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Abstract 

One of the key problems in machine vision is color constancy: the ability to match object colors in images taken 
under different colors of illumination. This is a difficult problem because the apparent color will depend upon the 
spectral reflectance function of the object and the spectral distribution function of the incident light, both of which 
are generally unknown. Methods to solve this problem use a small number of basis functions to represent the two 
functions, and some sort of reference knowledge to allow the calculation of the coefficients. Most methods have the 
weakness that the reference property may not actually hold for all images, or will have too little information to 
recover enough of the functions to make an accurate determination of what the color should be. 

We have developed a method for color constancy that uses a color chart of known spectral characteristics to give 
stronger reference criteria, and with a large number of colors to give enough information to calculate the illuminant 
to the desired degree of accuracy. We call this approach "supervised color constancy" since the process is 
supervised by a picture of a known color chart. We present here two methods for computing supervised color 
constancy, one using least squares estimation, the other using a neural network. 

We show experimental results for the supervised calculation of the spectral power distribution of an unknown 
illuminant. Once this has been calculated, the color of any object with known reflectance can be reliably predicted. 
We arc developing an extension to allow the prediction of color appearance for an object whose spectral reflectance 
function is not known. We also propose a method of "incremental color constancy" which determines object color 
by repeated application of supervised color constancy under changing illumination. 
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1. Introduction 

We usually think of color as a property of objects, but in actuality the observed color of an object varies all the time 
because it depends upon the lighting environment The confusion comes about because we use the word color 
loosely, to mean both a physical quantity and a subjective quality. As a physical quantity, color is the spectral 
characteristic of light emanating from an object or light source. As a subjective quality, color is the way that 
something appears to us. Subjectively, things appear the same color day after day, indoors and outdoors. 
Physically, the color varies with every little change in the illumination. Color constancy is the process that brings 
these two ideas together, allowing us to perceive the color of an object as a constant no matter what the illumination 
may be. 

For computers to identify objects by their color, a computer vision system must be able to automatically correct 
for different colors of incident light. It is well known that the human visual system can automatically correct for 
fairly large variations in the incident light. An object will usually appear to us to be the same color under two 
different lighting conditions even though a physical instrument would measure two different spectral reflectance 
functions. It is not known precisely how humans accomplish this adjustment, nor even precisely where in the visual 
system this corrections occurs, although several researchers have offered theories [30]. 

In order to recognize objects by their colors, a computer vision system must be able to make a similar type of 
correction. We can view the problem as first selecting some object and recording its color under an initial light 
source. Given a picture of the same object taken under any other light source, we would like to calculate a transform 
that would change the recorded color into the color the object appears to possess in the new picture. A good 
transform will yield transformed colors very close to the actual color in the picture, so that we can locate the object 
in the new picture quickly and accurately. We would like to be able to identify a large number of objects by their 
color in this way. 

However we do not claim that a good method by our standards must work in any way similar to the way that 
humans do, nor do we wish to limit ourselves only doing as well as humans. We would like our method to succeed 
even in instances where the human fails. In order to achieve this, we would like to use spectral power distributions 
of illuminants and spectral reflectance functions of objects because the spectral reflectance curve is an invariant 
property of the object that is useful for object recognition. 

These spectral functions may in general be arbitrary, so their calculation seems formidable. The usual approach is 
to represent a spectral function in terms of some weighted basis functions and to calculate the coefficients by 
reference to some a priori knowledge about the image in which the object appears. Most often, only one image is 
used for the calculation; this requires the use of an unreliable reference criterion and provides few constraints for 
calculating the coefficients. In this paper we propose a new approach that uses an image of a color chart with 
known properties to estimate the spectral properties of the illumination. The presence of the chart in the image is a 
reliable referent and yields a large number of constraints used for calculating the coefficients of the illuminant We 
call this approach "supervised color constancy" because the calculation is supervised by an image of the reference 
chart 

We begin the discussion with a mathematical formulation of the color constancy problem. We then present two 
methods for calculation, least squares estimation and a neural network, and compare the results. 
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1.1 Mathematical Formulation of Color Constancy 
To explain why the problem of color constancy is so formidable, we present a mathematical fiamework for the 

problem. By analyzing the mathematics carefully, we can identify several assumptions and limitations that 
characterize past work in this area. We will then present a method of performing color constancy which does not 
have these limitations. 

In the common approach to color constancy a color image is taken of a scene illuminated by some unknown type 
of light In a typical color picture three measurements are made at each point in the scene, yielding a three 
dimensional measurement vector M for each point The goal of color constancy is to automatically calculate 
corresponding measurements Af' of the same scene as it would appear if illuminated by a standard light This allows 
a computer to perform color matching. A traditional assumption is that a single linear transform will apply 
everywhere in the scene. In mathematical terms this is equivalent to saying that there should be some transform X 
such that 

M' = XM for all measurements M taken of the scene (1-1) 

The problem with this simple approach can be seen by examining the physical process by which the 
measurements are made. The light reflected from a surface is equal to the light incident upon that object L(X) 
(known as the illuminant) times the spectral reflectance function of that surface p(X). The measurement m obtained 
from a sensor looking at that surface is the light reflected from the surface times the responsivity function of the 
sensor s(X), integrated over the range of the spectrum for which s(X) > 0 (usually the "visible" wavelengths of 
light) [19] 

If the surfaces being observed are matte, then there is no appreciable specular reflection, so p(X) is an invariant 
property of the surface. Typically there are three sensors or one sensor with three different filters, so that under each 
type of light, three measurements are made. In our work we use red, green, and blue filters, although other filters 
may be chosen. Let sR(X) be the function defined by multiplying the sensor responsivity with a red filter 
transmittance function, sG(X) be the sensor responsivity times a green filter transmittance, and sB(X) be the sensor 
times a blue filter. Then for each surface the three measurements are 

mR = L(K) p(K) sR(K) dk 

mB = L(X) p(X) sB(k) dk 
m 

In order to represent an arbitrary curve in a finite manner, we can choose to approximate the illuminant L(k) in 
terms of some some basis functions bx(X)... bn(k). This way the spectral function of the light can be approximated 
by the sum of appropriately weighted basis functions: 

If the basis functions are well chosen and a large enough number are used, then any type of illuminant or reflectance 
function can be closely approximated in this representation. Using this new representation, the sensor measurements 
may be rewritten as 

(1-2) 

n 
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M J 

nere the i subscript refers to one of the three filters. 

Looking at the same surface with the same camera but under a standard iUuminant L'(\) can be modeled as 
changing the Rumination coefficients L, to Lf to produce sensor measurements < . If we let 

« = J °r-K> J«W oK then the measurements are simply 

n 

7=1 

If we let M be the vector of the sensor measurements mv L be the vector of light coefficients Lj9 and R be the 
matrix with entries then we have a matrix equation for the measurements under the unknown illuminant 

M = RL 

and a similar one for the measurements under the standard illuminant 
Af' = RL' 

It should be noted that R is not necessarily square, since there may be more measurements than basis functions. 
Combining Af and Af' using equation (1-1) we have 

RL' = XRL 
and solving for V yields 

V = IT1 XRL (1-3) 
If R is not square the pseudo-inverse is used rather than the true inverse, where the pseudo-inverse is defined by 
(RTR)~l RT. The result is that the coefficients which describe the standard illuminant V may be expressed in terms 
of the unknown illuminant L, the matrix R (and its inverse), and the transformation matrix X. Since R is composed 
from the reflectance of the object as well as the sensor responsivities and the basis functions, a different R will be 
needed for each object in the scene. We will assume that L and l! are constant in their respective scenes. Therefore 
either R should be eliminated from the equation, or X will have to vary throughout the scene, negating the original 
hypothesis that a single X existed for all points in the scene. 

1.1.1 The Traditional Approach to Color Constancy 
Equation (1-3) can be simplified if R is square and both R and X are diagonal. This means that R would take the 

form 

R = 

and similarly 

X = 

rx 0 

0 o 

0 ' 
0 
r 3 . 

* i o 0 
O X 2 O 
0 o * 3 . 

so that the transform would be "color balancing" by simply scaling each sensor band. Under these assumptions we 
would then be able to simplify 

R~XXR = X 

The result is that the matrix which transforms the pixel values Af to M' is the same matrix which transforms the light 
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L to L\ Therefore in order to calculate what color any object will have under a new type of light, it is only necessary 
to calculate the way in which the light has changed; the spectral reflectance curve of the object itself does not enter 
into calculating the transform. This justifies the original assumption that a single transform will work everywhere in 
the image (i.e. for all Af) and is the implicit assumption traditionally made by computer vision approaches to color 
constancy. 

The contents of the diagonal transformation matrix X still need to be calculated. To do this some sort of reference 
property is needed. Most often this reference property is some known values of Af and corresponding Af'. Since X is 
traditionally assumed diagonal, it is a simple matter to calculate its entries based upon as little information as one 
correspondence. For example if a surface is measured as having the RGB values [1 2 3] and is known to correspond 
to values of [11 1] with respect to an ideal illuminant, then the diagonal entries of X will be 1,1/2, and 1/3. 

1.1.2 Limitations of the Traditional Approach 
In deriving the traditional approach, we made the assumption that/? is square and diagonal, i.e. its contents are 

rV = 0 ifi*j 

Recall that by definition r{- = J bi(X)sJ(X)p(X)a%. So in order to make R diagonal, the basis functions must be chosen 
so that bx is orthogonal to s2 and sv b2 is orthogonal to sl and s3> and so forth. Most often researchers have not 
chosen basis functions that would satisfy this relation. In particular, the RGB color TV primaries are not a suitable 
choice for basis functions in this formulation, since their curves do overlap and so cannot be orthogonal. For 
example, if the NTSC color TV primaries are used as basis functions as well as sensor functions, and the surface in 
question is an ideal white (flat spectral reflectance function) then 

where the entries of R have been scaled so that rx x = 1. If the basis functions to represent the illumination are 
chosen so that they are orthogonal to the sensor functions, they may give an entirely inadequate description of most 
types of illumination. This is because most sensors are fairly broad band and overlap to some degree. 

In the more general case that R is not diagonal, the transformation from one illuminant to another varies at each 
different surface as shown in Equation (1-3). In this case the original assumption that a single transformation X will 
map all Afs to corresponding Af's must not be correct. Rather than trying to get around these limitations, we propose 
to abandon the idea of finding a single transformation matrix that works everywhere in the image. Instead, we allow 
the more general formulation of the reflectance matrix R and present a method to explicitly calculate the illuminant 
L(X). We also suggest how the surface reflectance function p(X) can be calculated. 

1.2 Previous Work in Color Constancy 
Proposed methods for color constancy can be classified by the basis functions bi they use for performing the 

~ transformation, and the by the reference property that goes into determining the transform X. As discussed above 
many traditional methods assume that X is diagonal, so they address only the calculation of multiplicative scale 
factors for the sensor bands. 

The reference property that different methods use has often been based upon heuristics about real images. A 
common heuristic is that the average over all pixel values in a picture should be a shade of gray [4]. Which neutral 
shade between black and white is not specified, but the hues must balance out Thus the average intensity over the 
entire picture is calculated independently for each band and then multiplicative constants are computed that will 
bring the ratios between the bands to 1:1:1. This rule is frequently made by automated film processors. For many 

R = 
1.000 
0.166 
0.002 

0.166 
0.136 
0.010 



5 

pictures this produces a satisfactory print, but unsatisfactory pictures are easy to find. For example, whenever a 
picture is supposed to consist mainly of a single dominant color, the regions of that color will be printed as less 
saturated, and regions of other colors will be tinted by the opposing color. 

An even more restrictive assumption is that the average of all the pixel values should equal some particular color. 
The particular color is chosen based upon statistical data gathered about naturally occurring reflectances and 
illuminants [6]. This method has an advantage over the "any shade of gray" method in that it will correct for 
different intensities of incident light; the previous method only corrects for biases in hue and saturation as any 
intensity of gray is acceptable for the average value. However this method suffers from the same flaw, namely that 
it is easy to find pictures, even outdoor ones, where the assumption will lead to an incorrect answer. 

Other models for performing color constancy transformations come from assumption of knowledge about the 
reflective properties of certain regions in an image. One assumption is that the brightest region in the image is in 
fact a white surface, that is, a surface that reflects equal amounts of energy at all wavelengths. The extent to which 
the color of this surface in the image differs from white, yields multiplicative factors for each band. If the RGB 
values of this brightest surface are [5,3,2] then the green band should be scaled by 5/3 and the blue band by 5/2. 
This method can of course fail whenever the brightest surface in the picture is not in fact white. A more flexible 
assumption is that the brightest regions measured independently in each band will add up to white [14]. This 
assumption says that the brightest region in the image need not correspond to a white surface, but that the brightest 
regions in each band reflect equal amounts of light. Thus if the brightest region of the red band of the picture has a 
value of 5, the brightest region in the green band a value of 3 and the brightest region in the blue band a value of 2, 
then the green band should be scaled by 5/3 and the blue band by 5/2. Although this assumption is less restrictive 
than "the brightest region should be white", it too can be violated by everyday images. 

It is possible for the transform X from the unknown illuminant to the standard illuminant to have non-zero 
off-diagonal entries. One method uses correspondences between a large number of regions viewed under the two 
illuminants. The best transform from one illuminant to the other is then calculated using either least squares 
estimation [12] or a neural network [11]. 

All of these methods share the common assumption that the transformation from one color space to another is 
unique and one-to-one. Unfortunately this is not the case. The existence of metamers, a well known color 
phenomenon, shows that this assumption will fail on some surfaces [13]. Metamers are two surfaces that appear the 
same color under one illuminant and yet different colors under a different illuminant The problem is that spectral 
reflectance is a continuous function and hence is infinite-dimensional, but it is sampled in only a few dimensions, 
typically by three broad-band receptors. When three basis functions are picked, two different spectral reflectances 
may be projected down into the same three values in three dimensions, but when slightly different basis functions 
are picked, they project into different values [29,24]. 

Some researchers have used mathematical constraints to reduce the complexity of the problem. Maloney and 
Wandell calculate m coefficients for the light by taking measurements at more than m locations in the image [17]. 
However, the degrees of freedom in the reflectance curves that the surfaces are assumed to have is limited to one 
less than the number of sensors. An additional constraint is generated by the knowledge that real-world reflectances 
are never negative [27]. 

Although most work in color vision has used cameras and RGB values, some researchers have used complete 
spectral data instead of or in addition to RGB values [10,26]. Since spectral data is sampled at many points across 
the spectrum rather than the typical 3 for color cameras, it provides far more constraints for calculating illumination 
and reflectance functions. 
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Highlights on inhomogeneous materials have been used by some researchers to find the color of the 
illumination [4,8,26]. According to the Dichromatic Reflection Model, colors observed on an inhomogeneous 
surface will be the sum of a surface component and a body component [25]. The surface component is usually 
assumed to have the color of the light only, whereas the body component is assumed to have the color of the light 
times the body color of the object A highlight region will have a positive amount of both colors whereas a 
non-highlight region will have only the light color times the body color. Assuming that highlights can be found 
along with a non-highlight portion of the same object, the color of the light can be calculated, and then the object's 
color. While theoretically elegant, methods such as this may be time consuming and be plagued by sensor 
limitations since highlights are typically far brighter than non-highlight regions. Of course, the method will not 
work at all if highlights are absent or occur only on non-dielectric materials (i.e. metals). It also depends upon the 
widely-used simplification that surface reflection is constant across the spectrum. In actuality, surface reflection is a 
function of wavelength, although for many substances the variation across the spectrum is quite small [25]. 

The choice of the form and number of basis functions is also an issue since it determines what type of illuminants 
and surface reflectances may be represented. These spectral functions may be sampled at regular intervals with a 
spectroradiometer (typically every 10 nanometers within the visible range) [26] or with broad-band receptors such as 
the ones found in a color camera. Some researchers have represented spectral functions with a set of abstract 
functions such as Fourier functions [28,1] or normalized Legendre polynomials [9]. Alternatively, a set of basis 
functions derived from a principal components analysis of spectral data of natural and man-made objects may be 
used [6]. Any finite representation will necessarily be inexact, since spectral functions may vary arbitrarily. 
Typically only the first three basis functions are used. Researchers hope that this small number of whichever set of 
functions they use will capture most of the variation in reflectance and illumination functions. The extent to which 
this is true usually depends upon the smoothness of the reflectance and illumination curves. Most surfaces will have 
smooth reflectance curves; some researchers argue that this is due to the nature of the physical processes which 
typically cause color [16]. However some illuminants, particularly fluorescent lights, have sharp peaks, making 
them difficult to represent under most schemes. Recently some researchers have argued that 3 basis functions are 
insufficient even for surface reflectances [21]. 

Since most methods generate each constraint from one sensor value, the number of basis functions is limited by 
the number of sensors. Clearly, to disambiguate as many as colors as possible, a large number of constraints would 
be desirable. However a practical number of sensors is typically three or four, so we would like to generate more 
constraints without needing more sensors. 

1.3 Supervised Color Constancy 
We would like the reference property used to calculate the color constancy transform to be a reliable process 

rather than a heuristic that works some of the time. One way of getting "ground truth" is to introduce a surface of 
known, reflectance properties into the picture we are interested in, or take a test picture beforehand. If we take a 
picture of a known white card in some known position in the image under a particular incident lighting, the reflected 
color measured gives some important information about the color of the light This method will work identically to 
the method of assuming that we can find a white surface somewhere in the picture, except that in this case we know 
that the surface we think is white is in fact white. There is no assumption that can be violated. 

We call this approach "supervised" because it involves taking some test data which trains the computer as to what 
type of light to expect This type of process is already used in some applications [1]. Illumination changes arc 
common in the real world, and calibrated color standards are easily obtained. At the cost of introducing a known 
surface into the scene from time to time, we can provide a transform that yields invariant color information as the 
illumination changes. 



7 

In this paper we introduce a method of supervised color constancy using a color chart instead of a simple white 
card. We use a chart with m color patches with distinct known reflectance functions, so that a three-band color 
image of the chart will yield 3m constraints upon the spectral curve of the incident light In the general case where 
there are s sensors, there will be sm constraints. Then we show how these constraints may be solved to give an 
estimate of the illuminant L(X). Not only is the color chart a reliable reference property, but the large number of 
constraints it generates allows us to do our calculations in a high dimensional space. 

We then present an alternate method that uses a neural network trained to calculate the illuminant vector from the 
RGB values the camera recorded for the color chart under that illumination. This method has an initial training cost 
as the network must be shown a number of examples. An advantage over the previous method is that no 
measurement of camera spectral sensitivity is needed; such measurements can be difficult to obtain. 

We show experimental results for these techniques on theoretical data with and without simulated noise added. 
We also develop quality measures for comparison of our results. These methods of using a color chart for color 
constancy are useful because they are simple and practical to use and obtain high accuracy in performing color 
constancy needed in real-world applications. 

Finally, our work suggests a way to use the constraint formulation to estimate the reflectance vector p of an 
unknown surface from measurements of that surface taken under one or more different illuminants whose spectral 
power distributions were estimated by the color chart method. Just as m known color patches will yield 3m 
constraints upon the illuminant in a system with three sensors, observing the surface under k known or estimated 
illuminants will yield 3k constraints upon the unknown reflectance function. In this way multiple observations 
under different illuminants can be accumulated to provide incremental improvements in the estimate of surface 
colors. 
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2. The Color Chart Method for Supervised Color Constancy 
It is possible to guarantee that the reference property holds by introducing a known surface, typically white, into 

the scene. However a single white surface provides a limited amount of information. If measurements are made of 
it in only three bands, as is typical, it only provides three constraints upon the estimate of the illuminant Taking 
measurements in more bands will provide additional constraints, but there is a practical limit on how many different 
filters may be obtained and how much time can be devoted to taking measurements. 

Instead, a color chart with several distinct known reflectance curves may be introduced into the scene and 
measured by the sensors. The additional surfaces provide more constraints, allowing a more detailed description of 
the illumination to be calculated by the least squares method. Our method has two parts: 

• Estimating the illuminant using the color chart 

• Estimating object reflectance using images under several illuminants 
In this paper we present the theory used in calculating both parts and experimental results of simulations for the first 
part. 

2.1 Estimation of the Illuminant Using the Color Chart 
In order to estimate the illuminant we assume that the sensitivity functions of the sensors are known, as well as 

the reflectance functions of the surfaces on the color chart These functions can usually be obtained from the 
manufacturer or measured directly with a spectroradiometer. The matrix R is calculated by factoring these together 
with the basis functions. If three sensors are used that are responsive to red/green/blue, the first three rows of R 
consist of 

jb^s^p^dk . . . jbn(X)sR(X)px(k)dk -I 

jbx(X)sG(X)px(k)dk . . . jbn(k)sG(k)px(k)dk 

Jbx&)sB(X)px(\)dk . . . jbn(X)sB(X)px(X)dk J 
where px(X) is the reflectance function of the first surface on the color chart The next three rows consist of the 
same calculations for the second surface on the color chart, and so on, so that for m surfaces on the color chart there 
are 3m rows in the matrix. In the general case where there are s sensors there are sm rows in the matrix. Note that 
all these functions are known so R is constant 

Measurements of the color chart are taken under the unknown illuminant, producing a measurement vector M 
with 3m values. The first three entries in M are the RGB values that the camera measured for the first surface, the 
second three entries correspond to the second surface, and so on in the same order that the rows of R were 
calculated. The goal is then to solve the equation 

Af = RL 
for L. Since there are m surfaces on the color chart, and 3 sensors used to measure the chart, and since we choose to 
represent the light with n basis functions, M is 3mxl, R is 3mxn, andL is jixl. Typically n is chosen so that n<3m 
since it is generally the case that there is some redundancy in the color chart functions. Even if R has 3m linearly 
independent rows, some of the rows may be very close to being dependent Therefore the least squares method can 
be used to solve for L, yielding an estimated solution L*. The estimated illuminant L*(k) is recovered from L* by 
multiplying the coefficients by the appropriate basis functions 

L*(X) = 

The number of illuminant coefficients n may be chosen empirically or through eigenvector analysis. A 
calculation of the eigenvectors of RTR gives a set of vectors that span the solution space for L, while the magnitude 
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of each eigenvalue tells how significant the corresponding eigenvector is. Because RTR is positive definite 
symmetric, the eigenvalues will all be positive. Each eigenvalue is divided by the largest one and sorted in 
decreasing order. A threshold value is chosen based on the signal-to-noise ratio of the sensors. The number of 
eigenvalues greater than that threshold is the number of basis functions n that we choose for calculating L*. 

By adding more distinct colors, an increasing number of illuminant coefficients can be accurately calculated. 
This only works up to the point that it becomes too difficult to formulate enough distinct colors that can be 
differentiated by the camera. Each additional color will add some information to our constraints, but the amount of 
new information added by each new color will decrease as the number of colors grows. Eventually, that amount will 
be below the threshold that can be reliably detected by the camera. However, in practice it is easy to obtain 8 or 
more coefficients which provide a relatively detailed description of any typical illuminant 

2.1.1 The Least Squares Method 

The least squares method is a standard technique for finding the best fit curve to a collection of data. In this case 
the dependent variable is the value measured in the image; the independent variables are the reflectance curves of 
the surfaces, the sensors' response curves and the basis functions; and the relation between them is hypothesized to 
be linear. The mathematical model is 

where m is the value measured in the image, r« is the matrix calculated form the combination of the surface, sensor, 
and basis functions, L-is the desired illumination description, and e is the residual error. 

In order for the least squares calculation to produce a good result, several things must be true: 
1) the hypothesized relationship must closely approximate reality 
2) there must be more measurements than desired illuminant coefficients 
3) the independent variables must be independent 

We have already shown that our model is a good approximation of the physics of spectral integration. The number 
of measurements can be manipulated by simply adjusting the number of colored surfaces on the chart The third 
condition depends on the nature of the matrix /?, so the basis functions and the colors used in the color chart must be 
chosen carefully. 

2.1.2 The Color Chart 

We have used the standard MacBeth ColorChecker in our work [15]. The ColorChecker, shown in Figure 1, 
measures 13.5 inches by 9.25 inches and has 24 colored squares. The Munsell coordinates and common names of 
the colors are given in Table 2-1. Notice that the last row of the ColorChecker consists of neutral colors which are 
shades of gray ranging from black to white. This chart is widely used in color work and the spectral reflectance 
curves of the squares are readily available from the manufacturer. 

2.1.3 Choice of Basis Functions 

Although many different families of basis functions may theoretically be used, in practice some care must be 
taken in choosing among them. A simple choice would be a series of unit impulses ranging over the visible 
wavelengths. For example the first function could be a curve consisting of an impulse at 400nm and zero 
everywhere else; the second function could have an impulse at 405nm and a zero everywhere else; and so on. The 
problem with this choice is that in solving the least squares formulation, the assumption that the independent 
variables are in fact linearly independent may be violated. Many illuminants are fairly smooth across the spectrum; 
as a result the value of would be approximately the average of Lx and L 3 . With such a set of basis functions, 
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Figure 1: The MacBeth ColorChecker 

3YR 3.7/32 
(Dark Skin) 

2.2YR 6.47/4.1 
(Light Skin) 

4.3PB 4.95/53 
(Blue Sky) 

6.7GY 4.2/4.1 
(Foliage) 

9.7PB 5.47/6.7 
(Blue Flower) 

23BG 7/6 
(Bluish Green) 

5YR 6/11 
(Orange) 

73PB 4/10 
(Purplish Blue) 

23R 5/10 
(Moderate Red) 

5P 3/7 
(Purple) 

5GY 7.1/9.1 
(Yellow Green) 

10YR 7/10 
(Orange-Yellow) 

7.5PB 2.9/12.7 
(Blue) 

0.25G 5.4/8.65 
(Green) 

5R 4/12 
(Red) 

5Y 8/11.1 
(Yellow) 

23RP 5/12 
(Magenta) 

5B 5.08/8.0 
(Cyan) 

N 9.5/ 
(White) 

N 8/ 
(Gray) 

N 6 3 / 
(Gray) 

N 5/ 
(Gray) 

N 3 3 / 
(Gray) 

N 2/ 
(Black) 

Table 2-1: Layout of the MacBeth ColorChecker1 

variables would tend to be highly correlated with each other. This state of affairs is known as multicollinearity and 
the result is that very small errors in the measurements can cause very large errors in the calculation of the L-
coefficients. Moreover if one variable is over-estimated, the next is likely to be under-estimated, leading to wild 
oscillations in the calculated values of the coefficients. 

A more sound choice is a set of basis functions which describe characteristics which are likely to be independent 
such as the Fourier components of the curve. We use the Legendre polynomials, suggested by Healey and 
Binford [8]. The definition of the ith Legendre polynomial bt is 

1Munscll coordinates are usually written as Hue Value/Chroma. The Hue consists of a letter pari and a number part. The letter is one of 5 
principal colors, Red(R) Yellow(Y) Green(G) Blue(B) Purplc(P), or a combination of two adjacent colon (such as YR for Yellow-Red). The 
number part ranges from 0 to 10 in such a way that OR would be a red hue with a lot of purple in it, 10R would be a red hue with a lot of yellow 
in it, and 5R would be the hue that is usually thought of as "red". The Value tells how light the color is, ranging from 0, which is absolute black, 
to 10, which is absolute white. The Chroma tells how strong the color is, ranging from 0 which is gray, to 16 which is very vivid. Chroma is 
somewhat similar to saturation, but unlike saturation, lightness is factored into the perception of chroma. Neutral colors (grays) are usually 
written as N Value/ with the 0 value for the chroma omitted [18]. 
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The first few Legendre polynomials are shown in Figure 2. Note that the ith basis function is an ( h degree 
polynomial. These are orthogonal as indicated by the relationship 

0 otherwise 

By scaling the visible wavelengths of light to range over [-1.+1] and using a suitable number of basis functions, we 
can easily represent the visible portion of any illuminant with a high degree polynomial. 
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Figure 2: Legendre Polynomials 0-3 

Legendre 0 
Legendre 1 
Legendre 2 
Legendre 3 

2.1.4 Summary of Estimating the Illumination 
For three sensors, the elements of the matrix R are calculated by 

rij = /tyW '(/mod 3 > f t ) P U 3 J & ) ^ 

. where bj(X) is the 7 t h Legendre polynomial, s^imod 3^(K) corresponds to one of the three sensor functions, and 
PLtfJjCX) corresponds to one of the spectral reflectance curves of the color chart When a color picture is taken of the 
chart under a particular illuminant, sensor measurements m are obtained that correspond to each row of R. Using the 
least squares method, a best-fit estimate for the illuminant is obtained. Because we use the same color chart basis 
functions, and sensors each time, the matrix R and its least squares inverse may be calculated off-line once and then 
used to quickly obtain the illuminant by multiplying the measurements obtained in the experiment by the pre-
calculated matrix. Eigenvector analysis of the matrix R obtained from the MacBeth ColorChecker and our sensors 
shows that 10 eigenvalues are significant, so the illumination is approximated with a 10 t h degree polynomial. We 
present results for this method in section 3.4. 
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2.2 Estimation of the Illuminant Using a Neural Network 
Recall that we are trying to solve the equation 

M. = RL 
for L. Another approach to solving it is to train a neural network to calculate L given M so that it is implicitly 
calculating the constraints generated by the image of the ColorChecker, or rather their inverse R~l. 

Inputs to the network consist of the 3mxl measurement vector Af made of the appearance of the ColorChecker 
under a particular type of light. Outputs from the network are the n coefficients of that light Since multicollinearity 
is not an issue, the basis functions can be simple unit samples, so the illumination coefficients are simply the 
spectral power measured at each wavelength by a spectroradiometer. 

The network configuration we have used has a single hidden layer with n hidden units with complete 
interconnection between the input and hidden layer, between the hidden and output layer, and between the input and 
output layer (shortcut connections). The weights were updated using continuous back-propagation [22,23]. 

The network is trained using examples of the ColorChecker appearance and the corresponding illumination. 
Since the constraints generated by the chart reflectances and sensor responses are calculated implicitly by the 
network, these functions do not have to measured or obtained from the manufacturer. Measuring the spectral 
response of a camera can be difficult even with the aid of a spectroradiometer. On the other hand, this method does 
require the spectral measurement of the lights used to train the network and this will probably require access to a 
spectroradiometer. However, once the network has been properly trained, the spectroradiometer will not be needed 
and the method will calculate the spectral power of further lights very quickly. In effect we have constructed a 
"poor man's spectroradiometer", obtaining a detailed spectral power distribution function of illuminants using only a 
color chart and a color camera, with a neural network that "learns" the relationships among them. Results for this 
method are presented in section 3.5. 
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3. Simulated Picture Taking 
To find out what kind of results we could theoretically expect from our method, we simulated the picture taking 

process and applied our method to the simulation data. 

3.1 The Simulation Process 
In Chapter 1 we introduced Equation (1-2) which says that given the spectral power distribution of the 

illumination, the spectral responsivity of the sensor, and the spectral reflectance of a surface, we should be able to 
calculate the value that will be obtained by a sensor pointing at that surface. Therefore, if we can somehow obtain 
the spectral curves of these things, we can multiply them together and calculate the integral to predict the value 
measured by the sensor. 

Accordingly we collected spectral curves of ideal picture-taking equipment, as well as curves for a color chart, 
some interesting things to look at, and some common types of illumination. Where possible, this data was collected 
at 5nm intervals from 300nm to 850 nm, a range which extends somewhat beyond the visible wavelengths of light 
both in the infrared and ultraviolet directions. 

The spectral curves were multiplied together and the integrals were determined by calculating the area under the 
piecewise linear curves. The resulting values were considered the theoretical sensor values of a hypothetical camera 
looking a a known color chart under an unknown illuminant Then the calculations described in the previous section 
were performed to see if the light factored into the sensor values could be recovered. Theoretical sensor values were 
also used to train the neural network, which was then tested on new theoretical inputs it had not seen before. 

Sensor values for a hypothetical object under several different illuminants were also calculated. Using the 
estimates for the illuminants already calculated by the least squares method, we attempted to recover the spectral 
curve of the object 

The above calculations were performed on perfect (noise-free) data and on data with simulated noise added. The 
noisy data was simulated by adding pseudo-random values, weighted by a Gaussian function, to the simulated 
camera measurements. 

3.2 The Spectral Properties of Our Equipment 
Although our experiments used simulation and so could have used any kind of spectral curves, we attempted to 

obtain spectral curves that were fairly close to the kinds of curves associated with the equipment we actually use. 
Fortunately, spectral data for most camera equipment can be obtained from the manufacturers. While most cameras 
and filters and the like are not carefully calibrated to meet the standards of the manufacturers, it is usually believed 
that the equipment comes close to these published standards. 

The color squares of the MacBeth ColorChecker are composed of Munsell color papers. The spectral curves of 
these papers were obtained from the manufacturer and used in the simulation. The curves for the first four squares 
on the MacBeth chart are shown in Figure 3. These are considered hypothetical values since there is no guarantee 
that these curves will be realized on an actual MacBeth chart 

We also obtained the theoretical spectral transmittance curves of a red, green and blue filter of the type that we 
use for taking color images. These filters (Wrauen #25 red, #58 green, #47 blue) are widely recommended for color 
photography and the expected spectral transmittanccs are published by the manufacturer. In addition we obtained 
the spectral transmittance of an infrared cut-off filter (Corion FR-400). We commonly use such a filter in picture 
taking due to our camera's sensitivity to infrared wavelengths [20]. The spectral curves for these four filters are 
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Figure 3: Spectral reflectances of the first four squares of a hypothetical color chart 
shown in Figure 4. Notice that the effect of the infrared cut-off filter is to limit the responsivity of the imaging 
system to visible wavelengths of light. 
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Figure 4: Spectral transmittances of filters 
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We modeled the spectral responsivity of our simulated camera as being that of a typical published sensitivity for 
t e c h n ° l o g y [2]. CCD chips are known to exhibit an increase in sensitivity with increasing wavelength being 

most sensitive to infrared wavelengths. The sensitivity for our hypothetical camera is shown in Figure 5. 
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Figure 5: Spectral responsivity of a hypothetical CCD camera 

In our practical experience with a CCD camera, its relative insensitivity to shorter wavelengths causes images 
taken with a green filter to have a lower SNR than those taken with a red filter, and those taken with a blue filter to 
have a still lower SNR. A simple way to deal with this is to change the aperture of the camera at the same time the 
filter is changed. We call this method "aperture balancing" [20]. Fortunately it is extremely simple to model: if the 
aperture is opened up one stop when changing from the red filter to the green filter, the amount of light entering the 
camera is doubled. If the aperture is opened up an additional stop when changing to the blue filter, the amount of 
light is doubled again. Figure 6 shows how the aperture ratios of (1:2:4) for the red, green, and blue filters makes 
the resulting sensor responsivity functions more nearly equal in magnitude. (Recall that the sensor responsivity 
function is equivalent to the filter transmittance times the camera responsivity.) The resulting sensor responsivities 
are not identical to NTSC primaries; they represent functions that we believe are close to the way our equipment 
behaves. 

We obtained the typical spectral reflectance curves of the Ceramic Colour Standard tiles which we selected as the 
"unknown objects" for the simulation. These are standard tiles used for checking spectroradiometers, and their 
spectral curves are widely published [3]. The spectral reflectance curves for several of these tiles are shown in 
Figure 7. 

Finally, we collected spectral power distribution functions for two classes of hypothetical illuminants. To 
simulate lights that might be obtained indoors, we used the CIE standard illuminant A with or without hypothetical 
filters placed in front of it. Illuminant A is supposed to represent light from a full radiator at 28S6K; it is similar to 
what one can expect from incandescent lights. The hypothetical filters were based on filters sold by Edmund 
Scientific Co. [5] These filters are available in 8 inch by 10 inch sheets which may be placed in front of a spotlight 
The spectral curves were obtained from the manufacturer. The hypothetical incandescent light without any filter and 
two lights that would result from using selected fillers are shown in Figure 8. 

In order to capture in our simulation the way outdoor lighting varies from day to day, we used theoretical daylight 
curves generated by the standard CBE method of calculating daylight illuminants with different correlated color 
temperatures [30]. A daylight power distribution L^QC) may be calculated by 
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Figure 6: Comparison of sensor responsivities with and without aperture balancing 
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Figure 7: Spectral reflectances of six color standard tiles 
Lda/to = S0(X) + MlSl(X) + M2S2(\) 

where SQ(X) is the calculated mean spectral distribution of several hundred measured daylight samples, and Sx(k) 
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Figure 8: Spectral power distribution of hypothetical indoor lights 
and S2(K) are the two most important eigenvectors of the set Af j and M2 are calculated from the chromaticity 
coordinates x and y corresponding to the position on the ODE chromaticity chart where the color of the given light 
would appear. 

= -13515 -1.7703* + 5.9114y 
1 0.0241 + 0.2562* - 0.7341y 

= 0.0300 - 31.4424jc + 30.0717? 
2 " 0.0241 + 0.2562*- 0.734ly 

The chromaticity coordinates in turn can be calculated from a given correlated color temperature T c by 

(for 4000AT < Tc < 1OO0K) x = - 4 . 6 0 7 0 ^ + 2 . 9 6 7 8 ^ + 0.09911 i£ + 0.244063 

x = - 2 . 0 0 6 4 ^ + 1.9018 + 0 . 2 4 7 4 8 ^ 0.237040 (for 1000K <TC< 25000*) 

y = -3.000 x 2 + 2.870 x - 0.275 
These curves are are supposed to approximate natural daylight under a wide range of conditions, including direct 
sunlight skylight and daylight under various degrees of cloud coverage. The QE method of calculation allows us 
to generate a whole family of curves that approximate daylight illumination using only a single input parameter, 
namely correlated color temperature. A few of the resulting curves are shown in Figure 9. These curves are relative 
spectral power distributions and so were derived to have the common value of 100 at the 560nm wavelength. 
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Figure 9: Spectral power distribution of CIE daylight illuminants 

3.3 Evaluation Method 
To evaluate the success of a color constancy method, researchers need to state what precisely is the goal of the 

method, and then develop a criterion for measuring how close they have come to that goal. We have examined two 
related yet different goals and propose a measure of success for each. 

One goal is to evaluate the accuracy with which we can predict an object's color under a new type of light In 
other words, after estimating the spectral power distribution of the illumination or the spectral reflectance function 
of an object, how close is the color we predict from these estimates to the true color? Therefore we need a measure 
of the distance between two colors. 

Traditionally "color" is represented by a point in three-space, where the three dimensions may be lightness, hue, 
saturation; or CIE coordinates X Y Z; or RGB. We shall use RGB to refer to the values measured by our camera 
through a red filter, green filter, and blue filter respectively. The actual values of RGB may change if we change 
cameras or filters. 

In reporting how far a predicted color value is from the true value, it is possible to use distance between the two 
points. For a given color value (R, G, B) and its predicted color value (Rp, G p, Bp) the error E could be measured by 

E = (\R-Rp\n + \G^p\n + \B-Bp\n)l/n 

for some value n. In particular, if n = 1, then this is the sum of the errors in each band. If n = 2, then this is the 
euclidean distance between the two values. If n = infinity then this is the maximum of the three errors. 

The problem with this error measure is that is is biased against bright colors. If we are viewing mostly dark 
surfaces, the change in their measured values from one light source to another will be small, and so even an 
ineffective method of color constancy will yield a low error. Therefore we prefer to use a percentage error measure 
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that takes into account how much room there is for error. We will use the error calculation 
(lR-RJn + IG-GJ" + IB-B r)Un 

P D D ' E = 
(\R\n + \G\n + \Bln)l/n 

and choose n = 1. Note that this is not the same as normalizing the RGB values for intensity and then comparing the 
chromaticity difference. This error measure points out differences in intensity as well as differences in hue and 
saturation. 

The CDE color difference formula based on L*u*v* coordinates is often used to give a measure of how far apart 
colors look to humans [7]. However, since we are concerned with computer vision applications, our formula relates 
directly to the RGB values measured by the computer system. 

Another possible goal for our system would be to measure how well it performs as a spectroradiometer since the 
immediate output of the least squares calculation or the network is a spectral curve. Since the color appearance 
predictions are calculated from these spectral curves, a more accurate spectral curve should yield a more accurate 
color. So the error measure of interest is the difference between the predicted spectral curve and the actual one. 

A simple difference measure for this criterion is the difference of the spectral power of the two curves at selected 
wavelengths. These differences can be squared and then added together to compute a total error measure for the 
predicted curve AL. 

AL = Y (L(X)-L*Q,))2 

However, this formulation treats the contribution from all wavelengths equally. If the spectral function is to be used 
in calculating other quantities, such as color appearance, accuracy at the extremes of the visible spectrum may be 
much less important than accuracy in the center of the visible spectrum where sensors are much more responsive. 
Accordingly, we also examine the sum of squared differences weighted by the human luminous efficiency function 
V(X) shown in Figure 10. 

V- - X VW(X)-L*(X))2 

^nJTn f ° U n d *" ™t*d S P C C t r a l C I T O r C O r r C S p o n d s m o r e «*«y than the unweighted error to the color appearance error measure E 

3.4 Results Using Least Squares Method 
Our simulation assumed 24 colored squares and 3 color filters which yield 72 constraints upon the illuminant 

However, the eigenvector analysis showed that most of that information was redundant in a camera that can only 
detect 1 part in 100 reliably (which is typical of our equipment). Eigenvector analysis of the matrix R formed with 
our hypothetical color chart filters, and camera showed that at most 10 coefficients are significant if the camera is 
assumed to have a signal-to-noise ratio of 100:1. If the camera had a SNR of 1000:1 then 21 coefficients could be 
reliably calculated. If the aperture balancing method is not used, only 8 coefficients are considered reliable in a 
camera with SNR of 100:1. This coincides with our real world observation that images taken without aperture 
balancing tend to have highly unreliable values in the blue band and somewhat unreliable values in the green band. 

Figures 11 and 12 show a comparison of the recovered illuminant with the original illuminant in a simulation 
made with noise-free data and using the least squares method with 10 basis functions. One of the lights in the 
simulation was an indoor light (with a green-blue filter) and the other was an outdoor light All the spectral curves 
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Figure 10: Weighting Function V(K) 
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Figure 11: Comparison of indoor light with recovered illuminant in noise-free simulation 

Figure 13 shows why unit basis functions would be a disastrous choice with the least squares method. As long as 
there is no noise in the simulation, the method will recover the indoor light with no filter perfectly. However, if 
noise is added to the simulation, the resulting predicted spectral function will oscillate widely. This is due to 
multicollinearity, as discussed in section 2.1.3, and is a typical result when least squares estimation is used with 
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Figure 12: Comparison of outdoor light with recovered illuminant in noise-free simulation 
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Figure 13: Recovery of indoor light with unit basis functions 
(function with noise has been scaled by 0.01 so that it will fit on the same graph) 

Figures 14 and 15 show the recovery of an indoor and outdoor light using the least squares technique with 10 
basis functions that consist of Legendre polynomials. In each case we added Gaussian noise to the hypothetical 
camera measurements. Each measurement was calculated according to Equation (1-2) and then added to a randomly 
generated noise value with mean value 0 and standard deviation equal to the maximum camera value divided by the 
hypothetical SNR (100:1). Figures 16 and 17 show recovery with an empirically derived number of basis functions. 
That is, we tried the least squares calculation repeatedly, varying the number of basis functions, to find the number 
that would give the lowest weighted error AJL. The empirical number was 3 for the outdoor lights (these originally 
came from 3 weighted functions) and 5 for the indoor lights. Surprisingly, the smaller number of basis functions 
does better than a larger number when noise is introduced into the calculation. The empirically derived numbers 
also give the smallest color difference E. (The unweighted spectral differences AL give a different experimental 
answer which leads to a large color difference.) 
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Figure 14: Noisy simulation of indoor light using 10 basis functions 
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Figure 15: Noisy simulation of outdoor light using 10 basis functions 

Our explanation for this less-is-more result is that the larger number of basis functions are magnifying the errors 
in the simulated camera measurements. Perhaps a different set of basis functions would not suffer so much from 
this problem. The greatest errors occur at the extremes of the visible range where the differences may be less 
important for many applications. 

3.5 Results Using Neural Network Method 
To train the neural network we used 70 outdoor light samples or 47 indoor light samples. The network was then 

tested on a small number of light samples it had not seen before, although of the same type (indoor or outdoor). The 
number of hidden units was varied in the different experiments, including some trials with no hidden layer at all. 
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Figure 16: Noisy simulation of indoor light using 5 basis functions 
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Figure 17: Noisy simulation of outdoor light using 3 basis functions 

All networks were trained with simulated camera measurements with noise added. 

Figures 18 and 19 show the results from the network, comparing the original light curves with the recovered 
lights. The results are shown for experiments where no hidden layer was used, and where a hidden layer with 16 
units was used. For the outdoor lights, the hidden layer did not make much difference in the accuracy of the 
network in recovering spectral curves. With the indoor lights, the hidden layer gave a big advantage. 
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Figure 18: Recovery of indoor light using network method 
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Figure 19: Recovery of outdoor light using network method 



25 

3.6 Comparison of Least Squares Method with Neural Network 
Figures 20 and 21 show the overall average error in recovering illuminants as a function of the number of basis 

functions used in the least squares method. This is shown using both the unweighted and weighted error 
measurements AL and AJL, average for all the illuminants used in the experiment As can be seen, the lowest error 
occurs at a different number of basis functions for the two types of lights. After this optimum number of basis 
functions, adding more functions does not help, and in fact hurts the recovery of the illumination. The correct 
number of functions to be used depends upon the application. If the goal is to recover the illuminant that is closest 
to the original one, then the unweighted error would be a good measure; it would prescribe that 2 basis functions be 
used for outdoor lights and 3 for indoor lights. If however the goal is to predict color appearance based upon the 
calculated illumination, then the weighted error might be a more appropriate indicator. As is seen in Figure 22, the 
method comes closest to predicting the correct color when 3 basis functions are used for outdoor lights and 5 for 
indoor lights. 
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Figure 20: Average error AL and A J, for indoor lights using least squares method 

Figures 23 and 24 show the average error in recovering illuminants as a function of the number of hidden units 
used in the neural network. Again, both the unweighted and weighted squared errors are shown, although for the 
network the two measures are very similar. The error in recovering outdoor lights is very low and the addition of a 
hidden layer makes very little difference. The network does a better job with the outdoor lights than the least 
squares method using any number of basis functions. 

For the indoor lights, a hidden layer gives a significant improvement Although we found the lowest error with 
16 hidden units, the addition of units beyond 4 gave only a very slight improvement The best least squares method 
(with 5 basis functions) performed slightly better than the network method in terms of weighted squared error. If 
unweighted error is used, then the network performed significantly better than all the least squares methods used. 

The neural network method has several advantages over the least squares method, which help explain its success. 
The outputs from a network are constrained to lie between 0 and 1. This property is highly useful for calculating 
values that correspond to real-world measurements that cannot be negative. Since spectral power distribution 
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O 3Z00 

S 16.00 

8.00 

4.00 

ZOO 

1.00 

* * * * * * 

o * 
o O indoor lights 

* outdoorlights 

10 
-J 

15 20 
# of basis functions 

Figure 22: Average error E for indoor and outdoor lights using least squares method 

functions cannot ever have negative values, this gives the network an advantage over the least squares method 
formulation which can and does compute negative values. The network's output constraints also prevent it from 
calculating the spurious "tails" seen in the least squares result. These "tails", especially dramatic in Figures 14 and 
15, are large deviations from the original curve seen at the extremes of the visible range. The tails arc most likely an 
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artifact of using higher power Legendre polynomials. The values at the extremes remain +1 or -1, but the values in 
the center of the spectrum become progressively smaller. 

Another advantage the network has is that it is free to calculate its own representation of the data, whereas the 
least squares method is constrained to use the basis functions we chose. Although the network was tested on 
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illuminants on which it was not trained, the test illuminants were of a similar nature to the training illuminants. 

This is particularly true of the simulated outdoor lights since they were all generated using a mean spectral 
distribution and two eigenvectors. Although these are supposed to representative of the range of outdoor 
illumination, this probably refers more to the general spectral trend (high in blue vs. high in red); real outdoor 
illumination probably varies more from one wavelength to the next The indoor lights were based on real spectral 
curves of commercially available filters. Although these indoor lights have smoother curves than the simulated 
outdoor lights, they are probably not so easily captured in a small number of basis functions. It is possible that the 
least squares method might do significantly better if we first examined the training data used by the network, 
calculated the most significant eigenvectors of the spectral data, and used those as basis functions rather than the 
Legendre polynomials. 

A disadvantage of the neural network method is of course the time and effort it takes to acquire the training data 
and the amount of time it takes to train the network adequately. However, once this has been done the network will 
operate very quickly. 
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4. A Complete Method for Supervised Color Constancy 
In the experiments just presented, we assumed that the reflectance functions of objects of interest were already 

known to us. Thus, given an accurate estimate of the illumination, we can predict the appearance of an object under 
that type of illumination by multiplying the estimated illumination by the known sensor functions and object 
reflectance and integrating over the visible wavelengths. However in general vision scenarios the reflectances of 
interesting objects in the scene will not be known in advance. Therefore it is necessary to have a way to estimate 
object reflectances in addition to the illumination. 

4.1 Estimation of the Reflectance Function Using Multiple Illuminants 
We propose that surface reflectance functions might be estimated in much the same way that we estimated the 

illuminant In the methods described for calculating the illumination, constraints upon the illuminant were 
generated by observations of the illuminant's effect upon known surfaces on the color chart (or by learning the 
relationship between spectral power of the light and chart appearance, in the case of the network). With such 
estimates of the illuminant in hand, constraints upon a surface reflectance function can be generated by observations 
of the surface illuminated by known or estimated illuminants. 

As before, we start with the equation describing the measurement made by the sensor, but this time using the 
estimated illuminant in the calculation 

This time we choose to represent the unknown surface reflectance function, rather than the illuminant, in terms of 
some basis functions. Although we use the Legendre polynomials for representing surface reflectances just as we 
did for illuminants, different basis functions could be chosen [6]. 

(4-1) 

n 

P(X) - £ p. dA) 
and substituting into Equation (4-1): 

7=1 J 

where the i subscript refers to one of the three filters. If we group together the known quantities, letting 
A j y = J bfk) L*(k) st<X) dk then the equation can be rewritten simply as 

n 

7=1 
We let Af be the vector of the sensor measurements mi under one type of light and let A be the matrix with entries 

of A4y, yielding a simple matrix equation 
M = Ap 

which is then solved for p, the vector of reflectance coefficients P j . 

influence of several known, or estimated, illuminants. g 
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We construct A with the first three rows consisting of 
r jb&x^L^todk . . . jbn(X)sR(xyL^xoc)dk -i 

I- j b ^ ^ ^ d k . . . jb^s^^^dk J 
where L*x(k) is the estimate of the first illuminant under which the unknown surface is viewed. The next three rows 
of A are calculated with the estimate for the second illuminant. and so on, so that for m estimated illuminants there 
are 3m rows in the matrix. In the general case where there are s sensors there are sm rows in the matrix. 

The measurement vector M is constructed in a similar fashion. The first three entries in Af are the RGB values 
measured by the camera looking at the surface under the first illuminant, the second three entries correspond to the 
second illuminant, and so on in the same order that the rows of A were calculated. 

As before, the number of basis functions n used in the representation is chosen so that n<3m since there may be 
some redundancy in the illuminants. Eigenvector analysis of A will yield an approximate value for n. The least 
squares method is used to solve for p yielding an estimated solution p**. (The double star indicates that the 
estimate was calculated using data that had also been estimated. If the surface reflection was estimated using known 
illuminants rather than estimated ones, it could be designated p*.) The estimated surface reflection function p**(k) 
is then recovered by multiplying the coefficients by the appropriate basis functions 

M 

4.2 Summary of Proposed Method for Supervised Color Constancy 
The entire process of estimating illuminants and object reflectances is outlined here. Given 

1. Color chart of known properties 

2. Several illuminants of unknown properties 

3. Object(s) of unknown properties 

Then for each illuminant 
1. Take picture of color chart 

2. Calculate L*(k) using either least squares or neural network method 

3. Take picture of object(s) 

and for each object 
1. Form vector of accumulated measurements and matrix of estimated illuminants 

2. Calculate p**(X) 
Object reflectance estimates can be calculated repeatedly as new pictures of the objects under new light sources are 

-acquired. 

If the experiment is taking place indoors, then it may be difficult to acquire enough picture under different types 
of illumination. One way might be to use colored filters or combinations of filters in front of a spotlight However, 
in an outdoor setting the lighting can change from day to day and from moment to moment Our proposed method 
not only can accommodate the changing illumination, but actually uses it to incrementally improve its knowledge of 
unknown reflectance functions. Changes in illumination thus need no longer be considered a source of noise but 
rather a useful source of information about the scene. 
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4.3 Incremental Color Constancy 
The color constancy method described above has an annoying limitation: the color chart must be re-introduced 

into the scene every time the light changes. This is because the color chart is used to estimate the illuminant. 
However, if there are objects in the scene whose reflectances have been previously calculated with the method 
above, these objects might also be used as reference objects for estimating the illuminant 

An application where this idea might be used is a vehicle moving outdoors. As the vehicle moves along, new 
objects will come into view, but at the same time some objects that have been seen before will still be present The 
outdoor illumination may also be changing as the vehicle drives along, so the estimate of the illuminant will need to 
be revised continuously. This can be done by using those object present in a number of images. 

The procedure would consist of taking pictures at frequent intervals. For each picture the algorithm would: 
1. Determine which objects visible in this image have been seen previously. These objects will already 

have estimated spectral reflectance functions that were calculated from previous observations. 

2. Use least squares estimation to simultaneously update estimated spectral reflectances of these 
reference objects and calculate estimated spectral power distribution of the illuminant at this moment 
in time. 

3. For objects that have not been previously seen, use the estimated illuminant to calculate an initial 
estimate of the object's reflectance. 

We call this process "incremental color constancy", which adapts to both a (slowly) changing illuminant and a 
(slowly) changing scene. The color chart would be needed only at the start, to get an initial estimate of the 
illuminant and to derive initial object reflectance estimates. 
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5. Conclusions 
In this paper we have presented a mathematical formulation of color constancy that shows the limitations of 

traditional approaches to color constancy. We also classified modern color constancy methods according to the 
reference criterion chosen and the number of basis functions used and argued that the traditional criterion may be 
too weak and the typical number of basis functions too few to give an adequate representation of spectral functions. 

We propose a new approach that we call "supervised color constancy" that uses a color chart of known properties 
to provide information about illuminants. The presence of the chart in an image provides an extremely reliable 
reference criterion, and the large number of colored squares provide enough constraints to calculate more basis 
coefficients than other color constancy methods. 

We have shown simulated results for two methods of calculating the illuminant: least squares estimation and 
neural networks. Both these methods were tested on data with simulated noise to try to give a more realistic 
scenario. Under these conditions the neural network which was trained on similar illuminants tended to perform 
better than the least squares estimation technique which used Legendre polynomials as basis functions. 

This paradigm might be used to accomplish color constancy by calculating a progressively better estimate of the 
spectral reflectance of unknown objects under changing illumination. This method would use the illumination 
estimates calculated by the above methods to impose constraints upon the reflectance functions of objects. The 
implementation and testing of this method remains the subject of future work. Taken together, these methods 
comprise a powerful new approach for reliable and accurate color recognition in robot vision. 
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