
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Finitely stratified polymorphism

Daniel Leivant
August 1990

CMU-CS-90-160

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in Information and Computation

Abstract

We consider predicative type-abstraction disciplines based on type quantification with
finitely stratified levels. The main technical result is that the functions representable in
the finitely stratified polymorphic A-calculus are precisely the super-elementary func
tions, i.e. the class £4 in Grzegorczyk's subrecursive hierarchy. This implies that there
is no super-elementary bound on the length of optimal normalization sequences, and
that the equality problem for finitely stratified polymorphic A-expressions is not super-
elementary. We also observe that finitely stratified polymorphism augmented with type
recursion admits functional algorithms that are not typable in the full second order
A-calculus.

Research partiaUy supported by DARPA (DOD) and monitored by the Avionics Laboratory, Air Force Wright Aeronautical

Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, Ohio 45433-6543, under Contract F33615-87-C-

1499, ARPA Order Number 4976, Amendment 20; and by ONR grant N00014-84-K-0415. The view and conclusions contained

in this document are those of the author and should not be interpreted as representing the official policies, either expressed or

implied, of ONR, DARPA, or the U.S. Government.

Keywords: Lambda Calculus, polymorphic types, stratification, subrecursion, super-elementary
functions, recursive types, predicativity.

Finitely stratified polymorphism

Daniel Leivant

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
leivantQcs.emu.edu

To appear in a s p e c i a l LICS'89 i s s u e
of In fo rma t ion and C o m p u t a t i o n

Synopsis

We consider predicative type-abstraction disciplines based on type quantification with
finitely stratified levels. These lie in the vast middle ground between quantifier-free para
metric abstraction and full impredicative abstraction. Stratified polymorphism has an un-
problematic set-theoretic semantics, and may lend itself to new approaches to type inference,
without sacrificing useful expressive power.

Our main technical result is that the functions representable in the finitely stratified
polymorphic A-calculus are precisely the super-elementary functions, i.e. the class £4 in
Grzegorczyk's subrecursive hierarchy. This implies that there is no super-elementary bound
on the length of optimal normalization sequences, and that the equality problem for finitely
stratified polymorphic A-expressions is not super-elementary.

We also observe that finitely stratified polymorphism augmented with type recursion
admits functional algorithms that are not typable in the full second-order A-calculus.

Introduction

Type disciplines for programming languages attempt to strike a balance between three,
often conflicting aims: expressive power, simplicity and methodological coherence, and user
friendly implement ability. The trade-off between these aims can be seen in the contrast be
tween two main paradigms of polymorphic typing: parametric quantifier-free polymorphism,
as in ML, vs. Girard-Reynolds's impredicative quantificational discipline F2 [Gir72, Rey74],
The former is user friendly by virtue of its (in practice) fast type inference mechanism, but
it lacks the power of full type quantification, and it suffers from certain anomalies [Myc84,
Pey87]. The latter has great expressive power, well beyond current programming needs, but
it is probably too powerful to allow computationally feasible user friendly facilities, such as
type inference.

We discuss here another potential ingredient in the design of type disciplines for pro-
: v̂ersrty Libraries

1 ' d'»'.V'<; Meilon Uarversity
J'sttsUriih, Pennsylvania 15213

gramming languages, namely stratification of type abstraction, which engenders a whole
spectrum of disciplines between quantifier-free parametric polymorphism and full quantifi-
cational polymorphism. It therefore has the potential of both clarifying theoretical issues
concerning polymorphic typing, and of serving as an ingredient in language design.

The idea of stratifying abstraction into levels goes back to the Ramified Type Theory of
[Rus08,WR10], whose purpose was to circumvent the antinomies of Naive Set Theory. It
was revived in the 1950's (e.g. [Kre60, Wan54, Wan62]) in relation to Predicative Anal
ysis. Stratification of type abstraction in the polymorphic A-calculus (and related typed
programming language) seems to originate with [Sta81].

The purpose of stratification is to avoid impredicative abstraction: a second-order type
t = Vi. c has t ranging over all types, including r itself. To circumvent this circularity,
one stipulates that types fall into levels, with the base level consisting exactly of those types
whose definition involves no type quantification. The next level consists of types whose
definition may use quantification over types of the base level, and so on. This eliminates
circularity, since in a type r = Vi n . a the type variable tn ranges over types of level n,
excluding r since level(r) > level(tn) = n. The construction of levels can proceed into
transfinite ordinals, by taking at limit ordinals £ the union over lower levels: in Vt*. a the
variable ranges over types of levels < £. This extension, albeit transfinite, has natural
fragments with potentially useful finite presentations [Lei89]. In this paper we focus on finite
stratification, deferring to a future paper the treatment of transfinite stratification and other
transfinite type constructions [Lei90a],

Our main technical result (Theorem 22) is that the numeric functions representable in
the finitely stratified polymorphic A-calculus are precisely the super-elementary functions.
In §2 we show that every super-elementary function is representable, and in §3 we show the
converse. An outline of the proof appeared in [Lei89].

In §4 we derive limitative results on finitely stratified polymorphism from the charac
terization above: there is no super-elementary bound on the length of optimal reduction
sequences (Theorem 24), and the equality problem for the finitely stratified A-calculus is not
super-elementary (Theorem 25).

In the final §5 we consider stratified polymorphism with recursive types. It is known that,
in spite of the computational strength of F2, certain simple numeric functional algorithms,
such as Maurey's algorithm for branching on inequality, cannot be typed in it [Kri87]. We
point out that Maurey's example can be typed in the finitely stratified calculus augmented
by recursive types.

Acknowledgments . I am grateful to Pawel Urzyczyn for detailed comments on a prelim
inary version of this work. Research partially supported by ONR grant N00014-84-K-0415
and by DARPA grant F33615-87-C-1499, ARPA Order 4976, Amendment 20.

2

1 . The finitely stratified polymorphic A-Calculus

1 . 1 . Stratification

The finitely stratified polymorphic lambda calculus, S F 2 , is similar to Girard-Reynolds'
second-order lambda calculus F 2 [Gir72,Rey74], except that types are classified into levels
0 ,1 , Type expressions r and their levels L(r) are defined inductively:

• For each level k = 0 , 1 , . . . there is a denumerable supply of type variables of level k:
t * , t o > ' i 5 * ? (We omit the level superscript when it is irrelevant or clear from the
context.) We write o for 2°. A type variable of level k is also a type expression of level
k.

• If a and r are type expressions, of levels p and q respectively, then c —> r is a type
expression of level max(p, q).

• If r is a type expression of level p, then Wtq.r is a type expression of level max(p, <?+l).

Thus, the level of a type expression r is the largest of L(t) for t free in r and L(t) + 1 for t
bound in r .

Expressions E and their types type(E) are defined inductively:

• For each type expression r there is a denumerable supply of object variables of type
t: xT, a ? Q , . . . , xj, — r is the type of xT. (We omit type superscripts when irrelevant
or clear from the context.) An object variable of type r is also an expression of type
T.

• If E is an expression of type <7, then \xT.E is an expression of type r—><j.

• If E is an expression of type r —• cr, and F an expression of type r , then EF is an
expression of type <r.

• If E is an expression of type r , then At.E is an expression of type Vt.r.

• If E is an expression of type Vi*.r, and L(<r) < A:, then Ecr is an expression of type
T[cr/t], (r[<j/t] is the result of simultaneously substituting a for all free occurrences
of t in r , after renaming bound variables in r to avoid binding of variables free in cr.)
Note that if L(cr) > k then Ecr is not legal.

We define the level L(E) of a A-expression E as L(type(E)). For n = 0 , 1 , . . . , S n F 2

denotes the restriction of S F 2 to expressions of level < n (including subexpressions). Thus,
S°F 2 allows no type quantification, and is equivalent to the simply typed A-calculus, F i .
Clearly, the quantifier-free parametric polymorphism of ML, as well as its extension defined
in [KTU88] (without recursive types, in both cases), are contained in S 1 F 2 .

3

A set theoretic model theory for S F 2 is fairly straightforward, and does not face the
complications of providing a semantic for F 2 [Rey84,RP88]. A semantics for a fragment of
S F 2 is described in [MH88].

1.2. Reduct ions and normalization

Like F 2 , S F 2 has object /^-reductions: (Xx.E)F reduces to E[F/x], and type /^-reductions:
(At.E)cr reduces to E[a/t]. It is easy to verify, by induction on expressions, that object
and type /?-reductions, as well as //-reductions, preserve the correctness of expressions with
respect to the stratification condition on type application.

Clearly, every sequence of successive reductions in S F 2 is finite (and terminates with a
normal expression), by Girard's Strong Normalization Theorem for F 2 [Gir72], since every
expression of S F 2 becomes an expression of F 2 when stripped of level labels. We write
norm(E) for the normal form of E. In §3 we prove directly a normalization theorem for
S F 2 , with far sharper computational bounds.

1.3. Semantic typing

In its form above, S F 2 is an ontological type discipline (often called "explicit" or "Church-
style" typing), i.e. objects are assumed to come with their type. Er^a then denotes a function
whose domain is the objects of type r . One can view types also semantically ("implicit" or
"Curry-style" typing), in which case types are functional properties: a A-expression E has
type t —> (7 if it denotes a (partial) function which for every object of type r yields an object
of type a. E can have then many different types.

All our results about S F 2 remain unaffected if we adopt instead a semantical view of
typing. One refers then to untyped A-expressions, for which we have typing statements, of
the form 7? h i? : r , where 77 is an assignment of types to a finite number of A-variables, and
E is a A-expression. We write 77, x : p for 77 U {(#, p)}, with the implicit assumption that
x is not in the domain of 7/.

The typing rules are then

4

Basic 77, x : r h x : r

>Intro

•Elim

V Intro

VEl im

?/, x : a h E : r
r) h Xx.E : <7 —• T

rj \~ E : a —> t 7] \- F : a
7]h EF :r

rj h E : r
ti\- ElVt.T

where t is a type variable not free in the range of rj

7] h E : Vtk.T

provided level(a) < k.

1.4. The scope of S F 2

This paper focuses on representation of numeric functions in S F 2 . An orthogonal question is
the delineation of the A-expressions for which types can be assigned, individually, in the type
inference calculus above for S F 2 or S n F 2 . (n > 0). This issue has been tackled by Pawel
Urzyczyn, who has announced the following results (private communication, July 1990):

• The typing power of S F 2 (for individual expressions) is strictly weaker than that of
F 2 : The expression (\x.xyx)(\z.zyz) can be typed.in F 2 but not in S F 2 .

• For each n, S n + 1 F 2 has greater typing power than S n F 2 : Let G0 =df Ax.xx, G n +i =df
\y.yGny; then Gn is typable in S n + 1 F 2 , but not in S n F 2 .

2. The super-elementary functions are representable

2.1. Function representation

The Church numerals in the untyped A-calculus are the expressions

n =df XsXz. s^z, n = 0 , 1 , . . .

where the bracketed superscript denotes iteration. In every typed A-calculus there are, for
each type r , Church numerals over r:

n"M =df \sT-*T\zr.sWz, n = 0 , l , . . .

5

These expressions are of type u[r] =df (r —• r) —* (r —> r) . We write i/*[r] for the sequence
of types i/°[r] = d f i/[r], . . z / t + 1 [r] = d f i / ' [t] -> i/«[r] = ^ [^ M l - (We let i /- 2 [r] = d f r , and
^ _ 1 [T] = d f T - * T .)

In S F 2 there are, for each k > 0, level-k polymorphic numerals,

nUk = d f A i * A s * - " A s * . $ M * ,

of type Vk =df Vi*. v[i\. These polymorphic numerals are stratified variants of the polymor
phic numerals of Fortune and O'Donnell [For79, ODo79]. We write v+ for the set {y^ \ k > 0}.

An expression E of type G\ —• • • • —> <jv —» r represents a p-ary recursive function F
(with inputs of types < 7 i , . . . , ap and output of type r j if the conditions Frii.. .np = m
and E(n\Yl • • • (nPYp ™>r are equivalent. If G\ = • • • = av = r we say that the
representation is over r.

If L is a typed A-calculus (that contains the rules of F i) , and if each one of T and S is a
type, a sequence of types, or a set of types, then Rep^T; S) will denote the set of functions
representable in L with inputs of types out of T, and output of type out of 5 . By Lemma
9 below, this is the same as itepgp (1 / * ; We s a y a function in Rep^2 is? simply?
representabie.

2.2. Representat ion of basic functions

L e m m a 1 Z (the constant zero function), S (successor), +, and x are in ^epp^j/fo];

The proof is well-known and goes back to Church (see e.g. [FL083]).

A function / is defined by recurrence from g and h if

/ (0 , £) = g(x),

tf(Sy,x) = h(f(y,x),y,x).

If y is not a direct argument of h in the second equation, i.e. f(Sy,x) = ft(/(y, x), x), then
/ is said to be defined from g and h by iteration.

L e m m a 2 Suppose f is defined by iteration from g,h 6 Repair; r) . Then f 6 RepL(r, i/[r]; r) .

Proof. Suppose G and H represent g and h in L, with inputs and output of type r . Then
/ is represented by the expression F =df Xy^Xx7. y(XuT.Hux)(Gx). •

From Lemmas 1 and 2 we obtain:

L e m m a 3 If f is defined by one iteration from Z, S, +, and x, then f € Repf^v^o]] v[6\).

6

2.3. Type uniformization

L e m m a 4 Repp^v^o]; v[o]) C RepSiF2(v0; v0).

Proof. Suppose a function / is represented by an expression Xxi • • • \xm.E, of type vjl [o] —*
... —• i/*m[o] —• i/[o]. Let j / i , . . . , y m be fresh variables of type u0 = V<°.i/[i], Then K = d f
y,(^*~2[<]) is a correctly typed expression, of type ^[^ J , " 2 [i]] = v^[t] (i = l , . . - , m) . Let

be the same as J5, except that every free occurrence of x t is replaced by YJ. Then E '
is a correctly typed expression (by induction on E), of type v[t]. Hence Ai.i?' is of type
Vt.i/[<] = i/0, and Aj/i • • • Xym. At. E' is an expression that represents / over v[6[. •

L e m m a 5 RepSF2(v*[v0]; i / 0) C i 2 e # g F 2 (i / i ; i / 0)

Proof. The proof is the same as for Lemma 4, except for the type abstraction. Suppose
/ is represented by some expression \x\... xm. E, of type vjl

 [i / 0] — > . . . — • i / J ' m [i / 0] — > i/o-

Let ? / i . . . y m be fresh variables, of type v\. Then YJ =df 2/ l(^ t" 2[^o]) is a correctly typed
expression (since L(z/ J'~2[z/0])) = 1), of type i/[i> j '*~ 2 [i>o]] = ^'[^o]- Let E' be E with each X{

replaced by YJ. Then Aj/i .. .ym. E' is an expression that represents / with inputs of type
v\ and output of type v$. •

L e m m a 6 If f is defined by two iterations from Z, S, +, and x , then f € Rep&iTiivii ^o)-

Proof. Suppose / is defined by iteration from functions h, that are in turn defined by
iteration from Z, 5 , + , and x . Then g,h G # e p F l (^ * [0] ; ^ H) , by Lemma 3; so g,h 6
^ e / ? S 1 F 2 (z / o ; ^o), by Lemma 4. Therefore, by Lemma 2, / £ -R^Ps i F 2 (l / *[I / o]! ^o), from which
/ 6 RepsiF2 (i/i; i/ 0), by lemma 5. •

2.4. Closure of representable functions under e lementary operations

The proof of Lemma 2 can be refined, to apply to additional forms of recurrence, as follows.
For types r , <7, define

(r, cr) =df Vi'.(r—»cr—• where / = m a x (i (r) , L(a)).

L e m m a 7 Suppose g is representable (in SF2) with inputs of types p and output of type t,
and h is representable with inputs of types r, cr, p (where cr is v[£] for some £ or v\ for some I),
and output of type r . Then the function f defined by recurrence from g, h is representable
with inputs of types i / [(r , cr)], p and output of type r .

7

Proof. The proof builds on Kleene's representation of the predecessor function (see e.g.
[FL083]). We use polymorphism to define a pairing function for expressions of different
type. For types r , a, let

P™ = d f \x\ y*. At. \u™-**Mxy (Pro is of type (r, a)).

If A, B are expressions of types r , <r, respectively, then we write (A, B) for ProAB. For
an expression E of type (r, a) we let (2?)i abbreviate Er(\xTy°.#), and (£) 2 abbreviate
Ea(XxTya.y). Then =^ A, and ((A , £)) 2 = p £ .

Let G and if represent g and respectively, with inputs and outputs as stipulated in
the lemma. Let s represent the successor function over a. Define

F = d f A y ^ M , ? . (y P + P 0) i
where P + = d f A ^ . (H {q)x (q)2 s ((q)2))

and P0 =df {Gx, 0a).

Then F represents / as required. •

Note that the proof above only requires that the output type of H be the same as the
type of its first input. We conclude that the schemas of bounded iterated sum and bounded
iterated product preserve representability:

L e m m a 8 If a € RepsF2> then E O J I I a G RepsY2, w ^ e r e S a (j / ,x) = J2i<y

 a(hx)> and
I I a (y ,x) = n . - < » a{i,x).

Proof. We have

S a (0 , f) = 0
£ a (y + l ,£) = £ a (y , x) + a(y,x) ,

n o (0 , x) = 1
II a (y + l ,x) = I I a (y ,x) - a(y,x).

The "recurrence functions" h(z, y, x) used in these schemas are, respectively, z + a(y, a?), and
z-a(y, x). Suppose a is representable by A, with inputs of types cr, /9 and output of type r . Let
1/ =df Xzryax.Fz(Ayx), where F represents addition over r . Then # represents z + a(y, x),
with output and first input of type r . By Lemma 7, it follows that E a is represented. The
proof for I I a is similar. •

2.5. Closure of representable functions under composi t ion

L e m m a 9 If f e RepSY2(1/^ uk), and d > 0, then f G RepSF2(vt+d; vk+d).

8

Proof. A straightforward induction on expressions shows that lifting all levels by d preserves
legal typing. Hence, if E represents / with inputs of type v\ and output of type and E'
arises from E by replacing each level label q by q + d, then E1 represents / with inputs of
type vi+d and output of type •

L e m m a 10 Suppose f 6 RepsF2(uh * • • Vl™\ "(>)• Let q > U (i = 1 . . . m). Then
f E #ep S F 2 (z / 9 ; j / o) .

Proof. Suppose that / is represented by Xxi... xm. E , of type —» • i//m —> v0. Let
J/i • . . J/m be fresh variables of type vq. Set YJ =df Atli.yit, and let =df E[Yi/xi... Ym/xm].
By induction on E , E1 is seen to be a legal expression, and E[n"li/xi] =p E ' [n^/ j / t] , for all
n > 0. Thus Aj/i . . . ym.E' is a legal expression, that represents / with inputs of type vq and
output of type v0. •

L e m m a 11 Suppose that f(x) = h(g(x)), where x = (xi... xn), g = (gi... gk), 9i £ RePsF2

(i = 1 . . . k), and h 6 itepgp . Tien / £ RepsF2-

Proof. By Lemma 10 there is a sufficiently large q such that each gi is represented by
an expression G t with inputs of type vq and output of type u0 (i = 1 . . . fc), and with h
represented by an expression H with inputs of type vq and output of type u0. By Lemma 9
there are expressions G[representing gi with inputs of type v2q and output of type vq. Thus,

F = d f Xx^...x^.H{G\x)---{G'kx)

represents / with inputs of type v 2 q and output of type vo. •

2.6. All super-elementary functions are representable

The Grzegorczyk class (fc > 0) is generated by composition and bounded recurrence
from Z, 5 , the projection functions, and the function F*, where Fq =<jf 5 , F\ =df Ax.2x,
F2 =df Ax.x 2 , and Fk+i(x) =df fI*](x) for fc > 2 (F ^ being the n ' th iterate of F) . £ 3 is
Kalmar's class of elementary functions, and the functions in £ 4 are dubbed super-elementary.
We have VIZ = £k [Grz53]. (For details see e.g. [Ros84].)

The following is stated in [Sta81] without proof.

L e m m a 12 Every super-elementary function is representable in S F 2 .

Proof. The predecessor function is in Rep? (v*[o]i v[o]) (see [FL083]), so, by Lemma4, also
in RepsY2(l/o] ^o). By Lemma 2 the cut-off subtraction function is then in i?epSp 2(i/*[z/ 0]; v0),
and so also in -Repgp (i/i; v0), by Lemma 5.

9

The initial primitive recursive functions are trivially representable, as is addition (Lemma
1). By Lemma 8, the class of representable functions is closed under bounded iterated sum
and product, and by Lemma 11 also under composition. Since £3 is the same as the class of
functions generated from the initial functions, + , and —, by composition, bounded iterated
sum, and bounded iterated product [Grz53], it follows that all elementary functions are
representable.

Since F4 is defined from addition by two iterations, it follows from Lemma 6 that F 4 is
also representable.

A standard construction shows that bounded recurrence can be defined in terms of com
position with elementary functions, bounded minimalization and bounded quantification.
(The construction is essentially due to Kleene; see e.g. [Ros84], proof of Theorem 1.3.1, p.
11, where bounded product is also used.) Bounded minimalization and bounded quantifi
cation are easily definable in terms of elementary functions and bounded sum and product
(see e.g. [Ros84] §1). It follows, by Lemma 8, that the class of representable functions is
closed under bounded recurrence.

The lemma now follows from the definition above of £4. •

3 - The representable functions are super-elementary

3.1 . Complex i ty of cuts

For a A-expression j B , a sub-expression F of E is a cut if F is the left immediate sub
expression of a redex FG or Fa in E. We write cut(E) for the set of cut sub-expressions of
E.

We define the following functions on expressions E and types r , related to their cut
complexity. The primary measure of complexity is the level of cuts, the secondary measure
is the degree of cuts of a given level (and in particular of the top level), and the ternary
measure is the multiplicity of cuts of given levels and degrees, in particular of the highest
cut-level present and for the highest present cut-degree for that level.

CL{E) =df max{L(F) | F G cut{E)}
DI(R) =df negative-nesting count in r of subtypes of level > /; i.e.,

D(tk)= i0 if k < !
I\) df ^ j otherwise

Di((t->t) =df max(sD/(cr), A (t))

where
sx =df if x = 0 then 0 else x+1

10

A(Vf f c . r) = d f |

D,(E)
CD,(E)
CD(E)

df
df

Di(type(E))
m&x{Di(F) | F G cut(E)}
CDi(E), where / = CL(E)

6u{E)
1 if E is a redex G 0 , with 1(G) > / and Dt(G) > d

df 0 otherwise
Mid(E) =df the maximal length of any chain of nested redexes G 0

with L(G) > I and D,(G) > d; i.e.,
Mid(x) =df 0

MU(GH) =df M G f O + m a x (M w (G) , M w (f f)) ,
MM(G<r) = d f M ^) + M W (G)
M M (Ax.G) =df Mid(G)
Mid(At.G) =df M W (G)

M (£) = d f M W (E) , where / = CL(E) and J = CD(E).

Note that -Dfc(r) > for k < /, by the definition of A .

3.2. Preservation of cut-complexi ty under subst i tut ion

L e m m a 13 Suppose that CL(E),CL(F),L(F) < I, and CDi{E)tCDi{F),Dt(F) < d.
Let E' =df E[F/x]. Then CL{E') < I, and CDi(E') < d.

Proof. Induction on E, by cases.

1. E is a variable y. If y is x, then E' = F; otherwise E' = E. In either case the lemma
is immediate.

2. E is of the form E0EU so E' = E'0E[(where E[=x Ei[F/x]). By induction
assumption CL(E<) < I and CDi(E<) <d(i = 0,1).

There are three sub-cases.

2(i) E' is not a redex. Then CL(E') = m&x(CL(E'0), CL(E[)) < /, and C A (£ ') =

m a x (C A (^) , C A (^)) < d.

2(ii) £ is a redex. Then L(E0) < I, Di(E0) < d. Since type(E'0) = type(E0), these
imply L{E'Q) < I, D,(E'0) < d. Hence CL(E') = max{CL{E'0),CL(E[),L(E'Q)) <
I, CD,(E') = m a x (C A (^) , G A (^) , D,(E'0)) < d.

2(iii) E' is a redex, but E is not a redex. Then Eq = x and E' = FE[. Since
L(F) < I and A (^) < d, CL(E') = max(C£(££) , C L (£ ;) , < /, and
CDi(E') = max(CA(£o)> < <f.

11

3. E is of the form Xu.E0. Then CL(E) = CL(E0) < I and CDt(E) = CDi(E0) < d, so
CL(E') = CL(E'0) < I and CD,{E') = CD^E'q) < d, by induction assumption.

4. E is of the form At.Eo or of the form EqO. These are similar to case (3).

•

L e m m a 14 Suppose L{E) < I, Dt(E) < d, and L(a) < 1. Let E' = d f E[a/t}. Then
L(E') < I and D,(E') < d.

Proof. If r is the type of a cut in E, then r ' =af T[cr/t] is the type of the corresponding
cut in E'. If L(t) < I, then L(t') < I. If L(t) = I, then, by a trivial induction on r ,
L(r ') = L{t) < I, and A (r ') = A (t) , s o Dt(E') < d. •

3.3. Canonical reductions

Let E be a A-expression. A redex G 0 in E (where 0 is a type or a A-expression) is canonical
if it is an innermost cut of the largest level-degree complexity in E; that is, I =df L(G) =
CL(E), d = c l f Di{G) = CD(E), MU(G) = 0, and, if 0 is a A-expression, Af w (6) = 0.

E reduces canonically to E\ E =$>c E', if E' is the result of reducing all canonical redexes
of E (the order makes no difference, since no canonical redex occurs within another).

L e m m a 15 Suppose E =^c E', CL{E) = /, CL\E) = d. Then CL{E') < I, CD,{E') < d,
and Mid(E') < Mld(E).

Proof. By induction on E. The only non-trivial case is where E is a (unique) canonical
redex of itself. We have two cases, corresponding to the two sorts of redex.

Case 1. E is of the form (\xr.E%)F, and E' = E0[F/x]. Since E is a critical redex,
L(t -><t) = /, Di{t -+<r) = d, and Mld(E0) = Mld(F) = 0. We claim that Dt(F) < d:
if L(F) = L(t) < I, then D,(F) = 0 < d (d > 0, by definition of CD); if L(F) = /,
then Di(t) < Di(t a) = d. Thus, by Lemma 13, CL(E') < I and CDi(E') < d, so
Mid(E') = 0 < 1 = Mld(E).

Case 2. E is of the form (As.E0)cr, and E' = E0[a/t]. By the stratification condition
on type application, L(<x) < L(s) < I. Hence, by Lemma 14, L(E') < I and Di(E') < d, so
Mld(E') = 0 < 1 = M,d(E). •

For a A-expression E, let n(E) =af (CL(E),CD(E), M(E)).

L e m m a 16 If E =*>c E', then n{E') -< fi(E), where -< is the lexicographic ordering.

12

Proof. Let / = CL{E), d = CD(E), m = M (F) , V = CF(F ') , d! = CD(E'), m' = M(E').

By Lemma 15, /' < /. If /' < /, then fi(E') -« / / (F) . If /' = /, then d! = CDV(E') =
CDi(El) < CD(E) = d, by Lemma 15. If d' < d, then fi(E') -< / / (F) . If d = d1', then
m! = M (F ') = MVd,{E') = Mld(E') < Mld(E) = M(E) = m, again by Lemma 15. •

3.4. Super-elementary bounds on length of normal forms

For an expression F , let

GD(E) =df max{i)o(F) | F a sub-expression of F , },
| F | =df the height of the applicative part of F ,

i.e.
|*| = 0
|FG | = max(|F | , |G |) + l
| F r | = | F | + l
\Xx.F\ = \At.F\ = \F\

We collect some straightforward properties of these measures in the following:

L e m m a 17 1. D,(F) < GD(E) for all I;

2. Mld(E) < \E\ for all I, d;

3. HE =>c F ' , then | F ' | < 2-\E\ (and so M(E') < 2-\E\), and GD(E') < GD(E).

(For (3), note that | F ' | < 2-\E\ whenever F reduces to F ' , but F =^ c E' by possibly several
reductions.)

We define primitive recursive functions / i / , / > 0, by the following recursions with param
eter substitution (cf. e.g. [Ros84], §1.3).

ho(0,0,x,g) = x
hi(d, ra+1, x,g) = hi(d, m, 2x,g)
hi(d+l,0,x,g) = hi(d,x,x,g)
hi+! (0,0, x, g) = rn(g,x,x,g)

Clearly, each hi is non-decreasing in each one of its arguments, since we use in the definitions
only non-decreasing functions. Also, hk(a) > hi(a) for k > I. (Detailed proofs are by nested
inductions on /, g, and m.)

L e m m a 18 hi is super-elementary for all L

13

Proof. Let

7 / (0 , m, x) = 2 m . £
7 / (d + l , m , x) = 2T> (d 'm '*) . 7 / (< 2 , m , x)

The function 77 is defined by a single recurrence from elementary functions, and is therefore
super-elementary (see e.g. [Ros84] or [Schw69]).

Claim 1. 7?(d, ra+l,x) = 7?(d, ra,2x) for all arguments. The proof is straightforward by
induction on d.

Claim 2. r/(rf, = r/(d+l, 0 , x) for all arguments. Again, a straightforward induction on
d.

Claim 3. ho(d,m,x,g) = r)(d,m,x) for all arguments. The proof is by main induction on d,
using Claim 2, and secondary induction on m, using Claim 1.

Claim 4- hi+i{d,m,x,g) = hi(g,rj(dy m,x) ,7 / (cf ,m,x) ,g) for all / and all arguments. The
proof is by main induction on d and secondary induction on m. We have

(0 , 0 , x , g) = /*/(#, x, x, g)
= hi{g, 7 / (0 , 0 , x), 7 / (0 , 0 ,

/ i /+i(d,m+l, :r ,#) = /& / + 1(d, m, 2x,#)
= hi(g, 7/(rf, m, 2x), 7/(cf, ra, 2x), g) by induction assumption
= hi(g,r](d, ra+l,x),7/(d, ra+1, a;), </) by Claim 1,

and
/*H_i(d+l ,0 ,x,#) = hi+i(d,x,x,g)

= hi(g, 7/(d, x, 7/(d, x, x), </) by induction assumption
= hi(g,Tj(d+l,0,x)Jrt(d+l,0,x),g) by Claim 2.

It now follows that every hi is super-elementary, by induction on /. Claim 3 establishes
the induction's basis. is defined by composition from 7/ and /*/, which by induction
assumption is super-elementary; hence is super-elementary. •

L e m m a 19 If fi(E) = (/,<*, m) then \norm(E)\ < }n(d,m,\E\,GD(E)).

Proof. By (course-of-value) induction on (/,d, m), i.e., main induction on /, secondary
induction on d, and ternary induction on ra.

If m = 0 , then E is normal and / = d = 0 . We have \norm(E)\ = | £ 7 | = fco(0,0, | E | , f l f)

for any 5 .

Suppose M(E) = m + 1 . Let E =>c so MW(JE') = ra, and < 2- |£ | .

14

Case 1. L(E') = I and CD(E') = d, so M(E') = Mld(E') = m.

\norm(E)\ = \norm(E')\
< hi(d,m, \E'\, GD(E')) by induction assumption
< h{(d,m,2-\E\,GD(E))

since \E'\ < 2-\E\ and GD(E') < GD(E)
= hi(d,m+l,\E\,GD(E))

Case 2. L(E') = I and d' = d i CD(E') < d, so m = 0.

\norm{E)\ = \norm(E')\
< ht(d', M(E'), \E'\, GD(E'))
< ht(d-l,2-\E\,2-\E\,GD(E))
= h,(d,0,2-\E\,GD(E))
= h,(d,l,\E\,GD(E))
= hi(d,m+l, \E\,GD(E))

by induction assumption
since d! < d— 1

by definition of hi

Case 3. I' = d S L(E') < I, so m = 0.

\norm(E)\ = \norm(E')\
< hi'(GD(E'), M(E'), \E'\, GD(E')) by induction assumption
< hi_i(GD(E),2-\E\,2-\E\,GD(E)) since > hv

= ht(0,0,2-\E\,GD(E)) by definition
= ht(0,l, \E\,GD(E))
< hi(d,m+l,\E\,GD(E))

•

3.5. Super-e lementary normalization functions

We turn to exact normalization functions for S F 2 . For each / < 0 we show that the normal
ization function for S'F2, as a function on codes of expressions, is super-elementary.

Fix a canonical (Godel-) coding of expressions, E t—> #E, with elementary functions
A A A A

m, a, and f, such that for every expression E, l(#E) = CL(E), d(#E) = CD(E),
m(#E) = M(E), a(#E) = \E\, and if E =>c E' then r(#J5) = # (£ ') • Such functions may
easily be defined so as to return 0 when the argument is not the code of an expression. For
/ > 0 we define the function h\ by:

15

n/(d, ra, x) = 0 if either x is not the code of an expression,
/ > /(ar), d > d(x), or ra > ra(x);

Otherwise:
hi(d,m,x) = n/_i(d, ra,x) if/(x) < / ;

Otherwise:
n o(0,0,ar) = x

n/(<f,m+l,x) = n,(d,ra,f(x))
n/(c?+l, 0, x) = n/(J(r(x)), ra(r(x)), r(x))
n / + i (0 ,0 , x) = ni(d(r(x)), m(r(x)), f(x))

L e m m a 20 If //(E) = (/,d,ra) then #norm(E) = fn(d,m,#E).

Proof. Straightforward, by nested course-of-value induction on /, d, and ra. •

Let

N^x) —df { ™t(*)(^(x^™(x)>x) *f x = f ° r s o m e E with CL(E) < /,
\ 0 otherwise

L e m m a 21 For each 1 > 0, the function Ni is super-elementary.

Proof. For each / > 0, Ni is defined from elementary functions by composition and course-
of-value recursion with parameter substitution. The latter can be converted to instances of
(simple) recurrence (see e.g. [Ros84] §1.3). Moreover, all these recurrences are bounded by
functions elementary in fe/, by Lemma 19. Since, by definition, £ 4 is closed under bounded
recurrence, it follows that Ni is super-elementary. •

3.6. The representable functions are super-elementary

Theorem 22 Rep$Y~ = £ t -

Proof. We have it*epSF-> =2 by Lemma 12.

For the converse, suppose that E represents in S ' F 2 an ra-ary function / , with inputs
of type v\x...v\m and output of type u0 (Z i . . . / m < /). Then, for every ki... km > 0,
normal?1

 • • • fcmm) is vu«, where v = d f f{ku..., km). Note that I t ? " 0) = f(ku ..., km). Let
c (f c i , . . . , km) = d f #(Eki • • • fcm), which is an elementary function. Then / (& i , . . . , km) =
a(7V/(c (fc i , . . . , km))). Thus, by Lemma 21, / is the composition of super-elementary func
tions, and so it is super-elementary. •

16

4 . Limitative properties of the stratified calculus

4.1. Length of reduction sequences

The represent ability of all super-elementary functions implies that there is no super-elementary
function that bounds the length of reduction sequences.

Theorem 23 There is no super-elementary function b such that, for every expression E of
S F 2 ? ^ the length of the shortest reduction sequence starting with E.

Proof. Suppose 6 were a function as above; then c(x) =df 2 6 ^ + 1 ^ - (x + 2) is also super-
elementary, and therefore represented by some expression C. Then, for any k > |C| ,

b(k+l) — b{\Ck\) > the length of the shortest reduction sequence starting with Ck.

Since a reduction on an expression E at most doubles \E\, this implies that

c(k) > 2 6 (* + 1) . (f c+ l) by definition of c
= 2h^-\Ck\
> \norm(Ck)\ by the property above
= c(k) since C represents c,

a contradiction. •

Let # be a numeric canonical coding of expressions. We assume that the basic syn
tactic operation on expressions are elementary with respect to codes. Also, without loss
of generality, we assume that # (n) > n for all n: any coding can be transformed by an
elementary-equivalent coding that satisfies this condition. The proof of Theorem 23 can be
refined to obtain the following.

Theorem 24 There is no super-elementary function B such that, for every expression E of
SF2, B(#E) > the length of the shortest reduction sequence starting with E.

Proof. Suppose B were a function as above. Let w be an elementary function such that
> #(Ek) for all k and all E with < k. Define an elementary function r by

r{x) =df max { # F | E reduces in one step to j F for some E with #E < x } .

Define functions R and c by

R(0, x) =df x
R(i + l,x) =df max(i?(i ,x) , r(R(i,x))

c(x) = d f R(B(w(x)),w(x)) + l.

17

Then R is super-elementary, and therefore so is c. Also, R is non-decreasing in both argu
ments, and i?(i,x) > rM(x).

Let C represent c. Then, for k > # C ,

c(k) > R{B(w(k)),w(k))
> R(B(#(Ck)),#(Ck))

by definition of w, since k > #C and R is non-decreasing

where i = B(#(Ck)), by definition of R
= max { # £ | Cifc reduces to £ in < B(#(Ck)) steps }

by definition of r
> #(norm(Ck))

by the assumption on J5

> c(k)
by the assumption on # , and since C represents c,

a contradiction. •

4.2. Complex i ty of equality

Given a A-calculus L, the equality problem for L, Eq[L], is the problem of deciding, given two
expressions of L, whether they are /?-equal. Statman [Sta79] showed that Eq[Fi] G £4 — £3.

Theorem 25 Eq[SF2] £ £5 — £4.

Proof. Let H{l,x) =df hi(x). By Lemma 18, H is defined by course-of-value recurrence
with parameter substitution from 77 G 5 4 :

(0 , d , m , x , </) = 7/(cf,m,x)
(/ + 1 , d, m, x, 0) = # (/ , r}(d, m, x), 7/(d, m, x),g).

So H e £5 (see [Ros84] or [Schw69]). Let N'(x) =df ^ x) (x) ; then Nf G 5 5 , since N' is
definable by recurrences bounded by functions elementary in H. It follows that the function

df 1 0 o t h e r w i s e

is in £ 5 , and decides /^-equality of expressions of S F 2 . Thus Eq[SF2] G £5-

Suppose Eq[SF2] G £ 4 . Let {En}n be an elementary enumeration of all A-expressions of
S F 2 . The assumption implies that the function

otherwise
f 1 if Enn =

J W -df I o otherwis

18

is in £ 4 , hence representable by some Ek G SF 2 . But then Ekk =0 0 iff Ekk =p 1, a
contradiction. •

5 . Stratified polymorphism with type recursion

5.1. Recursive types

Suppose r is a type expression of F 2 in which the type variable t has no free negative
occurrences (an occurrence is negative if it is in the negative scope of an odd number of —•).
Then f H T , understood as a set theoretic operation, is positive, and has a minimal fixpoint
[Acz77, Men87]. Let fit.r be a new type expression, intended to denote that minimal fixpoint.
[Men87] and [Lei90] discuss several calculi in which F 2 is augmented with constants and
reduction rules, intended to convey that meaning of fit.r. We briefly describe the stratified
variants of two of these.

Let F 2 I be F 2 augmented with type expressions fit.r for every r and t non-negative in
r ; with, for each such 8 = fit.r, a closure constant C$, of type r[8] —» 8, and an induction
constant Is, of type Vs.(V£.((£ —• s) —» r —> s) —• 8 —> s); and with a new closure reduction,
mapping Is<tE(CSF) to E8(IsaE)F (cr an arbitrary type, t[8] =df r[8/t], E of type Vi.((f —>
a) —> r —* cr), and F of type r[8]).

Proposit ion 26 A stratified version S F 2 I of F 2 I must iiave L(fitl.r) = 1 = I (r) .

Proof. If the type of I8 is Vsm.(W.((t -> s) r -+ s) 8 -> s), then the type of £ in a
reduction as above is Vi/.((< —> a) —> r cr). Since £ is an argument of E, L(8) < I. On
the other hand, except for the trivial case where t is not free in r , r is of level > /. Hence,
to permit the type fitl.r, with t free in r, we should have L(fitl.r) = /. •

Proposition 26 states that an inductively generated type has the same level as the level of
the operator defining it. This bit of impredicativity is implicit in a number of foundational
contexts, notably in the justification of induction [Lei90b]. We conjecture that, as a result,
there are numeric functions representable in S F 2 I that are not representable in S F 2 . This
would be in contrast with the innocuous computational effect of adding recursive types to
F 2 : Every function representable in of F 2 I is provably recursive in second-order arithmetic
[Men87], and is therefore already representable in F 2 [Gir72].

Another extension of F 2 with recursive types, F 2 / i , has recursive types 8 = fit.r as above,
but no new constants or reductions. Instead, F 2/x liberalizes the typing conditions of F 2 , as
follows. Let ~ M be the relation that holds between types a and /? if (3 results from replacing
in a an occurrence of 8 by r[8], for some type 8 of the from fit.r. Let = M be the minimal
symmetric and transitive relation R that contains ~ M and is closed under replacement of

19

i?-equivalent types (which avoid capturing free type-variables). If E : a —> p, and F : cr\
with a = M < t ' , then we let EF be a legal expression, of type p. F 2jx is consistent with jit.r
being interpreted as any fixpoint of t »-» r , not necessarily the minimal one. In a stratified
version S F 2 / i of F 2/x, the requirement L(fj,tl.r) = / = L(r) is immediate, from the explicit
identification of 8 with r[8] in the typing rules.

5.2. Algorithms representable using recursive types

Although adding recursive types to F 2 does not result in new functions being representable,
it does allow new algorithms to be typed. Consider the function if y > x then 6 else a ,
an equational program for which is

/ (s (x) ,y , a ,6) = / (y , x , 6 , a)
/ (0 ,y , a ,6) = a.

A A-representation for this program, relative to Church numerals, was invented by Maurey
(reported in [Kri87]): Let F =df A/,g.gf, A =m Au.a, and B =df \u.b. Then

F [n + 1U(F[m] B) = F(F[n] A){F[m]B)
=p F[m]B{F[n]A),

F[0]A(F[m]B) = A(F[m]B)
=P a,

F[0]B(F[m]A) = B{F[m]A)
b.

So / is represented by the expression M = Ax, j / , a, b.xFA(yFB).

While this expression cannot be typed, for Church numerals as input and output, in F 2

[Kri87], we have:

Proposi t ion 27 Maurey's algorithm can he typed, as a function over v>0, in S 1 F 2 /x .

Proof. Let s be a type variable of level 0, a v[s], and 8 =df fit0, (t —> a) —> a. So
8 =fi (8-»a) —>cr. Hence i<\ =df Xf^g6.gf is correctly typed, and has type (8->cr) -*6 —>a,
and F 2 =df X^g^.gf is correctly typed, and has type <5 —• (£ —> cr) —• cr = M <$ —> 5. Also,
A =df Aw^.a^^ is of type 8—>cr, and 5 =df Au*"*7.^0^ is of type 8.

It follows that the expression

XxVQyl/0ay°bl/\As.x{8^a)FlA{y8F2B)

typed form of Af, in S 1 F 2 | i , which represents Maurey's Algorithm over i/0. • is a

20

References

Acz77 Peter Aczel, An introduction to inductive definitions, in J. Barwise (ed.), Handbook of
Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 739-782.

FL083 Steven Fortune, Daniel Leivant, and Michael O'Donnell, The expressiveness of simple and
second-order type structures, Journal of the ACM 30 (1983), pp 151-185.

For79 Steven Fortune, PhD Dissertation, Cornell University (1979).

Fri75 Harvey Friedman, Equality between Junctionals, in R. Parikh (ed.), Logic Colloquium,
Springer-Verlag (LNM #453), Berlin, 1975, 23-37.

Gir72 Jean-Yves Girard, Interpretation fonctionelle et elimination des coupures dans Varithmetique
d'ordre superieur, These de Doctorat d'Etat, 1972, Paris.

Grz53 A. Grzegorczyk, Some classes of recursive functions, Rozprawy Mate. IV, Warsaw,
1953.

Kre60 Georg Kreisel, La Predicativite, Bull. Soc. Math. France 88 (1960) 371-391.

Kri87 Jean-Louis Krivine, Un algorithme non typable dans le systeme F, C R . Acad. Sci. Paris,
Serie I, 304 (1987) 123-126.

KTU88 A.J. Kfoury, J. Tiuryn and P. Urzyczyn, A proper extension of ML with an effective
type assignment, Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, ACM, New York, 1988, 58-69.

Lei89 Daniel Leivant, Stratified polymorphism, Proceedings of the Fourth Annual Sympo
sium of Logic in Computer Science, IEEE Computer Society, Washington DC, 1989,
39-47.

Lei90 Daniel Leivant, Contracting proofs to programs, in P. Odifreddi (ed.), Logic and Com
puter Science, Academic Press, 1990, 279-327.

Lei90a Daniel Leivant, Discrete Polymorphism, Proceedings of the Sixth ACM Conference
on LISP and Functional Programming, 1990, 288-297.

Lei90b Daniel Leivant, Computationally based set existence principles, in W. Sieg (ed.), Logic
and Computation, Contemporary Mathematics, volume 106, American Mathematical So
ciety, Providence, R.L, 1990, pp. 197-211.

Men87 N.P. Mendler, Recursive types and type contraints in second-order Lambda Calculus, Pro
ceedings, Symposium on Logic in Computer Science, Computer Society Press of the
IEEE, Washington, 1987, 30-36.

MH88 John Mitchell and Robert Harper, The essence of ML, Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages,
ACM, New York, 1988, 28-46.

Myc84 A. Mycroft, Polymorphic type schemes and recursive definitions, in M. Paul and B. Robi-
net (eds.), International Symposium on Programming, Springer-Verlag (LNCS #167),
1984, 217-228.

21

ODo79 Michael O'Donnell, A programming language theorem which is independent of Peano
Arithmetic, Eleventh Annual ACM Symposium on Theory of Computing, ACM,
New York, 1979.

Pey87 S.L. Peyton-Jones, The Implementation of Functional Programming Languages,
Prentice-Hall, 1987.

Rey74 John Reynolds, Towards a theory of type structures, in J. Loeckx (ed.), Conference on
Programming, Springer-Verlag (LNCS #19), Berlin, 1974, pp. 408-425.

Rey84 John Reynolds, Polymorphism is not set-theoretic, in G. Kahn, D.B. MacQueen, and
G.D. Plotkin (eds.), Semantics of Data Types, Springer-Verlag (LNCS #173), Berlin,
1984, pp. 145-156.

Ros84 H.E. Rose, Subrecursion, Clarendon Press (Oxford University Press), Oxford, 1984.

RP88 John Reynolds and Gordon Plotkin, On functors expressible in the polymorphic typed lambda
calculus, Report C M U - c s - 8 8 - 1 2 5 , Carnegie-Mellon University, 1988 (also to appear else
where).

Rus08 Bertrand Russell, Mathematical logic as based on the theory of types, American Journal
of Mathematics 30 (1908) 222-262. Reprinted in H. van Heijenoort (ed), From Frege to
Godel, Harvard University Press, 1967, 150-182.

Schw69 Helmut Schwichtenberg, Rekursionszahlen und die Grzegorczyk-Hierarchie, Archiv fur
mathematische Logik 12 (1969) 85-97.

Sta79 Richard Statman, The typed \-calculus is not elementary recursive, Theoretical Com
puter Science 9 (1979) 73-81.

Sta81 Richard Statman, Number theoretic functions computable by polymorphic programs, Twenty
Second Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Angeles, 1981, 279-282.

Wan54 Hao Wang, The formalization of mathematics, Journal of Symbolic Logic 19 (1954)
241-266.

Wan62 Hao Wang, Some formal details on predicative set theories. Chapter XXIV of A survey of
Mathematical Logic, Science Press, Peking, 1962. Republished in 1964 by North Holland,
Amsterdam. Republished in 1970 under the title Logic, Computers, and Sets by Chelsea,
New York.

WR10 A. Whitehead and B. Russell, Principia Mathematica, volume 1, Cambridge University
Press, 1910.

22

file:///-calculus

