
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-104

A SOFTWARE LABORATORY

PRELIMINARY REPORT

K. Corbin E. Hyde
W. Corwin K. Kramer
R. Goodman E. Werme

W. Wulf

August 23, 1971

Carnegie-Melion University

Pittsburgh, Pennsylvania

^ lh"n)*78 S " P P ? r t e d * t h e Advanced Research Projects Agency
It ! M A°f 5 h e

A
S e c r e t a r y of Defense (F44620-70-C-0107) and JhirS * I K A l r F ° r C e ° f f i c e o f Scientific Research d7«tr?rTn , ?fen

 a P P r o v e d f o r Public release and sale; its
distribution is unlimited, '

ii

ABSTRACT

This report describes the implementation of the kernel of a

simple multi-process operating system. The purpose of this system

is to create an environment for the construction of experimental

programming systems for educational and research uses.

INTRODUCTION

This report describes the initial design of a "software laboratory11.

The objective of this system is to create an environment within which

researchers and students may experiment with the construction of software

systems. The system accomplishes this,providing a large number of func­

tional "modules" together with a mechanism for flexibly interconnecting

them in various ways. The philosophy of the system is a software analog

of the hardware "macro-modules" of Clark [1] and "register-transfer-

modules" of Bell [2], Much of the philosophy for the approach described

below is due to Krutar [3]; key ideas were borrowed from Habermann and

Jones [4] and from many discussions with Per Brinch Hansen.

The similarity between many of the components of various systems

programs has often been noted, but seldom exploited. Lexical analyzers

and syntax analyzers, for example, occur in all compilers, and to some

extent in assemblers, editors, command interpreters, etc. Yet they are

generally re-written for each such system (translator-writing-systems, or

compiler-compilers, have been the one exception to this practice.

This situation is especially annoying to two groups of people to whom

the present report is primarily aimed: (1) the researcher who would like

to quickly fabricate a system in order that he might pursue a single

aspect of it in depth, and (2) the instructor who would like to assign

programming problems on some aspect of systems programming but which only

make sense in the context of a complete system. To illustrate the point,

consider the researcher (or student) who would like to (is assigned to)

-2-

investigate various compiler optimization strategies on the tree-repre­

sentation of a program. To do this lexical analysis, symbol table, space

management, parser, tree-generation, and i/o functions must first be

written. None of these is essential to the project at hand, and col­

lectively they may be sufficiently effort-consuming to make the project

impractical.

One purpose of the project is to provide an inventory of functional

modules such as those mentioned above -- several lexical analyzers, parsers,

etc. -- and an environment in which they may be quickly interconnected.

Thus the researcher (or student) may quickly compose a host environment

for the particular sub-system of interest.

The system has been implemented on a minimal PDP-11 configuration in

order to make it widely available. Future reports will specify modules

and exercises suitable for intermediate and advanced software laboratory

courses. This preliminary report deals exclusively with the environment --

its philosophy and the construction of its 11 kernel*11

-3-

THE PHILOSOPHY

The philosophy of the environment created by the system comprises the con­

sequences of a particular physical model which we would like the user to

have of that environment. That model is:

A (user) system is constructed from a number of components

called modules. A module is a functional unit which receives

signals (data) along one of a number of input wires, cables,

or ports, performs some operations and (possibly) generates

output signals on other cables (or ports). The cables con­

nected to a module are fitted with standard male/female con­

nectors so that the output of any module may be directed to

the input of any other by appropriate interconnection of their

cables. Rather than direct interconnection, a special "patch

panel11 similar to an old-fashioned telephone switchboard, is

provided to facilitate the interconnections. Figure I illus­

trates this model.

In this model modules do not know to whom or what they are connected.

They use internal names to reference ports for receiving and sending in­

formation and the actual supplier or receiver is specified externally

by the particular cabling pattern established by the user. This fact

coupled with the "standard connector" assumption permits the substitution

of a module for a functionally equivalent one (or network of ones) at

any time.

Figure I

The Physical Model

M
n

M
n

-5-

The use of the system is best illustrated by a simple example.

Suppose one wished to construct a program to read text from a paper-tape

reader and print it on the teletype. Modules exist for reading (char­

acters) from the paper tape reader (PTREAD) and writing (characters) on

the teletype (TTWRIT) --so they can be Interconnected as follows:

PTREAD
TTWRIT

Suppressing the patch panel helps to clarify the diagram in more complex

examples, so let's draw this configuration as simply

PTREAD V ft TTWRIT PTREAD TTWRIT

Now suppose we would like to add pagination of the output. Further,

suppose we have a module (PAGER) which accepts input and passes it along

to its output, but also looks at each data item for a special end-of-line

(EOL) character, counts them, and after the nth inserts several special

upspace-the-paper (line-feed) characters. If we break the original

connections and reconnect as shown below we will now get the desired pagi­

nation.

-6-

PTREAD - A > PAGER TTWRIT PTREAD 7 W r • PAGER TTWRIT

Suppose further, now, that we would also like to get a character frequency

distribution in the text while the printing is going on. If we happen to

have a module (CHRFRQ) to do this we might create the following configura­

tion:

CHRFRQ

PTREAD SPLIT PAGER >—#—>— TTWRIT PTREAD - > # — > — SPLIT PAGER TTWRIT

In this configuration 1 SPLIT1 is a simple module which, when it receives

input, replicates that same input on each of two output ports. We could

proceed In this way to build much more complicated configurations but

trust that the example has served to illustrate the general philosophy.

Of course, software modules are not physical objects; they do not

have tangible cables dangling out of them. The patchboard does not have

a physical existence either. Thus, the acts of connection and reconnec-

tion are not accomplished by physical acts, but rather by commands typed

on a terminal. The precise syntax of these commands is beyond the intend­

ed scope of this report, and in any case is likely to change as more at­

tention is paid to the human engineering aspects of the system(which we

-7-

consider to be a crucial aspect of the whole project). Suffice it to

say that the structure of these commands is intended to reinforce the

conceptual model presented above. Thus, the commands mimic the things

one would expect to do to modules physically wired together for example

connections may be made or broken at any time, the complete "wiring list"

may be displayed or individual wires traced, the signals flowing along a

particular cable may be monitored, etc.

-8-

THE IMPLEMENTATION APPROACH

The system model presented in the previous section might be implemented

in any one of a number of ways each module could have a subroutine or

co-routine structure, for example. Rather than either of these it was

decided to construct each module as an asynchronous sequential process.

The cabling and patchboard are implemented as a "mailbox" message buffer­

ing system. The system is implemented in two pieces: (1) a small

"kernel" which includes space management, process management, and message

handling primitives, and (2) a "user representative" which implements the

command language, tracing, loading of modules, displays, etc. The user

representative (UR) is implemented as a set of modules using the mechan­

isms provided by the kernel. It is in no way different from, or more

privileged than modules assembled by the user. This construction philos­

ophy permits the UR to be easily modified, permits different versions of

the UR for different users, and permits the UR to be easily adapted to

various configurations and needs. A continuing aspect of this research

is the human engineering of the UR — built as a set of modules, it permits

this type of experimentation to be done in its own environment. Finally,

the UR, being constructed from modules itself, forms an advanced example

of the use of the system.

The kernel has been purposely kept small and "clean" (the entire

kernel consists of less than 200 PDP-11 instructions. The small size of

the kernel allows (1) the design and implementation to be iterated, and

-9-

(2) the kernel itself to be an object of study in a systems programming

course, and (3) a usable subset of the total system to be used on a mini­

mal (4K) PDP-11 configuration.

IMPLEMENTATION OF THE KERNEL

The kernel consists of a small number of data structures, accessors,

and routines for manipulating the structures. The data structures used

in the kernel are instances of a smaller number of "classes" of structures

(objects, lists of objects, semaphores, and vectors). The routines in

the kernel are constructed such that each performs an operation appropri­

ate to a class of structures on any instances of a member of that class;

that operation is never performed by any other routine. The immediately

preceding sentence may be interpreted as a working definition of the term

"clean" used earlier. It should be noted that this use of "clean" con­

flicts with that proposed elsewhere [7] in that it implies a strong

functional interdependency, and some loss in efficiency; it was chosen in

favor of a (data) semantic interdependency because of the clarity and

modifiability it affords.

The following description of the kernel is divided into an English

description of the data structures and their associated manipulative

routines, and a Bliss module which implements them. The latter is to be

considered the authoratative definition of the kernel.

(1) Objects

An "object" is a data structure which is composed of 2 n (1 £ n £ 16)

words, two of which contain a link field (objects are frequently chained

together on lists), size field (contains n when actual size in 2 n) , and

-10-

priority field (when on a list, objects are always in priority order),

LINK

SIZE PRIORITY Size words

The routines for manipulating objects are:

a) get (n) allocate memory for an object of size 2 n and return
its address

b) release (a)

c) copy (a,b)

d) newcopy (a)

e) link (a,h)

f) delink (h)

g) swap (hl,h2)

deallocate the space for an object whose address is
'a'. The value of 'release1 is undefined*

copy the contents of an object whose base address is
'a' into an object whose base address is 'b'; at most,
size (b) words will be copied* Return the base ad­
dress of 'b'.

create an object and make its size and contents identical
to those of 'a'; return the address of the new copy*

link the object whose base address is 'a' onto the
list whose header address is 'h'* The object will
be linked into the proper priority position on the
list* Return the address.of 'a'.

remove the first object, that is the highest priority
one, from the list whose header address is 'h' and
return the address of this object.

delink the first object of the 'hi' chain and link
it onto the 'h2' chain; return the address of the
swapped object.

(2) The 'feasible' list, semaphores, and synchronization

A particular class of objects are called "DIB's", dynamic information

blocks. A DIB is the name given to what has been called a 'process

-11-

description1 in other systems, and contains relevant state information for

a process. The 'feasible' list is a chain of all the DIB's for processes

which are ready to run. All other processes are "pending *on a semaphore"

and these DIB's are chained on a list associated with that particular sema­

phore. The reader is assumed to be familiar with Dijkstra's P and V primitives

and their use for process synchronization [6].

SEMAPHORE FEASIBLE HEADER

HEADER

DIB

LINK

SIZE PRIORITY

NAME

STACK REGISTER

PORT INFORMATION

reserved for use of
the UR

-12-

The routines which manipulate semaphores and the feasible list are:

savstart saves the context of the current process on its stack,
saves the stack pointer of the current process in its
DIB, and initiates the process whose DIB is at the top
of the "feasible" list by first retrieving its stack
pointer and then restoring its context

P (sem) |
\ Dijkstra's synchronization primitives

V (sem) |

(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called "message "

Modules do not send messages directly to other modules but rather to "ports"

A port is a local (to the module) name for one of the cables in the model

thus modules are not aware of which other modules they receive messages from

nor send messages to; they are aware only of their own local port names.

The patchboard is implemented as a set of "mailboxes" -- data structures

which contain (among other things) a (possibly empty) set of messages.

Patchboard connections are accomplished by making the "port information"

portion of a process's DIB reference a particular mailbox.

A MESSAGE MAILBOX

LINK

SIZE PRIORITY

message
body

HEADER

/mi II in MUTUAL EXCLUSION
SEMAPHORE

ACTIVITY
SEMAPHORE

LIMIT
SEMAPHORE

-13-

The message handling primitives are:

send (m,p) A copy of the message whose base address is fm' will
be sent td the mailbox connected to port 'p 1. If
the mailbox is currently full the sending process is
suspended until space for the message becomes avail­
able.

receive (p) Return the address of a message in the mailbox con­
nected to port 'p 1. The message is removed from the
mailbox. If no messages are currently in the mailbox
the process is suspended until a message is sent to it.

The primitives and data structures for the kernel described above

are defined precisely by the following Bliss module. This module was

built for, and tested on, the PDP-10, but is identical to the PDP-11

version with three exceptions:

1. The full 36-bit PDP-10 word is used.

2. i/o for tracing and error reporting use PDP-10 monitor facilities.

3. The system function 1createprocess1 will be somewhat different

on the PDP-11.

Sample output from the tracing facility has been appended.

-14-

t SYSTEM PARAMETERS
j _

RI MO HEMSIHEs4096,
PSTACKS17Eal?8,
MSGLIM!T«2.
MAXPORTS*3»
"'UMMA UR0XESe641

! SYSTEM TRACING DEFINITIONS
I

BI NO TRACE = #777777|

FORWARD TRG.TRR. TRC»TRHC,TRH »TRl.2,TRDi»TRD2,TR8»TRSV»TRP,TRV,TRSNO,
TRREC#ERKOR»

MACRO

TGETs IF TRACE 11 THEN TRG< .N.'.RCBASEM)t»
TRFL* IF TRACE*1 - 1) TIME'-1 TRR(,A)1,
TCOPYs IF TRACE*1 1-2) THEM TPC(.A. ,'B)$,
TNEWCOPY = IF TRACE 1 • (-3) THEN T R N C (. A X ,
TLINK1= IF TRACE * I THEM T R L1(•AI,H)%,
TLINKps IF TRACETI [-4) THFN TRL2(,H)S,
T D L I V K I » IF TRACE*I T-5) THEN TROl(,H)$I
TDLl^K2'IF TRACE* 1-5) THEN TRO?(.RCBASEF],,H)$,
TSWAP* IF TRACE*1 [-6) THE M TRS(.F,',T)$,
TSAVSTa IF TRACE* [-7) T H E N TRSV()$,
T P = IF TRACE* (-8) THEN T P P < . S X ,
T V = IF TRACE* 1 - 9) THEN TRV(,S)%,
TSENOe IF TRACE* t-lP) THEN T R S N N C ' . M , ,PRT)S»
TRECVs IF TRACE* t-11) THEN T RREC(IR«.PRT > $ I

! OBJECTS
! -

STRUCTURE POOJECT[I,*,S,J3*
I STRUCTIIRr FOR A POINTER TO AN OBJECT
CASE .1 OF

SET
(. P O R J E C T * . J X , P , , S > |
(fr.POBJERT*. J X . P . .S>1
(PO.PORJFCT* , J X . P I ,S>'|
TES j

MACRO «?ASEFs:-=!,U,36,CITI ! NAMES OF FIELDS IN AN OBJECT
.JORO<Z)=l. 1 . 3 6 , (?) K»

MONUI.E SL2>3MSTACX)»
RE ft IN

T S O F T W A R E L A B

SI*FF*l,ff,B.lt,
PRIORITY«lf0,flilS,

NLlrtKF«2»0»3*,*J,
?'SUEF«2#0i»#l*#
NPRlORITY«?#o:,«l»lS|

STRUCTURE V E C I O R C I 3»C I 3 <. VECTOR*." H<o,36>l

GLOBAL VECTOR SPACFCi63>

PJMD VECTOR SIZE «
PLlT(l»2,4,H (16,32»64,12fl,256,5i2,lk»24;2l348,4096,8l92,16384,

3276H ,65>53<S) J

GLOBAL VECTOR MEM[MEMS I ?E 3I J ALL O B J E C T S ARE I.N MEM

I SPACE MANAGEMENT
I

FORWARD LIMK#DELlfcK#COLLAPSE|
GLOBAL ROUTINE GET(N)«

! GET AN ORJFCT OF SIZE ?»»U ANO RETURN ITS ADDRESS
BEGIN REGISTER POBjECT R»
IF ,'M LEO a OR ,w GEO 16 T^EN 0 ELSE

REGIN
IF .SPACECVM NE3 f/5

THEN RCBASEF>DELINK(SPACEC,N3)
ELSE (RtRASEF3-GET(.M*l)l COLLAPSE (, RCBASEF3* , S IZEC.N] J , N)) |

RCLINKF3*«» RCSIZEF>.N| R[PR t OR I TY3«-fl J TGETl .RCBASEF3
END

ENOJ

MACRO REPEAT' WHILF 1 DOS,
RASE(B,S)s (B AND NOT(,SI2ECS3)) %,
PARTNER<B1,B?,S)« <<B1 XOR B2) EOL .SI*ECS3)S|

ROUTINE COLLAPSE(A,N)a
! RELEASE THE SPACE FOR THE OBJECT WHOSE ADDRESS IS ,A
BFGIM MAP POBJECT A) REGISTER PORJECT L> TRELI
REPEAT

BEGIN LCBASEF3.-SPACEC ,N]j
MHILE .LCLINKF3 f.'E*) * 00

IF PARTMFRf.LCIIVKF],.ACBASEF3,,N)
THEN (ACBASEF3-fiASE(DELIHK< .LCBASEFD), ,N) I LCLINKF3*SPACEC (N*,N*l > 3)
ELSE l.EBASF.F>.LCLINKF3l

LTNKC .'ACHASEFD* iLCBASEFJ)
F N O I

RETURN
ENOj

GLOBAL ROUTINE RELEASE(A>s(MAP POBJECT Al COLLAPSE(,ACRASEF3.,ACSIHEF3>)j

-16-

J OBJECT MANIPULATION PRIMITIVES
I - — —

GLOBAL ROUTINE COPY<A#B>«
! CREATE A COPY OF OBJECT A IN R
BEGIN MAP PORJECT M'U TCOPYj
INCR I r^OM 2 TO ,SUCC.8CSlf»CF33"»l 00

RCN0R0(.I)3*-'.'AtW0Hn(,I)]|
'.BCBASEF3
EN.OI

GLOBAL ROUTINE NEWCOPY<A>»
! CREATE A NEW COPY OF A AND RETURN ITS ADDRESS
REGIN MAP PORJECT A> TNENCOPYI COPY(,AIBASEF3,GET(,ACSIHEF3>) END I

GLOBAL ROUTINE LINK(A#W)«
I LINK OBJECT A INTO ITS CORRECT PRIORITY POSITION IN LIST H
BEGIN MAP POBJECT A) REGISTER POBJECT L» Pi TLINK1t
P"VArPRlORITY3| Lt,BASEF3«-,H|
WHILE , LCNPRI OR I T Y 3 GEO ,P AND .LCL I NKF 3 NEO B> DO LCBASEF jV.'LCtINKF 3 |
A CLINKF 3*-, L [L INKF 3 | LCLINKF3*,ACBASEF3I TLINK2 J , ACBASEF3
END I

GLOBAL ROUTINE QELlNK(M)s
I DELINK THE FIRST OBJECT IN H A*iD RETURN ITS ADDRESS
BEGIN MAP POBJECT Mj REGISTER POBJECT R| TDLIMK1I
R*'.'HCLINKF3| HCLI NKF 3*. HCNL I NKF 3 I T0LINK2) ,R
ENO»

GLOBAL ROUTINE SWAP(F»T)s(TSWAPl LINK(DELINK(,F)».T))I

I SEMAPHORES AND SYNCHRONIZATION

STRUCTURE PSEMAPMOREC I3» («»,PSEMAPHORE* , I ><0» 36>>

MACRO COUNTs 0$,
SHEAOER=lSj

GLOBAL POBJECT FEAS I RLE ILASTRUNJ

I DIPS, SIBS. AND PROCESS STUFF

MACRO P0RT<P> sl»d#36.(9*2»(P>)*»
NAMEFsl,,1!, 36,3f»
STKPTR = .t.0,36»6$|

GLOBAL POBJECT DIRECTORY!

-17-

! PROCESS f AN I PUI. AT I Of, ROUTINES
!

GLOBAL ROUTINE SAVSTART =
! PERFORM A CONTFXT SWAP IF TOP OF F E A S , LIST I S NOT R U N N I N G
IF . F E A S I P L F C B A b t n *lEQ . L A S T R U N C B A S E F 3 T H E N

BEGIM TSAVSTi
! REMEMBER SlH L O C OF N E X T • R U N N I N G 1 P R O C E S S
! PUSH REGISTERS Ri*-n«j>
t L A S T « U M C S TK P T R 3 « - , R 6 | H6*-'.FEASIBLECSTKPTR3I
J POP BACK REGISTERS R5-R0
IF<LASTHUN-, FEASIBLE) EQL 9 T H E N ERRORtl) I
FXCHJ (.FEASlBLEfSTKPTRl)j
FNPl

GLOBAL ROUTINE P < S > *
! OIJKSTRAS »P« OPERATION
BEGIN MAP f'SEMAPHORE Si T P I
IF (S[COUMT3.-.S[COU ,!T3-l) Lf.S 0 THEN

<SwAP<rFA?|PLECBASEF3,SCSHEADEH3>l S A V S T A R T ()) |
END I

GLOBAL ROUTINE V(S)»
I OIJKSTRAS t v t OPERATION
BEGIN MAP PSEMAPHO«E Si TVI
IF (SCCOUNT3-.SCCOUNT3 + .1) LEO P THEN

<SW A P < S C $ H E A Q F R 3 . F E A S I B L E C B A S E F 3) I S A V S T A R T O) |
E-M3I

! MAILBOXES
I

STRUCTURE PMAILBOXCI3 * (P . P M A IlBOX*'. I ><«, 36>|

MACRO '1UTEX523;,
ACCTlVITYs4$,
L I M I T B 6 J »
VHEAOERanji

GLOBAL VECTOR MA I LB.OxESC MUMM A ILBOXES 3 J

I MESSAGE HANDLING ROUTINES
j

POUTINF MBR(P)=
RFGIM REGISTER R»
IF ,P LSS n OR ,P GTP MAXPORTS THEN ERROR (?) ELSE

IF < u # F E A S 1 B L E t P 0 R T (• D) 1) |.ss w THEM FRROR(l) ELSE

-18-

GLOBAL ROUTINE SEN()<M,PRT>«
! SEND MESSAGE M TO THE MAILBOX NAMED BY CURRENT PROCESS'S
! PORT #PRT; BLOCK THE PROCESS IF THE MAILBOX IS FULL•
BEGIN MAP POBJECT M, PMAILHOX PRTl TS£NO|-
PRT«-MBB(,PRT> |
P(PRTCLIMIT3)I P(PRTCMUTEX]V|
LINK(NFwCOPY(.MCBASEF3),PRTCMHEAnER3) I
V(PRTCACCTIVITY3) | V(F'RT CMUTEX3)
END |

GLOBAL ROUTINE RECIEVE<PRT) •
f GET THE FIRST MESSAGE FROM THE MAILBOX NAMED BY THE CURRENT
I PROCESS'S PORT#PRT AND RETURN THE ADDRESS OF THIS MESSAGE.
BEGIN MAP PMAILBOX PRTl REGISTER R|
PRT*MBB< ,PRT) I
P(PRTCACCTIVITY3)I P(PRTCMUTEX 3) I
R«-DELINK(PRTCMHEADE«3) I
V(PRTCLIMIT3)J V(PRTC V1UTEX3)|
TRECVI .R
END I

t SYSTEM (NOT KERNEL) SUPPORT FUNCTIONS
j —

FORWARD L0G2I

ROUTINE INITIALISES
BEGIN
OFCR I FROM 16 TO 0 00 SPACEC.I 3*0 I SPACECL0G2<MEMSI2E>3*MEM<0,0>I
DECR I FROM (MFMSI5JE-1) TO 0 DO MEM[,I3*H|
DECR I FROM (NUMMAILBOXES-1) TO 0 DO MAILBOXESC.13*01
LASTRUN*-1| FEASIBLE*0I
END I

ROUTINE L0G2(N)=
INCR I FRO'I 1 TO 16 DO

IF .SIZEC',13 GEO .N T HFN EXITLOOP .11

ROUT INE CONNECT(0 IB,PRT,MB)s
BEGIN MAP PORJECT DIRJ
IF ,MAlLB0XESr.MB3 EOL 0 THEM

MAlLROVESC.' M q>COPY(PLlT(0;Pi,i;0,0»0»MSGLlMIT» f f l) , GET (3)) I
DIBCP0RT('.PRT).3«-'.MR|
FNDJ

IF ,H r;TR HU"MA R R O X F S T'lEM E'RROR(4) ELSE
, MAii.onxrsc.R3

FMOI

http://MAii.onxrsc.R3

-19-

"ACRP CREATEPROCESS<FRi>C,NAME,PRTOR>*
RFClv HtGISTEB POHJECT R.PI
« A S E f " 3«-Gf T (4)1
RtSTKPTR>CRF.ATE PHQC AT GET (LOG?<PSTACKS1 *E)) LENGTH PSTACKSIZE THEN
R[PR!0RITY1*PR10R| R[NA.MEF -«-f!AME 1 L 1 UK< .RCBASEF] ,FEASI RLE) |
.RCRASFF3
EN OS J

I PRIMITIVE I/O FUMCTIOWS FOR PDP-10 USE
» -.__•-.-._-_-.._.__". _

MACHOP TTCALLs/«51|
MACRO OUTC<X)s(RFG!STER 01 Q*<X)» TTCALL<1»Q>» 1)S#

0UTS(X)sTTCALL(3»X)$#
OUTB(Z>>(IMCR I FROM 1 TO (2) 00 OUTC<" «))$,
CR-#15*. LFs*l?J, CRLF«(OUTC(CR)IOUTC(LF>)$. TAB«OUTC(#11)$ I

GLOBAL ROUTINE OUTN(N)-
BEGIN REGISTER R»Ll L*&1
IF ,N LSS « THEN <N.-,N| OUTC<"-'•) > I
IF ,N EQL 3 THEN OUTC("0 W) ELSE M*','N AND #7777771
R*-,N MOD 81
IF (N«..N/8) NEO 0 THEN L-.L*OUTN<,N)|
OUTC(,R*"0">*.L
END I

! ERROR REPORTING ROUTINES
j

NOTE THE FOLLOWING ERROR NUMBERS

1. NO PROCESSES LEFT ON FFAS, LIST
2. PORT # IN SE-JD OR REC OUT OF RANGE
3. PORT NOT CONNECTED
4. ILLEGAL MAILBOX

ROUTINE ERROR(N) s
BEGIN MACHOP CALL I»#47l CRLFj CRLFI CRLFl
OUTSf PLIT (•••*•••,• ERR •#»>>!
OUTN(.N)|
CRLFj CRLF I CRLFj CRLFJ CRLFI
CALL 1(1» #12) l
ENOJ

! SYSTEM TRACING ROUTINES AND MACROS
t — - —

-20-

M A C R O nuTP (2) s O I I T S(PLl T ?>*,
PFN«<0!»TP< » P I •) |0l«TS(FtA318LECNAMfF3) | TA8)S.
PLN»(OUTP(«Pl « > lOUTmASTRU'iCMAMEF;)) |TA»)*»
nuTlN<2)«fTAP|0UTN<Z> >*#
0UT2N< U » = < TAMlOUTMZt > »TABI0UTN(i»2)
OUT3M(<?l »2?#?3)«(TAeiOUT^(?l) |TA9lOUTN(??> ITABI0UTNCZ3))f I

ROUTINE TRO{N,G)«(CRLF|PFNIOtlTP(»CCT») I0UT2N(,M, ,G)) I
ROUTINE TRR(A)a(CRLF»PF»'|Ot)TP(' R F L ') I OUT IN (, A)) »
P O U T INE TRC(A,B)a (fR l.FlPFNiOUTP< 'COPY') 10UT2M< VA, ,'R> > I
PO'ITIME TRMC<A)«(CRUF|PF-M|OUTP(t M C P Y ») |0UT1N(,A>) I
R 0 1 1 T I N! F T R L S T (M) * (C R l FlTABlWHILE , H MEO * 00 {OUUN (. H) IH*',', M)) J
ROUTINE T R L 1 (A » H) « (C P U F J P F N I 0 U T P (f L I N | •< •) | 0UT2N(. A , ,'H) ITRLST < V H) > i
ROUTINE TRL2 < H) s (C R L F|TAV | 0 U T P (tLNK2»)|TRLST(fM)) J
ROUTINE TR01(H)«<CRIFIPFN|0UTP<•DLNK•)|0UT1N(t H)ITRLST(»H))|
ROUTINE TR02 (A , H) s(CRLF I T AB > OUTP (• DL.H2 • >I OUTJ N<.A>ITRLST<,H)> I
ROUTINE TRS(F,T) = (CRi..F|PFNlOUTP(»SWAPt) |0UT2M(','F , ,T) >|
ROUTINE TRSV=(CRLF|OUTP(<»«*»»*•,«SAVST« , ' Fl »)>JPLNJOUTP<« Tl M J P F N) |
ROUTINE TRP(S)«<CRLF|PFNlOUTP<*P')|0UT2N<iS,*PS-l>)l
ROUTINE TRV(S)«(CRtF|PFNl0UTP(,V»)|OUT2:J(|S,*#S*l))l
ROUTINE TRSNn (M ,P)«(CRLF|PFN|OUTF(»SEND»)|0UT3M<.Mi.P|MBP(V P>>)I
ROUTINE TRREC(M,P)i(CRLF|PFN|OUTP('RECV)I0UT2N(.M$,P))I

J TEST PROGRAM FOR POP-1? IMPLEMENTATION

OWN Tj

ROUTINE P 1 (N) »
BEGIN
LOCAL Ll L«-GET(3>|
WHILE 1 DO

(SEND(,L.l)ICRLF)OUTN(, N) |RELEASE(RECIEVF<0>>)I
ENO|

INITIALISE()» ,
T.-CREATEPROCESS(PKl)i • PA M) I CONNECT (', T. 0»0) I CONNECT < , T. 1 • 1 > I
T.-CREATEPR0CESS(P1<2>, • PR • »1 > ICONNECT < VT. <9• 1> >CONNECT(,T»1,2> I
T*CREATEPR0CESS(P1<3> , ' PC * , X > I CONNECT (VT ,1AI 2) I CONNECT (, T. 1.0) I
SAVSTARTOI

END
EL"DOM

-21-

Example Trace Output

Below Is an example of the output obtained when the full tracing

mechanism Is turned on. The first line shows that a context swap from a

process named PA to one named PB has occurred. The subsequent lines

contain the process name (PB) and the name of a kernel primitive which

it is calling at the left; to the right values of the parameters and re­

sults of the function are printed. Thus, for example, the line

P:PB GET 3 10130

3

indicates that the GET function has been called to request 2 words of

storage and that GET has returned the address 10130.

*****SAVST Pi

P t P B
p t p a
P t P B
P t P 8
P t P B
P t P B

P t P B
P t P B
P I P B

P t P B
P t P B
P t P B

P t P B
P t P B

E.UJ2
GET
£ L:jd
P
p
h c p y

EUJIC
E U J 2

GET
n o .
lii;k

U J K 3

GET
Llr:K

U J X S
G S T
C O P Y

Pi PA
7763
7763
10130
7763
3
10130
ICC 36
10068
10130
776S
7765
10140
776S
5
10160
10160
7764
7764
4
101 S O
10150
7763
7763
3
10130

Tt PtPB
10130

10130
1
1
00

10140

10140
7764

10160
10140
7763

10150
10140
10140

10060

-22-

[1] Clark, W., tfMacromodular Computer Systems*1' SJCC 67.

[2] Bell, G., jat al., "The Design, Description and Use of DEC Register
Transfer Modules (RTM}" Computer Science Department Report,
Carnegie-Mellon University, Oct* 1971.

[3] Krutar, R., private communication related to his Ph.D. thesis,
Carnegie-Mellon University, 1971.

[4] Jones, A., and Habermann, A. N., "Interprocess Communication
Mechanism," Internal Memo, Computer Science Department, Carnegie-
Mellon University, 1970.

[5] Wulf, et aj^., "Bliss Reference Manual" Computer Science Department,
Carnegie-Mellon University, revised April, 1971.

[6] Dijkstra, E., "Cooperating Sequential Processes/' Technological
University, Eindhoven, 1965.

[7] Wirthj N., "Program Development by Stepwise Refinement," CACM,
Vol. 14, No. 4, (April, 1971).

Security Classification
DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and Induing annotation must ba entered when the overall report Is classified} I. ORIGINATING ACTIVITY (Corporate author)
Computer Science Dept.
Carnegie-Melion University
Pittsburgh, Pa. 15213
3* NT!PORT TITLE ~ "

2«. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

26. GROUP

k SOFTWARE LABORATORY PRELIMINARY REPORT
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) ~ " — ~ —
Scientific Interim
5. AUTHOR(S) (First name, middle Initial, last name) — _ ,
Corbin, Corwin, Goodman, Hyde, Kramer, Werme, Wulf

_AII.. .23 1Q71
7A. TOTAL NO. OF PAGES I76. NO. OF REFS

2S 1 7
fl«. CONTRACT OR GRANT NO.
F44620-70-C-0107

j b, PROJEC T NO.

A0827-5

61101D
\ —™ — —

9a. ORIGINATOR'S REPORT NUMBER(S) fl«. CONTRACT OR GRANT NO.
F44620-70-C-0107

j b, PROJEC T NO.

A0827-5

61101D
\ —™ — —

9b' uJFEZort)PORT NO<s> (Any oth0r numbmra m a y b* •••i*^—

This document has been approved for public release and sale: its distribution
is unlimited.

TECH, OTHER 12. SPONSORING MILITARY ACTIVITY
Air Force Office of Scientific Research
1400 Wilson Blvd. (SRMA)
Arlington, Va. 22209

This report describes the implementation of the kernel of a simple multi­
process operating system. The purpose of this system is to create an environment
tor the construction of experimental programming systems for educational and
research uses.

D D FORM
' NOV 1 4 7 3

SECURITY CLASSIFICATION

Security Classification

KEY W O R D S
LINK

R O L E R O L E R O L E

Security Classification

