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Storage capacity of the linear associator:
Beginnings of a theory of computational memory

Dean C. Mumme
Learning Research and Development Center
University of Pittsburgh

This paper presents a characterization of a simple connectionist-system, the linear-associator, as both a
memory and a classifier. Toward this end, a theory of memory based on information-theory is devised.
The principles of the information-theory of memory are then used in conjunction with the dynamics of the
linear-associator to discern its storage capacity and classification capabilities as they scale with system
size. To determine storage capacity, a set of M vector-pairs called "items" are stored in an associator
with N connection-weights. The number of bits of information stored by the system is then determined to
be about (N/2) log,M. The maximum number of items storable is found to be half the number of weights

so that the information capacity of the system is quantified to be (N/2)log,N.

Classification capability is determined by allowing vectors not stored by the associator to appear at its
input. Conditions necessary for the associator to make a correct response are derived from constraints of
information-throughput of the associator, the amount of information that must be present in an input-
vector and the number of vectors that can be classified by an associator of a given size with a given
storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems.
For an associator with a simple non- linearity on its output, the merit figures are evaluated and shown to
be suboptimal. Constant attention is devoted to relative parameter size required to obtain the derived
performance characteristics. Large systems are shown to perform nearest the optimum performance
limits and suggestions are made concerning system architecture needed for best results. Finally,
avenues for extension of the theory to more general systems are indicated.'

'This research was sponsored by the Army Research Institute. under Contract No. MDA903-86-C-0149 and Personnel and
Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract Nos. N-0014-86-K-0107
and N-0014-86-K-0678. Work submitted as Ph D. thesis to the University of lllinois.
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This thesis presents a characterization of a simple connectionist-system, the linear-assoclator, as
both 2 memory and a classifier. Toward this end, a theory of memory based on Information-theory s
devised. The principles of the Information-theory of memory are then used in conjunction with the
dynamics of the linear-associator to discern Its storage capacity and classification capabllities as they scale
with system size. To determine storage capacity, a set of M vector-pairs called ®items® are stored In an
assoclator with /N connection-weights. The number of bits of Information stored by the system Is then
determined to be about (N/2)log2 M. The maximum number of items storable is found to be half the

number of weights so that the Information capacity of the system is quantified to be (N/2)l<'>g2 N.

Classification capability Is determined by allowing vectors not stored by the associator to appear at
its input. Conditions necessary for the associator to make a correct response are derived from constraints
of Information theory and the geometry of the space of input-vectors. Results Include derivation of the
information-throughput of the associator, the amount of information that must be present in an lhpuc-
vector and the number of vectors that can be classified by an associator of a given size with a given

storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifler
systems. For an associator with a simple non-linearity on its output, the merit figures are evaluated and
shown to be suboptimal. Constant attention Is devoted to relative parameter size required to obtalin the
derived performance characteristics. Large systems are shown to perform nearest the optimum
performance llmits and suggestions are made concerning system architecture needed for best results.

Finally, avenues for extension of the theory to more general systems are indicated.
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Preface

The approach of Minsky and Papert in their book Perceptrons [35] provided the motivation for this
research. Their analysis of the perceptron introduced useful mathematical tools for understanding
performance-limitations of *neural-based® systems. In additlon, it charted and quantified these limitations
and identified important areas for future investigation. As a result, the book Perceptrons identifled issues
of learning and performance that have continued to be of concern to Connectionist researchers even now
that the challenge for multi-level learning algorithms has to some extent, been answered. The author
believes that the mathematical tools developed by Papert and Minsky will themselves be useful for better
understanding of connectionist architectures. In the author’'s view, the only short-coming of the work
done by Minsky and Papert (and perhaps Rosenblatt as well) was their perspective. They treated the
perceptron from a "computer® point-of-view. It was expected, for example, to determine whether or not a
*retinal object® was ®connected® even when the off-on state of a single ®*pixel® could determine the

correct answer.

Most certainly, natural perception-systems don’t work In this fashion. Indeed, they must determine
the connectivity of objects despste inconsistencies or nolse in the input-stimull. This eliminates the
possibility of ®computations® whose result is affected by a single stimulus element. The proper
perspective for these systems in the author’'s view is a probabllistic one in which the system’s proper
response Is characterizable in some way but Is robust to uncertain, degraded, incomplete, and even
Inconsistent Information. The classifier identified in this work typlfies just such a system and the forgone
analysls should exemplify the proper viewpolnt and methods for future investigations of systems of this
nature. In this light, this work will have been of merit If it has |dentifled issues valuable to future efforts

and provides methods for analysis of perceptual/cognitive systems.
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Chapter 1

Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and
perceptrons |35, 38| and later work In parallel assoclative memories, e.g. [21, 40]. Minsky and Papert
in {35] had carried out rather extenslve mathematical analysis on perceptrons revealing inherent
limitations in the classes of problems they could solve. These systems were ®learning® automata expected
to classify input ®*stimuli® based on their past experience on *training® inputs. Minsky and Papert showed
that multiple-stages of perceptrons were required for many problems of interest yet no tralning algorithm
guaranteed to converge to a solution was known at the time for multi-level systems. They concluded in

their book that the systems held little promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development
of several multi-level learning algorithms |9, 22, 36, 40, ch. 5-8], descendant offshoots of the perceptron
have regained interest. Currently a variety of these automata exist and are known by names such as
*Neural-nets®, "Parallel Distributed Processors® (PDP networks), ®Associative Memories®. They are
collectively called "connectionist architectures® and have been studied as self-organizing memories of
perception 28] content-addressable memories, helrarchical knowledge bases, and classification
systems [5, 6/ models of human ®neural-computation® [6, 18] of human task performance and attentional

learning [41, 44| speech performance and natural language understanding [13, 40, ch. 18, 42].

These and other efforts have led to guarded optimism for the future of connectionist architectures as
knowledge engines or as models of human intelligence. Capabllities and limitations of both task learning
and performance have been demonstrat,ed.l However, though many mathematical Investigations (e.g.
Barto (9], Golden {15, 14], Grossberg (19, 18|, Kohonen [28]), have been conducted, including Information-
capacity studles (see Abu-Mostafa 1, 2], Amit |3, 4], Keeler [27|, Little, et. al. [32), McEllece, et. al. [34]),

there is much room for development of analytical understanding of the capabllities of these systems.

1Good introductory articles to the subject include the books [21, 40]. For an introduction to the mathematics of
®connectionist® or "neural-based® systems, see (7, 40, ch. 0].



Development of connectionist memory systems In several forms has changed the concept of memory
from storage memory to what the author calls computational memory. Digital and other local
memories are examples of storage memory and have been supplimented by the distributed/overlayed
memory systems. The latter have more complex characteristics. Interference between items stored result
in the capabllity of these systems to implicitly represent the regularities/relationships among the [tems.
Subsequently, computation and storage in the system are no longer distinct processes but integral aspects
of the same phenomenon. These systems are *information engines® or "computational memory® rather

than *"information receptacles®.

A formulation is needed of memory as a general mode of storage and computation. An information-
theoretic approach appears most natural and promises to identify the essentlal features of memory

operation. The purpose of this thesis is threefold:

1. Analytical Models: A germinal characterization of memory theory will be presented. The
capabilities and limitations of any memory should then be expressible in terms of Information
flow. Resultant information-theoretic relations will provide the desired means of analysis and
a framework for understanding any particular memory system as a member of the general
class of computational systems.

2. Relavant Issues: Theory In 1 is used to ldentify major Issues to be addressed for the
understanding of storage memory. These Issues include identification of *memory tasks®,
amount of Information provided by the memory for the task, amount of information required
by the task for a given amount of storage, the maximum number of i{tems storable in the
system with respect to the specified task, deflnitlon of memory load, memory load v.s.
performance, identification of particular tasks useful to computation.

3. Evaluation of quantitative performance: Performance of the associator with respect to
Issues identified in objective 2 Is quantified utilizing the theory from objectlve 1. First,
storage-capacity Is “evaluated so that the notion of ®"memory-load® can be developed.
Classification capabilities are then evaluated as the memory-load is Increased. Architectural
considerations and hardware tradeoffs are addressed, as well as performance degradation due
to the introduction of non-linearities at the system-output. Finally, figures of merit are used
to compare system performance with the optimal.

It Is intended that this work will provide the proper context and starting point for further

investigation of memory as a computational structure.

1.1. "Neural-based*® systems

Matrix models of parallel distributed memories were derived as - simplistic model of brain cell
computation. In the model, the output of each cell is a real number, y representing the deviation of the
cell's firing frequency from some reference frequency. As such, y can be negative as well as positive.
The Inputs {21,22, C ,zn} to the cell are simillarly real valued and each lnput, z; has an assoclated

coupling strength w, to the cell which determines the effectiveness of that Input on the ceil output. The




cell determines its output by taking the weighted average of the Inputs,

n
1
y= ;Z Witi
1=1
where (wl, W,y - - - ,wn) Is called the cell’'s *weight-vector®. The matrix memory is constructed from a
collection of these cells, each sampling the same set of Inputs. If ny Is the number of inputs to the

memory and "o s the number of cells in the memory, the vector x = (z .. "tn(t)) of inputs when

1o -
presented to the input of the system produces an output vector, y = (yl,yz, e .yn(o)) given by the

1

relatlon y = —Wx where W Is the matrix of coupling weights wﬁ. connecting the ith input to the jth
n
I

cell [21, 28]. We note that each ®*cell® or ®unit® Is merely taking the dot-product between the input-

vector and the unit's weight-vector.

To store information in this system, two sets of vectors called the input prototypes {fl,fz, ce ,fM}
and the output prototypes {31,32, C ,gM} are used. For each Input prototype f , the weights of the
system are adjusted so that the g, Vvector results at the system output when fm Is presented at ‘the

input. The system Is then sald to associate fm with 8, For each m=1,2,...,M, the matrix that Is

th

used to associate fm with g  (called the m™ assoclation) Is the outer-product gmffn |21, p. 18]. To

store the M associations, these M‘ matrices are added to obtain:

M T |
W= Z g f_ (1.1)
ma==]
The information for each assoclatlon is distributed over the whole of W and therefore Is overlaid with the
information for the other associations. The resulting interference between associations Increases with M,
and ultimately limits the number of assoclations storable in the system.

In the case that fl,fz, R ¢

A 2T mutually orthogonal, no interference exists. When fk Is input to
2

the system, we have

1 M T
wr, = = 6,00,
Im=|

1 T
= —gf f
nlskklz

)
“The symbol || here refers to the ®length® of a vector given by the euclidean norm.



1
= —it,I’s,. k=12 ....M
"

The matrix produces a multiple of g, when fk Is present at the input. If the fk are chosen so that

lf;,lz =n, then g, Is reproduced exactly [8, p. 804, 21, p. 18].

We will be concerned with the case that the input prototypes are not orthogonal. Noting that f:fk

is the dot-product fk-fm we can rewrite the product WFk as

M
Wfk = Z (fk'fm)gm

e |
Now the dot-product between two vectors is a measure of how well they *match® (assuming all vectors
have the same length). The product Wfk Is therefore a llne;r comblnation of the output-prototypes with
the coefficlent of g being proportional to how well fm matches fk, m=1,2,..., M. Since the
input-prototype that best matches fk Is the vector Itself, It follows that the output-prototype that has
the largest coefflcient In the linear combination Is the vector g, In the chapters that follow, the
prototypes will be chosen randomly in such a way that they will be very nearly orthogonal to each other.
Therefore, the dot-products f,-f  will be small for m = 1,2,..., M, m # k. This means that as
long as there are not too many prototypes stored In the system, fk-fmgk will be the dominant term in the
>utput prototypes. We conclude that the linear-associator can be seen-as a
particular, [t produces an output vector that is a best match to the prototype
/ st-matches fk (from among all the Input-prototypes) Is present at the input.
\\‘ tput vector will have contributions from other output prototypes and so Is not
strict sense. When a better best-match computation Is needed, a device

s used.

1.2. Auto-association

The systems described above are called ®"hetero-assoclators® because the ®*input prototypes® are
distinct from the ®output prototypes®. That Is, fm 74 8, - In fact the dimenslonality of the input
prototypes may differ from the dimensionality of the output prototypes as seen above. An *auto-
assoclator® Is simllar to the hetero-assoclator except that the input and output dimensionalities are the

same as are the input and output prototypes. That Is fm

g, M=1.2 ..., M . After the welghts
are adjusted for storage of the M assoclations, retrieval occurs when a *damaged® Input is presented to
the system. The *damage® is due to nolse In the Input signal or the fact that the input may be specified

Incompletely. The output that results {s passed through a non-linearity (8, 40, p. 61-85, 324-325| to limit




the growth of the size of the vector components. The output wlll be a better rendition of the proper Input

prototype provided the matrix Is not overloaded (l.e. provided M Is not too large).

Since the output Is an Improved version of the input, the signal can be fed back to the Input of the
system to obtaln further improvement. The process Is repeated several times until the vector stablilizes.
the result is generally a highly improved version of the Initlal Input. The limitation keeps the output
vector from growing without limit and tends to force it to stablllze at or very near the proper
prototype |6, 24]. Variations of the auto-assoclator include the "Hopfield net® {23, 24, 25|, the *Braln-

State-in-a-Box® or "BSB® model [6, 14|, and the *Boltzmann Machine*® [22].

From the perspectlve of memory systems, the difference between hetero- assoclators and auto-
associators Is that for the latter, the input signal provides direct information about the output. In the
hetero-associator, the input serves only as an ®"address® or ®"approximate address® from which the proper
output is to be retrieved. The auto-assoclator’s Input Is both an address and a partial specification of the
proper output. In any event, the auto-associator produces an output that Is the prototype that best-
matches the input vector. The algorithm degfades as the system stores more prototypes but should be an

improvement on the hetero-associator for the same storage load.

In the chapters to follow, we will often study the performance of a best-match algorithm that takes
as its Input a vector produced at the output of a linear-associator. The best-match algorithm considered
in the analysis Is arbitrary but could just as well be an auto-associator. The auto-associator’'s stored
prototypes would be identical to the linear-associator’'s stored output-prototypes. The analysis will be
concerned with the conditions under which the linear-associator (first-stage) can produce an output vector
"recognizable® by the best-match process (second stage). The best-match algorithm will have
"recognized® the output of the linear-associator If the algorithm produces the output-prototype of the
linear-associator that corresponds to the input-prototype of the assoclator that Is most similar to the
assoclator’'s Input vector (see figure 1-1). In this configuration, the combination of the linear-associator
and the best-match algorithm form a classifler. The linear-issoclator *translates® the input vectors of a
form similar to the input prototypes into a form similar to the output-prototypes. The best-match
algorithm (possibly an auto-associator) then selects the output prototype that most corresponds to the
input to the combined system. Each input prototype corresponds to a vector that the system Is most
llkely to "see® at the Input or that Is most representative of a class/category of input that Is important to
the system. The corresponding output prototype constitutes the system response and Is of a form
corresponding with the system's internal representation of the category. The combined system produces a
particular output prototype corresponding to the category to which the system Input belongs. Our
concern is with the performance of the linear-associator. We will ldentify the conditlons under which It

will produce an output vector of high enough ®*fidelity® that the comblined system can categorize Its Input.




F Associator G Best-Match -G

Figure 1-1: Linear-associator and Best-Match Classifier

Proper performance in this configuration Is considered a minimal requirement on the linear-associator If it

Is to produce output ®*signals® useful to subsequent information-processing ®*stages®.

1.3. Overview of Major Issues

1.3.1. Tasks of Computational Memory

The linear-assoclator is an example of *computational memory®. As opposed to local memory which
is merely an information storage device, computational memory is characterized as an Input-output device
that can respond to Inputs that are not explicitly specified during storage. Simllarly, the system can
produce outputs not explicitly stored. The Informatlon stored In the memory Is *overlaid® in the sense
that all items (associations) stored share a common storage medium, resulting in between-item Iinteraction
of information. This Interaction causes the output to be other than those explicitly trained to the
memory. Instead the output is a function of how similar the Input Is to the trained inputs, and bhow
simlilar the tralned associations are to each other. Thls and the fact that the memory can respond to

novel Inputs results 'n a memory that Is capable of varlous "memory tasks® durlng retrieval.

The most obvious (and mundane) of these Is ®*item memory®. For this task, the memory Is treated
Just as a local-storage device by storing associations (fm, gm), m=1,2,...,M and subsequently using
fm as an *input address® to the memory which in turn returns information about g, & ®data®.
Another memory task Is having the memory system distinguish which among the M output prototypes,

Is the one that matches the input prototype present at the input. Specifically, one first stores the




assoclations (f_, g‘(m)) where x Is a permutation of the M Indices 1,2,...,M. One of the Input
prototypes, say fk {s then presented to the memory resulting In an output. This output Is compared with
all the output prototypes to ldentify one of the latter as a best match. The memory s successful at the
task If 8c(m) {s the prototype chosen as the best match. This Is called "*channel-memory® since the
memory acts analogously to a communication channel. Another term used is ®*permutation memory®

indicating that the memory acts as a device that remembers which permutation x of the output

prototypes was assoclated to the Input prototypes.

Though this task may seem artificlal, Its consideration serves two maln purposes. First, proper
performance of this task Is a demonstration that the memory can distinguish the associations It has
stored. If a system has stored too many assoclations, it may fail this task. If so, it is not providing
enough information at the output to distinguish which prototype output was "intended® as the output of
the memory. The stipulation that the memory succeed at this task {s a minimal requirement called the

*channel-criterion®. The channel-criterion Is used to derive upper bounds on the number of assoclations

storable in the memory.

The second purpose for considering the matrix as a channel-memory Is that we can then study the
system performance with regard to the task of *input-classification®. In particular, after the system has
stored M association palrs (fm, gm) , non-prototype vectors are allowed at the memory Input. Assuming
that the input Is most similar to the prototype f,, we will call the fnput vector fk" To be successful
classifying f.’, the matrix must generate an output that {s most similar to 8, - This Is Identlcal tb the
channel-memory task except that more freedom Is allowed at the Input. The classiflcatlon task Is
important for understanding the system's abllity to respond to a vector fk' that is a partial or degraded
(say, by noise) version of the ®*intended® Input fh. The channel-criterion again provides a means of
specifying limits on the number of associations storable in the memory for proper classification. In this
case, a tradeoff Is quantified between the number of assoctations permitted In the memory versus how
*sloppy" fk’ can be as a rendition of fk' Consideration of the classification task allows one to identify
the amount of information required by a linear-assoclator to classify an input-vector set of a given size

into a glven number of categories.

The classification task also brings up the issue of the reiiability of the information at the output of
the memory as a function of the rellabllity of the Information presented to the memory Input. This
function depends on the number of assoclatlons stored In the memory. Storing more Items taxes the
memory capabllity and so requires that more reliable information be present at the Input to maintain a
glven output rellability. An Important Issue i{s the determination of conditlons necessary for the output
information of the memory to be more reliable than the Input information. Under such condlitions, the

memory could effectively suppliment incomplete/degraded input Information with Its own stored



information to provide an output that is more complete/reliable. The memory task performed would be
that of information ®"enhancement®. An assoclatcr performing this task would be valuable as a ®front

end® to later stages of assoclator memorles or processors that required *high-grade® information as Input.

Even more intriguing Is the possible use of this *enhancement memory® to iteratively improve the
information It receives by passing the recelved Information ®"through® the memory several times. Using
two memory systems A and B, one stores assoclations (fm. gm) in A and stores thelr snverses
(8, f_) In B. One then sends an degraded copy £, of £, totheinput of memory A. The output of
A Is then Input to B whose output is then fed back to the Input of A. The process is then repeated. If
both memories are "enhancement® devices, then the Informatlon that Is passed back and forth between
chem should improve with each pass through the loop. Using the theory developed In this here, this
possibility could be explored as a way to improve the performance of enhancement memories that have

stored a given number of assoclations.

A flnal note concerning memory tasks Is that they identify modes of "computation® that may serve

as design tools for the architecture of connectionist *knowledge engines®.

1.3.2. Characterization of Memory

Another important consideration Is the definition of the ®"storage® of the memory. That is, deflning
the amount of information ®"contained® by the memory that is useful for retrieval. In particular, once M

associations are stored, we consider the matrix f whose columns are the input prototype-vectors

0.0, ... L

discussed In the last section, the storage of the memory will be defined as the informatlon that the matrix

and the matrix g whose columns are likewise the output-prototypes. For item memory

f provides about the matrix g via the memory. The question arises as to whether this Is equal to the
"ltem-Information® which Is simply the sum over m = 1,2,...,M of the Information that f  provides
about g, . via the memory. This work indicates an answer In the negative for linear-associative item-
memory, under most condltions. However, channel-memory does have thls feature, again under most
conditions. A memory having this feature will be called "item-accessible® meaning that essentlally all the
Informatlon that f provides about g via the memory can be retrieved ®ltem-by-item®. Llke digital
RAM memory (local storage), one can apply one input prototype at a time to the Input of the memory

and record the matrix output to retrieve all the Information about g . In fact, the information retrieved in

this way Is virtually non-redundant.

Characterization of memory as ltem-accessible allows upper bounds to be derived for the
Information retrievable from the application of a single Input vector (called a single ®"access®). Since the

system is symmetrically or uniformly deflned over its Input prototypes fl,f,,, . 'fM’ the Information




retrievable on applying any of these to the input is the same. From this it follows that the memory
storage Is Just M times the amount of Informatlon retrievable from a single access just as Is the case for
local memory. The bounds that will be derlved for the memory storage can thereby be mapped into
bounds on the amount of information retrievable for a single memory access. Even for memory that is
not item accessible however, the single-access bound will still hold. The difference Is that the information
retrieved by applying the M Iinput vectors in sequence may *overlap® (redundancy) and as a result will
not completely specify g. We will characterize memory and address these issues after basic notions of

information theory are introduced in the next chapter.

1.4. Methods and Focus of the Investigation

This Investigation views the asymptotic performance of the linear-associator. That Is, we examine
the capabllities of the systems as they are allowed to get arbitrarily large. This will allow us to ascertain
how well their performance scales with system size. Large systems benefit from the high diminsionality of
their input/output signals and so perform better. Larger systems will therefore be most useful In

memory /classification tasks and deserve the emphasis provided in this work.

The work is confined to finding upper bounds for system performance, though an effort is made to
keep the bounds tight. Approximations are used extensively, but are accurate for the range of parameter-
values considered. @ The approximations pertain particularly well to large-scale systems, with a
correspondingly large number of assoclations stored. Pushing the lower limits of system size t.ha;t. the
theory will accomodate, a system should have input/output dimensionalities of say 560 or 100 and at least
5000 weights. The number of associations should be at least 8 or 10 times the larger of the input/output
dimensionalities, but generally no more than ‘t'he number of weights In the system. More typlcally
however, the Input/output dimensionalities are taken to be at least several hundred each, and the number
of Items stored should be at least 25,000-560,000. The number of welghts should generally be twice the

number of stored assoclations or more.

In this work, an attempt has been made throughout to make explicit the range of applicability of

the theory. The reader i{s advised to note parameter-value restrictions/assumptions made In what follows.
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Chapter 2

Definitions, Identities and Notation

Before the presentation of memory theory, some preliminary material must be presented concerning
the notation used and relationships that hold among information-theoretic quantities considered. More

background concerning concepts of information theory can be found In texts (8, 12, 33|.

2.1. General Relations of Information Theory

Unless otherwise stated, capitol letters always symbolize random variables whereas lowercase letters
symbolize a specific value or random-variable outcome. Script-capitols represent sample-spaces. Within
this convention, boldface unsubscripted letters represent matrices whereas boldface subscripted variables
represent vectors. The letters W, F, G for instance, are random matrices; W, f, § are their respective
sample-spaces; w,f, g. represent respectively specific outcomes from each sample-space. Similarly
Fm, G_  are random vectors with respective outcomes fm, 8, - The abbreviation °r.v." wlill be
frequently used for ®*random variable® and the abbreviation ®*i.1.d.* wlll be used for "lndependent.
{dentically-distributed® when this condition applles to a random variable. The ®equivalence sign®, * = *

will be used to denote "equality by deflnition® or the equivalence of two random variables. The random

variables in this work are discrete with finite sample-spaces unless otherwise stated.

If X is the sample space for the r.v. X and for any z € X, PAX = z) iIs the probability that
X = z then the entropy of X denoted H(X) Is defined as

HX) = - Z A X = z)log, AX=1)
z2€X
If we define p(z) = PX = z) then
H(X) = - Z p(z)log, p(z) | (2.1)
z€ I

Heuristically, H(X) is the average taken over all outcomes of X, of the minimum number of yes/no

questions required to determine the outcome of X (see sections of (8, 12, 33| relevant to Huffman coding).
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We call H(X) the uncertainty of X, the Informatlon content of X or the information

represented by X since it is the average amount of Informatlon required to determine X .

When considering two random varlables X,Y the conditional entropy of X given Y Is given by

HXIN==-) Y AX=zY=ylog, AX=z|Y=y)

zZEXYEY

where X and Y are the respective sample spacesof X and Y. This entropy can also be written

HX|N=-) HX|Y=yAY=y)
yeEY

where HX |Y=y) = _Eze r AX=1zY= y)logz AX=1z|Y=y)

The definition of entropy can be extended to n-tuples of r.v.’s xn = (Xl'Xz' . ,Xn). Examination of
definition (2.1) reveals that H(X) Is not a function of the outcomes of X but of the probabllity function
defined on those outcomes. In particular, X In equation (2.1) could be the vector-valued r.v. Xn or a

matrix-valued r.v. X . If the probability function Pn {s defined over the sample space In of Xn then

substitution of Pn for P in equation (2.1) glves

HX X, ...X) = =Y P(X.X,...X, =x)og,P,(X, X, ... X =x)
b & In
Note that x € In implies that x Is an n-dimensional vector whose i‘h component iIs a possible outcome
of X‘.. If Yl'Yz' - ,Ym ‘is an m-tuple of r.v.'s, then we can extend the definition of conditional entropy
to Include H(X X, ....X_ | Y,.Y,, ....Y ) which Is the entropy of X .X,, ... X  condltloned on
Y;,Yz. ....Y_ (see [8, 12, 33]). The Important relationships are
n
1. HX, X, ...X,_) < HX_.X, .. X)< ) HX) (2.2)
g |

where equality holds between the first and middle terms If and only If there Is a function [ so
that Xﬂ = /(Xl. X2 ..... Xn_l) with probability one. Equality holds between the second

and third terms if and only If the X'. 's are mutually independent.

2 H()L'1 Xz ,,,,,, X |Y1.Y2 ..... Ym) < H(Xx‘Xz' C. .Xn) I Yl,Y:_, ..... Ym_‘) (2.3)
with equality If and only If Xx'Xz ...... X are independent of Ym whenever the outcomes of
Y. Y., . . .. Y are known.

l - m—l
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3. H(Xl'Xz’ C ,Xﬂ | Yx'Yz' . ,Ym) > 0 (2.4)
with equality if and only If XI.X,,. .. ,Xn are completely determined by of Yl.YZ, . .Ym,
that Is, for each ¢+ =1,2,..., n there Is a functlon f, such that X.= f(Y .Y, ...)Y )

with probablility one.

Relation (2.4) holds when m =0, that Is

HX , X,,...X)20 (2.5)

Particular inequalities implied by these relations are of concern, such as

0 £ HX|Y) < HX) £ HXY) £ HX) + HY) (2.8)

Equality holds respectively in each of the above inequalities if and only If X = f(Y) with probability one;
X and Y are independent; Y = f(X) with probabllity one; X and Y are independent. Filnally since

we are only considering only discrete r.v.’s, for any deterministic function f(z) we have

H(/(X)) < H(X) H/X)|Y) £ HX|D (2.7)
H/(X)|X)=0 (2.8)
HY| /(X)) 2 H(Y|X) (2.9)

As remarked earller, the entropy functions are functions of probability functions defined over sample
spaces. Therefore the relatlons above hold even If the r.v.'s that appear In the expressions are scalar,

vector, or matrix valued.

The average mutual Information (or briefly ®*mutual Information®) between X and Y denoted

as [(X ;YY) can now be defined

IX:Y)=HX)- HX|Y (2.10)

It can be shown [12] that J(X ;YY) Is symmetric In {ts arguments so that (X ;Y)= I(Y; X). From this

we also have
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IX:)=HY)-HY|X)

Also by equation (2.6) we have

IIX:Y)y>2o0 (2.11)

with (X ;Y)=0 ifandonly if X and Y are independent.

Consider again to the yes/no-question heurlstic for guessing the value of X . Knowledge of Y Is
the equivalent of being provided answers to some of the questlons required to determine X . This
subsequently reduces the number of questions needed. The reduction given is precisely the uncertalnty of
X before Y Is known minus the uncertainty of X after Y Is known (l.e. Identity (2.10)). We call this
the information Y provides about X . By symmetry, this Is also the Information X provides about Y.

As Indicated In the previous paragraph, r.v.'s X and Y provide no Information about each other if and

only If they are independent.

If f Is a deterministic function defined on the sample space X of X then then H(f(X)|X) =0

and so

I(X; (X)) = HAX) (2.12)

That s, ihe information X provides about f(X) Is precisely the information represented by f(X). For
any other r.v.,, Y, we have that HY|f(X) 2 HY|/A(X).X)=H(Y|X) which Iimplles
IY; f(X)) = H(Y) - H(Y| /(X)) < H(Y)— H(Y| X) and we have

IY: (X)) < I(Y: X) (2.13)

The concept of mutual information can be extended in ways analogous to the extensions of entropy
outlined above. Two extensions concern us. First, the information I(X ;Y, Z2) that twor.v.ss Y and 2
jointly provide about the r.v. X Is defined by considering the pailr (Y, Z) as a single r.v. replacing the

Y term In equation (2.10)

IX.Y,2)=HX) - HX|Y, 2) (2.14)

Second, the informatlon I(X ;Y| Z) that Y provides about X when Z Is known Is derived from the

equation for I(XX ;Y) by conditioning the entroples in (2.10) on 2
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IX:Y|2)=HX|2)- HX|Y. 2) (2.15)

A useful relation between I(X;Y,2) and I(X;Y]|2) 13

IX:,2)y=IX:;Y|2)+ I(X; 2) (2.168)

This can readlly be shown by substituting for each term above its definition as a function of entropy.

We also need a fact used later about joint dependence. If W is a functlon of twor.v.'s X and Y

jointly it is possible that W Is independent of each of X and Y singly. That Is

IW: X,Y)= HW) (2.17)

IW; X)=0 IW;Y)=0 (2.18)

An example is where X and Y are independent-identically-distributed (1.1.d.) r.v's; each takes values
+ 1 with probability 1/2 that either value occurs. If W = X.Y, no Information is conveyed about the

outcome of W given only the outcome of X or given only the outcome of Y.

2.2. Specific Notation and Relations Required

2.2.1. Notation for Sets and r.v. Distributions

The symbol, R, will be used In reference to the real-numbers. When speaking of a sequence of N

N
entitles ¢ , n=1,2,... , N, we will sometimes use the notatlon {a”}

. For {nfinite sequences, we
nas ]

substitute *co® for N. Now let {}('”)::‘:._,l be a sequence of 1.1.d. Bernoulll r.v.'s {30, p. 161], taking
values a4,b € R with probabilitles p and (1 — p) respectively. If Yn s the sum of the first n
Bernoulll r.v.'s, then Yn s a binomlal r.v. (30, p. 163] and we say Yu Is ®* Bin(a,b,p,n) ® or more
concisely, we put Y ~ Bin(abp,n). If a=1b=-1, and p=1/2, then we put
Yn ~ Bin(%1,1/2,n). Notice that In this case, the variance of Yn s n. For a normal r.v., X with
mean p and varlance o°, we put X ~ N(u, 02). A normal r.v. with zero-mean and unit-variance |s
called a standard normal r.v. and ®  ®* denotes the standard normal distribution function. The
mean of an arbitrary r.v. X Is denoted by EX and the variance by VAR X . The term, random, Is
used to refer to selection of an outcome of a uniform r.v. over a particular sample-space. The term
rellably refers to an outcome or class of outcomes that occur with probabllity near one or with

probabllity approaching unity as some relevant parameter gets large.
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Most of the random vectors we consider will consist of =+ 1's for components. We will call such
vectors +1-vectors or bit-vectors since the components are binary. The set of n-dimensional bit-
vectors Is sometimes denoted by {—1, 1}" and often referred to as a "space® even though the set Is not a
proper vector-space over the real or complex numbers. If X = (Xl, Xz' . ,Xn) Is a random vector
whose components X'. t=1,2,...,n are ll.d. each taking only the values £+ 1, then X Is called a
Bernoulll vector. For the case that each of the two values £ 1 is taken with probablility 1/2, the
vector X Is called a balanced-Bernoulll vector. Note that choosing an n-dimensional balanced-

Bernoulli vector is the same as choosing a vector at random from the n-dimension2i space of bit-vectors.

2.2.2. Notations for Prototype-Vectors and the Assoclator Matrix

The vectors fl,f ... ,fM

random input-vectors Fl'Fz' - ’FM and random output-vectors Gl'Gz' - ’GM respectively. The

and the vectors 8,8,y - - - 8y will be considered as outcomes of

Fm 's will be called Input-prototypes and the Gm 's wlll be called output-prototypes. These vectors
are assumed to be balanced-Bernoulll vectors with n, as the dimensionality of the input-prototypes and

n_. as the dimensionality of the output-prototypes. We also form the random matrix F whose columns

O
are Fx’Fz’ e ’FM

symbols £ and g of course denote particular matrix-valued outcomes of F and G respectively. The

in index-order. Simllarly, we form the matrix G from the output prototypes. The

storage equation (1.1) becomes

M
w =YY GF, (2.19)

mas]

in terms of the random prototype-vectors. This can be expressed more conclsely in terms of the matrices

F and G:

W = GFT (2.20)

For retrieval, we form the matrix G' whose columns G'b are given by

M M
G, = WF, = Y (G F F, = Y (F_-F,)G_ (2.21)
mess | rrymms |

or, In terms of the matrices

G' = WF = GFTF (2.22)
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Another form of storage Is called channel-memory or permutation memory. In this case, the
output prototypes are considered to be known the retrieval device (later called the detector) and therefore

will be denoted as specific outcomes 31'82' c. . .gM. The input-prototypes FI,F,.,. ...,F will still be

M
considered as random vectors. In additlon, we will have need for the r.v. K whose outcome x Is one of
M! permutations of the lIndeces {1,2. e M} . That Is, x s a functlon that maps any
m € {1,2,...,M} to a unique value x(m) from the same set. Thls permutation Is to be applied to
the columns g, .8, -...8,, Of the g-matrix to produce the matrix x«(m) whose columns are
8.(1)8x(2) - Be(a) - When consldering the outcome x of K as undetermined, we denote by K(m)
the r.v. whose outcome Is the value x(m). The random matrix that results when x Is applied to g Is

denoted by x(g). Under these conventlons the storage equation for permutation storage s

M
LACEDY gK(m)an (2.23)

ma=]

or more concisely

W = K(gFT (2.24)
one says that the permutation K s stored In the memory.

2.3. Probabilistic Analysis of Sums

2.3.1. Distribution of Sums

Using the rightmost sum in equation (2.21), we can write the expression for the J‘h component

G'kj of the random vector Gk

M
Gy = }_:l (F,,-FOG _.
M
= (F,-F)G,, + > (F_-F)G_ .
ma=]; 7 k
M
= n,G,. + }: (F, FOG, . (2.25)
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To extend the definition, we will have need for calculating the mean, variance, and entropy of such a sum.

For this It will be useful to understand the independence of the terms under the summation.

To start, If X, Y ,Z are n-dimensional balanced Bernoulll-vectors with respective components
X'. , }: , Zi' then the dot-products X-Y and X -2Z are Independent. This follows from the fact that
the products X.- Y. and X, Z‘. are Independent of their respective factors. In fact, this implles that
X .Y is independent of X when Y 1Is not known and vice-versa. Since the Input-prototypes are
balanced Bernoulll vectors, the dot products Fm"Fb and Fm 'Fk are independent when m' 3% m,
Also the components of G are independent so the terms (Fm-Fk)ij In (2.25) are mutually

independent.

Because of this independence, the variance of the sum is the sum of the variances of the summed
terms. Furthermore, If two r.v.'s are independent with zero mean, then the variance of the product Is the
product of the variances. For each component X‘. of an n-dimensional balanced Berpoulll vector X, the
mean EX'. Is zero and the variance is one. Therefore, If Y Is an Independent n-dimensional Bernoulll

vector the variance VAR (X‘. . Y'.) Is just (VAR X'.)(VAR Y‘.) = 1. From this we have the variance

VAR(X-Y) = VAR( )_X;Y,) = ) VAR(X; Y) = n

g | tum]

From this we see that VAR(F_ -F,) Is n, when m 7 k. Since the mean of ij Is zero and
the variance is one, we also have that the variance of (Fm . F,‘) ij Is n,. These terms in the sum of
(2.25) are independent and there are M —1 of them so the variance of the sum is (M- l)nl.
Considering the mean and variance of the "IGI:,' term as well, we find that the mean qr G'kj Is zero and
the variance Is Mnl. The distribution of the sum on the right-hand side of (2.25) s
Bin(£1,1/2, M. "1) which is roughly normal. Considering the term "Iij agaln, we see that it takes
values :tnl with equal probability. We conclude that G’lu. Is bimodal, each mode having a roughly
normal distribution. Since M — 1 = M for large values of M the variance of each mode !s taken to be
Mn_. Methods such as this are used In the chapter on classification to determine the distribution of

I
Sums.

2.3.2. Blnomilal Entropy

Another conslderation Is the entropy H(Sn) of a sum Sn of n balanced Bernoulll r.v.'s

X'. =12, ..., n. In the appendix It Is shown that

H(S) = (1/2)log, (7en/2) (2.26)

n
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Briefly the result Is obtained as follows. First deflne a standard Bernoulll r.v. to be a r.v. that takes
the value one with probability 1/2 and the value zero with probablility 1/2. The sum Sn' of n standard
Bernoulll r.v.’s Is blhomially distributed and takes on values an' that are in one-to-one correspondence
with the possible values s of the sum Sn. To see this, note that the number an’ {s the number of
summands of S ' whose value Is one. When the number of 1-valued summands of S, Is 8.’ there will
be n — .9"’ minus-1-valued summands of Sn. The value of Sn will therefore be s = n - 20”'. Thls

can also be written a”’ =(n - a”)/2 completing the correspondence.

Under the one-to-one correspondence, S ,and S’ have equivalent probabllity distributions and so
have the same entropy. Since the probabllity distribution of S”' {s determined by the binomial
coefficients, we find the entropy of S“’ to get the entropy of S”. Note that Sn’ is binomlally
distributed and so Is approximately normal with variance n/4. One might expect that the entropy of
Sn’ {s approximately the same as that of a normal r.v. with the same variance. Appendix A shows that
this is in fact true. That Is, the entropy of S”’ {s roughly (1/2)1032 (ren/2) where the approximation

approaches perfection as n gets large. This of course Implles that the entropy of Sn Is

(1/2)log2 (men/2) .

It Is useful to note that although S” Is roughly normal with variance n, It does not have the same
entropy as a normal r.v. with the same variance. Such a normal r.v. would have entropy
(1/2)log2 (27en) = (1/2)logz(nn/2)+ 1 which Is 1 bit larger than the actual entropy of Sn. This
discrepancy Is due to the fact that we can multiply a discrete r.v. by any factor thereby changing Its
variance without changing its entropy. There Is no strict correspondence between the variance and the

entropy for discrete r.v.'s.

2.4. Special Functions

An entropy function of particular interest Is the blnary entropy function X(p). Let X be a r.v.

with two outcomes z and z, and probability p that z, occurs and probabllity 1 — p that Z, occurs. Then

A(p) = H(X) = —plog, p — (1 = p)log, (1 = p), 0<p<=<1 (2.27)

Here #(0) Is taken to be Illm XN(p)=0. The functlon Is continuous over the interval [0, 1] and
p—0

differentiable on (O, 1).3 It Is strictly Increasing on |0, 1/2| and strictly decreasing on [1/2, 1]. By taking

3
Fo.r resl numbers & < b, the open interval (s, b) is the set of real numbers between s and b excluding the
endpoints. The closed interval [a, b] includes the endpoints.
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the Taylor series expansion of X(z) about z = 1/2 and truncating one can get an approximation of X(z)

for £ & 1/2. We also approximate #(z) for z near O In the same manner. These approximatlons are:

H(z) =~ 1 — (2log, €)(z — 1/2)° |z —1/2| < 0.38 Implles error < 10% (2.28)

1—-Xz) = (2log2 e}z — 1/2)2 same error as above (2.29)
1 z

P(z) =~ =+ — lz] < 1 (2.30)

2 Ver

2.5. Measuring Similarity

Just as storage of information Is attributed to a *memory device® retrieval of the information Is
attributed to a ®detection device® or detector. Both the memory and detector are characterized as
mathematical processes. A particular mathematical process for the detector Is that of measuring
similarity between two vectors as Is the case when the detector is a best-match process. The information
retrievable by the detector will depend upon the similarity measure employed. Therefore, the performance
of a system must be defined with respect to a particular similarity measure. We will deflne a first order

similarity measure by way of the Hamming-distance function.

Definition 1: Define {—1.1}" to be the set {x € R"|z. € {-1.1}, i=1,2...n}.
The Hamming-distance between two vectors Is the function HD:{-1,1}" X {-1,1}" = R
) Y '
given by HD(x.y) = ;Z'._l Iz.. - y'.l.

The Hamming Distance Is the number of components at which x and y dlsagree. Its negative is a

prototypical similarity measure on {—1,1}" from which the componentwise similarity measure is deflned.

Definition 2: Componentwise Simlilarity Measure: If V Is an n-dimensional
vector-space, then a (componentwise) similarity measure Is a function S:VXV—= R
having the following properties:

Pt

. Symmetry: For all x,y € V, we have S(x,y) = S(y.x).

2. Reflexively-Maximized: For x,y € {x € V||x| =1}, S(xy) !s maximized by
xX=y.

3. Hamming-Consistency: For vectors x,y, w,3 € {—1,1}", the Hamming-distance
inequality —HD(x,y) < —HD(w, 8) Implles S(x,y) < S(w, s).
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4. First-Order Invariant: If x is a permutation of the indlces 1,2, ...,n and x(x) Is
the vector whose components are the components of X permuted by x then

S(x,y) = S(k(x), x(y)) .

Under this type of simllarity, x and y are to sald to be more similar than w, s whenever
S(x,y) < S(w,s). Conditlon 3 requlres the simllarity measure to be consistent with the negative
Hamming-distance similarity, —HD(x, y) on {-1.1}‘. We allow the word *minimized® to be replaced by
"maximized® in 2 provided that the second inequality In 3 Is reversed. This results in a function that is

minimal for similar vectors. The negative of a similarity function Is therefore also a similarity function.

Examples of first-order simllarity measures include those based on Minkowsks Metrics. That ls, the

form S(x,y) = :?—1 Iz.. - y'.l’ or its negative can be used. An inner-product can also be used, e.g. the

n
i %Yy

dot-product, S(xy)= 3.

The notlon of similarity presented here IS meant to be *distance-based®. In a vector space, two
vectors of the same length will become similar If their distance (as determined by the appropriate vector-
norm) Is decreased. For vectors of a fixed length, this amounts to decreasing the angle between the
directions of the two vectors. This corresponds to minimizing their dot-product. Distance-based
simllarity measures, particularly the dot-product, are especially relevant to the study of the associator.
The output of the assoclator is based upon the similarity of the Input-vector to the assoclator’s input-

prototypees as determined by the dot-product (see equation (2.25)).

We do not discuss detection or best-match processes in this investigation, but polint out that they
play a role in the considerations made in the analysis. When discussing information that one vector
provides about another, we have assumed the Informatlon Is distance-information. This characterization
of Information ls_ consistent with the dynamics of most *neural-networks®. Each cell or unit computes {ts
output as a function of the dot-product similarity of the input-vector and the unjt's weight-vector. The

“computation® done by an associator Is therefore based on similarity /distance Information.

A best-match process used for detectlon (second-stage, as shown In 1-1) can ltself be an assoclator or
rather, an auto-associator and so will base {ts output upon distance-information relating the (first-stage)
assoclator’'s output to the output-prototypes of the comblned classifier. When speaking In later chapters
of the Informatlon that the frst-stage provides at its output, we will assume the information Is
distance/simlilarity Information so as to be consistent with the nature of the best-match process. We also
mention that the performance of a best-match process as a classification device will depend upon the
similarity measure it uses. When comparing vectors, such a measure must preserve all distance

Informatlon for optimal performance. We've assumed that distance information between two vectors is
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completely specified by componentwise-similarity. Under this assumption, the dot-product seems optimal,

at least for bit-vectors. When bit-vectors are to be compared, there Is a one-to-one correspondence

between the dot-product and the Hamming-distance so that the dot-product preserves Hamming-distance

Information.
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Chapter 3

Information Theory of Memory

3.1. Introduction: Access v.s. Aggregate Memory

In this chapter a general information-theoretic formulation of memory Is presented. Storage Is
characterized as the generation of a memory r.v. called the *memory trace® from two random variables
called the address and the datum. Even If the memory trace Is a deterministic function of the address and
the datum, the address and datum are r.v.’'s, so the memory state they generate during storage can be
viewed as a r.v. from the point-of-view of retrieval. Retrieval Is then the process of recovering
information about the stored datum from the retrieval-address In the presence of the of the memory-state.
The signal conflguration for both storage and retrieval are specified allowing subsequent derivation of
information-theoretic relations/limitations. These limitations are strongly dependent upon the retrieval
strategy which may not utllize all Information available from the memory. Retrieval methods will be

formulated and performance of the system will be evaluated with respect to a particular retrieval strategy.

3.2. Information-Theoretic Characterization of Memory

3.2.1. Access v.s. Aggregate Retrieval

In this section we characterize memory as a configuration of r.v.’'s and subsequently define memory
retrieval. We show how Information Is stored/retrieved as an aggregate and then how it can be
stored/retrieved as a collection of seperate datum-elements. The first of these modes Is referred to as
aggregate-memory and the second Is access-memory. When an aggregate memory can be partitioned
Into access memory, we say that it Is accessible and the storage (retrieval) of a datum-element Is called a

storage-access (retrieval-access).

For accessible systems, an upper bound _ls found for the aggregate-information the memory can
provide and this is then used to upper-bound the amount of information the memory can provide during a

single access (called access-information).
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More explicitly, we have for aggregate memory the random variables called the storage-address
A and the storage-datum D. These are used during storage to generate the random variable T
called the memory trace or simply the memory. During retrieval, the retrieval-address A’ is used
in conjunction with the memory trace T to obtain the retrieval-datum D°'. As a rule, the address
r.v.'s A and A' must share Information. Thatis I(A;A') > 0 and from this one expects that during
retrieval the memory will provide D' such that I(D:D') > 0. As a rule, the larger the mutual
information between A and A’ (s, the larger the mutual information between D and D' should be.
For given r.v.'s A and A’, the memory Is optimal If I(D;D') = H(D). That Is, the mutual
information that the retrieval datum provides about the storage datum Is maximlzed so that the retrieval

datum completely specifies the storage datum.

For an aggregate memory to be accessible, it must have an address-partition. That Is, there must
exist r.v.’s Am, Dm, A’ D'm , m=1,2,..., M, that partition A, D, A’, D’ respectively so that
A =(A1, A2, . ,AM), D= (Dx' D2, . .DM), and similarly for A'’,D’. The storage and the
retrieval processes must have partitlons consistent with the address-partition. In particular, the memory
trace T must be determinable from memory traces Tm , m=1,2,..., M; each Tm Is generated
exclusively from Am , Dm. Similarly, the retrieval process should be capable of generating D’m from
T and A’m alone. Also we require I(A’m;Am) > 0 and expect that retrieval produces a retrieval
datum D' such that I(D’m;Dm) > 0. In many cases (though not necessarily), optimal memory

retrieval Is taken to be the case in which each of the retrieval data D'm completely specify each of the

storage data D .
m

We will make these notions more precise in the next section.

3.2.2. Formal Definition of Memory

Storage will be viewed as the generation of a memory trace T as a function of the storage

address A and the storage datum D :

T =t(A, D) (3.1)

Retrieval is the subsequent generatlon of the retrieval datum D' as a function of the retrieval

address A' and the memory trace T ¢

‘The memory trace t(-) and the retrieval d'(:) functions treated as determsnistic in this development, hence the use of
lower case letters t, d’. A more general formulation would allow the use of stochastic functions. However the deterministic
case is pertinent to our situation and we deal with it specifically for the sake of simplicity. Note that a deterministic
function of random variables produces a random variable.
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D' =d'(T. A" (3.2)

The memory is deflned to be the quintuple (A,D, A’ t,d’). Notice that the memory trace and

retrieval data are r.v.’s since they are functions of r.v.’s. The retrieval address is typlcally identical to the |
storage address or is a ®*degraded® version of it. We will generally consider the storage and retrieval
address to be ldentical. If A,D.A’’D’ and T are matrices, this retrieval process is equivalent to
presenting the entire retrieval-address matrix A’ to the memory to obtain the retrieval-datum matrix
D’ which In turn provides Information about the entire storage-datum matrix D . The aggregate-
retrievable information I(D'; D) will therefore characterize the information that the memory can
provide. For a given storage function for constructing T, It Is desirable to choose a retrieval function

determining D' that maximizes I(D'; D).

3.2.3. Partitioning Memory: Formal Definition of Access-Memory

For access storage and retrieval, one partitions the storage address A and datum D into M parts
AI.A,_,, - ,AM

independent and identically distributed over a common sample space and similarly for the Dm's. The

and Dl'Dz' . ’DM respectively. For our situation the Am's will be mutually

storage process Is in turn divided into M parts given by the relation

T _=t(A D), m=1:2... M (3.3)

The access-storage function tA must be chosen so that T specified In (3.1) Is a symmetric function
T = ts(Tx’Tz' e ,TM) of the Tm 's. In other words, permuting the arguments of t_ doesn’t

change the value of the function determining T .

The retrieval process is simllarly divided Into M parts. The retrieval address A’ Is partitioned

Into parts A’I.A’z. ..., A’ . and the retrieval datum D’ into parts

M

D' =d' (T.A"), m=12..., M (3.4)

The access-retrieval function d'A must be chosen so that D' specified by (3.2) Is the AMf-tuple

D'= (b*'.D',,....D’ We call the quintuple

M)'

({Am};‘:-l' {Dm}:-l' {A'm}:—l' tA' d’A)

the access-partition of the memory. A memory that has an access partition Is called access-memory.



25

Under the conditions stated above, the information I(D'm ; Dm) that the rnth retrieved datum provides
about the m‘h storage datum should be independent of m . This hasn't been proven here, but the
condition holds for memory systems we are |nterested In. We therefore assume that I(D'm ; Dm). called
the access-retrievable Information, Is Independent of m . The access-memory Is sald to be

access-separable or separable if the r.v.’s D' and D and their respective partitions satisfy

1. Access-Inclusive: [(D’;D_)=1ID’ ;D ) m=1:.2... M (3.5)
2. Access-Exclusive: (D ; D’m) = I(Dm X D’m) m=1:2... M (3.8)
M
3. Access-Summable: /(D'; D)= Z I(D’m ; Dm) (3.7)
m=]

If additionally, the value of I(D'm ; Dm) Is the same for all m, then the memory Information Is sald to

be uniformly access-separable or simply uniformly-separable. In this case, for fixed m

ID';D)=M-ID’_; Dm) | (3.8)

th

The first of the three conditions above states that the {nformation that the m retrieval

th stored datum Dm as does the entire retrieved

datum D’m provides as much information about the m
tuplet D' = (D’l, D’2, C ,D’M) . The ldea Is that D'm sncludes all the Information available about
Dm that Is available from D'. Likewlise, the second condition states that the information that D’
provides about D Is no greater than the Information that it proﬂdes about D'm. Again, the idea Is
that D’m excludes information about Dk' k 7 m . Heurlstlcally, the first condition states that D’m
provides all the Information obtainable about Dm and the second states that it provides only information
about Dm. These two conditions would seem to Imply the third, but the author has no proof for this.

The conjecture, which could be false, Is left here as an open question.

3.3. Characterization of Storage Capacity

3.3.1. Bounds on Retrievable Information

We now show that when the retrieval-address A’ provides no direct information atout the stored
datum D, the Informatlon, I(D'; D), that the retrieval-datum D' provides about the storage-datum

D Is bounded by the storage-matrix entropy. Explicitly, we show
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Theorem 1: Let (A, D, A’ t,d') be a memory with A' Independent of D. Then

I(D'; D) < H(T) (3.9)

Proof: Since D' is a function of A' and T, we have by (2.13) that
ID';D) < I(A',T;D). By (2.16) we have

IA, T:D)=IT;D|A") + ID;A"

— H(T|A") - HT|D.A") < H(T)

where I(D; A’) = 0 since A’ isindependent of D. The theorem follows.

We see from the proof of the theorem that

ID':D) < IA', T:;D) < H(T) (3.10)

If A Is independent of D then this relation holds for the case that A' = A . If additionally, A Is
Independent of T then the condition A' = A Is optimal in that the second lnequality of (3.10) becomes
an equality. Since this will hold for the memory systems we consider, the relation will be displayed for

future reference:

Corallary: When the conditions of theorem 1 hold for A’ = A and A Is independent of T we have

ID';D) < [T,A ;D)= H(T) (3.11)

We now have a bound for the aggregate-retrievable Information. If the memory Is uniformly separable,

then we will have a bound on the information retrievable on each access.

3.3.2. Storage and Storage Capacity

To obtain a bound on the information retrievable on the mth access, assume that the memory
(A, D, A’ t,d’) Is uniformly separable. We then have forany m=1.2,....M:
M-ID' ;D _)=ID':D) < H(T) (3.12)

sO that



ID' :D_) < HT)/M (3.13)

We will call this the uniform-access bound.

The uniform-access bound motlvates the deflnitlon of storage and storage capacity for uniformly
separable memory. For the systems we will consider, A’ = A Is optimal In the sense mentioned in the
previous section. We assume then that the retrleval address is identical to the storage address and

suppose that I(D'm ; Dm) is independent of index m but Is a function I(M) of the number M of ltems

stored. From (3.12), I(M) must satisfy

M- IM < H(T) (3.14)

The product on the left Is the information storage of the system. The storage capacity will be defined

as

C

S max M- I(M) (3.15)

M

There are two ways to obtain a maximum of the number M of storable items. The first assumes that

 J
the product M - I(M) increases to a maximum as M Increases to a value, M , then decreases. In this

case equation (3.15) Implles

Cg = M . I(M) (3.16)

L
where the right-hand-side is bounded above by the entropy H(T) evaluated at M which we denote
\d
H(T, M‘). If (M) can be determined, then by (3.15)

M < max H(T. My /1) (3.17)

Another bound for M utlllizes a lower bound L{(M) for I(D’m;Dm) as a criterfon for system

performance. Specifically, we make the constraint that

L(M) £ I(M) | (3.18)

as a requirement for minimal system performance. If L{M) is smaller than (M) for small values of M

but overtakes I(M) as M grows, a bound for M can be obtalned from the constralnt.
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For the case that the memory Is not separable, 1t may still be uniform In the sense ‘that
ID'_ :D_) isindependentof m € {1.2...., M}. For the Instances we conslder, relations (3.12) and
m m
(3.13) still hold so the methods of bounding M explalned above apply. These methods will be utilized In

the next chapﬁer.
3.4. Relation of Separability of Memory to Performance

3.4.1. Non-Separabllity of Distributed Memory

For associative item-memory, we make the indentification AL A' = F, D= G, T = W and
D' = G’. Aggregate storage Is then given by (2.20) and aggregate retrieval by (2.22). The access-
partition of the address and datum is just the division of the matrices into columns corresponding to the
prototype vectors. The input-prototypes partition the address F, each acting as a separate ®address
word® and the output-prototypes partition the stored-datum G, acting as individual ®*datum words®.
The datum Gm Is sald to be stored at ®location® Fm. Access-storage s specified by (2.19) and access-

retrieval Is given by (2.21).

From calculations done outside this investigation, the llnear-associator as an Item memory Is
conjectured not to be separable except i{n limited cases. A preliminary development by the author has
determined that item memory might be access-inclusive when M < nI/S. Further, it may actually be

separable when n,/5 > M2 ezp,(n These are submitted as sufficient conditions for separabllity

o
but may not be necessary. A memory with an lnput,-dlmenslonallty exceeding 2-M and an output-
dimensionality a few times log2 M might be separable. Such a configuration Is consistent with those
considered later In the chapter on classification. For classification, systems with input-dimensionality

greatly exceeding the output-dimensionality are most efficiently suited to the task.

On the other hand, separable memory is identical In function to digital RAM or local memory. The
fact that matrix-based memories distribute the iInformation for each assoclation over the entire matrix
means that the information for each assocliation Is overlasd with that of the others. This feature Is what
allows the information for separate associations to Interact. Regularities in the input-to-output mappings
specified by many assocliations should be ®*amplified® whereas Irregularities/inconsistencies would be
attenuated In the memory’'s input-to-output map. This interaction is contrary to the notion of
separabllity. 1In fact, non-separabllity Is the very feature that constitutes the capacity pr distributed
memory for ®pattern discovery® (8, 40, ch. 1] and other functions that make them of computational
interest. The non-separabllity of these systems makes their storage capacity more difficult to ascertain.

However, the property ®super-summable® exists for these systems so that bounds on the per-item
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retrieval-information can be found In terms of the entropy of the matrlx.5 This results In a bound on the

number of items storable in the system with respect to a minimal performance criterion.

3.4.2. Super-Summabllity of Item Memory

Assuming that item-memory Is not separable, It may not be summable. However, the Independence

of the entrles ij of the G matrix insures that the memory Is super-summable. That is

M
IG':G) 2 ) IG',:G,) (3.19)
kw1
As we will see, this relation Is quite useful in subsequent chapters on storage and classification. For the
sake of later analysis then, we will start by showing this Inequality and a useful extension of it hold. To
M .
start, H(G) = 2m_l H(G,) since the G, 's are Independent. Also since G = (Gx’ Gz' c e, GM)

| Jp—— L  J \j
and G' = (Gl'Gz"j"GM) we have that

M M
HG|G) < Y HG,|G) £ Y HG,|G")
| 23| ma=|

always holds. Combining these, we get

IG';G) = H(G)-H(G|G"

M .M
= ) HG) - HG|G) 2 } (HG,)-HG,|G)
fo | k==]
M M
> Y (HG)-HG,|G)) = Y IG,:G,)
il k=1

so that (3.19) holds. The extension of this is

which Is proven in a similar manner by showing

sTbe term, ®super-summable®, is coined in analogy to the term ®sub-sumable® used by mathematicians to describe
non-linear functions p(z) that obey p(z +y) < pz)+ ply). For our purposes, a ®super-summable® function would have
the inequality reversed.
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"o
IG',:G,) 2 ) IG.:G,) (3.21)
o1

which holds because the components of Gk are Independent.

The relations (3.19) and (3.20) are useful because I(G'; G) Is bounded above by H(W) and so we

have both

M
Y IG:G) < HW) (3.22)
k=1

and

M "o
Z Z [G',.:G,) < H(W) (3.23)
k=] e
Additionally, if the memory Is uniform so that I(G’k ; Gk) {s the same for all &k, and I(G'kj; ij) {s the
same for all k, 7, then (3.22) and (3.23) become

G, :G,) < HW)/M k=12 ..., M (3.24)

I(G'kj:ij) < H(W)/Mno. k=1,2 ... M, ;j=1,2,...,n (3.25)
Thus we get a bound on the information provided by any access-retrieval-data, G'k about the storage-

data Gk and also a bound on the amount of information any of the access-retrieval components G"kj

provide about the storage components ij.

These arguments hold when G' is replaced by some componentwlise function G = g"'(G') or
rather G"'kj = g"(G”kJ.). as the retrieval function. The inequalities will be shown here for future
reference

I(G”h:Gk) < HW) M (3.268)
I(G"kj;G&j) < H(W')/Mno (3.27)

These bounds will be useful In later chapters on storage and classificatlon.
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3.4.3. Separabllity of Permutation Memory

For permutation memory, the storage address Is the matrix F = (Fl'Fz' e 'FM)' The
g-matrix in this equation i{s known to the detector and so Is shown as a constant rather than a r.v.

matrix. The storage-datum, D, Is a permutation r.v. K whose outcome x Is one of the A!

permutations of the Indices {1,2,...,M}. Thatls, x Is a function that matches a given value m In
{1.2, ..., M} with a unique value x(m) from the same set. To store the datum K, one applles K to
the columns g,.8, ....8,, ©Of the matrix g to get the matrix, K(g)., whose columns are
..... . The storage r.v. matrix is then obtained from F and K as in equation
8x1) Bk(2) Bx(m) g q

(2.24). The retrieval address F' Is a matrix r.v. with I(F';F) > 0. Often, we will take F® to be F.

. The retrieval-datum, K’ Is a r.v. whose outcome '’ is determined as follows:

1. For m = 1,2, ..., M, compute the vector G’m = WF'm and select via a similarity
measure the vector 8, from among the output-prototypes that Is a best-match of
G’m. (In the case there is more than one such best-match, select one of them at
random.)

2. Set K'(m)= k.

This process represents the aggregate-retrieval function d'. The access partition Is the quintuple
M M , M . _ T

({Fm}m-v {K(m)}m_l,{F m}m_l, t,d’,) where t Isgiven by t (F_.K(m)) = gK(m)Fm and the

access-retrieval function d’A Is calculated as shown In the two steps above for only one value of m at a

time.

For storage of a permutation x chosen randomly, the values x(1), k(2), ...,x(M) are nearly
Independent for large M. The only restrictlon on the x(m)'s Is that x(m’) £ x(m) when m’' ¥ m.
For large M, this restriction Introduces little dependence among the values of x(m) m=1,2,..., M.
Since these Af values are nearly Independent, their Jolnt entropy Is approximately the sum of thelr
individual entroples. The individual entropy Is log2 M bits, so the Joint entropy roughly Is M.log2 M
bits. More precisely, the Joint entropy Is log, M! bits since the values x{(m) specify one of M
permutations. But log, M! is roughly M-logzM for large M (say for M > 3000). Taking the

values x(m), m=12,..., M to be independent Is therefore a good approximation.

In the same way, retrieval of K'(m) always glves some Information about K'(l) for | ¢ m . This
Is because If the memory Is accurate, then K'(m)= K(m) with probabllity near one. Therefore, since
K(l) ¢ K(m), the value of K’(I) is not equal to K’(m) agaln with probabllity near one. In short,
knowing the value of K’(m) glves ®cross-over® information about K'(l), | ¢ m . In particular, the

value of K'([) will probably not be the one observed for AK"'m). For accurate memory, we can compute
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this cross-over information:

IK'(m): K(l)) = HK() - HK()]|K'(m))

~ log2M~log2(M— 1) ~ 1/M

This Is negligible compared to the uncertainty of K'(l) for large M.

Due to the symmetry of the memory, and retrieval functions (the Fm’s are 1.1.d.) the probabllity
PK''m) $ K(m)) Is Independent of m . Letting Pe be this probabllity, we seek the Information
I(K'(m); K(m)). To do so, we note that a best-match process that produces K '(m) as its output, acts
probabilistically as an M-ary symmetric communications channel [12] with K (m) as the item to be
*transmitted® and K '(m) as the item produced at the "recelving end®. We also have Pe as the
probability of error at the receiving end. From this it follows that the informatlon that the output

provides about the input is given by
I(K'(m) ; K(m)) = log, M = P log, (M = 1) = H(P)

~ (1 - Pe)logz M- }((Pe) (3.28)

which is the Information that the recelved signal provides about a transmitted signal that was sent over
the communication channel. For small P, I(K'(m) ; K(m)) s approximately log, M. On the other
hand

logzM < I(K(m);K(m)) < (K;K(m)) < HK(m) = logzM

so that (K" ; K(m)) =~ I(K'(m) ; K(m)) so the memory Is access-inclusive.

To show that the memory Is access-exclusive, the arguement is similar. Assuming Pe Is small,

knowledge of either K(m) or of K tells us with high probablility, what K’(m) will be (namely the same

value as K(m)). We have
I(K'(m): K)s H(K(m)) and I(K'(m); K(m))= H(K(m))
so I(K'(m); K) =~ I(K'(m); K(m)).

To show the memory Is access-summable, we retaln the assumption that Pe {s small so that K

and K’ will be Identical with near-unity probabllity. This gives the relation




IK ; K)~ HK) = log, M~ M-10g2 M

As mentioned earifer J[(K'(m); K(m)) = log, M so

M
IK:K)= ) I(K'(m): K(m)

M=
We have shown that the memory {s access-separable. Unliformity follows from the fact that
I(K'(m); K(m)) =~ log, M for all m=1,2,..., M. In the low-error case then, the memory |Is
uniformly separable. The question regarding how separable the memory Is for larger error Is a subject
open for further investigation. Since Pe Is independent of M, uniformity should hold even In the case
that Pe s large. The author’s conjecture is that greater error will degrade separability gradually and

perhaps negligibly provided that (1 — Pe)log2 M>» }((Pe) :

3.4.4. Relation of Performance, Item-Memory and Channel-Memory

The notion of permutation-memory Is merely a formulation of the memory’s ability to keep track of
which Input-prototype Iis mapped to which output-prototype. For flxed outcomes fm and
g, m=12 ..., M of the prototypes and two random permutations, K and K’, a matrix storing
the associations (fm, gK(m)) should be different from the matrix storing the assoclatlons (f_, gK,(m)).
The difference should be reflected in the response of the two matrices to a given input. For assoclative
memory, the input will be some prototype fh' For the assoclative-classifier, the Input will be some bit-
vector fk' that Is closer to fh than it Is to the other prototypes. For either case, the matrix-output, call

J
it g’, . should reflect which output-prototype, 8x(k) OF Sxr(x)r WaS assoclated with fb (N ¥ 81((1:)) is
stored, then g’k should be closer to BK(m) than to the other output-prototypes. Likewlise for the case

that (f Is stored. In efther case, the matrix-output should provide an outside observer (a

b Brh)
detector/best-match-process that has access to the output-prototypes) enough information to declipher
which output-prototype Is matched-up with fk within the assoclator. In effect, the matrix-output must
provide enough Information about the proper output-prototype (e.g. 3K(k) for the first matrix and
81{'(&) for the second) to distinguish it from among the A alternatives. Of course, the permutation used
Is iImaginary In the sense that we can relabel the output-prototypes so that the matrix Is seen to store the

assoclations (fm, g,.). With this convention, the output gk’ should provide the detector with enough

information, that Is, log2 M bits, to allow a detector to decide which output-prototype is .31:"

In terms of the random vectors, G’h has a3 mean determined by Gk but Is lndependent of the

individual prototypes Gm, m % k, and so G'k provides no Informatlon about any sndividual Gm.
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The information that C:'.’,t provides about the output-prototypes to dliscern Gk from among the Af

alternative prototypes, should be largely due to the Information it shares with Gk . This must be at least
log2 M blts so

. G

G’ ; 2 log, M (3.29)

L)
would seem to be the necessary constraint on ltem-memory.

The problem is that G’, may not be Independent of the set {Gm |m =12 ..., M m # k}
as a whole, especially when Gk is known. Therefore the information it provides about the ®correct
cholce® among the prototypes may be dispersed among all prototypes. The author has no precise
formulation for this problem other than the deflnitlon of access-separability mentioned earlier. With
access-separable memory, the information that G’k provides about the output-prototypes Is exactly the

information it provides about Gk so that (3.29) would be a natural consequence of the present discussion.

Although item-memory appears not to be separable, our dilemma Is reso-lved by the following

observations. Flirst, since
? . L .

IG',:G.G,....G,) > [G,:G)
the constraint (3.29) will assure that the left-hand member of the above relation is at least log'2 M.
Another consideration Is the detector itself. We assume that It merely compares G’k with each of the
prototypes individually, and then compares the M results. No calculation involving G’h with more
than one prototype at a time ls allowed. A detector of thls sort should only be sensitive to information
G'k provides about Individual prototypes. This information Is zero for all prototypes except Gk.
Condltion (3.29) will therefore be necessary for the detector. Of course, a more sophisticated detector

which may not require this condition for rellable performance, may perform better than Indicated in the

subsequent chapters.
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Chapter 4

Evaluation of Information-Storage Capacity

The analysis to follow Is concerned with the case that the number, M, of stored associations is
larger than the input dimensionality, n,,so that the Input vectors are linearly dependent and Interference
effects must be accounted for. In this case the output vector Is only an approximation of the proper
prototype output. Our concern Is the number M of assoclations that can be stored in a matrix of a given

size before the output becomes unrecognizable.

4.1. Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M
assoclatlons (fm, g,) m=12... ,M for some M. The {nput-prototype vectors are n ~dimensional
and the output-prototypes are no-dlmensional. For simplicity of analysis the prototypes will be balanced
Bernoulll-vectors (see chapter 2, p. 15). All input-prototypes will then have |fm|2 = n, and all output-
prototypes will have Igm|2 =N, To motivate the met.hod of storage measurement, we make an analogy
with digital memory. The address to the digital memory can be viewed as an input vector and the
retrieved data as the output vector. A particular address vector and the data vector stored at the address
location can be regarded as a vector-assoclation pair. The number of bits represented by the data vector
Is the Informatlon the system provides upon performing the Input-to-output association. For digital
memory, the number of bits represented Is the same as the number of bit-locations In the data vector and
so Is ldentical with the dimensionality of the data vector. Storage s defined In this chapter as the
amount of information per association muitiplied by the number of associtions stored in memory.
Storage capacity Is the maximum storage the system can provide. In this case, the storage capacity |s
llmited by the number of storage locatlons of the memory. Though the dimensionality of both the Input
and output vectors Is specified In advance, the data Items are not. That Is, the number of items that can
be stored Is not determined by what they are. In effect, being able to retrieve data from the memory has
no meaning unless we are able to store an arbitrary data set at the outset (ROM Is no exception, when we
consider all memory configurations possible before burn-in). In essence, the question *What Is the storage-

capacity of the memory?® has no meaning when one Is considering a specific device whose Identity and
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input-to-output mapping Is already determined/unchangeable. A burned-in ROM for is no longer a

storage device, merely a retrieval device.

For the matrix memory, the storage Is llkewlse glven by the Informatlon-per-association multiplied
by the number of associations stored. The dimensionality of the Input and output prototypes are specified
in advance, but the prototypes themselves are not. That Is, we cannot assume specific values for the
prototypes in the analysis to determine the storage capability of the system. Since the prototypes to be
stored determine the values of the welghts of the memory-matrix, the matrix iIs itself unknown. For this
reason, the storage of the memory s not defined for a particular matrix but rather for a class of matrices

o The class of outer-product matrix-associators of a given size Is the set of all

éll of the same size.
matrices that can be generated from balanced-Bernoulll vectors via equation (1.1). The discussion above
indicates that an association Is not considered to be stored in a particular matrix of the class unless it is

explicitly included in the sum, (1.1) that determines the matrix.

The information-per-assoclation for ma;trlx memory can be characterized In several ways, two of
which are considered here. The first called item-memory chooses an arbitrary k& € {1.2. .c .. M} and
presents the kth input prototype to the system. The matrix-output is then regarded as a probabilistic
rendition of the kth output prototype. On the average (over all matrices of the class), given M, the
matrix-output will provide a certain amount of Information about the prototype output and this is taken

as the information provided by the association.

The second method, channel-memory or permutation-memory, acts analogously to an
information channel. The kth input is presented to the system and an output is generated. The latter is
compared with each prototype-output vector via a similarity measure and the best match from the

prototypes Is chosen. To perform correctly, the system Is expected to produce the k‘h

output prototype as
the best-match. If the lth output prototype Is chosen, an error is identifled with { 74 k. The probability
of error averaged over the matrix-class Is taken as the error probability for the assoclator as an M-ary
symmetric channel (see section 3.4.3). The average mutual Information between the output and Input Is

thus deflned. This average Is considered as the Information per assoclatlon. For channel memory, we

6 » . . . - 3 b4
In fact, Hinton (personal communication) observed that an n by n identity matrix seems to have an exponential amount
. n . [ . . .
of ®storage® since 2~ vector-pairs seem to be ®stored®. That is, using n-dimensional vectors of £ 1’s, one selects one from

among the 2" possible. This vector is placed at the input of the system to retrieve the same vector at the output. More
generally however, this can be done with an artstrary matrix. Simply select a vector (address) of =+ 1's, present it at the
input, "digitize® the output into =+ 1’s and say that the resulting vector (data) is the one ®stored® at that address. This
would give all matnces ezponential retrieval but there is no storage process that allows one to specify which addresses are to
be known by the matrix and what datum is stored at each address. This illustrates that storage and retrieval are not to be
confused as being the same. On the other hand, they are not independent of each other either. Reliable retrieval of a stored

association or "item® will require, for the associator at least, ti.»: 'oss than an exponential number of items be specified
during the storage process.
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define for each palr of positive integers (N, M) the matrix channel of size N on M associations. It
consists of the ensemble of all possible matrices with n[no = /N that can be constructed from a set of A
balanced-Bernoulll-vector prototype-palrs (fm. gm), m=1,2 ..., M. Mathematically the ensemble
acts as a communlcation-channel of information theory. Once a particular set of assoclations Is chosen
for storage, a particular matrix Is selected from the ensemble via equation (1.1). This matrlx Is

deterministic and Is not itself a communication channel and its storage Is not deflned.

For both item and channel memory, the storage is the product of M and the information [
represented by a single association. Initlally, the storage M-I of the matrix Increases proportionally with
M. However the error probability increases with M as well so that the informatlon-per-association [
gradually decreases. For some value M. of M, the Information per association begins to diminish more
rapidly than M increases. At this point, storing more associations decreases the total information storage

, J
of the system. For M = M , the system has reached its storage capacity.

The fact that the total retrievable information decreases eventually as M gets large Is not proven
in this work. In fact, thls may not be the case. On the other hand, the channel memory provides a
minimal criterion for memory performance. To perform well as a channel, a system need only produce an
output that Is more similar to the appropriate output-prototype than to the others. In effect, this
demands only that the system be able to tell the stored associations apart. This seems a natural minimal
capability since item-memory by contrast demands that the matrix actually ®reconstruct® the appropriate
output prototype. A system that can do this even with low fidelity of reproduction, can still perform well
as a channel. The channel memory deflnes a lower limit allowable for the fidelity. Since fidelity
deteriorates as more items are stored, we obtain a maximum number of useful associations that can be
stored by the system. Channel memory then Is crucial In determining the "absolute maximum® number of

assocfations to be stored in a system.

4.2. Bounds on Storage Capacity

4.2.1. Restrictions on Relative Magnitudes of Parameters

The analysis that follows assumes important restrictions on the magnitudes and relative sizes of the

parameters. These restrictions are in addition to any others derived later In this chapter.

We begin with the requirement that the input prototypes and the output prototypes be distinct
vectors. With this, the number M of prototype-palrs must satisfy |'log2 M < n, and
[log,, ,»\{] < U However If each of these relations Is an equality, the prototypes are already

determined. The only thing that can vary Is which input prototype Is paired to which output prototype.
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There are AM' ways to form the prototype palrs and so M! ways to form the matrix. Therefore the
matrix entropy Is log, M~ Mlog2 M bits which Is somewhat less than we will find It to be when the
prototypes are randomly selected. The *entropy-degradation® caused by a fixed prototype-set, would

serfously limit the amount the amount of informatlon the matrix can provide at {ts output.

In order to ensure that the matrix entropy Is not compromised, we must be able to choose either the
Input prototypes or the output prototypes (or both) at random. If the randomly chosen input-prototypes
are to be distinct with high probability, we must have 2log2 M< n, and If the output-prototypes are to
be randomly chosen, we need 2101;2 M< n, - These requirements ensure that sampling without
replacement Is virtually ldentical to sampling with replacement so that no duplicate selections occur. If at

least one of these two requirements is met, the matrix-entropy should not be degraded.

More stringent requirements are needed If the prototype vectors are to be dissimilar to each other.
This requirement i{s necessary for the output prototypes if a best-match algorithm Is to match the output
of the linear-associator with the correct output-prototype. A few errors in the matrix output should not
confuse the best-match process as they would If the prototypes are too simillar. The requirement Is also
necessary for the input-prototypes when the linear-associator Is doing classification (see next chapter) and
the inputs to the matrix are expected to be similar but not identical to an input-prototype. To meet the
requirement, the dimensionality of a vector space from which prototypes are to be chosen cannot be too
small. If two balanced-Bernoulll vectors are chosen from an n-dimensional space then the number of
components that are identical between the two has average n/2 and standard deviation of \/;/2 . Slince
agreement of exactly n/2 components corresponds to orthogonality and most vectors will fall within 2 or
3 standard deviations of the mean, the prototypes will be highly orthogonal if the mean Is large compared

to the standard deviation. For this, n should be at least 100 or so.

To ensure dlssimilar vectors one must also consider the number of prototypes to be chosen. The
minimal distance occurring between two balanced-Bernoulll vectors from among M vectors chosen from
n-dimensional space Is roughly n/2 — m \/;/2 (see appendix B). In order that the iwo most
simllar prototypes be dissimilar, we require that the above minimal distance be nearly n/2. This will
occur when Vv 2in M. \/;1-/2 Is small in comparison. As we shall see, the number A of prototype-palrs

to be stored In the matrix should not exceed the number of weights in the matrix. If the matrix Is square,

2

this means M will not exceed n° where n s both the Input and output dimenslonality. For this

maximal value of M we need m \/;/2 to be several times smaller than n/2. This sets a
minimal bound on n . If we require at least an elght-fold difference between n/2 and m- \fn./2.
then n must be Just over 1900 or larger. A four-fold difference produces a lower bound Just under 400.
In any event, the prototype dimensionality, both Input and output, should be several hundred if an

assoclator Is to dlscriminate well between a large number of stored prototypes.
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4.2.2. Matrix Entropy

As shown In the previous chapter, the amount of Information retrievable from the matrix W s
bounded above by its entropy H(W). In this section, the matrix-entropy Is estimated and used to

ascertain the storage capacity of the matrix.

Gliven the M Iinput-output prototype-palrs (fm. gm) , the matrix defined by equation (1.1) Is seen

th

as the sum of M outer-product matrices. The m™ outer-product or assoclation-plane or plane, is

th
completely determined by the n, + "5 bits of fm and 8, Its JI"™ component cj‘. Is the product /m‘.gmf

th

which takes values in {—1,1}. The m™ association-plane Is not changed If both f and g__ are muitiplied

by -1. This indicates that the mth plane represents at most n, + n, = 1 bits of information. In fact, the
entries of any glven row and column are enough to determine every other entry in the plane. To
illustrate, examine the k*® row and ltb column and the entry c].'. = fm'.gmj. These three entries (bits)

Cri* ki and F determine cﬁ so that the parity of these four numbers is even. The n,+n,— 1 entries
that make up a particular row and column, are easily seen to be Independent, so that n1+ no, = 1 {s also
the lower bound on the Information In a plane. We conclude that each association-plane represents
exactly n,tng—1 bits. We mention also that the entropy of the assoclation plane Is the same even
when the output (input) prototypes are fixed outcomes leaving only the Input (output) prototypes as
balanced-Bernoulll vectors. From this we have that the matrix-sum W of the association planes has the
same entropy from the polnt of view of an external process that has knowledge of either (but not both)

the set of input-prototypes or the set of output-prototypes.

When the assoclation-planes are summed, information Is lost. To assess the matrix entropy, note
that each of the entries Wj‘. of the matrix is the sum of M °®blts® fm'.gmj, m=12,...,M. Therefore

Wﬁ ~ Bin(£1,M.1/2). As shown In appendix A, the entropy of WJ.‘. Is

HoW 1 reM

(4.1)

As mentioned In the previous chapter, the entropy of a set of random variables Is bounded above by the
sum of the indlvidual entroples (see equation (2.2)). Since there are /N weights, where N = nlno, and
since the welghts have ldentical entropies, the upper bound of H(W) (s obtained by multiplying the
common weight-entropy (1/‘2)log2 (reM/2) by N. The entropy H(W) will obtaln this ubper bound If
and only If the weights are Independent. The assumption that the welghts are independent Is false for
individual assoclation planes. However the planes are independent and the bit-patterns in one plane will
not generally be present {n the others. For the sum of M such planes where M Is large, the welght-
independence assumption should provide a close approximation the the true matrix entropy when M Is

much larger than both n, and 5 We conclude then that
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reM
2

1
HW) = -2-Nlog2 (4.2)

is a good approximation when M > n, and M > o

4.2.3. Bound on the Number of Items Storable

th

Consider the situation in which the k™ input-prototype, Fk Is present at the input of the linear-

th

associator and some process provides information about the kK™ output-prototype Gk on the basis of

what it sees at the memory output. If the average Information It provides about Gk Is I bits then from

relation (3.12) of the previous chapter, we must have

M-I < HW)

Replacing H(W) with its upper bound

M.T < 1 reM
-Nlo
= V%
so that
M log, M + log2 (re/2)
_— <
N — 3 |

We make the approximation log2 (re/2) =~ 2 to get

log, M+ 2

M
~ (4.3)

<
- 2.1

In the case that the process at the output of the matrix Is a best-match algorithm, the matrix Is acting as

a channel. By equation (3.28), page 32, we have

I = log, M — Plog,(M—1) = HP)

where Pe Is the probability that the best-match process chooses a prototype other than Gk as the one

most closely resembling the matrix-output vector. For our purposes, M — 1 =s M and so

I ~ (1- Pe)log,., M — HAP) (4.4)

4
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Equation (4.3) becomes

log, M + 2

1
2’ (1 — Pe)log2 M - J-((Pe) (4:3)

M
N

Our criterion for minimal channel performance is that Pe = 0 In which case [ = log, M . This gives the

upper bound on M/N

M<1 1
—_ - +
N

- 2 log, M (4.6)

for perfect channel performance. When M s large, say log, M > 16, the upper bound for M/N is
only negligibly larger than 1/2. Therefore we deflne the storage load or load, L, of the system to be
the ratio 2M/N . A load of 1 corresponds to storing half as many prototype-pairs in the memory as
there are weights In the matrix. For large systems (50,000 weights or more), a load larger than one

precludes operation of the memory as a perfect channel.

4.2.4. Trading Storage with Error

To understand how the load trades with error rate Pe. we rewrite equation (4.5) as the quotient

,  log, M+ 2 1
< -. : /
- 2 (1- Pe)log2 M 1 - }((Pe)/[(l - Pe)log2 M)

M
N

letting z = }((Pc)/((l - Pc)log2 M) and assuming this fraction is less than 1/3, we use the approximation

1/(1 —z)~ 1+ z to get

M 1 1082 M+ 2 )((Pe)
NS i i-Pyem't
2 (1-— e)logz ; (1 — Pe)log2 M
1 1 1 H(P)
= e——— - 4 1 +
(1=P) 2 log,, M (1 — Pe)logz M

If we assume that Pc < 1/2 and that 2/(log2 1_\{)2 Is less than say 1/16, then when we multiply out the

right-hand-side, we can Ignore the H(P)/{(1 - Pe)(log2 M)2] term to get

1 | N(Pe)

1
D1\ o + (4.7)
(1 — Pc) 2 1082 M 2(1 — Pe)log2 M
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This approximation is good for M 2> 2% when Pe < 1/2. These restrictions ensure that the *z® term
defined above is less than 1,/3 which in turn ensures that the term we ignored to get relation (4.7) Is small.
512

If we allow Pe to be as large as 3/4, then we obtaln a minimum value, 2°°, of M required for the

valldity of (4.7).

A simpler bound for M/N is afforded for M > 21® ' In this case, If Pe Is less than 1/2, the term

(1 = P )log, M is much larger than X(P,) so that the latter can be ignored In relation (4.5). The

relation then becomes

1
log2 M

M < 1
N (I—Pc)

1

"2' + (4.8)
Notice that this Is the bound In equation (4.6) multiplied by the Inverse of the "success rate®* (1 — Pe).
The approximation Is valld for more modest values of M when Pe {s smaller than 1/2. Summarizing the
analysis for larger systems, the number /N of weights needed to store M assoclations for fixed Pe is
O (M). Allowing the load factor L = 2M/N to be largerthanl,say L = 1/(1—-r), 0 < r < 1,

implies the error rate Pe will be at least as large as r.

4.2.5. Storage Limits for Item Memory

th

Now we turn our attention to item-memory. We assume that when the k™ lnput prototype Is

presented to the matrix, the matrix output i{s used ezclussvely to produce a bit vector that Is as accurate a

th output prototype as possible. It Is assumed that no information other than that

rendition of the k
provided by the matrix-output Is allowed for production of the bit-vector. To be consistent with the other

sections of this thesis, we denote the systems ®rendition® of Gk as Gk"‘ The term, I, in equation (4.3)

Is now I(G,"G,). For the case that P(ij” = ij) ~1, Jj=1,2,..., M, we have that I must be
"5 bits and so
N 2n,

Substituting nm, for N and rearranging, a critertion for n,ls found

S 2 M -
n 4.9
r = log, M + 2 (4.9)

For large M (say M > 18 ) we can ignore the 2 In the denominator to get
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> 2M
I = log2M

(4.10)

Since the bit-error rate Is near zero, Gk" should be virtually identical to Gk . If a best-match Is used to
select the output-prototype that Is nearest to Gk"' then Gk will be chosen with near certalnty. In other

words, If we deflne Pe as the probabllity that Gk Is not chosen then Pe should be near zero.

For this condition to hold, the memory must provide enough information at its output to act as a
channel with no errors. Therefore relation (4.6) must be satisfled. Using this together with (4.9) and the

fact that NV = n._n_ one gets a lower bound on n

Io o

n, = log, M + 2
which Is a minimal requirement to be made considering the parameter constraints discussed earller In the

chapter.

For {llustration, we design a matrix to store M = 50,000 pairs. With this large number, relation

(4.6) Implies that at N Is at least 100,000. The minimal value for n, becomes about 5700 and the

I

minimum for n5 Is about 18. WIith these values, the number of welghts becomes 106,200. We will
compare this with the matrix parameters derived in the next section in which the system Is allowéd to

make errors.

4.2.8. Item-Memory with Errors

Now consider the case that the components of Gk" each agree with thelr counterparts in Gk with

n
probabllity noticeably less than 1. Assume that the probabllity that a palr G',u.and G/:j agree |s

Independent of ) =1,2,...,n. and call this probabllity Ps - The probabllity of disagreement between

(0]
a palr of components Is 1 — P Which Is non-zero and so Gk" will contaln a substantial number of bits
that are in error. In thls case, a best-match algorithm that compares Gk" with the output-prototypes

will have a probability Pe > 0 that the wrong match is made.

The information that Gk" provides about Gk {s bounded above by the information Gk' provides

about G, and bounded below by the sum Z:;(_oz I(ij" ; ij) of the Informatlon that G, provides on a
bit-by-bit basls. The argument that thils Is a lower bound Is similar to the argument given in the previous
chapter to substantfate relations (3.19) and (3.20). The Information that ij” provides about ij Is

~glven by (1 — }((pc)). Using the above lower bound for I, this implles that relation (4.3) holds with [
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replaced by nO(l - )((pG)). Assume that Pc < 0.88 so we can approximate 1 — }((pc) by
(2log,, e)(pG - 1/2)2 as per equation (2.29). Inequality (4.3) becomes

]og2 M+ 2

M
—_ < > (4.11)
N 2710(2l<>g2 e)(pG - 1/2)

For M > exp2(16) , we can ignore the 2 in the numerator on the right to get

In M
< > (4.12)
-tno(pc -1/2)

z| g

We can get a lower bound on n, by replacing NN in (4.11) by nn, and rearranging

Mllog, €)(pg = 1/2)°

n, > 4.13
I = log, M + 2 (4.13)
Agaln, assuming M > 50,000 we can use (4.12) to get
2
n, > 4.14
= In M (4.14)

which holds for larger systems. We assume that p ., > 1/2 since Gk” {s supposed to be a better-than-
chance rendition of Gk' With this assumption the above relation can be expressed as an upper bound on

Pc achievable by a given n,

P S %(1+\/n11n M/M) (4.15)
Since Pe Is less than 1, there Is a non-zero probabllity Pc that Gk” will be mistaken for some prototype
other than Gk . If we assume that a best-match among the output prototypes Is sought using the vector
G,"” then the Information I(Gk" ; G,) must exceed that required to operate the best-match process.
The Information required for a best-match process with error rate Pe Is given by (3.28) of the prevlous

chapter and we can assure that I(Gk" : Gk) Is larger than this by requiring

no(l - }((pG)) > (1 - Pe)log2 M- }I(Pe)

Assuming that P, < 1/2 50 that (1 — P )log, M > (1/2)log, M. we take M to be larger than 50,000 as

usual. This allows one to ignore the A(P,) term so that we have
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no(1—Hpg) 2 (1 —P)log, M
With the assumption that 1/2 < P < 0.88 we use the approximation (2.29) to get
2 -
2no(log2 e)(ps = 1/2)° 2 (1 Pe)log2 M

which ylelds the reciprocal relations between the error probabilities

2n0
Pc > 1 - > (4.168)
In M(pG-—l/z)

P 2 1/2 + V(1= P)ln M/(2n,) (4.17)
To obtain a bound on the matrix size, "0 can also be expressed in terms of the other parameters:
(1 - Pe)ln M
n. > (4.18)
O ——
2(pG - 1/2)2

Note that relation (4.18) must hold for Pg to satisfy both (4.17) and (4.15) simultaneously. From (4.18)

and (4.14) we have N > 2(1 - Pe)M which Is the same bound as given in (4.8) for M large. While n,

and n_. depend on PG their dependence is reciprocal so the matrix-size needed to store M items is not

O
affected by p. glven a fixed Pe.

We use these relations to design a matrix that can store M = 50,000 items with a channel error
Pe = 1/2 and a output-bit error Pg = 3/4. From relation (4.18) we obtain n, = 4. From (4.14) we also
have n, 2> 1156, so that nMne, S 50,900. Again the matrix is one which *fans-in® to produce a highly
rellable output under a large storage load. Notice that In accordance with (1 — Pe) = 1/2, thls system

Is roughly half the size of the one designed earlier for ®*perfect® item retrieval.

Under any of the above circumstances, the number of weights needed for storage is O (M). Allowing
Pe > O allows an advantage with M increasing roughly proportional to 1/(1 — Pe), (Pe < 1/2). Ifa

bit-error Pe < 1 Is allowed, then Pe must be specified to determine n, and n_, as a function of M.

(0]

Notice that relatlons (4.13), (4.14) and (4.18) Imply that n, can be made smaller when P; s near 1/2,

I

o | Ist be made larger to meet the same storage requirements since the number of weights must

satisfy relatlons (4.11) and (4.5). Requiring that the bits of Gk" to be accurate forces either M or n, to

whereas n
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be small. That Is, either the matrix must store few vectors (small ratlo M/N) or the slze N = nmn, of
the matrix must be due largely to n,. Heuristically, the matrix must be able to gather a large amount of
information at the input compared with the amount It supplles at the output. One would suspect that the
information supplied at the output is a function of the Information avallable at the input. This

observation, which will be shown to be true in the next chapter, will be Instrumental In derlving results

regarding classificatlon.

4.3. Storage Efficiency

Storage efficlency of a matrix will be deflned as the matrix-storage dlvided by the information
required to represent a matrix assoclator on M assoclations. We know that the number of bits stored by
the matrix is the matrix entropy H(W). To get the number of bits required to store the matrix, we
examine equation (1.1) to ascertain the range of values that the weights can assume. This equation
reveals that each entry (weight) in an outer-p_roduct, matrix is the sum of M bits. The range of values of
each entry is the set of Integers between —M and M. The extremes are realized whenever the bits for
that entry all agree In value. Further, the entry will be be even If and only If M Is even. It follows that
the number of values an entry can assume Is M+ 1. This means that /N welghts will require
Nlog2 (M+ 1)~ Nlog2 M bits for storage. We define the efficiency n by the matrix-entropy divided by

the number of bits needed to represent the matrix

H(W) (1/2)N(log2 M+ 2) _ ) )

TZ Nog,M T T Nog, M T log, M

(4.19)

W |

which is the upper bound for the ratio of M to N . In this case, the efficiency Is asymptotically 1/2.

This Is not the best we can do however. From the proof of the ®talls lemma® in appendix A, page

100, the entropy H(Wﬁ) of 2 weight of the W-matrix can be approximated by considering only 2rM +1

of the most central values that the welght can achieve where r, = \/2Mlog M |. This means that
2

M
only these values occur often enough to represent a significant amount of the Information represented by

the welght. So we can ignore the more extreme values the weight might take and thereby only need

roughly log,‘2 (‘2\/2“\ﬂog2 M) = (1/2)log2 (2Mlog2 M) + 1 bits to store each weight.

Let Mo be a positive integer representing the maximum number of assoclations to be stored in the
matrix. If we restrict the welghts to range in value from -[2Molog2 MOJ to [2Molog2 ) 0] then when
the number M of associations stored Is no greater than M, , the talls lemma prescribes the maximum
number of bits of Information lost by making the range restriction. The maximum Information lost Is

given by the upper bound for ¢ in the talls-lemma which is 2log, e/(eMo) (see (A.42), conditlon 2 and
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related footnote, page 100). Assuming that this is the amount of {nformation that is lost for each weight,
the total lost for the entire matrix |s no more than 'leog2 e/(eMo) bits. If the matrix Is required to lose
no than r bits of information due to the weight restriction, then set Mo equal to N/r so that the
maximum information loss Is 21\f'log2 e/(eN/r) = 2rlog2 e/ess r bits. For the case that the load L Is
expected to be less than 1 (that Is we don’t Intend to overload the matrix), we can set Mo to be N/2
and will lose no more than one bit for the whole matrix by restricting the weights to the prescribed range.

The efficlency of this new system Is again the matrix-entropy divided by /N times the logarithm of

the number of values permitted for each weight

(1/2)N(log._, M+ 2)
N((1/2)log, (2M) + (1/2)log, (log, M) + 1)

"=

log, M
for large M (4.20)

log, M+ log, (log, M)

which is asymptotically near 1. Therefore, by simply truncating the range of the weights, we can for a
fully loaded matrix, achleve a storage efficiency near unity while losing an Insignificant amount of

information about the matrix.
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Chapter 5

Classification

5.1. Introduction

Whereas the previous chapter considered the linear-assoclator as a memory, the present chapter will
treat it as a classifler. The classifier is merely a generalization of the memory In which the Input-vectors
are no longer constrained to be input-prototypes. In thls case, Input-prototypes are each a representative
or "prototype® of a distinct category of vectors in the Input-space. An vector from the input-space
belongs to a category If It Is closer, under the Hamming-distance metric, to the prototype of that category
than to cther Input-prototypes. The input-prototype and Its category have a corresponding output-
prototype that represents the category In the output vector-space and the associator has stored the
correspondence between the input and output prototypes. In this characterization, classification is similar
to channel-memory (see figure 5-1). The input-vector by virtue of its membership in a particular
category, has a corresponding output-prototype which is the category’'s corresponding output-prototype.
Proper classification consists of assoclating the Input-vector to an output-vector that Is closer to the

Input-vector’'s corresponding output-prototype than to the other output-prototypes.

The analysis begins with the characterization of the llnear-assoclator as a clésslflcatlon device. A
non-linearity Is applied to the assoclator-output to facilitate the analysis. Minimal requirements necessary
for proper performance of the classifler are explained and we describe the assoclator’'s Information
characteristics relating to achleving these requirements. Methods of generating Input-vectors are
formulated and are eventually shown to be equivalent from the polint-of-view of the associator. The
information flow from input to output, called the *throughput® of the associator, Is then quantified and
related to performance capabllity of the associator. We will then be In a position to determine the
minimal size of sub-vectors within Input-vectors that act as "cues® for the input-vector category. We will
also quantify the percentage of the Input-space that Is classiflable by the system. We then ®revisit®
storage capacity and quantify its degradation due to the use of the non-linearity at the associator output.
Near the end of the chapter, the theory Is lllustrated with a few classifler desligns and a discussion of
important aspects of their operation. Finally, we derive some merit parameters for Judging

storage, classification performance of the assoclator as It compares with the best theoretically possible.
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Figure 5-1: Classification by Prototype-Correspondence

5.2. The Associator as a Classifier

5.2.1. Characterization of Classification

Consider an arbitrary classification device as shown in figure 52. The device can recelve any
nl-dlmenslonal +1-vector as an input which will be referred to as the input-vector. The device has
stored Information about M vectors called input-prototypes. These prototypes are the nl-dlmenslonal

balanced-Bernoulll vectors Fl. F2. ..., F Each one Is considered to be an exemplar of a distinct

A
category of nl-dlmenslonal +1-vectors. An input-vector that Is closest in Hamming-distance to the
prototype Fk than to any of the other input-prototypes will be denoted by Fk' and Is said to belong to
the ktb category. Thus, there are M categories, each ®"centered® about its exemplar. After recelving the
input Fk" the classifier is expected to emlit the number k at Its output to signal that the Input belongs
to category k. A classification-error (or briefly an ®error®) Is sald to have occurred when the response

of the classifier Is some number other than k. The probabllity of classification error Is denoted Pe :
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Fligure 5-2: General Classifier for n,-dimensional £1-vectors

" If the classification device Is to operate with negligibly small Pe. the input-vector, Fk' must
provide at least log2 M bits of Information about its category-exemplar Fk . This is due to the fact that
Fk' must be distinguished as belonging to one of M categories and the only way the distinction can be
made Is to determine which of AM exemplars Is closest (see the chapter on the information-theory of

memory). We therefore have the constraint

I(Fk’;Fk) > logzM (5.1)

Now consider the classification system of figure 5-3. In this case, the classifier Is divided into two
stages. The first-stage Is a linear-assoclator whose output Is fed to a Hopfield-non-linearity (defined
later). This stage, called the assoclator, translates nI-dlmenslonal +1-vectors {nto no-dlmenslonal
t1-vectors where n, Is the dimenslonality of the assoclator's output-prototypes GI'G2’ . 'GM'
The second-stage Is a2 best-match process that compares the output of the first-stage with the output
prototypes. In this case, the M category-exemplars for the classifier are the Input-prototypes
Fl, F2 ..... FM. As Is the case for the general classifler of figure 52, an Input-vector that belongs to
the k!B category will be denoted Fk" The resulting output of the linear-associator matrix will be called

Gk' and the output of the Hopfleld non-linearity Is called Gk"'

Upon receipt of Fk’ at the input, the resulting vector, Gk"’ at the output Is expected to be closer
to Gk than to any other output-prototype. In this case, the best-match process of the second-stage
process will respond with the number k at the output. We regard the best-match device as an error-free

device. Errors will only occur If the first-stage produces a vector Gk" that Is closer to some output-
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Associator

F,E, ..,Fy

G,,G,, ..,G,

Best-Match

G1 ’ Gz, see ,GM

1st Stage 2nd Stage

Figure 5-3: Associator Classifler for n -dimenslonal x1-vectors

prototype other than Gk . In other words, the analysis Is concerned with the performance limitations of
the first stage. The second-stage Is merely an artifice for the sake of the characterization of the
classification ®"task® of the linear-associator. In fact, the ®classification® done by the associator is Just its
passing information to the output that enables one to determine which Input-category Is present at the

matrix-input.

We observe that the second-stage of figure 5-3 Is itself a classifier of an arbitrary sort. Its category

exemplars are the vectors Gl. G2. ..., G,, soitsinput Gk" must provide log2 M bits of information

M
about Gk If the second-stage Is to classify rellably. The assumption that

I(Gk” ; Gk) > log, M (5.2)

{s thereby obtained as a constraint on the output Gk" of the first-stage.

In a later section it will be shown that the output-information I(Gk” ; Gk) of the first-stage can
be regarded as a linear function of the Input-information I(Fl:':Fk)' The ratio
](Gk";Gk)/l(Fk"Fk) will be denoted by T\W) and Is called the throughput of the assoctator.
Knowledge of the throughput will allow us to translate the constraint of (5.2) into a constraint on the
Input-vectors F ’. This In turn will re'veal the fraction of the input-space 7 that can be classifled.

The general i1dea Is to define the Input-redundancy (or simply the redundancy) R of the tnput F ' to
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be the ratio

R = IF, F)/log, M (5.3)

The constraint (5.1) then stipulates that R 2> 1. The question Is just how much redundancy must be
present at the input to the assoclator to ensure rellable classificatlon. The answer lles In the definition of
throughput from which we have I(Gk" ; Gk) = TTW)I(F," ; Fk) ,-and so relatlons (5.2) and (5.3) imply
that the inequality N\V)Rlog2 M> log, M holds. That is

1

>.—-———
R 2 7w

(5.4)

In the case that the assoclator Is not lightly loaded, TYW) wlll be less than 1 so that by (5.3), the

R of the

constraint (5.4) Is more stringent than relation (5.1). Later it will be shown that at most M~
input-space F Is classifiable. A heavily loaded associator will have a low throughput and so require a

high redundancy. As a result, it can classify only a small portion of the Input-space.

Since the classifier of figure 5-3 Is merely an associator followed by a classifier, one may wonder why
we should bother with the first-stage associator at all. One reason Is that the assoclator translates input-
vectors Into output-vector "codes® that are more useful to subsequent processing stages. Another reason
as we shall see, Is the data-compression afforded by the associator. What data-compression Is and its

usefulness wlill be seen near the end of the chapter.

5.2.2. Generation of Input Vectors

An important aspect of assoclative memory is the abllity to respond to Input-patterns that deviate
from the stored Input-prototypes. In particular, suppose each input-prototype Fk 1s dlvided up Into

subvectors called features (see figure 5-4). That Is, some subset of the n, components of Fk represent

I
a "fleld® In which a particular "plece® of information Is coded. If Fk’ has only thils single plece of
information in common with Fk and nothing (other than coincidental similaritlies) in common with the
other Input-prototypes, then we call F ' a single-feature vector. It Is desirable that an Input-vector
Fk’ be classifiable even {if it is a single-feature vector. Call the number of components of Fk that
compose a particular feature the feature-size. We seek the minimal feature-size necessary for rellable

classification of a single-feature vector.

Several methods of incorporating a feature of Fk in Fk' or inserting information about Fk Into
Fk' are considered here. The first is to copy r components of Fk into Fk’ and set the rest of the

components of Fk’ to zero. This case can be reduced to analyzing the storage characteristics of an
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Prototype: (feature-1, feature-2,....., feature-k,....., feature-r)
/'

Single-feature \
input: (veeeeeee'random..........., feature-k,...."random"...)

Figure 5-4: Features Within Vectors

assoclator with r-dimensional Input. This method therefore Is not as Interesting as other methods which
don’'t allow zeros as components of the input-vector. Zeroing the ®"unused® components however does
have the advantage that no spurious Informatlion Is incorporated Into the Input-vector. As far as the

matrix Is concerned, r bits of information are actually present at the input.

Another method Is again to copy r of Fk’s components to Fk’ and choose the rest of Fk"s
components as a random selection of #£1's. This case Is more interesting because it corresponds to Fk'
containing information other than that of the r-dimensional feature of Fk' This additional Information
however Is not relevant to the prototypes of the associator. Rather, It Is used by other assoclator-
classifiers in a multi-classifier system (see figure 55). Each assoclator would sample the input-vector and
only act on the features the input contains that are relevant to the prototypes of the associator. The
Input might represent the functional description of an object, each feature of the input-vector representing
a different functional aspect of the object. Each associator would have Information about a specific

“feature-type® and assoclate features of this type to relevant ®*concepts® or ®*goals® of the system.

This method of generating the input-vectors actually Incorporates r bits of information about Fk
Into Fk'. However, the network Is probably not capable of using all r bits of Information. In the first
place, the assoclator has no way of knowing which of the r of Fk' are the coples. What's more, It never
varies the way In which it ®*weighs® a glven component of Fk' when determlning Its output Gk’.
Whether or not it happens to weigh the r components of the feature heavier than the other components
of the Input, Is a matter of *happenstance®. Another related problem Is that generating the input-vector

with fnconsistent information Is not well-accounted for by Information theory. An linput-vector Fk’
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(..., feature-r ,...) (..., feature-s , ...) (..., feature-t , ...)

f ‘ ?

(feature-1, feature-2, ..., feature-q)

Figure 5-5: A Multi-Associator System

should be classified with the category-exemplar Fk even when it contains information in direct opposition

to this cholce of category. More precisely, copy r, components of Fk to Fk' and copy the negative of

1
each of Ty other components to Fk" Choose the remalning components of Fk’ randomly. We assume
Ty =T > 0 so that the net feature-size is r > ry =Ty Agaln, If r |Is large enough, then the

consistent information should "override® the Inconsistent information so that Fk' Is properly classified

into the kth category.

From an Information-theory point-of-view however, the mutual information I(Fh’ : F*) Is no longer
r blts but r, +r, bits. An observer of Fl:" knowing which components were copled directly and which
were negated could infer the ry Ty values of those components of Fk. Of course, the associator treats
all the components of the input-vector the same. If r |s large, the dot-product Fk"Fk of equation
(5.12), page 57, will be large and Fk' will be correctly classified. From the polnt-of-view of the

assoclator-matrix, the useful Information Is r bits not ry + rq bits. A more substantial argument for this
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view will be glven later. The arguement depends on the fact that the distributlion of the matrix-output is

a function of r only and does not otherwise depend on which of the above methods are used to generate

the input-vector.

Another method of generating the Input Fb' Is to choose it within 3 reglon surrounding the

prototype Fk . We define the ball of radius p about Fk to be the set

B,(p) = {x € F|HD(F,.x) < p} (5.5)

where HD(x,y) Is the Hamming-distance between the vectors x and y. If p > 0 has a value such
that Bk(p) ~ 1/M then concesvably, each of the M balls Bm(p) m=12,..., M could occupy Its
own region of the Input-space F with little overlap. That is, most vectors of ¥ would lie in exactly one
ball. The likellhood of small overlap of all the balls I1s small but the important notion is that the largest

portion of space each can occupy Is 1/M without unavoidable overlap.

Now consider generating Fk’ by choosing it at random from Bb(p). We will call this method of
input-generation the neighborhood method. An observer of Fk' knowing how it was generated, knows
that the input-prototype Fk lles within p of Fk" Only 1/M of the Input-space is this near Fk’ SO
this knowledge constitutes an M-fold decrease in the number of possible values of Fk' Therefore the
vector Fk’ chosen at random from Bk(p) provides log, M blts of information about Fk' Observe that
If p were decreased so that Bk(p) encompassed only M~R of the space, where R > 1, then the Input
Information I(Fk,;Fk) would Increase to RlogzM. This observation will be useful later when

comparing the methods of generating the associator-input.

A flnal method of Input-vector generation Is that of flipping a blased coln to determine for each
component (bit) of the Input-vector Fk' whether it agrees with the corresponding component (bit) of Fk :
This will be referred to as the eoln method. If the coin lands "heads®, we copy a component of Fk to
Fk’. If i1t lands "talls®, we copy Its negative to Fk'. Letting Pp be the probabllity of *heads®, the
probabllity that a component of F,' agrees with its counterpart in Fk Is pp. In order that Fk’ be a
better-than-chance rendition of Fk, we assume that Pp > 1/2. In this case, the Information that Fk’

provides about Fk Is the sum over all n, components of the Information that each component of F,"

I
provides about Its counterpart In Fk . We can write

"1
IF):F,) = > IF/:F,) (5.8)

1=1

The Informatlon I(Fh.’ ; Fh.) Is the functlon 1 -~ H(p,.) which Is 1 blt minus the uncertainty }((pF) that

Pp



66

Fk,' agrees with Fk‘.. When p.. Is not too near 1, (say Pr < 0.88 ) we can approximate 1 — }-((p’.) by
]
2(log2 e)(pF—- 1/2)2 (see approximation (2.29) page 19). The result Is

IF/;F) = nfl=Xpp)

S 2rzl(log,2 e)(p’.--l/2)2 1/2 < Pp < 0.88 (5.7)

We can assess the similarity of the Input-vector FI.' to the prototype Fb as measured by the
‘dot-product. The average number of components of Pb' that agree with their counterparts in Fh Is
nPp- The average number that disagree is nl(l - p") . The components that agree contribute a 1 to
the value of the dot-product Fh-Fk' and the components that disagree add a -1. Therefore the mean of

the similarity s

E(Fk'Fh') = nIpF-(l) + nl(l - pp)(-l) == (2pp- l)nl (5.8)

For the method of copying r components to generate F,’, the mean similarity is r. We therefore set

r=(2pp— 1)n, to obtain the same mean similarity as for the coln method. This gives the reciprocal

relations
ro= (2pp—1)n (5.9)
and
1 r
PF 2 2n, (6.10)

It will be argued later that the various methods we described for generating the lnput-vector are

equlvalent, from the point-of-view of the assoclator, to the coin method with Pp given In (5.10).

5.2.3. Throughput of the Assoclator

To ascertain the throughput of the first stage of the classifier In figure 53 we must consider the

probabllity distribution of the components of Gb" For j=1,2,...,n_.., we show that the probabllity

(o,
that ij" = Gk). Is independent of j. Calling this probabllity P; » It 1s shown to be a function of the
probabllity p. deflned earller. Consequently, the output Information I(Gb" ; Gb). itself a function of

P - s a functlon of the input-information I(F ' F ).
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To assess p. ., note that Gk" Is produced from Gk' via the "Hopfleld® |24, 25| non-linearity

1 irGg,! 2 0
{ d (5.11)

1 otherwise

The probabllity that ij" = ij s the probabllity that ij’ij > 0 since the two relations are
equivalent. As a result, we can compute p. once the probability distribution of ij"ij Is known.

Using the fact that Gk’ = WFk' where W is given by (2.19) we have

M

G,}G,. = ) (F_F)G_ G,
M=

M
= (F,F)G’ + >  (F F)G G, (5.12)
mm=l,m gk k

Using methods outlined In the chapter on notation, page 16, the probabllity function of the term
(Fk'Fk’)ijz in (5.12), call 1t the ®first term®, can be determined. The same can be done for the
summation (call it the "*second term®) in (5.12). Both the first term and the second term are sums of 1.i.d.
r.v.’s so that the central limit theorem implles the two are both normally distributed. The sum of two
independent normal r.v's Is normal so we conclude that Gl:j"ij Is normal. The mean of ij"ij Is the
sum of the means of the first and second terms of (5.12) and similarly for the variance. Recalling that
Fk' is generated by the coin method with Pp = 1/2+r/(2n1), the mean of the first term Is
n[(2pF— 1) and the variance is 4pF(1 - pF). The mean of the second term s zero and the variance is
(M- l)nI. Therefore the mean of ij"ij s n1(2pF— 1) = r and the variance s
4nIpF(1 - pF) + (M-~ l)nI. The latter Is very nearly equal to Mnl for any value of p, provided
M > 10.

Before calculating Pg in terms of Pp. We make some observations with regard to the effect of
generating Fk' on the distribution of ij"ij' When M > 10, the variance of ij"ij is
determined entirely by the second term of equation (5.12). The balanced-Bernoulll vectors,
F_. m 5 k, appearing In the second term are Independent of F,' regardless of how F ' depends on
Fk

Fm-Fk’ will not not be affected by any of the methods of generating a =+1-vector Fk' from Fk' From

(see chapter 2, page 16, concerning dot-product Independence). Thus the mean and variance of

this we see that the varfance of the second term will always be (M — l)nl Irrespective of the method of
generating Fk’. Since Fk Is a X1-vector, the variance of the first term of (5.12) can never exceed ng-
The first term will therefore not contribute substantially to the variance of ij"ij under any method of

input-generation. Also ij’-ij Is normally distributed since the second term Is a3 large sum of 1.l.4.
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rv.’s. The nature of the first term Is Inconsequential due to Its small variance. Further the mean of
GH’-GH is r for any of the methods given for generatlon of Fk’. We see then that the product
ij"ij has virtually the same distribution for any method of input-generation. In particular, we have
that ij'-GkJ. ~ N(r, Mnl). We conciude that the various methods of generating the input-vector are

virtually equivalent from the viewpolint of the assoclator. From this point on, these methods will be

discussed lnterchangeatﬁy.7

From this, we have also that the input-information provided by the coin method represents the
maximum amount of information utilized by the assoclator for any mode of input-generation. This can be

seen by replacing pF-—l/z by the equivalent r/(2n1) in equatlon (5.7) to get

2
(log2 e)r

! .
I(Fk .Fk) ~ 2n; (5.13)

This {nformation Is less than r bits when r < nl/logz e. This will be the case in the analysis to follow
since (5.13) Is necessary for (5.7) to hold. We conclude that the coin method provides the smallest input-
Information compared with the other methods (the neighborhood method provides roughly the same
amount of Input-Information as the colin method). Because’ the assoclator sees no difference In these
methods, the input-information provided by the coln method must be the maximum amount useful to the
associator when computing the output vector. The coin method of generation can therefore be used to
ascertain the performance of the associator despite of the actual method of input-generation. This allows
us to exploit the simplicity of analysis afforded by the coin method while retaining the generality to

performance under the other Input-generation modes.

We now begin to calculate the probabllity P that ij” = ij which Is the same as the
2 2 -
probablility that ij ij > 0. Since the product ij ij Is normal with mean (2pp,—1)n, and

variance Mn,, the probabllity Pc {s easlly determined

PG,!G,. = 0)

Po j 2

Il

1 - P(ij’-G'kJ. < 0)

7’I'be equivalence of the neighborhood method to the coin method follows from the fact that the vast majority of vectors
in the interior of the ball in (5.5) lie near the boundary provided the radius is less than n/2 (see Kanerva [26]). The ball
method and coin method will be consistent if the radius of the ball is roughly "1“ -pFJ (see appendix B). The

distribution of vectors generated via either method is that of a "ring® surrounding the central category-prototype. The
“thickness® of the ring being determined by the variance of the coin method.
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1 - P?'(ij'G’kj Is (2pp — l)nl/\/ MnI standard dev's below the mean)

-—(2pF-— l)nF.
=1 - ¢
\/Mnl
— ¢((2pF— 1)V nI/M) since #(z) =1 — &$(— 1) (5.14)

where @ is the standard normal distribution function. Since Pq < 1, and M will generally be larger

than n,, It follows that (2pF- l)VnI/M is typlcally less than 1. This allows use of the Taylor

I 1]
approximation to @ given in chapter 2 page 19. We get

1 1 1 |
~ -+ -—;;-\/nl/M(2pF-1) = = + Ven/tM(pp - 1/2) (5.15)

PG

In 2 manner similar to the derivation of equation (5.7) we have

[G,":G,) 2 ny1 = Hpg)

1
9 .
~ Zrzo(log2 e)(pG--z-) , 0.5 < Pe < 0.88 (5.16)

Assuming p. Is In the stated range, we appeal to (5.15) and substitute \f2nI/7rM(pF.— 1/2) for
Pe— 1/2 in (5.16)
2n1
n . m— — 2
[G":Gy 2 2ny(log,e) —(pp—1/2)

2no

= m[(?k'; Fk) (5.17)

where the second approximation Is due to (5.7). Dividing by I(Fk' ; Fk) (assumed larger than zero), we

have a lower bound on the throughput of the assocliator

‘ZnO

nw) 2 Y, (5.18)
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5.3. Classifiable Inputs

5.3.1. Lower Bounds on Input Information

As stated earller, the redundancy, R, must be larger than 1/7YW) for rellable classification. Now

that the throughput of the assoctator has been found, we have the lower bound
R > — (56.19)

By definition (5.3), the input-information is given by

I(Fk’ ; Fk) = Rl032 M (5.20)

Together, (5.19) and (5.20) imply a lower bound on the input-information

7erog2 M

D 2 (5.21)

IF,;F

By our assumption, Fk’ [s generated by the coin method. Thus the bitwise information
IF;F.)., i=12 ..., M Is Independent of i={1,2,..., M}. Also the Input-Information

I(Fk’:Fk) {s given by (5.6). We conclude that the Input-information Is n, times the bitwise

I

information. Dividing relation (5.21) by n,, we get the lower bound

I 14

1rM]og2 M

> (5.22)

I(F .';F,".) > SN

k1

for the bit-wise Information.

5.3.2. Lower Bounds on Feature Size

We can obtaln minimal requirements on Pp and r by Inverting the approximations of (5.7) and
(5.13) to get each parameter In terms of I(Fk' , Fk)' From (5.7) and the assumption that Pp > 1/2 we

have

+ \[[(Fk’ ; I“I‘)/(inlog2 e)

tO | »r

|
O | »~

(1 = V2I(F, :F)/(nlog,e)) (5.23)
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The relation for r Is obtained from (5.13), (5.23) and the fact that r = (ZpF— 1)n1

r ~ \/2nr[(Fk’ ; Fk)/logz e (5.24)

where I(Fk’ ; Fk)/log2 e Is the input-information In natural-logarithm units or *nats®. Using equation

(5.20) we get P in terms of the redundancy

1
Pp= 3 7 VRin M/(2n ) (5.25)

Similarly for r,

r \[2nrRlnM (5.28)

The lower bound (5.19) for R gives a lower bound for each parameter

Pp 2 -;-(1 + VrMn M/N) (5.27)

and

r 2> \/(n,/no)-erlnM (5.28)

This means that If Fk’ i{s generated from Fk by copying r of Fk 's components we need to copy at

least [\/(nl/no)ﬂMln M) components for classificatlon to be possible. Rellable classification requires
that this number be the minimum feature-size allowable for the input-vector If it Is a single-feature vector.

The number of non-overlapping features (sub-vectors) an Input-vector can have Is obviously the

dimensionality of the vector divided by the minimal feature-size [nl/[\/(nl/no)erln M] J If we let
fm‘.n be the minimal feature size and nmaz be the maximal number of non-overlapping features

allowable in an Input-vector, then we have roughly

f . = \/(nl,fno)/‘r‘\!ln M (5.29)

mn

and
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n &~ VN/(xMn M) (5.30)

me2

As shown later, the fraction under the radical In (5.30) cannot be less than one for rellable classification.
We see then that If we are to have n non-overlapping features In our vectors, then the number of welghts

2

in the assocliator will have to exceed nMln M by a factor of n“. This Is a rather heavy price to pay for

the abllity to classify vectors on the basis of a single feature.

We make one important observation regarding the Information content of an n-dimensional
+1-vector. If X Is the number of 1's that occur in a balanced-Bernoulll vector, A, then X is a r.v.
with mean n/2 and standard deviation \/7—1/2 . It stands to reason therefore, that a sub-vector of A of
length ‘/7;/2 represents a unit of information of A . To verify this, let R be the redundancy (as defined
by (5.3) for some M > 0) of the information that A Is to provide about another vector, B. If we are
to copy components of B to A, then equation (5.26) gives the minimal number r of components that
should be copled (the‘rest are chosen independently of the components of B ). This number can be

expressed In terms of the number of standard-deviation-length sub-vectors needed

r = V2R M(Vn/2) (5.31)

To provide R1032 M bits of Information, we must copy at least 2\/'2711':717'4 sub-vector ®units® of
information from B . The "square-root® relationship between the number of bits of information and the
number of sub-vector "units® Is due to the quadratic dependence of Information on the probablility that a
component of one vector agrees with its counterpart in another vector (see relation (5.7)). The fact that
information {n balanced-Bernoulll vectors is closely related to \/n_l/z-length sub-vectors must play a part
of any mode of representation that codes information into =1-vectors. If information coded into sub-
regions of the input-vector Is to provide the sole cue to an assoclator for classificatlon, the subreglons
must cover at least 2V 2RIn M sub-vector ®units® of the Input-vector, where R Is the minimal input-

redundancy required by the associator.

5.3.3. Fraction of the Input Space that is Classifiable

An analysis of minimal requirements for the neighborhood method of input-generation are derived in
appendix B. Because this method Is roughly equivalent to the coin method and because it gives us an
estimate of the number of vectors that can be classified, we relate the results here. First, for a ball
centered about an input-prototype, If a randomly chosen vector from the ball is to provide Rlog:_, M bits
of information about the prototype, then the ball must comprise M~R of the Input-space. From

appendix B, the radlus p is roughly
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n.  Vn,

I I
p = ri -2—--\/21?1nM — In (47Rin M) (5.32)

The lower bound on the redundancy in (5.19) gives an upper bound on the radlus

Vn,

! IVrMn M 2M
p < -; - -—2— 7 Mn /no - In(27 nM’)/nO (5.33)

In appendix B, geometrical considerations of the output space suggest that thls radlus Is too large. The
excess redundancy required however should not be more than twice the minimum (see appendix B for a

discussion of this point). This gives us a lower bound for p

Vn,

n I ‘
P2 T - -—é—--\/27ern M/n, — In(47*Min M)/n (5.34)

We now derive the upper bound on the fraction of the input-space that can be classified. This result
Is obtained from the lower bound on the Informatlion required at the associator Input. Since the assoclator
produces an output on the basls of the Hamming-distance between the Input-vector and the input-
prototypes, input-vectors providing the assoclator a specified amount of Information about an input-
prototype should come from a set of vectors nearest to the prototype. If the set Is a ball of radlus p
about the prototype, then random selectlon of a vector from the ball (nelghborhood method of Input-
generation) Is roughly equivalent to the coin method of input-generation when p = n,(l - pF) . When an
input-vector Fk’ iIs generated by the neighborhood method, and the information It provides about Fk Is
I(Fk' ; Fk), the ball it comes from will encompass exp2(—I(Fk’ ; Fk)) of the total Input-space. For our
system, there are M balls surro‘undlng M input-prototypes so the total fraction of the Input space
covered by the M balls Is at most M-exp,(=I(F,; F.)). The reglons could overlap, though the overlap
will be negligible if the input-information Is at least 2log, M. Now if R is the redundancy of the input,

then the input Iinformation is Rlog, M bits and the fractlon { of the input-space that Is classifiable Is

L~ M!"R (5.35)

Using the lower bound on R we have the upper bound on ( In fact, as we shall see later, M will

usually be greater than n_ by a large factor so that the fraction of the space that Is classiflable will be

O
quite small.
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where M is assumed to be larger than o -

5.3.4. Restrictions on Matrix Dimensions

The Inequality of (5.33) Is requsred for rellable classification, whereas inequality (5.34) Is merely a
reasonable bound on how small the value of p need be made to Insure the system will work. Therefore
inequality (5.33) must be larger than zero If the system Is to classify its inputs. This constraint leads to a
lower bound on /N which will be derived by different means later (see equation (5.42)). The lower bound
on /N is the minimal number of vectors required merely for storsing the prototypes when the Hopfleld

non-linearity is present at the associator output.

An even tighter constraint on the required matrix size {s obtalned when we require that the system
be capable of classifying *highly-degraded® input-vectors. A highly-degraded Input-vector is a vector that

is nearly orthogonal to its category-exemplar (the nearest input-prototype). From (5.33), we see that

classification of such inputs Is possible when n  Is large compared to v Mn M'\/nl/n In this case, If

o
p 1s near the theoretical maximum given in (5.33), the input-vectors at the edge of the neighborhood of a

prototype will be at a Hamming-distance nearly n1/2 from the prototype. A reasonable way to make

n, large enough Is to require n, > 8V 7 Mn M-\/nl/‘no. Multiplying through by \/no/nl‘ and

I
squaring both sides of this inequality gives us a lower bound on the number N of weights

N 2 684rMn M (5.37)

Comparing this to the requirement (5.42) for storage, we see that classification of ®highly-degraded®
input-vectors requires roughly 50-100 times the number of weights required for merely storing the

prototype vectors.

We note a few restrictions on the parameters Inferred by the analysis In appendix B. First, If the
Input-vector is to have a redundancy no greater than R (keeping R low, makes a larger portion of the

Input-space classiflable, see equation (5.35)), then we must have p > 0 In equation (B.8), page 109. This

becomes the constraint

n[ _>_ 2Rin M (5.38)

This constraint applies equally well for the output dimensionality with R between 1 and 2 so that
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0
Is 2 minimal requirement for the output-dimensionality (see equation (B.8)). In the ®throughput® section,
restrictions on the parameters np Mo and M were also made to obtain the approxlmat‘lons used to
obtain the associator throughput. The linear approximation made in equation (5.14) assumed that M
was at least as large as n,. This assumption assures that the argument to ® was no larger than 1 so

that higher terms in the Taylor approximation to @ can be dropped.

The assumption that the argument to @ In equation (5.14) was less than 1 leads to a restriction on
P - This assumption together with (5.15) gives the upper bound

1

+ —_—=
Var

0.9 (5.40)

1
PGSE

These relations illustrate the limitations of the theory that has been developed. A designer of an
assoclator on M associations must stay within the parameter-assumptions in order for the performance

predictions of the theory to apply.

5.4. Performance Degradation Due to Non-Linear Output

The "Hopfield non-linearity® In figure 5-3 was introduced for the sake of simplifying the analysis.
The problem of determining the information I(G,'; G,) avallable directly from the associator-matrix Is
somewhat more difficult than finding the information I(Gk":Gk) avallable from the non-linearity.
Unfortunately, however, addition of the non-linearity eliminates much of the Information avallable from

Gk’. That this Is so Is evidenced by the degradation of storage capacity due to the non-linearity.

To estimate the storage capaclity of the non-linear associator in figure 53, put Pp= 1 to constrain
the Input vectors to belong to the set of Input-prototypes. The formula Pc that glves Ps In terms of
Pr becomes

1
~ -+ Ven /1M) (5.41)

PG

This approximation Is good when p_. Is near 1/2, so In particular, M must be at least n, an (5.41).

I
The approximation was obtained from (5.15) which is a linearization of the normal distribution function
$(z) about z = 0. It overestimates Pe with the overestimate becoming large as P hears 1. In fact

one pays a high penalty In storage capacity when Insisting that each bit of Gk" match Its counterpart in
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G,

increase as rapidly as (5.15) would indicate. In any event, using equation (5.15) will glve an upper bound

with high probablility. This is due seen from the fact that when nI/ M s increased P; does not

on the storage capacity.

As stated in the chapter on storage capacity, useful storage requires the output information to be at
least log2 M bits. During retrieval, the number of blts present at the input is n,. If we multiply n, by
the throughput 7IW) and require the result to be larger than log2 M , a constraint on the matrix size Is
obtained. Unfortuneately T\W) was obtained by assuming Pp Was not too near 1. We will have to use
equations {5.41) and (5.18) instead to get the constraint. Remember however, (5.41) assumes P Is not

too near 1, which will be the case if M 2> 2n,. From (5.41) and (5.18) we have

Nlog2 e
7rM

G, ": G,) =

By the constraint (5.2), the right-hand-side must be larger than log2 M . The resulting inequality can

then be rearranged to get

AMn M
<
N S

1 (5.42)

To put (5.42) another way, /N must be at least O (Min M). This Is a stronger requirement than the one
derived for storage in the previous chapter. This new bound implies that {f "5 Is O(ln M), then n
must be O (M).

I

If errors are allowed at the output of the second stage of figure 5-3 then the storage can be
increased. If Pe {s the error probability, then for 0 < Pe < 1/2, M large, we need (1 -Pe)logz M

bits at the output. From this and (5.16) we have
2
2n(log, e)p, = 1/2)° =2 (1= P)og, M (5.43)

and from (5.41)

n
I
2n (log, em—{ > (1—=P)log, M

which glves

n Mln \[ 1

(5.44)
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As with the case with storage treated in the previous chapter, the number of required weights s

proportional to 1 — Pe. On the other hand, the maximal value of M no longer Increases in proportion

to 1/(1 - Pc) :

The reason the non-linearity decreases the information content of the output of the assoclator s
that It forces the best-match process of figure 53 to "count® the number of places that the output Gh'
disagrees in sign with Gk (recall the method of computing Gb" ). This can be seen from figure 5-3 with
the non-linearity removed and from equation (5.12) which Is the formula for one summand-term in the
dot-product Gk’-Gk. If the best-match process In figure 5-3 uses the output of the assoclator-matrix
directly, It can use the dot-product similarity-measure to compare G,’' with every one of the output-
prototypes. Now, a single summand In the dot-product ):-j ij"ij Is binomially distributed with
positive mean (2pF— l)nI. Such a term will tend to have larger magnitude when it is positive than when
it Is negative. This means that the dot-product can do more than ®*count® how many posltlons' ij’
agree In sign with their counterparts G*i' The dot-product also uses *magnitude® Information to
ascertain the "confidence® that a specific component of Gk' Is of the proper sign. On the other hand,
whether the performance limits of the previous chapter can be achieved depends on whether retrieval In
the linear-associator is optimal. For this to be so, the full entropy of the matrix (per storage item) must
be avallable at the memory output. What's more, the Information avallable must be useful to the best-
match process.

The analysis of the linear case should entall evaluation of the Information content of Gk' by
evaluating it as a rendition of the *signal® Gh with added binomial ®*nolse®. The ®*signal-to-nolse ratio®
as a function of M would then be used to quantify the information content. The analysis Is simllar in
concept with evaluation of information contained by a gaussian signal In the presence of gaussian nolse
(see Gallager, (12, p. 32, Example 4|). The difference is that the ®signal® components ij are not
gaussian but Bernoulll r.v.’s and the ®nolse® In Gk’ due to the assoclator-matrix Is binomlal rather than
gaussian. These differences are responsible for the difficulty In determining the Informatlon I(Gk’ : Gk)‘
The difficulties are not insurmountable, but the analysis may be as involved as that In Appendix A, since
the problem of approximating a discrete entropy with a continuous one in the appenAdlx seems related to

the problem of approximating the Information In Gk’.

5.5. Classifier Design Considerations

At this polnt,we are ready to illustrate the design of an assoclator to meet specific requirements.
Two designs will be given to show how the relative sizes of parameters interact. Glven the number M of

categorles, a fraction a of the space to be classified and the maximum classification error-probabllity,
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Pc, we wish to find the dimensions n, and n5 that result In a matrix of minimal size /N that meet the
requlremems.8 To begin, let Pc = 0 for simplicity. Notlice that a ball Bb(p) about a prototype must

contaln about a/M of the input space. Since the fraction of Input-vectors In the ball Is

expz(—I(Fk' ; Fk)) , we have

a
i expz(-—I(Fk’:Fk)) (5.45)

so that
I(Fk';Fk) = log, M - log, a (5.48)
Now R = I(Fk’;l"k)/log2 M so by (5.46) we have logza - 1032 M = -Rlogz M. Rearranging

and converting to natural logarithms gives a more convenient forin

—In a
In M

R = 1 + (5.47)

The two classiflers we produce will be called the large-a model and the small-a model.® The large-a

model will have —In a proportional to In M, so that for some positive K > 10 we write

—lna = Kin M (5.48)
The small-a model assumes that —In a Is proportional to M. In this case we put
l i (5.49)
-na = -— .49
K

with K < AM/(10ln M) . Calculating the redundancy from (5.47) for the large-a model we have

R = 1+K =~ K (5.50)

and for the small-a model

8 : . . .
Of course, a design problem may differ as to which parameters are initially specified. Most notably is the case when a
designer is dealing with an input-space whose vector-dimeansionality n, is already known.

0. ) . -

Since 0 < a < 1, the quantity —In a is positive and grows without bound as a — 0. The terms ®"large-a® and
®small-a® are of course relative. A large-a model will only classify a small portion of the input-space. A small-a model will
classifly a portion orders of magnitude smaller. Even in the case of the small-a model however, there are equ(nl) possible

input-vectors so that the actual number of vectors classifiable is still very large.
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M M

P

KinM  KinM

(5.51)

R = 1+

Recall that relation (5.19) must hold for rellable classification. From this we get the lower bound on n

O
M
n, 2 IY) (5.52)
For the large-a model, this implles
n, 2 TM/(2K) (5.53)
For the small-a model
T

To get a constraint on n,, we use the fact that the maximum Hamming-distance between an input-

I
vector an Its category-exemplar is roughly

n

~—

V2Rin M (5.55)

A
I

En— ———
-

maz 2

If we are to classify vectors that are nearly orthogonal to thelr category vectors, then Pmaz should be
nearly n1/2 . For the large-a model, this s more important than for the small-a model since the former
must classify more of Its Input-space. The closer P sz Is to "1/2 however, the more weights are
required for elther model given a fixed value of K. For the sake of comparison then, we will use the

same value p = (2/3)n1/2 for both models. This isn't much of a constraint. A better one Is

p = (9/10)n

maz 1

equation (5.55) and our constralint, we get

/2 but the number of weights required would be about 10 times as large. From

\/n_I = 3V2RIn M

so that

n, = 18Rn M =~ 20RMn M (5.58)
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For the large-a model R~ K so

n, = 20KinM (5.57)

whereas the small-a model has R = M/(Kin M) so

20M
n, = -—k—- (5.58)

The number N of weights in both cases Is 107Min M or 10 times the minimum required for storing M

prototypes.

The thing to notice Is that the large-a model has n, of order In M and n5 of order M. In other
words, the input-dimensionality far exceeds the Input-dimensionality. In order to classify such a large
portion of the input-space, the input-redundancy must not be large. This Is seen from relation (5.47).
When a — 1, we have —Iina — O so that R — 1. The throughput of the system must be large so

many units are needed to produce the output.

For the small-a the situation Is reversed. The Input-dimensionality is large and so can accomodate
the large input-redundancy (The redundancy can never exceed nl/logz M). The number of units can be

small since the high redundancy insures adequate output information even with low throughput.

As a numerical example, suppose that M = 50,000 and to assure M > n, In (5.58), let
K = 50. For the large-a model, R = 50 so by (5.57) n, ~5 10,800, and by (5.53) no, = 1570 . For
the small-a model R = 92, equation (5.58) lrriﬁlles n, = 20,000 and (5.54) glves n, = 850. Both
models have roughly 1.7-107 welights.

Now let ¢ be the number of classifiable vectors In each case. We want to estimate the entropy
logzg of the classiflable portion of the Input-space. By equation (5.35), this entropy Is roughly
log, (M~ Rexpz(nl)) , OF approximately ¢ = n + (1 - R)log2 M . By equation (5.47) we have

( = n, +log,a (5.59)

For the large-a model, ( = n,— Klog2 M =~ 10,000 . For the small-a model,

¢ = n,— Mlog,., e/K =~ 18,600 . The proportlon of the space classifled by the large-a model Is 10 =240

0

whereas the small-a model classifles roughly 10 ~*40 of 45 Input-space (computed from the respective

values of a ).
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The moral however, Is that the small-a does not classify fewer vectors than does the large-a model.
The input-space for the small-a model s so much larger than that of the large-a model that the actual
number of vectors classifiable by the small-a Is much larger. In fact, the number of vectors that can be

classified by the small-a model dwarfs the number of vectors In the entire Input-space of Lhe large-a

model.

One way of viewing this numerical advantage of the small-a model Is In terms of data
compression. Whereas the number of input-vectors to be classified Is potentially very large, the number
M of categories at the output is relatively miniscule (the number of categories should be less than the
number of welghts or even smaller). The entropy of the output relative to that of the input is therefore
quite small and this Is what Is meant by ®"data-compression®. The fact that the matrix faces less
information at its output than at its input should be reflected by its architecture If high-performance is
expected. For a classifier with /N weights that Is to classify a large number of input-vectors, the output-
dimensionality should be as small as possible (within the constralnts described In appendix B) compared
with the input-dimensionality. Such a system will classify a maximal number of Input-vectors for a given

number of associations (categories) stored.

One should also notlce that the classifier classifies only a very small portion of the input-space. This
results in a3 "*double-data-compression®. Most Ilnputs are simply not considered to be valld Input ®signals®.
Those that are will then be ma.pped to a relatively small number of categories. The final result Is an
output that has far less entropy than the total Input-space. We conclude that the associator-as-classifier
assumes that most of the space of possible inputs are irrelevant to Its task. The portion of the space that
Is considered relevant s specified by the collection of prototype-vectors. These In turn specify the
pertinent informatlonal-features of the input-space. All other Information s lgnored, resulting In an

output that Is a compact representation of the salient features of the input.

5.8. Maximal Performance and Figures of Merit

5.6.1. Merit Parameters and Figures of Merit

We deflne 2 merit-parameter to be some measure of system performance with regard to storage
or classification. In the case that there |s a maximal value for the merit-parameter, we dlvide the merit-
parameter by the maximal value to get a figure-of-merit. The maximal value for the parameter s
determined via information-theoretlc constraints on an arbitrary memory/classification system and so Is
Independent of features specific to a particular device. The figure-of-merit will generally take on a value
between zero and one with the value ®1" corresponding to optimal performance. Thus the merit-figure

can be used for comparison of various systems whose merit-figures are known.
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5.8.2. Load, Efficiency, Throughput and Retrievable Information

In the chapter on storage, we derived a figure-of-merit L called the load. It was deflned as the
ratio of the number of items stored (a merit-parameter) dlvided by the number of items storable. Another
figure-of-merit we deflned was called the efficlency, n, that was the ratio of the number of bits stored in
the memory divided by the number of bits required to represent the memory ltseif. For classification, it Is

also desirable to obtain relevant merit-parameters and figures-of-merit.

An obvious merit-parameter for classification Is the throughput 7\W) defined earlier. The optimal
value Ta can be be derived for an arbitrary memory obeying relation (3.13). The throughput-merit,
r, of a system Is then defined as T(W) /To. To obtain To, we divide the maximum-possible output-
Information by the minimum allowable Input-information. For systems obeying equation (3.13), the
maximum output-information per association is H(W, M)/M . The minimal input-information required is

log2 M bits so we have

T, = HW.M)/(Mog, M) | (5.60)

o

So the throughput-merit is given by

T E ———— —

T, H(W, M)

where

Mog, M MIG,":G))
< <
HW. M) = HW. M =

1 (5.61)

If we use the fact that H(W, M)%(I/Z)MogzM then the flgure-of-merit r for linear-assoclator

systems satisfles

ﬂW)M\ogg M o M
_ = TIW = TIW)- 82
’ (1/".2)1\'log2 M )-}_V— L (5.62)

where L Is the load. Thus the throughput-merit for the outer-product assoclator {s Just the product of
the two merit parameters derived earller. This product however has the additional property that it can
never exceed 1. It would be of interest as to whether the throughput-merit for the linear-assoclator
(without the Hopfleld non-linearity) Is roughly equal to 1 {or at least constant) for a large range of values

of the load. If so, we'd have that the throughput trades directly with load as more associations are stored.



73

In any event, we have that

1
nw) < I = oM (5.63)

for the linear-assoctator. For the assoclator with no non-linearity then, the upper bound can be quite large

when M is much smaller than N.

For the case that the Hopfleld non-llnearity Is present at the matrix-output, we can obtain the
maximum r achlevable by the assoclator (see figure 5-3). By (5.42), the number N in (5.82) Is larger

than 7Min M. Replacing /N by this value In (5.62) gives the upper bound

oM 2TW)
r < T(W) = 5.64
- ‘2Min M nin M ( )
Since \W) = 2no/(7rM) , we have the bound
< 2no 2 4no ( |
T s = = 5.85
M rin M >MnM
which Is much smaller than 1 if the number of stored prototypes Is larger than n By way of

o"
comparison, the linear associator could conceivably have a 7 as large as 1. However this has not been

established since the throughput of the linear-associator has not been determined.

A figure-of-merit relevant to the memory Is apparent from the results of chapter 2. By relation

(3.13), we have I(Gk" ; Gk) < H(W). Therefore the retrievable-fraction of stored z'nform‘ation is

MI(G,‘” X Gk)
H(W)

(5.68)

)
Il

The retrievable fraction, by relation (3.14), cannot exceed 1.

For the non-linear associator, we can find the maximal retrievable-fraction from knowledge of the
throughput. Remembering that the largest that the input-information can be Is n, bits, we use the

definitlon of throughput to get

MTIW)I(F,';F)) M(2n /7 M)n
k k O I 4

= ' < = 5.67
g (1,2)VMog M - (1/2)Nlog2 M mlog, M ( )
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This parameter is quite small for large systems that store many associations. For the Hopfleld-non-llnear

assoclator, systems become extremely sub-optimal as the system-size gets large.

5.6.3. Search for an Overall Figure of Merit for Memory

It would be preferable If an overall figure-of-merit for memory-performance could be found. This
figure, called the memory-merit, M, should reflect all aspects of memory operation and have the
property that a memory could In principle attaln a memory-merit of one. An attempt to deflne M might

involve taking the product of 7, 4, and n to get

M = run (5.68)

For memory systems whose load L can be defined, one can restrict consideration to memories that are

not overloaded (I.e. L < 1). The load could then be Incorporated into M

M = runlL (5.89)

The efficlency n Is just related to the representation used for the weights of the memory and is therefore
indlcative of limitations of the memory’s Implementation. This parameter should be dropped If only the

memory’s inherent properties are to be considered

M = rulL (5.70)

If there Is a general figure-of-merit for memory, this last one may be close to the mark. On the other
hand, we saw In relations (5.681), (5.62) and (5.86) that r is related to both g and L, so one may wonder
If M in (5.70) may contaln redundant information. Also, there may be tradeoffs that force the value of
one of the factors in (5.70) to be low when the other Is high. If this true even in principle, then it Is
possible that no memory can achieve a merit of one and the memory-merit would not satisfy the
definition of a figure-of-merit. This possibllity seems unlikely based on calculations done by the author.
In fact, If the outer-product linear-associator has an optimal throughput ( 7 near one for large systems), it

Is possible that it could be have a memory-merit approaching one as the assoclator size gets large.

5.6.4. Classification Figures of Merit

For classification, a merit parameter that can be *normalized® to produce a figure-of-merit Is hard
to obtaln without Imposing artificial constraints. One merit measure worthy of consideration however is
the ratio of the bits needed to encode the classifiable Input set to the number of bits needed to represent

the categories at the output. This Is called the fan-In. The parameter Is of Interest because it represents
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the capablility of the system to react to a very large Input-space when It has stored a relatlvely small
srepresentation-space®. Indeed, this Is the very essence of classification. A classifier *fliters out® non-
essential information allowing subsequent systems to provide for far fewer contingencies. Unfortunately, a

classifier can achieve a high fan-in by classifying all possible Input-vectors into one ®"category®.

One remedy, Is to multiply the fan-in by the storage-load of the system. A system with a large load
will have stored a maximal number of categories and so the product of the fan-in and load will be
maximlized by systems that can classify a large portion of the input-space even when storing a large
number M of categories. With this in mind, we consider the fan-In alone when the number of categories

is a fixed value M. We will derive the optimal of fan-in for this number of categories and use it to find

the "normalized® fan-in merit.

To calculate the fan-in merit fm for the llnear-assoclator, note that the logarithm of the classifiable
space Is roughly n, + (1 - R)log:_, M by equation (5.38), where R is the redundancy. The number of bits
needed to label the M different categories Is log, M bits so the fan-in [ Is

n1+(1-R)log2M n

I
f — —
log, M log, M

+ 1 - R

where R Is the input redundancy. Note that nl/log2 M s the maximum redundancy that can be
facllitated by the input. To get a normalized figure of merit, we first make the constraint that the input-
space has entropy n, and the output-space being composed of M categorles, has entropy log2 M. Also

note that R 2> 1/T\W) > I/To , SO by (5.60)

Mlog2 M

R > W (5.71)

and so the largest value fa of [ Is defined by

n, M032 M
= + 1 = :
/s log, M H(W) (5.72)
The fan-in merit fm Is then
f = f/f (5.73)

m 0

~To get the merit for the non-linear assoclator, recall from relation (5.42) that /N 2> 7Mn M so that
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Mlog2 M/HW) < 2/(nin M) and because R 2 7rM/(2nI) we have

n n, D)

log2 M rin M

I
log2 M

IA

(5.74)

M
! +1 = =
o

One fNnal consideration Is a parameter that measures the ratio of the size of the classification space
C to the size of the Input space F. The higher the ratio, the more of the input Is classiflable. The ratio

will be called the Inclusion J and Is defined by

’ IC]
= — (5.75)

|71

R

The theoretical maximum for this ratlo ts M! ™% where R equals the lower bound In (5.71), so

] < M~ Mg, M/HW) | R (5.76)

So the inclusion-merit ¢ Is J divided by this theoretical maximum. The result Is

I

© T 1 - Miog, M/H(W) (5:77)

From previous considerations, the ¢ for the non-linear associator has the upper bound

L < Ml-rM/(2no)/Ml—2/rlnM _ M?/(rlnM) - xM/(znO) - (5.78)

A good overall merit parameter for classification might be the product of the load, the fan-in merit,
and the inclusion merit. The Issue of finding an overall figure-of-merit for memory and classification
might not be hard to address. The author has only recently defined these merit measures and has not yet

fully explored the alternatives.

In passing, we might add that these figures of merit can be quantified for the llnear-associator once
the throughput of the linear version of the classifier can be determined. We conjecture that the linear-
assoclator may be very nearly optimal In most respects when the matrix size Is large. As far as non-
lInearities are concerned, any non-linearity will cause performance degradation. However, ®*sigmold® non-
linearities used in so many connectionist systems (see {22, 24, 40|), will perform reasonably well If they are
not too ®steep®. In particular, if the rising portion of the slgmoid Is broad enough to encompass most of

the variance of the components of the matrix-output-vector, most of the matrix-output information willl



77

be retained. Though the author has not made the attempt, a *maximal steepness® necessary for negligible
information loss should be easlly obtainable using something llke the talls-lemma of appendix A. Here, one
would use the sigmold to limit the range of values that the components can assume as was done for the
matrix-welghts In the previous chapter to Improve efficlency. In any event, the Hopfleld non-linearity

represents a sigmold with ®infinite steepness® and so provides the lower-bound on performance for

sigmoid-non-linear outer-product associators.
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Chapter 6

Summary

6.1. Contributions and Accomplishments

The most Important contribution of this work Is the characterizatlon of memory and storage In
terms of information theory. For memory, the primary accomplishment was evaluation of the matrix-
entropy and the proof that it bounds the retrievable Information. The bound was subsequently used to
determine the amount of Information stored as a function of matrix-size and number of assoclations
stored. A criterion for minimal performance was obtained through the definition of channel memory.
This criterion was then used to bound the number of items storable. We also dealt with the notion of
retrieving Information via separate ®accesses® to the memory, one for each item stored. Though
Information obtalned this way is not the same as that actually stored In the matrix, we find that the

latter {s an upper bound on the former.

Use of the concept of the matrix-channel allowed us to characterize and evaluate classification of the
associator. For this, the fundamental concept defilned was the matrix-throughput which Is the ratio of the
output information to the input information. The simple linear relation between the two for the
associator with Hopfleld non-linearity allowed us to quantify the fractlon of the input-space that is
classifiable and obtalin minimal requirements on sub-features of incomplete-input vectors needed for their
proper classification. We also noted requirements on the matrix-size as they relate to the task required.
We found that an associator with Hopfleld non-linearity, expected to classify inputs that are nearly
orthogonal to thelr category-exemplars, requires 50-100 times as many weights as does one that merely
stores its prototypes. The latter system Is a ®*degenerate® classifier. It can properly ®"categorize® an input
vector if that vector Is an input-prototype. Such a system would not be very robust in its classification of
Input-vectors that have a significant number of ®*bits® In error. In any event, there Is obviously a tradeoff
between the number of categories over which the associator can divide the Input-space and the fraction of
the Input-space that can be classified. The more category discrimination required of the system, the fewer

vectors can be classified given a filxed matrix-dimensionalitles.
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We mention that in some sense, the assoclator Is not really dolng classification unless the output-
dimensionality Is very nearly equal to the logarithm of the number of categories stored. We were merely
interested in conditions under which the associator would pass through information useful to a subsequent
stage that is to determine the category to which the Input to the assoclator belongs (see second-stage of
5-3). An associator could be sald to classify Its Inputs If the outputs It produced were much nearer to the
output-prototypes than the respective input-vectors were to thelr exemplar-prototypes. In the case of the
Hopfeld-non-linear associator, the average distance of the matrix-output from the ®correct® output-
prototype Is no(l - pG). We can decrease this distance by forcing Ps tO be near one or by keeping n5
small. The first of these can only be done by storing less than n, categories where n, Is the dimension
of the input-vectors (see equation (5.15), page 59). The second option is fortunately in keeping with
optimal performance of the classifier. In fact, we found earller that a large input-dimensionality allows
classification of a very lé.rge number of vectors for a given matrix-size and storage-load. This Is probably
the most important finding concerning assoclator-classification. A matrix that *fans in® so that its input-
dimension Is much larger than its output dimension will give the best classification performance for a fixed
matrix-size and number of stored categories. Thus we have an architectural specification based on

information theory. A classifier does data-compression so that the output-handles much less entropy than

does the Input and the matrix dimensionallities should reflect this fact for optimal performance.

After evaluation of the performance of the system, we obtained figures of merit for both memory
and classification performance. These were *normalized® with respect to optimal Information-theoretlc
performance limits and so serve as a basis of comparison of general memory/classifier systems. The
associator with Hopfield . non-linearity was shown to perform suboptimally, in fact, disappointingly so. On
the *up side®, the Hopfleld-non-linear system provides a lower bound for performance of assoclators with

*sigmolid® type non-linearities.

6.2. Limitations of this Investigation and Future Directions

The main limitation of this work was that It dld not address the Information content of the actual
matrix-output (labelled Gk’ in figure 53). The problems with the analysis are mentioned on page 67.
Once this Issue s addressed, one may be able to determine the optimal performance of any associator with
sigmold non-ilnearity on its ocutput. What's more, the storage bound was merely an upper bound to
performance. Knowledge of the amount of information present in the matrix-output would determine just
how tight this bound i{s. We also assumed that the informatlon at the output of the matrix Is all useful to
a second-stage process that must classify the output-vectors. This Is not necessarily true but |Is probably a
good assumption due to the fact that the assoclator maps similar Inputs to similar outputs and the fact

that we characterized {nformation at both input and output in terms of vector-similarity.




80

A rather serious shortcoming of the analysis was that it assumed that the prototype vectors were
chosen randomly, that Is they were ®balanced-Bernoulll® vectors. In reallty, if a system acquires its
prototypes by encoding representations of "stimull® or ®"concepts® etc., it will most llkely have correlated
prototypes. So while we did not require orthogonality of the prototypes, the requirement that they be
uncorrelated (randomly selected) Is too stringent. The problem is confounded by the fact that storage
capacity most probably degrades in the presence of Inter-prototype correlation; the sensitlvity to

10 This 1s a serious flaw since |t

correlation becomes more pronounced as the system-size gets large.
indicates that the storage capacity may not be achlevable In practice. On the other hand, the relation of
mutual information to vector geometry outlined in appendix B may provide a means by which a set of
prototypes can be strategically chosen so as to minimize correlation or equivalently maximize mutual
Hamming-distance. If such 2 method could be easily incorporated Into the encoding process, these systems
could in fact achleve better-than-optimal performance since ®de-correlation® could produce prototypes

more mutually distant than random selection can.

Another issue not addressed was classification performance when the number of stored categorles
was less than the input-dimensionality. The analysis in the classification chapter would probably extend
to this case if the linear apnroximation to @ on page 59 was changed to a quadratic one for more
accuracy. Even without this change however, the linear approximation overestimates P SO the
performance bounds derived in the classification chapter apply to the case that the number of stored
categories Is small. The upper bound merely becomes looser. As the number of stored categorjes Is
diminished, Pe increases but not as rapldly as the linear approximation would indicate. Note that even
when the number of categories Is less than the Input-dimensionality, the analysis applies to randomly
selected input-prototypes not orthogonalized (forcefully-decorrelated) prototypes. This Is an advantage

since it represents a relaxation of the orthogonality restriction needed for perfect retrieval (see (21, p. 18]).

Regarding future dlrections, there are too many possible avenues for continuing this work to
mention here. Two however are of primary concern to the author. FIirst Is the analysis of the auto-
assoclator as both memory and classifier. This extension Is not without obstacles however. With respect
to memory, the weights of an outer-product matrix are less independent when the output-prototypes are
ldentical to the Input-prototypes. On the other hand, the Individual weights (excluding those on the
dlagonal which are constant and so contribute nothing to the matrix-entropy) will have the same
distribution as those of the hetero-assoclator and should be nearly independent when many prototypes are
stored. In any event, the matrix-entropy of the assoclator Is less than for a hetero-assoclator so the

storage will be limited accordingly. Another problem regards classification. An auto-assoclator requires

wac evidence for this was obtained by a ®cursory® investigation conducted by the author. This analysis was not
included since it depended upon erroneous independence assumptions of vector dot-products and so may have been
inaccurate,




81

the output-dimensionality to be the same as that of the input. The present Investigation indicates this

condition is suboptimal for classification performance.

One method for solving both problems Is to use a hetero-assocliator (with output-dimension smaller
than that of the input) but feed back the output Information In some constructive fashion. However, even
if this can be done, the amount of output Information must be sizable in comparison with the amount of
input Information present at the start of the auto-assoclatlon process. If the amount of output
information Is less than 1/2 or 1/3 of the amount of input information, the Incremental Increase in
information avallable at the output after several ®iterations® of the auto-associator will be only
marginally better than that avallable to begin with. The author belleves that the auto-assoctator will
therefore have greatly Improved classification performance for light storage loads but will not gain much

storage capacity as a result of the auto-associative feedback.

We also mention that theorem 1, page 26, does not apply to the auto-associator since the "retrieval-
address® Is not independent of the datum to be retrieved since the input is generally a partial rendition of
the datum to be retrieved. The theorem could be modified to take this into account, but the bound on
retrievable information will be different. The auto-associator has the advantage that the input partially
specifies the output, so the auto-assoclator needn’'t *work as hard® when the input specifies a substantial
portion of the output. The result should be improved classification-performance over the hetero-associator
even though the auto-assoclator has a (perhaps marginally) smaller matrix-entropy. In any event, the
author believes that the methods used to evaluate classification of ®"single-feature® vectors might aid

quantification of the performance of the auto-associator.

The other direction of research to be mentioned Is the storage of prototypes whose components are
zero-mean gaussians. This Is a more natural mode of storage for the outer-product assoclator since the
output vector produced is best characterized as the proper output-prototype embedded In gaussian nolse.
The author belleves that the analysis would begin with the nolsy-signal analysis of Gallager in [12, p. 32,

Example 4| and proceed with evaluation of the matrix throughput.

Lastly, we mention that assoclators bullt from other storage rules such as error correction have not
been treated. This may be a much more difficult problem since evaluation of the matrix-entropy could
problematic. In the event that it can be determined or approximated, the theory presented here would
then be applicable for performance evaluation. The result could be a theory relevant to multi-layer error-

correction systems such as the Parker/Rummelhart ®*backpropagation® networks.
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6.3. Epilog

At this point, I'd like to let my editorial hair down and relate a couple Interesting observations.
First. notice that the prototypes were treated as vectors that were to be distinguished as exemplars of
distinct categorles. As such, a premium was put on thelr dissimllarity so that the system could tell them
apart. Though this may not be desirable In all assoclator tasks, It polnts up an Issue regarding the
*symbol® view of intelligence. If we identify the stored prototypes as *symbols® one could view symbols
as a means of performing large-scale data-compression on the environment. This not only enables a
system to vastly simplify its representation of the environment, but the identification of such symbols in a
cognitive system could subsequently provide a parsimonious theory of cognition (Yes, I know, ®traditional
AI" already knows this). Not that the ldentification would be easy, (If symbols can be sald to exist at all,
they are probably too ®"plastic® and malleable to be static entitles) but In the associator at least, the
symbols are the prototype palrs. The input-prototype reflects the system's *idea® of a most typical
"object type® within a large class of objects, and the output-prototype reflects the system's representation
of the object. The object at this level, is known only as it belongs to a generic class of objects. All other
information is "discarded® as Irrelevant. The analysis done here showed data-compression as a
consequence of the presence of symbol/prototypes. However, the relation should go the other way as well,
as evidenced by studles of "compressed®, *hidden-unit® representations generated within backpropagation
networks. The symbol Is doubtfully an explicit feature of the brain, but i{s probably an emergent property

of data-compression.

While I'm making conjectures about how the brain works, I might as well take a stab at the amount
of information it can store. The figures obtained here are doubtfully accurate for blological brains but

serves as a prediction made by the following simplistic assumptions

1. The whole brain participates in storing roughly N items where N is the number of connections
in the brain.

2. The connection strengths are normally distributed with variance roughly N.

3. The effect of all connections on a neuron Is the linear sum of the individual effects.

How embarassing! Anyway, assuming 10,000 connections per neuron and 1010 to 10ll neurons per brain,
we get 10“ to 1015 for the number of connections. The Information storable Is then roughly N‘log2 N or

4.5x1015 to 5x10'8 bits, or roughly a blillon megabytes.

The only thing that will rescue this estimation Is Its crudeness. The noteworthy thing though Is that

the theory does make a prediction. It would be Interesting If {n the future, a better understanding of
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cogniuon/braln-dynamlcs would render better assumptions than the ones given here and if so, how these
assumptions affect the estimate in relation to the one I've just made. I leave it to the reader to estimate
the maximum number of stimull the brain can possibly classify. If you come up with a number (boy,
would It be big!) let me know what it Is over dinner and tell me what your assumptions were. Just don’t
publish it as 2 research finding (dld you know that we only use 10-percent of our brains? . . .). Well, I've

put in my ten-percent, thank-you!
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Appendix A

Entropy of a Binomial Random Variable

In this section, we show that the entropy of a bilnomlal r.v. Is approximated by the entropy of a
corresponding normal r.v. In this development, a binomial r.v. Sn Isasumof n i.1.d. Bernoulll trials,
where a Bernoulll trial Is an r.v. with outcome O or 1. We will only consider binomial sums of
balanced Bernoulll-trials, that Is, Bernoulll trials whose two outcomes are equiprobable. Such a binomial
r.v. has variance n/4, and as we will show, has entropy that approaches that of a normal r.v. of the same
variance. The entropy of a normal r.v. with variance n/4 s (1/2)log2 (ren/2). Therefore the following

theorem will be proven {n this appendix:

Theorem 1: Let Sn be the bilnomial r.v. associated with the sum of n i.l.d. balanced
Bernoulli-trials. Then

Hm (H(Sn) - (1/:.’)log2 (xen/z)) = 0 (A.1)

n — 00
The rate of convergence i{s not treated, but numerical tests have Indicated it to be fairly rapid. It would
be of interest to study not only the rate of convergence, but whether or not the convergence Is monotone

in n. That iIs, one would expect that

| H(S, ) = (1/2)icg, «An+1)/2)| < [H(S,) = (1/2)log, (ren/2) (A.2)

forall n=1, 2, .

The rate and manner of convergence are not explicitly dealt with though they possibly could be inferred

from the proof that follows.

A few lemmas are needed to obtaln the result. Each lemma specifies that some sequence or class of
sequences exists that ensure that a specific inequality be true. Constraints on the sequences sufficlent for
the inequality to hold are specified by each lemma. After the proof of the lemmas, the proof of the main
theorem begin§ by showing that a sequence exists that obeys the constraints of all the lemmas

simultaneously. All the respective inequalities wlill then hold and they can be linked together with the
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*triangle-inequality® to glve the result of the theorem. Arguments used In the various proofs were

motivated from developments In Feller {11} and Rudin [39].

The proofs to follow generally require that, given an arbitrarily small real number ¢ > 0, some
positive quantity that is a function of the positive integer n will be smaller than ¢ for all sufficlently
large values of n. No generality is lost by assuming that ¢ is less than 1. This assumption will be used
throughout (except where otherwise stated). Further, to simply the arguments and notation, we consider
only even values of n. The arguments for odd n would be the same but n/2 would have to be
replaced by (n — 1)/2. Finally, the result of each lemma will hold when ¢ Is replaced by ¢/4 since ¢ Is

an arbitrary positive constant. This will be instrumental In the proof of the maln result.

Notatlonally, ¢ _(z) Is the normal probability-density functlon, 1/(\/2xa)-ezp(-zz/202) for a

normal r.v. Xn with a mean equal to zero and variance dz where ¢ > 0. We will be concerned with

a=\/;/2 and will use this value for ¢ throughout. The standard normal density function
1/vV2n - exp(-z2/2) will be denoted ¢(z).

A.l. Ignoring Tails of the Normal Entropy Integral

The entropy of the a normal r.v. with variance 02 is glven by the Integral

fiooo -¢50(;z:)log2 d)a(:r:)dz . The first lemma allows approximation of the normal entropy by lgnoring the

"talls® of this integral. We show that for ¢ = g(n) = \/;/2, a positive-lnteger sequence {r_}, of order

O (\ﬂzlogz (log2 n) ) exists that grows rapidly enough so that for any positive ¢, the integral

/ " —¢_(z)log, 6 _(z)dz

Is within € of the true entropy for all sufficlently large n. From thls It follows that If {s } Is a

sequence whose elements exceed those of {rn} for all sufficlently large n then the integral

F ]
/ ? —qﬁalogg aﬁadz

-8
n

will be within € of the true entropy. This property we will call asymptotic convergence. In
particular, If {sn} Is of higher order than {rn} then the just mentioned integral has this asymptotlc
property. Our concern is to find a lower estimate of the order of {rn} that Is sufficlent to guarantee

asymptotic convergence. The following lemma and Its corallary state the result.
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Lemma 2: Foreachn=1,2, ..., let Xn be a normal r.v. with variance 0'2 where

o=+vn/2. Glven € > 0 there exists a positive-Integer sequence {r.} of order

O'(\fnlog? (log2 n)) with the following properties:

1. First property: There exists a positive integer Nx such that if n > N1 then

r

| HIX ) — / "—¢a(z)1082 ¢ (z)dz| < e (A.3)

2. Second property: If {sn} has the property that for some positive integer N2,
n 2 N, Implles s 2> r_then {s.} has the first property.

Proof: For any n the entropy of Xn is defined by

oo

HX,) = [ =8 (z)os, 8 (2)dz

=00

= lim /—-‘%(z)log2 csa(z)dz (4.4)

=00 J/—F

Since Xn Is normal with varlance o¢° the entropy H(Xn) Is equal to

1/2log2 2710° < 00 (12, p. 32]. Therefore the limit above is finite and by deflnition of

* Iilm *, a positive integer r. exists so that r > r implies equation (A.3) with r
P -+ OO

replaced by r. We now show that for fixed ¢ > 0, a positive-integer sequence {rn} can be

chosen as an O (\/nlog2 (log2 n)) function of n so that property 1 holds.

Note that (ba(UU) = 1/0 - ¢(u). Substituting the variable u = z/o Into the Integral of
(A.3) and letting bn =r /o, one obtalns

'n bn
/ -¢a(z)logz ¢a(z)dz = a/ -—q5a(a'u)log2 ¢>a(au)du

—' -
n bn

I

bn $(u)
g / — ——log, (¢(u)/0)du
g

n

I

b b
/:-—QS(u)logo d(u)du + log, a/ " $(u)du (A.5)
- - = J-b
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We denote fb_b —¢(u)log, ¢(u)du by Il(b) and denote ff_b #(u)du by I,.,(b).

If b Is allowed to approach infinity, then [1(b) converges to the entropy (1/2)log, (27e)
of a standard normal r.v. We can therefore choose a constant bo such that b > b0 Implles
that Il(b) s within €/2 of its llmit. No harm Is done If for convenlence we take bo to be

larger than 1.

Since the lemma s concerned with the dependence of bn on n as n gets large, no

generality Is lost by considering only n > 132 and ¢ < 1/4. For such n, leg!!

r_=[ (Vn/2)[V2log, (4/¢) (10g, (log, (Vr/2))"/? + b | |

Since n 2 132 and € < 1 the quantities under radicals are non-negative. Also b0 Is

independent of o, so that bn =0 (\/log2 (log2 n) ). The lemma will follow If we can show for
fixed n > 132 that b > b implies

| HX ) = (I,(b) + (log, 0)-I,(0)) | < e (A.6)

Denote Iim I'.(b) by I'.(oo), 1 =1,2. From the derivation above one can see that
b — o0

HX )= Il(oo) + log, aI,_,(oo) so that (A.8) Is equivalent to

| Il(oo) + (log, o)l (00) — (I (b)+ (log, )1, (b)) | < ¢ (A.7)

If we show that the conditions

€
LI (@)= L(B)] < =

€

2.1 - I (b <
| I,(00) = I,(b) | 2108, o |

hold for b6 2> bn, then the left-hand-side of (A.7) satisfles the following

| 1,(c0) + 108, 0l,(c0) = (I,(b) + log, a1,(%)) |

! The restriction, n > 132 is used to diminish the chain of inequalities on the next page concerning the parameter 4.
It also allows use of a sequence {rn} whose terms are as small as possible, though this isn’'t necessary to obtain a suitable

sequence.



88

| 1,(c0) = 1,(b) + log, (I (c0) — I,(b)) |

IA

| Il(oo) - Il(b)l + |1032 || 12(00) - Iz(b) |

€
< E+|log20|-

2liog, o] = € (A.8)

and the conclusion will follow. Since bn > bo, condition 1 iIs satisfled by definition of b, We

therefore need only consider condition 2.

To show condition 2 Is satisfled, we observe that if &(z) Is the standard normal
distribution function then we have [11, vol. 1, p. 176|

1 —-9(z) < exp(-zz/z) all z > O (A.9)

2Tz

Alsofor b € R, ®#(=b) =1 — $(b) so that

12(6) = /_bbgb(u)du = Pb)—-P(=b) = 2¢(b)—-1 (A.10)
and
b
12(c><>)---=bl_l-‘mc’o [—bcb(u)du = 1 (A.11)
This gives
I(00) = L) = J1—(28(b)=1)] = 21—&B) = 2(1— &) (A.12)

We make the observation that the equation z+y < =z-y Is satisfled for all z > 4 If
y > 4/3. Identifying z with log2 (4/¢) and y with log2 (log2 0c), we see that under the

assumptlons for n and ¢ that have been made on the previous page, we have z > 4 and
y> 4/3. For b 2> bn , we have the following chaln of inequalitles:

b > b

> \/21032 (4/6)\/log2 (log2 o) + bO

> \/‘2log2 (4/¢) + 2log, (log2 o)
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= \/210g2 ((4/¢€)log,, o)

2

b
Therefore —— < -—log, ((4/¢€)log, o) so that exp(-b2/2) < 12 Now b > b > 1 (by

2 - 2 4log, o - n
cholce of bo > 1) and we have by (A.9)

2 2 2 €
2(1 — #(b)) < exp(—b°/2) < 2exp(—b6°/2) < l =
b /—27r 4 og, 0 2log2 (o4

Using (A.12) this glves condition 2.

To finish the proof, we note that {rn} as defined Is O (\/nlog2 (log2 n)). We have finished
showing that the first property of {r_} holds for N, = 132.

If {sn} {s a sequence and N2 a positive integer such that n > N2 implies s > r.
then set N = max { N,. N, }. Since —¢,(z)log, ¢ (z) > O for all z, It follows that for
n >N

H(Xn) ==/ —ci;a(z:)log2 ¢a(z)dz

-—00

> f " —¢ (z)log, ¢ (z)dz

-0
n

> [ "=, (2nos, 8, (2)dz

so that

| H(X ) - / " —¢ (2)log, ¢ (z)dz |

-0
n

L 4

< IH(X,,) - / n—q&a(z)logz ¢a(z)dz| < €

From this we see that {sn} has property 1 mentioned In the statement of the lemma.

12 . . ..
“We get away with freely intermixing base-2 and natural-base logarithms due to the use of the inequality. That is, for
. . o
z < 1, we have that y < log, z implies exp(y) < exp((log,, ¢)ln z) == zl°g2e < z. In this case, y == —b6"/2 and
z = ¢/(4log, o).
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The following result is immedlate

Corallary: If {an} Is a sequence of order larger than O (\/ﬂlog2 (log, n) ), then there is a

positive integer /N suchthat n 2 N lmpllesls

IH(X,,)--/"-cf’c,(z)log2 ¢ (z)dz| < ¢

-0
n

A.2. Discretization of the Normal Entropy Integral

The statement and proof of the next lemma use notation borrowed from Rudin in {39, Ch. 6] In his
development of the Reimann-Stelltjes integral. The arguments he gives In theorem 6.8 (39, p. 125| for the
Integrabtlity of a continuous function on a closed Interval is extended to our situation. Wé desire to
approximate an Integral with a Reimann-sum, however the limits of integration are not fixed and the
integrand varles with the number of points on which we sum. Our notation, which Is only slightly
different from Rudin’s, Is as follows. If b > O then a partitilon P of the closed interval |—b, 0] is a

finite set of points {z'.}:___, such that =b = z__<z__ < ... <z = b If f(z) Is a continuous

r+1
function defined over [—b, b], Its maximum and minimum are attained over any closed Interval in the

domain of [ so we put Mﬁ = max f(z), me = min f(z), + = —r,—-r+1,...,r—1. The
[2s,25+1] ' [25,25+1]
quantities Ub(P,f), and Lb(P,j') will denote the sums

r—1 . r—1
U(P.S) = Z Mz — %) and L(P.p) = Z Mz — )

{m=—p j——

If Ianb(P,f) and supr(P.f) are finite and have the same value, their common value Is called the
P P

Relmann-Steiltjes Integral of [ over [—b, 4| denoted by ff_b f(z)dz. From the definition of the

integral just given, It Is apparent that for any fixed P

b
LN < [ f2dz < U
—-b

1
Also the same bounds apply to the sum Z: f(z‘.)(z‘.“—z‘.) stnce m . < f(z) < M, for

Is /

lsBy “larger than O (f[n))* where f(n) > 0, we mean a sequence {ln} such that for any constant C > 0 there is
an NV so that n > N implies . > C-[(n).
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Before proceeding to the lemma we state the following propositions.

Proposition 3: For any ¢ > 0 the functions ¢ and f(z) = —¢(z)log, ¢(z) have
bounded first-derivatives over the domain R.

One can show that both |f(z)| and |¢’(z)| are continuous over R and approach zero as z — 400 .

These together imply boundedness over R . The second proposition iIs

Proposition 4: Let g be a function differentiable over a connected domaln D C R
and let B be a positive constant so that the derivative ¢ satisfles |¢(z)] < B over D.
Then g¢ !s uniformly continuous on D with |g(z) = g(y)] < B-lz—y| forall z,y € D.

Proof: Because ¢ Is differentiable, it it continuous and so Integrable over finite
intervals. We have the following Inequalities

l9(z) = 9(y)| = I/ g(u)du| < /Ig(u) |du < Bz -y
y y

ylelding the desired resuit.

We now state and prove

Lemma 5: Let o= Vn/2 and let {r.} be a sequence of positive Integers such that

b(n) = rn/a Is o(\./r:/log2 n). Glven ¢ > 0, there exists a positlve Integer /N such that
n 2> N Implles

L 4

| | "4, (z)og, b (2)dz — Y -9 (ilog, 6 ()| < (A.13)

Proof: We continue to use f(z) = --d>(:t:)log2 #(z). As shown in the previous lemma,
the integral in equation (A.13) Is the sum of Ix(b(n)) and log, a-lz(b(n)) where the functions I1
and 12 were defined on page 88. In a similar fashion, one has

n 1 'n 1 'n
2. —t,ogy @ (D) = =37 fli/o) + logyo Y 4(i/a) (A.14)

n n

Let Sl(n) and S, (n) denote the first and second sums on the right hand side respectively. The
lemma will follow if we can find an N so that n > N Implles
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1 €
Ul(b)—;Sl(n)l < 2
1 €
log, allz(b)-;.S’z(n)l < >
To obtain, this we will require that /N be large enough so that
lf € 4
-flr o < - .17
Sfra/o) < 7 (A.17)
1 €
~ (log, 9)e(r,/0) < 3 (A.18)
for all n 2 N. From proposition 3, we have the numbers B = max |f(z)] and
R

B, = max |¢'(z)| . Let Nx' N2 be Integers such that
R

(18B,8(N,))°
1. N, >
1 62
(16B,b(N,))?
2. N, > 22 . (log, \/-1;’-;/2)2

€

and so that all n > N, satisfles each of these when substituted for N‘.. t=1,2. We also

require that 1\7l Is large enough that n 2> N, Implles relatlon (A.17) and N, Is large

enough that n 2> N2 implles relation (A.18). Such numbers Nl, N2 exist since (b(n))2 and

(b(n)log2 (\./r:/2))2 are o(n) and the left-hand-sides of (A.17), (A.18) are o(1).

Fix n 2 max { N,, N, } and for notational convenlence let r = r_ and b = ¥n).
Let P = {Ii}:r be the partition of [—=b, 8] with z. = i/o, i=—r,—(r—1),...,71

(remember r = bo by definition of b). Notice Zo "% = 1/0 = 2/\/;. To show (A.15),

we use the fact that n > Nl . Now M/‘. —m, = f(z)— f(y) for some z,y € [2,"2‘-_*_1} and

we have |z -yl < 2/\/;. From this one obtains M/.‘ - m,
€

Slncen > Nl, n satisfles item 1 above so that 1/\/; <

< Bl-2/~/; by proposition 4.

and we can write

lBBkb

(A.15)

(A.16)
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From this it follows that

r—1

U PN - L(PS) = Z (M, —m )z, —2)

I —p

Also

r r—1
1 1 1
=S = =3 fi/0) = T fE)a,,—z) + =fr/o)

fam— o —

1
Q,(n) + =f(r/o)
o

1
where Ql(n) s the sum Z:.:_' f(z‘.)(z'.“ - z‘.). Note that Ql(n) Is bounded above and

below by Ub(P.f) and Lb(P.f) respectively (by definition of these two latter quantities). By
definition of the integral, Il(b) is bounded above and below by these same quantities. It follows
that |Il(b)-Ql(n)| < ¢€¢/4. From this and relation (A.17), we have that (l/a)Sl(n) Is
within €/2 of Il(b) so that (A.15) holds.

The arguement that equation (A.16) holds is similar. In this case, recall that n > N2 so that
Item 2 holds. Using the notation for the function ¢ analogous to that we used for f, we have

2 €

# " Vn 8blog2 (\/—7;/2)

and

r—1
Uy(P.¢) = L(P.¢) = Z (M¢s' — My (2,401 = %)
€ €
< 26 =
8blog2 (\/;/2) 1log, (\/;/2)

-1
Finally, let Q.(n) = }::r czb(:t‘.)(:z.._H - z‘.) and notice that @ _(n) Is bounded above and
below by L’b(P.o) and Lb(P.(b) respectively as s [ _(b). Therefore we have that
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II,(b) = Q,(n)| < €/4log, 0. The Identity (1/0)5,(n) = Q,(n) + (1/0)-¢(r/0) and relation
(A.18) then imply the Inequallity (A.16). The lemma [ollows with N = max {Nx'Nz}'

A.3. Approximation of Binomial Entropy

A.3.1. Error Bounds for Logarithm Terms

Feller's development (11, vol. 1, p. 179-182] Is expanded here for the sake of providing
approximations to terms of the binomlial probabllity function and bounds on the error of approximation.
First a few observations with respect to logarithm approximation. We start with the Taylor series for

In (1 + ¢) which Is known to be

= (=)
in(1+¢t) = t- —— o< |t
(1 +¢t) ZH_I It] < 1 (A.19)
s==()
and for In(1 —1¢t) it is
o0 t;‘
-in(1—=¢t) = t- e o< |t
(1=t =13 3 1] <1 (A.20)
1==(
so that
11+t In (1 + ¢t) In(1—¢ twtzi
n = n(l + - In(l - = 2t- - 0 < |t < .
L

s obtained by adding the two series In (A.19) and (A.20). See [11, vol. 1, p. 51] for detalls of the
derivation. Subtracting 2¢ from both sides of (A.21) glves

ll-+-t ’ St
n -2t = 2t°. : 0 < |t 1 :
1~ 22,+3 lt] < (A.22)

We are interested only In values of t between O and 1/3 so that the series in (A.22) Is positive. In other
1 4+¢

words In — 2¢ Is positive. Comparing this with a geometric series with ¢ = 1/3, we have the chaln

of inequalities

oo 2 3 oo 3 0o 3
¢ 2t . ot . 2t 1 3¢
3 Z 2s « 2
Qt R < — . t < —e— ' — . — —
) 21 + 3 3 Z - 3 Z (1/3) 3 1 - 1/9 4
1m=() smm()

s = (

Since the serles In (A.22) contains only positive terms and the first term Is 1, we also have
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1 4+t 2¢3
In T 2t > rak Putting these Inequallties together we have

o3 1 + ¢ 3¢3
—:-3— < ln1 t—2t < -;- when 0 < ¢t < 1/3 (A.23)

Similarly we can evaluate In(1 +t)—¢ for ¢t In the stated range. Subtraction of ¢ from the serles

(A.19) ylelds

2°°(-—t)'.
In(1+¢t)—t = —¢ }:——-

y==(

d.“ One can therefore consider the

The series Is absolutely convergent over the range of ¢ considere
terms of the series In any order without altering the sum (39, p. 78]. We group the terms of the

summation In pairs to get

2 =i L ‘
-t = ) ¢ e

1==(0

Since the terms of the sum are positive, In (1 + ¢) — ¢ Is negative. To assess Its magnitude calculate

‘ ' | PR (=t)* < e 2, =ty
In(1+¢)—t = - P = :
( ) Zz+2 - Z | + 2|
t==( e s==(
00 t2
2 )
< t°- 7 = —
2 Y
tax()
1
Since 0 < t < 1/3, we have — < 3/2 and so
3t2
ln(1+¢t)—t] < =—
2
and therefore
—3¢°
< In(1+t)—t < O o<t < 1/3 (A.24)

14 . . ) . ) . .
A series is said to be absolutely convergent if and only if it converges when each of its terms is replaced by its absolute
value.
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A.3.2. Expansion of Binomial Coefficients

These observations made, one can now follow the development of |11, vol. 1, Ch. VIL.2|, who derlves

an approximation to the ®"central® binomilal coefficients. We will take n to be even throughout and set

v to be n/2 to simplify notation. The case for n odd would be treated similarly with v = (n-1)/2.
Let a, = 2—n(vik) be the probability that the binomlial sum Sn exceeds the mean, n/2, by k.

Since a_, equals a, we will only consider non-negative integers k. Our goal is the analysis of the error

Incurred when a, is approximated by the normal density of variance n/2.

It Is easy enough to verify that

; 'u(u-l)...(l/"'(k"'l))
k70 (u+ 1) v+2)... (v+ k)

Q
|

(A.25)

There are k terms In the numerator and in the denominator so we may divide each term by v without

changing the value of the fraction

k-1 . k .
J J
a, = a, [[ 1=> II 1+> (A.26)
]=BO j-l

For ¥k < v/3,and |j| < k we use the approximation 1 + j/v = exp(j/v) to transform the product in

(A.26) Into
k—1 —; k—1 j k
a, = a,exp Z-—;— - Z; - -
J=1 Ju= ]
k-1 .
Usling the fact that }:jgl J = k(k-=1)/2 one has
¢, ~ ¢, exp(-—k2/v) (A.27)
Using Stirling’s formula to approximate factorials, the term 8y = 2'"(2) Is approximately v2/7n and
we obtaln the normal-density approximation to the binomial coefficient a,
¢, = V2/rn - exp(—k=/v) (A.28)

Notice that the right-hand-side of this equation Is the normal probabllity-density function of an r.v. Xn

)
with varlance o~ = n/4 evaluated at k/o standard deviations from the mean. Allowing € and €, to
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represent the errors occurring In the approximation (A.27) and In that of a, respectively put
= @, exp(—kz/u) exp(—cl) (A.29)
6, = V2/(nn) exp(e,) (A.30)

SO thatl5

6, =V2/7n exp(-—kz/u) exp(—(el - ez)) (A.31)

k

This deflnes € and ¢, and the relation

k—1 k—1 /
exp(—k*/v)exp(e,) = J[a-sw) | a+kw][ a+5v (A.32)
Jo=1 Je=1

Is obtained from equations (A.268) and (A.29). Taking logarithms of both sides

-l:z/u—el = Zln };ﬂ - In(1+ k/v)

2 k-1 .
Using the fact that k°/v 22;’-1 j/v + k/v we solve for ¢

1

k~— . .
Z:l l 1+ j/v 27 : k k y
€ = n - - - + In 1+=- - - .33
1 - 1 - j/v v v v ( )
j’

A.3.3. Upper Bound on Binomlal Tall Coefficlents

We are ready to state and prove

Proposition 8: For integers v = n/2 and k In the range [V7n] < k < n/6, the

relation ¢, < a, exp(—kg/v) holds.

k

15 . , L : 2
Here Feller omits the leading sign in the error-exponent by setting ¢, = 2/mn exp(—k~/v) exp(cl - ‘2) :
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Proof: The observations made In the previous sectlon now come into play. By

hypothesis, we have that & < n/8 so k/v < 1/3. We substitute ¢ = k/v Into equatlon

(A.22) and see that the terms of the sum in equation (A.33) are positive with the J‘h term less

k—1
than 3(j/u)3/4. Since 2#1 j’ = (k(k — 1-))2/4. this sum Is less than
3 0 3 k' -k Kt
-, —_— . < ——
: E (2/v) T »
=1

We can get a lower bound on the term to the right of the sum in equation (A.33) by putting
t = k/v into equation (A.24). The sum in (A.24) Is negative and larger than —3/2(k/u)2.

From equation (A.33) and these bounds, we get an upper and lower bound on elzm

3 2 k*
-;( /v < e, < ;‘;5 (A.34)

On the other hand, from equation (A.23) each term of the sum in equation (A.33) Is larger than
2(j/u)3/3 so that for k in the stated range the sum Itself Is larger than

2""(_/ PR R Kt
- J vV _— =, ceesees— > —
3 oy 3 48 Vit

Therefore a tighter lower bound on el is

k! 3
e, > — — =-(k/v)’ (A.35)
81/3 2

For ¢, , Feller |11, vol. 1, p. 182] shows that

1 1 1 1
—_— < €. < =— + (A.36)
n  9opnd 2 4n 360n3

sothat 0 < ¢, < n/3 In any event. Combining this with the lower bound for ¢

2 we get

1

k* 3 k?
61—62 > — e e e e e
8u° 2,2 3n
We set
k4 3 k° 1
_— = =i o -_—— >0
8U 2 V2 3n

16 : :
In this section, only the lower bound will be useful. The upper bound will be useful in a later section.
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to get a sufMcient conditlon for €~ € to be positive. This condltlon Is met for all

k > V7n. Therefore for k In the range stated In the hypothesis, we have that the term
exp(-(cl—-e,,)) of equation (A.31) Is less than 1. [Equation (A.31) then implies that

¢, < @, exp(—kg/u) and the lemma is proved.

A.4. Ignoring tails of the Binomial Entropy Sum

In this section, we state and prove a lemma (called In this section, the tasls lemma) that shows one
can approximate the binomial-entropy by summing relatively few terms of the entropy-sum. The

approximation approaches the entropy of Sn as the total number n of terms gets large.

A.4.1. Relations Used _in the Proof of the Talls Lemma

Before proving the last two lemmas, a few observations necessary. These relate to the error-

magnitude to be encountered in the talls lemma.
Proposition 7: For ¢ In the range —1/3 < ¢t < 1/3, the relation

|1 = exp(—t)| < 3/2-|t] (A.37)

Proof: This Is easlly seen from the inequalities obtalned from the Taylor series for

exp(—t)
= (=t g ) =,
1= exp(=t)] = [t- ) =] < |t]-|) =] < |t|}_ It}
b (¢ + 1) b (3 + 1] .
o) su=() su=()
t 1 3
= |—| < el = -t}
1—-1t 1-1/3 p4
One more observation must be made before proceeding to the lemma. Since lim Jrlog,2 zZ = O the
z—0
functlon zlog, z s continuous over the closed Interval [0, 1] provided we deflne 010320 = 0 to be
consistent with the mentioned limit. Taking derivatives, (log2 z = (In :z:)log2 e) one can verify that the
function -—zlog, z s unimodal with maximum value e"llog,, e achleved at z = e~ !. The function Is

continuous on the closed interval {0,1] and so Is uniformly continuous In this range.



100

Glven ¢ > 0, we seek conditions on z positive such that | zlog, z|] < e

Proposition 8: Let ¢ > 0 be given. Thenif z € [0,1] and a is any number In the
range 0 < a < 1 the inequality

z < (aee/log, e)l/(l - a) (A.38)

implles that

| zlog, z | < € (A.39)
Proof: Given the hypothesis, (A.38), solve for ¢ to get
e > l/a-zl""’-e"l-logze (A.40)

Since z% € (0,1, It follows that z%log, % < 7} log, e. From this we have
| zlog, z | = —zlog,z = -zl - "'::‘"log2 [(z")l/a]
1

1
__Il a

1
(—z%0g,2%) < =z "“-e"l-logze
a

The last expression Is less than ¢ by relation (A.40) so that the proof Is complete.

For our purposes a = 1/2 can be chosen to glve

z < (eos/2log2 e)2 = |zlogzz| < € (A.41)

A.4.2. Proof of the Binomial Talls Lemma

We are now ready to state and prove the talls lemma.

Lemma 9: Glven ¢ > 0, therels a sequence {r } of order O (Vnlog, n) such that

r
n

IH(Sn) - Z —aklogzakl < € (A.42)

k=—1y
7
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Proof: For n < 10, we can take r = n. For n 2> 10 choose r = |V2nlog, n |

and notlce r. +1 > V7n. Since r. Is O(V nlog2 n), we can choose an NV large enough

that the following conditions hold for all n 2> N:Y

1.r < n/6-—1
n

2. n 2 (2log2 e/(ee))

For fixed n > N, let k = r_ + 1 and write the following inequalities

k > ﬁnlogz n = \fnlog2 n + nlog, n > \/nlog2 n + nlog, (2log2 e/(e€))
so that

k? > nlog, [2nlog2 e/(ee€)]
and

-—2k2/n < 2log, (e«s/(2nlog2 e))
This Implies

exp(—2k2/n) < (ee/(2nlog2 e))2

Since v7n < k < n/6, proposition 8 implles a, < 8, exp(—2k2/n). Together with the

fact that ¢, < 1 this Implles for Il 2 k:

a

l < 6, < a, exp(—2k2/n) < exp(—zkz/n) < (ee/(2nlog2 e))2

We see that a, satisfles the hypothesis of proposition 8 with ¢ replaced by ¢/n and therefore

€
alog.a < -
| a/l0g, a;| n

17, .. .. .
Notice that the second condition stipulates that the left-hand-side of (A.42) will be less than any ¢ 2> 2log, e¢/(en).
Therefore, 2log, ¢/(en) is roughly the maximum entropy lost when Sn 1s ®approximated® by a random vanable
Sn' = mip (Sn' e } . We say "roughly® because we have not accounted for the fact that Sn’ will equal + . with a

slightly higher probability than the probability that Sn will assume these two values.
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is the desired upper bound on "tall® terms of the blnomlal-entropy sum. We can now verify
the conclusion (remember, n Is even)

"n n/2 "n

| H(S ) - Z —a log,a | = | Z —a,log, 6 — Z —a,log, 6, |
km=—r kw=—n (2 kmm—r

n/2

|2 ) =—a,log,0,]

kemy +1
n

n/2

<2 z |alog,a,| < n-e/n =e
ksrn-i-l

The lemma is proved. We also have the following corallary for sequences of higher order than
the sequence {r }:

Corallary: For ¢ {r } asin the lemma, let {s } be a positive integer sequence such
that n > s > rforall n, then

L
n

| H(S ) — Z —-a.log,a, | < e

n
ke — g
n

Proof: The terms in the sum above are all positive. Since n > s > r., we have

n n
H(S,) = ) -—sloga, > )  -—glog,a,
ko= —n ke —g
n
4
n
2 Z —a,log, a,
ka—rn

Because the leftmost quantity in this string of lnequalities is within € of the rightmost
quantity, the result of the corallary follows.
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A.5. Similarity of Binomial and Normal Entropy Approximations

We have ®"chopped® the talls of the normal entropy integral and then dlscretized It to obtaln a sum
as a close -approximation. The talls of the binomlal entropy sum were also ®"chopped® to obtaln an
approximation that Is a sum of far fewer terms. We now need to show that the resulting approximations

for the normal entropy and for the binomial entropy are good approximations of each other.

Lemma 10: For n=1,2,... let a=\/r;/2 and let {rn} be a positive-integer

sequence in O(\/nlogzn). Glilven € > 0, there exists a positive integer N such that
n > N Implles

r r

n n
| Y -agog,a, — Y ¢ (Klog, b (k)| < (A.43)
k=--rn b——rn

Proof: The sequence {rn} Isin O (V nlog, n) so we consider the case that r_ 2> V3n

18

for all sufficiently large n. Also there exists a C > 0 such so that r. < C- \/nlog2 n

for all n. It follows that a positive Integer No can be chosen so that v3n < Fn < n/6 for

all n 2> NO. Let n be in this range and put t = €~ & where € + €, are defined by
equations (A.29) and (A.30) as functions of the positive integer n and kK = 1,2, ..., n.
From these two equations we have that g, = ¢a(k) exp(—~t) and for k=1, 2, ceea T We

can bound the terms of the difference (A.43):
| —a,log, a, — (—¢_(k)log, ¢ _(k))|

= | —¢,(k) exp(—t)log, (¢ (k) exp(—t)) — f-%(k)logz ¢, (k)|

|6,(k)(1 = exp(=t))log, 8 (k) + ¢ (k)-t- exp(—t)-log, ¢|
< 18 (k)og, ¢, (k) |-|1 = exp(=t)| + |¢ _(K)|-|t|-| exp(—t)|-]log, €] (A.44)

We need upper bounds on the terms | ¢!, and |1 — exp(—t)|. To get an upper bound on |¢],
consider the following.

Since r_ > V3n, we have rn‘/4vs > 3rn2/2u2. For any k& < r.we get

18'I'be case that r, < V3n results in a smaller number of terms being summed in relation (A.43). The upper bounds
for the error derived in this section would still applicable to these terms. By summing less terms the total discrepancy

between the two sums in (A.43) will be less, hence the case that r. < V3n is subsumed by the case that . > Van.
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Since |62| < n/3 we also have ¢, < rn‘/(aua) and so

2
4 3
It] = e, = | < |el+]e| < r %/(207)

In turn, rn‘/(2u3) Is less than 4C"(log2 n)z/n where C was defined at the beginning of the
proof.

To get a bound on |1 — exp(—t)| we take a positive Integer 1'\7l so that n > N

implles that 46"(log,, n)z/n < 1/3. Therefore we have |t| < 1/3 and so
| 1 — exp(—t)| < 3/2|t| by proposition 7.

Finally, for |t| < 1/3, exp(—t) 1is bounded. Let K be a coastant so that
exp(—t) < K for |t| < 1/3. Continulng the chain of Inequalities In (A.44), noting that
| ¢a(k)| < 1, we have

| ¢ (k)log, 8 (k)| - |1 — exp(=t)| + |@ (k)| |t]l exp(—t)[log,e]

< e '(log, €)(3/2)| t| + Kllog, e)|¢]

((3/2)e™" + K)(log, €)] t |
< ((3/2)e ! + K)(log, e)C"(log2 n)?/n
= A(log2 n)z/n

where 4 |Is the positlve constant ((3/2)-45""l + K)(log2 e)C". To finish the lemma consider
agaln the left-hand-side of (A.43) which Is seen to satisfy
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| E —a,log, 8, - Z — ¢ (k)og, ¢ (k)|
k:--—rn k--—'n
< ¥ |-a,log, a, — (—9,(llog, 6, (k)|
kw=—yp

There are 2r + 1 terms in this sum, each positive and less than A(log2 n)z/n. Since

r < C- \/nlog2 n, the sum Is less than

n

12C nlog2 n + ll-A(log2 n)z/n

which s O((log2 n)5/2/\/r-z). It follows that there iIs a positive Integer N2 such that If
n> N2 then

{‘.ZC\/nlog2 n + I]A(lcg2 n)2/n < €

From these Inequalltles, the lemma follows with N =max { N, N, N, }.

A.8. Proof of the Main Theorem

We now restate and then prove the main theorem.

Theorem 11: Let 5ﬂ be the binomial r.v. associated with the sum of n 1.1.d. balanced
bernoulli trials. Then

im (H(Sn) = (1/2)log, (1en/2)) = 0O (A.45)

n —+ 00

Proof: We will show that for a given ¢ > 0, there exists a positive integer /N such
that n > N Implles

| H(S ) - (1/2)log2(7ren/2)| < € (A.48)

n

Lemmas 2, 5, 8, and 10 can each be restated with ®¢® replaced by ®¢/4® In thelr respective
relations: (A.3); (A.13); (A.42); (A.43). These lemmas will still be true when modified in this
way. Each lemma required a sequence that was constrained In some way to produce that
particular lemma’s result. Our plan Is to exhibit a sequence {s_} that simultaneously satisfles

the constraints of all four lemmas. The inequality mentioned in the conclusion of each lemma

wlill then be true. The triangle inequality can then be used to show that the lnequality (A.46)
holds.
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Let {s_} be the sequence

{Ln n < 10

\/2nlog2 n | otherwise

This Is the sequence used In the proof of lemma 9 to render the inequality (A.42) (with ®¢®
replaced by ®¢/4" ). In particular, for some Nl >0

s
n

| HS ) - Z —a.log, 6, | < ¢€/4

n
k==—1¢
n

forall n 2 Nl.

Since (an} Is O (\/nlog2 n) > O(\fnlogz'(log2 n)) the corallary to lemma 2 implies that
there exists a positive Integer Nz' such that for n > N2 we have

|H(X,,) - /”—d)a(z)lognga(z)dzl < €/4

Also sn/a = O(\/log2 n), that lIs, 3n/a= o(\/r:/log2 n) and by lemma 5 there exists a
positive integer N3 so that for n 2> Ns we have

| [ " —¢,(z)og, ¢ (z)dz — D —¢ (klog, 6 (k)| < €/4

ke=—¢
n

Flnally, from lemma 10, we have that there Is a positive Integer N, so that n 2> N4

4
lmplles19
s (]
n n
| Z —a,log, e, — Z —¢ (Klog, ¢ (k)| < /4
km—=— w—— o
n

Now let N = max { Ny, N, Ny, N‘} and consider any n with n > NN. Since the entropy
of a normal r.v. with variance n/4 s 1/‘.zlog2 (ren/2), we can write

101y, requirement that ' > V7n in lemma 0 is satisfied for n > 12. We take one of Nl' N, Nz.N to be greater

than 12 so that these requirements will be met for n 2> max { Nl' N2, Nz, N‘ } in what follows.

4
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1 Ten .
| slogy— = H(S)| = |H(X ) — H(S))|

o0 ! 9
= | —¢ (z)log, dJa(I)dZ -/ "—rbo(z)logz ¢a(z)dz +/ —¢a(z)log2 q‘)a(z)dz

- Y ¢ knog, b (k) + Y. —¢ (klog, 8,(k)
k=-an k=-l—cﬂ

- Z --a,‘log2 e, + Z -aklogz 8, — H(S,,)l
Ic=—-on k==—g

o0 'ﬂ

< | —¢,(z)log, & (z)dz - / —¢,(z)log, ¢ _(z)dz |
-—00 -y
n

s
n

+ | [ T-o 2noe, b (2)dz - Y —¢ (klog, ¢ (k)]

n ka=—g
n
’ ]
n n
+ | Z —cba(k)log2 ¢o(k) - Z —a,log, akl
ks—cn kﬂ-vn

s
n

+ | Z —alog, 6, — H(S)|

k==—g
n

Since each of the four absolute-value terms Is less than ¢/4 by the previous lemmas, thelr sum
Is less than €. The theorem Is proved.
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Appendix B

Mutual Information and Vector Geometry

In this appendix, we derive a relation between the mutual information shared by two <+1-vectors,
A and B, and their Hamming-distance. The vector A will be a balanced-Bernoulll vector and the
vector B will be chosen at random from within a neighborhood of A of a given radius p. Vector B
will therefore provide information about A . We will determine the relation between the Information B

provides and the neighborhood radius.

B.1. Relation of Neighborhood-Size to Neighborhood-Radius

Let A be the set of n-dimensional #1-vectors, and for the moment, let A and B be chosen
randomly from A . We wish to know the fraction of A lying within a glven radius p of A. Toward
this end, consider the ball B(p) of vectors of A that are within a radius p of A . Since all vectors of
A are equlprobable outcomes of B, we can determine the fraction of vectors lying in B(p) by
determining the probability that B will come from B(p). Because these vectors are chosen at random
from A, they are balanced-Bernoulll vectors. Let X be the number of components of B that disagree
with thelr counterparts in A . The r.v. X s the Hamming-distance HD(A, B) between A and B. It
Is binomlally distributed with mean n/2 and variance n/4 [26|. By the central-limit theorem, we can
approximate the cumulative binomial probabilities with a normal distribution having the same mean and

variance (see Lindgren {30, p. 158)).

From this we see that the probablility that B will lle In B(p) s AX < p) which can be
determined by the normal distribution with mean n/2 and variance n/4. Half the vectors of A will lle
within a distance of n/2 of A, so so we consider the case that p < n/2 so that B(p) comprises less

than 1/2 of £4. Ifweput Z = (X - n/2)/(\/;/2) , then Z Is a standard normal r.v. and we can write
PAX < p) = RAZ < (p-n/2)/(Vn/2) = &= 2) (B.1)

where <z [s the positlve number (n/2 — p)/(‘/r:/Z). It is known that for 2z positive (say z > 3) the

approximation
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-2/2
(- 2) =~ P2 /3) (B.2)

Varz

Is quite accurate. {11, v. 1, p. 175]

Now suppose we want the ball B(p) to comprise M~R o A, where R > 1. We put
PAX < p) = M~ (B.1) and use the approximatlon (B.2) to get

-2)/2
M- — exp(—27)/ (B.3)

Var:

This can be rearranged to get the *z® in the exponent in terms of the other parameters

: = V2RnM-—1n (27rz2) (B.4)

which Is a recursive expression in z. As M grows, z should grow slowly. For large M then, the
* 2RIn M term under the radical should dominate so that z= V2RIln M. We put this value in for the

®2* under the radical in (B.4) to get

z =~ V2RIn M—1n (47RKin M) -(B..S)

which is a good approximation to z when M Is large (this can be verifled by plugging the right-hand-

side of (B.5) in for z in equation (B.3)). The value of p Is ascertained from the definition of z to be

n  vn n Vn
p = -2- - —;Z = ; - -;-\/ﬂ?lnM—ln(-i?rRlnhl) (B.8)

So a ball encompassing roughly M~R ot 4 has the radius glven above.

B.2. Relation of Mutual Information to Neighborhood-Radius

Now suppose B Is chosen at random from B(p) rather than from A . An observer of B can infer
that A lles In a radius p of B. Thils radlus is such that a nelghborhood (or ball) about B comprises
MR ot 4 Knowledge of B therefore constitutes an MPB.rold decrease In the possible values of A .

Therefore the Information B provides about A |s log, MR = Rlog, M blts.
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With regard to the nI—dimenslonal Input-vectors, of an assoclator, the vector A represents an
input-prototype Fk and B represents the associator-input Fk’ chosen from Bk(p) (see the chapter on

classification, page 55). The minimum value of R allowed In this case Is xM/(ZnO) where n_ Is the

O
dimension of the associator-output and M Is the number of stored assoclations. Plugging this in for R

in (B.8) glves an upper bound for p

n,  Vn, —

I I
< T - --2-\/an M/n, - In (22°Min M/n ) (B.7)

If we examine the no-dlrnenslonal output-vectors on the other hand, the vector A represents the
output-prototype Gh and B 1s the associator-output Gk"‘ We want a classifier sampling B to be able
to categorize it with A on the basis of B ‘s distance from A (see figure 5-3, page 61). It is the maximal
distance p that B can be from A that must be determined. To find this maximal distance, recall that
the minimal information that B must provide about A in this case is log, M bits. We can substitute
the value 1 for R in equation (B.8) to get an upper bound for the distance that B can be from A . The

bound Is

S

n

O am—
p < --2- - vain M= In (47in M) (B.8)

2

There Is a problem however. In this case, each ball'abouc an output-prototype, of the radlus on the
right-hand-side of (B.8), encompasses 1/M of the total number of possible no-dlmenslonal output-
vectors. This means that each prototype has a 1/M chance of lying In the ball about A . Since there
are M — 1 output-prototypes aside from A {tself, we would expect one of them (on average) to lie In the
ball about A . We call this a collision. In the case of a collision of two output-prototypes, the ball
about one prototype would largely overlap with the ball about the other. Many of the vectors within p
of one of the prototypes would not get classified with that prototype. This problem exists for all the

output-prototypes. That Is, each prototype will have a collislon with an average of one other when p Is

given by the right-hand-side of (B.8)

To remedy the problem, we make the radlus, p, small enough so that each ball contalrs only
l/M2 of the output-space. Now any two output-prototypes have a l/M2 chance of colllsidn with each
other. Since there are roughly M2 /2 possible palrs of output-prototypes, less than one such pair on
average wlll suffer from collision. If the associator produces B to lle within this smaller neighborhood of

A, then A will be rellably classifiable. Since the ball constitutes M™% of the output space, we put
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R = 2 in (B.8) to get

)

p 2 vV4n M- In (87ln M) (B.g)

o o
2 2

This Is shown as a lower bound on p since it Is sufficlent but not necessary for proper performance. In

other words, some values of g Iintermediate between that of relation (B.9) and relation (B.8) should be

workable. In fact, using

S

v3in M (B.10)

"o
= T

2

would result in O (\/-Af—!) colllslons among the M output-prototypes so that a vanishingly small fraction
of the prototypes represent *degenerate® categories. We conclude then, that large systems having stored
a correspondingly large number of prototypes should be able to operate nearly optimally. That Is, an
output-vector, B, will be constrained to lie within P rg of its output-prototype A , where Py heArs the
upper-bound i{n (B.8) as A gets large. On the other hand, for smaller M we may need a redundancy at

the Input that Is 1-1/2 to 2 times the minimal nM/(znO). This assures the output informatlon Is

(3/2)log, M to 2log, M respectively as required by (the respective) relations (B.10) or (B.9).
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