
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Efficient User-Level File Cache Management 
on the Sun Vnode Interface 

David C. Steere James J. Kistler M. Satyanarayanan 

April 18, 1990 

C M U - C S - 9 0 - 1 2 6 , 

School of Computer Science 
Carnegie Mellon University 

Pi t tsburgh, PA 15213 

To appear in Summer Usenix Conference Proceedings, Anaheim, June (1990). 

A b s t r a c t 

In developing a distributed file system, there are several good reasons for implementing the client file cache 
manager as a user-level process. These include ease of implementation, increased portability, and minimal 
impact on kernel size. For reasons of compatibility it is also desirable to use a standard file intercept 
mechanism on the client. The Sun VFS/Vnode file system interface is such a standard. However, this 
interface is designed for kernel-based file systems, and a user-level cache manager that used the Vnode 
mechanism would pay a large performance penalty due to the high number of kernel to cache manager 
context switches per file system call. 

This paper describes our solution to the problem for the Coda file system. By using a relatively small 
amount of kernel code to cache critical information, we are able to retain the much larger and more complex 
components of the Coda cache manager in a user level process. The measurements of Coda presented here 
confirm the performance benefits of this strategy, and indicate the relative merits of caching different kinds 
of information in the kernel. 

This research was supported in part by the Defense Advanced Research Projects Agency (DOD) and monitored 
by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC) , 
Wright-Patterson A F B , Ohio 45433-6543 under Contract F33615-87-C-1499, A R P A Order No. 4976, Amendment 20 
and in part by the National Science Foundation under Contract No. CCR-8657907, IBM Corporation (Faculty 
Development Award and Graduate Fellowship), Digital Equipment Corporation (Equipment Grant). 

T h e views and conclusions contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or implied, of DARPA, the National Science Foundation, IBM 
Corporation, Digital Equipment Corporation or the U.S. government. 



K e y w o r d s : Operating Systems, File Systems, Performance, Cache Management, Coda, Vnode 
Interface. 



1. Introduction 

In this paper we describe and evaluate our approach for implementing a user-level client cache manager 
on top of the Sun Vnode interface. Our work was carried out in the context of the Coda file system [5], 
a descendant of the Andrew file system (AFS) [4], Coda is a highly available file system for a large-scale 
distributed computing environment composed of Unix 1 workstations. It provides resiliency to server and 
network failures through the use of two distinct but complementary mechanisms. One mechanism, server 
replication, stores copies of a file at multiple servers. The other mechanism, disconnected operation, is a 
mode of execution in which a caching site temporarily assumes the role of a replication site. Disconnected 
operation is particularly useful for supporting portable workstations. 

The design of Coda optimizes for availability and performance, and strives to provide the highest degree 
of consistency attainable in the light of these objectives. In the presence of network partitions, Coda 
places availability above consistency and allows potentially conflicting updates to occur. Such updates 
are detected as inconsistencies at the earliest possible time. The most complex part of Coda is the client 
cache manager, known as Venus. Besides cache management, Venus is responsible for emulation of Unix 
semantics, coordination of the replica control algorithm, detection of inconsistencies, and disconnected 
operation. 

Given the complexity of Venus, we saw good reasons for it to be a user-level process rather than part of 
the kernel. Our experience has been that kernel code takes much longer to develop, debug and maintain. 
We felt that designing Venus as a user-level process would substantially ease our implementation effort and 
also increase Coda's portability. 

A different design consideration, with conflicting implications, was our desire to adhere to standards. 
We saw many advantages, particularly that of portability, in using the Sun Vnode interface [2]. This 
interface is a de facto standard for file system call interception in Unix. Unfortunately, it imposes a 
component-by-component interaction between the kernel and the cache manager when translating path­
names. Consequently, a naive user-level cache manager implementation on this interface would result in 
unacceptable overhead. 

To reduce this overhead, we decided to build a caching module in the kernel, called the MiniCache. Since 
most Unix applications show strong locality of reference, we felt that this would achieve a large reduction 
in the number of calls to Venus. We also conjectured that much of this reduction could be achieved with a 
MiniCache whose size and complexity were a small fraction of that of Venus. Our conjecture has indeed 
proved to be true. The performance of Coda with the MiniCache is comparable to that of the current 
production version of AFS, whose cache manager is in the kernel. 

2. Design Considerations 

The dominant influence on the design of the MiniCache was the Vnode interface. This interface was 
created in conjunction with the Sun Network File System (NFS) [3]. It behaves as a file system multiplexor, 
permitting multiple file systems to coexist in the same name space. The interface specifies two types of 
operations: those on a Virtual File System (VFS), and those on a Virtual Inode (Vnode). VFS operations 

^ n i x is a trademark of AT&T. 

University Libraries 
1 Carnegie Mellon University 

Pittsburgh, Pennsylvania 



such as mount and unmount pertain to the binding of different file systems into one name space. Vnode 
operations such as open, close, and getattr pertain to individual files and directories. To add a new 
file system, one need only provide a VFS driver, which provides an entry point for each VFS and Vnode 
operation. 

An implicit assumption of the Vnode interface is that the VFS driver resides in the kernel. The most obvious 
manifestation of this assumption is the strategy used to perform pathname translation. Rather than passing 
the entire pathname to the driver, translation is performed on a component-by-component basis. Although 
this simplifies symbolic link traversal across file systems, it would impose a serious performance penalty 
on an out-of-kernel driver when translating multi-component pathnames. 

We therefore decided to split the VFS driver into two pieces: a small piece inside the kernel (the MiniCache), 
and a more sophisticated piece outside the kernel (Venus). Essentially, the MiniCache behaves as buffering 
agent between the Vnode interface and Venus, as illustrated in figure 1. When an application program 
generates a file system call on an object in Coda, it is intercepted by the Vnode interface and routed to the 
MiniCache. If the MiniCache has sufficient information, it services the call. Otherwise, it passes the request 
to Venus. Venus handles the request, possibly contacting Coda servers in the process. Control is returned 
to the application via the MiniCache and the Vnode interface. 

Client 

User 
Application 

Venus 

Kernel 

Vnode Interface 

Coda MiniCache 

Coda 
Servers 

Figure 1: Coda Structure 

A consequence of the splitting of the VFS driver is that state is shared between its two components. The 
correctness of the system requires coherence in this shared state. It is clear to see that mutating file system 
calls will change MiniCache state, and that these changes must be propagated to Venus and thence to the 
servers. But there are also situations in Coda where Venus may need to invalidate MiniCache state. Such 
invalidations may arise in a number of different ways. First, a server may invalidate a cache entry in Venus 
because of a modification at another client. Second, authentication tokens held by Venus on behalf of a user 
may expire, implicitly revoking his privileges. Third, Venus may discover that an object is inconsistent, 
and therefore discard all local knowledge of it. Shared state also has an important implication for the 
communication mechanism between the MiniCache and Venus: both parties need to be able to initiate 
message exchanges. 

2 



A broader consideration is the need to strike the right balance between complexity and efficiency. The 
MiniCache needs to be sophisticated enough to improve performance substantially, but should not be so 
complex that it amounts to moving Venus completely into the kernel. Further, the MiniCache needs to be 
particularly efficient because it is in the critical path of many operations. 

3. The MiniCache 

This section describes four major aspects of the MiniCache. The first subsection discusses the main data 
structures. The second describes the communication between Venus and the MiniCache. The third presents 
the performance enhancements we have implemented, and the fourth discusses a limitation of the Vnode 
interface that we encountered when dealing with the e x e c system call. 

3.1. Data Structures 

The MiniCache consists of two interdependent caches. The first cache, the Cnode cache, contains a set of 
Cnodes, which are Vnodes augmented with Coda-specific fields. The latter include the CFid (an identifier 
unique to each Coda object) as well as fields used in the performance enhancements described in Section 3.3. 
For efficiency, Cnodes are kept on an internal freelist rather than being deallocated. To provide Venus with 
a fast access path, this cache can be looked up via a hash table keyed on CFids. 

The second cache, the name cache, contains precomputed translations of pathnames. Each entry in the 
cache is indexed by a triple: a pointer to the Cnode for a directory, a component name in that directory, and 
a user id. A Coda object may have multiple entries in the cache, one for each user who has accessed the file 
recently. The value of the cache entry is a pointer to the Cnode corresponding to that component. The name 
cache supports the basic operations of insertion, lookup, and deletion. Deletion happens to be a particularly 
complex operation since it occurs in multiple flavors. The simplest case is when a deletion occurs via the 
Vnode interface. More complex cases occur when Venus deletes entries for one of the three reasons cited 
in Section 2. 

The functioning of the name cache can be best understood by following a typical pathname translation. At 
any step in the translation one has a pointer, DCP, to the Cnode of a directory, a name, N, in that directory, 
and the id, £/, of the user on whose behalf the translation is being performed. If the triple (DCP, N, U) is 
missing from the name cache, Venus is contacted to fill the entry. Translation continues by replacing DCP 
by the value of the cache entry, N by the next component of the pathname, and repeating the cache lookup. 
Translation begins with DCP set to the root (for absolute pathnames) or the current directory (for relative 
pathnames). 

Our name cache is similar in many ways to the Directory Name Lookup Cache (DNLC), supplied with the 
Sun Vnode interface^]. Unfortunately the DNLC does not provide the full range of invalidation functions 
needed by Venus. Rather than modify it, we chose to build our own name cache. 

3 



3.2. Communicat ion 

In addition to the need for either peer to initiate action, the communication mechanism between the 
MiniCache and Venus needs to satisfy two conditions. First, it has to be interruptible in a manner that 
allows cleanup of state at both ends. Second, it must provide at-most-once semantics since many of the 
operations are not idempotent. 

We initially tried using Sun RPC [6] for communication between the MiniCache and Venus. This would 
have enhanced the portability of the MiniCache, since Sun RPC is normally available in any kernel that has 
the Vnode interface. Unfortunately, we found it impossible to meet both the constraints mentioned above 
using that approach. 

Consequently, we settled on a pseudo-device as the basis of our communication. The device is used to pass 
messages between the MiniCache and Venus. At-most-once semantics is trivially obtained because there are 
no retransmissions or timeouts. Interruptibility is ensured by careful implementation of the device driver. 
In addition, the pseudo-device supports concurrency by permitting an arbitrary number of outstanding 
messages. 

Although the use of a pseudo-device limits portability to Unix-like systems, the communication code is 
limited to a small section of the MiniCache. The pseudo-device could easily by replaced by any other 
reasonable IPC mechanism. 

3.3. Performance Enhancements 

There are many conceivable ways in which the MiniCache can be used to improve performance. Given our 
desire to keep the MiniCache simple, we have only chosen to make those performance optimizations that 
provide substantial benefit relative to implementation complexity. We elaborate on these optimizations in 
this section. 

The first, and most obvious, optimization is the reduction in MiniCache-Venus traffic during pathname 
translation. This reduces the average cost of the l o o k u p Vnode operation, and is provided by the name 
cache described in Section 3.1. 

The second optimization eliminates the need for the MiniCache to contact Venus on individual read and 
write operations. Besides reducing the number of MiniCache-Venus interactions, this substantially reduces 
the amount of data copying done by Coda. On a successful o p e n of a file, the MiniCache saves a pointer to 
the Vnode of the locally cached copy. It can then service r d w r Vnode operations on the file by redirecting 
them to the local file system. R e a d d i r Vnode operations on directories are handled in a similar manner. 
The MiniCache notifies Venus of c l o s e operations, giving Venus the opportunity to write a file back to 
the server if necessary. 

The next performance enhancement we implemented was to provide an attribute cache, allowing g e t a t t r 
operations to be serviced by the MiniCache without contacting Venus. Such operations occur frequently, 
typically due to the s t a t system call which is extensively used by Unix applications. Space for the cache 
is provided as an extension of each Cnode, with a flag indicating whether the attribute fields are valid. The 
attributes for an object are invalidated when Venus flushes the object from its cache. Attributes are also 
invalidated in two other cases: when a file that has been modified is closed, and when a child of a directory 

4 



is modified. Access permissions are correctly enforced for getattr since a user needs appropriate access 
rights to lookup the Cnode. 

The fourth enhancement takes advantage of the presence of the name cache to reduce the number of a c c e s s 
calls to Venus. A c c e s s is a Vnode operation that is used to determine a user's permissions on an object. 
Checking access rights in Coda is substantially more complex than checking Unix mode bits because Coda 
uses an access list mechanism with group inheritance. A full implementation of a c c e s s in the MiniCache 
would greatly add to its complexity. Fortunately, we have been able to trivially implement an important 
subset of the full access check. It turns out that a large percentage of the a c c e s s operations occur during 
pathname translation, and simply determine if a user has permission to lookup entries in a directory. Since 
name cache entries include the user id as part of the key, we are able to infer lookup permission on a cache 
hit. In all other cases, the MiniCache forwards a c c e s s operations to Venus. 

The last performance enhancement is to speed up symbolic link traversal by caching the link value within 
the Cnode. Symbolic links are frequently encountered during pathname translation, particularly in Unix 
environments that support heterogeneous machines. The symbolic link cache does not violate access 
constraints because a user needs to have proper access to look up the Cnode of the directory containing a 
symbolic link. In Unix, lookup permission on a directory automatically implies permission to read symbolic 
links in that directory. 

3.4. P rogram Execution 

In the course of our implementation we ran into a serious limitation of the Vnode interface: there is no 
provision for a VFS driver to be notified of exec and exit system calls. All the driver sees are read 
operations on the individual pages of an executable file. This is a problem for any stateful file system, since 
it now has to infer when to allocate and free internal state. For example, it needs to guess when a file must 
be cached, and when it is safe to flush it. 

This problem is magnified for Coda since Venus cannot directly access kernel data structures. Although it 
is possible for the MiniCache to infer opens, it does not possess enough of Venus' state to determine when 
it is appropriate to flush a file. On the other hand, Venus knows when it is appropriate to flush a file, but 
does not possess enough kernel context to know if this would be safe. So the flushing or replacement of 
a cache entry by Venus is preceded in our implementation by a call to the MiniCache to determine if the 
operation is safe. Besides degrading performance, this approach also limits portability since it depends on 
specific details of the virtual memory subsystem. 

4. Performance Evaluation 

Our evaluation of the MiniCache focuses on two important questions. First, how much improvement does 
the MiniCache provide, both in absolute terms and relative to the current production version of AFS with 
an in-kernel VFS driver? Second, what is the individual contribution of each performance enhancement? 

The primary basis for this evaluation is the Andrew Benchmark[l ], consisting of a series of Unix operations 
on a subtree containing the source code of a Unix application. The input to the benchmark consists of 
70 files, totalling about 200 Kbytes. The benchmark consists of five phases: MakeDir, which constructs 

5 



a copy of the source subtree; Copy, which copies the source files to the new subtree; S c a n D i r , which 
examines the status of each file in the target subtree; R e a d A l l which scans every byte in every file in the 
target subtree; and Make, which compiles and links all the files. 

Since the Andrew benchmark does not make extensive use of symbolic links, we use a different criteria for 
measuring the effect of caching them. Details of this test are provided in Section 4.3. 

The tests reported here were conducted on a single client and server located on a single segment of Ethernet. 
Both machines were IBM APC-RTs with 12 MB of memory, running the Mach 2.5 operating system. To 
limit interference, nonessential processes on the client were killed before running the benchmarks. Although 
experimental control on the servers and the network was less strict, the low variance in our results indicates 
that this was not a problem. 

4.1. Comparison with AFS 

In estimating the absolute and relative performance benefits of the MiniCache we have chosen to focus on 
two phases of the Andrew benchmark. These phases, ScanDir and ReadAll, are the most demanding 
phases in terms of pathname translation. They involve no server interactions in Coda and AFS because they 
operate on data cached in an earlier phase of the benchmark. Hence the performance degradation due to an 
out-of-kernel VFS driver would be most apparent in these phases. 

Table 1 presents the elapsed times, in seconds, of these phases averaged over four runs of the benchmark. 
With the MiniCache turned on, Coda performs as well as AFS. Our original goal of obtaining good 
performance without moving Venus into the kernel has thus been met. Without the MiniCache, substantial 
degradation is apparent. This is to be expected, since all Vnode operations are simply redirected to Venus, 
suffering at least two context switches in the process. 

Configuration ScanDir ReadAll 

Coda without MiniCache 44 (1) 71 (1) 
Coda with MiniCache 26 (1) 43 (1) 
AFS (in-kemel cache manager) 26 (0) 43 (1) 

Running times in seconds of the third and fourth phases of the Andrew Benchmark. Numbers i 
parentheses indicate standard deviations. 

Table 1: Performance Improvements Due to the MiniCache 

4.2. Individual Contributions 

In this section we present the observed performance improvement due to each of the enhancements described 
in Section 3.3. The metric used is the number of Vnode operations seen by Venus during the running of the 
Andrew benchmark. This is a completely deterministic metric, for three reasons: our measurements were 
made after an initial run to wann cache entries for the source subtree, the benchmark is small enough to 
avoid cache overflow, and target subtrees were deleted between benchmark runs. 

Table 2 shows the reduction in number of Vnode operations due to the individual performance enhancements, 

6 



with the listed operations accounting for about 80% of the total number in the benchmark. The table indicates 
that the name cache eliminates all l o o k u p operations on Coda. 

VFS Operation Enhancement MkDir Copy ScanDir ReadAll Make Total 
l o o k u p Name Caching off 33 745 1586 2139 886 5369 l o o k u p 

on 0 0 0 0 0 0 
r d w r / r e a d d i r RdWr Intercept off 0 332 136 498 2107 3073 r d w r / r e a d d i r 

on 0 0 0 0 0 0 
g e t a t t r Attribute Caching off 0 70 361 360 84 875 g e t a t t r 

on 0 0 83 0 29 112 
a c c e s s Access Caching off 0 70 241 500 202 1013 a c c e s s 

on 0 70 68 234 201 573 

This table contains a summary of the number of operations seen by Venus during a run of the Andrew 
Benchmark. The values for lookup are the number of lookup operations performed by Venus that 
succeeded. The Name Cache row indicates that all lookups of Coda files were handled in the kernel. 
ReadWrite is a combination of the number of rdwr and readdir Vnode operations seen by Venus. 

Table 2: Contribution of Performance Enhancements 

Although r d w r calls to Venus have been eliminated, our measurements indicate that there is not a corre­
spondingly large savings in elapsed time. We suspect that this is because the cost of accessing the local disk 
far outweighs the cost of contacting Venus. 

The number of g e t a t t r s that reach Venus has been reduced by nearly a factor of 8. The reason that 
g e t a t t r s are not totally eliminated is that attributes are flushed whenever a file is modified or a directory 
is updated. Thus the 83 getattrs in the S c a n D i r phase correspond to the 70 files that were created in the 
Copy phase and the 13 directories in which files were modified. 

Table 2 also shows that our simple strategy for reducing a c c e s s calls to Venus works very well: the 
number of such calls is reduced by nearly half. Complete elimination of a c c e s s calls to Venus would 
have required much greater effort. 

4.3. Symbolic Link Caching 

To evaluate the effect of caching symbolic links, we wrote a small program to repeatedly invoke the s t a t 
system call on the head of a chain of symbolic links. The first name in the chain pointed to the second, 
which pointed to the third, and so on. We tried two variants of this test: one in which the symbolic links 
were relative, and the other in which the symbolic links were absolute pathnames that were 5 components 
long. The target file was the same in both cases, and all links and the target file were in the same directory. 

Each s t a t generates a l o o k u p on the name of symbolic link, which generates a r e a d l i n k to get its 
value. This is then followed by a l o o k u p on the name specified in the link and then a g e t a t t r . With 
relative pathnames, this amounts to two l o o k u p s , one r e a d l i n k , and one g e t a t t r . The use of 
absolute pathnames adds five more l o o k u p calls, one for each directory in the pathname. 

Table 3 shows mean and standard deviation of the elapsed time in seconds to perform 10000 s t a t s on each 
link of the chains. The table indicates that it takes about 10 seconds longer per link with absolute pathnames 

7 



Number 
of links 

Without 
RelPath 

' Cache 
Abs Path 

With C 
Rel Path 

Zache 
Abs Path 

1 84.0 (.21) 94.6 (.30) 9.9 (.07) 20.1 (.13) 

2 160.4 (.19) 182.5 (1.56) 13.1 (.15) 33.2 (.10) 

3 237.4 (.32) 268.3 (.29) 16.3 (.08) 46.5 (.12) 

4 313.5 (.45) 359.1 (1.55) 19.4 (.14) 59.7 (.11) 

5 393.2 (2.99) 443.9 (1.58) 22.6 (.08) 73.0 (.15) 

This table contains the time in seconds to execute 10000 s t a t calls on symbolic links. Two kinds of 
links were tested, one using absolute pathnames as the values of the links and the other using relative 
pathnames. The number of links refers to the number of symbolic link expansions needed to find the 
real file. Each number is the average of four runs, with the standard deviation in parentheses. 

Table 3: Performance of the Symlink Cache 

than with relative pathname links. With the name cache enabled, all the lookups can be satisfied in the 
kernel. Thus the cost of looking up an entry in the name cache is roughly two tenths of a millisecond. 

The table also shows that each additional link adds about 3 seconds with the symlink cache enabled, and 
about 77 seconds otherwise. Each link causes an additional r e a d l i n k and lookup operation. Since the 
name cache was enabled in both cases, almost all of the 77 seconds is due to calls to Venus. 

Symbolic links are used quite heavily in our environment. In the Coda source subtree alone, there are 
439 symbolic links out of roughly 10,000 files and directories. Typically symbolic links occur high in the 
subtree, and are encountered a disproportionate fraction of the time. The benefits of symbolic link caching 
are therefore quite substantial. 

5. Conclusion 

Although early versions of AFS demonstrated that efficient user-level cache management is possible, they 
depended on a customized system call intercept mechanism. When AFS adopted the Vnode interface, Venus 
was moved into the kernel to avoid excessive performance degradation. Rather than follow this approach, 
we decided to investigate the possibility of retaining Venus as a user-level process. 

Our approach has been to move relatively simple, yet critical, pieces of Venus functionality into the 
kernel. Our analysis of representative Unix file system activity indicates that five such pieces (pathname 
translation, data read/write, attribute read, access checking, symlink expansion) account for the bulk of the 
Vnode operations. A key aspect of our solution is that the code we have added to the kernel is relatively 
small and simple. Our results indicate that we are able to match the performance of an in-kernel client cache 
manager, AFS, in the most demanding phases of the Andrew benchmark. 

Two aspects of the MiniCache limit its portability slightly. One is our use of a Unix device driver, rather than 
Sun RPC, for communication. The other is our dependence on code specific to the Mach virtual memory 
implementation in order to correctly handle the execution of files. These limitations are unfortunate, since 
portability was one of the factors motivating our use of the Vnode interface. 

The concerns which motivated this work are fundamental to a distributed system. On one hand, performance 

8 



concerns lead one to design the system as part of the kernel. On the other, issues of portability and 
maintainability suggest that development should proceed at the user-level. The key result of this work is 
that an efficient portable user-level cache manager can be built on the Sun Vnode interface. In addition, it 
can be achieved via a small and simple piece of code in the kernel. 

References 

[1] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R., and West, M. 
Scale and Performance in a Distributed File System. ACM Trans. Comput. Syst. 6, 1 (Feb. 1988). 

[2] Kleiman,S. Vnodes: An Architecture for Multiple File System Types in Sun UNIX. In Summer Usenix 
Conference Proceedings, Atlanta (1986). 

[3] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design and Implementation of the 
Sun Network File System. In Summer Usenix Conference Proceedings, Portland (1985). 

[4] Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R., Spector, A., and West, M. The ITC 
Distributed File System: Principles and Design. In Proceedings of the 10th ACM Symposium on 
Operating System Principles, Orcas Island (Dec. 1985). 

[5] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M., Siegel, E., and Steere, D. Coda: A Highly 
Available File System for a Distributed Workstation Environment. IEEE Trans. Comput. 39, 4 (Apr. 
1990). 

[6] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol specification version 2. Tech. Rep. 
RFC-1057, SRI Network Information Center, June 1988. 

9 


