
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Metacircularity in the Polymorphic A-calculus

Frank Pfenning and P e t e r Lee
December 7, 1989
C M U - C S - 8 9 - 2 0 7 ^

School of Computer Science
Carnegie Mellon University

Pit tsburgh, PA 15213

Abstrac t

We consider the question of whether a useful notion of metacircularity exists for the polymor
phic A-calculus. Even though complete metacircularity seems to be impossible, we obtain a close
approximation to a metacircular interpreter. We begin by presenting an encoding for the Girard-
Reynolds second-order polymorphic A-calculus in the third-order polymorphic A-calculus. The
encoding makes use of representations in which abstractions are represented by abstractions, thus
eliminating the need for the explicit representation of environments. We then extend this con
struction to encompass all of the u;-order polymorphic A-calculus (F^). The representation has the
property tha t evaluation is definable, and furthermore that only well-typed terms can be repre
sented and thus type inference does not have to be explicitly defined.
Unfortunately, this metacircularity result seems to fall short of providing a useful framework for
typed metaprogramming. We speculate on the reasons for this failure and the prospects for over
coming it in the future. In addition, we briefly describe our efforts in designing a practical pro
gramming language based on F^.

This research was supported in part by the Office of Naval Research under contract N00014.84.K.a415 and in part; by-the
Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored by the Office of Naval Research under
the same contract.

The views and conclusions contained in this document are those of the author(s) and should not be interpreted as rep
resenting the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
government.

MetcLcircuhrity in the Polymorphic X-calculus 1

1 I n t r o d u c t i o n

In this paper we consider the question of whether a useful notion of metacircularity exists for the
polymorphic A-calculus. There are, of course, many examples of metacircularity in untyped (or
dynamically typed) languages, most notably in Lisp [2 0] . In [3 2] , Reynolds gives a metacircular
interpreter for a simple untyped functional language. This was pursued further by Steele and
Sussman [3 5] , and others. More recently, metacircularity has been explored for logic programming
languages [1] and object-oriented languages [5] . In the realm of statically typed functional lan
guages, however, we are unaware of any satisfactory examples. M L [2 1] , for instance, seems not to
be powerful enough to serve as its own metalanguage in natural way—an M L interpreter written
in M L would be highly redundant since, for example, type inference would have to be reimple-
mented explicitly. We would like to at tain a high degree of reflexivity, meaning essentially that the
metacircularity should be attained in a natural, "internal" way. We discuss this issue of reflexivity
in greater detail in Section 2 .

As a starting point for our investigation we chose the polymorphic A-calculus. Conventional
wisdom indicated that the answer to the question of whether metacircularity is possible in the
polymorphic A-calculus should be "No." It seemed that the type system would not permit a high
degree of reflexivity, and also that , due to the strong normalization property of the calculus, the
usual paradoxes would block our way.

We have found, however, that the answer is "Almost." After a brief review of the polymorphic
A-calculus in Section 3 , we explain our answer in Section 4 . We s ta r t by showing how the second-
order polymorphic A-calculus (F2) (see Girard [1 3 , 1 2] and Reynolds [3 0]) can be represented in J F 3
(the third-order polymorphic A-calculus) extended with an M L - l i k e facility for defining data types.
This representation turns out to be inductively defined; hence we are able to define evaluation
for the F2 program representations via iteration. Then, by extending to higher orders the well-
known methods for representing inductively defined data types in the second-order polymorphic
A-calculus [2 , 3 0] , we are able present a complete encoding of F2 programs in pure F3 such that
their evaluation function is definable in F 3 .

Although quite different in the details, our construction is reminiscent of the reflective tower of
Smith [3 3 , 3 4] . Friedman and Wand's analysis of reflective towers [1 0 , 3 6] emphasizes reification,
the translation from programs to data , and reflection, the translation from data to programs,
as central concepts. Thus, in the setting of a statically typed functional language, we have found
elegant and concise definitions for limited forms of reification and reflection. This allows us to build
a "tower," start ing with an interpreter for F2 written in F3, and then extending to all higher orders
by introducing a simple extension to the u;-order polymorphic A-calculus (F^). This extension,
which allows us to define reification and reflection functions for all of Fw, is described in Section 5.

An interesting feature of our definitions is that only well-typed programs can be represented,
or "reified." In the context of metaprogramming (i.e., the construction of programs that construct
and manipulate other programs), this property implies that well-typed metaprograms can construct
only well-typed object programs—a very desirable property. To our dismay, however, we have not
been able to extend our metacircularity results to handle interesting kinds of metaprogramming
problems. As part of our concluding remarks in Section 6 , we speculate briefly on the reasons for
this failure, as well as the prospects for overcoming this in the future. In addition, our experience
has led us to ask whether Fu can be used as the core of a practical programming language. Here
we find the situation to be much more encouraging, and so we also briefly describe our efforts to
design a language based on F^, which we have called L E A P .

UNIVERSITY LIBRARIES
C A R N E G I E ME'b' . NRVERSITY

P I T T S B U R G H , P " H ; ' V ^ 1 ^

2 Metacircularity in the Polymorphic \-calculus

2 R e f l e x i v i t y

We are concerned not only with metacircularity, but also with how easily and naturally the metacir
cularity can be expressed. We call this the reflexivity of the language. We will not a t tempt to give
a formal definition for when a language is reflexive. Instead, we will try to give some informal
criteria for judging the degree of reflexivity of a language, the basic one being the ability of a
language to serve as its own metalanguage. This by itself does not seem enough, since then ev
ery Turing-complete language would be reflexive. In addition, we would like to require that the
metacircularity is achieved in a natural , "internal" way. The answers to the following questions
provide some hints for evaluating the degree of reflexivity of a language.

• How redundant is the definition of a metacircular interpreter? In a highly reflexive language,
the metacircular interpreter should be simple and direct. The more that features of the object
language can be implemented by using the corresponding features of the metalanguage, the
more reflexive the language. We call this phenomenon inheritance of object language features
from the metalanguage. Typical examples of features for which inheritance might be desirable
are evaluation order (e.g., call-by-value vs. call-by-name) and static typechecking.

• How much of the metalanguage can be interpreted by the metacircular interpreter? Ideally,
the metalanguage and object language should coincide.

• Can we define the functions R E I * Y and R E F L E C T in addition to E V A L ? Tha t is, can we coerce
da ta into programs and vice versa?

• How well can object language syntax and metalanguage syntax be integrated? We will mainly
ignore this issue: with the aid of good syntax-handling tools one should always be able to
achieve a reasonably smooth integration of metalanguage and object language.

The concept of inheritance (though not under this name) was already considered by Reynolds
in [32]. As we mentioned before, an ML interpreter written in ML would likely be highly redundant,
since type inference would have to be reimplemented explicitly. In other words, it seems that
ML type inference cannot be inherited, in part because because of the complexity of the data
type of programs, and also because of the implicit nature of the type quantification in ML. An
interpreter written for a dynamically scoped Lisp would also be redundant, since environments
must be represented and manipulated explicitly by the interpreter. The notion of variable binding
cannot be inherited and must be programmed explicitly. However, many other features such as
automatic storage management clearly are inherited in a typical metacircular Lisp interpreter.

In this paper we show how a high degree of reflexivity can be obtained in the polymorphic
A-calculus, despite the complications of types and the strong normalization property.

3 T h e U ; - O r d e r P o l y m o r p h i c A - C a l c u l u s

In [13, 12], Girard defines a powerful extension to Church's simply typed A-calculus [4] and goes on
to give a constructive proof of strong normalization for his system. A fragment of Girard's calculus
was independently discovered by Reynolds [30] who introduced abstraction on type variables and
application of functions to types in order to define explicitly polymorphic functions. Reynolds'
calculus is known as the second-order polymorphic A-calculus.

file:///-calculus

Metacircularity in the Polymorphic X-calculus 3

Here we consider the w-order polymorphic A-calculus (F^) which is an extension of Reynolds'
system but only a fragment of Girard's system (since it omits existentially quantified types). Our
presentation of the calculus contains four distinct syntactic categories: kinds, types, terms, and
contexts.

Going beyond the second-order polymorphic A-calculus means that we have, in addition to
types of terms, also functions from types to types, and so on. This generalization is essential for
our construction, as even the representation of the simply typed A-calculus appears to require the
formation of functions from types to types. We refer collectively to types, functions from types to
types, an so forth, as higher-order types, and the "functionality" of a higher-order type is referred
to as its kind. Only higher-order types of kind "Type" can actually be the type of a term. These
and other properties of the calculus are summarized at the end of this section. Throughout this
paper, we will often say just "type" when we actually mean "higher-order type." In particular, we
will refer to variables ranging over higher-order types simply as type variables.

We use the metavariables K,K' for kinds, a,/3,... for higher-order types and occasionally for
type variables, 9 for type variables, M, N,... for terms, and x,y,... for variables.

Definit ion 1 The syntactic categories of kind, type, term, and context are defined inductively by

Kinds K
(Higher-order) Types a

Terms M

Contexts V

= Type \K-+Kf

= 0\a-+0\ A9:K . a | X9:K . a \ a 0
= x | Xx:a . M \ M N \ A9:K . M \ M [a]

= ()\T,0:K \ T,x:a

The A symbol is used to construct functions that can be applied to a term, yielding a term, and
also to build functions that can be applied to a type, yielding a type. The symbol A constructs
functions that can be applied to types, yielding a term. Such a function will have a A type.
The order of a term in this calculus is determined by what kind of abstractions over types are
allowed: we obtain the second-order polymorphic A-calculus (i 7^) if w e allow abstractions only
over type variables of kind Type; we obtain Fs with abstractions over type variables of kinds
Type Type; etc. Contexts uniquely assign kinds to type variables and types to term
variables. We will omit empty contexts, and write ' T , T'" for the concatenation of two contexts. It is
convenient not to distinguish between variables in a global context and constants, and occasionally,
in a slight abuse of language, we call a member of a context a constant.

Definit ion 2 The following judgments define the calculus Fu.

h T context T is a valid context
h K £ Kind K is a valid kind
r h a £ K a has kind K in context Y
r h M € OL M has type a in context T
a =pv (3

We will regard a-convertible types and terms (with binders A, A, and A) to be equal. Thus
we will ignore the issues of variable renaming and name clashes. We also assume that any variable
occurs at most once in the domain of a context T (that is, the list of all variables 9 and x such that
9:K or x:a are in F). This can always be achieved by a-conversion or through the use of deBruijn
indices, as for example in Coquand and Huet's presentation and implementation of the Calculus of
Constructions [7, 9].

4 Metacircuhrity in the Polymorphic \-ca,lculus

Definit ion 3 (Valid Kinds).

h Type E Kind

\- K e Kind h K' E Kind

h K -+ K' E Kind

Definit ion 4 (Valid Higher-order Types).

r h a E Type T h /3 6 Type

r h a —> /? E Type

T,6:K h a E Type

T h A0:AT. a E Type

I- T context 0:K in T

T h A0: AT. a € A -+ A"

r h a E K -+ A ' r h /? E A'

r h a / ? E l f

Definit ion 5 (Valid Contexts).

h () context

h T context h K E Kind

h R ^ I / R context

h T context T h a E Type

h T, x:a context

Metacircuhrity in the Polymorphic X-calculus 5

Definit ion 6 (Valid Terms).

h T context x:a in T

T h x G a

R , x : a h M G (3

T h Ax.a . M G a /3

R H A F € a - > / ? T h i V G a

R H M I V G ^

R H A0:tf . M G A0:if . /?

T h M G A0:A' . /? T h a G A

T h M [a] G (X0:K . /?) a

T h M G a a=0v P R H /? G Type

R h m G / ?

The ride giving the type of a A-abstraction is formulated so that the type conversion rule can
be used to carry out the substitution of a for the free occurrences of 0 in (3. The simple device of
reducing substitution to /3-reduction is used later for the representation of terms. When we omit a
kind, as in "A0 . a," we mean "A0:Type . a."

In the type conversion rule we allow conversion between /377-equivalent types. We define
on types as the equivalence relation induced by /?- and 77-reduction of types. At the level of types,
a {3-vedex has the form (X0:K . a) 7 and an 77-redex has the form (X0:K . a 0) where 0 is not free
in a.

In the conversions for terms we will have occasion to consider both /3-conversion and 77-conversion.
Both must include type applications, that is, (A0 . M) [/?] =/? [(3/0]M (where [(3/0]M is the re
sult of substituting (3 for 0 in M , renaming bound type variables to avoid name clashes) and
A0 . M [0] =v M if 0 is not free in M. We write for the equivalence relation induced by this
extended notion of conversion. A valid term M or type a is in long (in-normal form if it is in
/3-normal form and it cannot be 77-expanded to a valid term or type without creating a /3-redex.

During the remainder of the paper, we will make use of some fundamental properties of the
calculus whose proofs can be found elsewhere (see, for example, [13], [14], or [11]) or follow imme
diately from known results. We state here only a few of them.

T h e o r e m 7 [Girard] (Basic properties of FJ).

1. If R H M G a then T h a G Type.

2. If R h a G K then a has a unique long (3n-normal form.

3. If R h M G OL then M has a unique /3-normal form and a unique long (3rj-normal form.

4. If R H M ea and T H M G (3 then a =pv (3.

6 Metacircularity in the Polymorphic X-calculus

5. T h M € a is decidable.

The system can be stratified into levels very naturally in analogy to the way higher-order
logic can be stratified into first-order logic, second-order logic, and so on. Of course, this does
not mean tha t our system is predicative: already the level F2 is impredicative. In our setting the
concept of order is determined exclusively by the kinds of the types of a term and its subteritis. The
orders are calibrated by naming the second-order polymorphic A-calculus F2 (the system Girard
calls F). Since the notion of order is important in the discussion of metacircularity, we will give a
formal definition of the overloaded function o which applies to kinds, types, terms, and contexts.

Definit ion 8 (Order of kinds). We define inductively:

o(Type) = 1
o(K-*K') = max(o(K) + l,o(K'))

Definit ion 9 (Order of types). The order of all types are eventually reduced to the order of kinds.
Given any conctect T, we define inductively or:

or(9) = o(K) where 6:K in T
or(a (3) = m a x (o r (a) , o r(/3))

or(A0:K.a) = max(o(/0 + 1, or>d:K(a))
or(X0:K.a) = max(o(iiQ + 1, or>d:K(a))

oT{af3) = m a x (o r (a) , o r (/ 3))

Definit ion 1 0 (Order of terms). The order of all terms is eventually reduced to the order of types
and kinds. We define inductively:

or(x) = o r (a) where x:a in T
or(Xx:a . M) = m a x (o r (a) , or'x:a(M))

or(MN). = M A X (O R (M) , O r (J \ r))
or(A9:K.M) = max(o(/0 + l , o r » * * (M))

or{M[a)) = m a x (o r (a) + l , o r (M))

Definit ion 1 1 (Order of contexts).

o(r,x:a) = max(o(r) ,o r (a))
o(T,9:K) = max(o(r),o(J0)

Fn is the restriction of F„ to kinds, types, terms, and contexts of order n. According to this
definition, F\ will be the simply typed A-calculus and F2 is almost exactly Reynolds' second-order
polymorphic A-calculus. The difference is that F2 as defined above allows explicit formation of
functions from types to types with A, which was not part of Reynolds' calculus. However, it can
be shown that no a 6 Type with o(a) = 2 in normal form will contain such an abstraction, so the
difference is minor (see Pierce et al. [28] for a detailed discussion).

Metacircularity in the Polymorphic X-calculus 7

4 R e f l e c t i o n o f F2 in F3

In this section we describe how metacircularity can be achieved to a large degree within F^. The
presentation will proceed in two stages: first we show how the F2 fragment can be represented in
F3 augmented by a few constants and some new reduction rules defining evaluation for F2. Second
we show how all these constants are actually definable in such a way that /3-reduction is sufficient,
tha t is, F2 and its evaluation function can be faithfully represented in F3.

4 .1 R e p r e s e n t a t i o n o f p r o g r a m s

The first concern is the ability to represent programs in the language as data. Two approaches
seem plausible: to build in a new special da ta type for programs, or to use combinations of existing
built-in da ta types to represent programs. We first show how representation can be achieved using
new constants, and then how these constants can be eliminated through internal definition.

Starting informally, it is useful to consider how programs in F2 might be represented if ML-
style data type constructors were used. Looking at Definition 1 suggests that there ought to be
five constructors: one for variables and one for each form of abstraction and application. Thus we
make our first crucial decision: the types of F2 are not represented explicitly, but rather mapped
into types in F3. This technique results in the property that only well-typed terms in F2 can
be represented, thereby providing a built-in type safety. But this then forces our hand in the
represention of variables: if we try to represent them explicitly (say as strings or natural numbers),
there appears to be no way to guarantee well-typedness of the term we are trying to represent.

The way out of this dilemma is to use the idea of higher-order abstract syntax, which goes back
to Church and appears in different guises in various places in the literature, for example [3, 15, 25].
The essence of higher-order abstract syntax is to use the abstraction mechanism of the metalanguage
to implement abstraction in the object language. Here, of course, both metalanguage and object
language will be fragments of F„, so A and A will be used to implement themselves. That this is
possible may seem unlikely at first, especially in this statically typed language, but, as we will see,
we can construct such a representation and even define an evaluation function.

Ignoring the problems of types for the moment, we thus obtain the constructors rep (for bound
variable occurrences), lam, app, typlam, and typapp. The constructors lam and typlam expect ab
stractions as arguments, since abstractions are to be represented by abstractions. In the interests
of readability,_we have in the definition below omitted the context argument of the representa
tion function () which could be easily filled in. The crucial property of this function is given in
Theorem 15.

Defini t ion 12 (Standard representation). Let M be a valid term of F2 in some context T. We
define the s tandard representation M of M inductively as follows:

If xea then x = rep [a] x
If Xx:a . M g OL -> (3 then Xx:a . M = lam [a] [/?] (Aar.a . M)
If Mea-+/3andNea then M N = app [a] [(3] ~M~N
If A0.MeA0.a then A0 . M = typlam [X0 . a] (A9 . ~M)
If M e A0 .a then M [f3] = typapp [X0 . a] ~M [0]

Since the type of a given term is not unique (due to the type conversion rule), this does not actually
define a function on terms. However, due to uniqueness of types up to conversion it is easy to see

8 Metacircularity in the Polymorphic X-calculus

that M is also unique up to conversion at the level of types occurring in M. We thus turn () into
a function by stipulating that the types in M be in normal form.

E x a m p l e 13 (Representation of the polymorphic identity function). Let id = Aa . Xx:a . x.
Then

id = typlam[A0 . 9 —• 9] (Aa . lam [a] [a] (Xx:a . rep [a] x))

What is the appropriate metalanguage in which to interpret Ml Obviously, we need five
constructors and a representation type. We write "x a" for the type of representations of programs
of type a and define a context II giving the types of the constructors.

Definit ion 14 (Representation context II) .

n = 7T : Type -> Type,
rep : A a . a —• ir a ,
lam : A a . A/3 . (a -> TT /3) - > TT (a /?),
app : A a . A/3 . IT (a —• f3) -* IT a -+ x /?,
typlam : Aa :Type -> Type . (A0 . 7r(a0)) T T (A 0 . a 0),
typapp : Aa .Type -+ Type . T T (A 0 . a9) A9 . x (a9)

The significance of this definition lies in the following theorem.

T h e o r e m 15 (Soundness of program representation). Let M be a term such that r ,II h M € a
where a is in normal form and o r ' n (M) = 2. T/ien

T,II h M G ?ra

Moreover, or,n(M) = 3.

Proof: By a simple induction on the derivation of T, II h M E a . •

Note also, that for a term M in Fi (a simply-typed term), the representation M will be in F2.
For the representation of i^ - te rms, it is not necessary to consider the context II for M , but it is
convenient to do so for the completeness theorem. For example, a term N such tha t II h N € 7r (TT a)
does not directly represent a term in the empty context, though it represents a term in the context
II (see Example 17 and Theorem 18).

Definit ion 16 (Representation). We define the relation "represents 1 9 inductively like the standard
representation, except that r e p [a] M (which is not the standard representation of any term unless
M is a variable) is defined as representing M and if N Nf and N represents M, then N' also
represents M.

E x a m p l e 17 (A representation of a representation of the polymorphic identity function). Let Id
be the standard representation of the polymorphic identity function from Example 13. The following
represents Id, though it is not its standard representation:

[w(Aa . a -> a)] (typlam [X9 .0-+0](Aa. lam [a] [a](Xx:a . rep [a] a)))

Metacircularity in the Polymorphic X-calculus 9

Omitting some types within square brackets and without writing out representations of variables,
the standard representation of id is

[] [] (typapp [] typlam[X6 . 0 -> 0])

(typlam[](Aa . app (typapp [] (typapp[] lam [a]) [a])

(lam [] [] (Xx:a . app [] [] (typapp [] rep [a]) x))))

The type of both of these representations is 7r (IT (A a . a —• a)) and they are valid terms in the
context II.

T h e o r e m 18 (Completeness of program representation). Let N be a term such that r , I I h N G
ira for a in normal form and or>n(N) = 3. Then there is an M with T,II h M G a such that N
represents M.

Proof: We take the /3-normal form of N and then 77-expand to achieve the long /^-normal
form N'. By definition, if Nf represents M , then N also represents M. One can then see that
N' must be of of the form of a constructor (that is, a variable in II) applied to sufficiently many
arguments: none of the variables in T could produce a term of type 7r a , since a in introduced in II
and can therefore not appear in T. The function that maps N' back to the term that it represents
is in essence the function reflect from Definition 20. •

Note tha t representations of programs are not unique, not even up to conversion. For example,
any term M G a in normal form can be represented as rep [a] M; but it also has a representation
in terms of lam, app, typlam, typapp, and rep, where rep is applied only to variables.

Because of the property mentioned in the previous paragraph, it is tempting to try to eliminate
the rep constructor from the representation. However, it is crucial in order to convert bound
variables into their representations. A simple a t tempt to get around this would be to change the
type of the lam constructor to A a A / 3 . (x a —• 7r /?) —• 7r (a —• /?). However, this also fails since
then there is a negative occurrence of w in the argument to one of the constructors for 7r, making it
no longer inductive, but generally recursive. We have not explored in depth whether the addition
of general recursive types would strengthen the possibility of reflection in F^, but we suspect that
the results would be equally unsatisfactory.

4 .2 E v a l u a t i o n

Of course, there are a wide variety of possible representations, even given the constraint that
we would like to represent only well-typed F2 programs. One of the crucial properties of our
representation is the definability of the evaluation function. What is meant by evaluation in the
context of FJl Since the calculus has the strong normalization property with respect to both (3
and /377-reduction, the definition that appears to be easiest to work with is tha t M evaluates to JV"
if N is in /?-normal form and M =p N.

The central idea in the definition of evaluation over the representation is to use a detour: we
reflect the represented term into its corresponding term representation and then reify the result
of the evaluation in the metalanguage. Let us try to explain this by analogy. Assume we have a
programming language like ML (with a built-in type of integers) and we make and explicit definition
of a da ta type of natural numbers (in a unary representation):

10 Metacircularity in the Polymorphic X-calculus

indtype nat : Type with
zero : nat
succ : nat —• nat
e n d

There is an obvious way of defining addition by using a schema of iteration (to be made precise
below):

plus zero m = m
plus (succ n)m = succ (plus nm)

It turns out tha t in our setting such a straightforward definition of evaluation is not possible,
but there is a more devious definition of addition whose idea carries over to our example. We define
representation and "unrepresentation" functions, let us call them reflectnat and reif ynat.

reflectnat : nat —• int

reflectnat zero = 0
reflectnat (succ n) = (reflectnat n) + 1

reifynat : int —» nat

reif ynat n = if n = 0 then zero else succ (reifynat (n — 1))

Then addition can be programmed by observing that + on integers "behaves like" plus on natural
numbers, tha t is,

reflectnat n + reflectnat m = reflectnat (plus n m)

Given tha t we have a reification function we can then define
plus n m = reifynat (reflectnat n + reflectnat m)

Our construction for programs follows this development, with functions reflect (for reflectnat)
and reify (for reifynat) and eval (for plus). What plays the role of +? In essence, application
does, since evaluating a function application in the metalanguage models the evaluation of a term
(which is not in normal form) in the object language.

Before we can give the definition of an evaluation function, we have to be more precise about
the tools tha t will let us define functions over constructors as done informally above. All tha t we
need here is the schema of iteration over an inductively defined type. For a general development
of the notions of inductively defined types and iteration over such types that is general enough to
apply to the representation of terms in F 2 , see [8, 27]; here we only sketch some of the essential
elements. An inductively defined type is given by a list of its constructors and their types. This is an
extension of the datatype construction in ML, since constructors may be explicitly polymorphic.
It is shown in [27] (extending ideas of Bohm fe Berarducci [2]) that these types do not require an
addition to the core language, since inductively defined types are representable by closed types (see
Section 4.4). With this in mind, we can now present a specification of the type of programs:

Metacircularity in the Polymorphic X-calculus 11

i n d t y p e TT : Type —• Type w i th
rep : A a . a —* TT a
lam : A a . A/3 . (a -» TT (3) -+ TT (a -+ /?)
app : A a . A/3 .7r(a—>»/3)—•Tra—>7r/3
typlam : AarType Type . (A9 . TT (a (9)) — TT (A 0 . a 9)
typapp : AarType -» Type . TT (A 0 . a 0) -> A0 . TT (a 0)
end

It is important to note that this is indeed inductive, that is, all occurrences of 7r in the types
of the arguments of the constructors are positive. This allows the definition of a function over the
inductive type by iteration, a simpler form of primitive recursion. The general schema, instantiated
to the type 7r, yields the following.

Definit ion 19 (Iteration over 7r). Given ©.Type —• Type and terms

hi € A a . a —• 0 a ,
h2 € A a . A/3:Type . (a -> 0 (3) -> 0 (a -+ /?),
h3 € A a . A/3 . 0 (a -* (3) -+ 0 a -> 0 /3,
/ i 4 € AarType -+ Type . (Ad . 0 (a 0)) — 0 (A9 . a 0),
hs e AarType -+ Type . 0 (A9 . a (9) -» A0 . 0 (a 0).

/// satisfies
f [a] (rep [a] x) = hi [a] £
/ [a - /?] (lam[a] [/3] x) = ft2 [a] [/3] (Ayra . / [f3] (x y))
f [/3] (a P P [a] [/3] x y) = h3 [a] [/3] (/ [a - /3] x) (/ [a] y)
/ [A 0 . a 0](typlam [a] x) = / i 4 [a] (A9 . / [a 0] (x [9]))
/ [a / 3](typa P P [a] x [/ 3]) = hs [a] / [A9 . a 9} x [(3}

then f:AarType . 7T a —• 0 a zs defined from h\,..., h$ by iteration over TT at type 0 .

Given this general schema it is easy to define the reflection function.

Definit ion 20 (Function reflect).

reflect : A a . 7r a —• a

reflect [a] (rep[a] x) = x

reflect [a —• /3] (lam[a] [(3) x) = Ayra . reflect [(3] (x y)
reflect [/3] (app [a] [/3] x y) = (reflect [a —• /3] x) (reflect [a] y)

reflect [A0 . a 0] (typlam[a] x) = A0 . reflect [a 0] (x [0])

reflect [a /3] (typapp[a] x [/?]) = reflect [A0 . a 0] x [/?]

It is easy to verify that this is an instance of the schema for iteration given above where
0 = X9 . 9. The crucial property is that this really defines a proper reflection function with respect
to the reification function () (see Theorem 22). In order to properly formulate this theorem, we
have to add another constant to the context II and some new conversion rules. In the end this will
turn out to be unnecessary, since we can find a way of representing inductively defined types in the
pure calculus (with an empty context) in such a way that iteration is definable.

12 Metacircularity in the Polymorphic \-ca,lculus

Definit ion 21 (Iteration context I I +) . We add a variable to the representation context U that
expects a 0 and then functions hi,..., h$ to return the function that is defined by iteration at type
0 from hi,.. . , / i5 .

11+ = II, itprog : A 0 : T y p e -» Type .
—» A a . a —• 0 a
— A a . A/3 . (a — 0 /3) -> 0 (a — /3)

Aa :Type -» Type . (A0 . 0 (a 0)) 0 (A0 . a 0))
-+ Aa :Type -* Type . 0 (A0:Type . a 0) — A0 . 0 (a 0)
—» A a . 7r a —• 0 a

TAe iterative reduction property of itprog states that f = itprog© hi . . ./15 satisfies the equations
from Definition 19 (as reductions, they would be read from left to right). The corresponding enriched
equivalence relation is denoted by =/?^.

T h e o r e m 22 (Correctness of r e f l ec t) . Let T,U h N € Tra 6e some fnctf necessarily standard)
representation of the term M. Then r e f l ec t JV = ^ M.

Proof: As in the proof of Theorem 18 by induction on the long normal form of N in terms of
the constructors of x. •

4 . 3 T h e d e f i n i t i o n s o f re i fy a n d eval

Given the definition of re f lec t , it is a simple mat ter to give the definition of eval:7ra —• 7ra.
Intuitively, eval should take the representation of a term and return a representation of its normal
form. This is achieved simply by composing reflection with reification. This definition (given
formally below) will not return the standard representation of the normal form of the term, but
rather exploit the fact that every normal form term M can be represented as repM. This is also
a weakness, since the internal structure of M is lost (unlike in the standard representation). In a
practical language there seems to be no way around this deficiency. For instance, in a compiled
language it is not clear how one could reify the target machine code.

rei fy : A a . a —* 7r a
rei fy = rep

eval : A a . T a —• TT a
eval = Aa \X:TT a . re i fy [a] (re f l ec t [a] x)

T h e o r e m 23 (Correctness of eval). Let r, II h N € IT a be some (not necessarily standard)
representation of the term M. Then eval[a]iV is a representation of the normal form of M.

Proof: Follows directly from Theorem 22. •
We do not have a simple and intuitive characterization of exactly which functions are definable

over the given representation of programs. In particular, we do not know whether the apparently
simpler one-step outermost /3-reduction is representable, but it appears that is is not. The problem
is that the first argument to lam expects a function of type a —• 7r /3, not of type 7r a —• 7r /3.
Unfortunately, our lack of understanding of exactly what is definable has prevented us from finding
more practical programming applications of our metacircularity results.

Metacircularity in the Polymorphic X-calculus 13

4 . 4 R e p r e s e n t i n g i n d u c t i v e l y d e f i n e d t y p e s a n d i t e r a t i o n

So far we have been able to interpret F2 in an enrichment of F3 that contains some new repre
sentation constants and an iteration schema. The purpose of this section is to show that we can
eliminate these additional constants: we will explicitly define in pure JF3 a parameterized type 7R
and terms rep, lam, app, typlam, and typapp to represent programs, and also a term i tp rog that
satisfies the reduction property of Definition 21.

The basic problem is to be able to explicitly define a function 7R from types to types, such
that 7 R A is a type representing programs of type a . The usual, well-known approach for defining
inductive da ta types in the second-order polymorphic A-calculus (see [2, 31]) fails (although we
do not have a proof that such a representation is impossible). The data types that have been
shown to be representable in F2 either have constructors that are not polymorphic (such as NAT =
A a . a —» (a —> a) —• a , which has constructors zero :NAT and succ:NAT —> N A T) , or have the
property that the type variables in the constructor are uniform over the whole data type (such
as list = Aa . AO . (a-+0—>0)-+0-+0 with constructors cons:A0 . 0 —• list ^ —> list ̂ and
ni l :A0 . Iist0). This allows the definitions of the constructors to be uniform over this type variable
(see the discussion of uniform parameterization in [27]).

An a t tempt at a straightforward extension of this approach to the case of a data type of programs
fails, since a program of type (3 may have components of type a -* (3 and a, and thus in fact of
arbitrary type. This problem can be dealt with in the third-order polymorphic A-calculus, since in
it one can explicitly use a function from types to types that maps the type of the components to
the type of a term.

In analogy to Church's representation of natural numbers in the A-calculus, each program is
represented as its own iteration function. Tha t is, in the end we would like to define (omitting
some types of bound variables):

itprog = A0:Type -+ Type . Xhx ... Xh5 . Aa . A X : T T a . x [0] hx ... k 5

From this one can infer what the definition of IT will have to be. Each line is annotated with a
corresponding constructor function that is defined below.

TT = A 7 . A 0 : T y p e -» Type .
(A a . a —* 0 a) —> (* rep *)
(A a A/3 . (a —• 0 /?) -+ 0 (a —• (3)) (* lam *)
(A a A/3 . 0 (a -+ (3) -» 0 a -+ 0 (3)) -+ (* app *)
(Aa:Type -+ Type . (AO . 0 (a 0)) -+ 0 (AO . a 0)) -> (* typlam *)
(Aa :Type Type . 0 (AO . a 0) -* (AO . 0 (aO))) -+ (* typapp *)

This is a special case of a very general transformation from an inductive definition of a data
type into an encoding into Fw described in [27]. The definitions of the constructors in this encoding
can be found in Figure 1.

We thus can eliminate the context I I + and the additional reduction rule for iteration and give
a representation of program in pure F3.

T h e o r e m 24 (Representation in pure F3). Let M and a be the result of substituting the definitions
above for variables TT, rep, lam, app, typlam, typapp, and itprog in a term M or type a, respectively.

I I + h M £ IT a then T H M E F a . Moreover, if M =pm N then M =pv N.

1 4 Metacircularity in the Polymorphic A-caicu7us

rep :
rep =

A a . a —* 7r a
Aa Ax:a .
A 0 A rep Xlam Xapp \typlant Xtypapp .
rep [a] x

lam
lam =

A a A/3 . (a —• TT /3) -+ 7r (a —* /3)
Aa A/3 A / : a - + T T / 3 .
A 0 Xrep Xlam Xapp Xtyplam Xtypapp .
lam [a] [/3] (Xx:a . f x [0] rep /am app typlam typapp)

app :
app =

A a A/3 . 7r (a /3) 7r a x /3
Aa A/3 Ax:x(a -+ /?) Ay:7ra .
A 0 A rep Xlam Xapp Xtyplam Xtypapp .
app [a] [(3] (x [0] rep /am app typ/am typapp) (y [0] rep /am app typ/am typapp)

typlam
typlam =

Aa:Type Type . (A0 . TT (a 0)) - + TT (A 0 . a 0)
Aa:Type -+ Type A / : A 0 . TT (a 0) .
A 0 A rep A / a m A app Xtyplam Xtypapp .
typlam [a] (A0 . / [0][0] rep /am app typ/am typapp)

typapp :
typapp =

Aa:Type -* Type . TT (A 0 . a 0) (A0 . TT (a 0))
Aa:Type -> Type A / : T T (A 0 . a 0) A0 .
A 0 A rep A / a m A app Xtyplam Xtypapp .
typapp [a] (/ [0] rep /am app typ/am typapp) [0]

Figure 1 : Definition of program constructors for F2 in F 3 .

Proof: This is an instance of the general representation theorem for inductively defined types
in [23, 27]. •

The crucial step in the definition of eval is the definition of reflect, which maps the representa
tion of a term of type TT a into a term of type a , tha t is, reflect: A a . w a —• a . In order to obtain
its definition in pure F3, we simply match up the general schema of iteration from Definition 19
with the definition of reflect (Definition 20) to obtain expressions for / i i , . . . , / i 5 . Each /i t turns
out to be a variant of the identity function:

reflect : A 7 . 7r 7 —• 7
reflect = itprog [XS . S] (Aa . id [a]) (Aa A/3 . id [a - * /3]) (Aa A/3 . id [a -+ /3])

(Aa:Type -> Type . id[A0 . a0]) (Aa:Type -> Type . id[A0 . a 9])
= A7 Ap:7r 7 . p [A£ . 6]

(Aa . id [a])
(Aa A/3. id [a -> /3])
(Aa A/3, id [a 0\)
(Aa:Type Type . id[A0 . a 0])
(Aa:Type Type . id[A0 . a0])

This definition highlights the fact that a program is represented as its own iteration function.

Metacircularity in the Polymorphic \-calculus 15

The ability of a program to be evaluated is captured in the representation itself—externally we
simply supply identity functions.

5 A p p l i c a t i o n t o o t h e r ca l cu l i

Let us first deal with the most obvious question: since F2 can be reflected in F$ one might expect
tha t F3 could be reflected in F4. However, the construction as given does not extend to this
case (as was erroneously claimed in Pierce et al [28]). Can we modify the construction to obtain
an interpreter for all of J P w ? The answer is yes, but we have to modify our construction to add
another level in addition to terms, types, and kinds. Perhaps the most uniform way of doing this
is to introduce universes as in related systems such as the Generalized Calculus of Construction
(CC^) [6, 16]. This is beyond the scope of this paper, and so we simply give the construction as it
would appear if one additional level is added explicitly, thereby allowing an interpreter for F„ to
be written.

The way in which this additional level is added is straightforward for our purposes: we need
variables K ranging over kinds and a way to explicitly abstract terms over kinds.

Definit ion 25 (Calculus F+). To the syntactic categories of Definition 1 we add

Kinds K ::= .
Types a ::= . . . 1 A + K . A

Terms M ::= . . . | A + K . M

Contexts T : : = . . . 1 / C : K I N D

A stands for abstraction over kinds at the level of terms, and a function thus formed has a
type of the form A + K . a and can be applied via []+. The inference rules from Section 3 must be
modified in the obvious way so that the the judgment h K G Kind is parameterized by a context
that is, r h K e Kind. We also add the following new deduction rules:

h T context «:Kind in T
r h K e Kind

T , K : K i n d h a E Type

T h A + K . a G Type

T context
T, «:Kind context

T, K : K i n d h M G a

T h A+K . M G A + K . a

r h M G A + K . a r h K G Kind

r h M [K]+ G [K/*]a

file:///-calculus

16 Metacircularity in the Polymorphic X-calculus

All of the desirable properties such as strong normalization and decidability of type-checking
of Fw are preserved in (see, for example, Luo [19] for the proofs in a much stronger system of
which F+ is only a small fragment).

The next step is to modify the construction in Sections 4 and 4.4. The crucial change is in the
definition of 7r: all the other changes follow almost automatically. Consider

typlam : Aa :Type -+ Type . (A0 . w (a 0)) - » TT (A0 . a 9)

This must now be generalized, since abstractions in Fw may also range over variables of kind
Type —• Type, Type —• Type —• Type, and so on. In order to represent all of these in-a uniform
way, we need a family of constructors, indexed by a kind K:

typlam^ : Aa : JT-+ Type . (A9:K . TT (a $)) TT (A9:K . a 6)

In [26] we proposed using global definitions and definitional equality to solve this problem, here we
add a way of explicitly abstracting over kinds. In our notation from above, typlam will then have
the type

typlam: A + K . Aam -+ Type . (A6:K . TT (a 6)) -+ ir (A0:K .(a 9))

The modified standard representation function then reads as follows:

If x £ a then x = rep [a] x
If Xx:a . M € a -* /3 then Xx:a . M = lam [a] [/3] (Xxja . M)
If M € a -+ /3 and N € a then M~N = app[a] [/?] M iV .
If A9:K . M e A9:K .a then AfriT . M = typlam [#]+ [A0:i iT . a] (A0:JiT . M)
If M€A0:K.a then Af [/3] = typapp [A']+ [A^riiT. a] M [/3]

The type of typapp has to be changed in a way analogous to typlam leading to the following
definition of T generalized from Section 4.4:

TT = A 7 . A 0 : T y p e -+ Type .
(A a . a —• 0 a) -» (* rep *)
(A a A/3 . (a -» 0 /3) -+ 0 (a -+ /?)) — (* lam *)
(A a A/3 . 0 (a — /3) — 0 a — 0 /?)) -+ (* app *)
(A + K . A a : « Type . (A0\n . 0 (a 0)) -» 0 (A 0 : K . a 0)) (* typlam *)
(A+K . A a : * -* Type . 0 (A9:K .a 9)-+ (A9:K . 0 (a 9))) -> (* typapp *)
- » © 7

Most of the other definitions of section 4.4 go through as given, with some changes in the types
(which were omitted in Figure 1). As an example we consider typlam.

typlam : A + K . Aa:n -* Type . (A 9 : K . 7r (a 9)) —• TT (A9:K . a 9)
typlam = A + K . Aa:n -+ Type A f:A9:K . 7T (a 0) .

A 0 A rep A / a m A app Xtyplam Xtypapp .
typlam [«]+ [a] (A 0 : A C . / [0] [0] rep /am app typlam typapp)

Metacircularity in the Polymorphic X-calculus 17

For the definition of reflect we get

reflect : A7 . 7T 7 —» 7

reflect = A7 Xp:ir 7 . p [XS . S]
(Aa.id [a])
(Aa A/3 . id [a -+ /3])
(Aa A/3 . id [a -+ /?])
(A+K . Aa:n -» Type . id[A0:/s . a0])
(A + K . Aa:K Type . id[A0:«; . a<9])

The representation theorems go through in the same way as before, but now any term in Fw

can be represented and evaluated. Even though the uniform representation and definition of the
evaluation function is in F%, evaluation of a given term in Fn "takes place" in Fn+i, since any
given term in Fn will only use finitely many kinds.

6 C o n c l u s i o n s

We conclude tha t metacircularity is very nearly attainable in a statically typed language. Unfor
tunately, this does not seem to imply that the same language is also suitable for typed metapro-
gramming: the construction of statically typed programs (called metaprograms) that construct,
analyze, and manipulate other programs (which are called the object programs). It is this problem
which provided the original motivation for the construction presented in this paper.

With regard to typed metaprogramming, it seems that we have little to add to what is already
known, despite the fact tha t we have developed a simple extension to Fu that allows all of F^ to be
represented. Our experience has been that evaluation is just about the only useful function definable
over this representation. Other interesting metaprogramming tasks, such as partial evaluation,
macro expansion, program transformations, and so on, do not seem to be expressible.

The precise reasons for these difficulties have eluded us thus far, and as a result we have yet to
prove any negative results. However, there are a number of plausible explanations which center on
the issue of how to model abstraction.

• If one models abstraction in the object language by abstraction in the metalanguage (as we
have done here), then static typing does not seem to be a major obstacle to useful metapro
grams. Instead, the problem seems to be an insufficient degree of access to the intensional
structure of programs. In a functional language, a possible way out may be to preserve in-
tensionality with new language constructs that are parallel to, but separate from extensional
function constructors.

• If abstraction is not modeled by abstraction, then static typing becomes a major obstacle
to metacircularity. Of course, removing the static typing requirement allows many useful
metaprograms to be expressed, as exemplified by Lisp. In a statically typed setting, however,
proofs of well-typedness would have to be carried out at the meta-level and, moreover, reflec
tion and reification functions could not be made internal. Still, this approach is promising
and has been explored by Howe in the framework of NuPrl [17, 18].

In related research we have been working on the design and implementation of a practical,

18 Metacircularity in the Polymorphic X-calculus

explicitly polymorphic language along the lines of ML which which we call LEAP. 1 For a core
of LEAP which encompasses most language fragments described in this paper, we have built a
prototype implementation, written largely in the language AProlog [22], and the examples in this
paper have been run on our implementation. Two features of our language of importance to the
ultimate practicality of LEAP are type reconstruction and type-argument synthesis.

With regard to type reconstruction, we employ the convention of allowing the programmer to
omit type information, but with the requirement that "placeholders" be used to mark all applica
tions of functions to types. So, for example, the representation of the polymorphic identity function
from Example 13 could be written as

I d = typlam[] (Aa . lam[] [] (Xx:a . rep[] x))

Though undecidable, we have found in practice that the semi-decision procedure given in [24] for
this type reconstruction problem behaves acceptably well. There is much yet to be explored here,
however, especially in the practical engineering issues, such as the efficiency of the reconstruction
mechanism, its behavior on errors and failures, and the incorporation of a notion of modules.

Even with type reconstruction, we find the requirement of placeholders to be cumbersome.
Hence, a mechanism for synthesizing type-argument applications is necessary. This has been noted
by others as well, and various methods have been proposed for carrying out this synthesis [9, 29].
In LEAP, we have taken a purely syntactic approach involving the annotation of identifiers in
their defining occurrences by the number of type arguments to be inferred at each occurrence of
that identifier, thus separating issues of type reconstruction from the issues of argument synthesis.
Modifying the left-hand side of the definition of typlam and related functions by annotating them
with *'s (for example, typlam* = . . . , and lam** = . . .) , we express the representation of the
polymorphic identity as

i d = typlam (Aa . lam(Ax:a . rep a:))

With type reconstruction and type-argument synthesis, as well as inductive type definitions, we
obtain a useful and syntactically tractable LEAP language. Of course, lacking a full implementation
we can only speculate on the question of its ultimate practicality. However, almost any argument
that might be made for ML as a metalanguage can also be made for LEAP. In addition, LEAP is
able to represent and manipulate in a type-safe way da ta with richer type structures than is possible
in ML. Just how useful this added power is in practice will require much further investigation and
experience.

Other issues to be studied further include the exact extent of the language, in particular with
respect to additions such as general recursion, references, exceptions, and so on. We have done some
preliminary work along these lines, and have some evidence that such extensions will not destroy
the "reflective" properties of LEAP. Another issue is the efficient implementation of LEAP. Our
efforts here have been directed towards devising efficient implementation strategies for inductively
defined data types and recursive functions defined over such types.

We hope to have more to report as the design and implementation of a full LEAP language

proceeds.

*LEAP in an acronym for a Language with £val And Eolymorphism.

Metacircularity in the Polymorphic X-calculus 19

A c k n o w l e d g e m e n t s

The authors would like to thank Christine Paulin-Mohring for valuable criticism of an earlier draft
and also Ken Cline, Scott Dietzen, Jean Gallier, Robert Harper, Spiro Michaylov, and Benjamin
Pierce for many helpful discussions about i^, reflection, and metaprogramming.

R e f e r e n c e s

[1] Kenneth Bowen and Robert Kowalski. Amalgamating language and metalanguage in logic
programming. In K. L. Clark and S.-A. Tarnlund, editors, Logic Programming, volume 16 of
APIC Studies in Data Processing, pages 153-172. Academic Press, 1982.

[2] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

[4] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton,
New Jersey, 1941.

[5] Pierre Cointe. Metaclasses are first class: The ObjVlisp model. In N. Meyrowitz, editor,
OOPSLA y87: Proceedings of the 1981 Conference on Object-Oriented Programming Systems,
Languages and Applications, Orlando, pages 156-167. ACM Press, December 1987.

[6] Thierry Coquand. An analysis of Girard's paradox. In Symposium on Logic Computer Science,
pages 227-236. IEEE, June 1986.

[7] Thierry Coquand and Gerard Huet. The Calculus of Constructions. Information and Compu
tation, 76(2/3):95-120, February/March 1988.

[8] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. Talk presented
at the Workshop on Programming Logic, University of Goteborg and Chalmers University of
Technology, May 1989.

[9] Project Formel. The Calculus of Constructions. INRIA-ENS, July 1989. Documentation and
User's Guide, Version 4.10.

[10] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without metaphysics. In
Proceedings of the 1984 ACM Symposium on Lisp and Functional Programming, pages 348-
355. ACM Press, August 1984.

[11] Jean H. Gallier. On Girard's "Candidats de Reductibilite". In P. Odifreddi, editor, Logic and
Computer Science. Academic Press, 1990. To appear.

[12] Jean-Yves Girard. Une extension de In t e rp re t a t ion de Godel a Panalyse, et son application
a l'elimination des coupures dans Panalyse et la theorie des types. In J. E. Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium, pages 63-92, Amsterdam, London,
1971. North-Holland Publishing Co.

20 Metacircularity in the Polymorphic X-calculus

[13] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures de I'arithmetique
d'ordre superieur. PhD thesis, Universite Paris VII, 1972.

[14] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1989.

[15] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Submit
ted to JACM. A preliminary version appeared in Symposium on Logic in Computer Science,
pages 194-204, June 1987, January 1989.

[16] Robert Harper and Robert Pollack. Type checking, universe polymorphism, and typical am
biguity in the Calculus of Constructions. In TAPSOFT '89, Proceedings of the International
Joint Conference on Theory and Practice in Software Development, Barcelona, Spain, pages
241-256. Springer-Verlag LNCS 352, March 1989.

[17] Douglas J. Howe. Automating Reasoning in an Implementation of Constructive Type Theory.
PhD thesis, Computer Science Department, Cornell University, 1987.

[18] Douglas J. Howe. Computational metatheory in Nuprl. In Ewing Lusk and Ross Overbeek,
editors, 9th International Conference on Automated Deduction, Argonne, Illinois, pages 238-
257, Berlin, May 1988. Springer-Verlag LNCS 310.

[19] Zhaohui Luo. ECC, an extended Calculus of Constructions. In Fourth Annual Symposium on
Logic in Computer Science, pages 386-395. EEEE Computer Society Press, June 1989.

[20] John McCarthy. Recursive functions of symbolic expressions and their computation by ma
chine. Communications of the ACM, 3(4):184-195, April 1960.

[21] Robin Milner. The Standard ML core language. Polymorphism, 11(2), October 1985. Also
Technical Report ECS-LFCS-86-2, University of Edinburgh, Edinburgh, Scotland, March 1986.

[22] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Con-
ference and Symposium, Volume 1, pages 810-827, Cambridge, Massachusetts, August 1988.
MIT Press.

[23] Christine Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions. PhD
thesis, Universite Paris VII, January 1989.

[24] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Proceed
ings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah, pages
153-163. ACM Press, July 1988. Also available as Ergo Report 88-048, School of Computer
Science, Carnegie Mellon University, Pit tsburgh.

[25] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the SIG-
PLAN '88 Symposium on Language Design and Implementation, Atlanta, Georgia, pages 199-
208. ACM Press, June 1988. Available as Ergo Report 88-036, School of Computer Science,
Carnegie Mellon University, Pit tsburgh.

[26] Frank Pfenning and* Peter Lee. LEAP: A language with eval and polymorphism. In TAPSOFT
'89, Proceedings of the International Joint Conference on Theory and Practice in Software
Development, Barcelona, Spain, pages 345-359. Springer-Verlag LNCS 352, March 1989. Also

Metacircularity in the Polymorphic X-calculus 21

available as Ergo Report 88-065, School of Computer Science, Carnegie Mellon University,
Pit tsburgh.

[27] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus of
Constructions. In Proceedings of the Fifth Conference on the Mathematical Foundations of
Programming Semantics. Springer Verlag LNCS, March 1989. To appear. Available as Ergo
Report 88-069, School of Computer Science, Carnegie Mellon University, Pit tsburgh.

[28] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed
lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, Pittsburgh,
Pennsylvania, March 1989.

[29] Randy Pollack. The theory of LEGO. Unpublished manuscript and documentation, October
1988.

[30] John Reynolds. Towards a theory of type structure. In Proc. Collogue sur la Programmation,
pages 408-425, New York, 1974. Springer-Verlag LNCS 19.

[31] John Reynolds. Three approaches to type structure. In Hartmut Ehrig, Christiane Floyd, Mau
rice Nivat, and James Thatcher, editors, Mathematical Foundations of Software Development,
pages 97-138. Springer-Verlag LNCS 185, March 1985.

[32] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-
ceedings of the 25th ACM National Conference, pages 717-740, New York, 1972. ACM.

[33] Brian Cantwell Smith. Reflection and semantics in a procedural language. Technical Report
MIT-LCS-TR-272, Massachusetts Institute of Technology, Cambridge, Massachusetts, January
1982.

[34] Brian Cantwell Smith. Reflection and semantics in Lisp. In Proceedings of the Eleventh Annual
ACM Symposium on Principles of Programming Languages, Salt Lake City, pages 23-35. ACM,
January 1984.

[35] Guy Lewis Steele and Gerald Jay Sussman. The revised report on SCHEME—a dialect of
LISP. AI Memo 452, MIT, Cambridge, January 1978.

[36] Mitchell D. Wand and Daniel P. Friedman. The mystery of the tower revealed: A nonreflective
description of the reflective tower. Lisp and Symbolic Computation, l (l) : l l - 3 8 , June 1988.

