address trans-
lation control and two cache memories of about 2-4k words each, containing
images of parts of the large C.ai memory. One of the caches (the code cache)
is used essentially as a read-only memory to hold machine code instructions.
The second cache (the data cache) is explicitly accessed by the machine code
instructions to read and write L* data types., L¥* program lists appear as
data to the prozsram list interpreter executing in machine code., Students
of microprogramming may choose to think of the machine code part as micro-
code == in essence it is, because it is fairly inefficient, unercoded, and
operates directly on the remaining hardware parts of the processor (e.g.,
registers). The address translation centrol of P,L* uses a single segment
relocation register and a segment protection register to mab the 64k segments
of a single L* user's virtual address space into a particular subset of the
64k segments allocated to P.L* by C.ai. The operation of the caches and the
address translation control is transparent to the L¥ user, who sees a uniform
virtual memory containing both instructions and data.

The overall control for running multiple users on the L¥* processor is
with the control computer, Ck. Ck has direct access to all the internal
working of Pc.L*, the two cache controllers, and the address translation mecha-

nism of P,L¥. This enables it to act as a time-sharing monitor for Pc.L*,
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4, Pe,L* HARDWARE

Figure 4.1 shows a PMS diagram of Pc.L*, At this level of detail,
we see that Pc.L* consists of three parts: the local registers, the
instruction control (which handles the main flow of instruction interpre-
tation and execution), and the stack control (an adjunct for machine code
subroutine linkage which maintains a pushdown stack in parallel with in-
struction execution).

Supplementary descriptions of Pc.L* are provided in Appendices 1 and
2: The ISP description in Appendix 1 is an attempt to describe the
operation of Pc.L* in considerable detail, and as such is the real heart
of this paper. The description's principal failing is the difficulty
of representing the interaction of parallel activities in a transparent
way (e.g., how the stack controller interacts with the control of in-
struction execution). To display clearly the parallelism of control
flow, in Appendix 2 we have adopted a two-dimensional notation borrowed

from Register Transfer Mocdule descriptions.

L{code bus)

L(data bus)

K(stack control)
I

Mr(local registers)

K(instruction control)

Figure 4.1: PMS of Pc.L*




INSTRUCTION CONTROL

Figure 4.2 shows the local registers in their separate identities
and their interconnections via the function unit, along with the various
control connections providing for imstruction interpretation and execu-
tion control.

The local registers contain all processor status information pertinent
to a single L* user, which means that a swap of the local régister con-
tents is sufficient to change the context of Pc.L* to a different L¥
user job. The local registers appear as the first 128 words of the L¥
user's address space. The remainder, up to 224 words, comes via the
cache and address translation control from a part of the large C.ai
memory,

The details of instruction execution are controlled fairly directly
from the fields of a 48-bit doubleword instruction. The wide instruction
provides direct control over the various substages of instruction execu-
tion at a very low level. ihis makes the instruction set look like a
microcode instruction set, and in fact, one way to view the L* processor
is as a flexible microcoded processor. However, we will continue to
view it as a very fast machine with a simple, low level machine code.

The choice of the particular instruction set is based on some sample
coding of small parts of the L* kernel. It is to be expected that numerous
minor additions and alterations (and possibly some major ones) would take
place before final freezing of a design.

It is crucial (for reasons of accessibility of machine code by the
L* user) that machine code have the same general format as all other

words in the L* user's address space. Thus, machine code instructions
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are pairs of words, and the address of each word has a type associated
with it just as does any other address in the user's address space.
(The type system is explained on p. 16).

Using & one instruction look-ahead scheme (also operating in parallel
with execution), an instruction is fetched from the code cache according
to the address in local register PC/Program Counter and read into local ‘
registers NCl and NC2 (the Next Command registers). From there (except
for the special case of a control branch) the instruction is transferred
into local registers Cl and C2 where it is executed. See Appendix 2
for the control f£low of the instruction interpretation process.

The most basic part of instruction execution is the register transfer
process via the function unit, There are two inputs to the function unit,
plus the specification of which function of its two inputs it is to perform.
One of the inputs can be any one of the local registers (selected by the
LRsa/Local-Register-source-address field). The second input is the
local register T for normal mode instructions; in an immediate mode in-
struction the second input is local register C2 (i.e., the second word
of the current instruction). Output from the function unit consists of
a result with result condition bits. The condition bits reside in the
local (status) register S and can be set according to the current function
unit result. The result itself can be sent to any or all of the local
fegisters PC/Program Counter, BA/Bus Address and T/Temporary. In in-
structions which are not immediate-mode, the result can also be sent to

the local register selected by the LRda/Local-Register-destination-

address field.



Next in the instruction execution process come the conditional special
actions. The conditicn bits in an instruction specify a certain function
of selected status bits in the status (8) register. If the functiom value is
true, all the special actions specified by the bits in the special action
field are performed. Examples of special actions are: interrupt Ck, and
skip next instruction, ete. All of the condition bits but one are used to select
particular status bits in the § register. The remaining bit specifies
whether one of the selected status bits = 1 is sufficient to trigger the
special actions, or all of the selected status bits must be 1 before the
special actions are taken.

A third part of the instruction execution consists of the external
function control; e.g. read/write/pause functions for memory. Read or write
operations use local regiéter BA as the bus address register, and local regis-
ters TD1, SD1, TD2 and S$D2 as the data registers. These operations, resulting
in main memory accesses, are initiated after the register transfer for the
current instruction has been completed. The pause bit causes execution of
the current instruction to be delayed until an active read or write opera-
tion, started in some previous‘instruction, has been completed.

There is one last thing that happens during imstruction execution if

the local register ST (stack top) was selected as the source or destination

of the register transfer: the stack controller is initiated. Once initiated,
the stack controller proceeds, in parallel with continued instruction inter-
pretation, to initiate the memory read or write operation and do the

stack pointer manipulation necessary to complete the push or pop of the

stack., The operation of the stack controller will be discussed in more

detail below.



STACK CONTROL

Figure 4.3 is a PMS diagram of the stack controller and its related
local registers and bus connections.

The stack controller is started into action by the appearance of the
local register ST as the source (indicating a pop) or the destination
(indicating a push) of a register transfer.

The particular format chosen for the stack is such that local register
ST holds the top element on the stack, but the top element also appears at
the top of the array forming the stack in main memory. This means that the
instruction control need not wait for a main memory operation for either a
push or a pop, and may continue with subsequent instructions while the
stack control takes charge of completing the stack operation. Of course,
the instruction control will have to wait if the stack control is still
completing the previous stack operationm.

When the stack control is initiated, it first increments (for a push)
or decrements (for a pop) the main memory stack pointer (local register SP).

It then borrows control of the data bus from the instruction control (which

hopefully wasn't needing it anyway just then) to write from ST into main

L(data st} M{ST/stack top)

M(SP/stack pointer)

!
|
|
I
f
1 M(SH/stack high boundary)
i

l K(stack control) - M(SL/stack low boundary)

L

M(5/status)

.Figure 4,33 PMS for Stack Control
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memory (push), or read into ST from main memory (pop).
Overflow and underflow detection are done one step ahead of the actual
error condition by comparisons of SP with the stack low boundary register
(SL) or the stack high boundary register (SH). The two conditions posted
in the status register (8) are: (1) overflow will occur on next push and
(2) underflow will occur on next pop. Thus, a stack operation can always
immediately proceed if the appropriate condition bit in § is not on, and
rechecking of the boundaries for the benefit of the next stack opération
can proceed in parallel with the current one.
An alternate stack scheme was considered briefly which had several
stack top registers, and which allowed these to exist in an "empty" state (similiar
to the Burroughs B5300. Although it is a more complicated scheme to control, |
it would do better for a push-pop mixture which stays within several levels
since no main memory operétiong would be required. However, we felt that
more than just two or three stack top registers would be required to have
significant benefits for the L* kernel. Also, the scheme does not take
advantage of idle time of the data bus and the fact that the stack has a
high probability of residing in the cache. Even with these considerations,
we would not want to make a final decision on a stack algorithm without an

actual simulation of the system running typical L* programs.
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POSSIBILITIES FOR OTHER SPECIAL HARDWARE

One of the bottlenecks in the system, as currently conceived, is the
high frequency of allocating and returning available space for the W cells,
mainly W, WHS and WHN, 1In fact, many of the kernel processes would reduce
to one or two instructions if it were not for the necessity of obtaining

inputs from and returning outputs to the operand stack W (operations which

often require allocating and deallocating cells from available space)- To
help here, we might add special control which essentially buffers the un-
linking and linking of available space cells, allowing instruction inter-
pretation to proceed in parallel. We might also consider a mechanism which
anticipates a space-~exhausted condition and allocates additional bulk
available space in parallel with program execution. (This latter would be
difficult if we allow, as in conventional L* implementations, the space
exhausted condition to be handled by an arbitrary L* program).

Another possibility for further specialization of hardware would be to
transfer some of the machine-coded L* kernel into hardware. This we have
avoided in order not to bind the processor to conventions that

a particular L* user might want to modify to suit his .own needs.
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5. Ck AND CONTROL OF P,L*

The purpose of the control computer is to allow each L¥ user to gain
complete access to Pc.L*. To accomplish this, Ck provides the functions of
typical time-sharing monitors. It controls memory {both primary and secondary),
scheduies, swaps user contexts, communicates with other special processors and
with AMOS (the operating system for C.ai), and handles local I/0 devices (if
any). The PMS diagram showing the control computer as part of the whole
P.L* system was presented in Figure 3,1. This section describes how the

components of Ck provide the specified functions.

Primary memory management is accomplished by Ck communication with
AMOS and by Ck control of K(address translation). The address translation is done
by single segment relocation and segment protection registers which can be
set by Gk, A segment is a number of contiguous 64k blocks,
obtained from AMOS., The function of shuffling which is normally provided by
a segment-oriented time-sharing monitor is accomplished by Ck by requesting
AMOS to rearrange or shuffle P,L*'s memory mapping registers. To provide
more than 128 64k blocks, Ck will make use of AMOS's swapping mechanisms.
A single user is, of course, limited to 128 blocks. A single user can
increase or decrease his allocation by requests to Ck. These requests are
honored by Ck requests to AMOS for new allocations. Thus all primary memory
management (allocation, swapping, shuffling, and segment relocation) is
accomplished by either communication with AMOS or by control of . K(address
translation).
Secondary memory management (for file storage) is handled by Ck which
in turn communicates with AMOS to have the transfers actually performed.
Scheduling of users for P,L* is not difficult because all I/0 is done through

Ck ?i.e., Ck does all interrupt handling). There are only two requirements:
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(1) Ck must have a clock; and (2) communication from Pc.L* to Ck must have the side-
effect of turning PC.L*'s run flag off. Existing scheduling algorithms should
work nicely. The PDP-10 DEC monitor has an adequate algorithm for scheduling
and could be used by Ck with only minor modifications.

Swapping user contexts is accomplished by Ck control of K(context swap) .
The context swap controller will transfer the current local register array to
the primary memory of the current user. It will then mark the two caches
(data and code) as empty, This has the sida-eéffect of causing the data cache
to write out any changed words not previously written. Ck can now change the
segment relocation and protection registers. Ck now causes K(context swap) to
read in the new user's copy of the local register array. When K(data cache) and
K(context swap) have completed their work, the swap can be considered complete
and Ck can turn Pec.L*'s run flag on.

Communication with other special processors and with AMOS is provided
for by connecting Ck's bus to the C.ai inter-processor trunkrbus. Protocols
for this communication have not been established; but they should be simple.

Local I/0 device handling presents no real problems. Local devices can
be attached to Ck if needed. I/0 operations through Ck can be handled in much
the same way as UUO's on the PDP-10. |

Communication between Pc.L* and Ck is accomplished by dedicating a
portion (~10 words) of Mr(local registers) for a communications area., Pc.L¥
will have the ability to interrupt Ck with the side-effect of turning Pc,L*'s
run flag off., Ck can interrupt Pc.L* at any time because it can set and reset
Pc.L*'s run flag.

Considering the functionsVCk must provide, we feel that a mini-computer

with a good interrupt structure such as the DEC PDP-11 would be adequate,
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The hardware we would add to the PDP-1l -~ K{context swap), K(address tramslation),
a clock, local I/0, C.,ai bus, Mr(local registers) =« could almost all be added
directly through the Unibus. Some hardware modification might be desirable.

For instance, the trap vector for communications between Pc.L* and Ck should
probably be augmented with a control that causes a trap through a branch table
with the contents of the first word of the communications area as an index. More

hardware to speed up critical sections can probably be shown to be worthwhile,
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6. THE L* KERNEL FOR P,L%*

The basic approach in our design of an L* machine has been to take
an L* kernel like the ones that currently exist on the PDP-10 and PDP-11 and
implement it on a much faster, simpler processor of our own design. There was
no radical redesign of the L* kermel itself because its structure is largely
independent of the machine on which it is to run. A principal reason for this
independence is the fact that the kernel supplies initial data types and
operations which are<so basic that they very likely already exist on any given
computer, or can be very simply composed from existing facilities.

That is, almost all computers of interest to us ("general purpose
computers") have add instructions, logical operations, move instructions to
manipulate simple list structures, etc.

The simple, low-level nature of the facilities in our L* processor
(with a very few exceptions, such as a stack mechanism} are a result of the
fact that L* 1s not a single specific language system, but a base from which
it should be possible to grow many different systems. Thus, we have nothing
on which to base an a priori selection of more powerful facilities to be built
into the hardware. Instead, we are willing to grow more advanced facilities as
needed, from within the system, in the form of sequences éf the given low-level
facilities. That is, we will add new "instructions' to our machine by writing
"microprograms' for them.

The L* kernel for our L* machine is not exactly like any of the L¥
systems on the PDP-10 or PDP-1l, since we were able to remove some constraints
forced by those machines. Thus, for example,we are able to have a unique
changeable type for each symbol. This type scheme was used in L*(F), but was

abandoned on going to L*(G) in favor of a more rigid but far less space~costly

scheme,



-16-

We will proceed by enumerating and briefly describing a few of the more

important ways the L* kernel was adapted to run on the above L* processor,

TYPE SYSTEM

The L% user sees a uniform virtual address space of up to 224 24 bit
words. Each address has a separate type associated with it, which can be
changed at will. The types are represented by small integers from the set
£1,3,55 2.5 511}, giving a maximum of 256 types. These small integers are
called type indexes because they are used to index into a type table which
contains a Boubleword entry (head of a list) for each type currently in use.
The type index is actually stored (shifted right one binary position} in the
high order 8 bits of a physical 32-bit word, although this fact is transparent
to the user, To the L* user, the types appear to be ''abstract!" entities
since they are not stored anywhere in the memory space he sees. The limit
on the number of types imposed by the 8-bit type field may eventually be a
problem, for example, if we go from a simple type system to a hierarchical
one. Whereas the simple type scheme allows 256 different types, a four-
level hierarchical scheme might allow only, say, four alternatives at each of

four levels,

OPERAND COMMUNICATION

Kernel processes are written to deal directly with the L* operand
stack (list) W. In the PDP-10 and PDP-1l versions of L*, W was used to
communicate operands only in the context of the interpretation of a progrém
list. For execution of kernel processes from machine code (e.g., other kernel
processes or compiled code), operand communication through W was too slow,

so general registers were used instead. This was implemented by kernel
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machine code routines called prefixes which transferred process inputs from W
to general registers and outputs from the registers back to W when in the
context of program list interpretation. In the C.ai L* kernel we are committing
ourselves to the belief that we can now afford to use W for operand communication
not only in program list context, but also in the low-level machine code context.
This decision provides a considerable reduction in complexity since it
removes the logical need for process prefixes, A disadvantage of the decision
is that some special kernel processes which for one reason or another cannot
use W for operand communication must have special conventions, effectively
making them non~-accessible from program list context. Two prime examples are
C/L and E/L which are used for allocating and returning available space for the

working lists (including W itself).

PROCESS PREFIXES

In the section above on types we explained why process prefixes are no
longer logically required, Nevertheless, we do have process prefixes
because many of the kernel processes do such a small amount of processing
(e.g., "add two numbers'') that a very large percentage of the machine code for
the processes is used for the manipulation of W to obtaiﬁ inputs and store
outputs. By defining several prefixes, we have subroutinized the operand
communication. We have not, however, gone all the way to a scheme where "all
the inputs are transferred to registers, because that loses enough efficiency
to outweigh itsbenefits (we think), The definition of the prefix routines is as
follows:

The prefix routines receive a non-standard input (in some
register) which is the address of the main part of the process to be

executed (i.e., the part divorced from manipulation of W).
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Prefix routine for no inputs and 1 output.
Operation: Push W, then branch to main part of process (process stem).
For 1 input and mno outputs.

Operation: Pop input W(0) into local register RI, return working
cell to available space, then branch to process them.

For 1 input and 1 output.

Operation: Yothing. (Possibly Pll will be non-existent).
For 1 input and 2 outputs,

Operations Same as POl.

For 2 inputs and no output.

Operation: Pop W(0) into Rl, W(1l) into R2, return both working
cells to available space, then branch to sten.

For 2 inputs and 1 output,

Operation: Pop W(l) into R2 (leaving W(0) in W), “return cell
to available space, then branch to stem.

For 2 inputs and 2 outputs.
Operation: Nothing. (Possibly P22 will be non-existent).
For 3 inputs, 1 output

Operation: Pop W(1l) into R2, W(2) into R3 (leaving W(0) in W),
return two cells to available space, then branch to stem.

SPECTIAL WORKING CELLS

Some selected W cells plus some temporary working cells have very

special status by virtue of residing in the local register array. These cells

are the ones that can be directly addressed in the register transfer operations

of the machine code. However, in order not to let this fact limit accessibility

to these cells, we map the 128 local registersinto the first 128 locations in

the main address space. This allows the L¥* user to access them via the data bus

in the same way as all the non-special cells residing in main memory.
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THE CODE AND DATA CACHES

The speed of cache operation is so critical that we are virtually
forced to hardwire the cache algorithm, thus depriving the L* user con-
trol over its operation. However, the L* user must be aware of the caches
since their performance can drastically affect execution speed,

The code cache is the more critical of the two caches since accesses
are made every instruction cycle. We would hope to choose a size for the
code cache that would virtually ensure that all active code can reside in
the cache at once. We are tacitly assuming (without real justification as
yet) that it will not be necessary for L* users to compile many high-level
programs into machine code, since such a strategy would be heavily penal-
ized, The code cache size should be large enough to hold the entire IL¥*
kernel (~l K of 48 bit words), plus a reasonable amount of extra space
(like a factor of 4) for additional primitives coded by the L¥* user.

Since the two independent caches both hold images from the same ad-
dress space, there is the commonly known problem of double images. That
is, a user may have altered in the data cache a section of code whose old
version is still held in the code cache. This is not‘actually a serious
problem since it should happen relatively infrequently, and in any case
any inconsistency will last only to the end of the user's current time
slice. We have decided against a solution at the hardware level, so it

will be a case of "user beware."
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INCREASED COMPLEXITY OF KERNEL CODE

In our quest for increased speed we have been forced to design an
instruction set processor which operates at a lower level and has more
direct control over the memory than a machine like the PDP-10. We also
have been forced to include in the design operations which proceed in
parallel with instruction interpretation, such as the stack control and
main memory read/write operations. A result of all this is that in
comparison with conventional L* systems, maqhine code instructions are
larger and more complex, and a great deal of thought must be given to
synchronizing the parallel operations and optimizing the degree of over-
lap., Thus, we will probably end up with a kernel which is not nearly
as simple and easily understandable as conventional versions, and this
runs counter to the L* design philosophy. It remains to be seen just

how serious the consequences of this will be.

PERFORMANCE

In order to get a rough estimate of speed and code density for our
L* processor, we selected six iﬁteresting sections frém the L* kernel,
We compared the coding for these with the equivalent PDP-10 code taken
from version 21 of the L*(G) kernel., The details of these comparisons
are presented in Appendix 3,

To summarize the results of the comparisons, we found (somewhat
surprisingly) that code density for the Pe.L* is roughly comparable to
that for L*(G) on the PDP-10. Code density on a PDP-11 is twice that of

a PDP-10, Execution speed for Pe,L¥* is between 40 and 75 times faster



21

than L*(G) under ideal cache conditions. Under worst conditions (i.e.,
no hits in either cache), execution speed for Pc,L* degrades to around
10 times faster than L*(G). We believe that, with good organization of

data and code, close to ideal cache conditions can be maintained.
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Appendix 1 - ISP DESCRIPTION OF Pc.L*

The operation of the two caches is not described in the ISP.
A reference to main memory using PC (e.g. M[PC]) is to be understood
as a reference to the code cache, and a reference using BA or SP is

actually a reference to the data cache.
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£un

data_read_in_progress/irip
data_write_in_progress/dvip
stack_overflow/sov
stack_underflow/sun
fynction_unit_result_zerc/furz
fanction_unit_resnlt_positive/furp
furction_unit_result_negative/furn
function_unit_result_overflow/furo
interrupt_control_computer/int
stack_control_busy/schb
stack_control_bus_request/schr

4 B4 av wd A0 Sk S48 g M8 s A

[ T I T O T N (2O [

3<0>
5<1>
5<2>»
S<3I>
S<4>
S<H>
S<6>
s5<1>
S<8>
5<9>
s<16>
5<11>

processor rubpingshalted
data read operation im progress
data ¥rite operation in DEOJILESS
stack overflow ou Dpexi push
stack underflow¥ on n=2xt pop
conditicns Qb
fongtion unit result
for current iastruction

71V
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Instruction Format

instruction_word_1/i1< 7 :23> 1= C1
instruction_word_2/12<:23> 1= C2
mode/m 1= i1<0> nornal or ipmediate mode
immediate_mode/irode := (mode=1)
read_vwrite_pause/rwp<d:u4> s= 1143: >
pause_bit/p = rwp<O>
read_bit/c4d := rwp<i>
write_syebol_bit/vrs 1= rwp<2>
write_type_bit/vwrt = rwp<3>

read_write_single_double_bit/rwsd := rwp<i>

function_unit_function/fuf<f:3i> : i1<8:11>

parallel_destinaticn/pd<?: 3> 11<12:15>

PC_destination/PCd :=  pd<0>

BA_destination/F2a4d ;= pd<t>

T_destination/Td 1= pd<2>

Local_Register_destination/LRd := pd<3>
set_function_unit_result_conditions/sfurc t= §11<16>
Local _Register_source_address/IRsa<d:6> = 11<17:23>

local _Register_destination_address/LRda<d:6> := i2<0:6>

condition_bits/c<l:8> 1= 12<7:15>
conditions. modes/cmode = c<O>
condition_zero/cz = <>
condition_positive/cp 1= c<2>
condition_negativescn 1= <>
condition_overflow/co 1= c<i4>

special_action_bits/sa<Q:7> 1= 12<€16:23>
special_action_skip/sas 1= sa<d>
special_action_run_off/saro := sa<i1>
special_action_interrupt_ccutr

12<0:23>

.
H

iaprediate_datasid<2:23>

ol_computer/saint := sa<2>

¢ 1v



Special Action Conditions

special_action_condition,O/sacO

(~crode A ((czafurz)v(cpafurp)vicnaturn)vi{ccafuro)))

special_action_condition_1/sac1 := (cmode a (cz>furz) A (cpafurp) A (cnafurn) A (co>furo))

special_action_conditicn/sac 3

(sac0 v sacl)

Function Unit Functiop EBefiumitionm

x1 fu x2 3=
(Fuf=0)
{(fuf=1)
{(fuf=2)
(fuf=3)
(fuf=4)
(fu€=5)
(fuf=6)
(fuf=7)
(fuf=8)
(fuf=9)
(fuf=10)
{(fuf=11)

(fuf=12)

(fu€=13)
)

+
(=]

flogicall
flogical}

[N ]
. ws

13
X2
X2
X2
256 (logicall
256 {logical}
2 =
i

Ak we W

- wp

PO TR T S S T A B S S N I |
»
el

A Y B N YN R TR

s W

Function Unit Result Calculation

fu_result/fur<l:23> :=

{ ~ inode - (T fu LRILRsal<8:31>);
inode - (id fu LRI{LRsal<8:31>) )

9° 1V



Function to indicate sypchrepnizaticn of parallel activity

Pause_until(b) := (~ b - Pause_until(b))

Bead/%rite Functions

Pause_until{~{drig V dwip))
Pause_until(~(drigp VvV dwip V scbr))

C¥pause
bus_free_pause

" 3

r2ad_single 1= { TD1<15:22> = M{BAI<C:T7> ;
TDI1C3 1> « O ¢ TD1<23> - 1 ;
ST « M{RAJ<CB:Y1> )

read _douhble := { read_singlec ;
TRZz<15:22> « MIZA+T)ILLT7>
TD2<)31U> « 2 ; 1ID2<ZI> - 1 ;
STZ = MIBA+1)<3231> )

write_symbol _single = { M[ER1<B:31> « 3=L1 )

write_symbol_double := ( write_symbol_sinqale ;
MI{FA+11<8:31> « 5D2 )

write_toth_single 3= { write_sywnbol_single ;

MIRAICS: 7> « TR1415:22> )

[ 1]
il
—

write_both_single ;
MI{RR+1]1<R:31> - SD2 ;
MIBA+1]1<D 7> « TD2<C15:22> )

write_both_double

Instruction Intecpretation Progess

run - ( (C10C2 « NC1oNC2 ; PC<0:22> « PC<0:22>+1 ; Next
P = rwpause; Next instruction_execution );
NC1aXC2 « MIPCI<8:31>0M[PC+11<8:31> ; Next
(PCdv(sacasas)) - (NC1aNC2 « MIPCI<B:31>aM{PC+11<8:31> ;
PC<G222> « PCLC:122> + 1 ; FNext )

LIV



Instruction Exegution

instruction_execution

FCd = PC - fuar ;
DAd - BA -« fur ;
Td = T =« fur ;:

imode - ( LRd

{L?sa = 12) = (

~imode A~ (LRda = 1
sfurc - ( (fur=%)
(fur+=d

Progcess

L {

LRILRGa}<8:31> « fur ):

Pause_until{~sch); Next
sck = 1 ;
sun -~ trap(?); Next
sov = 0 ;
pop_stack ; Next
sch = 0 ) ;
2) = { Pause_until(~sch); Next
sck = 1 ;
sov - trap(?); Next
sun - 0 ;
push_stack ; Next
sch - 0 )
- (furz <« 1 ; furp « 0 ; furn «
A ~fur<d>») - (furz - € ; furp - 1

(fur2l A fur<é>») - (furz « 0 ;3 furp « 0

}; Next

~imode - (sac ~

( satro = run « C ;
saint - (run =« 0 ; int -« 1) )

): Next
rd A ~rwsd - (bus_free_pause; ¥ext drip
rd A rvsd - {(bus_frea_pause; Next drip
Wrs A ~wrt A ~rwsd - (bus_free_pause; Next dwip
WES A ~Wrt A rusd - {bus_free_pausse; Next dwip
Wwrs A wrt A ~rwsd - (bus_free_pause; Next dwip
¥rs A wrt A rwsd - (bus_free_pause; Next dwip

-

r

L I I

P J G R

wg wg wp WF WA W

pop stack operation

undecflow detection

push stack gperaticn

overflow detectian

8°'1¢

; furn - §);
furn - 1)

read_single; Next drip = 0);
read_double; Next drip <« 0);
write_symbol_single; Next dwip - 0);
write_symnbol_double; Next dwip « 0);
write_both_single; Next dwip = 0);
write_bhoth_double; Next dwip « 0);



Stack QOperations

push_stack := ( SP - SP + 1 ;
schr « 1 ;
rupause ; Next
*[5P1<8:31> « ST

4
—

(5P 2 SH) - sov ; Next
schr - € )
pop_stack = { SP « 5P - 1 ;
scbhr - 1 ;
r¥pause ; Naxt
37T « MI[SPI<8:31> ;
(5P £ S§L) = sun = 1 ; Next

schr - 0 )
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Appendix 2: CONTROL FLOW DIAGRAMS

I. GControl Flow of Instruction Interpretation

5((:1 O G2 « NCl1 DO NC2) KS(NCl o NC2 <—_M[Pc] o M PcH])

KS(PC « FCH2)

|

KS(Instruction Execution)

K
pm

Sm

Kdecision (PC-altered)
1
Kbranch

K_(NC1_U NCZ « M Pc] O M PCtLl]) K (PC « PCH2)

pm

K = K_;

s — simple
Kpm = Kparallel merge
K = K .

sm serial merge

PC-altered := PC-~destination v {special-action-condition A special-action-skip)
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Appendix 3 ~ CODING COMPARISONS WITH L*(G)

On the following pages we display the code for six selected portions

of the L* kernel for both Pc.L* and PDP-10 L*(G).

Timing estimates for the code are listed to the left of each instruc-
tion (in units of microseconds). For the Pe.L* code, a second number within
parentheses indicates how much longer an instruction would be delayed if
the previous read or write operation was a cache miss.

The language used for the Pc,L* should be self-explanatory, except
perhaps for the use of square brackets. They are used to delimit immediate

operands.

The assumptions made in estimating timings for the Pc.L¥ code are:

A
(1) All instructions fetched by the instruction control are
present in the code cache,

{2) All references to the main memory stack are hits in the
data cache,

(3) A simple register transfer takes ~50 ns (e.g., move),

(4) A register transfer with a non-degenerate function-unit-
function takes ~100ns.

(5) A register transfer which alters PC, or a special action skip
adds ~50 ns.

(6) A reference to the data cache takes ~50 ns if it is present
in the cache, and ~600 ns if it must be copied from main
memory.
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Summary of Comparisons

(a) (b) (a) : (b)
Time Estimate Time on No. of No. of
on Pec.L* PDP-10 48-bit 36=bit
L*{G) 21 Pc.L¥* PDP-10
———— ructions; Instruc
Interpret-ﬁance : EEAaennaamas REhe
I cycle of program 1.05 42 12 17
list interpreter
Il Push W .65 28 8 10
I1I Pop W ! - W45 21 7 8
v S (Get Symbol) : .3 23 4 9
v N (Get Next) .35 21 5 8
Vi R (Replace Symbol) i 1.15 66 17 25
i
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I(a) Interpret-Advance Cycle of Program List Interpreter (for Pc.L*)

Timing
Estimates

(usecs)

.05

.05
.1 (.55)

.05

1 (.50)

.2 (.55)

.05

.05

i

1.05 psec

(Heart of L*L Language Interpretation)

Pc.L* Instructions

Interpret;

Pausge;

Pause;

BA « WXS.S;Read

T « WIPTT.S
BA « T+TD1;Read

RT « WXS.S

ST « PC
PC « SDI1

« WXN.5-[STOP };
<—.zZero result> —
Skip

PC « [Exit]

BA « WXN.S;Read Double

« SD1-{NIL];

<& zero result> -
Skip

PC « [Ascend]
WXS.S « 8D2

WXN.S « SDI

PC « [Interpret]

Comments

Read type index of symbol to be
interpreted into TDI.

Get base of interpreter type table.
Read interpreter into SDI.

Symbol to be interpreted to R1 as
input to interpreter,

Save return address on stack.

Branch to interpreter.

Skip next instruction if WXN,s #
STOP

Go to exit from current context of
interpretation if WXN had STOP mark.
Read next program list cell.

Skip next imstruction if link of
next cell is not NIL

Go to ascend if WXN,.S.N=NIL.

Advance

Branch back to interpret cycle.



2.09 $.I.Pl;

3.11

2.77 HTI:
1.75

3.18

2.71
2.75
2.71
2.09

3.39

2.09 $CI.P2=
1.79
2,71
1.79
2.85
3.20
1.47

ev—-

~ 42 usecs

A3.4

I(b), Interpret-Advance Cycle (L*(G)21)

MOVE

PUSHJ

LSH

MOVEI

POPJ

HRRZ

ADD

HRRZ

MOVE

PUSHJ

HRRZ

CAIN

JRST

HLRZ

CAIN

JRST

HRR

HLR

JRST

Rl, WXS sget symbol to interpret into Rl

MSTKP, 4TI ;call routine to load type index

Rl, -8 ;get type map displacement

Rl, ™AP (R1l) ;locate type map entry

MSTKP, jreturn to interpreﬁer

R1l, (R1) ;get type index from type map entry

R1l, WIPTT ;add base of interpreter type table

R5, (R1) sget interpreter from type table

Rl, WXS ;get symbol to be imterpreted to Rl

MSTKP, (R5) ;call interpreter

RS, WXN sget symbol in WXN to RS

R5, STOP jtest for end-of-current-execution mark

$.I.P4 jmark found, return to caller

R5, (WXN) ;get next in WXN to R5

R5, NIL stest if WXN.S.N # NIL (not end of program
. Iist)

$.1.P3 send of list, ascend

WXS, (WXN) | ; advance to

WXN, (WXN) ;next call on program list

$.1.P1 sbranch back to interpret
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I1(a). Pushing of W (for Pc.L*)

Pec.L* Instructions

Timing
Estimates
{psecs)
i | PushW:
.1 (.55 Pause;
«2 (.55) Pause;
.05
.05
.05
.05  (.45)
05
.65 psec
.05 PopW:
.1 (.55) Pause;
.05
o1
.05 (.55)
.05
.05 (.50)

.45 psec

BA,T « WSPTT + [<type
index for T/L (type
1list)>]; Read

BA,T1 « 5DT; Read

« SD1-[NIL1;< result
zero> — Skip

PC « [<space exhausted
code>]

BA « T; Write Symbol
SD1 «W.N
SD2 « W.S

BA « T1; Write Symbol
Double

W.N « Tl

Comments

Address of 1st cell on T/L av.sp.
list to SDI1
Get link of 1st av.sp. cell

Skip next instruction if space
not exhausted

Space exhausted-branch out to handle
condition

Unlink Ist cell

New cell gets copy of head of W

Link new cell to head of W

I111(a). Popping of W _(for Pc.L%*)

BA,T1 « W.N; Read
Double

W.N < SDb1
W.S5 « 8SD2

BA,T « WSPTIT + [<type

- index for T/I>]; Read

BA « T1; Write Symbol

BA « T

SD1 « T1; Write Symbol

Read contents of 2nd cell on W

Copy contents of 2nd cell into
head cell

Address of 1st T/L av.sp. cell
to SDT,

Link previous Tst av,.sp. cell to
cell to be returned.

Cell being returned becomes
Ist av.sp. cell
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b). ushing of W (L*(G)21

3.11  PushW: PUSHJ MSTKP, %C.L ;call routine to create T/L symbol
2.43 %C.L: HRRZ R5,WSPTT ;jget current av.sp. type table
2,71 HRRZ R1,$TL(R5) ;get ptr. to av.sp. list for T/L
2,71 HLRZ R4, (R1) ;get link of first av.sp. cell
1.79 CAIN R4,RIL ;test if av,sp. not exhausted

-- JRST $C.L1 sjump out if exhausted
2,71 HLRZ R4, (R1) ;get link to 2nd cell
3.29 HRRM R4, $TL(R5) ;unlink allocated cell from av.sp. list
3.18 POPJ MSTKP, ;return to PushW
2,86 MOVEM W, (R1) ;copy head of W into new cell
2,58 HRL  W,R1 ;link new cell to head

~~28 psecs.

III(b). Popping of W (L*(G)21)

2.09 PopW: HLRZ RI1,W ;get address of 2nd cell on W

2.71 MOVE W, (R1) ;copy contents of 2nd cell into head cell
3.11 PUSHT MSTKP,%E.L ;cail routine to erase old 2nd cell

2.43 4E.L: mHk;Zm-ﬁ;,;gP;& o ;jget current av.sp. type table

2.1 HRLZ R4, S5TL(RS) ;jget ptr. of av.sp. list to LH of R4

2.86 MOVEM R4, (R1) ;link av.sp. list to cell being returned
3.29 HRRM R1,$TL(R5) ;make returned cell new head of av.sp. list
3.18 : POPJ MSTKP, sreturn from #E.L

!

~21 psecs.



A3.7

Timing IV(a). S - Get the symbol of W(0) (Set signal cell) (for Pc.L¥*)
Estimates
(Lsecs.) Pc.L* Instructions Comments
.05 S: BA < W.S5; Read Double Read symbol and next of W(0).
.1 (.55) Pause; W.S ¢ SD2 Symbol to W(0)
. 05 WS.S « sD1 Next to signal cell
.1 PC « ST Return to caller
.3 usecs

V(a). N - Get the next of W(0) (Set signal cell) (for Pc.L¥)

.05 N: I BA «W.S; Read Read next of W{(0). (W(0).N)
.1 (.55) Pause; BA « SD1; Read Read W(0).N.N

.05 W.S <« 8D1 W{0) «W(0).N

.05 (.55) Pause; WS.S ¢ SD1 WS.5 «W(0).N.N

.1 PC « ST Return to caller

.35 psecs



A3.8

TVv(b). S - Get symbol of W(Q). (Set signal cell) (L*(G)21)

1.47 S: JSP  R6,P11 ;call prefix routine for 1 input, 1 output
_ o o processes

2.09 P11: HRRZ RI1,W sinput W(0) to RI

3.39 PUSHJ MSTKP, (R6) ;call process stem

2.71 4s: HLRZ R2,(R1) sR2 « W(0).N

2.1 HRRZ R1,(R1) soutput W(0).S in RI

2,23 HRR WS,R2 ;set signal cell = W(0).N -

3.18 FPOPJ MSTK?, sreturn to P11 prefix routine

2,23 HRR W,R] ;output from R1 into W

3.18 POPJ MSTKP, ;return to caller of process

~ 23 ysecs

v{d). N - Get next of W(0). (Set signal cell) (L*(G)21)

1.47 N: JSP R6,P11 ;call P11 prefix routine
2.09 P11: HRRZ RI1,W

3.39 PUSHJ MSTKP, (R6)

2.7 4N: HLRZ R1,(R1) soutput W(0).N in R1

3,20 HLR WS, (R1) ;set signal cell = W(0).N.N
3.18 POPJ MSTKP, ;return to P11

2.23 HRR W,R1

3.18 POPJ MSTKP,

~ 21 psecs



Vi{a). R - Replace symbol of W(0) by W(1).

A3.9

Timing
Estimates

(usecs)

.05

.05
« 05
.05
.05 (.50)
« 05
.05 (.55)

.05
1

.1 (.55)
.05

05 (.50)
.1

.1
.05 (.35)

-1
1.15 psec

P20:

Pause;

Pause;

Pause;

Pc.L* Instructions

T e—[%R]

PC « [P20]

BAT1 « W.N; Read Double
T0 «T

R1 «W.S

BA,T2 « SD1; Read Double
R2 « SD2

W.N « SD1

W.S «8D2

BA,T « WSPTT + [<T/L
type index>]; Read

BA « T2; Write Symbol
BA « T

SD! « T1; Write Symbol

K « TO

BA « R1+1
SD1 « R2; Write Symbol

Pc « ST

{(for Pc.L*)

Comments

Branch to prefix P20

Prefix for routines with 2 inputs,
no outputs

Read 2nd cell on W

Save T (process stem addr,)

W(0) input to R1

Read 3rd cell on W

W(1) input to R2

Copy contents of 3rd W

Call into head cell of W
Locate T/L av.sp. list

Link av.sp. list to 3rd W cell

2nd W cell becomes head of av.sp. list

Branch to process stem

Input W(0) is in R1
W(1) is in R2, Do the Replace.

Return to caller



1.47

2,09

~ 21

3.73

~ 21

3.80

2.09

3.01

1.75

3.29

3.18

~ 66 usec

A3,10

R - Replace symbol of W(0) by W{(l) (L*(G)21)

PUSH MSTKP, W

<Pop W>

POP  MSTKP, Rl

HRRZ R1, Rl

EXCH R1, R2

JRST (R6)

HRRM R2, (R1)

POPJ MSTKP,

;call prefix routine for 2 imputs, no
outputs

;W(0) imput to R2

s (This ' is the code for P0p§ing W
displayed on a previous page)

;save W(1l) input on stack

s (again, the code from‘previous page)

;saved W(1) input to Rl

jzero link of R1

sW(0) input to R1, W(l) input to R2

sbranch to process stem

sreplace symbol of W(0) by W(l)

sreturn to caller of R
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