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ABSTRACT 

The theory of optimal algorithmic processes is part of computational 

complexity. This paper deals with analytic computational complexity. The 

relation between the goodness of an iteration algorithm and its new func­

tion evaluation and memory requirements are analyzed. A new conjecture 

is stated. 



1. INTRODUCTION 

Computational complexity is one of the foundations of theoretical 

computer science. The phrase computational complexity seems to have 

been first used by Hartmanis and Stearns [10] in 1965 although the first 

papers belonging to the field are those of Rabin [25, 26] in 1959 and 1960. 

One of its important components is the theory of optimal algorithmic 

processes. We distinguish between optimality theory for algebraic (or 

combinatorial) processes, which we call algebraic computational complexity 

and optimality theory for analytic (or continuous) processes, which we call 

analytic computational complexity. 

The last few years have witnessed striking developments in algebraic 

computational complexity; for example, the multiplication of numbers 

(Cook [5], SchSnhage and Strassen [28]), the multiplication of matrices 

(Winograd [38], Strassen [29], Hopcroft and Kerr [12]), polynomial evalua­

tion (Winograd [38]), median of a set of numbers (Floyd [9]), graph planarity 

(Hopcroft and Tarjan [13]). Surveys may be found in Knuth [17], Borodin [1], 

and Minsky [21]. 

Research on analytic computational complexity dates to the early 

sixties (Traub [30-36] and predates most of the algebraic results. More 

specifically the work on analytic computational complexity to date has con­

cerned optimal iteration*Recent results are due to Cohen [2], Cohen and 

Varaiya [3], Feldstein [6], Feldstein and Firestone [7, 8], Hindmarsh [11], 

Jarratt [14], King [16], Miller [19, 20], Paterson [24], Rissanen [27], 

and Winograd and Wolfe [39]. (Paterson's results are summarized at the 

end of Section 2.) 
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In this paper we define basic concepts and pose some fundamental 

questions in optimal iteration. In the terminology of Knuth [18] we per­

form a Type B analysis. That is, we consider a family of algorithms for 

solving a particular problem and select the "best possible". We survey 

earlier work, report recent progress, and state a new conjecture. Since 

the field is changing rapidly, some of the results cited have not yet 

appeared in the open literature. An abbreviated version of this material 

was presented (Traub [37]) at the IFIP 71 Congress, with somewhat different 

terminology and notation. 

This paper is intended for the non-specialist in iteration theory and 

therefore some precision in definitions and some generality in the models 

of iteration algorithms are sacrificed. 
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2. BASIC CONCEPTS 

We begin by specifying the problem. Let F denote the class of in­

finitely differentiable real functions defined on the real line. We 

assume that if f € F, then f has at least one simple zero <y, that is, a 

number a such that f (a) m 0, ff(<y) f 0. The assumption of infinite 

differentiability is for simplicity. For any algorithm we shall discuss, 

f need only have a small number of derivatives on a finite interval. 

Our problem is to approximate a for f € F. This zero-finding problem 

may seem rather specialized, but in fact, it is equivalent to the fixed-point 

problem of calculating a number a such that a - g(ar), an ubiquitous problem 

in mathematics and applied mathematics. It may be formulated in an ab­

stract setting and covers partial differential equations, integral equa­

tions, boundary value problems for ordinary differential equations as 

well as many other important problems (Collatz [4]). 

We consider iterative algorithms for the approximation of A se­

quence of approximating iterates {x^) is generated by an iteration func­

tion. We shall not give a formal definition of iteration algorithm. The 

interested reader may consult Ortega and Rheinboldt [22] and Cohen and 

Varaiya [3]. 

Our aim is to discuss optimal iteration algorithms. There are a number of 

measures we could optimize. For example, we could minimize the total number 

of arithmetic operations needed to approximate a to within an error e. 

This measure is strongly dependent on the particular f in question. For 

our current purpose, we prefer a measure which is not so dependent on f 
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and which is easier to calculate* (At the end of this section we report 

a recent optimality result which does optimize arithmetic operations.) 

We introduce general measures of cost and goodness. The cost con­

sists of two parts: the new evaluation cost e and the memory cost m. 

The new evaluation cost e is defined as the number of new function evalua­

tions required. This definition is motivated by the following considera­

tions. An iteration step consists of two parts. 

1. Calculate new function values. 

2. Combine the data to calculate the next iterate. 

Since the evaluation of functions requires invocation of subroutines 

whereas the calculation of the next iterate requires only a few arith­

metic operations, we neglect the latter. 

A functiori evaluation is the calculation of f or one of its deriva­

tives. Thus if f( x^) a r M* f'te^) a r e required, e =* 2. We could assign a 

new evaluation cost of 6^ for the evaluation of f ^ (Traub [36, p. 262]), 

but this would make the measure f-dependent. 

We turn to the second component of the cost. If previous function 

evaluations at x, -, x J are used to calculate x,. n, then we define i-1 7 i-m i+1*  

m as the memory cost of the iteration. 

Another component of the cost is not included in this paper. An 

iteration such as the secant iteration involves the subtraction of quan­

tities which are close together, and to maintain accuracy, more precision 

should perhaps be carried. The theory should be extended to include this 

cost. 
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We turn now to a measure of the goodness of an iteration. Let 

x. -> a* If there exists a number p such that 

then p is called the order of the iteration. This definition of order will 

serve for our purposes. For other definitions of order the reader is re­

ferred to Ortega and Rheinboldt [22] and Cohen and Varaiya [3]. 

The order has two additional properties which make it useful for our 

purposes. It depends primarily on the algorithm and only weakly on f and 

it is fairly easy to calculate. For example, for all twice continuously 

differentiable functions f for which f n(a) ^ 0, Newton iteration (see 

Example 1 below) has order p « 2. (Recall we are assuming throughout this 

paper that f 1(a) ^ 0.) Under the same conditions, the secant iteration 

has order p - j(l + Jf> ) * 1.62. 

Two widely known iteration algorithms may serve to illuminate these 

definitions. We will use them to introduce data flow charts which are a 

convenient way to describe algorithms from our point of view. 

Example 1. Newton Iteration. Let x 4 be given. Define 

= A / 0, 00 

then x 

This is a reasonable measure of goodness since if A is near unity, 
xi+l h a s a b o u t P times as many significant figures as x . 

x i+1 *[x i,f(x 1),f(x i)]. 
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The data flow chart of Figure 1 exhibits the process at step i. For 

Newton iteration, 

e = CM 

m = 0 
P - 2 (if 

X i 

Evaluate 
f(x i),f'(x i) 

/ 

Calculate 
Xi+1 

< 

f"(<*) t 0). 

FIGURE 1. DATA FLOW CHART FOR NEWTON ITERATION 

Example 2. Secant Iteration. Let x Q , x, be given. Define 

xi+l " X i " f ( x i ) ( x i ' X i - 1 } 

f(x±) - f(x ±_ 1) 

= $[x i,x i_ 1,f(x ±),f(x i_ 1)]. 
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The data flow chart of Figure 2 exhibits the process at step i. For 

secant iteration, 

e - 1 
m = 1 
p = |(1 + J5) - 1.62 (if £"(a) f 0). 

1 
Evaluate 
f(x i) 

r > 

Calculate 
Xi+1 

Obtain from 
memory . 

i-1* i-1 

< i 

FIGURE 2. DATA FLOW CHART FOR SECANT ITERATION 

We now pose the following optimality questions which will be our 

focus for the remainder of this paper. Other optimality problems will 

be discussed at the end of this section. 
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TWO OPTIMALITY QUESTIONS 

1. What is the maximal order P which can be achieved for iterations e,m  
which use e new function evaluations and have memory m? 

2. What is the most that memory m is worth? That is, what is P - P ? _ 1 e,m e,o 

The answers depend on the class of iterations under study. Traub 

[36, Section 1.22] introduced four classes depending on the function 

evaluation and memory requirements of the algorithms. These classes 

are: 

One - Point 
One - Point With Memory 
Multipoint 
Multipoint With Memory 

We shall discuss optimality results for only the first three classes in 

this paper. 

These classes model algorithms appropriate for stationary iterations on 

sequential machines. An iteration rule is stationary if it does not change 

from step to step. A formal definition may be found in Ortega and 

Rheinboldt [22]. Because of the assumption of sequential machine, the 

definition of one point iteration with memory (Section 5) uses the same 

number of derivatives at each point. On parallel machines we may want 

to vary the number of derivatives at each point. The case where the 

number of derivatives varies is studied by Traub [36, pp. 60-65] and 

Feldstein and Firestone [7]. 
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Besides those posed earlier, we discuss some additional optimality 

questions. An important measure of the goodness of an algorithm is the 

efficiency index defined by 
1 

E - p e 

(See Ostrowski [23, Chapter 3] and Traub [36, Appendix C] for discussion 

of this index.) A study of iterations with high values of the efficiency 

index is reported by Feldstein and Firestone [7]. 

An efficiency index similar to E has been used by Paterson [24] to 

derive a most interesting result concerning the calculation of square 

roots* The calculation of is identical with calculating the positive 
2 

zero of f =* x -A, Paterson takes for his efficiency measure of the 

iteration 
log 2 p 

where p denotes the order and M denotes the number of multiplications or 

divisions (except by constants). Since Paterson deals with a particular f, 

M is a good measure. Note that V • l c ^ E with M replacing e as a measure 

of cost. 

Paterson observes that for Newton iteration, V • 1. He proves 

THEOREM (Paterson [24]) 

If b is a rational functional with rational coefficients, generating  

a sequence converging to an algebraic number a and with order greater than  

unity« then V £ 1. 
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Thus Newton iteration is optimal for the calculation of square roots, 

at least among iterations with rational coefficients. 

It is part of the folklore of numerical mathematics that it is better 

to do something simple more times then something more complicated fewer 

times. Paterson1s result may be interpreted as stating and proving this 

rigorously for a particular problem. 
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3. INTERPOLATORY ITERATION 

Before discussing optimality results for classes of iterations, we 

discuss particular families of iterations which play a special role in 

the theory, the interpolatory iteration algorithms 1^ ̂  introduced 

and analyzed by Traub [35], [36]. For our purpose here, we need not know 

how formulas for interpolatory iteration are derived. Indeed, there are 

two families of interpolatory iterations derived from direct and inverse 

iteration. Both families have the same order for a given e and m and we 

shall not distinguish between them. In both families, Q is Newton 

iteration and 1^ ^ is secant iteration. 

For interpolatory iterations we have a complete theory relating 

order to evaluation and memory costs. Let ^ denote the order of an 

interpolatory iteration 1^ ̂ . Then we have the following basic result. 

THEOREM (Traub [36, Section 3.3 and 6.1]) 

q^ n
 8 3 e. For all finite e and m > 0, e < q < e+1. For e fixed, e a0 _ n e »m * 

q e m is a strictly increasing function of m and 

lim q = e+1. e ,m 
m °° 9  

This is a very satisfying result. It says that for interpolatory 

iteration, increasing memory while keeping the number of new evaluations 

fixed always increases the order. 

An important corollary is 
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COROLLARY (Traub [36, Section 6.1]) 

For all finite m, q - q n < 1. 

Thus for interpolatory iterations memory adds less than unity to the 

order. 

Upper and lower bounds on the order are given by the following theorems, 

Let 

6 = e+1 - q e,m ne,m 

and let e denote the base of natural logarithms. 

THEOREM (Traub [36, Section 3.3]) 

/ .i\ m e,m / ii\m 

(e+1) 9 (e+1) 

A sharper result is given by 

THEOREM (Kahan [15]) 

£ 6 £ , , - xm+1 - e,m / ,-xm+l -(e+1) - 1 9 (e+1) - 1 - em 
e+1 

Values of q for small values of e and m may be found in Table 1. ne,m 
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e = 1 e = 2 e - 3 

m = 0 1.000 2.000 3.000 

m = 1 1.618 2.732 3.791 

m = 2 1.839 2.920 3.951 

m = 3 1.928 2.974 3.988 

TABLE 1. VALUES OF q 
e,m 
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4. ONE-POINT ITERATION 

An iteration function belongs to the class of one-point iterations 

if all new function evaluations are at the point x̂ ^ and if its memory 

m = 0. Thus 

l+l e 0[x 1,f(x 1) f... ff. v' " ^ ( x ^ ] . 

The data flow chart for a one-point iteration is given in Figure 3. 

Evaluate 
f C x ^ , . . . , ^ 6 " 1 ^ ) 

(e-1) 
x i + 1 - $ e^ Q[x i,f(x 1),...,f (x i)] 

FIGURE 3. DATA FLOW CHART FOR ONE-POINT ITERATION 

For one-point iterations the first optimality question is settled by the 

theorem below. Recall that P is the optimal order for an iteration 
e,m 

characterized by new function evaluations e and memory m. 

THEOREM (Traub [30, 36, Section 5.4]) 

P = e. e,0 
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5. ONE-POINT ITERATION WITH MEMORY 

An Iteration function belongs to the class of one-point Iterations  

with memory if all new function evaluations are at the point and if 

its memory m > 0, Thus 

xi+l " f e , m C x l ' f ( x i ) » " - » £ < e " 1 ) ( x i ) ;  

xi-l f^^ xi-l^* * * * *^ ^ X£-1^' 

x. ,f(x. ),..•,fe""^(x, )]• i-nr i-m ' 9 N i-m J 

The semi-colon separates new function evaluations from those recovered 

from memory. The data flow chart for a one-point iteration with memory 

is given in Figure 4. 

Evaluate 

Obtain from memory 

x i . i , £ ( x i - i ) * - " » f ( e " ! ) < x i ) 

• • • 

Calculate 

FIGURE 4. DATA FLOW CHART FOR ONE-POINT ITERATION WITH MEMORY 
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The initial conjecture on optimality for this class was reported at 

the 1961 National ACM Conference. 

CONJECTURE (Traub [30, 36 (Section 6.3)]) 

For all one-point iterations with finite memory m 

P - P n < 1. e,m e,0 

Until the late sixties no progress was reported, but there have been 

exciting recent results. The matter has been investigated by Winograd and 

Wolfe [39] who assert a stronger result. Under weak conditions on the 

admissible iteration functions, interpolatory iteration 1^ ̂  is optimal 

among all iterations characterized by new function evaluations e and memory 

m. The truth of the conjecture then follows from the Corollary in 

Section 3. 

Winograd and Wolfe [39] have pointed out an ambiguity in the notion 

of memory since instead of using memory explicitly at each step, one can 

use it implicitly by encoding it in other data. Cohen and Varaiya [3] 

cite an example of such an encoding. Cohen and Varaiya deal with the 

ambiguity by adding a condition to the definition of order which insures 

that encoding does not increase the rate. 

Rissanen [27] resolves the ambiguity by imposing a smoothness condi­

tion on admissible algorithms. He proves that then the secant iteration 

(that is, the interpolatory iteration I has maximal order among all 

algorithms one with e = 1, m = 1. 
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6. MULTIPOINT ITERATION 

We summarize the situation for one-point iterations with or without 

memory. A one-point iteration with e new function evaluations (and there­

fore e-1 derivatives) is of order at most e. A one-point iteration with 

memory with e new function evaluations (and therefore e-1 derivatives) is 

of order less than e+1. Table 2 summarizes the situation. 

1 New function Highest Optimal 
1 evaluations derivative Order 

One-Point 1 e e-1 e 

One-Point I e e-1 < e+1 
With Memory 1 

TABLE 2. SUMMARY OF FACTS ABOUT ITERATION FUNCTIONS 

Is there a class of iteration algorithms for which these restrictions 

do not hold? An affirmative answer is provided by multipoint iterations 

(Traub [34], [36, Section 1.2]). 

An iteration function belongs to the class of multipoint iterations  

if new function evaluations are made at more than one point and if its  

memory m 8 8 0. 

We shall confine ourselves to giving a general prescription and a 

data flow chart of a multipoint iteration only for the case of a two-point 

iteration. Then 
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( e r D 

( e r D (e 2-D 
xi+l " * [ x i ' f ( x i ) f * ( x

i)» z
i» f( z

i)»»*»» f * (« t)]' 

The data flew chart is given by Figure 5. 

Evaluate 
( e l -1) f (x^ ,f 1 <x t) 

Calculate 
( e r D 

z i = ^ x i , f ( xi)»"*» f ( xi^ 

Evaluate 
(e2-l) 

f(z i) f (z ±) 

Xi+1 = n x i . f ( x i ) . " 

Calculate 
( e r l ) 

,f (x i),z i,f (z^^),. 
(e9-l) 

.,f (« t)] 

FIGURE 5. DATA FLOW CHART FOR TWO-POINT ITERATION 

A fourth class of iterations, multipoint with memory, is defined by 

Traub [36, Section 1.2]. We shall not discuss multipoint iteration with 

memory here. 
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Table 2 lists two types of requirements, one on the total number of 

new function evaluations and a second on the highest derivative required. 

First we give examples to show that the restriction on derivatives need 

not apply for multipoint iterations. 

Example 1 

x.(j)(^(xi)) - 4> 2( X i) 
xi+l " * ( x i ) " K± - 2^(xt) + PM*t)) ' 

b(x±) - x± - f(xj,) 

This is a particular case of the Steffensen-Householder-Ostrowski iteration 

(Traub [36, Appendix D]). Note that no derivatives are used. Yet if 

f(a) + 1, P - 2. 

Example 2 

Let L £ 3 be fixed and let 

Xi+1 = i ) [ x
1 » f < x

1 ) , f , ( x i ) , £ ( X 2 ) , # " # f f ( X L - l ) ] ' 
where 

f(X. .(x )) 
\. - X J(x ±) - X j - 1 ( x 1 ) f i ( x ) » j-2,...,L-l 

and 

X- (x. ) - x.. 
1 I i 

This is a multipoint iteration based on L-l points. The new function evalua­

tions are L-l evaluations of f and one of f . For all twice continuously 

differentiable f for which fM(<y) i 0, this iteration is of order L (Traub 

[36, Section 8.34]. 
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These two examples show that for multipoint iterations there is no 

connection between the highest derivative required and the order. 

For these two examples, the order equals the number of new function 

evaluations. Since we proved this was always the case for one-point itera­

tions, we might be tempted to suppose that this result holds for multipoint 

iterations also. That this is not the case is shown by the following example. 

Example 3 

f(x t) 
Z i " X i " VJ^) 

f( X.) p ( E ± ) - ff<xtn 
x i + i = x i " Fo^y^z,) - f ( X i )J 

The data flow chart is given in Figure 6. 

Evaluate 
f(x i),f ,(x i) 

> f 
Calculate 

Evalu 
f(z 

ate 
i> 

v f 
Calculate 

xi+l 

< 
FIGURE 6. AN EXAMPLE OF A MULTIPOINT ITERATION 
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This iteration uses two evaluations of f and one of f 1. Jarratt [14] 

has constructed a fourth order iteration using just two evaluations of f 1 

and one of f. King [16] constructs a family of fourth order methods which 

use two values of f and one value of f . 

We turn to optimality considerations for multipoint iterations. As 

before let P rt denote the maximal order for an iteration with new function e,0 
evaluations e and no memory. If we permit only one-point or multipoint 

iterations (no memory), we know that j ^ 2 (Newton iteration) and 

P« n ^ 4 (Example 3 above). 

We state a 

NEW CONJECTURE 

For all one-point or multipoint iterations without memory, 

P2,0 = 2  

P3,0 " 4 
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