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Synopsis 

We consider predicative type-abstraction disciplines based on type quantification with 
finitely stratified levels. These lie in the vast middle ground between quantifier-free para
metric abstraction and full impredicative abstraction. Stratified polymorphism has an un-
problematic set-theoretic semantics, and may lend itself to new approaches to type inference, 
without sacrificing useful expressive power. 

Our main technical result is that the functions representable in the finitely stratified 
polymorphic A-calculus are precisely the super-elementary functions, i.e. the class £4 in 
Grzegorczyk's subrecursive hierarchy. This implies that there is no super-elementary bound 
on the length of optimal normalization sequences, and that the equality problem for finitely 
stratified polymorphic A-expressions is not super-elementary. 

We also observe that finitely stratified polymorphism augmented with type recursion 
admits functional algorithms that are not typable in the full second-order A-calculus. 

Introduction 

Type disciplines for programming languages attempt to strike a balance between three, 
often conflicting aims: expressive power, simplicity and methodological coherence, and user 
friendly implement ability. The trade-off between these aims can be seen in the contrast be
tween two main paradigms of polymorphic typing: parametric quantifier-free polymorphism, 
as in ML, vs. Girard-Reynolds's impredicative quantificational discipline F2 [Gir72, Rey74], 
The former is user friendly by virtue of its (in practice) fast type inference mechanism, but 
it lacks the power of full type quantification, and it suffers from certain anomalies [Myc84, 
Pey87]. The latter has great expressive power, well beyond current programming needs, but 
it is probably too powerful to allow computationally feasible user friendly facilities, such as 
type inference. 

We discuss here another potential ingredient in the design of type disciplines for pro-
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gramming languages, namely stratification of type abstraction, which engenders a whole 
spectrum of disciplines between quantifier-free parametric polymorphism and full quantifi-
cational polymorphism. It therefore has the potential of both clarifying theoretical issues 
concerning polymorphic typing, and of serving as an ingredient in language design. 

The idea of stratifying abstraction into levels goes back to the Ramified Type Theory of 
[Rus08,WR10], whose purpose was to circumvent the antinomies of Naive Set Theory. It 
was revived in the 1950's (e.g. [Kre60, Wan54, Wan62]) in relation to Predicative Anal
ysis. Stratification of type abstraction in the polymorphic A-calculus (and related typed 
programming language) seems to originate with [Sta81]. 

The purpose of stratification is to avoid impredicative abstraction: a second-order type 
t = Vi. c has t ranging over all types, including r itself. To circumvent this circularity, 
one stipulates that types fall into levels, with the base level consisting exactly of those types 
whose definition involves no type quantification. The next level consists of types whose 
definition may use quantification over types of the base level, and so on. This eliminates 
circularity, since in a type r = Vi n . a the type variable tn ranges over types of level n, 
excluding r since level(r) > level(tn) = n. The construction of levels can proceed into 
transfinite ordinals, by taking at limit ordinals £ the union over lower levels: in Vt*. a the 
variable ranges over types of levels < £. This extension, albeit transfinite, has natural 
fragments with potentially useful finite presentations [Lei89]. In this paper we focus on finite 
stratification, deferring to a future paper the treatment of transfinite stratification and other 
transfinite type constructions [Lei90a], 

Our main technical result (Theorem 22) is that the numeric functions representable in 
the finitely stratified polymorphic A-calculus are precisely the super-elementary functions. 
In §2 we show that every super-elementary function is representable, and in §3 we show the 
converse. An outline of the proof appeared in [Lei89]. 

In §4 we derive limitative results on finitely stratified polymorphism from the charac
terization above: there is no super-elementary bound on the length of optimal reduction 
sequences (Theorem 24), and the equality problem for the finitely stratified A-calculus is not 
super-elementary (Theorem 25). 

In the final §5 we consider stratified polymorphism with recursive types. It is known that, 
in spite of the computational strength of F2, certain simple numeric functional algorithms, 
such as Maurey's algorithm for branching on inequality, cannot be typed in it [Kri87]. We 
point out that Maurey's example can be typed in the finitely stratified calculus augmented 
by recursive types. 

Acknowledgments . I am grateful to Pawel Urzyczyn for detailed comments on a prelim
inary version of this work. Research partially supported by ONR grant N00014-84-K-0415 
and by DARPA grant F33615-87-C-1499, ARPA Order 4976, Amendment 20. 
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1 . The finitely stratified polymorphic A-Calculus 

1 . 1 . Stratification 

The finitely stratified polymorphic lambda calculus, S F 2 , is similar to Girard-Reynolds' 
second-order lambda calculus F 2 [Gir72,Rey74], except that types are classified into levels 
0 ,1 , Type expressions r and their levels L(r) are defined inductively: 

• For each level k = 0 , 1 , . . . there is a denumerable supply of type variables of level k: 
t * , t o > ' i 5 * ? (We omit the level superscript when it is irrelevant or clear from the 
context.) We write o for 2°. A type variable of level k is also a type expression of level 
k. 

• If a and r are type expressions, of levels p and q respectively, then c —> r is a type 
expression of level max(p, q). 

• If r is a type expression of level p, then Wtq.r is a type expression of level max(p, <?+l). 

Thus, the level of a type expression r is the largest of L(t) for t free in r and L(t) + 1 for t 
bound in r . 

Expressions E and their types type(E) are defined inductively: 

• For each type expression r there is a denumerable supply of object variables of type 
t: xT, a ? Q , . . . , xj, — r is the type of xT. (We omit type superscripts when irrelevant 
or clear from the context.) An object variable of type r is also an expression of type 
T. 

• If E is an expression of type <7, then \xT.E is an expression of type r—><j. 

• If E is an expression of type r —• cr, and F an expression of type r , then EF is an 
expression of type <r. 

• If E is an expression of type r , then At.E is an expression of type Vt.r. 

• If E is an expression of type Vi*.r, and L(<r) < A:, then Ecr is an expression of type 
T[cr/t], (r[<j/t] is the result of simultaneously substituting a for all free occurrences 
of t in r , after renaming bound variables in r to avoid binding of variables free in cr.) 
Note that if L(cr) > k then Ecr is not legal. 

We define the level L(E) of a A-expression E as L(type(E)). For n = 0 , 1 , . . . , S n F 2 

denotes the restriction of S F 2 to expressions of level < n (including subexpressions). Thus, 
S°F 2 allows no type quantification, and is equivalent to the simply typed A-calculus, F i . 
Clearly, the quantifier-free parametric polymorphism of ML, as well as its extension defined 
in [KTU88] (without recursive types, in both cases), are contained in S 1 F 2 . 
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A set theoretic model theory for S F 2 is fairly straightforward, and does not face the 
complications of providing a semantic for F 2 [Rey84,RP88]. A semantics for a fragment of 
S F 2 is described in [MH88]. 

1.2. Reduct ions and normalization 

Like F 2 , S F 2 has object /^-reductions: (Xx.E)F reduces to E[F/x], and type /^-reductions: 
(At.E)cr reduces to E[a/t]. It is easy to verify, by induction on expressions, that object 
and type /?-reductions, as well as //-reductions, preserve the correctness of expressions with 
respect to the stratification condition on type application. 

Clearly, every sequence of successive reductions in S F 2 is finite (and terminates with a 
normal expression), by Girard's Strong Normalization Theorem for F 2 [Gir72], since every 
expression of S F 2 becomes an expression of F 2 when stripped of level labels. We write 
norm(E) for the normal form of E. In §3 we prove directly a normalization theorem for 
S F 2 , with far sharper computational bounds. 

1.3. Semantic typing 

In its form above, S F 2 is an ontological type discipline (often called "explicit" or "Church-
style" typing), i.e. objects are assumed to come with their type. Er^a then denotes a function 
whose domain is the objects of type r . One can view types also semantically ("implicit" or 
"Curry-style" typing), in which case types are functional properties: a A-expression E has 
type t —> (7 if it denotes a (partial) function which for every object of type r yields an object 
of type a. E can have then many different types. 

All our results about S F 2 remain unaffected if we adopt instead a semantical view of 
typing. One refers then to untyped A-expressions, for which we have typing statements, of 
the form 7? h i? : r , where 77 is an assignment of types to a finite number of A-variables, and 
E is a A-expression. We write 77, x : p for 77 U {(#, p)}, with the implicit assumption that 
x is not in the domain of 7/. 

The typing rules are then 
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Basic 77, x : r h x : r 

>Intro 

•Elim 

V Intro 

VEl im 

?/, x : a h E : r 
r) h Xx.E : <7 —• T 

rj \~ E : a —> t 7] \- F : a 
7]h EF :r 

rj h E : r 
ti\- ElVt.T 

where t is a type variable not free in the range of rj 

7] h E : Vtk.T 

provided level(a) < k. 

1.4. The scope of S F 2 

This paper focuses on representation of numeric functions in S F 2 . An orthogonal question is 
the delineation of the A-expressions for which types can be assigned, individually, in the type 
inference calculus above for S F 2 or S n F 2 . (n > 0). This issue has been tackled by Pawel 
Urzyczyn, who has announced the following results (private communication, July 1990): 

• The typing power of S F 2 (for individual expressions) is strictly weaker than that of 
F 2 : The expression (\x.xyx)(\z.zyz) can be typed.in F 2 but not in S F 2 . 

• For each n, S n + 1 F 2 has greater typing power than S n F 2 : Let G0 =df Ax.xx, G n +i =df 
\y.yGny; then Gn is typable in S n + 1 F 2 , but not in S n F 2 . 

2. The super-elementary functions are representable 

2.1. Function representation 

The Church numerals in the untyped A-calculus are the expressions 

n =df XsXz. s^z, n = 0 , 1 , . . . 

where the bracketed superscript denotes iteration. In every typed A-calculus there are, for 
each type r , Church numerals over r: 

n"M =df \sT-*T\zr.sWz, n = 0 , l , . . . 
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These expressions are of type u[r] =df (r —• r ) —* (r —> r ) . We write i/*[r] for the sequence 
of types i/°[r] = d f i/[r], . . z / t + 1 [ r ] = d f i / ' [ t ] -> i/«[r] = ^ [ ^ M l - (We let i /- 2 [r] = d f r , and 
^ _ 1 [ T ] = d f T - * T . ) 

In S F 2 there are, for each k > 0, level-k polymorphic numerals, 

nUk = d f A i * A s * - " A s * . $ M * , 

of type Vk =df Vi*. v[i\. These polymorphic numerals are stratified variants of the polymor
phic numerals of Fortune and O'Donnell [For79, ODo79]. We write v+ for the set {y^ \ k > 0}. 

An expression E of type G\ —• • • • —> <jv —» r represents a p-ary recursive function F 
(with inputs of types < 7 i , . . . , ap and output of type r j if the conditions Frii.. .np = m 
and E(n\Yl • • • (nPYp ™>r are equivalent. If G\ = • • • = av = r we say that the 
representation is over r. 

If L is a typed A-calculus (that contains the rules of F i ) , and if each one of T and S is a 
type, a sequence of types, or a set of types, then Rep^T; S) will denote the set of functions 
representable in L with inputs of types out of T, and output of type out of 5 . By Lemma 
9 below, this is the same as itepgp ( 1 / * ; We s a y a function in Rep^2 is? simply? 
representabie. 

2.2. Representat ion of basic functions 

L e m m a 1 Z (the constant zero function), S (successor), +, and x are in ^epp^j/fo]; 

The proof is well-known and goes back to Church (see e.g. [FL083]). 

A function / is defined by recurrence from g and h if 

/ ( 0 , £ ) = g(x), 

tf(Sy,x) = h(f(y,x),y,x). 

If y is not a direct argument of h in the second equation, i.e. f(Sy,x) = ft(/(y, x), x), then 
/ is said to be defined from g and h by iteration. 

L e m m a 2 Suppose f is defined by iteration from g,h 6 Repair; r ) . Then f 6 RepL(r, i/[r]; r ) . 

Proof. Suppose G and H represent g and h in L, with inputs and output of type r . Then 
/ is represented by the expression F =df Xy^Xx7. y(XuT.Hux)(Gx). • 

From Lemmas 1 and 2 we obtain: 

L e m m a 3 If f is defined by one iteration from Z, S, +, and x, then f € Repf^v^o]] v[6\). 
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2.3. Type uniformization 

L e m m a 4 Repp^v^o]; v[o]) C RepSiF2(v0; v0). 

Proof. Suppose a function / is represented by an expression Xxi • • • \xm.E, of type vjl [o] —* 
... —• i/*m[o] —• i/[o]. Let j / i , . . . , y m be fresh variables of type u0 = V<°.i/[i], Then K = d f 
y,(^*~2[<]) is a correctly typed expression, of type ^[^ J , " 2 [i]] = v^[t] (i = l , . . - , m ) . Let 

be the same as J5, except that every free occurrence of x t is replaced by YJ. Then E ' 
is a correctly typed expression (by induction on E), of type v[t]. Hence Ai.i?' is of type 
Vt.i/[<] = i/0, and Aj/i • • • Xym. At. E' is an expression that represents / over v[6[. • 

L e m m a 5 RepSF2(v*[v0]; i / 0 ) C i 2 e # g F 2 ( i / i ; i / 0 ) 

Proof. The proof is the same as for Lemma 4, except for the type abstraction. Suppose 
/ is represented by some expression \x\... xm. E, of type vjl

 [ i / 0 ] — > . . . — • i / J ' m [ i / 0 ] — > i/o-

Let ? / i . . . y m be fresh variables, of type v\. Then YJ =df 2/ l(^ t" 2[^o]) is a correctly typed 
expression (since L(z/ J'~2[z/0])) = 1), of type i/[i> j '*~ 2 [i>o]] = ^'[^o]- Let E' be E with each X{ 

replaced by YJ. Then Aj/i .. .ym. E' is an expression that represents / with inputs of type 
v\ and output of type v$. • 

L e m m a 6 If f is defined by two iterations from Z, S, +, and x , then f € Rep&iTiivii ^o)-

Proof. Suppose / is defined by iteration from functions h, that are in turn defined by 
iteration from Z, 5 , + , and x . Then g,h G # e p F l ( ^ * [ 0 ] ; ^ H ) , by Lemma 3; so g,h 6 
^ e / ? S 1 F 2 ( z / o ; ^o), by Lemma 4. Therefore, by Lemma 2, / £ -R^Ps i F 2 ( l / *[ I / o]! ^o), from which 
/ 6 RepsiF2 (i/i; i/ 0), by lemma 5. • 

2.4. Closure of representable functions under e lementary operations 

The proof of Lemma 2 can be refined, to apply to additional forms of recurrence, as follows. 
For types r , <7, define 

(r, cr) =df Vi'.(r—»cr—• where / = m a x ( i ( r ) , L(a)). 

L e m m a 7 Suppose g is representable (in SF2) with inputs of types p and output of type t, 
and h is representable with inputs of types r, cr, p (where cr is v[£] for some £ or v\ for some I), 
and output of type r . Then the function f defined by recurrence from g, h is representable 
with inputs of types i / [ ( r , cr)], p and output of type r . 
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Proof. The proof builds on Kleene's representation of the predecessor function (see e.g. 
[FL083]). We use polymorphism to define a pairing function for expressions of different 
type. For types r , a, let 

P™ = d f \x\ y*. At. \u™-**Mxy ( Pro is of type (r, a) ). 

If A, B are expressions of types r , <r, respectively, then we write (A, B) for ProAB. For 
an expression E of type (r, a) we let (2?)i abbreviate Er(\xTy°.#), and ( £ ) 2 abbreviate 
Ea(XxTya.y). Then =^ A, and ( ( A , £ ) ) 2 = p £ . 

Let G and if represent g and respectively, with inputs and outputs as stipulated in 
the lemma. Let s represent the successor function over a. Define 

F = d f A y ^ M , ? . ( y P + P 0 ) i 
where P + = d f A ^ . ( H {q)x (q)2 s ((q)2)) 

and P0 =df {Gx, 0a). 

Then F represents / as required. • 

Note that the proof above only requires that the output type of H be the same as the 
type of its first input. We conclude that the schemas of bounded iterated sum and bounded 
iterated product preserve representability: 

L e m m a 8 If a € RepsF2> then E O J I I a G RepsY2, w ^ e r e S a (j / ,x) = J2i<y

 a(hx)> and 
I I a (y ,x) = n . - < » a{i,x). 

Proof. We have 

S a (0 , f ) = 0 
£ a ( y + l ,£ ) = £ a ( y , x ) + a(y,x) , 

n o ( 0 , x ) = 1 
II a (y + l ,x) = I I a (y ,x) - a(y,x). 

The "recurrence functions" h(z, y, x) used in these schemas are, respectively, z + a(y, a?), and 
z-a(y, x). Suppose a is representable by A, with inputs of types cr, /9 and output of type r . Let 
1/ =df Xzryax.Fz(Ayx), where F represents addition over r . Then # represents z + a(y, x), 
with output and first input of type r . By Lemma 7, it follows that E a is represented. The 
proof for I I a is similar. • 

2.5. Closure of representable functions under composi t ion 

L e m m a 9 If f e RepSY2(1/^ uk), and d > 0, then f G RepSF2(vt+d; vk+d). 
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Proof. A straightforward induction on expressions shows that lifting all levels by d preserves 
legal typing. Hence, if E represents / with inputs of type v\ and output of type and E' 
arises from E by replacing each level label q by q + d, then E1 represents / with inputs of 
type vi+d and output of type • 

L e m m a 10 Suppose f 6 RepsF2(uh * • • Vl™\ "(>)• Let q > U (i = 1 . . . m). Then 
f E #ep S F 2 ( z / 9 ; j / o ) . 

Proof. Suppose that / is represented by Xxi... xm. E , of type —» • i//m —> v0. Let 
J/i • . . J/m be fresh variables of type vq. Set YJ =df Atli.yit, and let =df E[Yi/xi... Ym/xm]. 
By induction on E , E1 is seen to be a legal expression, and E[n"li/xi] =p E ' [n^/ j / t ] , for all 
n > 0. Thus Aj/i . . . ym.E' is a legal expression, that represents / with inputs of type vq and 
output of type v0. • 

L e m m a 11 Suppose that f(x) = h(g(x)), where x = (xi... xn), g = (gi... gk), 9i £ RePsF2 

(i = 1 . . . k), and h 6 itepgp . Tien / £ RepsF2-

Proof. By Lemma 10 there is a sufficiently large q such that each gi is represented by 
an expression G t with inputs of type vq and output of type u0 (i = 1 . . . fc), and with h 
represented by an expression H with inputs of type vq and output of type u0. By Lemma 9 
there are expressions G[ representing gi with inputs of type v2q and output of type vq. Thus, 

F = d f Xx^...x^.H{G\x)---{G'kx) 

represents / with inputs of type v 2 q and output of type vo. • 

2.6. All super-elementary functions are representable 

The Grzegorczyk class (fc > 0) is generated by composition and bounded recurrence 
from Z, 5 , the projection functions, and the function F*, where Fq =<jf 5 , F\ =df Ax.2x, 
F2 =df Ax.x 2 , and Fk+i(x) =df fI*](x) for fc > 2 ( F ^ being the n ' th iterate of F ) . £ 3 is 
Kalmar's class of elementary functions, and the functions in £ 4 are dubbed super-elementary. 
We have VIZ = £k [Grz53]. (For details see e.g. [Ros84].) 

The following is stated in [Sta81] without proof. 

L e m m a 12 Every super-elementary function is representable in S F 2 . 

Proof. The predecessor function is in Rep? (v*[o]i v[o]) (see [FL083]), so, by Lemma4, also 
in RepsY2(l/o] ^o). By Lemma 2 the cut-off subtraction function is then in i?epSp 2(i/*[z/ 0]; v0), 
and so also in -Repgp (i/i; v0), by Lemma 5. 
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The initial primitive recursive functions are trivially representable, as is addition (Lemma 
1). By Lemma 8, the class of representable functions is closed under bounded iterated sum 
and product, and by Lemma 11 also under composition. Since £3 is the same as the class of 
functions generated from the initial functions, + , and —, by composition, bounded iterated 
sum, and bounded iterated product [Grz53], it follows that all elementary functions are 
representable. 

Since F4 is defined from addition by two iterations, it follows from Lemma 6 that F 4 is 
also representable. 

A standard construction shows that bounded recurrence can be defined in terms of com
position with elementary functions, bounded minimalization and bounded quantification. 
(The construction is essentially due to Kleene; see e.g. [Ros84], proof of Theorem 1.3.1, p. 
11, where bounded product is also used.) Bounded minimalization and bounded quantifi
cation are easily definable in terms of elementary functions and bounded sum and product 
(see e.g. [Ros84] §1). It follows, by Lemma 8, that the class of representable functions is 
closed under bounded recurrence. 

The lemma now follows from the definition above of £4. • 

3 - The representable functions are super-elementary 

3.1 . Complex i ty of cuts 

For a A-expression j B , a sub-expression F of E is a cut if F is the left immediate sub
expression of a redex FG or Fa in E. We write cut(E) for the set of cut sub-expressions of 
E. 

We define the following functions on expressions E and types r , related to their cut 
complexity. The primary measure of complexity is the level of cuts, the secondary measure 
is the degree of cuts of a given level (and in particular of the top level), and the ternary 
measure is the multiplicity of cuts of given levels and degrees, in particular of the highest 
cut-level present and for the highest present cut-degree for that level. 

CL{E) =df max{L(F) | F G cut{E)} 
DI(R) =df negative-nesting count in r of subtypes of level > /; i.e., 

D(tk)= i0 if k < ! 
I\ ) df ^ j otherwise 

Di((t->t) =df max(sD/(cr), A ( t ) ) 

where 
sx =df if x = 0 then 0 else x+1 
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A(Vf f c . r ) = d f | 

D,(E) 
CD,(E) 
CD(E) 

df 
df 

Di(type(E)) 
m&x{Di(F) | F G cut(E)} 
CDi(E), where / = CL(E) 

6u{E) 
1 if E is a redex G 0 , with 1(G) > / and Dt(G) > d 

df 0 otherwise 
Mid(E) =df the maximal length of any chain of nested redexes G 0 

with L(G) > I and D,(G) > d; i.e., 
Mid(x) =df 0 

MU(GH) =df M G f O + m a x ( M w ( G ) , M w ( f f ) ) , 
MM(G<r) = d f M ^ ) + M W ( G ) 
M M (Ax.G) =df Mid(G) 
Mid(At.G) =df M W ( G ) 

M ( £ ) = d f M W ( E ) , where / = CL(E) and J = CD(E). 

Note that -Dfc(r) > for k < /, by the definition of A . 

3.2. Preservation of cut-complexi ty under subst i tut ion 

L e m m a 13 Suppose that CL(E),CL(F),L(F) < I, and CDi{E)tCDi{F),Dt(F) < d. 
Let E' =df E[F/x]. Then CL{E') < I, and CDi(E') < d. 

Proof. Induction on E, by cases. 

1. E is a variable y. If y is x, then E' = F; otherwise E' = E. In either case the lemma 
is immediate. 

2. E is of the form E0EU so E' = E'0E[ (where E[ =x Ei[F/x]). By induction 
assumption CL(E<) < I and CDi(E<) <d(i = 0,1). 

There are three sub-cases. 

2(i) E' is not a redex. Then CL(E') = m&x(CL(E'0), CL(E[)) < /, and C A ( £ ' ) = 

m a x ( C A ( ^ ) , C A ( ^ ) ) < d. 

2(ii) £ is a redex. Then L(E0) < I, Di(E0) < d. Since type(E'0) = type(E0), these 
imply L{E'Q) < I, D,(E'0) < d. Hence CL(E') = max{CL{E'0),CL(E[),L(E'Q)) < 
I, CD,(E') = m a x ( C A ( ^ ) , G A ( ^ ) , D,(E'0)) < d. 

2(iii) E' is a redex, but E is not a redex. Then Eq = x and E' = FE[. Since 
L(F) < I and A ( ^ ) < d, CL(E') = max(C£(££) , C L ( £ ; ) , < /, and 
CDi(E') = max(CA(£o)> < <f. 
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3. E is of the form Xu.E0. Then CL(E) = CL(E0) < I and CDt(E) = CDi(E0) < d, so 
CL(E') = CL(E'0) < I and CD,{E') = CD^E'q) < d, by induction assumption. 

4. E is of the form At.Eo or of the form EqO. These are similar to case (3). 

• 

L e m m a 14 Suppose L{E) < I, Dt(E) < d, and L(a) < 1. Let E' = d f E[a/t}. Then 
L(E') < I and D,(E') < d. 

Proof. If r is the type of a cut in E, then r ' =af T[cr/t] is the type of the corresponding 
cut in E'. If L(t) < I, then L(t') < I. If L(t) = I, then, by a trivial induction on r , 
L(r ' ) = L{t) < I, and A ( r ' ) = A ( t ) , s o Dt(E') < d. • 

3.3. Canonical reductions 

Let E be a A-expression. A redex G 0 in E (where 0 is a type or a A-expression) is canonical 
if it is an innermost cut of the largest level-degree complexity in E; that is, I =df L(G) = 
CL(E), d = c l f Di{G) = CD(E), MU(G) = 0, and, if 0 is a A-expression, Af w (6 ) = 0. 

E reduces canonically to E\ E =$>c E', if E' is the result of reducing all canonical redexes 
of E (the order makes no difference, since no canonical redex occurs within another). 

L e m m a 15 Suppose E =^c E', CL{E) = /, CL\E) = d. Then CL{E') < I, CD,{E') < d, 
and Mid(E') < Mld(E). 

Proof. By induction on E. The only non-trivial case is where E is a (unique) canonical 
redex of itself. We have two cases, corresponding to the two sorts of redex. 

Case 1. E is of the form (\xr.E%)F, and E' = E0[F/x]. Since E is a critical redex, 
L(t -><t) = /, Di{t -+<r) = d, and Mld(E0) = Mld(F) = 0. We claim that Dt(F) < d: 
if L(F) = L(t) < I, then D,(F) = 0 < d (d > 0, by definition of CD); if L(F) = /, 
then Di(t) < Di(t a) = d. Thus, by Lemma 13, CL(E') < I and CDi(E') < d, so 
Mid(E') = 0 < 1 = Mld(E). 

Case 2. E is of the form (As.E0)cr, and E' = E0[a/t]. By the stratification condition 
on type application, L(<x) < L(s) < I. Hence, by Lemma 14, L(E') < I and Di(E') < d, so 
Mld(E') = 0 < 1 = M,d(E). • 

For a A-expression E, let n(E) =af (CL(E),CD(E), M(E)). 

L e m m a 16 If E =*>c E', then n{E') -< fi(E), where -< is the lexicographic ordering. 

12 



Proof. Let / = CL{E), d = CD(E), m = M ( F ) , V = CF(F ' ) , d! = CD(E'), m' = M(E'). 

By Lemma 15, /' < /. If /' < /, then fi(E') -« / / (F) . If /' = /, then d! = CDV(E') = 
CDi(El) < CD(E) = d, by Lemma 15. If d' < d, then fi(E') -< / / (F) . If d = d1', then 
m! = M ( F ' ) = MVd,{E') = Mld(E') < Mld(E) = M(E) = m, again by Lemma 15. • 

3.4. Super-elementary bounds on length of normal forms 

For an expression F , let 

GD(E) =df max{i)o(F) | F a sub-expression of F , }, 
| F | =df the height of the applicative part of F , 

i.e. 
|*| = 0 
|FG | = max( |F | , |G | ) + l 
| F r | = | F | + l 
\Xx.F\ = \At.F\ = \F\ 

We collect some straightforward properties of these measures in the following: 

L e m m a 17 1. D,(F) < GD(E) for all I; 

2. Mld(E) < \E\ for all I, d; 

3. HE =>c F ' , then | F ' | < 2-\E\ (and so M(E') < 2-\E\), and GD(E') < GD(E). 

(For (3), note that | F ' | < 2-\E\ whenever F reduces to F ' , but F =^ c E' by possibly several 
reductions.) 

We define primitive recursive functions / i / , / > 0, by the following recursions with param
eter substitution (cf. e.g. [Ros84], §1.3). 

ho(0,0,x,g) = x 
hi(d, ra+1, x,g) = hi(d, m, 2x,g) 
hi(d+l,0,x,g) = hi(d,x,x,g) 
hi+! (0,0, x, g) = rn(g,x,x,g) 

Clearly, each hi is non-decreasing in each one of its arguments, since we use in the definitions 
only non-decreasing functions. Also, hk(a) > hi(a) for k > I. (Detailed proofs are by nested 
inductions on /, g, and m.) 

L e m m a 18 hi is super-elementary for all L 
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Proof. Let 

7 / ( 0 , m, x) = 2 m . £ 
7 / ( d + l , m , x ) = 2T> ( d 'm '* ) . 7 / ( < 2 , m , x ) 

The function 77 is defined by a single recurrence from elementary functions, and is therefore 
super-elementary (see e.g. [Ros84] or [Schw69]). 

Claim 1. 7?(d, ra+l,x) = 7?(d, ra,2x) for all arguments. The proof is straightforward by 
induction on d. 

Claim 2. r/(rf, = r/(d+l, 0 , x) for all arguments. Again, a straightforward induction on 
d. 

Claim 3. ho(d,m,x,g) = r)(d,m,x) for all arguments. The proof is by main induction on d, 
using Claim 2, and secondary induction on m, using Claim 1. 

Claim 4- hi+i{d,m,x,g) = hi(g,rj(dy m,x) ,7 / (cf ,m,x) ,g) for all / and all arguments. The 
proof is by main induction on d and secondary induction on m. We have 

( 0 , 0 , x , g ) = /*/(#, x, x, g) 
= hi{g, 7 / ( 0 , 0 , x), 7 / ( 0 , 0 , 

/ i /+i(d,m+l, :r ,#) = /& / + 1(d, m, 2x,#) 
= hi(g, 7/(rf, m, 2x), 7/(cf, ra, 2x), g) by induction assumption 
= hi(g,r](d, ra+l,x),7/(d, ra+1, a;), </) by Claim 1, 

and 
/*H_i(d+l ,0 ,x,#) = hi+i(d,x,x,g) 

= hi(g, 7/(d, x, 7/(d, x, x), </) by induction assumption 
= hi(g,Tj(d+l,0,x)Jrt(d+l,0,x),g) by Claim 2. 

It now follows that every hi is super-elementary, by induction on /. Claim 3 establishes 
the induction's basis. is defined by composition from 7/ and /*/, which by induction 
assumption is super-elementary; hence is super-elementary. • 

L e m m a 19 If fi(E) = (/,<*, m) then \norm(E)\ < }n(d,m,\E\,GD(E)). 

Proof. By (course-of-value) induction on (/,d, m), i.e., main induction on /, secondary 
induction on d, and ternary induction on ra. 

If m = 0 , then E is normal and / = d = 0 . We have \norm(E)\ = | £ 7 | = fco(0,0, | E | , f l f ) 

for any 5 . 

Suppose M(E) = m + 1 . Let E =>c so MW(JE') = ra, and < 2- |£ | . 
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Case 1. L(E') = I and CD(E') = d, so M(E') = Mld(E') = m. 

\norm(E)\ = \norm(E')\ 
< hi(d,m, \E'\, GD(E')) by induction assumption 
< h{(d,m,2-\E\,GD(E)) 

since \E'\ < 2-\E\ and GD(E') < GD(E) 
= hi(d,m+l,\E\,GD(E)) 

Case 2. L(E') = I and d' = d i CD(E') < d, so m = 0. 

\norm{E)\ = \norm(E')\ 
< ht(d', M(E'), \E'\, GD(E')) 
< ht(d-l,2-\E\,2-\E\,GD(E)) 
= h,(d,0,2-\E\,GD(E)) 
= h,(d,l,\E\,GD(E)) 
= hi(d,m+l, \E\,GD(E)) 

by induction assumption 
since d! < d— 1 

by definition of hi 

Case 3. I' = d S L(E') < I, so m = 0. 

\norm(E)\ = \norm(E')\ 
< hi'(GD(E'), M(E'), \E'\, GD(E')) by induction assumption 
< hi_i(GD(E),2-\E\,2-\E\,GD(E)) since > hv 

= ht(0,0,2-\E\,GD(E)) by definition 
= ht(0,l, \E\,GD(E)) 
< hi(d,m+l,\E\,GD(E)) 

• 

3.5. Super-e lementary normalization functions 

We turn to exact normalization functions for S F 2 . For each / < 0 we show that the normal
ization function for S'F2, as a function on codes of expressions, is super-elementary. 

Fix a canonical (Godel-) coding of expressions, E t—> #E, with elementary functions 
A A A A 

m, a, and f, such that for every expression E, l(#E) = CL(E), d(#E) = CD(E), 
m(#E) = M(E), a(#E) = \E\, and if E =>c E' then r(#J5) = # ( £ ' ) • Such functions may 
easily be defined so as to return 0 when the argument is not the code of an expression. For 
/ > 0 we define the function h\ by: 
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n/(d, ra, x) = 0 if either x is not the code of an expression, 
/ > /(ar), d > d(x), or ra > ra(x); 

Otherwise: 
hi(d,m,x) = n/_i(d, ra,x) if/(x) < / ; 

Otherwise: 
n o(0,0,ar) = x 

n/(<f,m+l,x) = n,(d,ra,f(x)) 
n/(c?+l, 0, x) = n/(J(r(x)), ra(r(x)), r(x)) 
n / + i (0 ,0 , x) = ni(d(r(x)), m(r(x)), f(x)) 

L e m m a 20 If //(E) = (/,d,ra) then #norm(E) = fn(d,m,#E). 

Proof. Straightforward, by nested course-of-value induction on /, d, and ra. • 

Let 

N^x) —df { ™t(*)(^(x^™(x)>x) *f x = f ° r s o m e E with CL(E) < /, 
\ 0 otherwise 

L e m m a 21 For each 1 > 0, the function Ni is super-elementary. 

Proof. For each / > 0, Ni is defined from elementary functions by composition and course-
of-value recursion with parameter substitution. The latter can be converted to instances of 
(simple) recurrence (see e.g. [Ros84] §1.3). Moreover, all these recurrences are bounded by 
functions elementary in fe/, by Lemma 19. Since, by definition, £ 4 is closed under bounded 
recurrence, it follows that Ni is super-elementary. • 

3.6. The representable functions are super-elementary 

Theorem 22 Rep$Y~ = £ t -

Proof. We have it*epSF-> =2 by Lemma 12. 

For the converse, suppose that E represents in S ' F 2 an ra-ary function / , with inputs 
of type v\x...v\m and output of type u0 ( Z i . . . / m < /). Then, for every ki... km > 0, 
normal?1

 • • • fcmm) is vu«, where v = d f f{ku..., km). Note that I t ? " 0 ) = f(ku ..., km). Let 
c ( f c i , . . . , km) = d f #(Eki • • • fcm), which is an elementary function. Then / ( & i , . . . , km) = 
a(7V/(c ( fc i , . . . , km))). Thus, by Lemma 21, / is the composition of super-elementary func
tions, and so it is super-elementary. • 
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4 . Limitative properties of the stratified calculus 

4.1. Length of reduction sequences 

The represent ability of all super-elementary functions implies that there is no super-elementary 
function that bounds the length of reduction sequences. 

Theorem 23 There is no super-elementary function b such that, for every expression E of 
S F 2 ? ^ the length of the shortest reduction sequence starting with E. 

Proof. Suppose 6 were a function as above; then c(x) =df 2 6 ^ + 1 ^ - ( x + 2) is also super-
elementary, and therefore represented by some expression C. Then, for any k > |C| , 

b(k+l) — b{\Ck\) > the length of the shortest reduction sequence starting with Ck. 

Since a reduction on an expression E at most doubles \E\, this implies that 

c(k) > 2 6 ( * + 1 ) . ( f c+ l ) by definition of c 
= 2h^-\Ck\ 
> \norm(Ck)\ by the property above 
= c(k) since C represents c, 

a contradiction. • 

Let # be a numeric canonical coding of expressions. We assume that the basic syn
tactic operation on expressions are elementary with respect to codes. Also, without loss 
of generality, we assume that # ( n ) > n for all n: any coding can be transformed by an 
elementary-equivalent coding that satisfies this condition. The proof of Theorem 23 can be 
refined to obtain the following. 

Theorem 24 There is no super-elementary function B such that, for every expression E of 
SF2, B(#E) > the length of the shortest reduction sequence starting with E. 

Proof. Suppose B were a function as above. Let w be an elementary function such that 
> #(Ek) for all k and all E with < k. Define an elementary function r by 

r{x) =df max { # F | E reduces in one step to j F for some E with #E < x } . 

Define functions R and c by 

R(0, x) =df x 
R(i + l,x) =df max(i?( i ,x) , r(R(i,x)) 

c(x) = d f R(B(w(x)),w(x)) + l. 
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Then R is super-elementary, and therefore so is c. Also, R is non-decreasing in both argu
ments, and i?(i,x) > rM(x). 

Let C represent c. Then, for k > # C , 

c(k) > R{B(w(k)),w(k)) 
> R(B(#(Ck)),#(Ck)) 

by definition of w, since k > #C and R is non-decreasing 

where i = B(#(Ck)), by definition of R 
= max { # £ | Cifc reduces to £ in < B(#(Ck)) steps } 

by definition of r 
> #(norm(Ck)) 

by the assumption on J5 

> c(k) 
by the assumption on # , and since C represents c, 

a contradiction. • 

4.2. Complex i ty of equality 

Given a A-calculus L, the equality problem for L, Eq[L], is the problem of deciding, given two 
expressions of L, whether they are /?-equal. Statman [Sta79] showed that Eq[Fi] G £4 — £3. 

Theorem 25 Eq[SF2] £ £5 — £4. 

Proof. Let H{l,x) =df hi(x). By Lemma 18, H is defined by course-of-value recurrence 
with parameter substitution from 77 G 5 4 : 

# ( 0 , d , m , x , </) = 7/(cf,m,x) 
# ( / + 1 , d, m, x, 0 ) = # ( / , r}(d, m, x), 7/(d, m, x),g). 

So H e £5 (see [Ros84] or [Schw69]). Let N'(x) =df ^ x ) ( x ) ; then Nf G 5 5 , since N' is 
definable by recurrences bounded by functions elementary in H. It follows that the function 

df 1 0 o t h e r w i s e 

is in £ 5 , and decides /^-equality of expressions of S F 2 . Thus Eq[SF2] G £5-

Suppose Eq[SF2] G £ 4 . Let {En}n be an elementary enumeration of all A-expressions of 
S F 2 . The assumption implies that the function 

otherwise 
f 1 if Enn = 

J W -df I o otherwis 
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is in £ 4 , hence representable by some Ek G SF 2 . But then Ekk =0 0 iff Ekk =p 1, a 
contradiction. • 

5 . Stratified polymorphism with type recursion 

5.1. Recursive types 

Suppose r is a type expression of F 2 in which the type variable t has no free negative 
occurrences (an occurrence is negative if it is in the negative scope of an odd number of —•). 
Then f H T , understood as a set theoretic operation, is positive, and has a minimal fixpoint 
[Acz77, Men87]. Let fit.r be a new type expression, intended to denote that minimal fixpoint. 
[Men87] and [Lei90] discuss several calculi in which F 2 is augmented with constants and 
reduction rules, intended to convey that meaning of fit.r. We briefly describe the stratified 
variants of two of these. 

Let F 2 I be F 2 augmented with type expressions fit.r for every r and t non-negative in 
r ; with, for each such 8 = fit.r, a closure constant C$, of type r[8] —» 8, and an induction 
constant Is, of type Vs.(V£.((£ —• s) —» r —> s) —• 8 —> s); and with a new closure reduction, 
mapping Is<tE(CSF) to E8(IsaE)F (cr an arbitrary type, t[8] =df r[8/t], E of type Vi.((f —> 
a) —> r —* cr), and F of type r[8]). 

Proposit ion 26 A stratified version S F 2 I of F 2 I must iiave L(fitl.r) = 1 = I ( r ) . 

Proof. If the type of I8 is Vsm.(W.((t -> s) r -+ s) 8 -> s), then the type of £ in a 
reduction as above is Vi/.((< —> a) —> r cr). Since £ is an argument of E, L(8) < I. On 
the other hand, except for the trivial case where t is not free in r , r is of level > /. Hence, 
to permit the type fitl.r, with t free in r, we should have L(fitl.r) = /. • 

Proposition 26 states that an inductively generated type has the same level as the level of 
the operator defining it. This bit of impredicativity is implicit in a number of foundational 
contexts, notably in the justification of induction [Lei90b]. We conjecture that, as a result, 
there are numeric functions representable in S F 2 I that are not representable in S F 2 . This 
would be in contrast with the innocuous computational effect of adding recursive types to 
F 2 : Every function representable in of F 2 I is provably recursive in second-order arithmetic 
[Men87], and is therefore already representable in F 2 [Gir72]. 

Another extension of F 2 with recursive types, F 2 / i , has recursive types 8 = fit.r as above, 
but no new constants or reductions. Instead, F 2/x liberalizes the typing conditions of F 2 , as 
follows. Let ~ M be the relation that holds between types a and /? if (3 results from replacing 
in a an occurrence of 8 by r[8], for some type 8 of the from fit.r. Let = M be the minimal 
symmetric and transitive relation R that contains ~ M and is closed under replacement of 
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i?-equivalent types (which avoid capturing free type-variables). If E : a —> p, and F : cr\ 
with a = M < t ' , then we let EF be a legal expression, of type p. F 2jx is consistent with jit.r 
being interpreted as any fixpoint of t »-» r , not necessarily the minimal one. In a stratified 
version S F 2 / i of F 2/x, the requirement L(fj,tl.r) = / = L(r) is immediate, from the explicit 
identification of 8 with r[8] in the typing rules. 

5.2. Algorithms representable using recursive types 

Although adding recursive types to F 2 does not result in new functions being representable, 
it does allow new algorithms to be typed. Consider the function if y > x then 6 else a , 
an equational program for which is 

/ ( s (x ) ,y , a ,6 ) = / ( y , x , 6 , a ) 
/ (0 ,y , a ,6 ) = a. 

A A-representation for this program, relative to Church numerals, was invented by Maurey 
(reported in [Kri87]): Let F =df A/,g.gf, A =m Au.a, and B =df \u.b. Then 

F [ n + 1U( F[m] B) = F(F[n] A){F[m]B) 
=p F[m]B{F[n]A), 

F[0]A(F[m]B) = A(F[m]B) 
=P a, 

F[0]B(F[m]A) = B{F[m]A) 
b. 

So / is represented by the expression M = Ax, j / , a, b.xFA(yFB). 

While this expression cannot be typed, for Church numerals as input and output, in F 2 

[Kri87], we have: 

Proposi t ion 27 Maurey's algorithm can he typed, as a function over v>0, in S 1 F 2 /x . 

Proof. Let s be a type variable of level 0, a v[s], and 8 =df fit0, (t —> a) —> a. So 
8 =fi (8-»a) —>cr. Hence i<\ =df Xf^g6.gf is correctly typed, and has type (8->cr) -*6 —>a, 
and F 2 =df X^g^.gf is correctly typed, and has type <5 —• (£ —> cr) —• cr = M <$ —> 5. Also, 
A =df Aw^.a^^ is of type 8—>cr, and 5 =df Au*"*7.^0^ is of type 8. 

It follows that the expression 

XxVQyl/0ay°bl/\As.x{8^a)FlA{y8F2B) 

typed form of Af, in S 1 F 2 | i , which represents Maurey's Algorithm over i/0. • is a 
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