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Abstract 

Multicast or group communication is an important part of modern distributed systems, but 
programming language support for such communication is uncommon. Remote procedure 
call uses a familiar programming language abstraction to support unicast request-response 
communication; what should the corresponding abstraction be for multicast communica­
tion? 

The essential and desirable properties of a language construct for multicast commu­
nication are presented first. Essential properties include type safety, expressive power, 
and efficiency. Desirable properties include use of familiar control and data structures, 
appropriate semantic level, and first-class treatment of multicast operations in progress. 

The main contribution of the paper is the introduction of a spectrum of abstractions 
for multicast communication, in increasing order of both desirability and semantic level: 
functional mapping, iterators, and streams. Examples of distributed algorithms from the 
literature are used to illustrate the expressive power of each mechanism. Streams in 
particular provide first-class status for multicast communication in progress, and can be 
implemented efficiently in typical multicast communication architectures. 

1 Introduction 

Experience with remote procedure call (RPC) has demonstrated the importance of language-
level support for communication in distributed systems. The use of a familiar, type-safe 
language construct—in this case, the procedure call—greatly simplifies the task of building 
distributed systems. 

Multicast communication plays a natural role in many distributed algorithms, par­
ticularly those involving replication for high availability [4, 7, 8]. Low-level multicast 
communication is available in many distributed system architectures. At the media access 
control and data link layers, the IEEE 802 family (including Ethernet, Token Ring, and 
FDDI) all support multicast transmission [15]. At the network layer, the DoD Internet sup­
ports multicast IP datagrams [6]. At the transport layer, a number of multicast extensions 
to request-response protocols have been investigated, including Circus [4], MultiRPC [14], 
and VMTP[1]. 

Distributed applications need multicast communication, and the underlying communi­
cation architectures provide it, but programming language support for multicast communi­
cation is missing. Support for remote procedure call, on the other hand, is widespread. One 
of the reasons for this successful integration is hardly surprising—the natural language-level 
abstraction for unicast request-response communication is the familiar procedure call. What 
should the corresponding abstraction be for multicast request-response communication? 

The remainder of the paper is devoted to answering this question. After a brief survey of 
related work, we introduce essential and desirable properties for language-level multicast 
communication; these provide the basis for evaluating proposed mechanisms. We then 
define three language constructs—functional mapping, iterators, and streams—that possess 
increasingly larger sets of these characteristics. Streams in particular provide first-class 
status for multicast communication in progress, and can be implemented efficiently in 
typical multicast communication architectures. 
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2 Related Work 
The present work is similar in spirit to Liskov's and Shrira's work on promises, a linguistic 
abstraction of asynchronous RPC [10]. Both approaches are "bottom up", driven by the 
appearance of new transport protocols and the desire to incorporate them at the programming 
language level. 

The author's previous work on replicated procedure call [3] introduced multicast 
request-response communication and identified the need for collators (functions that map 
multiple values into a single value) but proposed no linguistic support for these mechanisms. 
The author's dissertation [4] suggested the use of iterators [11] as a language construct for 
replicated procedure calls; that suggestion is reconsidered in the present work. 

A multicast request-response protocol is used in the V system for communication with 
process groups [2], and has been incorporated into VMTP [1]. No description of language 
support for these mechanisms has appeared in the literature, although a stub generator for 
VMTP has recently been completed. 

StarMod [9] provides linguistic support for broadcast messages by returning an array 
of replies instead of single value. Since this technique does not allow early completion, it 
is not as expressive as the abstractions proposed here. 

MultiRPC [ 14] uses functional mapping over multiple results; this technique, described 
in more detail in Section 5.1, represents the starting point for the abstractions described in 
this paper. 

The cstub stub generator [12] supports parallel remote procedure calls by adding a 
limited form of iterators to C and C++. This approach is discussed further in Section 5.2. 

3 Criteria for Multicast Support 

What properties should a language-level abstraction of multicast communication possess? 
Following Nelson [13], we separate essential characteristics from desirable ones. 

3.1 Essential Properties 

• Type safety is essential. The mechanism must not compromise the type system of 
the language, and so must potentially be as type safe as any modern programming 
language. 

• Expressive power is essential. For example, multicast communication is often used 
in situations where the caller needs only the first n replies before it can continue; 
the mechanism must allow this kind of early completion. Even if all replies are 
processed, their temporal order may be important; the mechanism must make this 
visible. 

• Efficiency is essential. The mechanism must map onto the underlying transport 
protocol with a minimum of overhead. 

3.2 Desirable Properties 

• Use of familiar control and data structures is desirable. If possible, the mechanism 
should use structures whose syntax and semantics are already well understood. 
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• Matching the semantic level of the language is desirable. Adding Scheme-style 
continuations to C solely to support multicast communication, or adding low-level 
asynchronous interrupt handlers to a language designed around concurrent processes, 
would hardly be appropriate. 

• First-class status is desirable. To the extent possible, a multicast operation in progress 
(say, after some but not all of the replies have been received) should be represented 
as a first-class value that can be passed to other routines, stored in data structures, 
and so on. 

4 System Model 

This section describes the layers of a typical distributed system that are relevant to language 
support for multicast communication. 

4.1 Transport Layer 

We adopt a model of multicast communication at the transport layer based on the V 
primitives [2]: 

• MulticastRequest is used by a client to send a multicast request to a group of servers. 

• GetRequest and SendReply are used by a server to receive a request and send a 
response. The server handles multicast requests in the same way it handles unicast 
requests. 

• GetReply is used by a client to receive the next reply to the current request. 

• AllReceived? is used by a client to test whether all of the replies have been received. 
As long as this returns false, it is meaningful to call GetReply, 

In the V model, a MulticastRequest has the side effect of discarding all unread replies to 
the previous request, so no explicit operation is required at the transport layer to support 
early completion. 

When a remote operation returns no value, we assume that the underlying transport 
protocol still acknowledges its completion. This allows the client to use GetReply (which 
returns an empty message in this case) for synchronization purposes, to block until the 
request has been completed. 

The AllReceived? operation is useful only in systems like Circus and MultiRPC, in 
which the size of groups is known by the transport layer. In a system like V, AllReceived? 
always returns false, and the client must know how many GetReply operations to perform. 
This distinction is reflected in the use, but not the design, of the language-level mechanisms 
presented in this paper: in a V-like system, the client must explicitly exit from the various 
iteration constructs; in a Circus-like system, the iteration will always terminate. 

4.2 Session Layer 

The issue of binding a client to a group of servers for one or more calls is completely 
orthogonal to the issues addressed in this paper. The same approaches possible with 
conventional RPC are possible with group calls: 
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• An explicit BindGroup operation can be used to bind all calls to an interface to a 
particular group of servers. 

• The stub generator can add an extra parameter to each stub procedure, to allow the 
group of servers to be specified in each call. 

• The programming language itself can support a syntax such as Group. Proc(), where 
Group is a variable denoting a group of servers exporting Proc. 

4 3 Presentation Layer and Stub Generation 

Throughout this paper, we assume that a stub generator is used to hide the details of 
transmitting and receiving typed data. A typical stub generator transforms type declarations 
(such as array and record types) into procedures for transmitting and receiving values of 
those types, thus bridging the gap between the typed objects of a programming language 
and the untyped messages of a transport protocol. In the pseudo-code that follows, we will 
use the statement 

msg : Message := Marshal (P, arg) 

to indicate marshaling of procedure name and arguments into a request message for the 
transport layer, and the statement 

reply : T := Unmarshal (msg) 

to indicate unmarshaling of the results contained in a response message. 
The stub generator approach is also an effective means of integrating the control struc­

tures inherent in a particular communication paradigm into an existing programming lan­
guage. In the case of RPC, for example, the stub generator produces stub routines for 
each procedure in a remotely callable interface. On the client side, these stubs take care of 
transmitting the procedure and its ai^uments to the server, and then receiving the results. 
On the server side, the stub generator typically produces a top-level loop that repeatedly 
receives an incoming call, invokes the appropriate procedure, and sends back the results. 

For each of the language constructs for multicast communication proposed in this paper, 
we will indicate how the stub generator approach can be extended to handle that mechanism. 
Typically, only the client side must be extended; each server in the multicast group handles 
what appears to be a conventional remote procedure call. The notation will be used 
consistently to indicate a client stub that implements a multicast call to a procedure P. 

4.4 Application Layer 

We will use an example application, the two-phase commit protocol [8], to illustrate the 
expressive power of the approaches presented in Section 5. Simplified code for this 
application will be shown using each form of multicast communication. 

The two-phase commit algorithm involves a coordinator and a group of participants, 
each of which export the types and procedures shown in simplified form in Figure 1. During 
the first phase of the algorithm, the coordinator must ascertain that all the participants are 
ready to commit; if any are not, the transaction is aborted at all sites. The abort decision can 
be made as soon as any participant indicates that it is not willing to commit the transaction; 
this is an example of early completion. Otherwise, the transaction is committed at all sites 
in the second phase. 
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status : type = (commit, abort) 

Ready : proc ( ) return status 
Commit: proc ( ) return void 
Abort: proc ( ) return void 

Figure 1: Two-phase commit participant interface 

5 A Spectrum of Language Constructs for Multicast Communi­
cation 

We are now in a position to answer our original question of what constitutes the appropriate 
language-level abstraction for multicast communication, by introducing three candidate 
mechanisms. Each of them has all of the essential characteristics defined in Section 3.1, 
but they possess increasingly larger sets of the desirable characteristics. Along with this 
increasing "desirability", however, goes a corresponding increase in "semantic level". As 
a result, the final mechanism (streams) is not necessarily to be preferred over the initial 
mechanism (functional mapping); rather, that choice also depends on the language to which 
the mechanism is added. The relationship between the multicast facility and the underlying 
programming language is discussed further in Section 6. 

P* : proc (arg : A ; fh : proc (reply : T) return boolean) return void is 
msg : Message := Marshal (P, arg) 
reply: T 

begin 
MulticastRequest (msg) 
while not AllReceived? ( ) do 

msg := GetReply ( ) 
reply := Unmarshal (msg) 
if not fh (reply) then 

exit 
end if 

end while 
end P* 

Figure 2: Stub routine using functional mapping 

5.1 Functional Mapping 

The simplest mechanism that meets the essential criteria is functional mapping. In this 
scheme, a user-specified function is applied to each reply value, in order of arrival. It can 
be added to almost any programming language. 

The type safety requirement is met by introducing a stub procedure that takes a properly 
typed user function as an additional parameter. Using a stub generator for group calls, a 
procedure P of type 

P : proc (arg : A) return T 
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would be translated into a stub procedure P* with signature 

P* : proc (arg : A ; fh : proc (reply : T) return boolean) return void 

Expressive power is provided by applying the user function to the replies in the order in 
which they arrive. Early completion can be supported in either of two ways. The simplest 
is to use the value returned by the user-supplied function (a boolean, say) to determine 
when the mapping should cease. This approach is used in MultiRPC [14], and is shown in 
detail in Figure 2. The alternative is to use some form of nonlocal transfer of control—an 
exception, Lisp throw, or C longjmp—from the body of the user function to the context 
surrounding the group call. 

- stub procedures for group calls to the participants 
Ready* : proc (fh : proc (reply : status) return boolean) return void 
Commit* : proc (fh : proc ( ) return boolean) return void 
Abort* : proc (fh : proc ( ) return boolean) return void 

- algorithm performed by the coordinator 
TwoPhaseCommit: proc ( ) return void is 

success : boolean := true 
Phase 1 : proc (reply : status) return boolean is 
begin 

if status = commit then 
return true 

else 
success := false 
return false 

end if 
end Phase 1 
Phase2 : proc ( ) return boolean is 
begin 

return true 
end Phase2 

begin 
Ready* (Phase 1) 
if success then 

Commit* (Phase2) 
else 

Abort* (Phase2) 
end if 

end TwoPhaseCommit 

Figure 3: Two-phase commit using fh. mapping 

If the result type T is void, the user function is invoked with no arguments—purely for 
synchronization—each time a request is acknowledged, as discussed in Section 4.1. The 
two-phase commit algorithm using functional mapping is shown in Figure 3. 
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5.2 Iterators 

An iterator is an abstraction of the familiar for loop [11]. In programming languages that 
support abstract data types, iterators allow operations to be performed on each element 
of an abstract sequence, without revealing any information about how the sequence is 
implemented. 

A for loop involving an iterator can be viewed as syntactic sugar for functional mapping: 
the for loop 

for x in Iter(a) do Body(x) 

is considered equivalent to 

IterXa, Ax. Body(x)) 

where Iter' is obtained from Iter by replacing all occurrences of the yield keyword by 
application of the additional functional parameter. Occurrences of exit or return must be 
replaced by a non-local transfer of control to the appropriate enclosing activation. 

Iterators can be used as an abstraction of multicast communication. A stub generator 
using iterators would translate the example procedure P above into an iterator P* with 
signature 

P* : iter (arg : A) yield T 

The iterator yields successive values in the order in which they arrive. The implementation 
of such a stub is shown in Figure 4. 

P* : iter (arg : A) yield T is 
msg : Message := Marshal (P, arg) 
reply: T 

begin 
MulticastRequest (msg) 
while not AllReceived? ( ) do 

msg := GetReply ( ) 
reply := Unmarshal (msg) 
yield reply 

end while 
end P* 

Figure 4: Stub routine using iterators 

A client of P* would look like 

for val: T in P* (x) d o . . . 

The client can use a loop exit statement to terminate the iteration early. 
If the result type T is void, the iterator yields no data, only control, each time a request is 

acknowledged. In this case, it is useful to define the syntactic sugar all P* (x) as a shorthand 
for 

for in P* (x) do skip 
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- stub procedures for group calls to the participants 
Ready* : iter ( ) yield status 
Commit* : iter ( ) yield void 
Abort* : iter ( ) yield void 

- algorithm performed by the coordinator 
TwoPhaseCommit: proc ( ) return void is 

success : boolean := true 
begin 

for vote : status in Ready* ( ) do 
if vote = abort then 

success := false 
exit 

end if 
end for 
if success then 

all Commit* ( ) 
else 

all Abort* ( ) 
end if 

end TwoPhaseCommit 

Figure 5: Two-phase commit using iterators 

The all operator is only useful in Circus-like systems in which the AllReceived? operation 
eventually returns true; the iteration would not terminate in a V-like system. The two-phase 
commit algorithm using iterators and the all operator is shown in Figure 5. 

The use of iterators as a language-level mechanism for multicast communication was 
advocated in the author's thesis [4]. This approach possesses all of the essential properties, 
and all but one of the desirable properties, but it does not provide first-class status for 
multicast communication in progress. 

5 3 Streams 

The constructor stream of T defines a data type that can be used to transfer a sequence 
of values of type T between a producer and a consumer. Streams can be viewed as a 
generalization of iterators. Since streams are data, iteration in progress acquires first-class 
status. 

The consumer of a stream of values uses the following operations: 

EndOfStream? : proc (s : stream of T) return boolean 
Get: proc (s : stream of T) return T 

The producer of a stream of values uses the following operations: 

Put: proc (x : T ; s : stream of T) return void 
Close : proc (s : stream of T) return void 

The Get and Put operations are equivalent to Dequeue and Enqueue operations on a FIFO 
queue. The Close operation indicates that no further values will be written to the stream; the 
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EndOfStream? operation returns true after the stream has been closed and all of the values 
written to it have been read. Some means of creating multiple threads of control (represented 
in Figure 6 by the fork operation) is needed to specify producers and consumers of streams. 
This is in contrast to the implicit coroutine discipline provided by iterators. 

P* : proc (arg : A) return stream of T is 
msg : Message := Marshal (P, arg) 
s : stream of T 
Receiver: proc ( ) return void is 

reply: T 
begin 

while not AllReceived? ( ) do 
msg := GetReply ( ) 
reply := Unmarshal (msg) 
Put (reply, s) 

end while 
Close (s) 

end Receiver 
begin 

MulticastRequest (msg) 
fork Receiver ( ) 
return s 

end P* 

Figure 6: Stub routine using streams 

A stub generator using streams would translate the example procedure P above into a 
stub procedure /** with signature 

P* : proc (arg : A) return stream of T 

The stream produces successive values in the order in which they arrive. The implemen­
tation of the stub procedure is shown in Figure 6. A more efficient implementation is 
possible if (as is usually the case) the transport layer maintains a queue of replies for each 
request: the queue can serve as the stream itself, Get is implemented as Dequeue followed 
by Unmarshal, and EndOfStream? is just AllReceived?. 

A client of P* would look like 

s : stream ofT:=P* (x) 
while not EndOfStream? (s) do 

val: T := Get (s) 

end while 

If the result type T is void, the resulting stream is used purely for synchronization, 
as discussed in Section 4.1. The Get operation returns only after a corresponding Put 
operation is performed, even though no data is transferred. In this case, it is useful to define 
the syntactic sugar all s as shorthand for 

while not EndOfStream? (s) do Get (s) 
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Average : proc (s : stream of integer) return integer is 
sum : integer := 0 
count: integer := 0 

begin 
while not EndOfStream? (s) do 

value : integer := Get (s) 
sum := sum + value 
count := count + 1 

end while 
return sum / count 

end Average 

Figure 7: Example of an averaging collator 

The all operator cannot be used unless the AllReceived? operation provided by the under­
lying transport layer eventually returns true. 

Any program that uses iterators can be trivially rewritten to use streams, but not vice 
versa. The first-class status of a stream allows collators [3], for example, to be written as 
regular functions with stream parameters. Figure 7 shows a function that averages its stream 
of inputs. It can be composed with a stub procedure for a group call to an integer-valued 
procedure, say ReadTemperature, simply by writing 

Average (ReadTemperature* ()) 

If iterators were used, the collating code would have to be duplicated in each caller. 
The two-phase commit algorithm using streams is shown in Figure 8. 

6 Discussion 

In addition to satisfying increasingly more of the desirable properties for language-level 
multicast communication, the mechanisms presented in Section 5 also demand progressively 
more from the underlying programming language. 

The simplest mechanism, functional mapping, requires only the ability to pass a filtering 
function as a parameter. Procedure parameters are available in most languages, including 
(for example) C and Modula-2. 

Iterators, as abstract for loops, are most appropriate in languages with good support for 
abstraction. Using iterators for multicast communication would be appropriate in languages 
like CLU and Standard ML. 

Finally, streams presuppose a facility for creating multiple threads of control, in order 
to specify independent producer and consumer activities. The stream approach can be used 
in languages like Ada or C++ extended with C Threads [5]. 

6.1 Associating Responses with Servers 

The multicast constructs presented in Section 5 offer no way for a client to determine which 
server produced a given result; this makes it inconvenient to express some algorithms. One 
possibility is to place the burden of identifying responses on the implementor of the server, 
and require each procedure to return both its result and its server ID. But this violates 
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- stub procedures for group calls to the participants 
Ready* : proc ( ) return stream of status 
Commit* : proc ( ) return stream of void 
Abort* : proc ( ) return stream of void 

- algorithm performed by the coordinator 
TwoPhaseCommit: proc ( ) return void is 

success : boolean := true 
s : stream of status 

begin 
s := Ready* ( ) 
while not EndOfStream? (s) do 

vote : status := Get (s) 
if vote = abort then 

success := false 
exit 

end if 
end while 
if success then 

all Commit* ( ) 
else 

all Abort* ( ) 
end if 

end TwoPhaseCommit 

Figure 8: Two-phase commit using streams 

modularity, by requiring the implementor of a procedure to know how it will be called by 
clients, and it is redundant, since the underlying multicast transport protocol already has 
the server ID information available. 

A better solution involves a simple extension to the stub generators for the multicast 
constructs already presented. The stub generator that transforms the type signature of a 
procedure P into a multicast stub P* can, as an option, replace all occurrences of the result 
type Tby pairs of the form (TJServerlD). When the stub procedure unmarshals the result 
value (of type T), the server ID is also extracted from the response message, and both 
are returned to the client. Which form of stub to use is left to the implementor of the 
client program; the choice has no effect on the server. Equivalent facilities are found in 
MultiRPC [14] and the cstub stub generator [12]. 

6.2 Exception Handling 

Distributed systems, unlike centralized ones, must deal with partial failures such as proces­
sor crashes and communication outages. Experience has shown that an exception handling 
mechanism is a useful way of allowing programs to deal with these failures at the lan­
guage level. We assume a termination model of exception handling, as in CLU, Ada, and 
Standard ML, and turn our attention to the interaction between exception handling and the 
multicast constructs proposed in Section 5. 

In the case of functional mapping, only procedure calls are involved, and the semantics 
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of exception handling are well defined. Exception handlers specified in the filter procedure 
are only active while the filter procedure is being applied to a result (during evaluation of 
the expression fn(reply) in Figure 2). In particular, if an exception is raised by the transport 
or presentation layers during execution of the stub procedure, the filter procedure and its 
exception handlers are not active and do not affect the processing of the exception. 

A simple way to derive the correct exception semantics for iterators is to de-sugar the 
for loop 

for x in P* (a) do Body(x) 

into the equivalent functional form 

P* (a, Ax . Body(x)) 

as discussed in Section 5.2. If an exception occurs while executing Body and is not handled 
there, control will pass first to the stub procedure P*, and then to the context surrounding 
the for loop. An exception raised by the underlying protocol layers during execution of P*, 
on the other hand, is not affected by any handlers in Body, because the closure Xx. Body(x) 
is not active. 

It is not obvious what the correct exception semantics should be for streams. The 
simplest approach involves closing the stream at the producer side when an exception 
occurs, and raising an exception on the consumer side when an attempt is made to read 
from the closed stream. The producer (the Receiver thread in Figure 6) can guarantee this, 
for example, by calling the Close operation within a Lisp-style unwind-protect. This is 
not entirely satisfactory, since information about the precise exception is lost: the producer 
might detect a transport-specific exception, say ServerCrashed, but the consumer receives 
only a generic StreamClosed exception. Some means of propagating the exception through 
the stream would alleviate this problem; this is an area for further research. 

6.3 Future Work 

There are several directions for further research in this area: 

• The language-level multicast mechanisms described in this paper should be imple­
mented in real languages, used in real applications, and analyzed in detail. 

• First-class continuations appear promising as a unifying mechanism. They can be 
used to express all of the constructs discussed here, and may suggest additional 
control structures for multicast communication. 
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