NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71~104

A SOFTWARE LABORATORY

PRELIMINARY REPORT

K. Corbin E. Hyde

W. Corwin K. Kramer

R. Goodman E. Werme
W, Wulf

August 23, 1971
Carnegie-Mellon University

Pittsburgh, Pennsylvania

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scilentific Research.
This document has been approved for public release and sale; its
distribution is unlimited,

ii.

ABSTRACT

This report describes the implementation of the kernel of a
simple multi-process operating system, The purpose of this system
is to create an environment for the construction of experimental

programming syatems for educational and research uses.

INTRODUCTION

This report describes the initial design of a "software laboratery".
The objective of this system is to create an enviromment within which
regearchers and students may experiment with the construction of software
systems, The system accomplishes this,providing a large number of func-
tional "modules" together with a mechanism for flexibly 1n£erconnecting
them in various ways., The philosophy of the system is & software analog
of the hardware "macro-modules" of Clark [1] and “"register-transfer-
modules" of Bell [2], Much of the philosophy for the approach described
below is due to Krutar [3]; key ideas were borrowed from Habermann and
Jones (4] and from many discussions with Per Brinch Han;en.

The similarity between many of the components of various systems
programs has often been noted, but seldom exploited. Lexical analyzers
and syntax analyzers, for example, occur in all compilers, and to some
extent in assemblers, editors, command interpreters, etc., Yet they are
generally re-written for each such system (translator-writing-systems, or
compiler-compilers, have been the one exception to this practice.

This situation is especially annoying to two groups of people to whom

the present report is primarily aimed: (1) the researcher who would like
to quickly fabricate a system in order that he might pursue a single
aspect of it in depth, and (2) the instructor who would like to assign
programming problems on some aspect of systems programming but which only
make sense in the context of a complete system, To illuatrate the point;

consider the researcher (or student) who would like to {is assigned to)

-2

investigate various compiler optimization strategies on the tree-repre-
sentation of a program. To do this lexical analysis, symbol table, space
management, parser, tree-generation, and 1/0 functions must first be
written, None of these 18 essential to the project at hand, and col-
lectively they may be sufficilently effort-consuming to make the project
impractical,

One purpose of the project is to provide an inventory of functional
modules such as those mentioned above -- several lexical analyzers, parsers,
etc. -- and an enviromment in which they may be quickly interconnected.
Thus the researcher (or student) may quickly compose & host environment
for the particular sub-system of interest.

The system has been implemented on a minimal PDP-11 configuration in
order to make it widely available. Future reports will specify modules
and exercises suitable for intermediate and advanced software laboratory
courses. This preliminary report deals exclusively with the environment --

its philosophy and the construction of its "kernel,"

THE PHILOSOPHY

The philosophy of the enviromment created by the system comprises the con-
sequences of a particular physical model which we would like the user to
have of that enviromment., That model is:

A (user) system is constructed from a number of components
called modules. A module is a functional unit which receives
signals (data) along one of a number of input wires, cables,
or ports, performs some operations and (possibly) generates
output signals on other cables (or ports). The cables con-
nected to a module are fitted with standard male/female con-
nectors so that the output of any module may be directed to
the input of any other by appropriate interconnection of their
cables, Rather than direct interconnection, a special."patch
panel’ similar to an old-fashioned telephone switchboard, is
provided to facilitate the interconnections. Figure I illus-
trates this model.

In this model modules do not know to whom or what they are connected.
They use internal names to reference ports for receiving and sending in-
formation and the actual supplier or receiver is specifiea externally
by the particular cabling pattern established by the user. This fact
coupled with the 'standard connector" assumption permits the substitution
of a module for a functionally equivalent one (or network of ones) at

any time,

eeeeeeeeeeeeee

The use of the system is best i{llustrated by a simple example.
Suppose one wished to construct a program to read text from a paper-tape
reader and print it on the teletype, Modules exist for reading (char-
acters) from the paper tape reader (PTREAD) and writing {characters) on

the teletype (TIWRIT) -- so they can be interconnected as follows:

Y

N
=y)

TTWRIT

PTREAD

Suppressing the patch panel helps to clarify the diagram in more complex

examples, so let's draw this configuration as simply

PTREAD [—>—&

TIWRIT

Y

Now suppose we would like to add pagination of the output. Further,
suppose we have a module (PAGER) which accepts input and.passea it along
to its output, but also looks at each data item for a special end-of-line
(EOL) character, counts them, and after the nth inserts several special
upspacé-the-paper (line-feed) characters, If we break the original
connections and reconnect ag shown below we will now get the desired pagli-

nation,

PTREAD [—>—&——>— PAGER {—>—e—>— TTWRIT

Suppose further, now, that we would also like to get a character frequency
distribution in the text while the printing is going on. If we happen to
have a module (CHRFRQ) to do this we might create the following configura-

tiong

CHRFRQ

—>¢
' 4

PTREAD [—>—e—— SPLIT |>—¢—>—| PAGER [—>—@->— TTWRIT

In this configuration 'SPLIT' is a simple module which, wﬁen it receives
input, replicates that same input on each of two output ports. We could
proceed in this way to build much more complicated configurations but
trust that the example has served to illustrate the general philosophy.

0f course, software modules are not physical objects; they do not
have tangible cables dangling out of them. The patchboard does not have
a physical existence either. Thus, the acts of connection and reconnec-
tion are not accomplished by physical acts, but rather by commands typed
on a terminal. The precise syntax of these commands 1s beyond the intend-
ed scope of this report, and in any case is likely to change as more at-

tention is paid to the human engineering aspects of the system.{which we

consider to be a crucial aspect of the whole project). Suffice it to

say that the structure of these commands is intended to reinforce the
conceptual model presented above. Thus, the commands mimic the things

one would expect to do to modules physically wired together -- for example
connections may be made or broken at any time, the complete "wiring list"
may be displayed or individual wires traced, the signals flowing along a

particular cable may be monitored, etc,

8-

THE IMPLEMENTATION APPRCACH

The system model presented in the previous section might be implemented
in any one of a number of ways -- each module could have a subroutine or
co-routine structure, for example. Rather than either of these it was
decided to construct each module as an asynchronous sequential process.
The cabling and patchboard are implemented as a "mailbox'" message buffer-
ing system. The system is implemented in two pieces: (1) a small
"kernel™ which includes space management, process management, and message
handling primitives, and (2) a '"user representative" which implements the
command language, tracing, loading of modules, displays, etc. The user
representative (UR) is implemented as a set of modules using ;he mechan-
isms provided by the kernel., It is in no way different from, or more
privileged than modules assembled by the user. This constrﬁction philos-
ophy permits the UR to be easily modified, permits different versions of
the UR for different users, and permits the UR to be easily adapted to
various configurations and needs. A continuing aspect of this research
is the human engineering of the UR -- built as a set of modules, it permits
this type of experimentation to be done in its own enviromment. Finally,
the UR, being constructed from modules itself, forms an édvancéd example
of the use of the system,

The kernel has been purposely kept small and "clean" (the entire
kernel consists of less than 200 PDP-11 instructions. The small size of

the kernel allows (1) the design and implementation to be iterated, and

-9.

(2) the kernel itself to be an object of study in a systems programming
course, and (3) a usable subset of the total system to be used on a mini-

mal (4K) PDP-11 configuration,
IMPLEMENTATION OF THE KERNEL

The kernel consists of & small number of data structures, accessors,
and routines for manipulating the structures. The data structures used
in the kernel are instances of a smaller number of "classes" of structures
(objects, lists of objects, semaphores, and vectors). The routines in
the kernel are constructed such that each performs an operation appropri-
ate to a class of structures on any instances of a member of that clags;
that operation is never performed by any other routine. The immediately
preceding sentence may be interpreted as a working definition of the temm
"clean" used earlier. It should be noted that this use of ﬁclean" con-
flicts with that proposed elsewhere [7] in that it implies a strong
fuﬁctional interdependency, and some loss in efficiency; it was chosen in
favor of a (data) semantic interdependency because of the clarity and
modifiability it affords.

The following description of the kernel is divided into an English
description of the data structures and their associated ﬁanipulative
routines, and a Bliss module which implements them. The latter is to be

considered the authoratative definition of the kernel,

(1) Objects

An "object" is a data structure which is composed of 2" (L =n <1p)
words, two of which contain a link field (objects are frequently chained

together on lists), size field (contains n when actual size in 2n), and

=10~

priority field (when on a list, objects are always in priority order),

LINK

SIZE

PRIORITY Size
words

=

The routines for manipulating objects are:

a)

b)

c)

d)

e)

£)

g)

get (n)
release (a)

copy (a,b)

newcopy (a)

link (a,h)

delink (h)

swap (hl,hzj

allocate memory for an object of size 2" and return
its address

deallocate the space for an object whose address is
'a'. The value of 'release' is undefined.

copy the contents of an object whose base address is
'a' into an object whose base address is 'b'; at most,
gize (b) words will be copied. Return the base ad-
dress of 'b’. '

create an object and make its size and contents identical
to those of 'a'; return the address of the new copy.

link the object whose base address is 'a' onto the
1ist whose header address is 'h', The object will
be linked into the proper priority position on the
l1ist. Return the address of 'a'.

remove the first object, that is the highest priority
one, from the list whose header address is 'h' and
return the address of this object,

delink the first object of the 'hl' chain and link
it onto the 'h2' chain; return the address of the
swapped object.

(2) The 'feasible' list, semaphores, and synchronization

A particular class of objects are called "DIB's", dynamic information

blocks.

A DIB is the name given to what has been called a 'process

w1l

description’ in other systems, and contains relevant state information for

a process. The 'feasible' list is a chain of all the DIB's for processes
which are ready to run. All other processes are "pending 'on a semaphore"

and these DIB's are chained on a list associlated with that particular sema-
phore. The reader is assumed to be familiar with Dijkstra's P and V primitives

and their use for process synchronization {6].

SEMAPHORE FEASIBLE HEADER
COUNT HEADER
HEADER
LINK LINK

[]

DIB

LINK

SIZE PRIORITY

NAME

STACK REGISTER

reserved for use of
the UR

PORT INFORMATION

M

-12-

The routines which manipulate semaphores and the feasible list are:

savstart saves the context of the current process on its stack,
saves the stack pointer of the current process in its
DIB, and initiates the process whose DIB is at the top
of the '""feasible' list by first retrieving its stack
pointer and then restoring its context

P (sem)

Dijkstra's synchronization primitives
V (sem)

(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called "message "
Modules do not send messages directly to other modules but rather to 'ports:'
A port is a local (to the module) name for one of the cables in the model --
thus modules are not aware of which other modules they receive messages from
nor send messages to; they are aware only of their own local port names.

The patchboard is implemented as a set of 'mailboxes' -- data structures
which contain (among other things) a (possibly empty) set'of messages.
Patchboard connections are accomplished by making the "port information"

portion of a procesd's DIB reference a particular mailbox.

A MESSAGE MATLBOX

LINK HEADER

ST

SIZE PRIORITY MUTUAL EXCLUSION
-~ SEMAPHORE

ACTIVITY

\"/\ message SEMAPHORE

LIMIT
SEMAPHORE

-13-

The message handling primitives are:

send (m,p) A copy of the message whose base address 1s 'm' will
be sent to the mailbox connected to port 'p'. If
the mailbox is currently full the sending process is
suspended until space for the message becomes avail-

able,
receive (p) Return the address of a message in the mailbox con-
nected to port 'p'. The message is removed from the
mailbox. If no messages are currently in the mailbox
the process is suspended until a message is sent to it.
The primitives and data structures for the kernel described ahove
are defined precisely by the following Bliss module. This module was
built for, and tested on, the PDP-10, but is identical to the PDP-11

version with three exceptions:

l. The full 36-bit PDP-10 word is used.

2. i/o for tracing and error reporting use PDP-10 monitor facilities.
3. The system function 'createprocess' will be somewhat different

on the PDP-11,

Sample output from the tracing facility has been appended.

Y-

HOMYIE SL23I(STACK)=
REGIN

! 5L237% == SOFTWARE LAB

| SYSTEM PARAMETFRS
| crmemcieme—e—a———

LR) MEMGIZ2E=4096,
PSTACKSI7E=L28,
MSGLIMITs2,
HAXPORTS=Y,
MUMMATLANXES=64)

! SYSTEM TRACING DEFTNITIDNS

RINMD TRACE=#777777)

FOQYARN TRG,TRR,TRC,TR"C,TRLY,TRL2,TRDYL, TRD2, TRS, VRSV, TRP, TRV, TRSND,
TRREC,ERKOR}

MACRD

TGrT= [F TRACE* (=%} THEN TRG(,%, ,RCBASEF1)S,
TRFL = IF TRACE+*(=-1)THE! TRR(,A}S,

TCOPY=s IF TRACFt{~2) THFN TRC{,A,,B)%,
TNFWCOPY=]F TRACF®(=3) THLEN TRMC(,A)¥,

TLINKI= IF TRACE*({=-4) THEM TRL1(,A,.H)%,
TLINK?z2 IF TRACE+(=4) THFM TRLZ(,H}S,
TOLIMK1=1F TRACEt(=5) THEM TRD1(,H)$,
TDLINK2=21F TRACE®(=-5) THEN TRD?2(,RLBASEFI, H)5,
TGUAPE 1F TRACE+(=6) THEH TRS(,F,,T)§,
TEAVST=z JF TRACE*(~7) THEMN TRSV(O)E,

TP= 1F TRACE*(=-8) THFEHN TRPL,%)%,

Ty= 1F TRACE*{=9) THEN TRY(,5}%,

TSENDE IF TRACE+(=-1p) THEN TRSNN({,M,,FRT)S,
TRECV= IF TRACE®(-11) THEN TRREC(,R,,PRT}%}

! NBRJECTS

STRUCTURF POBJECTLI,"4S,J]=
! STRUCTURE FOR A POINTER TO aN 0OBJECT
CASE 1 OF
SET
(WPORJECT+, I, P, 5>
(@.PQBJEHT*.J,(gpa 1S}
(™ PORJFCT+,J)C, Py ,S))
TES

HACRO HASEF=3,1,36,0F, ! NAMES noF FLELDS IN AN 0BJECT
SORDUZI=L, 2036, (7)) 5,

LTNKF 21,0, 36,74, -15-
S1#FF=1,8,R,1%,

PRIDRITY=1,0,06,15%,
MWORD(Z2Y22,0,38,12)9,
MLINKF=2,40,34,7%,

MGTAEF=2,8,8,1%,

MPRIDRITY=2220,8,1%)

STRUCTURL VECTORLII=CTII(,VECTORS, [1<?,36>)
GLNBAL VECTNR SPACFL161))

RIND VECTOR SIZE = ,
PLIT(1,2,4,8,16,32,64,120,256,512,1024,2048,40896,8192,16384,

3276Kk,65536)

* GLOBAL VECTCR MEM[MEMSIZED) | 1 ALL OBJECTS ARE IN MEM

! SPACE MANAGEMENT
! Nk w an e S e

FORWARD LINK,DELINK,COLLAPSE)
GLNBAL ROUTINE GET(N)=
! GET AN ORJUFCT nF SIZE 2a%4y AMD RETURN ITS ADDRESS
BEGIM REGISTER POBOECT R}
IF WM LEG & OR N GEN 16 THEN 0 FLSE
REGIN _
IF ,SPACEL., N7 NEQ ©
THEN RCBASEFI«DELINK(SPACELD ,M))
ELSE (RIRASEFI«GET(,Ne1)) COLLAPSE{,RCBASEF 1+, SIZEC,ND; . N)))
ROLINKFJes ROSTZEF)eoN) RLPRIORITYIeA) TGET) ,RCRASEF)
FND
NNy

MACRD REPEAT® WHILF 1 NOS,
BASE(B+S)=2 (R AND NOT(,SIZF[S)))%,
PARTNER(B1,B2,S)=s ((B1 XOR B2) EGL +SIZECS))%}

ROUTINE COLLAPSE(A,N)=
! RELEASE THE SPACE FOR THE DBJECT WHOSE ADDRESS IS A
BFEGIN MAP PORJECT A3 REGISTER PORJECT L3 TRELS
REPEAT
BEGIN LIRASEF)«SPACECL,! Y}
WMHILE ,LCLINKF] “EN ©# DO
. IF PARTNFROL,LLLIVMKF], ,ACBASEF], N) : :
THEN CACHASEF J*BASE(NELIMK(L{AASEFIY, N} LELINKFY+SPACEL (Ney,Nel1) T)
FLSE LTBASEF)*«,LILINKF)}
RETURN LIMK(,ALBASEFD), JLIBASEF))
END}
FNA)

RLOBAL ROUTINE RFALEASE(AYS(MAP PNBJERT AI COLLAPSE(,ALRASEFY, ,ACSIZEF]))

=16~

| DBJECT MANIPULATION PRIAITIVES

l - P ey o PR v EE TR TR P A 8 wy %P o o ok e T -

GLOBAL ROUTINE COPYlA,)=
! CREATE A COPY nF OBJFGT A IN B
REGI~N MAP PORJECT Atd) TCOPYy
INCR 1 FROA 2 76 ,SUZEL.S(SIZEFII~1 DO
RCWORD(,1)3%, ALWORD(, 1))
VA[BASEF)
EnN

GLNDBAL ROUTIME NEWCOPY(A)s
! CREATE A NEW CnPY OF A AMD RETURM ITS AODDRESS
AEGIN MAP PORJECT A} TNEWCOPY} COPY(,ALBASEFJ,GET(,ALSIZEF])) END)

GLOBAL ROUTINE LINK(A,H)=
| LINK OPJECT A INTO 17S CORREGT PRIORITY POSITION IM LIST H
REGIN MAP PORJECT A$ REGISTER POBJECT Ls Pt TLINK1}
Pe ATPRIORITY]) LLBASEF)e Hy
WHILE ,LONPRIQRITYY GEN ,P AND ,LCLIMKF] NEQ @ DO LCBASEF 1« LCLINKF]
ACLIHKF Yo, LILIMKFY) LELItKF Je ACRASEF]S TLINK2) (ACBASEF]
EMDY

GLOBAL RNUTINE DFLINK(H)=
! DELINK THE FIRST ORJECT IN H AMD RETURN [TS ADDRESS
REGIM MAP PORJECT M3 REGISTER PORJECT Ry TOLINK1)

Re HOLINKFI3 HCLINKF I« HENLINKF)) TOLINKZy R
EMD}

GLARAL ROUTINE SUAP(F,T)=(TSWAPJ LINK(NELINK(,F), . T)}}

1 SEMAPHNRES AMD SYNCHRQWIZATION

D oo e o e e e P e e e W A e e

STRUCTURF PSEMAPHORELI)= (®,PSEMAPHORE+,1)<2,36>)

MACRQO COUNT=7%,
SHEADER=1%}

GLOBAL PODJECT FEASIRLEILASTRUNY

MACRN ponT(P)=1'Gl361(9’2'(p”$r
NAMEF=1,,36,3%,
STKPTR=1,u, 356,653

GLARAL PARJECT NIRECTYNRY)

=17~

1 PROCESS MANIPULATIAL ANUTLAES

! --------------------------- - -

NLOBAL ROUTIME SAYSTART=

! PERFORM 4 CONTEXY SWAP IF TOP AF FEAS, LIST 1S NOT RUNNING

IF JFEASIPLFLBASEF) EG ,LASTRUNTRASEF) THEN
REGIN TSAVST)
P REMEALFR STR LOC JF NEXT 'RUMNING' PROCESS
t PUHSH RFGISTENRS HA=Wy
! LASTRUNISTAPTRI ,R61 Raoe FEASIRLELSTKPTRY)
1 POP BACK RFGISTERS R5=pQ
TFLLASTRUN« . FEASTIBLE) EQL @ THEN ERROR{1)}
FXCHJ C LFEAS]IALEISTKPTRY)Y)
FMNIYY

GLORAL ROUTINE P{S)E
! DIJKSTRAS 'Pr NPERATION
BEGIM MAP PSEHAPHORE St TP
IF ¢ SICNUMT Y« SCENUNTI=1) LSS 3 THEN
(SWAPCFEASIRLFLCOASEF J)STISHEADERTYP SAVSTART() I
FMDg

GLNRAL RNUTINE v(S)=
! DIJKSTRAS tyve nPERAYIONM
REGIN MAP PSEMAPHQRE St Ty}
IF (SCCOUNTI+,SUCOUNTI+L) LER M THEN
(SWAP(SCSHEAGFER],FEASIBLECBASEF 1)) SAVSTART())3
ENDY

! MATLBOXES

STRUCTURE PMAILBOXCLID = (0,PHAILROX+,]1)¢?%,36)>;

MACRO MUTEX=2%,
ACCTIVITY=a%,
LIMIT=4%,
MHEADER=M3

GLOBAL VECTOR MATLBOXESIMUMMATILBAXEST)

! MESSAGE HANDLIMG RDOUT]IVES
’ AR e em ey T Em S ey T o e

ROUTINF “HR(P)=
HFG1: REGISTIR Ry
IF .2 LSS » OR . GTR MAXPORTS THEM FRROR(D) ELSE
IF (Re FRASIRLFEPDRTL,O) 1) (RS o TUEH ERROR(3) ELSF

-18-

1IF R nTr BMUMMATLROXFES TOUEM ERROR(4) ELSE
JMABLROXFSL,R)
ENDD

GLOBAL ROUTINE SEND(M,PRT)=
{ SEND MESSAGE M Tn THE MAILBOX NAMED HY CURRENT PROCESS'S
t PORT #PRT, BLOCK THE PROCESS IF THE MAILROX 1S FULL,
REGIN MAP POBJECCT H, PHALILBNX PRY; TSEND}
PRT+MHB(.PRT)}
PCPRTCLIMITIYIG P(PRTIMUTEX))S
LINK(NEWCOPY(,MLAASEF)) ,PRT{MHFANER]) }
V(PRYCACCTIVITY1) s VI{FRICMUTEXDY)
END)

GLOBAL ROUTINE RECIEVE(PRT)=
t GET THE FIRSY MESSAGE FROM THE MAILBOX NAMED BY THE CURRENT
t PRNOCESS!'S PORT#PRT AND RETURN THE ADDRESS OF THIS MESSAGE,
BEGIH MAP PMAILBAX PRT) REGISTFR R}
PRTY«MBR(,PRT)}
P{PRTIACCTIVITY1)S P(PRTIMUTEXI)})
ReDELINK(PRTCMHEADERT) #
VIPRTLLIMITIYY VI(PRTLMUTEX)))
TRECV)E R
EHND}

1 SYSTEM (NOT KERNEL) SUPPORT FUNCTIONS

: - Wy WS Tr ar us TH Mn T En W mm m e o W g W e, ey T - -

FORWARD LOG2)

ROUTINE INITIALIZESs

BEGIN
OFCR | FROM 16 Tn o NN SPACE[,!)ep) SPACECLOG2(MEMS[ZE)I=MEMCB,0>)

DECR | FROM (MEMSIZE=-1) TO # DO MEM(,1)+=M)

DECR | FROM (NUMMAILAOXES=1) TO M nD MATLBOXEST. 11edy
LASTRUNe=1] FEASINLE«Q?

ENDI

ROUTINE LOG2(N)=
INCR 1 FROA 1 10 16 O
IF .SIZEC,1) GEG N THEN EXITLONP , 19

ROUTINE COMNECT(DIR,PRT,MB) =
REGIM MAP PORJECT DIRY
1F MATLRBOXEST . NR]Y ENL O THEN
AAILRDYFwt MnJ*CﬂPY(PLIT(m Moo, @B, MEGLINIT, M), GET(3))I
DIRCPORTL PRT)YIe NP}
END

http://MAii.onxrsc.R3

19~

YACRD CREATEPROCESS{PHNG,NAME,PRIQR) =
NEGTY REGISTER PANJECT R,P}
RIRASEF J«GET(4)} :
RISTKPTRICCREATE PRUC AT GET(LOG2(PSTACKS]IZE)) LFNGTH PSTACKSIZE THEN 0}
RCPRIORITY1«PRIORY RINAMEF Jer'AME) LINK(RLBASEF),FEASINLE)}
RCBASEF] '
ENDE 3

tPRIMITIVE 1/0 FUNCTIONS FOR POP-1p USE

! mtraewmoesrercnrmw S e e --—---
H

MACHOP TTCALL=451)
MACRO QUTC(X)=(REGISTER) Oe(X)) TTCALL(1,Q)3 1)8,
OUTS{X)aTTCALL(3,X)$,
QUTBEZ)=CINCR | FROM 1 TO (2) DO QUTC(™ w))§,
CRz#158, (Fz#12%, CRLF2(OUTC(CR}JOUTCILF))S, TABSOUTC(¥11)$;
GLOBAL ROUTINE QUTN(N)a
BEGIN REGISTFR R,LJ L*0} ‘
IF N LSS # THEN (Nea N3 OUTC("em))y
IF WM EQL 1 THEN OUTC("A") ELSE Ne''N AND #777777;
Re,N MOD 8)
IF (MeyN/B) NEQ 0 THEN Lo, L¢QUTN(,N);
QUTC(,R+"A")a, |
END)

! ERROR REPORTING ROUTINES

! L S E N WS s TF o Y W e e A5 pp e N W e N w B

NOTE THE FOLLOWING ERRNR NUMRERS

!
!
!
! 1. NO PROCESSES LEFT OnM FEAS, LIST
1 2, PODORT # Im SECuD OR REgr OUT OF RANGE
! 3, PORT NOT CONMECTED
! 4, ILLEGAL MalLAOX
!

ROUTINE ERRQR(N)=
BEGIN MACHOP CALL]2447) CRLF) CRLF) CRLF}
OUTS(PLIT (tsesnusr,r FRR Yoty
DUTNC M)
CRLF 1 CRLF) CRLF) CRLF) CRLFj
CALLIC(1,412)
END

P SYSTEM TRACING RNUTIYES AND MACROS

' --------------------- Lo IR R R ey -

MACRD

ROUTINVE
ROUTINE
POUT I ME
ROUTINE
ROUTINF
ROUTINE
RAOUTINF
ROUTTME
ROUTNF
BOUTINF
ROUTINF
ROUTINE
ROUTINE
ROUTINE
ROUTINE

-20-

NUTPRIZY=ONTSIPLIT 204,

PENM (QUTP(r PENYSOUTS(FEASTBLECNAMER)) 3TAB) S,
PLN=(OUTP (P t)sNUTR(LASTRUNIINAMEF D) ITARYS,
NUTLNCZ) = (TARINUTNCZ)),
0UT2M(?1at?)z(TAHlﬂUTH(?t)lTAHlUUTNtiz’)a.

AUTINCAL, 22973 2(TAGIQUTH (21 JTARJOUTNEZ2) ITABIOUTM(Z3)) %)

TRO(N,GI=(CRLFIPFNIOUTP(IGET) IQUT2N N, .G))
TRR{AY 2 (CRLFJPFHIDUTP (TREL) JOUTING A)))

TRCLA, H):(C"lFIPF“IOUTP('CUPY')IOUTEM(‘A, B3
TRHC(A)-(CRLrIPFW:OUTp(vncPY')aouTiht AY MY
TRLST(HYS(CRI P TABIWHILE 4 MER 2 NO (nUTiNt.H)lHt..H))l
TRLLCA, H):(anrg°rr;nUTP(iwa«-);UUTzvc.A..H)lTRtST(HY})
T?L?(H)-(CRL‘lTA”iﬁdTP!’LHK?')ITQLqT(H)))
TRDi(H)—(CRLFIP¥“IOUTP('bLHK')lOHTlN(.HJITPLqT(HYY
TROZ2(A, Ha-(CnLF;TAnsnuTP('nLnevasourjnt.A):TRLSTt H)))
TRS(F, T)=(FﬁlFIPFNIOUTP('SUAP')lOUT?V(FauT)N)
TR*V'(C“LF]OMTP(('***!*' tSAVSTI, ' F1 ')ilPLNIOUTPt' T4 V)IPFN}S
TRP{SY=(CRLFIPFNIQUTR (! Pv)noutzwt S.feS=1)))
TRVtS}efPRLF:PFNIOUTP('v'>:on124(.5pm@s+1))l

TRSND(M,P s (CRLFIPFNJOUTP('SEND) JOUTIN(My uFy MBR{,PY))}
TRREG{M,P)={CRLFIPFNJOUTPLIYRECV) JOUT2N(My 4P)

! TEST PROGRAM FOR PNP<17 IMPLEMENTATION

OWN T3

ROUTINF

P1{N)=

BEGIN
LOCAL L3 L*GET{3))
WHILE 1 DO

ENDY

(SEND(Ls1)INRLFIOUTNC 4 N)JRELEASE(RECIEVE(M)))

INTTIALIZE () -
Te«REATEPROCESS(PL1tL1)Y,'PAY, 11)CONNECT(. T,0,0)) COMNECT(, T.1:1)1
TorRFATEPROCESS(P1(2).'pﬂ’nl)lCOWNECT(TsPe1)JCONNECT(,Ta1,20)
T~rREATEpRncE9w(P1t3).'Pf'alaiCOMNLCT(‘T,d22)ICOMNECT(,T+1,@))
SAVSTART ()}

END
ELUDOM

21

Example Trace Qutput

Below is an example of the output obtained when the full tracing
mechanism is turned on. The first line shows that a context swap from a
process named PA to one named PB has occurred. The subsequent lines
contain the process name (PB) and the name of a kernel primitive which
it is calling at the left; to the right values of the parameters and re-

sults of the function are printed. Thus, for example, the line
P:PB GET 3 10130

indicates that the GET function has been called to request 23 words of

storage and that GET has returned the address 10130,

*etsxSAVST Fs Pr PA “Ts PsPB
P'PD LN 7763 ’ '
T ' 7763 10130
ELi2 10120 S

B 1163 .
P1PB GOT 3 10130 |
PiPD 50D 10130 1 10060
PIFD P 10¢36 o
Pir P 10062 00

Psl’D $CPY 10130
PIPB LU 7768
- ' T7¢5 10140
Euna 10140 T

. 7765 .
PsPD. GET 8" 10140
PsP8 7L 10160 T
PiPB LIUK 10160 7764
o 7764 ‘
LK o
_ . 7764 10160
P:PB QT 4 10140
PiPB ITL. 10150 T
PSP LINK 10150 7763
T 7743
L2 T -
.) 7763 10150
PsPB €GBT 3 - 10140

_PiPB COPY 10130 10140

Ry

(2]

(3]

(4]

{5]

(6]

7]

272

Clark, W., "Macromodular Computer Systemss' SJCC 67.

Bell, G., et al., "The Design, Description and Use of DEC Register
Transfer Modules (RTM)}" Computer Science Department Report,
Carnegie-Mellon University, Oct, 1971.

Krutar, R., private communication related to his Ph.D. thesis,
Carnegie-Mellon University, 1971.

Jones, A., and Habermann, A. N., "Interprocess Communication
Mechanism," Internal Memo, Computer Science Department, Carnegie-
Mellon University, 1970.

Wulf, et al,, "Bliss Reference Manual' Computer Science Department,
Carnegie-Mellon University, revised April, 1971.

Dijkstra, E., "Cooperating Sequential Processes,'' Technological
University, Eindhoven, 1965,

Wirth, ‘N., "Program Development by Stepwise Refinement ," CACM,
Vol. 14, No. &, (April, 1971).

. o
Security Classification) i

o "~ DOCUMENT CONTROL DATA-R&D
(Security clasaitication of title, body of abatract and md-lln'g annatation muat be entered when the overall report ls classifled)
1. QRIGINATING ACTIVITY (Corporate author) am. REPORT SECURITY CLASSIFICATION
Computer Science Dept. UNCLASSTIFIED
Carnegie-Mellon University 2b. GROUP
Pittsburgh, Pa. 15213

I REFQORY TITLE

T SOFTWARE LABORATORY PRELIMINARY REPCORT

4. DESCRIFTIVE NOTES (Type of report and Inclusive dates)

Scientific Interim

G AUTHORIS) (Firet name, middfe initial, last Hame)

Corbin, Corwin, Goodman, Hyde, Kramer, Werme, Wulf

& REFPORT DATE

7A. TOTAL NO. OF PAGES 7. NO. OF REFS
_Aug 23, 1971 25 7
8a. CONTRATY OR GRANT NO. o2, CRIGINATOR'S REPORYT NUMBER(S)
F44620-70~C=0107
{ b ProOJECT NO.
1 A0827-5
o . #b. CTHER REPORT NOI(S) (Any other numbers that may bo assigned
{ 611010 (s report)
.

I GsTRiBuTIoN STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

“

E- 11. SUPPLEMENTARY NOTES 12, SPONSORING MILITARY ACTIVITY -
{ TECH, OTHER Alr Force Office of Scilentific Research
; 1400 Wilson Blvd, . (SRMA)

f Arlington, Va, 22209

4.3 ADSTRACT

This report describes the implementation of the kernel of a simple multi-
process operating system. The purpose of this gystem is to create an environment

for the construction of experimental programming systems for educational and
1 research uses,

DD 0473

Sccurity Classification

Security Classification

N

KEY WORDS

LINK A LINK B

LINK C

ROLE

wT ROLE wT

ROLE

Jp—

——y——

Security Classification

