
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-105

COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES

J. F. Traub

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa.
October 1971

This research was supported in part by the Office of Naval
Research under contract N 00014-67-A-0314-0010, NR 044-422
and by the Advanced Research Projects Agency under contract
F44620-70-C-0107.

ABSTRACT

The theory of optimal algorithmic processes is part of computational

complexity. This paper deals with analytic computational complexity. The

relation between the goodness of an iteration algorithm and its new func­

tion evaluation and memory requirements are analyzed. A new conjecture

is stated.

1. INTRODUCTION

Computational complexity is one of the foundations of theoretical

computer science. The phrase computational complexity seems to have

been first used by Hartmanis and Stearns [10] in 1965 although the first

papers belonging to the field are those of Rabin [25, 26] in 1959 and 1960.

One of its important components is the theory of optimal algorithmic

processes. We distinguish between optimality theory for algebraic (or

combinatorial) processes, which we call algebraic computational complexity

and optimality theory for analytic (or continuous) processes, which we call

analytic computational complexity.

The last few years have witnessed striking developments in algebraic

computational complexity; for example, the multiplication of numbers

(Cook [5], SchSnhage and Strassen [28]), the multiplication of matrices

(Winograd [38], Strassen [29], Hopcroft and Kerr [12]), polynomial evalua­

tion (Winograd [38]), median of a set of numbers (Floyd [9]), graph planarity

(Hopcroft and Tarjan [13]). Surveys may be found in Knuth [17], Borodin [1],

and Minsky [21].

Research on analytic computational complexity dates to the early

sixties (Traub [30-36] and predates most of the algebraic results. More

specifically the work on analytic computational complexity to date has con­

cerned optimal iteration*Recent results are due to Cohen [2], Cohen and

Varaiya [3], Feldstein [6], Feldstein and Firestone [7, 8], Hindmarsh [11],

Jarratt [14], King [16], Miller [19, 20], Paterson [24], Rissanen [27],

and Winograd and Wolfe [39]. (Paterson's results are summarized at the

end of Section 2.)

-2~

In this paper we define basic concepts and pose some fundamental

questions in optimal iteration. In the terminology of Knuth [18] we per­

form a Type B analysis. That is, we consider a family of algorithms for

solving a particular problem and select the "best possible". We survey

earlier work, report recent progress, and state a new conjecture. Since

the field is changing rapidly, some of the results cited have not yet

appeared in the open literature. An abbreviated version of this material

was presented (Traub [37]) at the IFIP 71 Congress, with somewhat different

terminology and notation.

This paper is intended for the non-specialist in iteration theory and

therefore some precision in definitions and some generality in the models

of iteration algorithms are sacrificed.

-3-

2. BASIC CONCEPTS

We begin by specifying the problem. Let F denote the class of in­

finitely differentiable real functions defined on the real line. We

assume that if f € F, then f has at least one simple zero <y, that is, a

number a such that f (a) m 0, ff(<y) f 0. The assumption of infinite

differentiability is for simplicity. For any algorithm we shall discuss,

f need only have a small number of derivatives on a finite interval.

Our problem is to approximate a for f € F. This zero-finding problem

may seem rather specialized, but in fact, it is equivalent to the fixed-point

problem of calculating a number a such that a - g(ar), an ubiquitous problem

in mathematics and applied mathematics. It may be formulated in an ab­

stract setting and covers partial differential equations, integral equa­

tions, boundary value problems for ordinary differential equations as

well as many other important problems (Collatz [4]).

We consider iterative algorithms for the approximation of A se­

quence of approximating iterates {x^) is generated by an iteration func­

tion. We shall not give a formal definition of iteration algorithm. The

interested reader may consult Ortega and Rheinboldt [22] and Cohen and

Varaiya [3].

Our aim is to discuss optimal iteration algorithms. There are a number of

measures we could optimize. For example, we could minimize the total number

of arithmetic operations needed to approximate a to within an error e.

This measure is strongly dependent on the particular f in question. For

our current purpose, we prefer a measure which is not so dependent on f

-4-

and which is easier to calculate* (At the end of this section we report

a recent optimality result which does optimize arithmetic operations.)

We introduce general measures of cost and goodness. The cost con­

sists of two parts: the new evaluation cost e and the memory cost m.

The new evaluation cost e is defined as the number of new function evalua­

tions required. This definition is motivated by the following considera­

tions. An iteration step consists of two parts.

1. Calculate new function values.

2. Combine the data to calculate the next iterate.

Since the evaluation of functions requires invocation of subroutines

whereas the calculation of the next iterate requires only a few arith­

metic operations, we neglect the latter.

A functiori evaluation is the calculation of f or one of its deriva­

tives. Thus if f(x^) a r M* f'te^) a r e required, e =* 2. We could assign a

new evaluation cost of 6^ for the evaluation of f ^ (Traub [36, p. 262]),

but this would make the measure f-dependent.

We turn to the second component of the cost. If previous function

evaluations at x, -, x J are used to calculate x,. n, then we define i-1 7 i-m i+1*

m as the memory cost of the iteration.

Another component of the cost is not included in this paper. An

iteration such as the secant iteration involves the subtraction of quan­

tities which are close together, and to maintain accuracy, more precision

should perhaps be carried. The theory should be extended to include this

cost.

-5-

We turn now to a measure of the goodness of an iteration. Let

x. -> a* If there exists a number p such that

then p is called the order of the iteration. This definition of order will

serve for our purposes. For other definitions of order the reader is re­

ferred to Ortega and Rheinboldt [22] and Cohen and Varaiya [3].

The order has two additional properties which make it useful for our

purposes. It depends primarily on the algorithm and only weakly on f and

it is fairly easy to calculate. For example, for all twice continuously

differentiable functions f for which f n(a) ^ 0, Newton iteration (see

Example 1 below) has order p « 2. (Recall we are assuming throughout this

paper that f 1(a) ^ 0.) Under the same conditions, the secant iteration

has order p - j(l + Jf>) * 1.62.

Two widely known iteration algorithms may serve to illuminate these

definitions. We will use them to introduce data flow charts which are a

convenient way to describe algorithms from our point of view.

Example 1. Newton Iteration. Let x 4 be given. Define

= A / 0, 00

then x

This is a reasonable measure of goodness since if A is near unity,
xi+l h a s a b o u t P times as many significant figures as x .

x i+1 *[x i,f(x 1),f(x i)].

-6-

The data flow chart of Figure 1 exhibits the process at step i. For

Newton iteration,

e = CM

m = 0
P - 2 (if

X i

Evaluate
f(x i),f'(x i)

/

Calculate
Xi+1

<

f"(<*) t 0).

FIGURE 1. DATA FLOW CHART FOR NEWTON ITERATION

Example 2. Secant Iteration. Let x Q , x, be given. Define

xi+l " X i " f (x i) (x i ' X i - 1 }

f(x±) - f(x ±_ 1)

= $[x i,x i_ 1,f(x ±),f(x i_ 1)].

-7-

The data flow chart of Figure 2 exhibits the process at step i. For

secant iteration,

e - 1
m = 1
p = |(1 + J5) - 1.62 (if £"(a) f 0).

1
Evaluate
f(x i)

r >

Calculate
Xi+1

Obtain from
memory .

i-1* i-1

< i

FIGURE 2. DATA FLOW CHART FOR SECANT ITERATION

We now pose the following optimality questions which will be our

focus for the remainder of this paper. Other optimality problems will

be discussed at the end of this section.

-8-

TWO OPTIMALITY QUESTIONS

1. What is the maximal order P which can be achieved for iterations e,m
which use e new function evaluations and have memory m?

2. What is the most that memory m is worth? That is, what is P - P ? _ 1 e,m e,o

The answers depend on the class of iterations under study. Traub

[36, Section 1.22] introduced four classes depending on the function

evaluation and memory requirements of the algorithms. These classes

are:

One - Point
One - Point With Memory
Multipoint
Multipoint With Memory

We shall discuss optimality results for only the first three classes in

this paper.

These classes model algorithms appropriate for stationary iterations on

sequential machines. An iteration rule is stationary if it does not change

from step to step. A formal definition may be found in Ortega and

Rheinboldt [22]. Because of the assumption of sequential machine, the

definition of one point iteration with memory (Section 5) uses the same

number of derivatives at each point. On parallel machines we may want

to vary the number of derivatives at each point. The case where the

number of derivatives varies is studied by Traub [36, pp. 60-65] and

Feldstein and Firestone [7].

-9-

Besides those posed earlier, we discuss some additional optimality

questions. An important measure of the goodness of an algorithm is the

efficiency index defined by
1

E - p e

(See Ostrowski [23, Chapter 3] and Traub [36, Appendix C] for discussion

of this index.) A study of iterations with high values of the efficiency

index is reported by Feldstein and Firestone [7].

An efficiency index similar to E has been used by Paterson [24] to

derive a most interesting result concerning the calculation of square

roots* The calculation of is identical with calculating the positive
2

zero of f =* x -A, Paterson takes for his efficiency measure of the

iteration
log 2 p

where p denotes the order and M denotes the number of multiplications or

divisions (except by constants). Since Paterson deals with a particular f,

M is a good measure. Note that V • l c ^ E with M replacing e as a measure

of cost.

Paterson observes that for Newton iteration, V • 1. He proves

THEOREM (Paterson [24])

If b is a rational functional with rational coefficients, generating

a sequence converging to an algebraic number a and with order greater than

unity« then V £ 1.

-10-

Thus Newton iteration is optimal for the calculation of square roots,

at least among iterations with rational coefficients.

It is part of the folklore of numerical mathematics that it is better

to do something simple more times then something more complicated fewer

times. Paterson1s result may be interpreted as stating and proving this

rigorously for a particular problem.

-11-

3. INTERPOLATORY ITERATION

Before discussing optimality results for classes of iterations, we

discuss particular families of iterations which play a special role in

the theory, the interpolatory iteration algorithms 1^ ̂ introduced

and analyzed by Traub [35], [36]. For our purpose here, we need not know

how formulas for interpolatory iteration are derived. Indeed, there are

two families of interpolatory iterations derived from direct and inverse

iteration. Both families have the same order for a given e and m and we

shall not distinguish between them. In both families, Q is Newton

iteration and 1^ ^ is secant iteration.

For interpolatory iterations we have a complete theory relating

order to evaluation and memory costs. Let ^ denote the order of an

interpolatory iteration 1^ ̂ . Then we have the following basic result.

THEOREM (Traub [36, Section 3.3 and 6.1])

q^ n
 8 3 e. For all finite e and m > 0, e < q < e+1. For e fixed, e a0 _ n e »m *

q e m is a strictly increasing function of m and

lim q = e+1. e ,m
m °° 9

This is a very satisfying result. It says that for interpolatory

iteration, increasing memory while keeping the number of new evaluations

fixed always increases the order.

An important corollary is

-12-

COROLLARY (Traub [36, Section 6.1])

For all finite m, q - q n < 1.

Thus for interpolatory iterations memory adds less than unity to the

order.

Upper and lower bounds on the order are given by the following theorems,

Let

6 = e+1 - q e,m ne,m

and let e denote the base of natural logarithms.

THEOREM (Traub [36, Section 3.3])

/ .i\ m e,m / ii\m

(e+1) 9 (e+1)

A sharper result is given by

THEOREM (Kahan [15])

£ 6 £ , , - xm+1 - e,m / ,-xm+l -(e+1) - 1 9 (e+1) - 1 - em
e+1

Values of q for small values of e and m may be found in Table 1. ne,m

-13-

e = 1 e = 2 e - 3

m = 0 1.000 2.000 3.000

m = 1 1.618 2.732 3.791

m = 2 1.839 2.920 3.951

m = 3 1.928 2.974 3.988

TABLE 1. VALUES OF q
e,m

-14-

4. ONE-POINT ITERATION

An iteration function belongs to the class of one-point iterations

if all new function evaluations are at the point x̂ ^ and if its memory

m = 0. Thus

l+l e 0[x 1,f(x 1) f... ff. v' " ^ (x ^] .

The data flow chart for a one-point iteration is given in Figure 3.

Evaluate
f C x ^ , . . . , ^ 6 " 1 ^)

(e-1)
x i + 1 - $ e^ Q[x i,f(x 1),...,f (x i)]

FIGURE 3. DATA FLOW CHART FOR ONE-POINT ITERATION

For one-point iterations the first optimality question is settled by the

theorem below. Recall that P is the optimal order for an iteration
e,m

characterized by new function evaluations e and memory m.

THEOREM (Traub [30, 36, Section 5.4])

P = e. e,0

-15-

5. ONE-POINT ITERATION WITH MEMORY

An Iteration function belongs to the class of one-point Iterations

with memory if all new function evaluations are at the point and if

its memory m > 0, Thus

xi+l " f e , m C x l ' f (x i) » " - » £ < e " 1) (x i) ;

xi-l f^^ xi-l^* * * * *^ ^ X£-1^'

x. ,f(x.),..•,fe""^(x,)]• i-nr i-m ' 9 N i-m J

The semi-colon separates new function evaluations from those recovered

from memory. The data flow chart for a one-point iteration with memory

is given in Figure 4.

Evaluate

Obtain from memory

x i . i , £ (x i - i) * - " » f (e " !) < x i)

• • •

Calculate

FIGURE 4. DATA FLOW CHART FOR ONE-POINT ITERATION WITH MEMORY

-16-

The initial conjecture on optimality for this class was reported at

the 1961 National ACM Conference.

CONJECTURE (Traub [30, 36 (Section 6.3)])

For all one-point iterations with finite memory m

P - P n < 1. e,m e,0

Until the late sixties no progress was reported, but there have been

exciting recent results. The matter has been investigated by Winograd and

Wolfe [39] who assert a stronger result. Under weak conditions on the

admissible iteration functions, interpolatory iteration 1^ ̂ is optimal

among all iterations characterized by new function evaluations e and memory

m. The truth of the conjecture then follows from the Corollary in

Section 3.

Winograd and Wolfe [39] have pointed out an ambiguity in the notion

of memory since instead of using memory explicitly at each step, one can

use it implicitly by encoding it in other data. Cohen and Varaiya [3]

cite an example of such an encoding. Cohen and Varaiya deal with the

ambiguity by adding a condition to the definition of order which insures

that encoding does not increase the rate.

Rissanen [27] resolves the ambiguity by imposing a smoothness condi­

tion on admissible algorithms. He proves that then the secant iteration

(that is, the interpolatory iteration I has maximal order among all

algorithms one with e = 1, m = 1.

-17-

6. MULTIPOINT ITERATION

We summarize the situation for one-point iterations with or without

memory. A one-point iteration with e new function evaluations (and there­

fore e-1 derivatives) is of order at most e. A one-point iteration with

memory with e new function evaluations (and therefore e-1 derivatives) is

of order less than e+1. Table 2 summarizes the situation.

1 New function Highest Optimal
1 evaluations derivative Order

One-Point 1 e e-1 e

One-Point I e e-1 < e+1
With Memory 1

TABLE 2. SUMMARY OF FACTS ABOUT ITERATION FUNCTIONS

Is there a class of iteration algorithms for which these restrictions

do not hold? An affirmative answer is provided by multipoint iterations

(Traub [34], [36, Section 1.2]).

An iteration function belongs to the class of multipoint iterations

if new function evaluations are made at more than one point and if its

memory m 8 8 0.

We shall confine ourselves to giving a general prescription and a

data flow chart of a multipoint iteration only for the case of a two-point

iteration. Then

-18-

(e r D

(e r D (e 2-D
xi+l " * [x i ' f (x i) f * (x

i)» z
i» f(z

i)»»*»» f * (« t)]'

The data flew chart is given by Figure 5.

Evaluate
(e l -1) f (x^ ,f 1 <x t)

Calculate
(e r D

z i = ^ x i , f (xi)»"*» f (xi^

Evaluate
(e2-l)

f(z i) f (z ±)

Xi+1 = n x i . f (x i) . "

Calculate
(e r l)

,f (x i),z i,f (z^^),.
(e9-l)

.,f (« t)]

FIGURE 5. DATA FLOW CHART FOR TWO-POINT ITERATION

A fourth class of iterations, multipoint with memory, is defined by

Traub [36, Section 1.2]. We shall not discuss multipoint iteration with

memory here.

-19-

Table 2 lists two types of requirements, one on the total number of

new function evaluations and a second on the highest derivative required.

First we give examples to show that the restriction on derivatives need

not apply for multipoint iterations.

Example 1

x.(j)(^(xi)) - 4> 2(X i)
xi+l " * (x i) " K± - 2^(xt) + PM*t)) '

b(x±) - x± - f(xj,)

This is a particular case of the Steffensen-Householder-Ostrowski iteration

(Traub [36, Appendix D]). Note that no derivatives are used. Yet if

f(a) + 1, P - 2.

Example 2

Let L £ 3 be fixed and let

Xi+1 = i) [x
1 » f < x

1) , f , (x i) , £ (X 2) , # " # f f (X L - l)] '
where

f(X. .(x))
\. - X J(x ±) - X j - 1 (x 1) f i (x) » j-2,...,L-l

and

X- (x.) - x..
1 I i

This is a multipoint iteration based on L-l points. The new function evalua­

tions are L-l evaluations of f and one of f . For all twice continuously

differentiable f for which fM(<y) i 0, this iteration is of order L (Traub

[36, Section 8.34].

-20-

These two examples show that for multipoint iterations there is no

connection between the highest derivative required and the order.

For these two examples, the order equals the number of new function

evaluations. Since we proved this was always the case for one-point itera­

tions, we might be tempted to suppose that this result holds for multipoint

iterations also. That this is not the case is shown by the following example.

Example 3

f(x t)
Z i " X i " VJ^)

f(X.) p (E ±) - ff<xtn
x i + i = x i " Fo^y^z,) - f (X i)J

The data flow chart is given in Figure 6.

Evaluate
f(x i),f ,(x i)

> f
Calculate

Evalu
f(z

ate
i>

v f
Calculate

xi+l

<
FIGURE 6. AN EXAMPLE OF A MULTIPOINT ITERATION

-21-

-22-

This iteration uses two evaluations of f and one of f 1. Jarratt [14]

has constructed a fourth order iteration using just two evaluations of f 1

and one of f. King [16] constructs a family of fourth order methods which

use two values of f and one value of f .

We turn to optimality considerations for multipoint iterations. As

before let P rt denote the maximal order for an iteration with new function e,0
evaluations e and no memory. If we permit only one-point or multipoint

iterations (no memory), we know that j ^ 2 (Newton iteration) and

P« n ^ 4 (Example 3 above).

We state a

NEW CONJECTURE

For all one-point or multipoint iterations without memory,

P2,0 = 2

P3,0 " 4

-23-

BIBLIOGRAPHY

[I] Borodin, A., Computational Complexity - A Survey. Proceedings of
the Fourth Annual Princeton Conference on Information Sciences and
Systems (1970), 257-262.

[2] Cohen, A. I., Rate of Convergence and Optimality Conditions of Root
Finding and Optimization Algorithms. University of California, Berkeley
Dissertation, 1970.

[3] Cohen, A. I. and Varaiya, P., Rate of Convergence and Optimality Con­
ditions of Root Finding. To appear.

[4] Collatz, L., Functional Analysis and Numerical Mathematics. Academic
Press, 1964.

[5] Cook, S. A., On the Minimum Computation Time for Multiplication.
Harvard Dissertation, 1966.

[6] Feldstein, A., Bounds on Order and Ostrowski Efficiency for Inter­
polatory Iteration Algorithms. University of California, Lawrence
Radiation Laboratory, Livermore, 1969.

[7] Feldstein, A. and Firestone, R. M., Hermite Interpolatory Iteration
Theory and Parallel Numerical Theory. Report, Division of Applied
Mathematics, Brown University, 1967.

[8] Feldstein, A. and Firestone, R. M., A Study of Ostrowski Efficiency
for Composite Iteration Functions. Proceedings ACM National Confer­
ence (1969), 147-155.

[9] Floyd, R. W., Notes on Computing Medians and Percentiles. To appear.

[10] Hartmanis, J. and Stearns, R. E., Computational Complexity of Recur­
sive Sequences. IEEE Proceedings Fifth Annual Symposium on Switching
Circuit Theory and Logical Design (1964), 82-90.

[II] Hindmarsh, A. C , Optimality in a Class of Rootfinding Algorithms.
University of California, Lawrence Radiation Laboratory, Livermore
Report UCRL-72456. To appear in SIAM Journal of Numerical Analysis.

[12] Hopcroft, J. E. and Kerr, L. E., On Minimizing the Number of Multi­
plications Necessary for Matrix Multiplication. SIAM Journal of
Applied Mathematics 20 (1971), 30-36.

[13] Hopcroft, J. and Tarjan, R., Planarity Testing in V log V steps:
Extended Abstract. Proceedings IFIP Congress Booklet TA-2 (1971),
18-22.

-24-

Jarratt, P., Some Efficient Fourth Order Multipoint Methods for
Solving Equations. BIT 9 (1969), 119-124.

Kahan, W., Private Communication, 1969.

King, R. F., A Family of Fourth-Order Methods for Nonlinear Equations.
To appear.

Knuth, D., The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, Addison-Wesley, 1969.

Knuth, D., Mathematical Analysis of Algorithms. Proceedings IFIP
Congress Booklet I (1971), 135-143.

Miller, W., Toward Abstract Numerical Analysis, University of Washington
Dissertation, 1969.

Miller, W., Unsolvable Problems With Differentiability Hypotheses.
Proceedings of the Fourth Annual Princeton Conference on Information
Sciences and Systems (1970), 480-482.

Minsky, M., Form and Computer Science. Journal ACM 17 (1970), 197-215.

Ortega, J. M. and Rheinboldt, W. C , Iterative Solution of Nonlinear
Equations in Several Variables. Academic Press, 1970.

Ostrowski, A. M., Solution of Equations and Systems of Equations,
second edition. Academic Press, 1966.

Paterson, M. S., Optimality for Square Root Algorithms. Private
Communication, 1971.

Rabin, M. 0., Speed of Computation of Functions and Classification of
Recursive Sets. Proceedings Third Convention of Scientific Societies,
Israel, 1-2, 1959.

Rabin, M. 0., Degrees of Difficulty of Computing a Function and a
Partial Ordering of Recursive Sets. Technical Report 2, Hebrew University,
Jerusalem, 1960.

Rissanen, J., On Optimum Root-Finding Algorithms. IBM Report RJ726
(No. 13830).

Schonhage, A. and Strassen, V., Schnelle Multiplication Grosser
Zahlen, 1970. To appear.

Strassen, V., Gaussian Elimination is Not Optimal, Numerische Math. 13
(1969), 354-356.

Traub, J. F., On Functional Iteration and the Calculation of Roots.
Proceedings 16th National ACM Conference, 5A-1 (1961), 1-4.

-25-

[31] Traub, J. F., On Functional Iteration and the Calculation of Roots.
Unpublished Report (142 pages), 1961.

[32] Traub, J. F., Optimal m-Invariant Iteration Functions. Notices
American Mathematical Society 9, No. 2 (1962), 122.

[33] Traub, J. F., On the Informational Efficiency of Iteration Functions.
International Congress of Mathematicians, 1962.

[34] Traub, J. F., The Theory of Multipoint Iteration Functions. Proceed­
ings 17th National ACM Conference (1962), 80-81.

[35] Traub, J. F., Interpolatively Generated Iteration Functions. Pro­
ceedings 18th National ACM Conference, 1963.

[36] Traub, J. F., Iterative Methods for the Solution of Equations.
Prentice-Hall, 1964.

[37] Traub, J. F., Optimal Iterative Processes: Theorems and Conjectures.
Proceedings IFIP Congress Booklet TA-1 (1971), 29-32.

[38] Winograd, S., The Number of Multiplications Involved in Computing
Certain Functions. Proceedings IFIP Congress, Booklet A (1968),
A-128-A130.

[39] Winograd, S. and Wolfe, P., Private Communication, 1969.

Security Classification

DOCUMENT CONTROL DATA - R I D
(Security classification of title, body of abstract and indexing annotation must be entered when the overelt report is classified)

1. O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-MelIon University
Pittsburgh, Pa.

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1. O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-MelIon University
Pittsburgh, Pa.

26. G R O U P

3. R E P O R T T I T L E

COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES

4. D E S C R I P T I V E N O T E S (Type of report and inclusive dates)

Scientific report
5. A U T H O R (S) (First name, middle initial, last name)

J. F. Traub

6. R E P O R T D A T E

October, 1971
7a. T O T A L NO. 6 F P A G E S * 6 . NO. O F R E F S

27 39
8a. C O N T R A C T O R G R A N T N O .

N 00014-67-A-0314-0010, NR 044-422
F44620-70-C-0107

b. P R O J E C T N O .

c.
d.

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8a. C O N T R A C T O R G R A N T N O .

N 00014-67-A-0314-0010, NR 044-422
F44620-70-C-0107

b. P R O J E C T N O .

c.
d.

9b. O T H E R R E P O R T NO(S) (Any other numbers that may be assigned
this report)

CMU-CS-71-105
10. D I S T R I B U T I O N S T A T E M E N T

Approved for public release, distribution unlimited.

11. S U P P L E M E N T A R Y N O T E S 12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Office of Naval Research
Advanced Research Projects Agency

1 3 . A B S T R A C T

Key words and phrases: computational complexity, optimal algorithm, optimal iteration.
numerical mathematics, iteration theory.

The theory of optimal algorithmic processes is part of computational complexity.
This paper deals with analytic computational complexity. The relation between the
goodness of an iteration algorithm and its new function evaluation and memory re­
quirements are analyzed. A new conjecture is stated.

D D , F
N r . , 1 4 7 3

Security Classificatioa

Security Classification

K E Y W O R D S
L I N K A L I N K B L I N K C

R O L E WT R O L E WT R O L E

Security Classification

