
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CONVERS AT IONAL PROGRAMMING - -APL 
AN IMPLEMENTATION IN BLISS 

A. J. Perlis 
R. D. Fennel1 
F. J. Pollack 
W. R. Price 
M. F. Rizzo 

Carnegie-MelIon University 
Department of Computer Science 

Pittsburgh, Pa. 15213 

This work was supported by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense (F44620-70-C-0107) and 
is monitored by the Air Force Office of Scientific Research. 
This document has been approved for public release and sale; its 
distribution is unlimited. 



ABSTRACT 

As part of the ongoing research program in conversational 

programming an APL system has been implemented for the PDP-10. 

Since this system is to be a base for extensive study in con

versational programming the system was programmed entirely in 

Bliss, a high-level programming language specifically designed 

for the writing of systems programs. 

A few extensions to APL are included in this first version 

which supports both Teletype and IBM 274l/Datel terminals. 



WHY APL? 

APL has been described in the book, A Programming Language, [5] 

by K. Iverson. It was intended to be a general data processing lan

guage but, because of its complicated notation and unwieldy alphabet, 

was little used even as a descriptive device until an interactive 

APL\360 version was implemented by IBM for the 360. The combined sys

tem and language have proved to be so enormously useful and successful 

in a wide range of applications, that implementations for a number of 

machines other than the 360 have been made, e.g., CDC 3600, 7600; 

XDS Sigma 7, Univac 1108, Burroughs 5500, IBM 1130. 

The ARPA project at Carnegie-Mellon University developed a con

versational language, LCC, derived from Algol for the IBM 360/67 TSS 

system. The decision to adapt LCC for the PDP-10 was an initial goal 

of the research program in conversational languages. However, it 

seemed more reasonable to use APL as a base for extensions since APL's 

computational component is more powerful than LCC. Put another way, 

APL is a more powerful language than Algol in many important respects, 

not the least of which is conciseness. 

Like many other excellent programming languages, APL suffers from 

an omission of important functions both in its computational and system 

aspects. Some of these were already in LCC, others were to be provided 

in a next extended version. Consequently it seemed quite reasonable 

to construct an APL system as a base for conversational programming 

research. 



-2-

APL, as an array processing language, raises a number of interest

ing and important optimization problems that, while still present, do 

not surface so naturally in scalar processing languages like Algol and 

FORTRAN. Basically these problems deal with the scheduling associated 

with the partial processing of partial arrays. 

Furthermore, APL permits any identifier to denote data of varying 

size and shape; and this, coupled with the dynamic modification of pro

gram text, raises a number of interesting compilation problems which 

require solution since many conversational programs ultimately require 

compilation into efficient machine codes. 

Since the APL system is to be an evolving one it is critical that 

it be coded in a powerful statement language so that the code may be 

easily produced, understood and altered. Fortunately the BLISS lan

guage [7] developed at Carnegie-Mellon University satisfied all of 

these requirements. Furthermore, its development was being completed 

when the APL effort commenced so that the APL system could be used to 

test BLISS's claim to be a system building language. 



-3-

SYSTEM LAYOUT 

From the user's point of view, APL\ 10 resembles very closely IBM's 

APl\360 as described in the APL\360 Reference Manual by Sandra Pakin [6] 

and the APL\360: User's Manual [4]. A subsequent section of this paper 

describes the extensions and modifications incorporated into APlXlO. 

The basic organizational unit in the APlXlO system is the workspace, 

which occupies the major portion of each user's PDP-10 low segment (with 

the sharable APL interpreter occupying the high segment). The workspace 

may be depicted as follows: 

Execution Stack 
[variable] 

1 

l 
User Data Area 

[variable] 

Symbol Table 

Syntax Analysis Stack 

WS variables 

The execution stack contains function activation records, syntax units, 

and associated data. The user data area contains user-defined data 

items, such as function definitions and variable values. The general 

format of a data entry is: 



-4-

Pointer Word i 
a g S 

Address Count 
i 
a g S 

<entry-type dependent data> 

Header 

The 'flags' tell whether or not the data entry is a list-type entry (see 

the section on Function Definition) and whether or not the data entry is 

garbage (see the section on Garbage Collection). 

The fixed-size symbol table is discussed in more detail below. 

Syntax analysis is essentially done by the Conway Transition Diagram 

method [2], and the syntax analysis stack is used to maintain a record 

of the syntax analysis path being traced. The workspace-variables area 

contains various pointers and workspace constants (such as the number of 

significant digits to be used during display, the width of the printed 

page, and the index origin). 

The basic interpretation sequence for APL\IO may be broken into several 

distinguishable actions: 
<terminal input> 

line input 
and editing 

1 
<string of APL internal characters> 

i  
input scan 

and codestring 
creation 

<APL codestring> 

syntax 
analysis and 
execution 

operator 
service 
routines 



-5-

LINE INPUT AND EDITING 

The basic function of input line editing is to accept an ASCII input 

line from a teletype or Datel/2741 (the current version of APlXlO uses 

the input conventions for 2741-like terminals established by PDP-10 monitor 

modifications introduced at Carnegie-Mellon University), and edit that 

line so as to create a string of internal APL characters which reflect 

the physical appearance of the line as typed at the user's terminal. 

This principle of visual fidelity entails editing out any backspaces that 

may have been input, creating a single internal overstrike character 

wherever two characters have been overstruck at the terminal, translating 

keyword or escape mode inputs (for teletypes) to their corresponding 

single APL characters, etc. Illegal overstrikes must be detected so that 

the user can be prompted to enter a correction line. 

Due to the extensive character set required by APL, the internal 

APL characters are 9-bit bytes. Actually, only 8-bits are required, but 

9-bit bytes allow for an even division of the PDP-10 36-bit word and 

allow for adequate future expansion of the internal codes required (such 

as new overstrikes). 

A similar translation process takes place upon outputting an APL 

string of 9-blt characters. Translation tables are required for con

verting single printable characters to their ASCII equivalent for expand

ing overstrikes to an expanded ASCII form (whether it be <char> <BS> <char> 

for a Datel or a keyword or escape mode representation for a teletype). 

Teletypes also require that many APL special characters be expanded, 

due to the limitations in the teletype character set. 



INPUT SCAN AND CODESTRING CREATION 

An edited 9-bit string is then passed to a lexical analyzer to be 

scanned and transformed to a form which is readily acceptable by the 

syntax analyzer. This intermediate form is known as a codestring and is 

essentially a one-to-one mapping from the edited 9-bit string. Negligible 

syntax checking is done during codestring creation; and once the code-

string is produced, the 9-bit source line is discarded. Thus only one 

internal representation of an APL statement is retained — the codestring. 

From the codestring it is easy to reproduce the corresponding source line 

and also the codestring is readily parsed by the syntax analyzer due to 

APL's simple right-to-left evaluation scheme and the lack of hierarchical 

ordering among the operators. Syntax analysis can be performed quite 

readily on the simple intermediate representation of the codestring. 

Before discussing the format of the codestring, the symbol table 

structure should be explained. The APlXlO symbol table is of fixed size, 

consisting of a number of two-word entries (STE's). All references to 

a variable name are made via the symbol table. The STE location is 

initially established by hashing on the first 12 characters of the given 

identifier, then using a quadratic search technique to resolve any con

flicts. The format of an STE is: 

absolute addr. print- first 
of value data type name char.if 

entry length short 

rest of 
printname 
if short 5 chars) 

(absolute addr. bf printname pata entry if > 5 char 



-7-

The value data entry address field is set by the syntax analyzer when

ever a value is associated with an identifier. The type field indicates 

whether the associated item is a variable, function definition, group, 

etc. The printname of the identifier is stored in the STE if it is less 

than 6 characters; otherwise it is put in a special printname data entry 

which is of the form: 

absolute addr. 
of STE 

word count of , printname,packe< this data entry 4 t Q a W Q ^ 
y-bit chars of 

Entries in the symbol table are never deleted once they are created 

(although they may become 'undefined1 by 'erasing' a variable name); 

when a variable is given a new value, the old STE is re-activated if 

its type had been 'undefined'. The reason for not deleting entries is 

that there may be arbitrarily many pointers to a STE from codestrings in 

the workspace (recall, all references to a variable are made via the 

symbol table); and finding all such occurrences would be impractical. 

So the STE type field is merely marked as 'undefined'; and when those 

codestrings are executed, any references to an undefined datum will gen

erate a 'value error'. Note: A 'copy' operation may be used to clear a 

symbol table of unnecessary identifiers by saving the active workspace, 

clearing the workspace, then 'copying' that saved workspace. The copy 

operation defines only those entries which possess values. 

Now to discuss the actual codestring creation. As mentioned before, 
the codestring is essentially produced by a one-to-one mapping of the 



-8-

source string. The various entities handled by the lexical analysis 

phase are: 

1. Identifiers are transformed to an 18-bit offset from a 

symbol table base, and the corresponding STE is created. 

2. Numbers are translated to a PDP-10 internal format which 

distinguishes between bit vectors, integer vectors, and 

single precision floating point vectors. 

3. Colons are checked as label delimiters. 

4. Quoted strings are transformed to a 9-bit character vector 

format. 

5. V's are used to delimit the function definition phase 

(described below). 

6. Carriage returns are used to trigger end of statement pro

cessing (setting the header of the codestring data entry, 

calling the syntax analyzer for immediate statements, in

serting the codestring in a function definition directory 

for non-immediate statements, etc.). 

7. Blanks are ignored in codestring creation, except as de

limiters (as of identifiers and numbers) and when they 

occur in quoted strings. 

8. Special characters (operators) are simply placed into the 

codestring according to their 9-bit representation. 



-9-

Codestrings are comprised of a sequence of syllables. Syllables are of 

two types: long syllables of 18 bits (these include symbol table off

sets and various counter fields for vectors) and short syllables of 9 

bits (these include the special characters and various type indicators). 

The syllable types are distinguished by the rightmost bit (thus, short 

syllables are stored as 1 + 2 x value). Note that the symbol table off

sets are always even since STE's are two words in length. 

Scalars and vectors occurring in the input line are put into the 

codestring as a sequence of values (fullwords for integers and floating 

point constants, and bits for a vector of only 0fs and lfs) followed by 

a constant count (long syllable) and the vector type (short syllable). 

This trailing information facilitates the right-to-left syntax scan. 

As an example, consider the following input line: 

ANS «- B $ C[l 3 5] * 0.5 <cr> <lf> 

The corresponding codestring is: 



- 1 0 -

word 1 
header 
word 

syllable 
byte count 1 5 I 8 6 4 1 1 6 1 2 cont1 d, 

filled in upon 
completion of 
codestring 

end of STE 
codestring offset 
delimiter for 'ANS' 
for R-to-L 
execution 

STE offset 
for 1B 1 

word 4 

I L 6 3 ~ 7 7 0 0 , , 0 0 1 0 0 . .OoAo 0 0 5 1 0 0 0 3 2 3 L 6 5 cont'd, 
-J 

no-op's to 
word-align 
the constant 
vector 

/ 
integer 
constants 

constant 
count 

' ] • 
integer 
constant 
type 
indicator 

10 11 

1 3 1 7 7 7 2 0 0 4 0 0 , , 0 0 0 0 1 2 5 | 
alignment 
no-op's 

single precision 
floating constant 

constant 
count floating 

constant 
type 
indicator 

*N <cr> is now 
scanned in source, 
and the 'syllable 
byte count' is 
filled with 3 7 

The codestring is created starting at the first available location in 

the user data area of the workspace (that is, on top of the user data 

area stack). 



-11-

FUNCTION DEFINITION 

Once the codestring has been generated, it may be executed by call

ing the syntax analyzer (for an immediate statement) which can thence 

generate output and/or create value data entries to store the results 

of the calculation. If the codestring was created in function definition 

mode (as opposed to immediate mode), then instead of calling the syntax 

analyzer to execute the codestring, the codestring is added to the 

directory of the currently open function definition. Recall that one 

enters function definition mode by scanning a 'V1 during codestring 

creation. Scanning a second f 7 f causes one to leave function definition 

mode and return to immediate mode, after attending to the details of 

properly closing the function definition. 

The actual function definition makes use of another form of data 

entry: the list data entry. As it pertains to functions, the list data 

entry is essentially header information, which characterizes the partic

ular function, followed by a series of one word entries which describe 

each line of the function. More specifically, the format of a function 

list data entry is: 

back ptr to STE 
or execution 

stack 
word i 
count g 

. 2 . 

parms 
ptr to label ptr to label label line 
list count 0 bits 

ptr tc 
line 
1 

standard header 

In 'flags', the 'list-type' bit is set on. The 'parms' word contains in

formation concerning whether or not the function is locked, and how many 



-12-

local variables, parameters, and lines the function has. The 'bits' 

field of each line entry contains information on whether or not the 

particular line is labeled or is to be traced or is to be stopped. 

Notice the third word in the function directory contains a pointer 

to the label list. Line labels in APlXlO are treated as variables local 

to the execution of a given function rather than as variables global to 

the entire workspace. Thus, upon each execution instance of a function, 

the syntax analyzer retrieves the current label values from the list of 

line labels and treats these variables just as any other local variable 

in the function. The format of the label list is the following: 

STE line STE line 
header offset number offset number et<2 

f line number - updated at each fen 
^ defn close 

offset to STE for the label identifier 

SYNTAX ANALYSIS AND EXECUTION 

The syntax analyzer operates directly on the codestrings generated 

by the lexical analyzer and controls the interpretation. Since there is 

no operator precedence, APL statements are interpreted from right to 

left. The syntax analyzer uses Conway transition diagrams of four basic 

types: (1) a statement diagram, (2) a list diagram, (3) an expression 

diagram and (4) a basic diagram. A diagram is made up of paths, and each 

path contains information as to what type of element in the codestring 

to expect and what actions are to be performed if a match is or is not 

made. A fixed size diagram stack is used in this syntax analysis. 



-13-

An attempt was made to implement some of Abraxas' [1] ideas of 

beating and dragging of APL expression. Dragging is the process of 

delaying execution of APL operators, thereby reducing the number of 

temporary locations in the evaluation of an APL expression. Beating 

is the process of operating on a descriptor of an array rather than on 

the array itself. The basic form of a descriptor is seen in Figure I. 

When the syntax analyzer scans a variable or constant, a descriptor is 

created and put on the execution stack. Consider the simple APL expres

sion: D «- C + A + B. First a descriptor is made for B, then a • + • is 

put on the stack, then a descriptor for A is made. Since scalar operators 

can be delayed, a descriptor for A + B is made, but the actual addition 

is not yet performed. The descriptor for A + B looks like a descriptor 

for a variable except that the data-entry pointer is replaced by a f+' 

and 0P1 contains a pointer to the descriptor of A and 0P2 contains a 

pointer to the descriptor of B. Next, a is put in the stack and a 

descriptor is made for C. Then a descriptor is made for C + (A + B). 

Up to this point no additions have been performed. The assignment 

operator requires the value of the expression, so the expression is now 

evaluated. If A, B, and C were 100 by 100 matrices, the traditional 

method would have allocated 10,000 locations to store A + B, executed 

10,000 stores of A + B, and 10,000 loads of A + B. By delaying, those 

locations and operations are not needed. 

To illustrate dragging consider the APL expression D <- A +$B. 

Instead of doing the actual transpose of B, only the descriptor of B 

is changed. If B is 40 50, then the R-VECTOR is 40 50 and the DEL-VECTOR 



-14-

FIGURE I 

DATA-ENTRY 
POINTER FLAGS 

RANK ABASE 

OPl OP2 

R-VECTOR[l] 
R-VECTOR[2] 

DEL-VECTOR[l] 
DEL-VECTOR[2] 

R-VECTOR[RANK] DEL-VECTOR[RANK] 

FOR AN IDENTIFIER, CONSTANT, OR J-VECTORj OPl s OP2 s fb 
IF A - 3 4 5 pjO, THEN 

R-VECTOR = 3 4 5 
DEL-VECTOR =20 5 1 
RANK = 3 

TO GET ADDRESS OF A [2; 3; 4] 
ADDR = DATA-ENTRY POINTER + ABASE + (2x20) + (3x5) + (4x1) 



-15-

is 50 1. The transpose operator will change the R-VECTOR to 50 40 and 

the DEL-VECTOR to 1 50. This process, therefore, saves several opera

tions and temporaries. See Figure II for other operators that are 

beaten. 

The concept of a J-vector has also been implemented. A J-vector 

is a sequence of integers such that the difference between two succes

sive integers is 1 or "1. Therefore, a J-vector can be described by 

specifying a base, length, and direction. The descriptor of a J-vector 

looks like a descriptor of an identifier except that it has no data-entry 

pointer, RANK-l, RVEOLENGTH, ABAS E88 BASE, DEI^l or "1. The only way to 

create a J-vector is by using the monadic iota(\). Since the only space 

a J-vector takes is the space needed for the descriptor, it is possible 

to evaluate +/i500000 when the workspace is, e.g., only 8K words. 

The main advantage to doing beating and dragging is to execute 

operations on large arrays faster at the expense of small arrays. That 

is, it is better to execute a two minute program in one minute even if 

it means executing a 0.1 second program in 0.2 seconds. To be consistent 

with this idea, most operators cause machine code to be generated, exe

cuted, and then thrown away. This has to be done since in APL sizes and 

shapes of arrays are so dynamic. 

To the APL user, it appears there are only two types of data: 

character and numeric. However, internally there are four types: 

boolean (1 bit), integer (36 bits), floating point (36 bits), and 

character (9 bit). Beating, dragging, and code-generation make it dif

ficult to maintain this transparency. Consider the following expression: 



-16-

FIGURE II 

FROM ABRAMS' THESIS [1] 

OPERATORS THAT ARE BEATEN 

QtM (TAKE) 
ABASE <- ABASE + DEL +. X (Q < 0) X RVEC - |Q 
RVEC <- |Q 

pJM (DROP) 
ABASE «- ABASE + DEL +. X (Q > 0) X |Q 
RVEC RVEC - |Q 

4)[JlM (REVERSAL)' 
ABASE *- ABASE + DEL[J] X (RVEC[J] - 1) 
DEL[J] «- - DEL[J] 

£M (MONADIC TRANSPOSE) 
RVEC[0 "I +ppM] RVECfl 0 + ppM] 
DEL[0 "1 +ppM] *- RVEC["1 0 + P P M ] 

ATOM (DYADIC TRANSPOSE) 
R «- RVEC 
D «- DEL 
RANK (r/A) 
I - 1 
DEL «- RANK t DEL 
RVEC «- RANK t RVEC 
REPEAT: RVEC[I] L/(I=A)/R 
DEL[ I] *- +/(I=A)/D 
•* REPEAT X i RANK 2: I <- 1+1 

th 
MTTJlSCALAR] (subscripting with a scalar in J coordinate) 

ABASE «- ABASE + DEL [J] x SCALAR - 1 
DEL (J ̂  i RANK)/DEL 
RVEC «- (J ̂  iRANK)/RVEC 
RANK «- RANK - 1 

th 
MTKU LEN, ORG, Si (subscripting with a J-vector in K coordinate. 

J 3, "2, 1 is "2, -1, 0. J 4, 2, "1 is 2, 1, 0, 
ABASE «- ABASE + DEL[K] X ("1) + ORG - (LEN-1) X S = i 
RVEC[K] «- LEN 
DEL[K] DEL[K] X S 



- 1 7 -

A «- 2 * 2 x (20 4 3). Integer code is produced for this expression; on 

first iteration A[3] is calculated to be 64, on second iteration A[2] 

is found to be 256, but the third iteration causes a fixed-point over

flow (2 * 40). Therefore, previous results are thrown away and new 

code must be generated to do the operation in floating point. 



-18-

IMPLEMENTED OPERATOR EXTENSIONS 

So far two operators have been extended and one added. The decode 

and encode operators have been extended to arrays. 

A is a scalar or vector. 

B is a scalar or an array, 

k is a scalar or 1-element array 

R «- A [k] B (DECODE) 

if 1 [k]1 is omitted [PPB] is assumed 

PR = (k ̂  \ppB)/ P B 

R «- ATB (ENCODE) 

pA 

pR s (pB), pA 

Therefore, if A is a vector, B = AJLATB 
The Subscan operator (\) has been implemented and is defined as 

follows: 

R «- 0\[k]B 
if [k] is omitted [ppB] is assumed 

© is any logical or arithmetic scalar operator 

pR s pB 
Suppose (ppB) s 3 and k s 2, then 

R[;J;] s ©\[2](J £ i(pB)[2])/[2]B 

Hence, -\t3 = 2 "1 3 



-19-

Note that -/i3 s 2. If subscan were done forward, -\i3 would equal 

1 "1 "4, none of which equals the value of the reduction. Subscan does 

not work on relational operators, because of the following problem: 

should 6 be defined as 0 6 as the above definition implies or perhaps 

0 1 (1 s 6 6)? 

GARBAGE COLLECTION 

As described above, the basic information structure used to retain 

a user's input and execution results in the data entry. Data entries 

come in various formats (for example, codestring data entries, printname 

data entries, value data entries, and function list data entries), but 

each type has a standard header word of the following format: 

Pointer Word i 
Address 

v 
Count a 

i 
<Entry-type Dependent Data> 
f — 

Header 

The 'pointer address' is an 18-bit pointer to the symbol table entry 

(for value data entries and function list data entries) or to the second 

word of the STE (for printname data entries) or to the appropriate member 

of a function list data entry (for codestring data entries which belong 

to a function). Thus each data entry points somewhere and that somewhere 

points back to the data entry. Hence, for example, since all references 

to a data value are made via the STE for the particular identifier, the 

value may be reassigned by creating a data entry for the new value, 

pointing that data entry to the STE, pointing the STE back to the new 



-20-

entry, and marking the old value data entry as garbage. Notice that no 

reference made to the variable from a codestring had to be changed. 

The 'word count1 field of a data entry gives the length of the data 

entry. As mentioned previously, 'flags' tells whether or not the data 

entry is a list-type entry and whether or not the data entry has been 

marked as garbage. 

As a user session progresses and the user edits existing functions, 

replacing and deleting function lines, and repeatedly assigns value data 

entries to identifiers (via immediate statements and function execution), 

the discarded data entries are marked as garbage. Garbage entries (those 

with the garbage-bit in the 'flags' field of the data entry turned on) 

include old value data entries, replaced and deleted function lines 

(codestring data entries), executed immediate lines (codestring data 

entries), and old function and label directories (new ones are created 

each time a function is closed). To reclaim the space occupied by these 

garbage entries, a garbage collection routine is activated at appropriate 

times (such as at the end of each executed line and at each function 

definition closing). 

Garbage collection is accomplished by using the header information 

contained in each data entry to search through the user data area of the 

workspace for non-garbage items and to compact those items over the 

entries to be reclaimed. Compaction is complete when the top of the old 

user data area stack is reached; the stack pointer is then reset to the 

new stack top. 

The actual compaction process involves moving the good data entries 

via a block transfer and resetting the back pointer of the item to which 



-21-

the data entry points so as to point to the new location of the data 

entry. Notice that since all codestring references to variables are 

made via the symbol table (which does not move), no reassignment of any 

STE offset pointers which may occur within a codestring is necessary when 

a codestring is moved. Relocation with respect to a list data entry such 

as a function directory requires special attention. In addition to re

vising the back pointer to the directory header, the back pointers con

tained within the headers of each function line (codestring data entries) 

must be revised to reflect the new position of the function directory 

entry. This special case is detected by checking the list-bit of the 
1 flags1 field of each data entry (once it is determined that the data 

entry is to be relocated). The corresponding case of garbaging a list-

type data entry (as for example in erasing a function) is handled simi

larly: if the list-bit is on, each member of the list must also be 

marked as garbage. 

This garbage collection process is quite efficient and the time 

required is not noticeable to the user. Since garbage collection is 

done relatively often, the amount of relocation necessary is relatively 

small. Also, since non-garbage items tend to migrate toward the bottom 

of the stack and most of the relocation occurs in the more active top 

section of the stack, a pointer is maintained to mark the lowest piece 

of garbage so as to avoid rescanning all the more permanent items at 

the bottom of the stack. Thus the garbage collection process usually 

needs not scan through all of the data entries in the user data area. 



-22-

APL\10 INTERPRETER OVERVIEW 

The following pseudo-Bliss code illustrates the major controlling 

loops of the APlAlO interpreter. 

begin 

<external Macro-10 table names>; 

<declare global routines>; 

<declare global variables>; 

<declare workspace>; 

INIT( ) ; 

SOPROC( ) ; 

while 1 do 
begin 

^tables for character translation, 
error messages, etc.$ 

#these include service routines, 
i/o and line-editing routines, 
'LEXICAL', 'INIT', and 'SOPROC'^ 

$l/o buffers, global pointers, 
system globals, and global flags# 

$ws variables, syntax analysis 
stack, symbol table, initial 
data area/execution stack spaced 

^clear some system globals; open 
i/o channels# 

^accept first input line and allow 
sign-on; load continue-workspace, 
if necessary^ 

if <more Bliss-stack space is needed for a workspace size adjustments 
then <revise the Bliss-stack pointer upward>; 

<perform any load/copy/size request, including any necessary intra-
workspace relocation>; 

if <less Bliss-stack space is needed> 
then <adjust the Bliss-stack pointer downward>; 

end 
end; 

LEXICAL ( ) #the major interpreter routine^ 

#end of APL interpreter^ 



-23-

The major interpreter routine, 'LEXICAL', may be outlined as follows: 

global routine LEXICAL • 
begin 

<declare service routines>; 
<declare 'SCANNER' with its included lexical routines (one of which 

calls 'SYNTAX' to accomplish codestring execution)>; 

while 1 do 
begin 

<reset pointers and status bits>; 
<accept and edit an input line>; 
<handle any function line editing or function display requests>; 

if ' ) ' ^system command?^ 
then if <processing of system command requires a workspace 

size change> 
then return $size changes handled in outer loop# 
else <process command> 

else SCANNER ( ) #call 'SCANNER' to scan input string, 
create a codestring, and either call 
'SYNTAX' for codestring execution or 
enter the line in a function directory^ 

end 
end; #end of major interpreter routine^ 



-24-

THE PDP-10 IMPLEMENTATION 

To the PDP-10 Monitor, APL users are no different than any other 

user. Each APL user runs under the PDP-10 monitor as one job. The APL 

system is a two-segment program. The high segment is normally a pure 

write-protected sharable segment and is presently 37K words in size. 

The impure non-shared low segment normally is IK + the size of the active 

workspace. Currently because of the communications commands the system 

is restricted to 36 users. 

Two modifications to the standard DEC Monitor were required. The 

first modification is a relatively minor alteration to the ENTER UUO to 

allow a user to create a disk file on another user's UFD with the protec

tion specified in the parameter block associated with the UUO. The second 

modification is a more complex addition to the monitor to allow for the 

use of IBM 2741-like terminals with a special APL mode. The latter modifica

tion is not necessary if Model 33 Teletypes will suffice. 

RUNTIME ENVIRONMENT 

The shared high segment of the 2-segment APL system consists of: 

(1) sharable pure code, (2) read only data, and (3) read-write communica

tion data. Under normal circumstances the high segment is write-protected. 

The only time the write protection is off is when a user updates communica

tion data. (The hardware write protect feature is off only for the user 

doing the updating and remains in effect for all other users.) 



-25-

The read-only data consists of translation tables used to convert 

the ASCII input characters into an internal code and vice-versa and to 

convert any overstruck character into a single internal character and 

vice-versa, message texts, command table, and code templates. 

The command table contains the first four letters of each system 

command along with information regarding what parameters to expect in 

the input line and what routine to call to execute the command. In 

execution of APL statements the code templates are pieced together to 

create a portion of code to which control is eventually passed and results 

in the execution of the APL statement. 

The read-write communication area consists of the port buffers and 

a message pool. There is a buffer associated with each of a possible 

36 ports. Each buffer contains the APL number and identification of the 

user associated with the port and flags indicating whether the user is 

privileged and whether there is a message for the user. The information 

in the buffers is needed to implement the )PORTS command. 

The message pool is a block of core reserved for storing messages 

among users. The sender takes a chunk from the pool into which the 

message is placed and then sets the bit in the receiver's port buffer 

indicating that a message is pending. Prior to each request for input 

from the terminal, APL checks the bit to see if the user has a message. 

If so, the bit is turned off, all messages are printed at the terminal, 

and the space taken is returned to the message pool if no one else is 

to receive the message. There is a mutual exclusion variable which 

prohibits any simultaneous updating of the shared read-write data area. 



-26-

The APL system is implemented in the implementation language Bliss. 

Bliss is an Algol-like language employing a runtime stack. One of the 

goals of the APL system was to provide a variable workspace size which 

presented a problem in positioning the workspace and the Bliss runtime 

stack* Making the impure low segment large enough for a Bliss Stack and 

the largest workspace would defeat the purpose of the variable workspace 

size. Positioning the Bliss stack followed by the workspace (in order 

of increasing address) would be a bad practice because on block entry 

Bliss space is reserved by adding the number of locals to both halves of 

the stack register. The danger is that the hardware can only catch stack 

overflow by push(j)-pop(j) instructions when the left half of the accumu

lator goes to 0 or -1 respectively, a condition which may be bypassed by 

the addition of a constant to both halves of the stack register. The 

inability to catch stack overflow could result in damage to the work

space when the stack overflowed into the workspace. 

Another possibility is the opposite of the above: position the work

space followed by the Bliss stack and relocate the Bliss stack upward or 

downward as the size of the workspace increases or decreases. However, 

the relocation of the Bliss stack is virtually impossible since the re

location process would have to be able to determine which of the stacked 

values are addresses. 

The solution to the dilemma was achieved by observing that the last 

mentioned solution could be effected if the Bliss stack were empty at the 

time it had to be moved. Thus, whenever it is necessary to reposition 

the Bliss stack, all Bliss routines and blocks containing local variables 



-27-

are exited to an environment where the only variables referenced are 

global (variables bound to a fixed address). Unfortunately this scheme 

in the APL system restricts the relocation of the Bliss stack to sign-on, 

)LOAD, )CLEAR, )SIZE, or )COPY commands. Since the Bliss stack is far 

from empty during function definition and statement execution the size 

of the workspace cannot be varied completely automatically. 

Normally the low segment of the APL system consists of i/o buffers, 

global state variables, the active workspace, and the Bliss runtime stack 

in order of increasing addresses (Figure III). 

Initially the Bliss stack base (Figure IV) is positioned at the normal 

base of the workspace. Once the user has satisfactorily completed sign-on, 

the system establishes an active workspace and moves the Bliss stack base 

above the top of the workspace. 

Use of the )COPY command requires the copy workspace be loaded into 

core. To accomplish this the APL system exits to the environment of an 

empty Bliss stack, loads the copy workspace just above the active work

space, and establishes the Bliss stack above the copy workspace.(Figure V). 

Routines are then called to effect the copy. When the copy is complete, 

the system exits to the environment of an empty Bliss stack and resets 

the stack base to just above the active workspace. 

WORKSPACES 

One of the goals of this effort was to have the PDP-10 APL appear 

to the user to be identical to APLV360. The library system of APlN360, 

where users can access public workspaces and the private workspaces of 



-28-

FIGURE III 

Active 
Workspace < 

\ 
r s 

/ 

/ K 

i 
< 

Bliss 
Runtime 
Stack 

APL Execution 
Stack 

Data Entry 
Stack 

Workspace Globals -
Symbol Table, Stack 
Pointers, Workspace 
Name, etc. 

Globals 
State Variables, etc, 

NORMAL LOW SEGMENT 
CONFIGURATION 



Bliss 
Stack { 

Globals 

LOW SEGMENT DURING 
SIGN ON 

Figure IV 

A 
Execution 
Stack 

kData Entry 
Stack 

Workspace 
Globals 

Globals 

CHANGE IN RUNTIME ENVIRONMENT 
RESULTING FROM SIZE, LOAD, AND CLEAR COMMANDS 



-30-

FIGURE V 

Bliss, 
StackN 

Copy # 
Workspace^ 

Active 
Workspace ^ 

Globals / 

A 

1 

1 

ft Execution 
I )Stack 

} Data Entry Stack 

"\ Workspace 
) Globals 

Execution 
Stack 

ft Data Entry 
/Stack 

1 Workspace 
) Globals 

LOW SEGMENT CONFIGURATION 
DURING COPY 



-31-

other users, required that workspaces be stored in file space of one 

PDP-10 user. For each APL user there is a PDP-10 disk file that acts as 

a directory for the user's workspaces. This file is called a user file. 

The PDP-10 name of the user file can be determined uniquely as a function 

of the APL number. 

The user file (Figure VI) is one disk block, and contains the user's 

identity (a project-programmer pair), the sign-on password, the disk and 

workspace quota, disk and workspace used, the cumulative connect and CPU 

times, 20 workspace buffers, and flags indicating whether the user is 

privileged, locked out of the system, currently signed-on, and whether a 

continue workspace should be loaded the next time the user signs-on. 

Although disk space is the primary resource upon which quotas should be 

established, a quota upon the number of workspaces a user is allowed to have 

was also established to discourage users from creating a new workspace 

for each function. (Eleven disk blocks are required to save a clear 

workspace because of the symbol table.) 

The workspace buffer provides a means of mapping a long workspace 

name into a shorter PDP-10 file name. Each workspace buffer contains the 

name of a workspace, the password, if any, needed to load the workspace, 

and counts of the number of disk blocks for the data entries and the 

number of disk blocks for the APL execution stack. When workspaces are 

saved, only the meaningful parts, the low data entries and the execution 

stack are saved. The pool between the two stacks is not saved. When a 

workspace is saved, the user file of the library number under which it 

is to be saved is accessed. The user file is then searched for a workspace 



-32-

FIGURE VI 

DISK DISK WORKSPACE WORKSPACE PRIVILEGE LOCK SIGNED CONTINUE 
QUOTA USED QUOTA USED BIT BIT ON BIT BIT 

WORKSPACE 
BUFFER 
#1 ' 

WORKSPACE 
BUFFER 
#20 < 

ID 
SIGN-ON PASSWORD 

CUMULATIVE CONNECT TIME 

CUMULATIVE CPU TIME 

WORKSPACE NAME 
PASSWORD 

LOW WORKSPACE 
SIZE 

HIGH WORKSPACE 
SIZE 

USER FILE 



-33-

buf fer having a workspace name which matches the name given in the com

mand or an empty workspace buffer depending on whether or not the work

space of the given name previously existed. If the nth workspace buffer 

is assigned to the workspace, the workspace is saved on the PDP-10 disk 

file <LIBRARY NO>.n. (Figure VII) For the )LOAD command, the system 

reads the appropriate user file into core, and searches the workspace 

buffers for the given workspace. The number of the workspace buffer 

determines what PDP-10 file contains the workspace. The workspace buffer 

also contains the information on how many blocks of the PDP-10 file to 

load into the low portion of the workspace and how many blocks to load 

into the high portion of the workspace. 



-34-

FIGURE VII 

)SAVE 212322 MYWORKSPACE: SESAME 

212322 

Execution 
Stack 

Data 
Entry 
Stack 

Workspace 
Globals 
Globals ( 

Workspace Buffer #11 
MYWORKSPACE 

SESAME 
18 2 

USER FILE 

> 

/(212322). 11 
1 - / 
r r 

2 blocks 

liM 

1 

18 blocks 



-35-

BIBLIOGRAPHY 

1. Abrams, P., An APL Machine, Stanford Linear Accelerator Center 
Report No. 114 (February 1970), Stanford, California. 

2. Conway, M. E., "Design of a Separable Transition-Diagram Compiler", 
Communications of the ACM 6 (1963), 396. 

3. Digital Equipment Corporation, PDP-10 Reference Handbook, 1969. 

4. Falkoff, A. D. and K. E. Iverson, APl\360: User's Manual, International 
Business Machines Corporation, 1968. 

5. Iverson, K. E., A Programming Language, John Wiley and Sons, New York, 
1962. 

6. Pakin, S., APL\360 Reference Manual, Science Research Associates, Inc., 
Chicago, 1968. 

7. Wulf, W. A., D. Russell, A. N. Habermann, C. Geschke, J. Apperson, 
D. Wile, R. Brender, Bliss Reference Manual, Department of Computer 
Science document, Carnegie-Mellon University, Pittsburgh, Pa., 1970. 



A-1 

APPENDIX A 

SYSTEM ADMINISTRATOR'S GUIDE 

There are three classes of APL users: the APL operator, privileged 

users, and non-privileged users. There are two types of privileged user: 

permanently privileged ai>d temporarily privileged. A permanently priv

ileged user has privileges each time he signs on the system. A temporarily 

privileged user has privileges only from the time he is made privileged 

until he signs off. 

Only the APL operator and privileged users may execute the following 

commands: 

1. ADD: 

)ADD <APL N0.> [<ID>] [:<PASSWORD^ <DISKQUOTA> <WSQUOTA> <N| P> 

This command is used to join new users to the system. The <APL N0.> 
18 

is any integer less than 2 . The optional <ID> is installation depen

dent. The password, if given, is an initial sign-on password. The disk 

quota is an integer followed by the letter K and is the maximum amount 

of disk space in K (1024 words) allotted for the storage of workspaces. 

The <WSQU0TA> is an integer establishing a limit on the number.of work

spaces the user may have. Only the APL operator may give the N or P 

parameter. The P specifies that the user is permanently privileged and 

N specifies no privileges. The default is N. 

If the user has been joined to the system, the )ADD command may be 

used to modify his quotas, password, id, or privileges. In this case the 

disk and workspace quotas are added algebraically to the current quotas. 

(Note: APL numbers less than 1000 are public libraries.) 



A-2 

2. BOUNCE: 

)BOUNCE <PORT NUMBER> 

The BOUNCE command disconnects the user on the specified terminal 

from the system after saving his active workspace in the workspace 

named CONTINUE. No user may bounce the APL operator. 

3. DELETE: 

)DELETE <LIBRARY NUMBER> 

The )DELETE command has the opposite effect of the )ADD command. 

It completely eliminates the library from the system. All workspaces 

under a library number must be dropped before the number can be deleted. 

No user may delete the APL operator. 

4. LIB: 

)LIB <LIBRARY NUMBER> 

Unlike non-privileged users, privileged users may give a non-public 

library number with the )LIB command. In this case the system responds 

with a list of workspaces belonging to the given library number. 

5. LOCK: 

)LOCK <APL NUMBER> 

The )LOCK command prohibits the user with the given APL number from 

signing on the system. The user's workspaces are in no way affected. 

No user may lock the APL operator. 

6. PRIV: 

)PRIV <PORT NUMBER> 

The )PRIV command gives the privileged status to the user at the 



A-3 

given terminal. The user remains privileged only for the duration of 

his terminal session. 

7. RESET: 

)RESET <PORT NUMBER> 

The )RESET command is used to recover an unused port buffer which 

the system erroneously thinks is in use. For example, if a user discon

nects himself from the APL by typing tC (CONTROL C) and attempts to sign-

on again, the system will give a 1 NUMBER IN USE1 error message. The 

)RESET command will then erase the erroneous information that user is 

signed-on, and subsequently allow the user to sign-on. 

8. SAVE and DROP: 

)SAVE <LIBRARY NUMBER> WORKSPACE NAME> 

)DROP <LIBRARY NUMBEK> <WORKSPACE NAME> 

Privileged users may specify any library number in the SAVE and DROP 

commands. In the case of the )SAVE command, the active workspace is saved 

with the given name under the given library number. Similarly with the 

)DROP command the named workspace is dropped from the given library number. 

9. UNLOCK: 

) UNLOCK <APL NUMBER> 

The )UNLOCK command is the complement of the LOCK command. The 

)UNLOCK command removes the 'lock1 placed upon the APL number and allows 

that user to sign-on. 



B-1 

APPENDIX B 

PDP-10 APL PRELIMINARY MANUAL 

From the user's viewpoint the PDP-10 APL is so similar to the IBM 

360 APL that APL\360 User's Manual and APL\360 Reference Manual will 

serve as adequate references. However, some of the extensions, modifica

tions, and omissions are: 

COMMANDS 

Except as noted below, all commands work as in the above references. 

1. CONTINUE and OFF: 

)CONTINUE [HOLD] and )OFF [HOLD] 

These commands all function as if the HOLD were present and return 

the user to monitor mode (after creating a CONTINUE workspace in the 

case of the CONTINUE command). 

2. DISK: 

)DISK [<WS-NAME>] 

This command responds with the disk space required by each of the 

user's workspaces (no argument given) or by just the named workspace 

(argument given). 

3. ECHO: 

)ECHO [ON|OFF] 

This command causes the error line and following caret line to be 

printed or suppressed when the parameter is ON or OFF respectively. 



B-2 

Without an argument the system responds with the current setting (de

faulted to ON at sign-on)• 

4. MODE: 

)MODE [KEYWORK| ESCAPE] 

This command determines the teletype output mode* Without a 

parameter the system responds with the current mode (defaulted to KEYWORD 

at sign-on). 

5. MON: 

)MON 

The user is returned to PDP-10 monitor mode. Typing the monitor 

command CONT will cause APL to resume. 

6. SIZE: 

)SIZE [<KSPEO] 

This command causes the size of the active workspace to be changed 

to the size specified* The size may not be decreased to less than 4K. 

Without an argument the system responds with the current size of the 

active workspace. 

7. TIME: 

)TIME 

The system responds to this command with the amount of CONNECT and 

CPU time accumulated while the active workspace has been active. 



B-3 

8. WORKSPACE SIZE SPECIFICATION: 

)CLEAR, )LOAD and SIGN-ON 

A OC-SPEO may be appended to these commands causing the new work

space to be of the specified size. 

<K-SPEO : : = <INTEGER>K 

RESTRICTIONS 

Under the current implementation, the )COPY command does not work 

for copying APL groups and the )PCOPY command does not print out a list 

of not-copied items. 

TTY SYSTEM (See included transliteration tables) 

APl\lO supports input from both 2741-type terminals and teletypes. 

The 2741 support requires specific monitor changes to the DEC scanner 

service package (which does not currently support 2741's). The teletype 

support requires no monitor modifications and assumes a single-case key

board. For APL characters that do not appear directly on the teletype 

keyboard, a keyword/escape input system is provided (see below). 

1. Two input modes (keyword and escape) are supported. For example, 

p may be input as f.R0 f (keyword) or as 'OR1 (escape). No de

limiting blanks are necessary, and the input modes may be mixed 

at will (for example, 3 4 .RO @I 12). 

2. Two corresponding output modes are also supported. To select an 
output mode use the command 



B-4 

)MODE [KEYWORD) ESCAPE]. 
1KEYWORD' is the default mode. 

3. <RUBOUT> is handled by the PDP-10 monitor as usual. 

4. There is no way to input a <backspace>. Instead, there are key

words for all overstrikes. 

5. 'tQ' currently serves as the attention signal for TTY's. Since 

this is a regular input character and is not handled at interrupt 

level, output may continue for a short while before the 'tQ' is 

detected. Be patient! Note: During function execution, if an 

attention is signaled, function execution is suspended and a mes

sage printed. Execution may be resumed by typing '-• <LINENUMBER>1 

(or 1.GO <LINENUMBER>1 for TTY's); however, execution resumes from 

the beginning of the interrupted line. 

Note: To suppress APL output on the teletype, 1 tQ' may be typed 

instead of 1tQ 1• Since ft0' is trapped by the monitor and works 

at an interrupt level, its action is immediate (instead of waiting 

for APL to handle a 'tQ' request). Of course, 'tQ' must still be 

used to interrupt function execution. 

On 2741-type terminals, the 'ATTN' key is used as usual; but, 

again, output may continue for a short while before APL processes 

the interrupt request (due to monitor queueing of printed output). 



B-5 

6. Warning: Since a TTY is full-duplex, typing ahead is physically 

possible; however, it is advised that it not be done. Unexpected 

cases may not be handled properly* 

IMMEDIATE LINE EDITING 

The last line typed in may be edited using the methods of function 

line editing. The edit request syntax is 1 [<ANY VALID LINENUMBER>DCCOLUMN>]1, 

and editing proceeds as if in function definition mode. 

Note: If the next line typed is another edit request, the source 

line of the last edit is used again. (That is, the last edit request 

is not edited.) 

ILLEGAL OVERSTRIKES 

Typing an illegal overstrike will cause the remainder of the line 

to be ignored, and APL will prompt for a corrected line extension. For 

example: 

A «- B+C.NXD,E 

A «- B+C (carriage waiting after fC f for further 
input) 

FUNCTION DEFINITION 

1. To delete line <N> from the currently open function, type 

'[^N>] f (or 1 [.LD <K>]1 forTTY's). 

2. Line labels are treated like local variables. 



B-6 

QUAD MODE INPUT 

Function definition is permitted during a quad input request. The 

input request remains open until an immediate line is typed in. 

PRIME-MODE INPUT 

A new input mode similar to the quote-quad mode is supported. A 

prime-mode input request is made by typing 'H' (or ' .QD' for TTY's). 

APL then accepts an input line (delimited by a <CR>) and creates a 

character string from it. In prime-mode input, no editing is done on 

the input line. That is, for 2741's, AB<BS>_C goes through to those 

individual characters (and the overstrike 'B' is not created); and for 

TTY's, 5.R0@I5 will go through to the corresponding seven character 

string. This mode is useful in developing text-editing systems. 



B-7 

MNEMONICS FOR APIA 10 TTY SYSTEM 

Overstrikes: 

Mnemonic 
.AL 
.DE 
.DU 
.FL 
.EP 
.US 
.DL 
.LD 
.10 
.SO 
f 
• BX 
.AB 
• EN 
.LO 
* 
.RO 
.CE 
.NT or $ 
.DA 
.UU 
.OM 
.LU 
t 
.RU 

.CB 

.CR 

.CS 

.GD 

.GU 
• IB 
.LG 
.NN 
.NR 
• OU 
• PD 
• QD 
• QQ 
• RV 
.TR 
• X^ 
.ZA 
.ZB, etc. 

APL character 
a 
1 
n 
L 
€ 

V 
A 
x 
• (null) f 
• 
I 
T 
O 

9 

P 
r 

u 

t 
c 
\ 
© 

t 
h 
I • 
ft 
<* 
0<BS>U <BS>T 
9 
0 
B 
• 
* 
A 
g, etc. 

Alternate 'mnemonic' 

@Q 



B-8 

Necessary mnemonics: Also: 
.DA + TTY APL 
.DD - " A 
.GE * & A 
.GO * * x 

.LE * * 

.NE t : I . I 

.NG " < ( 

.OR v )» etc. ) , 



C-1 

APPENDIX C 

OBTAINING AND MOUNTING THE APL SYSTEM 

Tapes containing copies of source files, a Bliss compiler binary 

file, and the APL system binary file are available from the Computer 

Science Department, Carnegie-MelIon University. These files are avail

able on Magtape (stored on magtape by the SAVE cusp) or on Dectapes 

(stored on Dectape by the PIP cusp). There is a nominal charge for 

the Magtape copy and the Dectape copy to cover the costs of tapes, 

duplication, and postage. 

MOUNTING THE APL SYSTEM 

1. Obtain a project-programmer number under which all user and workspace 
files are to be stored. 

2. Move all files to disk from the Magnetic tape using the SAVE cusp or 
from Dectapes using the PIP cusp. 

3. Store the files DIRECTORY AND jfcYA.USR under the PPN obtained in 1. 

4. Perform the following monitor commands: 

^ GET DSK APL 

^ D <PROJ. N0.> <PROG. N0.> 400013; Here <PROJ. NO.> 
<PROG. NO.> are the 
PROJECT and PROGRAMMER 
NUMBER of 1 above. 

± SAVE DSK <ANY FILENAME> 



C-2 

5. The file created by the last save command is the APL system which 

may be made a cusp. Use the RUN (or R) monitor command to start 

execution of the APL system. When the terminal spaces over 6 

spaces type: 

)6400 <CR> 

The system will respond with a greeting message. The APL operator 

is then signed on and is free to add additional users. (See the 

ADD command.) 



S<runfv CI <t^ si fir ion 
DOCUMENT CONTROL DATA - R & D 

Security classification nf title, body of abstract and indexing annotation must be entered when the overall report is classified) 
1 originating a c TI v i T y (Corporate author) 

Department of Computer Science 
Carnegie-Melion University 
Pittsburgh, Pennsylvania 15213 

.*. REPORT T l f L E 

2*. REPORT SECURITY CLASSIFICATION 
UNCLASSIFIED 

1 originating a c TI v i T y (Corporate author) 
Department of Computer Science 
Carnegie-Melion University 
Pittsburgh, Pennsylvania 15213 

.*. REPORT T l f L E 

26. GROUP 

Conversational Programming—APL an Implementation in Bliss 

4 DESCRIPTIVE NOTES (Type of report and inclusive dates) 
Scientific Interim 
authORIS) (First name, middle initial, last name) ——————— 
A. J. Perils, R. D. Fennell, F. J. Pollack, W. R. Price, M. F. Rizzo 

f> REPORT DATE 
June 1971 

la. TOTAL NO. OF PAGES 
52 

7b. NO. OF REFS 
7 

Bo. CONTRACT OR GRANT NO. 
F44620-70-C-0107 

h. PROJECT NO 

A0827-5 

61101D 

9a. ORIGINATOR'S REPORT NUMBER(S) Bo. CONTRACT OR GRANT NO. 
F44620-70-C-0107 

h. PROJECT NO 

A0827-5 

61101D 

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) K 

10. D | S T MnuTION STATEMENT ~~~~~ 
This document has been approved for public release and sale; 
its distribution is unlimited. 

11. SUPPLEMEN 7 ARY NOTES '" 12. SPONSORING MILITARY ACTIVITY 
Air Force Office of Scientific Research 

TECH, OTHER 
A I • fi I H A C T 

1400 Wilson Boulevard 
Arlington. Vireinia 22209 

As part of the ongoing research program in conversational programming an APL 
system has been implemented for the PDP-10. Since this system is to be a base for 
extensive study in conversational programming the system was programmed entirely 
in Bliss, a high-level programming language specifically designed for the writing 
of systems programs. A few extensions to APL are included in this first version 
which supports both Teletype and IBM/Datel terminals. 

D D , F r U 4 7 3 



Security Classif ication 


