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Abstract 

Inferring the depth and shape of remote objects and the complete camera motion 
from a stream of images is possible in principle, but is an ill-conditioned problem 
when the objects are distant with respect to their size. 
To overcome this difficulty, we have developed a factorization method to de­
compose an image stream directly into object shape and camera motion, without 
computing depth as an intermediate step. 
The factorization method is explored in a series of technical reports, going from 
basic principles through implementation. This is the first report in the series, and 
presents the basic concepts in the case of planar motion, in which images are single 
scanlines; 
In this situation, an image stream can be represented by the F x P matrix of the 
image coordinates of P points tracked through F frames. We show that under 
orthographic projection this measurement matrix is of rank 3. 
Using this observation, we develop an algorithm to recover shape and camera 
motion, based on the singular value decomposition of the measurement matrix. 
Noise is defeated by applying a well-conditioned computation to the highly re­
dundant input represented by an image stream. No assumptions are made about 
smoothness or regularity of the camera motion, and even sudden jumps in the 
camera velocity are faithfully reproduced in the computed output. 



Preface 

In principle, the stream of images produced by a moving camera allows the 
recovery of both the shape of the objects in the field of view, and the motion of the 
camera. Traditional algorithms recover depth by triangulation, and compute shape 
by taking differences between depth values. This process, however, becomes very 
sensitive to noise as soon as the scene is more than a few focal lengths away 
from the camera. Furthermore, if the camera displacements are small, it is hard to 
distinguish the effects of rotation from those of translation: motion estimates are 
unreliable, and the quality of the shape results deteriorates even further. 

To overcome these problems, we have developed a factorization method to 
decompose an image stream directly into object shape and camera motion, without 
computing depth as an intermediate step. The method uses a large number of 
frames and feature points to reduce sensitivity to noise. It is based on the fact that 
the incidence relations among projection rays can be expressed as the degeneracy 
of a matrix that gathers all the image measurements. 

To explore this new method, we designed a series of eleven technical reports, 
as shown in figure 1, going from basic theory to implementation. 

This first report illustrates the idea in the case of planar motion, in which 
images are single scanlines. We introduce the factorization method, and test a 
complete algorithm on a real image stream. 

Report number 2 extends the idea to three-dimensional camera motion and full 
image streams. It assumes that point features can be tracked over several image 
frames. Report number 3 describes how to extract and track point features. 

If point features are too sparse to give sufficient shape information, line features 
can be used either instead or in addition, as discussed in report number 4. Report 
number 5 shows how to extract and track line features. 

The performance of our shape-and-motion algorithm is rather atypical. Be­
cause it does away with depth and capitalizes on the diversity of viewpoints made 



possible by long image streams, it performs best when the scene is distant and the 
motion of the camera is complex. Report number 6 examines what happens when 
objects are close to the camera, and perspective foreshortening occurs. Report 
number 7 shows how to deal with degenerate types of motion. 

Occlusion can be handled by our method, and is treated in report number 8. 
A basic assumption of our shape-and-motion algorithm is that only the camera 

moves. In some cases, however, a few points move in space with respect to the 
others, for instance, due to reflections from a shiny surface. Report number 9 
examines how to detect these cases of spurious motion. 

Our factorization algorithm deals with the whole stream of images at once. 
For some applications this is undesirable. Report number 10 proposes an imple­
mentation that can work with an indefinitely long stream of images. 

Report number 11 considers a more radical departure from the assumption of 
a static scene than spurious motion. If several bodies are moving independently 
in the field of view of the camera, our factorization method can be used to count 
the number of moving bodies. 

2. point features 
in 3D motion 

3. detection and tracking 
of point features 

6. perspective 

4. line features 
in 3D motion 

11. multiple motion 

5. detection and tracking 
of line features 

7. degenerate 
motion 

8. occlusion 9. spurious 
motion 

10. implementation issues 

Figure 1: The technical report in the series. Arcs suggest reading paths. 
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Chapter 1 

Introduction 

In principle, the shape of an object can be computed from a stream of images by 
first estimating camera motion and depth, and then inferring shape from the depth 
values. 

In practice, however, when objects are distant from the camera, relative to 
their size, this computation is ill-conditioned. First, the translation component 
along the optical axis is difficult to determine, because the image changes that it 
produces are small. Second, shape values are very sensitive to noise if they are 
computed as the small differences between large depth values. 

These difficulties can be circumvented by inferring shape directly from vari­
ations in the relative position of image features, without computing depth as an 
intermediate step. 

In this report, we show that shape and camera rotation can be inferred precisely 
from many features and frames, without assuming any model for the motion, and 
reduce the computation to decomposing a matrix of image measurements. 

The resulting algorithm, tested in simple situations, gives remarkably precise 
motion and shape estimates, without introducing smoothing effects into the result. 

For simplicity, we will limit our consideration to one epipolar plane at a time, 
and assume that motion occurs in that plane. In other words, our images are single 
scanlines. 

Our theory is based on the observation that the incidence relations among 
projection rays can be expressed as the degeneracy of a matrix that gathers all 
the image measurements. To our knowledge, this observation has not previously 
appeared in the literature. 

Since we use many, closely spaced frames, the results are insensitive to noise, 
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and the correspondence problem is simplified. Previous multi-frame approaches 
usually assume a motion model to combine estimates of the camera position over 
many frames. Typically, this model is some form of motion smoothness. In our 
method, on the other hand, we assume only the invariant of shape constancy over 
time. 

As an illustration of our theory, we used our algorithm to recover the shape of 
a one-dollar silver coin (about 4 cm in diameter) placed at 3.5 meters from a real 
moving camera with a long lens. The total rotation of the camera was 30 degrees 
around the coin (and in the midplane of the coin). The error in the computed 
angle of camera rotation was always less than a tenth of one degree, and usually 
substantially smaller. The error in the shape of the coin was always less than 1.5 
percent of its diameter, and typically considerably smaller. The small errors due 
to the effect of perspective are also analyzed. 

In the following, we introduce our scenario, summarize the results, and sketch 
the relations of our work with previous literature on the subject. Chapter2 in­
troduces the degeneracy principle mentioned above. Chapter3 shows how to use 
it to decompose the measurement matrix into shape and camera rotation. The 
experimental results in Chapter4 show the ability of the algorithm to deal with 
jerky rotations without smoothing its output. The conclusion (Chapters) compares 
direct shape algorithms with algorithms that base the computation of shape on that 
of depth, and shows the former ones to be superior for remote scenes. 

The Scenario 
The world is still, and the camera moves in a plane, where it can freely rotate 
and/or translate. P feature points, far away from the camera, are visible in a given 
scanline, parallel to the plane of motion. Since the frames are taken frequently, 
it is easy to track the features from frame to frame. As the camera moves, it is 
panned so as to keep the features in the field of view. 

After F frames, an F x P matrix U of image measurements is available. This 
matrix is the input to the algorithm. 

This scenario approximates what happens with a camera on an airplane, with 
suitable control mechanisms to align the camera scanlines with the direction of 
flight, and to keep the same object within the field of view. Because objects are 
distant from the camera, we can assume orthographic projection. 
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The Results 
This report first shows that if the measurements are noise-free, the image coordinate 
matrix U is highly degenerate: its rank is 3. As a result, U can be decomposed into 
the product of two smaller matrices: an F x 3 matrix that encodes the F camera 
positions, and a P x 3 matrix that encodes the positions of the P world points. 

When noise corrupts the measurements, the rank of U can be defined in an 
approximate sense, and is still 3. 

The noisy matrix U is factored by Singular Value Decomposition [Golub and 
Reinsch, 1971], which is known to be efficient and numerically well behaved. If 
more points and frames are used than prescribed by equation-counting arguments 
(which require a minimum of three points and three frames), the effects of noise 
can be reduced. 

The resulting shape and motion algorithm is simple and efficient, and has been 
implemented and tested on objects as distant as one hundred times their size (see 
Chapter4). The rotation errors are always smaller than one tenth of a degree. The 
relative precision in the computed shape is of the order of the relative depth range, 
defined as the ratio between the size of the object and its distance from the camera. 

The good performance of our algorithm derives from the fact that shape is 
obtained directly, without using depth as an intermediate result. In traditional 
approaches, depth is first computed by triangulation. For remote objects, the 
quality of depth estimates by triangulation is very sensitive to noise, and degrades 
as the realtive range decreases. Consequently, the shape estimates degrade even 
faster, since the computation of shape from depth is itself ill-conditioned. 

In our approach, instead, no triangulation is done. Depth becomes irrelevant, 
and the results are highly accurate. 

Relations with Previous Work 
Our goal is to compute world point coordinates, relative to each other, and camera 
motion from multiple image frames. 

Our algorithm does what photogrammetrists for more than thirty years have 
done by hand and with two frames at a time [Thompson, 1959]. Ullman proposed 
an automated solution to this problem eleven years ago [Ullman, 1979], and called 
it structure-from-motion. He also considered only two frames at once, and as few 
points as theoretically possible. 

3 



Most of the initial efforts in this area have been devoted to finding closed-form 
solutions with a minimal or nearly-minimal number of points and/or frames (see, 
for instance, [Longuet-Higgins, 1981]). 

In general, structure-from-motion is hard to solve. The major difficulty is the 
inherent sensitivity of shape and motion to noise in the image, especially when 
objects are distant If depth is explicitly represented as an intermediate stage 
in the computation, performance degrades with reductions in the relative depth 
range. For instance, the algorithm presented in [Tsai and Huang, 1984] works 
very well for close objects (which is the intended goal of that algorithm), but 
the performance is likely to degrade when objects become more remote, and the 
relative depth range becomes smaller. 

The remedy is to by-pass the computation of depth, as we do in this report, to 
remove the main cause of ill-conditioning. 

Even with a well-conditioned algorithm, however, noise degrades perfor­
mance. Few points and/or few frames give bad results, regardless of how good the 
math is. Our algorithm allows using many frames and many points, thus exploiting 
redundancy to counteract noise. If frames are closely spaced, the correspondence 
problem is also made easier to solve. 

Many, tightly spaced frames have been used in [Bolles et aL, 1987] and 
[Matthies et al.y 1989], but only for the inference of depth when the motion of 
the camera is known. Determining shape and motion simultaneously, on the other 
hand, has been often suspected of being practically infeasible. 

In [Spetsakis and Aloimonos, 1989], an interesting algorithm is presented for 
the case of unknown motion, using several frames and points and a perspective 
projection model. In spirit, our approach is akin to theirs: the projection lines of 
the same world point are a bundle (or pencil) of lines, and the resulting incidence * 
relations between them allow casting the computation of shape and motion as a 
minimization problem. When applied to remote objects, however, their solution 
suffers from the same ill-conditioning problem discussed above, since depth is 
explicitly represented in their model. 
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Chapter 2 

The Decomposition Principle 

This chapterintroduces the fundamental principle on which our shape-and-motion 
algorithm is based: the F x P matrix of the image coordinates of P points tracked 
through F frames is higly rank-deficient. 

As we stated in the introduction, we consider only one scanline per frame, and 
assume that the camera moves in a plane parallel to the scanline. In this plane, we 
define an arbitrary orthogonal system of coordinates (X,Z). 

The images are orthographic projections of P points, tracked through F frames. 
The measurements u/p can then be collected in an F x P matrix 

UFP 

From figure 3.1 we see that the projection u/p of point p onto frame/ is given 
by the equation 

iifP = CfXp +sfZp + tf , (2.1) 

where c/ and s/ are the cosine and sine of the angle a/ that frame/ forms with 
the X axis. The scalar tf is the projection onto the/-th image of the vector that 
joins the world origin with the origin of the/-th frame. 

We can now collect all of the F x P equations (2.1) in matrix form: 

U = MS (2.2) 
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where 

is the motion matrix, and 
Cf SF tF 

(2.3) 

Xi 
Zi 
1 1 

(2.4) 

is the shape matrix. 
Since M is F x 3 and S is 3 x P9 we have just proven the following fact. 

The Rank Principle 
Without noise, the rank of the measurement matrix U is at most three.1 

Appendix A discusses the degenerate cases in which the rank of U is even 
smaller than three. These degeneracies correspond to all-aligned points or to 
special types of motion. They can always be detected, and treated as special cases. 
Consequendy, we can simplify our treatment and assume that the rank principle is 
satisfied in a strong sense: the rank of U is exactly three. 

Intuitively, the rank principle expresses the simple fact that the F x P image 
measurements are redundant. Indeed, they could all be described more concisely 
by giving F frame angles and P points, if only these were known. 

Geometrically, the rank principle expresses an incidence property. In fact, if 
we replace Xp mdZp in the projection equation (2.1) by the generic coordinates X 
and Z, we obtain the equation of the projection line of point p onto frame / : 

UfP = C/X + SfZ + tf . 

Equation (2.1) and, equivalently, the rank principle, say that there is a point that 
belongs to these lines for all values of / . In other words, the projection lines of a 
given point form a pencil. 

In the next chapter, we show how to use the rank principle to determine the 
motion and shape matrices M and 5. 

*In [Tomasi and Kanade. 1990], all image coordinates were measured with respect to those of 
a reference feature. In that case, t/ was always zero, so the rank of the measurement matrix was 
two. 
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Chapter 3 

The Algorithm 

When noise corrupts the images, the measurement matrix U will not be exactly 
of rank 3. However, the rank principle can be extended to the case of noisy 
measurements in a well-defined manner. Section3.1 introduces this extension, 
using the concept of Singular Value Decomposition (SVD) [Golub and Reinsch, 
1971] to introduce the notion of approximate rank. 

However, although the rank principle is the key to our algorithm, it is not 
the whole story. In Section3.2, we show that, based on the rank principle, the 
matrices M and S are determined only up to an arbitrary affine warping of the 
plane. Therefore, in Section3.2 we also point out the additional constraints needed 
to complete the solution. 

Section3.3 outlines the complete shape-and-motion algorithm. 

3.1 Approximate Rank 
Assuming 1 that F > Py the matrix U can be decomposed [Golub and Reinsch, 
1971] into a n F x F matrixL, a diagonalP x P matrix S, and aP x Pmatrixi?, 

U = LER , (3.1) 

such that 

LTL = RTR = RRT = / 
<7\ > . . . > <Jp . 

lrThis assumption is not crucial: if F < Py everything can be repeated for the transpose of U. 
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Here, / is the P x P identity matrix, and the singular values a\,..., <JP are the 
diagonal entries of 27. This is called the Singular Value Decomposition (S VD) of 
the matrix U. 

We can now restate our key point. 

The Rank Principle for Noisy Measurements 
The first three singular values of the noisy measurement matrix U are 
much greater than the others: 

< * \ 7 <?2 , <73 < 7 4 , . . . , <T/> . (3.2) 

It can be shown [Forsythe et aL, 1977] that the rank-3 matrix IT that is closest 
to U in the L2-norm sense can be obtained by setting to zero all the singular values 
after the third in the decomposition: 

£/* » L T ' / r , (3.3) 

where Lm collects the first three columns of L, 27* is the first third-order principal 
minor of 27, and Rm gathers the first three rows of R. 

3.2 The Metric Constraints 
Golub and Reinsch [Golub and Reinsch, 1971] give an efficient and well-behaved 
algorithm to compute the singular value decomposition of a matrix. We use that 
algorithm to obtain a decomposition of the measurement matrix U. 

The singular value decomposition of a matrix is unique because the left and 
right factors L and R are required to be orthonormal. However, this does not mean 
that there is only one way to decompose the measurement matrix U into M and S. 
Since the rank principle expresses an incidence relation, it only determines the two 
matrices M and S up to an affine transformation of the plane. In fact, if A is any 
invertible 3 x 3 matrix, the matrices MA and A"1 S are also a valid decomposition 
of Uj since 

(MA)(A'lS) = M(AA~l)S =MS = U. 

Therefore, if we want to find M and S from the measurement matrix U, we 
need additional constraints. We approach the problem by first decomposing Uinto 

8 



two matrices M and 5 of the appropriate sizes via the SVD algorithm. Based on 
equation (3.3), we can define, for instance, the two matrices 

Then, we can complete the solution by finding the matrix A that transforms M 
and S into the actual motion and shape matrices M and S: 

M = MA~l 

S = A S . 

The matrix A can be found by looking at the structure of the motion and shape 
matrices. The first and second column of M gather cosines and sines of the frame 
angles (see equation (2.3)), and must therefore be normalized. Furthermore, the 
third row of S contains all ones (equation (2.4)). These are metric constraints, as 
opposed to the incidence constraints expressed by the rank principle. 

Formally, let us partition A and A~l into rows and columns, respectively: 

A = a 2 

a 3 
(3.5) 

A-1 = [ bi b 2 b 3 ] = [ BT b 3 

where BT gathers the first two columns b! and b 2 of A - 1 . Then, the metric 
constraints above can be written as follows: 

mjBTBmf = 1 
a 3 s p = 1 , (3.6) 

where rh/ and sp are the/ -th row andp-th column of M and S, respectively. These 
two equations say that the points rh/ are on a cylinder in a three-dimensional 
space, and that the points sp are on a plane in a three-dimensional space. The 
two equations are not independent, since a 3 a n d 5 r are submatrices of A and A - 1 , 
respectively. If we write out the product of A and A - 1 as partitioned above, we 
see that the coupling can be expressed by the following equation: 

a 3 5 r = [ 0 0 (3.7) 
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Enforcing the pair of equations (3.6) leads to an overconstrained problem, and 
we can find the cylinder and the plane by data fitting. 

In doing this, we encounter two difficulties. First, fitting a cylinder is a non­
linear problem. Second, the two fitting problems are coupled through equation 
(3.7). 

However, a well-behaved algorithm for our problem can be found by first 
determining a good approximation to the solution, and then refining the latter with 
a numerical function-minimization routine. This two-stage solution of the metric 
equations has proven to be accurate and robust in our experiments and simulations. 

3.3 Outline of the Algorithm 
The incidence and metric constraints expressed by the rank principle and by the 
cylinder and plane equations (3.6) are all we need for our algorithm. In conclusion, 
given an image measurement matrix U, the algorithm for computing the motion 
matrix M and the shape matrix S defined in equations (2.3) and (2.4) can be 
summarized as follows. 

1. Compute the singular value decomposition of U: 

U = LZR . 

2. Define the initial decomposition of U into two matrices as follows: 

M = L * ( I T ) 1 / 2 

S = (2m)l/2R* , 

where L* collects the first three columns of L, £ * is the first third-order 
principal minor of S, and R* gathers the first three rows of R. 

3. Simultaneously fit a cylinder to the rows of M and a plane to the columns 
of S by minimizing the error criterion 

F p 
e(a3jB) = ^(mjBTBmf - l) 2 + ^ ( a 3 s p - l) 2 

subject to the constraint 

a3BT = [ 0 0 ] . 
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4. Complete the matrix A and its inverse from their submatrices a 3 and B by 
solving the system 

AA~l =/. 

5. Compute the motion matrix M and the shape matrix S as 

M = MA'1 

S = AS. 

The details of the fitting algorithm in step 3 and of the matrix completion of 
step 4 are described in appendices B and C, respectively. 
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Chapter 4 

An Experiment 

We implemented the algorithm described in the previous chapter, and applied it 
on several image streams. 

The experiment described in this chapterillustrates the rank principle, demon­
strates the good quality of the results, and quantifies the influence of perspective 
effects on the accuracy of the motion estimates. 

The key parameter for the evaluation of performance is the relative depth 
range, which we defined as the ratio of the object size along the optical axis and 
the distance between camera and object. In a nutshell, the conclusion drawn from 
our experiments is that the relative errors in the computed shape are of the same 
order as the relative depth range. Consequently, modeling inaccuracies that are 
small with respect to the latter can be ignored. 

We put a one-dollar coin (about 4 cm in diameter) approximately 3.5 meters 
away from a Sony CCD camera with a 300 mm Tokina lens. Thus, the relative 
depth range was 4/350 « 0.011. Figure 3.2 shows the setup. 

The camera was moved in the plane of the coin, so that only the edge of the 
coin was visible in every frame. The motion was roughly circular around a point 
in the vicinity of the coin. Only the rotation component was controlled with an 
accurate positioning mechanism, so that precise ground truth was available for 
performance evaluation. Translation was such as to keep the coin in the field of 
view, but was otherwise uncontrolled. 

The edge of the coin was approximately aligned with the image scanlines, 
thus yielding easy-to-track image features (the thin vertical notches on the coin's 
edge). The first 101 frames were taken in steps of 0.1 degrees between consecutive 
frames. After that, the velocity was doubled to 0.2 degrees per frame, and 100 
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more frames were taken. Thus, the overall rotation was 30 degrees. The resulting 
201 scanlines are stacked together in figure 3.3, top to bottom. This figure is what 
is called an epipolar plane in [Bolles et a/., 1987]. 

The image was filtered with a thirteen-tap finite-impulse-response approxima­
tion to the Laplacian of a Gaussian, and the 104 zero crossings of the result, shown 
in figure 3.4, were used as features in the experiment. 

The measurement matrix was thus 201 x 104 in size. All of the processing, 
including feature extraction and linking, matrix decomposition, and motion and 
shape computation, took about three minutes on a VAX 8800. 

The rank principle is illustrated graphically by the similarity of figures 3.4 and 
3.5. To obtain figure 3.5, we decomposed the matrix U representing the crossings, 
set to zero all the singular values except the first three, and reconstructed the 
measurement matrix. Thus, figure 3.5 represents the rank-3 matrix U* of equation 
(3.3). The rank principle says that the only differences between figure 3.4 and 
figure 3.5, under orthography, are due to noise. 

The singular values are plotted in figure 3.6; without noise, and if the projection 
were exactly orthographic, only the first three values would be different from zero. 

Figure 3.7 shows the computed and the true rotation. The error is always 
smaller than one tenth of one degree, and almost everywhere substantially smaller 
than that. The algorithm assumes no motion models, and does no smoothing. 
As a result, the sharp change in rotational velocity after frame 100 is faithfully 
preserved in the motion output. 

Figure 3.8 shows the shape results, and the best circular fit to them. The 
accuracy of shape is of the order of the relative depth range (1 percent), even if 
variations in depth during the motion of the camera were of the order of the coin 
size. 

In spite of image noise, perspective effects and unmodeled small variations in 
depth, the quality of both shape and motion results is remarkably good. 

To get an idea of how perspective effects influence the accuracy of the results, 
we tested our algorithm on a stream of simulated, noise-free images similar to those 
of our coin experiment. A circular object with 10 features is placed at various 
depths from the camera. For each depth, a pinhole camera moves and rotates by 30 
degrees in 30 steps. Figure 3.9 plots the relative error in the total computed rotation 
as a function of the relative depth range. While algorithms based on depth give 
worse motion estimates as objects are moved farther away, our algorithm improves 
(for a constant total rotation angle), because it approximates orthography better 
and better. 
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Chapter 5 

Conclusion: Depth versus Shape 
Algorithms 

The algorithm presented in this report infers the shape of remote objects and the 
rotation of the camera. It is a shape algorithm. It does not compute the depth of 
the scene. 

Algorithms such as the ones described in [Tsai and Huang, 1984], [Heel, 1989], 
[Spetsakis and Aloimonos, 1989], on the other hand, represent depth explicitly, 
and compute it from the image stream. They are depth algorithms. 

Depth algorithms give a more complete answer. They compute all components 
of motion, up to a scale factor, and the depth information they supply allows, in 
principle, computing shape as well. 

However, depth algorithms do not work if objects are very distant from the 
camera with respect to their size. When the relative depth range is very small, as 
for instance in aerial cartography and reconnaissance, the completeness of depth 
algorithms is not only useless, but harmful. A shape algorithm gives a more stable 
and accurate answer, because it computes shape and camera rotation directly from 
image deformations, without using depth as an intermediate step. 

Our factorization method is conceptually simple and leads to an accurate 
algorithm. The remaining technical reports in this series, outlined in the preface, 
will address the technical problems which are to be solved to make the algorithm 
into a practical module of a vision system. 
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Appendix A 

Degeneracies of the Measurement 
Matrix 

If both the scene and the camera motion are sufficiently complex, the measurement 
matrix U is exactly of rank 3. On the other hand, special object shapes and/or 
particular types of camera motion can further reduce the rank of U. 

In this chapterwe show that the object shape is degenerate if and only if all 
feature points are aligned, and that camera motion is degenerate if and only if it is 
such that all optical axes pass through the same point. 

Shape degeneracies 
We now interpret the determinants 

47> = det ufp ufq 

Hp 81 

in terms of intrinsic geometric parameters which describe the relative position of 
the three world points, and of the angles between frames. 

It follows immediately from this interpretation that a necessary and sufficient 
condition for the existence of at least one non-zero determinant of the type above 
is that there be at least three non-aligned points, and at least two distinct frames. 

Since we consider only shape degeneracies, we can set tf = 0 for a l l / . This 
is equivalent to saying that the camera moves by pure rotation, as shown in figure 
3.10. 
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Let dp and 7, be the magnitude and phase of the vector which joins the center 
of rotation, chosen as the world origin, with object point number p : 

7 P = arctan2(Zp,Xp) 

(see figure 3.10). 
Here arctan2 is the two-argument inverse tangent function, which differs from 

the one-argument function in that it returns the angle in the appropriate quadrant, 
and has no singularities: 

arctan2Cy,^) = 0 
, si 

arctan(y/x) 
signCy)(7r - arctan \y/x\) 

signCy)7r/2 

i f * > 0 
if a: < 0 
i f * = y = 0 
if;t = 0, y 7^0 

Furthermore, let tp/g be the angle between frame / and frame g, measured 
counterclockwise from/ to g (figure 3.10), and let j p q = 7/> - 7*-

Then, if u/p is the projection of point p onto frame / , we have 

Ufp Ufq 

'SP Us 
Z* J 

ss dpdq sin j p q sin ip/g . 

Proof 
We introduce the angles ufP between frame/ and the line from the origin to 

point p; the determinant A*ff is easily expressed in terms of these angles: 

= det dp cos u/p dq cos ufq 

dD cos Ugp da cos u 
'81 J 

= dpda(COS Ufp COS Ugq - COS Ufq COS ugp) 

- ^^[COSCtu/p + Ugq) + COSiUfp - U )̂ 
- COS(Ufq + u;gp) - COS(Ufq - ugp)] . 

If we now observe that 

Ufq = Ufp+Jpq 

Ufp = ^f8+Ugp=1pfg+Ugq-~fpq 
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we can write 

so that 

4? 5 5 ^ [ c o s ( ^ / , - 7 w ) - - c o s ( ^ + 7 w ) ] 
= d rp^sin7 P < 7sin^/g , 

as promised. 

Motion degeneracies 
The motion matrix M defined in equation (2.3) is of rank smaller than three if 
and only if one column is a linear combination of the other two. We consider 
separately two cases, depending on whether the two vectors c = (ci . . . Cp)T and 
s = (s\ . . . SF)T are mutually dependent. 

The vectors c and s are dependent only when all inter-frame rotations are 
integer multiples of t t / 4 . The only interesting case of this type occurs when the 
camera moves by pure translation. In this case, all optical axes pass through the 
same point at infinity. 

If, on the other hand, c and s are mutually independent, the motion matrix M 
(and therefore the measurement matrix C/)is of rank two if and only if there are 
two numbers a and (3 such that 

tf = acf + 0sf . (A.l) 

For a generic point (X,Z) f the projection equation (2.1) can be rewritten in the 
following form: 

tf = iifp - Xcf - Zsf . 
By comparing this equation with equation (A.l), we see that for the latter 

to hold there must be a (possibly invisible) point with coordinates X = —a and 
Z = — 8 that is always projected to the origin, that is, such that UfP = 0. 

Since the projection ray of a point that projects to the origin is the optical axis, 
this proves that motion is degenerate if and only if all optical axes pass through 
the same point. 
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Appendix B 

Simultaneous Cylinder and Plane 
Fitting 

This Appendix elaborates on step 3 of our algorithm: the minimization of the error 
criterion 

e(a 3 ,5) = +e, (a 3 ) 

where 
F 

em(B) = ^2(mjBTBmf - l ) 2 

and 
e*(a3) = £ ( a 3 s , - l ) 2 

subject to the constraint 

a 3 £ r = [ 0 0 ] . (B.l) 

We compute the solution in the following steps: 
• find the cylinder BTB that minimizes em(B) 

• find the plane a 3 that minimizes e*(a3) 

• minimize e (a 3 ,5 ) numerically, using a 3 and B as a starting point, and en­
forcing the constraint of equation (B.l). 

We now examine the first and the third step in some detail. The second step, 
fitting a plane, is trivial. 
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Fitting the Cylinder 
Fitting a cylinder mTBTBm = 1 to a set of three-dimensional data riii,..., ih/r is a 
non-linear problem in the entries of the matrix B. 

Consequently, we use the same strategy as above: we first find a good approx­
imation to the solution, and then we refine it numerically. 

The approximation can be found by first fitting a quadratic form mTQm = 1 
to the data. Thus, rather than finding a cylinder, we find an ellipsoid. This is a 
linear problem in the entries of the symmetric matrix Q, and can be solved easily. 
We then decompose the result, Q, and set its smallest eigenvalue to zero. The 
decomposition yields a first approximation to B. In this way, instead of finding 
the optimal cylinder, we obtain the cylinder that is closest to the optimal ellipsoid. 
From there, we can reach the optimal cylinder by numerical minimization of 
em(B). Our experiments indicate that this last step is hardly necessary: the cylinder 
obatained by suppressing the smallest eigenvalue of Q is almost the same as the 
optimal cylinder. 

Refining the Minimum of eia^^B) 

We now have a cylinder BTB and a plane a3 which separately minimize the two 
error functions em{B) and Csiai). However, B and 63 may not satisfy the constraint 
(B.l) exactly. 

In order to enforce equation (5.1), and at the same time minimize the global 
error function e(&3,5), we use the constraint to write a3 as a function of 5 . Equation 
(B.l) says that a3 is orthogonal to both rows, bi and b2, of J5, so we can write 

a3 = #3(bi x b 2 ) 

where x denotes the cross product, and a3 is a scalar. 
As a result, we obtain a function e\a3,B) of only seven variables, rather than 

nine. The minimization of e' is now unconstrained. 
To complete the task we need the derivatives of the cylinder residue function 

7 = mTBTBm — 1 and the plane residue function 7r = a3(bi x b 2 )s — 1 with respect 
to the unknown parameters a3 and 5, for use in a standard minimization routine. 

Simple algebraic manipulation shows the derivatives to be 
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(a 2 x 3 matrix of derivatives), and 

dx 

dit 
3b2 

da-i 

a 3 ( b 2 x s) 

- a 3 ( b i x s) 

. r s 
det B . 
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Appendix C 

Completion of the Matrix A and its 
Inverse 

ai 
a 2 

a 3 

This Appendix shows how to complete the matrix 

A = 

and its inverse 

A"1 = [ bi b 2 b 3 ] = [ BT b 3 j 
given their submatrices a 3 and B. This is step 4 of our algorithm. 

The 3 x 3 matrix equation 
AA~l =1 

can be expanded into nine scalar equations: 

aibi = 1 a ib 2 = 0 a ib 3 = 0 
a 2bi = 0 a 2 b 2 = 1 a 2 b 3 = 0 
a 3bi = 0 a 3 b 2 = 0 a 3 b 3 = 1 . 

The two equations 

a 3bi = 0 and a 3 b 2 = 0 

contain only known quantities. They coincide with the constraint equation (B.l), 
and can be ignored here. Since the unknown scalars are still nine (the entries of 
ai, a 2 , and b 3 ) , we need two more equations. 
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These two degrees of freedom derive from the fact that the origin of the world 
coordinate system was left unspecified. Rather than constraining the origin to be 
at (0,0), we use these degrees of freedom to improve the noise performance of the 
shape result as follows. 

The shape matrix is computed as S » AS in the last step of our algorithm. Of 
the three rows of 5, the third is the most sensitive to noise, because it corresponds 
to the smallest singular value of the decomposition (3.1). Consequently, it is 
advantageous to avoid using that row in the final result. This can be accomplished 
by requiring the third entries of ai and a 2 to be zero: 

aiv = 0 
a 2 v = 0 , 

where v = ( 0 , 0 , l ) r . 
We now have the nine equations we need. The six homogeneous equations 

express orthogonality, and we can use them to find the directions (unit vectors) 
wi, w 2 , and W3 of the unknown vectors ai, a 2 , and b3. From a i b 2 = 0 and aiv = 0 
we deduce that ai is orthogonal to both b 2 and v, so that its unit vector is 

_ b 2 x v 

Similarly, for the unit vector of a 2 , the two equations a 2 bi = 0 and a 2 v » 0 yield 

bi x v 

From these two results, and equations aib3 = 0 and a2b3 = 0, we obtain the 
unit vector of b$: 

Wi x w 2 

|Wi X w 2 | 
The signed magnitudes au a 2 , and #3 of ai, a 2 , and b3 can now be found from 

the non-homogeneous equations 
aibi = 1 
a 2 b 2 = 1 
a 3 b 3 = 1 , 
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which yield 

an = l / ( A c o s ^ i ) 
c*2 = 1 / (&COS0 2 ) 
,83 = l / (a icos t f j ) , 

where 8\, 82, a 3 are the magnitudes of the known vectors bi, b 2 , a 3 , and 9\, 02, 0 3 

are the angles between ai and bi, a 2 and b 2 , a 3 and b 3 , that is, 

COŜ i = w l T -— 

n b 2 

C O S * 2 = w 2 — 

COS #3 = W3- - . 
I«3| 
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Figure 3.3: The input to the algorithm; each scanline is a new frame, and represents 
the edge of a one-dollar coin seen from a new angle. In [Bolles et al., 1987], a 
figure like this is called an epipolar plane. We use it to recover shape and rotation, 
instead of depth given known motion. 

Figure 3.4: The zero crossings from figure 3.3. 
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Figure 3.5: Zero crossings reconstructed after suppressing all but the first three 
singular values of the measurement matrix. 
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Figure 3.6: Singular values of the measurement matrix. Notice the logarithmic 
scale along the ordinate axis. 
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Figure 3.7: Camera rotation. In the top plot, both the computed (solid) and the true 
(dashed) rotation are plotted, but the difference is so small that they can hardly be 
distinguished. In the plot below, the difference between the two graphs is enlarged. 

29 



-1.0 4 

-L5-1 

Figure 3.8: Shape. The top figure shows the computed shape (dots) of a one-dollar 
coin, with the best fit circle. The bottom figure magnifies the difference between 
true and computed shape values along the radius of the coin. 
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Figure 3.9: The motion error due to perspective distortion decreases when the 
relative depth range becomes smaller. These results were obtained by simulating 
noise-free images of a circular object with 10 features, and a pin-hole camera 
rotating by 30 degrees in 30 frames. 
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