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ABSTRACT

A matrix S 1s a solvent of the matrix polynomlal
= m-l [N ]
M(X) = X + AX + + A,

1f M(S) = Q, where Ai, X and S are square matrices. We
present some new mathematical results for matrix polynomials,
as well as a globally convergent algorithm for calculating
such solvents.

In the thecoretical part of this paper, existence
theorems for solvents, a generalized division, interpolation,
a block Vandermonde, and a generallzed Lagrangian basls are
studied.

Algorithms are presented which generalize Traub's
scalar polynomial methods, Bernoulli's method,.and eligenvector
powering.

The related lambda-matrix problem, that of finding

a scalar ) such that

m m=1
P S A1A + + Am

is singular, 1is examined along with the matrix polynomial
problem.

The matrix polynomial problem can be cast into a
block elgenvalue formulation as follows. Given a matrix A of
order mn, find a matrix X of order n, such that AV = VX,
where V 1s a matrix of full rank. Some of the implications

of this new block eilgenvalue formulation are considered.
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CHAPTER I

Introductlion

In this chapter we state the problem, give some of
the definltions, present the major results of the paper, and

outline the entlre dissertation.

1.1 Preliminaries. Algorithms for the solution of the scalar

polynomial problem, x™ + alxm'1 + e 4 a, = 0, have become

extremely efficient. See Traub [20,21] and Jenklns and Traub
[7,8]. A generalization of the scalar polynomial is given by

the following.

Definition 1.1 @Given n by n matrices AgshAqys..-5A , a matrix

polynomial M(X) is the matrix function

m-1

= m - e e
M(X) = on + Al + + Am (1.1)

in the n by n matrix varlable X.

If Ao 1s nonsingular, then the monlc¢ matrix polynomial is
= - =1
M(X) = Ao M(X). (1.2)

Two generalizations of the roots of a scalar poly-
nomial are to be examined. The first one, the major emphasis
of this work, 1s classical. Little 1s known, however, about

existence and calculation of such roots of matrix polynomials.



Definition 1.2 A matrix S 1s 2 geclvent of the matrix poly-
nomial M(X} if
M(S) = 0. (1.3)

Definition 1.3 A matrix W is a weak solvent of the matrix

polynomial M(X) if

det M(W) = 0. (1.4)

A speclal case of the weak solvent problem 1s the
important lambda-matrix problem. Restricting the class of
weak solvents to scalar matrices, AI, and using the notation

M(A) = M(AI), the lambda-matrix problem is that of finding

a scalar A such that

M(A) = A" + A Am-1

1 + e + Am (1.5

is singular. Such a scalar is called a latent root of M(A)

and vectors b and r are right and left latent vectors, respec-

tively, 1f, for a latent root p, M(p)b =0 and rTM(p) = 0?

M(}A) in equation (1.5) 1s an n by n matrix whose elements are
scalar polynomials in A. See Lancaster [13], Gantmacher [21,
MacDuffee [15], and Peters and Wilkinson [17] for a complete
discussion of lambda-matrices. A description of some of the
present methods of solving the lambda-matrix problem 1s found

in Appendix B.
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Only monic matrix polynomials are studied in the
main part of this dissertation. The case of the nonmonic
matrix polynomial, and where Ao 1s singular, will be consid-
ered in Appendix A. 1If A, is nonsingular, the monic matrix
polynomial M(X) can be obtained by the solution of several
linear systems, as was suggested by Peters and Wilkinson [17].

Hence, we conslder
M(X) = x™ + Alx"“‘l +oeee 4 AL (1.6)

The following are some well-known results that will
be frequently used. They may all be found in Lancaster [13].
A corollary of Bézout's theorem states that if S is

a solvent of M(X) then

M(X) = Q(A)(Ir-8), (1.7)

where Q()) 1s a monic lambda-matrix of degree m-1. Another
result 1s that the lambda-matrix M(A) has mn latent roots,
and hence, 1t follows immediately from (1.7) that the n
elgenvalues of a solvent are all latent roots of the lambda-
matrix. Furthermore, the n(m-1l) latent roots of Q(A) are
also latent roots of M(A).

If one is interested in the solution of a lambda-
matrix problem, then a solvent will provide n latent roots
and can be used for a matrix deflation, which yields the new

problem Q(A).



1.2 Main Results of this Paper. The following are the prin-

cipal results of this work. They will be proved in later
chapters.

The Fundamental Theorem of Algebra, that a scalar
polynomlial has at least one zero, does not hold true for
matrix polynomials. There are matrix polynomlals whilch have
no solvents (Theorem 2.6).

It 1s useful to have a concept of a matrix poly-

- nomial with a complete set of solvents. This 1s a generall-

th

zation of an n degree scalar polynomlial having n roots.

. ——— a— — o ————————————  ——

of solvents, 1f the set of mn eigenvalues of the m solvents

—— i —— So——— — —

is the same, counting multiplicities, as the set of mn latent

i ———— — — —

roots of M(A).

Thus, in the special case of M(A) having mn dis-
tinct latent roots, a complete set of m solvents must have

no common elgenvalues and each solvent must have distinct

elgenvalues.

We consider a generalizatlion of the scalar

Vandermonde matrix.

Definition 1.5 Glven n by n matrices Sl,---,Sm, the block

Vandermonde matrix 1s




FI I en s K T
SI 52 ase R Sm
V(S ,°00,8,) =] . ‘ (1.8)
m-1 m-1 m-1
Sl S2 Sm 1

It will be shown in Chapter ﬁ that it 1s not suffi-
cient that matrices Sl,---,Sm_have distinet and disjoint
eligenvalues for V(Sl,---,sm) to be nonsingular.

Existence of a complete set of solvents for the
important speclal case of the lambda-matrix having distinct

latent roots i1s given by the following theorem (Theorem 4.1).

Theorem If M()) has distinct latent roots, then M(X) has a

complete set of solvents, Sl,---,Sm, and V(Sl,--°,Sm) 1s non-

singular.

Definition 1.6 A solvent of M(X) is a dominant solvent if

the n eigenvalues of this solvent are strictly the n largest

latent roots of M(A}.

Algorithm 1, presented below and agaln in Chapter 5,
attempts to find a dominant solvent of M(X). It is a gener-
alization of one due to Traub [21] for scalar polynomials.
The algorithm has two stages. The first, a generalization of
Sebastiao e Silva's algorithm (see Householder [U4]), generates
a sequence of matrix polynomials, all of degree less than m.

Then the last two matrix polynomials of the generated



sequence are used in a matrix 1teration which 1s to converge

to a dominant solvent.

Algorithm 1
(1) Let G, (X) =1 and
Cpeq (X) = B (X)X = a)M(X), (1.9)
for n=0,1,++,L-1, where
-  n,m=1 .o n

¢, (X) = ulxm + +al, (1.10)

(11) Le X =(9L) ol-1) 7 d

g% o “\"1/\*%1 and

-1

Xg41 = Op(Xq)6 1 (Xy) (1.11)

for 1 = 0,1,%¢°.

Convergence of this algorithm is established for a

class of matrix polynomials (Theorem 5.1).

Theorem If

(1) M(X) has a complete set of solvents, S,,***,5,

(11) S, is a dominant solvent, and,

(111) V(s ---,Sm) and V(Sz,---,sm) are nonsingular,

1’

then

-1
(1) G._(X) (u?) Gn(X) > ﬁl(X) as n + =, where
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M,(X) is the unique monic matrix polynomial of

degree m-1 with solvents S

2,°:°,Sm, but not Sl’ and

(11) for L sufficiently large X, of eguation (1.11) con-

verges to S,

It will be shown (Corollary 5.2 and Lemma 5.7) that
each stage of the algorithm is linearly convergent. Let o be
the absolute value of the ratio of the smallest eigenvalue of
S1 and the largest remaining latent root of M(A). Then the
asymptotic error constants of the first and second stage are
¢,0 and czoL-l, respectively, where ¢ < 1 and L 1s the num-
ber of 1iterations of the first stage before switching to the
second stage. Thus, the second stage, though linearly con-
vergent, can be made arbitrarily fast by lncreasing the num-
ber of iterations of the first stage. In the computational
algorithm, we pilck an arbiltrary L and then examine the second
stage. If 1t is converging too slowly (or diverging), then
the first stage 1s resumed for several steps and the process
1s continued. Thus, given that the three hypotheses of the
above theorem are satisfied, thils process, 1n exact arithmetic,
1s guaranteed to yleld a solvent of the matrix polynomial.

If a dominant scolvent does not exist, then the algo-
rithm wlll not yield a solvent. In addition to the results in
the above theorem, the first stage ylelds a dominant latent
root, 1f one exlists. Consider the following algorithm which

obtains a dominant latent root (Chapter 7).
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Definition 1.7 Given vectors VoaVys®® sV of dimension n, a

m
lambda-vector g(A) 1s the vector functilon

g(n) = v A" + lem“l $oaee bV, (1.12)

Algorithm 2 Let g (A) be an arbitrary m-1 degree lambda-

vector. Generate

gep(A) = g, (A% - M(l)vgn), | (1.13)

where

g, (A) = vgn)xm‘l + oses 4 vén). (1.14)

This is another generalization of Traub's scalar
polynomial algorithm. For a vector v, denote by max v the
first element of v which has the maximum absolute value.
Note. that max v is not a norm. Then a convergence theorem

for the algorithm is as follows (Theorem 7.1).

Theorem If

(1) M(l)_muﬂmwm, pl:“"spmn:
(11) |p1| > |pi| for i # 1, and

T T T
(111) ryg,(p,) # 0, where riM(py) = 07,

g, (}) L MOy
(n) A - Py 1
1l

where M(p, )b, =0

(1) B (M) = ——



and

V§n+l) - °1V§n)

(11) (n)
1

+ 0. (1.15)
max v

The transpose of any column of equation (1.9) with
X = AI, is precisely equation (1.13), with MT(A) replacing
M(2). Since the latent roots of MT(A) are the same as those
of M(X), a dominant latent root.of M(A) can be obtalned from
equation (1.15) by Algorithm 1, the matrix polynomial solvent
algorlithm. This can be done regardless of whether a dominant

solvent, or any soclvent at all, exists.

1.3 Outline of the Remalnder of the Paper. This paper con-

tains three intertwined yet distinct subjects. They are

(1) new theoretical results on matrix polynomials,

(11) algorithms for solvents and latent roots, and
(111) a new block elgenvalue problem.

Chapter 2 considers the basic properties of sol-
vents. The existence of solvents and factorizatlon of lambda-
matrices are considered here. A generalization of Bégzout's
Theorem and the relationship between polynomial coefficients
and the elementary symmetric functions are also discussed.

In Chapter 3 we present some of the basic proper-
tles of matrix polynomials. Interpolation, representation
theorems and fundamental matrix polynomlals are presented in

this chapter.
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Propertlies of the block vandermonde matrix are given
in Chapter 4,

The second major area of this dissertation concerns
itself with algorithms for finding solvents and latent goots.
Chapter 5 presents Algorlthm 1, the main algorithm of the
paper. The method finds solvents and 1s a generalization of
Traub's scalar polynomial methods [21]. A convergence
theorem, computational discussion and flow-chart are giveh
_here.

A block Bernoulli method 1s described in Chapter 6.
The relation between this method and Algorithm 1 is‘discussed.

In Chapter 7 we present Algorlithm 2, which finds a
dominant latent root. The key result 1s glven - the computa-
tions of Algorithm 2 are done by Algorithm 1. A vector |
Bernoulli method is also described.

The third area of thils work is a new block eigen;
value problem. It is that of finding a matrix X of order n
such that for given matrix A of order mn, the equation
AV = VX 1is satisfied for a matrix V of full rank. Chapter 8
deals wlith this problem. It 1s shown that when A is the
block companion matrix, this problem 1is a generallzation of
the matrix polynomial solvent problem. A general theory of
block eigenvalues as well as two algorithms based on elgen-
vector powering are offered.

Chapter § describes numerical testing of Algorithms

1 and 2.



CHAPTER 2

Solvents

«In this chapter we study some of the propertles of
solvents. Secticn 2.1 considers a division of matrix poly-
nomlals which results in a new derivation and generalization
of Bézout's theorem. Section 2.2 examines the block compan-
ion matrix. Principal vectors of solvents are considered in
Section 2.3. The existence of solvents and factorization of

lambda-matrices are both dealt with 1n Sectlion 2.4.

2.1 Generalized Division. The c¢lass of matrix polynomials

1s not closed under multiplication or division. Consider the
product of N(X) =X + N and L(X) X + L. We get

N(X)L(X) = (X+N)(X+L) = X2 + NX + XL + NL which 1s not of

the general form of a matrix polynomial; X2 + Alx + Az.. A

new operation will be defined for matrix polynomials which

will reduce to divisicon in the scalar case; n = 1.

Theorem 2.1 Let M(X) = X + A.x™ 1 4 <0 & A and

1

W = xP 4 BxPTh ey B,» With m > p. Then there

exists a unique, monlc matrix polynomial F(X) of degree m-p

and a unigue matrix polynomial L(X) of degree p-1l such that

M(X) = FOOXP + BROOXP™ ¢ ool 4 B,F(X) + L(X), (2.1)

Proof: Let F(X) = X™P 4+ p x™Pl 4 ...y Fp_p and

_ -1 -2
L(X) = L XP™0 4 LixP7% + oo L,_,- Equating

- 11 -
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coefficlents of equation (2.1), Fl,F2,--',Fm_p and

Lo,Ll,---,Lp_1 can be sutcessively and uniquely

determined from the m egquations. #

Equation (2.1) is the matrix polynomial division of

M(X) by W(X) with quotlent F(X) and remainder L(X).

Definition 2.1 Assoclated with the matrix polyncmial,

M{X) = X+ Alxm"l +oee0 AL, is the commuted matrix poly-

nomial

G D e’ WL SEETI Y W (2.2)

fex) N

If M(R) = Q, then R 1s a left solvent of M(X) .

The matrix S such that M(S) = 0, previously Just
called a solvent, will be referred to as a right solvent when .
confusion might occur.

An important association between the remalnder,
L(X), and the dlvidend, M(X), in equation (2.1), will now be
given. It generalizes the fact that for scalar polynomlals
the dividend and remalnder are equal when evaluated at the

roots of the dilvisor.

Corollary 2.1 If R is a left solvent of W(X), then

£(r) = M(R).
proof: Let Q(X) = M(X) - L(X). Then, 1t 1is easlly shown

that

8x) = X"PAX) + XVPTIG(OF, 4 e+ ROOF o (2.3)
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The result immediately follows since Q(R) = Q for

all left solvents of W(X). #

The case where p = 1 1s very useful in this paper.
Here we have W(X) = X - R where R 1s both a left and right

solvent of W{X). Then Theorem 2.1 shows that

M(X) 2 F(X)X - RF(X) + L (2.4)

1]

where L 1s a constant matrix. Now Corollary 2.1 shows that

L = ﬁ(R), and, thus,
M(X) = F(X)X - RF(X) + M(R). (2.5)

There is a corresponding theory for M(X). In this

case, equation (2.1) 1s replaced by

Mx) = xPH(X) + xp"lﬁ(xml +oeee + ﬁ(xnap s R (2.6)

and Corollary 2.1 becomes the following.

Corollary 2.2 If S is a right solvent of W(X), then

I

N(S) M(S).

We agaln consider the case of p = 1. Let

W(X) X -~ S. Then equation (2.5) becomes

M(X) = XH(X) - H(X)S + M(S). (2.7)

Restricting X to a scalar matrix AL, and notlng that
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M(A) = ﬁ(A), we get Bézout's Theorem (see Gantmacher [2,
vol. I, p. 81]) from equations (2.5) and (2.7):

M(A) = (IA=R)F(A) + M(R)

H(A){(IA-3) + M(S) (2.8)

for any matrices R and S. 1If in addition R and S are left

and right solvents, respectively, of M(X), then

M(X) = F(X)X - RF(X), (2.9)

M(x) = xB(x) - H(X)S (2.10)
and

M(A) = (IX-R)F{A) = H(A)(Ix=-8). (2.11)

Hence, Corollarles 2.1 and 2.2 are generallzations of
Bezout's Theorem.

The use of block matrices 1s fundamental in this
work. For notational purposes 1t 1s useful to have a concept
of the transpose of a block matrix without transposing the

blocks.

Definition 2.2 Let A be a matrix with block structure (Bij)

with B, , matrices of order n. The block transpose of dimen-

ij
B(n)

sion n of A, denoted A » 18 the matrix with block struc-

mme(%i%

The order of the block transpose will generally be
dropped when 1t 1is clear. Note that, in general, AB(n) # ﬁ{
except when n = 1.

A scalar polynomial exactly divides another scalar

polynomial, if all the roots of the divisor are roots of the
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dividend. A generalization of the scalar polynomial result

1s glven next. The notatlion is that of Theorem 2.1.

Corollary 2.3 If W(X) has p left solvents, Rl,'--,Rp which

are also left solvents of M(X), and if VB(Rl,v--,Rp) is non-

singular, then the remainder L(X) = Q.

Proof: Corollary 2.1 shows that ﬁ(Ri) = 0 for

i = 1,*=+,p. Since VB(Rl,---,Rp) 1s nonsingular,

and since

L ] -1 ’ \

{1 Ry RY ‘ Lo_1 fﬁ(Rl)

I R, e+ RSN, £(r,)

P I 1 ET R I
«vs gP-1 2

it follows that L(X)} = Q. Thus,
M(X) = F(X)XP + BlF(x)xp‘1 +eer +BF(X). # (2.12)

From equation (2.11) it follows that the elgen-
values of any solvent (left or right) of M(X) are latent
roots of M(X). These equations allow us to think of right
(1left) solvents of M(X) as right (left) factors of M(A).

In the scalar polynomial case, due to commutivity,
right and left factors are equivalent. Relatlons between

left and right solvents can now be given.
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Corollary 2.4 If S, and R, are right and left solvents of

J

M(X), respectively, and SJ and Ri have no common eigenvalues,

then Fi(SJ) = 0, where F,(X) 1s F(X) defined by eguation

(2.9) with R = R,.

Proof: Equation (2.9) shows that
Fi(sj)sj - RiFi(SJ) - 0. (2.13)
Since SJ and Ri have no common elgenvalues,
Fi(sj) = 0 uniquely. Thils follows, since the
solution of AX = XB has the unique solution

X =20, 1f and only if A and B have no common

eigenvalues. See Gantmacher [2, p. 215]. #

Given a left solvent R, of M({(X), Theorem 2.1 shows

1
that Fi(x) exists uniquely. If S is a right solvent of M(X)
and 1if Fi(S) is nonsingular (S 1s not a weak solvent of F;(X)),
then equation (2.13) shows that

1), (2.14)

R, = Fi(S)SF1

1

This glves an assoclation between left and right solvents.

2.2 Bloeck Companion Matrix. A useful tool in the study of

scalar polynomials 1s the companion matrix. The elgenvalues
of a companion matrix are the roots of 1its assoclated poly-

nomial. See Wilkinson [22, p. 12]. A generallzation of this
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is given below. Definition 2.3, Theorem 2.2 and Corollary

2.5 can be found in Lancaster [13].

Definition 2.3 Glven a matrix polynomial

MX) = X0 + A

m-l L ]
lx + + Am’

the block companion matrix assoclated with it 1s

fo  «ov 0 -a
m
I -A
¢ = ) m-1 (2.15)
l I —Al ‘

It is well known that the eigenvalues of the block
companion matrix are latent roots of the assoclated lambda-
matrix. See Wilkinson [22, p. 12]. Simple algebralc manipu-
lation ylelds this result.

Am—l

1 +.'.+Am)'

Theorem 2.2 Det(C~AL) = (-l)mndet(IAm+A

Since C 1s an mn by mn matrix, we immediately ob-

tain the followlng.

Corollary 2.5 M(X) has exactly mn finite latent roots.

The form of the block companion matrix could have
been chosen differently. Theorem 2.2 also holds for the

block transpose of the companion matrix:
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0 . \
Bl ’ _ (2.16)
0 I
l —Am -Am—l . e e _All

The algorithms given in thils paper are based on
elgenvector powering schemes. It will be useful to know the
elgenvectors of the block companion matrix and 1ts block
transpose. The results are a direct generallization of the

scalar case.

Theorem 2.3 If p; 1s a latent root of M(X) and b, and r, are

right and left latent vectors, then p, 1s an eigenvalue of C

and of C° ana

L,

PyPy B
(L . is the right eigenvector of C-,

(11) is the left eigenvector of C, and
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(m=-1)
by
(111) '(1) 1s the right eigenvector of C, where
by
| P1
M(M)b
X_:_Ei z bikm‘l + bgl)xm—z + ece 4 bim'l). (2.17)

Proof: Parts (1) and (ii1) are easily verified by substi-
tutions into the appropriate elgenvalue problem.

For part (11ii), consider

’ (m-1) -1)
0 e 0 -A \ [dim ’dgm \
I -2 || : :
. : dil) TP dil)
I -A, 1 \dio) | \diO)
(2.18)

Multiply out; multiply the Jth component equation
by Aj'l; and add. The result is

(0)

HI

piHi(A), (2.19)

where

H, (M) = dim_l) + dim—z)k +oeee 4 diO)xm'l. (2.20)
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Equation (2.19) at A = py shows that
M(pi)dio) = 0} and, hence, dio) is a right latent
vector. Manipulating equation (2.19), the result

equation (2.17) with dio) = b, and dfl-’) = bg‘j)

1
for J = 1l,*++,m~1, follows. #

2.3 Structure of Solvents. The elgenvectors and princlipail
vectors of a solvent will now be considered. Frgm equation
.(2'11) it follows that the eigenvectors of a left (right)
solvent are left (right) latent vectors of the lambda-matrix.
Lancaster [13, p. 50] gives the characterization of a solvent

that has only elementary divisors.

Theorem 2.4 If M(A) has n linearly independent right latent

vectors, bl,-'#,bn, corresponding to latent roots P13 5P

then QAQ™L is a right solvent, where Q = [bl,...,bn] and

A= diag(pl,...,pn).

Proof: From M(QAQ_l) = (Qﬂm+A1QAm_l+-..+AmQ)Q”1 the
result follows, slnce QAm + AlQAm"l + eee ¢ AmQ

is Just M(pi)bi =0 for 1= 1,-+-,n. #

It follows from the above proof that 1f a solvent
is dlagonalizable, then 1t must be the form QAQ"l, as in the

above theorem.

Corollary 2.6 If M()A) has mn distinct latent roots, and the

set of right latent vectors satisfy the Haar condition (that

every set of n of them are linearly independent), then there

are exactly (ﬂ?) different right solvents.
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Consider next the case of a solvent whlch 1s not
diagonalizable. In a manner similar to Roth [18), we con-

sider the principal vectors of a solvent.

Definition 2.4 The Jth principal latent vectors of M(X) with

respect to the latent root p 1is PJ’ which satisfies

1 (3-1) 1 (3-2) oL N
GO M (P)By + 35577 M (p)P, + + M(p)pJ 0,
(2.21)
where
k
M(k)(x) = QME M(A).
dA

Note that the first principal latent vector 1s a latent

vector.

Theorem 2.5 The principal vectors gf a solvent are principal

latent vectors of M(A).

Proof: To alleviate notational difficulties, consider the

case where m= 2 and n k = 3. The Jordan

p 1

form of the solvent 1s J P 1 {. Let

p

1

P = (P1P2P3) where S = PJP ™ 1is the solvent

of M(X) = X° + A)X + Ay. Thus,
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. } 2
Q = M(S)P [(P1P2P3)J + A(BP,PLT + Ay (P PP

= [(Ip2+A1p+A2)P1,(21p+Al)Pl + (Ip2+Alp+A2)P2,IP1

2
+
(2Ip+Al)P2 + (Ip +Alp+A2)P3]

=[M(p)Pl,l"I'(p)P1

1 yn

+ M(p)P,, % MT(p)P) + M'()P, + M(p)P,].
Hence, Pl, P2 and P3, the principal vectors of S,
satlsfy equation (2.21), the definition of prin-

cipal latent vectors. #

It 1s the strategy of this paper to solve the
lambda-matrix problem by finding solvents and theh finding
the eigenvalues of those solvents. The calculation of sol-
vents from the solutlon of the latent root problem has been
considered in the literature. The following 1s a short
description of the method.

Since the eigenvalues of a solvent are latent roots
of the lambda-matrix, and there are mn latent roots, it fol-
lows that there are only a finlte number of Jo?dan forms of
potential solvents. lL,et the latent roots be glven and let J
be a matrix in Jordan form with n of the latent roots as lts
elgenvalues. Then, to find a corresponding solvent S, if
one exists, a nonsingular matrix P must be found such that
)

M(PJP~1) = 0. Thus, a nonsingular matrix P must be found

such that
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PI™ + AlPJ""l * ecv + AP = Q. (2.22)
This approach, described in MacDuffee [15, p. 951, 1s of the
general form

A.XB, + A XB

158, 5XB, + 20 + AmXBm = C. (2.23)

Lancaster [11] and Gantmacher [2] have considered the solu-

tion of equation (2.23). The problem 1is difficult numerlically.
Algorithm 1 tries to find a solvent directly,

rather than by the above route of solving the latent root

problem first.

2.4 Existence of Solvents. We now show that the Fundamental

Theorem of Algebra does not hold fdr matrix polynomials.

Theorem 2.6 There exlsts a matrix polynomial with no sol-

vents.

Proof: Conslder

AC_2A+2 1 2 1
M(A) = « 1A% - 21y +
-1 A2-2) -1 0

_ (2.24)
pet M(A) = A% = 423 + 632 - 4\ + 1, which has all

four roots at A = 1. Thus, the Jordan form of a

1 1
solvent must either be J, = I or J. = '
1 2 0 1
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Since M(I) ¥ 0, 1t follows that J, 1s the only

1 1

feasible Jordan form. M(1) =(- ) and, thus,

1 -1
b = (1,---1)T is the only latent vector, to within
a scalar multiple. The second prinecipal vector
is sueh that M'(1)b + M(1)P, = 0. Here,

2A-2 0
M'(A) = ( ) and, hence, M'(1l) = Q.

a 2A-2

Thus, P2 = b to within a scalar multiple. Using
Theorem 2.5 and the linear dependence of the first
two principal latent vectors, 1t follows that J2 is

not a feasible Jordan form for a solvent of equa-~

tion (2.24). #

Consider now the special case of a matrix polynomial whose
assoclated lambda-matrlix has distinct latent roots. It wili
be shown that 1n this case a complete set of solvents always

exlsts. First we need the following fact about block matrices.

Lemma 2.1 If a matrix A is nonsingular, then there exists a
A Ao

11
permutation of the columns of A to A such that A=

Aoy Bop

with K and 322 nonsingular.

11

Proof: Let A and Kll be matrices of orders n and k, re-
spectively, with arbitrary 1 < k < n. Assume the
lemma is false. Conslder evaluating the deter-
minant as follows. For each of the first k rows,

plck an element from a different column. Then
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multiply these elements and the remaining minor.
The sum, with appropriate signs, of every possible
cholce of the k columns, 1s the determinant of A.
The k choices of the columns determine a square
matrix. If that matrix is nonsingular, then the
minor must be Zzero, slince the lemma was assumed
false. Thus, such terms make no contribution to
the determinant of A. A particular minor appears
several times 1in the sum. It occurs the number
of ways the same k columns can be picked in dif-
ferent orders. Each minor c¢an thus be factored
from several terms; the result being the minor
times the determinant of the matrix formed by the
k columna ard the first k rows. Thus, if the
matrix formed by the k columns 1s singular, then
there is no contribution from this term in the
determinant of A. Therefore, A must be singular,

which 1s a contradiction. #

Once the columns of A are permutated to get A., and

11
ﬂ22 nonsingular, the process can be continued to similarly
divide 522 into nonsingular blocks wilthout destroying the

nonsingularity of 311.

Theorem 2.7 If A, a matrix of order mn, 1s nonsingular, then

there exists a permutation of the columns of A to A= (B

ij)’

with BiJ a matrlx of order n, such that B,y is nonsingular

for 1 = 1,¢++,m,
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The important exlstence theorem 1s now gilven.

Theorem 2.8 If the latent roots of M(X) are distinct, then

————tn

M(X) has a complete set of solvents.

Proof: If the latent roots of M{A) are dlstinct, then the
eigenvalues of the block companion matrix are dis-
tinct, and, hence, the eigenvectors of the block

companion matrix are linearly independent. From

by

PyPy

Theorem 2.3 the set of vectors for

m-1
| Py Py

for 1 = 1,**+,mn are elgenvectors of CB. The
matrix whose columns are these mn vectors is non-
singular. Theorem 2.7 shows that there are m dis-
joint sets of n linearly independent vectors bi.'
Using the structure QAQ_l of Theorem 2.4, the com-

plete set of solvents can be formed. #

Corollary 2.7 If M(A) has distinct latent roots, then it can

be factored Into the product of linear lambda-matrices.

Proof: Since M(A) has distinct latent roots, there exists
a right solvent S and M(}) = Q(X)(IA=-S). Q(XA) has
the remaining latent roots of M{A) as its latent
roots. It follows then, that the latent roots of
Q(A) are distinct. Thus, the process can be con-

tinued until the last gquotient is linear. #
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The process described in the above proof considers
solvents of the sequence of lambda-matrices formed by the

division M(A) = Q(A)(IAr=-S).

Definition 2.5 A seguence of matrices Cys="*,C, form a chain

of solvents of M(X) if C, is a right solvent of Q, (X), where
Q. (X) = M(X) and

Q{2 = Q _,(M(Ir-cy). (2.25)

It should be noted that, in general, only Cm is a
right solvent of M(X). Furthermore, Cl 1s a left solvent of
M(X). An equivalent definition of a chain of solvents could

be defined with Ci’ a left solvent of Ti(X)’ and

Ty = (IA-Cp 4,107y (V). (2.26)

Corollary 2.8 If M(A) has distinct latent roots, then M(X)

has a chaln of solvents.

.Given C1 and Qi(A), Qi_l(l) of equation (2.25) can
be found by a generalized Horner division scheme. In the
numerical solution of the lambda-matrix problem, the strategy
considered here will be to find a chaln of solvents using the
matrix polynomial solvent algorlithm and Horner division.

It Cl,---,Cm form a chain of solvents of M(X), then

= m m-l LI = - - L -
M(X) = Ia +A1A + +Am = (IXx Cl)(IA 02) (Ix Cm).
(2.27)
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This leads to a generalization of the classical result for
scalar polynomlals which relates coefflclents to elementary
symmetric functions. By equating coefflclents of equation

(2.27) one gets the following theorem,

Theorem 2.9 If Cy,*°*,Ch form a chain of solvents for

M(X) = X° + Alxm‘l + es+ + A_, then

A, = -(cl+c +---+cm)

1 2

Ry = (CCo#C CotesetCy 1C) (2.28)

= - m .o
Ag (~1) CICQ Cm.



CHAPTER 3

Properties of Matrix Polynomilals

Some of the basic properties of matrix polynomlals
are considered 1in this chapter. Section 3.1 concerns itself
with matrix polynomial interpolation. A generalization of
the fundamental scalar polynomials 1s given. Representation
theorems for matrix polynomials, lambda-matrices, and lambda-
vectors are presented in Section 3.2. Section 3.3 .studies

the fundamental matrix polynomials.

3.1 Interpclation. Glven scalars S15°°" 48, the fundamental

m

polynomials ‘mi(x) = p(x) s wWhere p(x) = II (x—si),

(x-5,)p"(sy) 1=1

are of great importance in interpolation theory. Thelr use~-
fulness comes from the fact that mi(sj) = Gij' We will now

generallze thils for our matrix problem.

Definitlon 3.1. Given a set of matrices, Sl,---,Sm, the

fundamental matrix polynomlials are a set of m-1 degree matrix

polynomials, Ml(x),---,Mm(X), such that Mi(sj) = 6ijI.

Sufficlent conditions, on the set of matrices

S s L3 for a set of fundamental matrix polynomials to

1° m?’

exist unlquely will be given in Theorem 3.2. First, however,

we need the following results.

Theorem 3.1 Given m pairs of matrices, (xi’Yi) 1 =1,¢¢*,m,

then there exists a unique matrix polynomial

- 29 -
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= m_l m_2 [ ) =
P(X) AlX + A2X + + A such that P(Xi) =Y,
for 1 = 1,+++,m, 1if and only 1if V(Xl,-°-,xm) 1s nonsingular.
Proof: P(Xi) = Yi for 1 = 1l,*++,m 1is equlvalent to
’I .o n I ‘
X1 ot Xm
(s gt sA) | . : = (Yq,Y,,0me,Y ). #
m-1 .. m-1
\xl Xm
Corollary 3.1 Given m palirs of matrices, (xi’Yf’ 1=1,---,m,
they uniguely determine a monic matrix polynomial
= m m-l - e =
P(X) = X + AlX + + Am, such that P(Xi) Yi for
i=1,~++,m, 1f and only if V(Xl,---,Xm) 1s nonsingular.
Proof: Let §i =Y, - X? and apply Theorem 3.1 to (XiﬁiL #
Let M{(X) have a complete set of solvents, Sl,-'-,Sm,
such that V(Sl,---,sm) i1s nonsingular. According to Theorem
3.1, there exists a unique matrilx polynomlal
= (1) m—l LI (i)
Mi(X) = Al X + + Am (3.1)
such that
M, (8y) = 8,,T. (3.2)
Note that Mi(x) has the same solvents as M(X), except S, has
been deflated out. The Mi(X)'s are the fundamental matrix

polynomials.
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Denote by V(Sl,°",51_1,31+1,-

Vandermonde at the m-=}1 solvents, Sl,---,Sm, with §

",Sm) the block

1 deleted.

Theorem 3.2 If matrlices S

1,---,8m are such that V(Sl,"',sm)

1s nonslngular, then there exlist unlque matrix polynomials

M, (X) = Agi)xm‘l +ovee 4 Aii), for 1 = 1,*++,m, such that

Ml(X),-'-,Mm(X) are fundamental matrix polynomlals. If,

furthermore, V(Sl,'-' S S

Oy °-,Sm) 1s nonsingular, then
(k)
Ay

k+1®'

1s nonsingular.

Proof: V(Sl,"',Sm) nonsingular impllies that there exists
a unique set of fundamental matrix polynomials,
Ml(X),°°',Mm(X). V(Sl,'°-,Sk_1,Sk+l,"',Sm)

nonsingular and Corollary 3.1 imply that there

exists a unique monlc matrix polynomial

No(x) = X0 o+ N2 o Lol w v guen

k 1 m

that Nk(sj) = 0 for J # k. Consider

9 (X) = N (S M (X) . Q(S,) = N(S) for

J = 1,*++,m, Since V(Sl,--°,Sm) is nonsingular

and both Qk(x) and Nk(x) are of degree m-1, it

follows that Qk(x) = Nk(x). Thus,

Nk(X) = Nk(Sk)Mk(X). Equating leading coeffi-

clents, we get I = Nk(Sk)Agk) and thus A(k)

1
is nonsingular. #

3.2 Representation Theorems. The fundamental matrix poly-

nomials, Ml(X),-",Mm(X), can be used in a generalized
Lagrange Interpolation formula. Paralleling the scalar case

we get the followlng representation theorems.
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)

Theorem 3.3 If matrices S,,***,5 are such that V(Sl,---,Sm

1s nonsingular, and Ml(S),--°,Mm(x) are a set of fundamental

matrix polynomials, then, for an arbiltrary

G(X) = lem'l + ee0 + B, (3.3)
_3 follows that
m
G(X) = z G(S, )M, (X). (3.4)
1=1
m
Proof: Let Q(X) = z G(S,)M,(X). Then Q(8,) = G(S,)
i=1

for 1 = 1,+++,m. Since the block Vandermonde 1s
nonsingular, it follows that Q(X) i1s unique and,

hence, G(X) = Q(X). #

A lambda-matrix was deflned as a matrix polynomial
whose varlable was restricted to the scalar matrix AI. Thus,

the previous theorem holds for lambda-matrices as well.

Corollary 3.2 Under the same assumptions as in Theorem 3.3,

for an arbitrary lambda-matrix

m=1 .
BT + + Bp, (3.5)

G(A) 1

it follows that




Theorem 3.4 If M(XA) has distinct latent roots, Pys®**sp
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m

G(A) = D~ G(s,)M (N). | (3.6)
im1

A basls for lambda-~vectors will be presented next.

mn?

with right latent vectors bl,-",bmn, then for an arbitrary

lambda=vector

there exists a unigue set of constants Qpseees®

g(A) = v A" e by (3.7)

» Such that

Proof:

3.3 Fundamental Matrix Polynomials.

o M)—b . (3_8)

1 ) - pi 1

Wi

g(r) =
1=1

If the latent roots of M(A) are distinct, then the

elgenvectors of the block companion matrix (Theo-
rem 2.3 (111)) form a basis for vectors of dimen-
sion mn. By equation (2.13) lambda-vectors

Xﬂéi%_ b1 are formed by partitioning the eigen-
i

vectors of the block companion matrix into the
vector coefflclents. The ai's are those required
to write (vl,--o,vm)T as a linear combination of

the elgenvectors of the block companion matrix.

nomials were defined such that Mi(sj) - 61 I. A result

J

Fundamental matrix poly-
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similar to equation (2.9) can be derlived based on the funda-
mental matrix polynomials. It was previously (Sectlion 2.1}

developed using matrix polynomlal dlvision.

Theorem 3.5 If M(X) has a complete set of right solvents,

Si»***sSys such that V(S;,e+,S;) and V(Sy,* %8y 1551 ,15"* *Sp)

are nonsingular and Ml(x),-~-,Mm(x) are the set of funda-

mental matrix polynomials, then

_ A (D)
Mi(X)X - simi(x) = A M(X), (3.9)

where A&i) is the leading matrix coefficient of M, (X).

Proof: Let Qi(x) = Mi(X)X - SiMi(X). Note that
Qi(sj) = 0 for all J. M(X) is the unique monic
matrix polynomial with right solvents Sl,---,Sm
since V(Sl,°-°,Sm) is nonsingular. The leading

(1)
1

matrix coefficlent of Qi(x) is A which 1s non-

singular, since V(Sl,°",Si_l,Si+l,---,Sm) is
(1)"*
nonsingular. Thus, M(X) = Al Qi(x). #

A previous result (equation (2.5)) stated that if
Ri was a left solvent of M{X), then there exlsts a unique,

monic polynomial Fi(X) of degree m-1l, such that

M(X) = Fi(X)X - RiFi(X)' (3.10)

Comparing equations (3.9) and (3.10), we obtaln the following

result.
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Corcllary 3.3 Under the conditions of Theorem 3.5

-1
F,(X) = [A&i)] M, (X) and

-1
R, = [A&i)] siA?) (3.11)

1s a left solvent gz_M(X).

If M(X) has a complete set of right solvents,

Sys**%S,, such that V(Sl,--usm) and V(Slp '551-1’31+13"5Sm)

for 1 = 1,*++*,m are all nonsingular, then, by egquation
(3.11), there exists a complete set of left solvents of

i1s simllar to S, for all 1.

M{X), Rl,---,Rm, such that Ri 1

Corollary 3.4 Under the conditions‘gi Theorem 3.5, EE R1 Ei

defined as in equation (3.11), then

-1
M,(0) = [A&i)] M, (A) = (IA-Ri)_lm(A). (3.12)

Proof: The result follows from equation (2.11) and

Corecllary 3.3. #



CHAPTER 4

The Block Vandermonde

The block Vandermonde matrix 1s of fundamental
importance to this work. This chapter considers the prop-

erties of the block Vandermonde.

It is well known that in the scalar case (n = 1),

det V(sl,-'°,sm) » II (si—sj) (4.1)

1>

and, thus, the Vandermonde is nonsingular 1f the set of si‘s
are distinct. One might expect that 1f the elgenvalues of

xl and x2
singular. That this 1s not the case is shown by the follow-

are disjoint and distinet, then V(Xl,xz)-is non-

ing example.
The determinant of the block Vandermonde at two

points 1s

I I
det V(Xl,Xz) = det = det (XZ_Xl)' (4.2)

5 X

Even 1f X, and X, have no elgenvalues in common, X, - Xl may

2 0
still be singular. The example xl = ( ) and
-2 1

4 2
X, = ylelds X, - X, slngular.
0 3 2 1 ‘

- 36 -
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It will be shown that the xl and X, in this example
cannot be the complete set of solvents of a monic matrix

polynomial. First, however, the following 1s needed.

Lemma 4.1 Let matrix A have distinct elgenvalues, and N be a

subspace of E" of dimension d. Suppose further that if veN,

then Av € N. Under these conditions, d of the elgenvectors

of A are in N.

Proof: Let Avi n Aivi for 1 = 1l,*+*+*,n. The set of vi's
1s a basis for En, since A has distlnct eigenvalues,

Let v € NC E", and order the {vy} such that
S

v = Z CyVy with cy ¥ 0 for 1 = 1l,'s¢,8. Let
1=1

3
P(t) = || (t=A;), then P(A)v, = 0 for
J=2
J = 2,°++,8. Hence,

s
P(A)v = E c_,LP(ﬂL)v1 = clP(‘A)vl
i=1

3
= o Il (A= ,1) | vy
ye2
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]
Let d; = ¢, I (Al—lj) # 0. Thus,
J=2 ' '
v, = X P(A)v ¢ N, Similarly, v, € N for
1 dl i

1 =1,***,s. The lemma follows, since Vv € N

was arbltrary. #

Theorem 4.1 If M(A) has distinct latent roots, then there

exists a complete set of right solvents of M(X), Sl,---,S

m,
and for any such set of solvents, V(Sl,--°,Sm) is nonsingular.

Proof: The exlstence was proved 1n Theorem 2.7. Sl,---,s
1

Xm- 4 o e +A’
m

m}

peing right solvents of M(X) = xm-FAl

is equivalent to

I .o.. I
S [ 3N I ] S
1 m ~ m .., _aWl
.(Am:"' ’Al) . . _(‘Sl’ > Sm).
m-1 m-—1
S1. Sm
(4.3)

Assume det V(Sl""’sﬁ) = 0, and let N be the null
space of V(Sl,---,sm). That 1is, v € N 1f and

only 1if V(Sl,---,Sm)v = 0. Since A **,A 1n

1’
equation (4.3) exist, Joining any row of
(—Sl,--',-Sm) onto V(Sl,---,sm) glves a larger
matrix but with the same rank as V(Sl,---,Sm).
Thus, for all v e N, (sT,---,sg)v = 0. Hence, for
altr v e N |
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2 [ 2
[Sl Sm
g.‘z . . Vo= v(sl.""’.Sm)diag(.sl:'." s‘Sm)V.
m m
S1_ Sm

(4.b)

Letting A = diag(Sl,°-°,Sm), equation (4.4) shows
that for all v € N, Av e N. Since A has distinct
eigenvalues, Lemma 4.1 applies, and there are as
many elgenvectors of A 1n N as the dimension of N,
The eigenvalues of diag(Si,"-,Sm) are the elgen~
values of the Si's, and the elgenvectors are of the
form (OT,VT,OT), where v is an eligenvector of one

of the Si's. This is because if

(72}
=
—
e ——
[}
L)

L ]
<
<

[=)
[
>
[=]

»
<
<

=4
(=]
e
{=}

then Siv = Av and S.,w = Aw. This cannot be

J

since S1 and SJ do not have any conmmon elgenvalues.
Let an arbltrary elgenvector of diag(Sl,---,Sm),

T
(OT,VT,OT) , be 1In N. Then



I . I
.Sl P .Sm g- =g‘
: : v
gm-1 Ve Sm--l 0
1 m -

But then, Iv = 0 which is a contradlction. Thus

det V(Sl,--',Sm) # 0. #

The example consldered before this theorem was a
case where matrices Xl and X2 had distinct and disjolnt
eigenvalues and det V(Vl,xz) = 0. Thus, by the theorem,
they could not be a complete set of right solvents for a

monic, quadratic matrix polynomlial. In contrast with the

theory of scalar polynomials, we have the following result.

Corocllary 4.1 There exist sets contalning m matrices which

are not a set of right solvents for any matrix polynomial of

degree m.

A generalization of equation (4.1), that the

Vandermonde of scalars 1s the product of the differences of

the scalars, will be given. Let Médg..s (X) be a monile
1

k
matrix polynomial of degree d > k with right solvents

The superscript d will be omitted if d = k.

S .S

1,... k'
Note that this matrix polynomial need not necessarily exist,

nor be unigue.

Theorem 8.2 Ef V(Sl,-°-,Sk) is nonsingular for k=2, ¢+,r-1,

then
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Proof:

Det V(Sl,
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»S,) = det V(S,,+++,S_ ) det M

s (u )'
Sl Sr r

(4.5)

The nonslngularity of V(Sl, ’Sr—l) and Corollary

3.1 guarantee that M (X) exists uniquely.

Sl' a s Sr_l

The determinant of V(Sl "Sr) will be evaluated

by block Gaussian elimination using the fact that

A B
det =
c D

A+EC B+ED
det . (4.6)
c D
I sa e I ‘
g ‘e s
++,8,) = det .1 .r
r-1 r-1
Sl * e 8 Sr
I I LK ) I
= det Gl S
r-1 _r-1 r-1 .r-1
\ 557 =81 ee 8 70-sT
rI I I P I
Spm81 8375, "rr 5,5,
= det MiZd () eee mZ) (s)
172 172
(r~1)( (r 1)
S) .a e (S)
\ 8182 8182 r
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where (i)z(x) = (xd sg) ( - d)(s -8)7H(x-5,).

(S2-Sl) is nonsingular, since

det (32'51) = det V(sl,sz) # 0, It will be shown
that after k steps of the block Gausslan elimina-
tion, the general term for the 1,] block, 1,) > k,

is M(ial) (S,). Assume 1t is true after k-1 steps.
Sluoosk J

Then, after k steps, the 1,) element 1s

W3- gy oD (g kD) (g )=yl

Slocus S .-.S S co.S k) S o..S (S

j J).
k-1 1 k-1 1 k-1 1 k-1

This 1s merely Méi_.zs (X) evaluated at X = SJ.
1

Using the fact that the determinant of a block tri-
angular matrix is the product of the determinants
of the dlagonal matrices, (see Householder [51),

the result follows. #

Corollary 4.2 If V(Sl,... e 1) is nonsingular and S, 1s

not a weak sclvent of M (X), then V(S,,***,S ) 1is
2 2= U vee8, g =20 ¥isy K

nonsingular.

Tt is useful to be able to construct matrix poly-

nomials with a given set of right solvents.

Corollary 4.3 Given matrices Sl,"--,Sm such that V(Sl,-'-,Sk)

is nonsingular for K = 2,+++,m, the lteration NO(X) =1

-1
N (X) = Ny 00X = Ny_y(8,)8N] (SN (%) (4.8)

i-1
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1s defined and ylelds an m degree monic matrix polynomial

Nm(X), such that Nm(Sil = Q for 4 = 1,+vs,m.

Proof: Nl(x) =X - SlBMS (X). Assume Nk(,)()

1
Then, from equation (4.8), N

M .ea (x)'
Sl Sk

S = 0 for

k+l( i)

i = 1,+++,k+1l and, hence, Nk+l(x) = M (x).

Sl- a .Sk+1
The sequence of block Vandermonde being nonsingular

guarantees the nonsingularity of Ni-l(si)' #

Corollary 4.4 If V(Sl,"',Sk) is ponsingular for k=2,++*,m,
then Sl,---,sm are a complete set of right solvents for

M s (x)'
Sl Sm

Proof: The result follows directly from Theorem 3.5, where

we obtalned

(1)
(IA=8,)IM, (X)) = A 7 M(D). # (4.9)



CHAPTER 5

A Matrlx Polynomial Algorlithm

This chapter presents the paper's maln algorithm.
It computes solvents and 1s a generalization of one of
Traub's methods. Section 5.1 glves the algorithm. A global
convergence theorem 1s presented in Sectlon 5.2. Sectlon 5.3
considers computational aspects of the algorithm and has a

detalled flow-chart of the method.

5.1 A Generalization of Traub's Algorithm. The following

algorithm for matrix polynomials, in the scalar case, reduces

to Traub's scalar polynomial algorithm.

Algorithm 1 (1) Let GO(X) = I and generate matrix poly-

nomials G (X} by

n
G (X) = Gn(X)X - alM(X), (5.1)

nt+l

for n=0,1,»+*,L-1, where

= nm_l -8 n
Gn(X) = alx + + L (5.2)

L\( L-1\"!
Then, {il) let X, = (ul)(“l ) and generate

-1
Xypq = G (X067 (X,). (5.3)

i+l

- 44 -
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The algorithm has two stages. The first, a gener-
alization of Sebastiao e Silva's algorithm (see Householder
[4]), generates a sequence of matrix polynomlals. Equation
(5.1) ensures that each of these matrix polynomials 1s of

degree less than m, the degree of M(X). Under sulitable con-

~1
(a?) Gn(X) will be shown (in the next

section) to converge to ﬁl(x), a monle fundamental matrix

ditions En(x)

polynomial.

The second stage generates a sequence of matrix
iterates which will be shown (in the nextrsection) to con-
verge to a solvent. The polnt at which one switches from
stage one to stage two, the value of L, will be consldered

in Section 5.3.

5.2 The Convergence Theorem. In the proofs that Bernoulli's

method and Traub's scalar polynomlal algorlthms converge, the
main property needed 1s that 1f Py is a dominant root, then
(pi/pl)rl + 0 as n-+ =, for py any other root. To gener-
alize this property to solvents, the followlng result is
needed, the proof of which was provided by P. A. Businger of

Bell Telephone Laboratories.

Definition 5.1 Matrix A dominates matrix B 1f all the elgen-

values of A strictly dominate, in modulus, those of B.

Lemma 5.1 If matrix A dominates matrix B, then A "¢B" » g

as n +» «, for any constant matrix C.

Proof: For any € > 0, let
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B = Pp(e)(Ig(e))Pa(e) 7, (5.4)
where
| Ap
€ AB
Jg(e) = . . . (5.5)
| € Ap |

See Ortega and Rheinboldt [16, p. 43] for a discus-

slon on this modified Jordan form. Then,
1811 < e cedll lpg(e)™ Il (etmax|rgl), (5.6)

where the norm is the infinity norm. Notlng that

-1 -1
" \ "
-2 -1
€ AA -EAA AA
= 3
-2 =1
€ A \ “EAT Ay
(5.7)
the result

a7P < e, el e, () Y —S—ur + —2 (5.8)
1A < lip, Cedli e, <m1n|x§|
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is similarly obtained, where PA(e) is defined as
in equation (5.4). Combining equations (5.6) and
(5.8) we get

n
1a~cB? || < k|(etmax|ag]) [ —S—7 + ——}|
min\AAI min|AA|

(5.9)

where k, a function of €, 1s independent of n.

th power 1s less

When € = 0, the constant to the n
than one, since maxIAB|/min|AA| < 1. By continu-
1ty, there exists an € > 0 so that the constant
1s still less than one, and, hence, {[A""¢B"|| + 0

as n + », #
We now give the convergence theorem for Algorithm 1.

Theorem 5.1 If

(1) M(X) has a complete set of solvents, S5,,***,3,

_(11) Sllig a dominant solvent, and,

(111) V(Sl,---,Sm) and V(S2""’Sm) are nonsingular,

: -1
then (1) G (X) = (a?) G (X) + M, (X), where M,(X) is the

unique monic form of the fundamental matrix polynomial such

that Ml(S ) = § and

I
J i
(11) for L sufficiently large, xi of (5.3) converges

t_o- Sll

Proof of part (1): From equation (5.1), the result

n n
Gn(Si) = Go(si)si = 8 (5.10) -
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follows. By Theorem 3.3 and equation (5.10), we

get

m m
G (X) = 3 6 (5,)M,(X) = E s'i‘Micx), (5.11)
i=1 {m1

and, thus,

m
o = 3 s'i‘Agi). (5.12)
1=1

Sl and Agl) are nonsingular and, thus, there is an
N such that for n > N, u? must be nonsingular,

since using Lemma (5.1) and equation (5.12)

-1 .
a?(S?Ag_l)) + 1 (5.13)

as n + =, Using equations (5.11) and (5.12) and

Lemma (5.1), we get, for n > N,

- _ n
§_(X) = (“1 6, (X)
m -1 m
= n,(1) Ne=N n
p Sy spsT™ L 20 simy (X
1=] i=1

(5.14)
(cont'd)
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m -1/ m
a~ngn, (1) -ngn
- | 2 s7"siAy 2, S7'siM (x)
1=1 1m1
+ (A(l))-lm (X) = M (X) (5.14)
1 1(X) = M UAD, 5.
by Lemma 5.1. #

We defer the proof of part (ii) of the theorem to

first obtain some results which will be needed in the proof.

Corollary 5.1 Under the hypotheses of Theorem 5.1,

(u?)-1a2+l * Ry (5.15)

as n + =, where R, 1s the dominant left solvent.

i

Proof: Modification of equation (5.14) and Corollary 3.3

-1 -1
n n+l (1)) (1) _
ylelds (al) oy -+ (Al SlAl = Rl as

n -+ o, #

The following lemmas all use the same hypotheses

as in Theorem 5.1. Let
6 (X) = G (NG (X). (5.16)

Thus, stage two of Algorithm 1, egquation (5.3) is

X (5.17)

141 = XD
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In Lemma 5.2 we show that every right solvent 1s a
fixed point of ¢L(x) for each L. Lemma 5.4 shows that ¢L(X)
is defined for all X 1n some neighborhood of the dominant
solvent. Lemma 5.6 gives the local convergence of the second
stage of Algorithm 1. Flnally, Lemma 5.7 says that stage one
will yleld a point in the locally convergent reglon (Lemma
5.6) of the dominant solvent. Stage one supplies a suffi-
clently accurate starting value for the locally convergent
stage two and, hence, the overéll algorlthm 1s globally
convergent. The proof of part (1i) of Theorem 5.1 then

immediately follows.

Lemma 5.2 ¢.(S) = S for all L and any right solvent S.
L —— i —

Proof: The result follows from equation (5.10) and the

fact that GO(X) = I. #

Lemma 5.3 There exists a nontrlvial ball B, centered at Sl’

such that for all X ¢ B

(1) I11-M, (Ol 2 K < 1, (5.18)

and

(11) IIMJ(X)II <D, J £, (5.19)

for some D independent of J.

Proof: A matrix polynomial 1s a continuous functlion of 1ts
matrix variable. The results thus follow from con-
tinuity and the facts that Ml(Sl) = I and

Mj(sl) =0 for J # l'. #
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It follows from Lemma 5.3 that for all X ¢ B,

Ml(x) is nonsingular and

o] < IIIiMICX)II ' (3:20)

Lemma 5.4 If X € B, ‘then there exists an L' such that

B )

¢L(X) 1s defined for every L > L'.

Proof: For X € B, let

V00 = M, M) (5.21)
and
m
W (X). = D, sstg'vJ(x). (5.22)
j=2
Then,

m
L-1
G _(X) = z 557 M, (X)
J=1

m
_ oL-1 ~(L=1)oL~1
S I+ 2 s] STV (X)) Mp(X)

1 J
J=2
- sﬁ‘l(nwL_l(x)) M, (X). (5.23)

Note that WL(X) + 0 as L -+ o uniformly for

X € B. This follows since
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. -1 D 5

v, GOl = lim, COMZ O < 7= < (5.24)
by Lemma 5.3. Thus, I + NL(X) + 1 as L » w
and, hence, I + WL(X) 1s invertlble for large L.
By equation (5.23), GL_l(X) is invertible for

large L and the result follows. #

Lemma 5.5 If X € B, then

L
|stv, cos7y < wotim commtool < 290, (s.25)

where 0 <o <1, and tv is a constant independent of L and X.

Proof: The result follows from equation (5.9), where

o = max|Ag |/min|ig | <1 for j # 1. #
J 1

Lemma 5.6 If X € B and L is sufficlently large, then
Xy =Xy ) > 8y

Proof: Let X e B and L > L' of Lemma 5.4, Set

E (X) = ¢L(X) - S5y (5.26)
Then, since

o, (X) = GL(x)szl(x)

m m
L L-1
= Zsjvj(x) ZSJ v},
J=1 J=1
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it follows that

m m
L-1 - _a yob-l
Ep (X) ): S vJ(x> Z (sJ 5,)83 vJ(x).

J=1 J=2

Let

_ oL-1 ~(L-1)
TJ,L(X) SJ VJ(X)Sl .

Thus, by Lemma 5.5,

L
0l <« 222 s o

ey o 1-K

as L » o, Choose L large enough so that

m
20Ty (X <P <1
J=2

for all X € B. Then,

m m
EL(X)‘:I + E TJ’L(X)] =) (84-5)T, 1(X)
j=2 J=2

glves, by equation (5.25),

m

IS =S, Nto™= LM, GO HIMTE GOl
1751 1 3
3=2

1 -PF

(5.27)

(5.28)

(5.29)
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for all X € B. A matrix polynomial is contin-
uously differentliable. Since MJ(SI) = 0 for
J # 1, the result

Iy Goll < elix-s, i, (5.30)

where J # 1, t = sup lIm, (X)ll, foliows from the

x€B J
J#1

mean value theorem. ¥Flnally,
L-1
o, (x)-s,1l < co lIx-s,I (5.31)

for all X ¢ B, where

m
2 lIsy-sqllte |

¢ = abs J=2 (5.32)
(1-F)(1-K)

The result follows from equation (5.31), since
0 <o <1 and L can be taken large enough s0

that o™t < 1. . #

The preceding lemma gave convergence for the second
stage of Algorithm 1 1if XO € B. The next lemma shows that

XO is 1in B if the first stage is continued long enough.

Lemma 5.7 For L sufficlently large, (a%)(a?—l) € B.




m
. L _ L,(J)
Proof: Noting that o = 3 S;A1°7, a proof similar to
J=1

that in Lemma 5.6 will yleld

(a&)(ai‘l)#l * 5, (5.33)

as L + o, #

The second part of Theorem 5.1 can now be easily

proved using Lemmas 5.2 through 5.7.

Proof of Part (11) of Theorem 5.1: For L sufficiently
large, X, € B by Lemma 5.7. Lemma 5.6 then

shows that Xi - Sl' #

Equation (5.31) reveals the rate of corivergence.

Corollary 5.2 H¢L(X)—Sln < coL"lHX-SIH for all X € B,

where 0 <o < 1.

This corollary shows that even though the second
stage 1s only linearly convergent, the asymptotlc error
constant can be made as small as desired by increasing the
number of 1terations of the first stage. The asymptotic
error constant for stage one will depend on

o = max|Ag |/min|Ag | < 1, while that of stage two can be
J 1

significantly faster than stage one. This 1s the purpose of
the second stage, for equation (5.33) shows that stage one

can also yield Sl.
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5.3 Computational Considerationa. A computational diffi-

culty in generating the sequence Gn(x) in stage one,

G, pp(X) = G (X)X - aM(X), (5.34)

is that the matrix coefficlents of Gn(x) will grow expo-

nentially. This may be avolded by generating én(X) by

K_,,(X) = & (0X - &mx) (5.35)
and
K_,(X)
K
. i} 1
G e (X) = ¢ (5.36)
| Kn+1(X) otherwise,

where &? and K? are the lead matrix coefflcients of Gn(x) and

Kn(X), respectively. Then let

G

LEE)

LX) =6, _,(X) (5.37)

and

_ L-1
6 (X) = G, (X)X = o7 M(X). (5.38)
Now, G (X) and Gy _;(X) contain the same scalar constant that

was bullt-up in normallzing &n(X) in equation (5.36). Thus,
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the constant vanishes in ¢L(x) = GL(X)Giil(x)’ and the
growth of the coefficient has been stopped. PFurthermore,
= —

8,00 =T (0.

The followlng strategy is used to switch from
stage one to stage two.

(1) Compute én(x) until the matrix polynomlals tend to
settle down.

(11) Compute stage two, as long as rapld convergence
appears to be occurring. If stage two 1s too slow
or is diverging, resume stage one for several more
steps.

A flow-chart of the algorithm that exhibilts the
strategy follows. It 1s guaranteed to work, uslng exact
arithmetic, for any matrlx polynomial satlisfying the condl-
tions of Theorem 5.1. The actual computer program that was

used to test this algorithm appears in Appendix D.
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GIVEN M(X}

WANT 8 SUCH THAT [[M{S)|I< ¢

E=—.05

:

| STAGE ONE
ITERATION

ITERe—]ITER+!

M0 1 < 174 [Emix;)

NO
YES
ITERw—|
STAGE TWO
ITERATION
>
YES RESULT X;4,

OR ITERK3

E=—|/2E




CHAPTER 6

The Block Bernoulli Method

Thls chapter covers a generalization of Bernoulli's
scalar polynomial method to the matrix polynomial problem.

A relationship 1s shown between 1t and Algorithm 1.

Definition 6.1 For the matrix polynomial

MX) = X™ + A, X"1 4 eea g A (6.1)

1

the block Bernoulll iteration 1s

X + eoo + AX

+ A Xy L —mtl =

£ o (6.2)

with xo’xal""’x-m+1 given starting matrices.

The general solution to the matrix difference

equation (6.2) is obtalned precisely as in the scalar case.

Theorem 6.1 If Sl,---,Sm are right solvents of M(X), such

that V(Sl,---,sm) is nonsingular, then

= i [ I 1
Xi Slal + + Sm“m (6.3)

is the general solution to the matrix difference -equation

(6.2), where Gys**t,a  are matrices determined by the initial

conditions.

Proof: Substitution of equation (6.3) into equation (6.1)

- 59 -
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yields

m
2 AXyga " E 2 5" a,

J=0 k=1
m
. 2 Z A8 m-J ‘Syi:zd-mﬂ“k =0
k=1 \ =0

where Ao = I. The nonsingular block Vandermonde
insures that @ys° "t sa, Can be uniquely calculated
If X

in terms of xo,x_l,-.-,x_ is the general

m+l® i
solution to equation (6.2) and X, = 21 for the

~

first m consecutive subscripts, then X, = X, for

all 1. #

In the scalar Bernoulll method, if there 1s a
dominating root, then the ratio of the Bernoulll lterates

converges to the root.

Theorem 6.2 If M(X) has golvents Sl,---,Sm, such that S1 is

a dominant solvent, and V(Sl,~--,Sm) is nonsingular, and if

xo'x see X

_12"""s%_p4y BLe chosen so that a; 1s nonsingular, then

-1
(1) xn_lx 1 Slu and
-1
{(11) ann_l -+ Sl as n + =,

Proof: Part (i) 1s obtained from
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m -1/ m
-1 - n-1 n
X2 X = 20 Sy ey Y sfa,
1m] 1=1
m l m
. -(n-1)_.n-1 -(n-1).n
o + 30 8] S B CRE MEN 540y
1u=2 1=2
-1
-+ al Slal.

For part (1i),
-1

m m
-1 - n n-1
XXna > sje, )t 20 8% oy
=1 1=1

-1 -1.-(n- 1 - -1
« (5,4, 50 La7Lss (0 1))(I+vns’1‘ La7lg7 (10}

1l 'n1 i | 171
‘where
m
UREED) S?“JSI(n-l) (6.4)
J=2
and
m
V=Y s?‘laJsI("'l) : (6.5)
Jj=2

Furthermore, n°1 %1 5, + 0 and
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v Sn-l -ls—(n—l)

-1
nSy @178y + Q. Thus, X X ', +S,. #

-1 1

The block Bernoulll iteration (6.2) can alsoc be

written as

Xi-m+2‘ 0 1 | rxi-m+1
X, 0 | I X
Xip1 | R SRR B R
(6.6)
where Xi 1s a matrix of order n. Equation (6.6} looks llke
xi-m+1\
elgenvector powering except * 18 not a vector 1in
X
1=1
Xy j

the usual sense. A theory of such power methocds will be
considered in Chapter 8.
Consider the same power-~llke method on the trans-

pose of the matrix in equation (6.6). That 1s, consider

l 1+1‘ K. [ 1
wm 0 'R 0 —Am ‘ wm ‘.
. ‘ T .
. I -A *
* = m-l * - (6' 7)
i+1 L] - 1
w5 . : LP
141 T 1
Wy \ 1 -A] \"1
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Multiplying out, the system

141 T 1

wi - Al Wl
141 4 .7 1

Wnl = Wo = AWy

L] [ . [] (6-8)
141 .4 .7 .4

With e Wl - AT ol

J-1
results. Multiply the Jth equation on the left by (XT)
and add. The result is

i T
841 (0 = 0, 00x - (W) men), (6.9)

where

(6.10)

a,(x) = (wi)Txm'l + oeee 4 (w;)T.

This is precisely stage one of Algorithm 1. These results

are generalizations of what occurs in the scalar case.
Traub [21].

See



CHAPTER T
A Lambda-Matrix Algorithm

In this chapter we present an algorithm, again
based on Traub's scalar polynomial algorithm, to obtain a
dominant latent root. Section 7.1 gives the algorithm and a
convergence theorem. Sectlon 7.2 conslders another gener-
alization of the Bernoulll method and 1ts relationship to

. the algorithm of Section 7.1.

7.1 A Method Based on Lambda-Vectors. The basic approach

to the lambda-matrlix problem taken in this paper is to find

a chaln of solvents and, then, to find the elgenvalues of each
matrix of the chain. For Algorithm 1 to yleld a solvent,
which is needed in this approach, a dominant solvent must
exist. BSince a domlnant solvent need not exist, an alter-

native approach will be consildered.

Algorithm 2 Let go(l) be an arbitrary m-1 degree lambda-

vector. Generate

Bpy (V) = g, (I = MOV, (7.1)
where
g (1) = vik)km_l + eee ¢ vék). (7.2)

Algorithm 2 is another generalization of Traub's

scalar polynomial algorithm., It seeks a domlnant latent root.

- 64 -
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Theorem 7.1 If

(1)
(11)
(111)

then

(1)

and

(11)

Proof:

M(A) has distinct latent roots, p;,***,f, . »

|pl| > |p1| for 1 ¥ 1, and

rfgo(pl) ¥ 0, where rgm(pl) - g?,

(1) By (V) bl h M(p,) 0
g = > s VWhere p,)b, = 0
k max vgk) A p1 1771
v(k+1) 0 v(k-)
1 11 L,
max ng) -

By Theorem 3.4, the lambda-vector gn(k) can be

represented uniquely by

mn

g (2 = 3 sll) MAL | (7.3)

A=
a1 1

where M(pi)bi = 0. Thus,

v:(lk) 2 B(k) (7.4)
i=1

Substituting equations (7.3) and (7.4) into equa-

(i#1) _ )
tion (7.1), one gets M(1) ) ~—E—g—2 1 b, = 0
1

1]



- 66 -

for all A. Thus, B('k) = Blpi‘ where 81 = B§_0)‘

Using this,

g M) = i
max 3 8,0yb,
1=]
mn 0 k
o oo (7)) 2 o
im] 1 1
B “mn b, \K
1
max g, { = b
z & (5) o
M( X\
- b
. - pl 1

és k + =, 1if Bl ¥ 0, since b, is unique to

1
within a scalar multiple. Furthermore,
mn
B,M(p,)
= i S 3
g,(py) = 8,M'(p )b, + E-pl —_ b, and, thus,

1=2

since rEM(pl) = g?, we get

rig (p)) = B,rIM'(py)D,. (7.5)

T . .
Finally, rlgo(pl) ¥ 0 1implles Bl ¥ 0. For

part (11)



mn 0 k
1
(k#1) _ o (k) 2 6 (pl) (eg=pyJoy
1 12 1m2 .
max vgky—_ mn Py k -
max z 61 B— bi
=1 1
th

Let (V)r denote the r component of vector v.

Corollary 7.1 Under the conditions of Theorem 7.1, if

. (k+1)
(°1) # 0. then, £%1TE7 )r >0y
r Vlr

Proof:

as k + o, as long as (Blbl) # 0.
r
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If division of vectora 1s deflned as componentwise

(k+1),

division, then vy v&k) is an n dimension vector, wilth

each component an estimate of Py In a manner simlilar to

the last two proofs, we get the following result.

Corollary 7.2 Under the conditlions of Theorem 7.1,

L)
_lT——)- - bl'
max vlk
Consider again, the first stage of Algorithm 1:
- \ k
Gk+1(x) = Gk(x)x - alM(X), (7.6)
where
= kym=1 P k
G, (X) = a X+ an. (7.7)

Transpose both sides of equation (7.6) and substitute

X = AI to get

T
T T Ty { ok
6T, (M) =GR = W) (e]) (7.8)

Let gi(A) be the lambda-vector formed by taking the R
column of the matrix coefficients of Gi(l). Then,

gl (M) = gl (A = M (VY 4, (7.9)

where v? " is the leading vector coefficlent of gi(k).

>
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Equation (7.9) 1is precisely Algorithm 2, operating on MT(A).
The latent roots of M(A) are the same as those of MT(A).
Thus, the computations of Algorithm 2 are done by Algorithm 1.
Even if Algorithm 1 does not work, due to the lack of a domi-
nant solvent, 1t is possible to obtain a dominant latent
root by extracting the computations of Algorithm 2 from the
computations (successful or not) of Algorithm 1.

The convergence theorem for Algorlthm 2 has the
requirement that rggo(pl) # 0. Since Algorlithm 1 used
GO(X) = I, 1t follows that at least one column of equation

(7.8) satisfies this requirement.

7.2 A Vector Bernoulll Method. A block (matrix) Bernoulli

iteration was previously considered. Another generalization
of Bernoulli's method 1s now presented. Similar ideas may

be found in Guderley [3].

Definition 7.1 For the lambda-matrix

m
IN" + AlA

m-1 + ses 3 Am., (7.10) |

the vector Bernoulll iteration is

D) o (k) (k-m+l) _

1 + e + AV

0, (7.11)

with v(o),'--,v(_m+l) gilven vectors.




Equation (7.11) can be written as

v(k—m+2)\

)

v(k+1)

1 |
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'v(k—m+1ﬂ
v(k—l)
(k)

lv

A(7.12)

This 1s just the eigenvector powerlng on the block transpose

of the block companion matrix.

block companion matrix is

[ (k1)
m

vék+l)

(k+1
vy ”

|

Multiplying out, we get

Then,

SR+
m

(k+1) _
vm-l

v§k+1) -

fv;k)‘

/(R

v |
~An-1
I ‘Al ‘
: (k)
- Amvl
(k) (k)
Vm " Ap1Va

|

NG

Eigenvector powering on the

(7.13)

(7.14)



- 71 -

Bay (V) = g (A = MOV, (7.15)

where the lambda-vector

1]

V'(k))tm-l + ess 4 v(k), (7.16)

g, (1) 1 m

is obtained by multiplying the 1th

i-1

equation of (7.14) by
A and adding. |

| Equation (7.15) 18 precisely Algorithm 2. <C{onsec-~
utive substitutions of equations (7.1h4) ylelds

(k+1) (k) e olk=m+1l)
vy + AV + A vy 9. (7.17)

Thus, the leading vector coefficient of Algorithm 2 is a
vector Bernoulli iterate. This is a generallization of what

occurs in Traub's [21] scalar polynomial algorithms.



CHAPTER 8

Block Eigenvalue Problem

A block elgenvalue problem is consldered in thils
chapter. Let A be a given matrix of order mn. The matrix X
of order n 1s desired such that there exlsts an mn by n
matrix, V, of full rank, so that AV = VX. Power methods of
the form Vi+1 = AVi are consldered, where Vi is an mn by n
" matrix. It was shown in Chapter 6 that the first stage of
Algorithm 1 1s of this form, where A 1s the block ‘companion
matrix. Sections 8.1 and 8.2 define the problem and con-
sider complete sets of block eigenvalues. In Section 8.3 we
present some generalizations of linear algebra with respect
to thils new formulation. The application of the>new elgen-
value problem to the block companion matrix 1s given in
Section 8.4, Also discussed 1is the relationship between
block eigenvalues and right solvents. In Section 8.5 we pre-

sent two algorithms based on eigenvector powering.

8.1 Block Elgenvectors. Let the term block vector denote an

mn by n matrix that has been partitioned into a column of n
by n blocks. It is equivalently an m-tuple, each of whose

components is a square matrix.

Definition 8.1 A matrix X of order n 1is a block elgenvalue

of order n of matrix A of order mn, if there exlsts a block

vector V of full rank, such that AV = VX. V is a block

eigenvector of order n of A.

- 72 -
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Generally the order of a block eigenvalue or block elgen-
vector will be understood and will not be referred to
explicitly.

A problem that has received a good deal of
attention 1s that of finding a matrix X such that AX = XB,
where matrices A and B, of orders m and n, respectively, are
given. Jameson [6] and Gantmacher [2, p. 215] are amongst
many authors who have considered this preoblem. The main re-
.8ult for this problem 13 that Ai = XB has only the trivial
solution X = @, i1f and only if A and B have no common
elgenvalues. This result will be of use in this paper.

Returning to the block eigenvalue problem, we have

the following.

Theorem 8.1 If AV = VX with V of full rank, then all the

elgenvalues of X are eigenvalues of A.

Proof: Let XA be an eigenvalue of X with elgenvector u.
Thus, AVu = VXu = AVu. Therefore, either A 1s an
eigenvalue of A with eigenvector Vu or Vu = Q.
Since V 1s an mn by n matrix and 1t is of full
rank, there exlsts a left inverse to V. Thus,

Vu = 0 can only occur if u = 0, which cannot

happen since u 1s an eigenvector of X. ¥

Corollary 8.1 If A i1s the block companion matrix, then all

the eigenvalues of a block elgenvalue of A are latent roots

of M(A).
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Proof: The result follows from Theorem 8.1 and the fact
that the elgenvalues of the block companion matrix

are latent roots of its assoclated lambda-matrix.#

8.2 Complete Sets of Block Eigenvalues. It wlll be shown

that a solvent 18 a block eigenvalue of a block companion
matrix. PFurthermore, it will be proved that a matrix always
has a block eigenvalue. Since a solvent does not always
exist by Theorem 2.6, it follows that a block eigenvalue of

a block companion matrix is not necessarily a solvent.

complete set if the set of all the eigenvalues of these block

eigenvalues is the set of eigenvalues of the matrix.

Theorem 8.2 Evegx_matrix A, of order mn, has a complete set

of block eigenvalues of order n.

Proof: Let Pys®**sPp be any n eigenvalues of A and let

P ,...,Pn be their assoclated eilgenvectors or prin-

1
cipal vectors, where needed. Then, V==(P1,'--,Pn)
is a block eilgenvector with block elgenvalue in
Jordan form. This process can be continued for
each of the m sets of n elgenvalues of A. #
As an example of the construction in the above

p 1 \

p 1

_l =
proof, let (P1P2P3Pu) A(PP,PoP,) ; . Then,
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) ( ) ° l) ( ) (P.P,) P 0)
AC(P.P.) = (P.P and. A(P.P,) = (P , and
12 12(0 0 174 1u.(0 y

p 0O p 1l
hence, ( ) and ( ) are a complete set of block
0 wu 0 p '

eigenvalues of A.

Definition 8.3 1In a complete set of block elgenvalues, one

of them 1s weakly dominant, 1f all 1ts elgenvalues are

greater than or equal to the eigenvalues of any other block

~eligenvalue 1n the complete set.

The construction of Theorem 8.2 can be done such
that the first block elgenvalue contains the n largest elgen-
values of the matrix. We thus get the followling important

result that was not true for solvents.

Corollary 8.2 Every block matrix has a complete set of block

elgenvalues with one of them weakly dominant.

Block eigenvalues thus far considered have all been
in Jordan form. However, unlike solvents, any matrix similar
to a block elgenvalue 1is also a block elgenvalue. This fol-

1

lows, since, 1f AV = VX and Y = P "XP, then A(VP)=(VP)Y,

and VP 1s still of full rank.

8.3 Block Vector Algebra. We now conslider some of the basic

properties of block elgenvalues.

Definition 8.4 Block vectors, Vl,---,Vk of dimension mn by n,

k
are block linearly lndependent, 1f Z ViAi =0 1mplies
i=1
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that Ai = 0 for all i, where Ai are matrices of order n.

Note that a set .of block vectors being block
linearly dependent does not 1mply that one of them can be
solved for as a combination of the others, since all the

Ai's may be singular.

Lemma 8.1 PFor 1 = 1,+**+>,m, ‘let the block vector

V1 = (vil,---,vin). Then, Vl,

independént if and only if {vij} for 1 = 1,++,m,

»++,V, are block linearly

J = 1l,***,n, are linearly independent in g™,

Proof: (1) Assume {vij} are linearly dependent. Thus,

there exists {uij} not all zero, such that

2: %y4V4y = Q. Let Ay be a matrix whose first
1]

column 1is (ail""’ain)T’ and the remainder of the
n :

matrix 1s zero. Then 2: ViA; = 0 and not all
i=1

the A, = Q.

(i1) Assume {Vi} are block linearly dependent.

Thus, there exists {Ai} not all zero matrices, such
m

that ), V,A, = 0. Let k be such that there is an
1=1

element in the kth

is not zero. Then, E: viJ(Ai)

column of at least one Ai that

=0 since this 1s

14 Jk
m
th
the k column of z: ViAy and, since, {vij} are
1=1

linearly dependent. #
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Definition 8.5 Block vectors‘vl,~'°,vm of dimension mn by

n form a block basis If for any V of the same dimension

there exists a unique set of matrices Al,-°~,Am such that
m
V=D VA,
i=]1
Block vectors being block linearly independent and

forming a block basis are related by the following.

Theorem 8.3 Block vectors Vl,-?-,Vm of dimension mn by n

form a block basis if and only if they are block linearly

independent.

Proof: Let V be a block vector of dimension mn by n,

m
V‘-E Viﬂl1 is equivalent to V
i=1

The matrix (Vl,o--,Vm) is square and, by Lemma 8.1,
honsingular, if and only if {Vi} are block linearly

independent. #

A generallizatlon of a matrix with distinct eigen-
values being similar to a dlagonal matrix, 1s given by the

next result.

Theorem 8.4 If A has block eigenvalues Xys**+,X with block

elgenvectors Vl,---,Vm that are block linearly independent,

and 1f X 1s also a block eigenvalue of A, then X is a block

elgenvalue of diag(xl,---,xm). Furthermore,

-1 : .
(Vl,"',Vﬁ) A(Vl,"',Vm) = diag(xl,-°-,xm). (8.1)
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Proof: Equation (8.1) is easily verified. Let AV = VX.
Then, by Theorem 8.3, there exists a unlque set

of n by n matrices, ul,---,um, such that

m
\T
VvV = 2: Viai. Let A = (ag,-°',u£) . Thus,
i=1

V = (Vl,---,Vm)A. Since (Vl,---,Vm) is nonsingular
and V is of full rank, by definition, 1t follows

that A is of full rank, Now, uslng equation (8.1),

we get

('Vl’.'.’vm)AX VX = A(vl"..’vm)A

(vls' bl 3Vm) diag(xl,' .. ,Xm)l\.

Finally, diag(xl,---,xm)A = AX with A of full

rank. #

8.4 Block Companion Matrix. Ar application of the block

eigenvalue problem 1s given below. We again consider the

block companion matrix. Recall that

0 ree 0 ..Am
I -A
¢ = i m=1 (8.2)
I -A4

and
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0 I
B a ) ) (8.3)
0 1
_Am “Am—l .. ...Al
where
M(X) = XM + Alxm’l #oee AL (8.4)

It will be shown that a solvent 1s a block elgen-~
value. The converse 13 not true, since a matrix similar to
& block eigenvalue 1s also a block elgenvalue, but the same
1s not true of solvents.

The following 1s easlly verifiled.

Theorem 8.5 If S is a right solvent of M(X), then 3 1s a
’I
B S
block eigenvalue of C~ with block elgenvector . .
gm=-1

Unlike the scalar eigenvalue problem, the block
elgenvalues, wilth respect to left and right block eigen-

vectors, are different.

Definition 8.6 An n by n matrix Y is a left block eigenvalue

of dimension n of A, a matrix of order mn, if there exists a

block vector W of dimension n by mn of full rank, such that

WA = YW. W is a left block elgenvector.
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A generalization of what occurs in the scalar case,

(see Jenkins and Traub [8]), i1s gilven in the next theorem.

Theorem 8.6 If R is a left solvent of M(X), then R is a

left block elgenvalue of CB, with left block elgenvector

(Dm-l" M 9D13I) s Where

m-1 m=2 ..., = _ay—1
D(A) = IXNT T 4D,ATT0 4+ +D _,A4D . = (IXA-R)""M(X). (8.5)

in

Proof: Let
0o I \
(Dm_l-"..-‘Dl’I) * = Y(Dm_l’ooo,Dl,I).
0 I :
™ R |

Multiplying out, we get

- A, =YD,

Dpey = Ap-y = ¥Pp_p

: : : (8.6)
D, -4, =7YD,

D, =~4A =¥

Consecutive substitutions yleld

m=-1

Y™ + YPTRAL 4 eee #YA . + A = 0. Thus, Y =R,

th

1 1l
a left solvent of M(X). Now, multiply the 1
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1-1
equation of (8.6) by A ; add; let
- m- -2
D(A) = 1™ 1 4+ pA™2Z 4 eeo 4D i and get
equation (8.5). _ ¥
In a similar manner, we find that if S 1s a right

solvent of M(X), then S is a block eigenvalue of C, with

vm--l
bloeck eigenvector » Where

vy
I

MO (IA-5)"0 = ™ 4 ya™ 2 e e gy (8.7)

1 1°

Let,R1 be a left solvent of M(X). Then by equation
(8.5) and Corollary 3.4, i1t follows that ﬁi(X) = D, (X), 1f

the appropriate block Vandermondes are nonsingular. Also, by

-1
equation (3.12), D,(S8,) = A(i) s Which 1s the inverse of
i*"1 1

the leading matrix coefficient of the 1th fundamental matrix
polynomial.
Let
1|
S
v =t (8.8)
m-1
Sy

and
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by = (e 0(0,3),

where it 1s assumed that both V(Sl,°'-,Sm) and

V(Sl,---,Si_l,si+1,---,sm) are nonsingular, and that

-1
= (1) (1)
R, = Ay S, Ay from equation (3.11).

The biorthogonality of right and left block eigen-
vectors is given by the followlng.

Theorem 8.7 Under the above assumptions

. (1)1
wivJ 513“1 . (8.10)

Proof:

I
vy = (06,00 0ft),1) [ 9

i°) :
m-1
Sy 7|
_ (1) (1) vee m=-1 _
=Dpy +DPp 28yt tsg 7= Di(sj)
= D, (S,)M,(S,) = &,,D,(S,) = & A(i)-l #
1491 /M1 854 13P154 1381 '

From Theorem 8.5 and Lemma 8.1 the result that
V(Sl,---,sm) is nonsingular, if and only if the block elgen-

vectors of CB are block linearly independent, 1s easlly

obtained.
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8.5 Algorithms for Block Elgenvectors. Conalder now block

powering methods, as in equations (6.6) and (6.7). Let

Vi
Vo
(M), = Vs> where V =/ and V, is an n by n matrix.
Vin |
Algorithm 3 Let
-1
Uy = AUn((AUn)k) , (8.11)

where Uo is an arbitrary block vector of full rank and

l] <k <m 1s an arbitrary fixed integer.

The normalization in equation (8.11) depends upon

the nonsingularity of (AUn) .
K

-1
n n
Lemma 8.2 U_ = A UO«A U°)k) )
Proof:

U, = Aun((aun)k)‘

1

H I
> x>
o (4%
= o
= be
1 |
L [
——— —
o o
> =
L= =]
= fn
1 1
| -
o T
- -~
] I
| ol .t
o o~
— —
= >
[s&) (A"
=} =
e o
| 1
= el
o ——
~ ——
—_ =
o
x> 3
(==
= =
1 o
= ~
g S
~ |
‘--../I [ ol
- ~
et I \-——/|
- -
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With this i1dentity, convergence can be proved.

Theorem 8.8 Let Sl,--o,Sm be a complete set of block eigen-

values of A with block elgenvectors V ,---,V . If 5. domi-

1
nates all the other block eigenvalues and U 1s in the span
m
of {(V,), that is U_= J  V,a;, and o is nonsingular, then
. 1= 1
U, = AUn((AUn) ) converges to vl((vl) ) ,1e (V) 1s
k k k
nonsingular., '
Proof:

L=
)

) (A%O)((Anuo)k)‘l

m m
2, VySiey PIRHN

1=1

m

m
>, vySjageltsy” Z(vi)ksiai o]'s7"

2
( : 1
. vl((vl)k)- :

as n + o, by Lemma 5.1. Since, as shown above,

~ls-n ( ) ( ) N

(AUn) a7's7" + (Vy) » 1t follows that (AU, s
k k k

nocnsingular for n sufficiently large since (Vl)_l

k

exists by the hypothesis. #
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In the application to the block companion matrix,

the existence of a k such that (Vl) is nonsingular, is
k

equivalent to the existence of a solvent. If a right solvent
exists, k can be taken as 1 by Theorem 8.5. The converse 1is
proved below.

B

Theorem 8.9 If CV = VX and (V), is nonsingular, then

S = (V)lx(V)I1 is a right solvent.

Proof:
;|

D,

Let V(V):-ll =D = V(V);l 1s a bloek

| O |

eigenvector of C with block eigenvalue:

s = (V);X(V)7*. Thus,

0 I ’I ’I ‘
. T D D
1 ' 21 =1.2]s.
0 I]: :
e S -AIJ D Dy
i-1

Multiplication yilelds D, =8 and

DmS + Ale + see 4 Am = 0. Hence, S 1s a right

solvent. #

Thus, Algorithm 3, applied to the block companion

matrix, converges to a block elgenvector assoclated with a
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solvent. Since block elgenvalues always exist but solvents
do neot, 1t 1s necessary to consider a normalization whilch
does not depend on the exlstence of solvents. A block elgen-
value ylelds, by Corollary 8.1, as much information to the
latent root problem as a solvent does. The difficulty 1s
that a deflation of the form M(A) = Q(A){IA~S) 1s not
avallable for block eigenvalues.

For a block vector VJ of full rank, let (Vj)
k
J

denote the n by n matrix formed by taking the first n rows of
v
J

choosing the n linearly independent rows is not important,

that are linearly independent. Actually, the rule for

as long as the rule ylelds a unique set of rows.
Algorithm 4 Let

-3
Uy, = AU (AUJ)kd ) (8.12)

If it 1s assumed that A 1s nonsingular and Uo is of
full rank, then AUJ will remain of full rank, and the itera-
tion (8.12) will always be defined. It 1s the goal here to
get UJ to converge to Vl, the block elgenvector corresponding
to the dominant block eigenvalue of A. Since the domlnant
block eigenvalue cannot be singular, it follows that for Ui
close to Vl, A is not required to be nonsingular to ensure

that the normalization, (8.12), is defined.
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V=1
Lemma 8.3 UJ » AJUO (AJUO)k )
J

Proof:

-1
Uyyy = AU, (AUJ)kJ
-1 -1\ !
2 2

- a2y, , (AUJ_l)kJ-l A%y, (AUJ—l)kJ_l ‘ )

-1 -1\~
= A2UJ_l (AUJ_I)kJ-l (AEUJ_I)kJ (AUJ_l)kJ-l

-1

= A0y, (AzUj_l)kJ = .ooo= adtly (A3+1uo)kJ . #

Let (Vl) denote the n by n matrix formed from the
r
first n linearly independent rows of Vl. Convergence of

Algorithm 4 can now be proved precisely, as in Theorem 8.8.

Theorem 8.10 Let Sy5°**,5, be a complete set of block eigen-

values of A with block eigenvectors V.,s++,V If S, domi-

1’ m* = "1
nates all the other block eigenvalues in the set and U, is in

the span of {V }, that is 2: 1 and &y is non-
i=1

singular, then UJ +1 = AU ((AUJ) ) converges to Vl(V )



CHAPTER 9

Numerlcal Results

Eight numerical examples follow. All calculations
were done on Cornell University's IBM 360/67 in APL. This 1s
a time-sharing language that gives the numerical analyst
flexibllity in desligning algorithms. It has complete matrix

arithmetic and does all calculations 1ln double precislon.

9.1 Conslder the moniec cuble matrix polynomial

3 -6 6 2 2 =42 18 66
M(X) = X° + Xc + X + .
-3 =15 21 65 -33 -81

Algorithm 1 yields for stage one

[#]
~—
b
— -
n
P
™

W

[
—
o
~
]

_ , [-1.484 2,223 ~0.667 -4.667
Gl(X) = X° + X + ,
-1.111 -4.778 2.333 6.333

5 -1.821 2.979 -1.105 -6.865
X< + X +
. 3.432  9.192

Q3
£=
~
z
]
~
+

5 -1.956 3.356 ~1.394 -8.061

G (X) = X° + X +
3 -1.678 -6.989 4.030 10.697
( .381 11.557

~2.008 3.57#) (-1.586 -8.762)
X + s
: 4
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- 5 -2.026 3.711 ~1.715 -9.193
G (X) = X° + x + [ ,
-1.856 -7.593 4.597 12.075

and

and

h -2 '
S1 = ( ) 1s a dominant right solvent of the matrix
1 7

polynomial.

9.2 Consider the moniec, cublic matrix polynomial having right

7 2 5 1 b -2
solvents S, = s S, = and S, =
1o \a1 oy 2 \-2 2 3 3 -1/
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which have elgenvalues 5,6; 3,4 and 1,2, respectively. Thus,
Sl 13 a dominant solvent., Furthermore, V(Sl,Sz,S3) and

V(SE,S3) are nonsingular. The unique monic matrix polynomial
having these solvents, which was obtained using Corollary 4.3,

1s

3 [-21.79104478 0.82089552\ ,
M(X) = X° + X
1.91044776  -9.20895522

42.34328358 ~10.16417910
+ X
-13.43283582 25.64179104

(-50.35820896 21.88059701
+ []
19.58208955 -22.80597015

The corresponding lambda-matrlix has latent roots and latent

vectors

Root Vector
(1,1.5)T
(1.1)7F

(1,-2)T
(1,-1)7
(1,-1)7
(1,-.5)7T

h U s W N

-4 1
solvent. Its elgenvalues are 3 and 5 and, hence, it ylelds

7 2
From these results, we find that Su = ( ) is also a
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only redundant information for the lambda-matrix problem.
Note that the only comblnation of latent roots that cannot be
elgenvalues of a solvent are 4 and 5.

For this problem

_ s [-57/9 11/9 8 7/9 -4 1/9
M, (X) = X" + X + ,
18/9 =4 2/9 -3 8/9 4 5/9

" to which Eh(x) 1s to converge. Letting @ _(X) = X2, we get
5 -3.541 .678 4,183 -1.708
X~ + X+ »
.T24 -2.644 -1.259 2.122

. (—5.696 1.407 8.566 :3.986)
x + x + ]
1.759 -4,161 ~3.553 4,357
_ 5 -5.770 1. 441 8.756 -14.099°
G3(X) = X° + X + .
1.876 -4.216 -3.854 4.535
The ratio of the leading matrix coefficients, which 1is to

7 2
-1 4

()
-
L
o]
g’
"

o
[a% ]
—
o]
~r

'}

converge to Sl = ( ) » results in

-1 11.791 -.821
)" -( ),

-1 6.874 1.682
(“io)(ag) B (._,377 M.BOB) ’
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and
-1 6.983 1.966
(1)) - (-—.983 u.oau) '

Algorithm 2 which ylelds a dominant latent root was shown to
be obtainable from the first stage of Algorithm 1. The iter-

ation for this problem 1is

Latent Root Eatimate

1 11.791044
2 8.332911
3 T.247455
4 6.743387
5 6.467439
6 6.302969
7 6.200093
8 6.1338u8
9 6.090399
10 6.061549
11 6.042225
12 6.029191
13 6.020346
14 6.014309
15 6.010162
16 6.007294
17 6.005296
18 6.003892
19 6.002895
20 6.002181
21 6.001663
22 6.001283
23 6.001000
24 6.000787
25 6.000626
26 6.000501
27 6.000404
28 6.000327
29 6.000267
30 6.000218

All of the lterations thus far described have been

linearly convergent. The ratio of the errors has been .8,


file:///-.983

- 93 -

which 13 the ratio of the smallest eigenvalue of the dominant
solvent and the largest of the next dominant solvent. The
second stage should alsc be linear, but with a ratio of

errors C(.B)L'l. The results are

L = 10 L =5 L =2

.8738 1.6815
.8769 4.3084

6.8632 1.0039

~.8216 4.9284/\-1.2123 6.4868

/_"'\

8.3287 -.0258)

6.9766 1.9515
-.9770 4.0475

(o vson)(
( ) (¢
o (LT ) (o
( I
( )
(s

6.8378 1.5718

6.9602 1.9165 )
-.9630 4,0774

6.9994 1.9989

~-.9995 4.0011 -.7878 4.,7206

6.9999 1.9998 6.9819 1.9630 6.7763 1.3414

-.9999 4.0002

e P e P

6.7670 1.1&58)

-.8043 4.5559
2 7 6.9790 1.9573
y -1 -.9819 4.0367/

The ratio of the errors, which by Corollary 5.2

-.9832 4,0343

n

15

=

should be C(.S)L'l, was found for large values of 1 to be
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I%02-81 _[Ifil*a-s4ll_

L

10 .15
8 .23
6 .36
4 .54
2 .78
1 .91

This shows that by increasing the number of iterations of

stage one, stage two can be made to converge more rapidly.

9.3 Consider the matrix polynomial

) (-11.un382802 3. 420249653
M(X) = X" +
0.8613037448 -5.556171983

0.5533980583 7.332871012

(-39.65603329 23.56171983
+
0.6074895978 -3.386962552

( 41.02912621 -20.93481276 )
+ X

T 2
It has a complete set of solvents, Sl = ( ) and
-1 &

4y -2
S, =8, = . The elgenvalues of S, are 5 and 6, whlle
27 "3 " \3 1 1

while the elgenvalues of 82 are 1 and 2. Clearly, V(Sl,82,83)
and v(sz,s3) are singular. Algorithm 1 converged for all

values of L. With L = 6, we get

6.7783 1.2464
X = »
© -~1.0231  3.9215
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( 6.9896 1.976u)
Xl = ' ’
-1.0011 3.9975

6.9997 1.9995)
X2 =
=1.0000 3.9999

and

The convergence 1s fast, though linear, since the asymptotic

error constant is (.H)G.

9.4 Consider the problem
5 -12.4 L.y > 52.6 =29.2 -73.2 4o .8
M(X) = X° + X+ X+ .
1.6 "‘8-6 "‘10." 22-8 16-8 "1902

7 2
This problem has a complete set of sclvents, S1 =( ) >
-1 4

l1 0 '3 2\
S, = o ) and S3 = o u) S, dominates, V(Sl,82,83)

1s nonsingular, and V(SZ,S3) is singular. Ml(x) exists
uniquely, but its leading matrix coefficlent is singular.

Hence 1lim Eh(x) does not exist. However, Algorithm 1 con-
o

verged. This 1s because the second stage needs the ratio of

G; (X) and G, _,(X), not EL(X)' For this type of problem, the

-1
equation X = u?(ag-l) can cause difficulties because
ug'l can become singular, For this problem, however, the

L-1

ratio 4id exist since ay did not quite become singular.

If it had, & random xo would have been used. After twenty
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iterations of the first stage,

5.0260 -2.0376
~-.5065 5.0094

Then,

6.6745 1.3489

2 \-.9186  4.1628

and
6.9929 1.9857

3 \-.9982  4.0036

(5.1741 -1.65uu)
X, = ,
~-. 5435 44,9136

9.5 Consider the quadratic

, (1 8 9 3
+ x + -
8 10 "

M(X) = X

The corresponding lambda-matrlx has latent roots -16,05113,
-.4215 and ~-.2637 + 1.86491. There exlst two solvents having
these as their eigenvalues, but nelther can dominate, since
there is a complex pair of latent roots whose absolute value
1s between the two other latent roots. Algorithm 1 did not
converge, but Algorithm 2, whose computations are done by
Algorithm 1, did converge to yleld the dominant latent root,

-16.05113. The order of the matrix coefficlents was then


file:///-.5435
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reversed and the minimum latent root waa found. Uslng these
results, a solvent was formed, deflated, and the new problem
yielded a solvent with eigenvalues which were the remalning
complete pair of latent roots. Thls problem suggests the

use of a random complex shift of the varlable in the lambda~-
matrix. This will break up troublesome complex pairs of

latent roots. With a shift of 1, Algorithm 1 converged with
no difficulties. All computations were done in the complex

domain.

9.6 Consider the quadratic

> -1 <6 0 12
M(X) = X° + X + .
2 -9 -2 14

The corresponding 1ambda-matrix has imtent roots 1,2,3,4 with

corresponding latent vectors (1,0)T, (o,l)T, (1,1)T, (l,l)T}
1 2

The problem has a complete set of solvents S1 = and
0 3

4 o
82 = ( ) . Other solvents have elgenvalues 1,2; 1,4 and
0 2

2,3. The only palr which cannot be the eigenvalues of a sol-
vent 1s 3,4. Thus, no dominant solvent exlasts and Algorithm
1 41d not converge., However, Algorithm 2, as computed by
Algorithm 1, ylelded the dominant latent root, 4.

Reveraing the order of matrix coefficients has the
effect of making the latent roots the reciprocals of the

original latent roots. The right solvents are the inverse of



the original ones

roots. Algorithm 1 converged to (

/1 0
solvent (
0 2

_98

. Thus, 1 and % are the new dominant latent

1l @
0 %

) s and, hence, the

) was found for the original problem. Note that

for the problem for which Algorithm 1 did converge, there was

no complete set of solvents which included the dominant sol-

1 0
vent .
0 %

9.7 Lancaster conslders a test problem which "depends on a

parameter whose value determlines the proximity of clustered

roots" [13, p. 90
[ 20
2
Al = o
0
and
.-1+2a2
20
A2 = 1
0
l
where B = o + 1.

]. Consider M
—(1+a2+28%)
0
2
0
a-a(a2+282)
-(62+282)
0
1l

(X) = x°

a(1+28°)
0
0
2

2,2

2a°8
2a82
0

0

+ A.X + A

1 5 where
—82(a2+89)
0
0
0

-a82(02+82)
-82(a%+8%)
0

0 ]

The eight latent roots of M(A) are
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o,

1

-a
£(1l+a)l ,

and -az(1+a)l .

Algorithm 1 was tested, and worked for o = 2,1,.5,.1 and
.001l. When o is made small, the smallest elgenvalue of the
dominant solvent approaches the largest elgenvalue of the
next solvent. Thus, convergence l1ls consliderably slower for

smaller a. Using the code in Appendix D, the results were

- L Iterations ”M(Xi)”
: 10 3 7x1076
' 10 2 9x107?
5 10 2 gx10~8
-1 28 7 2x10‘6
-001 30 6 .004

9.8 Finally, consider the intriguing problem

-1 -1 2 2
M(X) = X° + X + .
-2 -2 0 0

Note that
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1 0
S1 = ( ) 1s a dominant solvent, but it can be shown that
2 2

there 1s no corresponding 82 that would form a complete set

of solvents. Letting GO(X) = X, we get

11 2 2
Gl(.X) = ( )x - ( )
0 O

2 2
and
1 1 2 2
Ga(x) = x - .
6 6 TR
With

-1
6,(X)a71(X)

G- (MG )-GOl

it is easlly seen that ¢2(x) = Sl for all X such that

$(X)

|}

1 1 2 2
/ )X - ( ) is nonsingular. Thus, the exact solutlon
\2 2 0 0

is obtained in one iteration of stage two for any X

satisfying thls one easy conditlon.



APPENDIX A

Nonmonlc Lambda-Matrices

This paper has considered only matrix polynomials
(and lambda-matrices), where the identity matrix was the
leading matrix coefficlent. Consider now, the matrix
pelynomial

M(X) xm-1

i

A X" + A LCERRE Y W (A.1)
If Ay is nonsingular, then M(X) = AZ'M(X) 1s the problem
that 1s dealt with in the body of this paper. If R is a left
solvent of M(X), the R = A;lRAo is a left solvent of M(X).
The case where Ao 1s singular presents some diffi-
culty in the matrix polynomial problem. Franklin [1] con-

1 0° 5 0 2 0 0
siders the problem M(X) = ) X + X + = Q,
0 0 3 0 0 6

0o -2
whlch has a solvent ( for all values of a and b. Thus,
a b
a matrix polyncmial with both Ao and Am singular can have
sclutions with varlable eigenvalues.
If Am i1s nonsingular then
R = m m-1 .o
M (X) = Amx + Am_lx + + Ao (A.2)
can be used. The solvents of MR(X) are the inverses of the
solvents of M(X). M(X) does not have any singular solvents

since Am is nonsingular. However, if MR(I) has a complete

- 101 -
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set of solvents, then one of them must be singular, since
zero 1s a latent root of MB(X). This follows since
det M'(0) = det A_ = O.

In contrast to the matrix polynomlal problem, the

latent roots of the lambda-matrix problem

m

- m—-1
M(A) = AOA + A A + + A {(A.3)

1

can be calculated, even 1f Ao is singular. If Am 1s singular,
then A = 0 1is a latent root of M(A). If c 1s not a latent

root of M(A), then Am(c) is nonsingular, where

M, (A) = M(A+e) = A (e)A" + +oo + A (c). (A.4)

Furthermore, if p # 0 1s a latent root of M(A), then 1/p

is a latent root of

m 1\ - m m-1 PN
A u(E) = ap™ e oA AT + A (A.5)

11
iH

MR(2)

If MR(A) has a zero latent root (AO ig8 singular), then M(X)
1s said to have an unbounded latent root. A lambda-matrix
M()) 1s said to be degenerate if det M(A) = 0 for all A,
This can only occur 1f Ao and Am are singular.

Consider the following algorithm for a non~

degenerate lambda-matrix. It transforms a lambda-matrix
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with a singular leading matrix coefficient into one which is

not. The transformed lambda-matrix 1s either

(r) MR(A) if A_ 1s nonsingular
m

or (1i1) MS(A) = A" M(% + c), where det M(c) # 0.

Part (i1) works since AmMS(%) = M(A+c), which does not

have a zero latent root.



APPENDIX B

Previously Known Methods for Lambda-Matrices

The determinant of a lambda-matrix 1s a scalar
polyncmial. Let (1) = det M(A). If one is willing to
evaluate the determinant many times, then one can use any
of a number of algorithms for the zeros of a scalar functlion.

Tarnove [19] considers the use of Muller's method. He de~
P-1

flates known roots by considering fP(A) = £{A) ﬂ' (A—Ai)"l.
i=1

Lancaster [10] notes that
£r{x) = f(A)Trace{M'l(A)M'(A)}, which he uses 1n Newton's
method. Newton's method is also used by Kublanovskaya {9],
who finds f(Al)/f'(li) by using a factorization of M(Ai).
Another approach analyzed by Lancaster [12] 1s the
uée of a power-like method with a generallized Rayleigh

quotient. That is, for arbitrary Eo’ n, and Ao, let
-1 T -1
e, = O, ny = [WOp] ng,  and

n3M(A, D Ey
A = A, - : . Lancaster has shown that, for a
i+l i Tony

nyM (A, )6y

class of lambda-matrices, this iteratlive process 1s locally

convergent and quadratic. Modiflcatlions of the above algo-~
-1 T -1
rithm by Ei = [M(Ai)] Ei—l’ n, = [M (li)] ny_q has also

been considered by Lancaster.
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Another approach, due to Lancaster [14], 1s to
consider the eigenvalues of M({(A). Let u(X) be a scalar such
that M(A) - u(A)I 4s singular. Then a scalar p 1s needed
such that u{p) = 0. Lancaster considers Newtoh's method
on u(A).

The above methods of Lancaster and Kublanovskaya
are only locally convergent and they do not have a method of
deflation assoclated with them.

A symbol-manipulation approach 1s to perform
Gaussian elimination on the lambda-matrix using polynomials
In the computatlons. That 1s, every non-trivial lambda-
matrix with det Ao # 0 can be transformed, by elementary
transformations only, into a form such that
M(A) = P(AIN(X)Q(A), where det P(A) = cy # 0,
det Q(A) = ¢, # 0 and N(A) = atag{a,(A),*++,a (\)), with
(A}, N(A) 1s

1+1
called the Smith canonical form of M(A). See Wilkinson [22,

ai(k) monic polynomials and ai(l) divides a

p. 19]. Then all the roots of the aifk)'s are latent roots
of M(A).
Thlis method parallels the approach of finding the

characteristic equation 1n the elgenvalue problem.



APPENDIX C

The Quadratic Matrix Polynomial

The monic, gquadratic matrix polynomial,

M(X) = X2 + ALX + A

1 53 (Cc.1)

with right solvents S1 and 32’ 1s of the general form

M(X) = X2 - [Sl-+(81-82)82(81—32)-1]X + (81—82)82(31—82)-131

(C.2)
if det V(Sl,S2) = det (Se—sl) # 0. Note that if S1 and S,

commute, then
2
M(X) = X° - (31+52)X + 8.8, (C.3)

even if V(Sl,Sz) is singular.

The corresponding lambda-matrix can be factored as
=1
M) = (IA - (8,-8,)8,(5,-8,) )(IA«Sl)

-1
- (n- (8,-5,)5,(S=5,) )(n-sa). (c.4)
Thus,
-1

- 106 -




- 107 -

and

-1
Rl = (Sl-Sz)Sl(Sl—Sa) (C.6)

are left solvents of M(X). From equation (C.5) it follows

that
s2 - 82 = (S,+R.)(S.-S,) (c.7)
2 1 1 2 2 717" ’
"Furthermore, —Al = R2 + S1 = Rl + 82 and A2 = RRSl = Rlsg.
It 1s easlly verifled that
0 I 1 0 I 0 Sl I
= (C.8)
—A2 —41 Sl’ I Sl I/\0 82
Sl I
and hence, the bloc¢ck companion matrix is similar to
0 S
2
regardless of V(Sl,Sa).
Assume that Al and A2 are real matrices and let
S, = si + 18] be a right solvent. Then,
- 2 - =T c T c
MO = 1A+ AN+ A, (n (}12+132))(n (sl+1sl)). (C.9)
Equating coefficlients, we get RE+8%=0 and RSs +RPSC=0
? 2 1l = 2 1 271 =°

Then, Rgng-rsisi = 0. By direct substitution 1t now follows

that ST - 1s§ i1s also a right solvent. Thus,
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Theorem C.1 For a real, monic and guadratic matrilx poly-

nomial, 1f S + 1C is a right solvent, then

(1) S - 1C is a right solvent,

(i1) R - iC 1s a left solvent, and

(111) R + 1iC is a left solvent,

where R + S = -Al.

Given arbitrary matrilces Sl and 82, Corollary 4.1
shows that there might not be a monic, quadratic matrix poly-
nomial having them as solvents. Such a condltlon occurs if
S1 and S2 have distinct and disjoint eigenvalues and 1f
det V(Sl,S2) = 0, If V(Sl,Sz) is nonsingular, then M(X)
always exlsts. The following result glves necessary and
sufficient conditions for the existence of M(X).

Theorem C.2 There exists a matrix polynomial

_ w2
M(X) = X~ + AlX + A2

only i1f there exists a solution Y of

having right solvents Sl and 82 if and

€(8,-5,) = (sg-si). (C.10)
Proof: In finding Al and A2 to satisfy
M(S)) = S2 4 A8 + A, =0
M(S,) = S5 + AjS, + Ay = 0 (c.11)

the matrix Al must satisfy Al(s2"sl) = (Sg-si). #
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Note that if V(Sl,Sz) is singular and the condi-
tion of Theorem C.2 is satisfied, then M{(X) exists, but 1s

not unique. From equation (C.10) if follows that

2 o2
2—31) is non-

singular, then there 1is no monic, quadratic matrix poly-

Corollary C.1 If (52-81) 1s singular and (S

nomlals having S1 and 82 as right solvents.




APPENDIX D

Computer Programs

The computer program that was used for Algorithm 1
follows. It 1s written in APL for the IBM 360/67. It is an
interactive language and the program asks for

(1) the degree of the matrix polynomial,
(11) the dimension of the matrix coefficlents,
(111) the matrix polynomial,
and (1v) the stopplng criterion (an ¢ such that ||M(X1)” <€
terminates the computation).

Followlng the code 1s an actual output for Example 1

in Chapter 9.
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4]
sl
(6]
(7]
(N3
[9]
(101
{11)
[12]
{13]
[14]
[15]
[16]
(171
[181]
f19]
(20]
[21]
[22]
[23]
24]
[25]
(261
[27]
[28]
{29]
[30]
[31]
[32]
[33]
[34)
351
[36]
(37]
[38]
[39]
Lu0]
fu1]
[a2]
(43])
fun]

v
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VMAINL(IV

MAIN ;I ;N N1;X:X13F13;E2,CITER ;GG :M; M SW

'YINPUT DEGREE OF MATRIX POLYNOMIAL'
Y+

'INPUT S5IZF OF MATRICES!

y«0

"MATRIX POLYNOMIAL'
Me((Y+1),¥.8)pD

(+M+BAR M

GITER+0

EFl+0,05

YACCEPT |{M(S5)!||<®

E2+[}

I+l
CALG:'"STAGF ONE #Sxxhxkhnhnhbhrhrnhn!
SH+0

G+«E1 GEE M

Ni+NORM M F X

'STAGE THO euxwnwnnnnannwnx | |M(X)]|]|=

+(I=1)/LP
+(N1<N)/LP
X+X1

N1+N

'‘USE OLD ITERATE T0 START I 1M(X)t )=

X
LP:X1+«(G F X)+.xINVP G1 F X
N«NORM M F X1

'.N1

';N

VITERATION 313" iiiineneananss |IMXD)I=

IJ+«I+1

X1

+(N<F2)/END

+~(SW<2)/CONT

+{N<0.25xN1)/CONT

Fl«F1x0.5

+{(GITER<200)/CALG

'TO0 MANY ITPERATES'

+END
CONT: X+X1

NieN

SW+Shi+1

+LP
END : "k kAR e ek ek AR A ARk AR RN Rk ke n
GITER+1;' ITERATIONS OFP STAGE 1!
I-1;'" ITERATIONS OF STAGE 2!
'SOLVENT® ; X1

YHIM(S) | = "(NORM M F X1

.;”



[1]
(2]
£3]
Cu)
(5]
[6]
(71
[8]
Lol
(10]
(111
[121]
[13]
[1s]
[15]
[16]
[17]
(18]
(19]
f20]
[21]
[22]
[23]
[24]
[25])
[26]
[271]
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VGERLDIV

C+E1 CEE MiSH;TiSW

SH+0

+{CITEE>0)/LOOP

Ci+e (M. . M)p(, (1) =1)), (0=  (Y-1)xxF)

LOOP:SH+ (M. A A)p (Gl 14 v (M~1)331), (0= lix})

v

v

v

G+SH-G101;:) MULT M{1+1{{;:]

+(6103:1;1)=0)/2ERO

"LATENT ROOT EST ':;GITER+1;' ':G[1:1;1]+61011;1;1]
ZERO:G+C+NORM((Yx}) ,M)e @

T+NORM((Yxl¥),¥)pCG-C1

C1+C

SW+SW+1

GITER+GITER+1

+(GITER2200)/TOOMUCH .

+{SW>8)/TOOMUCH

+(E1<T)/LOOP
TOOMUCH : SH+ (M. N . B)o(,C101+1(H4-1)331),(0=1¥x})
CeSH-GL[133) MULT MOU1+1}ss])

+(G101:1;13=0)/2FR01 ,
'LATENT ROOT EST ‘;GITER+1:' ';G[1:;1;11+C101:1;13
ZERO1:'FINISHED GENERATION OF G TO ';GITER+1
+(0=DETERM Gi[133))/INIT :

X«G[1::)+.xINVP G1[1;;]

YINIPTAL X ';X

+100
INIT: X+(N ., B)p?(0<1(Yx}))Ix10

YARTIFICIAL INITIAL X';X

+(0=DETERM G1 F X)/INIT

vFLUIV

A«M F S;I;:J
I+1tpM

A<M[133]

J+2
LP:A+MLJ 3 J+A+ . xS
+(T2J+J+1)/LP

eMULTLID)YV

PROD+C MULT M;K:d
PROD+(J+pM)p0

K+1
LOOP:PRODLK ;s 1+C+.xM[K; 3]
+(J[1)2K+K+1)/LOOP


http://xM.nl

Ml
t2)
ra)
[u]
(5]

(1]

[1]
[2]
(3l
[u]
[s]
(6]
(7]
(8]
fa)
[103]
r111
[12]
[13]
[14]
[15]
[186]
(17]
[181]
[191]
[20]
[21]

v

v

...113_

VBARLO]V

MB+«BAR M ;J:K:iT
ME«Jpl,(02123JepM)
T«INVP M[1::]

K+2
LOOP:MB[K;; Y«T+.xM[K;:)
+(J[1)2K«K+1)/LOOP

YNORMLD]V
N+«NORM S
Ne[/+/18

vDETERMLO]V
D+DETERM M;J ;KT TN ULV
UeM
Le«(1N)e .z 1 N+14pM
V+ N
Jel
D+1
NEXTCOL :V[J)+Kk+14¥|U[J;: ]
VIK]+Jd
+{K=J)/NOCHANGE
D«-D
T«UlJ; ]
UlJ; J«ULK: ]
ULK; )T
NOCHANGE : I+J+1
+(1E710>VULJ3J))/SING
DeDxU[J;J]
+{(J=zN)/100
NEXTROW:LLT;J)«U[IT:;JIsU(J /]
ULI;1«ULX;3-LLT;J1xULJ; ]
+(N2I+I+1)/NEXTROW
+(N>J+J+1)/NEXTCOL
+NOCHANGE

(221 SING:D+0

v



MAIN
INPUT DEGREE OF MATRIX POLYNOMIAL

O: 3
INPUT SIZE OF MATRICES
O 2
MATRIX POLYNOMIAL -
G: 1 001 66 3 15 2 "42 21 65 18 66 33 ~81
1 0
0 1
e 6
“3 T15
2 "n2
21 65
18 66
“33 "81
ACCEPT |{H(S)|]<
0: .00001

STAGE ONE %k khtkkkxxhhhrk
LATERT ROOT ES5T 1 ©

LATENT ROOT EST 2 2.666666667
LATENT ROOT EST 3 ~3.75
LATENT ROOT EST 4 21,23333333
LATENT ROOT EST S 9.791208791
FINISHED GENERATION OF G TO 5

INITIAL X
3.9926462543 “2.426142109
1.213071054 7.631675705
STAGE TWO *tkxkkxthnxxxkxx | |M(X)]||= 9.607873686
ITERATION 1 .vieevanvssesns |IMX)I]= 1,277362968
3.972923527 2.089215678
1.044607839 7.106747044
ITERATION 2 ...vecacassnses |1M(X)]= 0.2293107142
3.992690243 T2.017863253

1.008931626 7.019485122



ITERATION 3 ...vivnvnnnnees JIM(X)I]=
3.99847172 T2.00335881
1.001679405 7.003509934

ITERATION & .. ....ivvunves. LIM(X)I1=
3.999709525 2.000609132
1.000304566 7.000623223

ITERATION 5 ...vvvinnnnnees 1IM(X)])=
3.999947122 T2.000108385
1.000054192 7.000109599

ITERATION 6 ....vvvuinaneees |1H{X))|=
3.999990575 T2.000019094
1.000009547 7.000019217

ITERATION 7 ovvvninennenanss |1M(X)|i=
3.999998338 T2.000003346
1.000001673 7.000003358

ITERATION B ..vvveecnnnoaes 1IM(X)|1=
3.999999709 T2.000000585
1.000000292 7.000000586

AR KRR R A AN RN R R AR N RN R AR R RN A,
S ITERATIONS OF STAGE 1
8 ITERATIONS OF STAGE 2

SOLVER?T
3.999999709 T2.000000585
1.000000292 7.000000586

PIM(S)||= 7.026157959F 6

0.04157477338
0.007424137007
0.001311183582
0.0002301117362
u.ozusésvses's

7.026157959E"6
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value formulation are considered.
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