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Storage capacity of the linear associator:
Beginnings of a theory of computational memory

Dean C. Mumme
Learning Research and Development Center

University of Pittsburgh

This paper presents a characterization of a simple connectionist-system, the linear-associator, as both a
memory and a classifier. Toward this end, a theory of memory based on information-theory is devised.
The principles of the information-theory of memory are then used in conjunction with the dynamics of the
linear-associator to discern its storage capacity and classification capabilities as they scale with system
size. To determine storage capacity, a set of M vector-pairs called "items" are stored in an associator
with N connection-weights. The number of bits of information stored by the system is then determined to
be about (A//2) log2M. The maximum number of items storable is found to be half the number of weights
so that the information capacity of the system is quantified to be (N/2)\og2N.

Classification capability is determined by allowing vectors not stored by the associator to appear at its
input. Conditions necessary for the associator to make a correct response are derived from constraints of
information-throughput of the associator, the amount of information that must be present in an input-
vector and the number of vectors that can be classified by an associator of a given size with a given
storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems.
For an associator with a simple non- linearity on its output, the merit figures are evaluated and shown to
be suboptimal. Constant attention is devoted to relative parameter size required to obtain the derived
performance characteristics. Large systems are shown to perform nearest the optimum performance
limits and suggestions are made concerning system architecture needed for best results. Finally,
avenues for extension of the theory to more general systems are indicated.1

1This research was sponsored by the Army Research Institute, under Contract No. MDA903-86-C-0149 and Personnel and
Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract Nos. N-0014-86-K-0107
and N-0014-86-K-0678. Work submitted as Ph.D. thesis to the University of Illinois.
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This thesis presents a characterization of a simple connectlonist-system, the llnear-assoclator, as

both a memory and a classifier. Toward this end, a theory of memory based on Information-theory is

devised. The principles of the Information-theory of memory are then used in conjunction with the

dynamics of the llnear-assoclator to discern its storage capacity and classification capabilities as they scale

with system size. To determine storage capacity, a set of M vector-pairs called "items" are stored in an

assoclator with N connection-weights. The number of bits of information stored by the system is then

determined to be about (iV/2)log2 A/. The maximum number of items storable is found to be half the

number of weights so that the Information capacity of the system is quantified to be (N/2)\og2 N.

Classification capability Is determined by allowing vectors not stored by the assoclator to appear at

Its Input. Conditions necessary for the assoclator to make a correct response are derived from constraints

of Information theory and the geometry of the space of input-vectors. Results Include derivation of the

Information-throughput of the assoclator, the amount of Information that must be present In an input-

vector and the number of vectors that can be classified by an associator of a given size with a given

storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier

systems. For an assoclator with a simple non-linearity on Its output, the merit figures are evaluated and

shown to be suboptimal. Constant attention Is devoted to relative parameter size required to obtain the

derived performance characteristics. Large systems are shown to perform nearest the optimum

performance limits and suggestions are made concerning system architecture needed for best results.

Finally, avenues for extension of the theory to more general systems are Indicated.
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Preface

The approach of Minsky and Papert in their book Perceptrons [36) provided the motivation for this

research. Their analysis of the perceptron introduced useful mathematical tools for understanding

performance-limitations of 'neural-based1 systems. In addition. It charted and quantified these limitations

and identified important areas for future investigation. Aa a result, the book Perceptrons identified issues

of learning and performance that have continued to be of concern to Connectlonlst researchers even now

that the challenge for multi-level learning algorithms has to some extent, been answered. The author

believes that the mathematical tools developed by Papert and Minsky will themselves be useful for better

understanding of connectlonist architectures. In the author's view, the only short-coming of the work

done by Minsky and Papert (and perhaps Rosenblatt aa well) was their perspective. They treated the

perceptron from a "computer" point-of-view. It was expected, for example, to determine whether or not a

•retinal object" was "connected" even when the off-on state of a single "pixel1 could determine the

correct answer.

Most certainly, natural perception-systems don't work in this fashion. Indeed, they must determine

the connectivity of objects despite inconsistencies or noise In the input-stimuli. This eliminates the

possibility of "computations" whose result is affected by a single stimulus element. The proper

perspective for these systems in the author's view is a probabilistic one in which the system's proper

response Is characterizable in some way but is robust to uncertain, degraded. Incomplete, and even

Inconsistent information. The classifier Identified in this work typifies Just such a system and the forgone

analysis should exemplify the proper viewpoint and methods for future investigations of systems of this

nature. In this light, this work will have been of merit if it has identified issues valuable to future efforts

and provides methods for analysis of perceptual/cognitive systems.
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Chapter 1
Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and

perceptions [35, 33] and later work In parallel associative memories, e.g. [21, 40). Minsky and Papert

In [35] had carried out rather extensive mathematical analysis on perceptrons revealing Inherent

limitations In the classes of problems they could solve. These systems were "learning* automata expected

to classify Input •stimuli* based on their past experience on "training* inputs. Minsky and Papert showed

that multiple-stages of perceptrons were required for many problems of Interest yet no training algorithm

guaranteed to converge to a solution was known at the time for multi-level systems. They concluded In

their book that the systems held little promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development

of several multi-level learning algorithms [9, 22, 36, 40, ch. S-8], descendant offshoots of the perceptron

have regained Interest. Currently a variety of these automata exist and are known by names such as

•Neural-nets1, "Parallel Distributed Processors* (PDP networks), "Associative Memories". They are

collectively called "connectlonlst architectures" and have been studied as self-organizing memories of

perception [28] content-addressable memories, heirarchical knowledge bases, and classification

systems [5, 6] models of human "neural-computation" [0, 18] of human task performance and attentlonal

learning [41, 44] speech performance and natural language understanding [13, 40, ch. 18, 42].

These and other efforts have led to guarded optimism for the future of connectlonlst architectures as

knowledge engines or as models of human Intelligence. Capabilities and limitations of both task learning

and performance have been demonstrated.1 However, though many mathematical Investigations (e.g.

Barto [9|, Golden [15. 14], Grossberg [19, 18), Kohonen [28]), have been conducted, Including Information-

capacity studies (see Abu-Mostafa [1, 2], Amlt [3. 4], Keeler [27], Little, et. al. [32], McEllece, et. al. [34]),

there is much room for development of analytical understanding of the capabilities of these systems.

Good introductory articles to the subject include the books [21, 40]. For in introduction to the mathematics of
'connectionist" or "neural-based" systems, see [7, 40, ch. 0].



Development of connectlonlst memory systems In several forms has changed the concept of memory

from storage memory to what the author calls computational memory. Digital and other local

memories are examples of storage memory and have been suppllmented by the dlstributed/overiayed

memory systems. The latter have more complex characteristics. Interference between items stored result

in the capability of these systems to implicitly represent the regularities/relationships among the items.

Subsequently, computation and storage in the system are no longer distinct processes but Integral aspects

of the same phenomenon. These systems are "Information engines" or "computational memory" rather

than "information receptacles".

A formulation is needed of memory as a general mode of storage and computation. An information-

theoretic approach appears most natural and promises to identify the essential features of memory

operation. The purpose of this thesis Is threefold:

1. Analytical Models: A germinal characterization of memory theory will be presented. The
capabilities and limitations of any memory should then be expressible in terms of Information
flow. Resultant Information-theoretic relations will provide the desired means of analysis and
a framework for understanding any particular memory system as a member of the general
class of computational systems.

2. Relavant Issues: Theory in 1 is used to identify major issues to be addressed for the
understanding of storage memory. These issues Include Identification of "memory tasks",
amount of Information provided by the memory for the task, amount of information required
by the task for a given amount of storage, the maximum number of items storable In the
system with respect to the specified task, definition of memory load, memory load v.s.
performance, Identification of particular tasks useful to computation.

3. Evaluation of quantitative performance: Performance of the associator with respect to
Issues identified In objective 2 is quantified utilizing the theory from objective 1. First,
storage-capacity is evaluated so that the notion of "memory-load" can be developed.
Classification capabilities are then evaluated as the memory-load is increased. Architectural
considerations and hardware tradeoffs are addressed, as well as performance degradation due
to the introduction of non-ilnearlties at the system-output. Finally, figures of merit are used
to compare system performance with the optimal.

It is intended that this work will provide the proper context and starting point for further

Investigation of memory as a computational structure.

1.1. • Neural-based1 systems

Matrix models of parallel distributed memories were derived as c simplistic model of brain cell

computation. In the model, the output of each cell is a real number, y representing the deviation of the

cell's firing frequency from some reference frequency. As such, y can be negative as well as positive.

The Inputs {xyx
2

 J } t 0 t h e c e i l a r e similarly real valued and each input, r . has an associated

coupling strength u;. to the cell which determines the effectiveness of that Input on the ceil output. The



cell determines its output by taking the weighted average of the Inputs,

if
= — > w.x.

where (w , wr . . . , w ) Is called the cell's •weight-vector1. The matrix memory is constructed from a

collection of these cells, each sampling the same set of Inputs. If rtj Is the number of Inputs to the

memory and nQ Is the number of cells in the memory, the vector x = {x
x>

x<y • • • 'x
n/n) o f Inputs when

presented to the Input of the system produces an output vector, y = (yvy2, . . . *yn{O\) given by the

relation y = — Wx where W is the matrix of coupling weights w.. connecting the lth input to the Jth
nI "

cell [21, 28]. We note that each "cell" or "unit1 Is merely taking the dot-product between the input-

vector and the unit's weight-vector.

To store Information In this system, two sets of vectors called the input prototypes (f,,frt, . . . ,f
1 1 2

and the output prototypes { g r g 2 gj^} are used. For each input prototype f , the weights of the

system are adjusted so that the g vector results at the system output when f Is presented at the

Input. The system Is then said to associate f with g . For each m = l , 2 , . . . ,Af, the matrix that Is
used to associate f with g (called the m association) Is the outer-product g i [21, p. 181. To

store the M associations, these M matrices are added to obtain:

M

The Information for each association is distributed over the whole of W and therefore Is overlaid with the

Information for the other associations. The resulting Interference between associations Increases with A/,

and ultimately limits the number of associations storable In the system.

In the case that fj,f2. • • • S^ are mutually orthogonal, no Interference exists. When f̂  Is Input to

the system, we have

g f r°m m k

1 T

—ff f f

2
* symbol | | here refers to the 'length' of & vector given by the euclidem norm.



n

The matrix produces a multiple of g^ when f̂  Is present at the Input. If the f̂  are chosen so that

I2|f I2 = n then g^ Is reproduced exactly [6, p. 804, 21, p. 18)

TWe will be concerned with the case that the Input prototypes are not orthogonal. Noting that f f,
m a

Is the dot-product t.t we can rewrite the product W F , as
m 171 M

M

m

Now the dot-product between two vectors Is a measure of how well they -match" (assuming all vectors

have the same length). The product Wtk Is therefore a linear combination of the output-prototypes with

the coefficient of g being proportional to how well f matches f. , m = 1, 2, . . . , A/. Since the

input-prototype that best matches f̂  is the vector Itself, It follows that the output-prototype that has

the largest coefficient In the linear combination Is the vector g^ . In the chapters that follow, the

prototypes will be chosen randomly in such a way that they will be very nearly orthogonal to each other.

Therefore, the dot-products t.t will be small for m = 1, 2 A/, m * i . This means that as
m TTl '

long as there are not too many prototypes stored In the system, t.t gk will be the dominant term in the

)utput prototypes. We conclude that the linear-associator can be seen as a

particular, it produces an output vector that is a best match to the prototype

st-matches f, (from among all the Input-prototypes) Is present at the Input.

put vector will have contributions from other output prototypes and so Is not

i strict sense. When a better best-match computation Is needed, a device

s used.

1.2. Auto-association

The systems described above are called "hetero-associators1 because the "Input prototypes" are

distinct from the "output prototypes". That Is, f j& g . In fact the dimensionality of the input

prototypes may differ from the dimensionality of the output prototypes as seen above. An "auto-

associator" is similar to the hetero-assoclator except that the Input and output dimensionalities are the

same as are the input and output prototypes. That is f s g m = 1, 2, . . . , M. After the weights
tn m

are adjusted for storage of the M associations, retrieval occurs when a "damaged" Input Is presented to

the system. The "damage" Is due to noise in the input signal or the fact that the input may be specified

Incompletely. The output that results Is passed through a non-linearity (6, 40, p. 61-65, 324-325) to limit



the growth of the size of the vector components. The output will be a better rendition of the proper Input

prototype provided the matrix is not overloaded (I.e. provided M is not too large).

Since the output Is an improved version of the Input, the signal can be fed back to the Input of the

system to obtain further Improvement. The process Is repeated several times until the vector stabilizes,

the result Is generally a highly Improved version of the initial Input. The limitation keeps the output

vector from growing without limit and tends to force It to stabilize at or very near the proper

prototype [6, 24]. Variations of the auto-assoclator Include the "Hopfleld net" [23, 24, 25], the "Braln-

State-in-a-Box" or BBSB" model |6, 14], and the "Boltzmann Machine" [22].

From the perspective of memory systems, the difference between hetero- associators and auto-

associators is that for the latter, the input signal provides direct Information about the output. In the

hetero-associator, the input serves only as an "address" or "approximate address" from which the proper

output is to be retrieved. The auto-associator's Input Is both an address and a partial specification of the

proper output. In any event, the auto-assoclator produces an output that is the prototype that best-

matches the input vector. The algorithm degrades as the system stores more prototypes but should be an

improvement on the hetero-associator for the same storage load.

In the chapters to follow, we will often study the performance of a best-match algorithm that takes

as its Input a vector produced at the output of a linear-associator. The best-match algorithm considered

in the analysis is arbitrary but could Just as well be an auto-assoclator. The auto-associator's stored

prototypes would be Identical to the llnear-associator's stored output-prototypes. The analysis will be

concerned with the conditions under which the linear-associator (first-stage) can produce an output vector

"recognizable8 by the best-match process (second stage). The best-match algorithm will have

•recognized" the output of the linear-associator If the algorithm produces the output-prototype of the

linear-associator that corresponds to the Input-prototype of the associator that is most similar to the

associator's Input vector (see figure 1-1). In this configuration, the combination of the linear-associator

and the best-match algorithm form a classifier. The linear-xssoclator "translates" the Input vectors of a

form similar to the Input prototypes Into a form similar to the output-prototypes. The best-match

algorithm (possibly an auto-associator) then selects the output prototype that most corresponds to the

Input to the combined system. Each input prototype corresponds to a vector that the system is most

likely to "see1 at the input or that Is most representative of a class/category of Input that Is important to

the system. The corresponding output prototype constitutes the system response and Is of a form

corresponding with the system's internal representation of the category. The combined system produces a

particular output prototype corresponding to the category to which the system Input belongs. Our

concern is with the performance of the linear-associator. We will Identify the conditions under which it

will produce an output vector of high enough "fidelity" that the combined system can categorize Its input.



Best-Match

Figure 1-1: Llnear-associator and Best-Match Classifier

Proper performance In this configuration Is considered a minimal requirement on the llnear-assoclator If It

Is to produce output "signals* useful to subsequent Information-processing •stages*.

1.3. Overview of Major Issues

1.3.1. Tasks of Computational Memory

The llnear-assoclator Is an example of •computational memory*. As opposed to local memory which

Is merely an Information storage device, computational memory Is characterized as an Input-output device

that can respond to Inputs that are not explicitly specified during storage. Similarly, the system can

produce outputs not explicitly stored. The Information stored In the memory Is "overlaid1 In the sense

that all Items (associations) stored share a common storage medium, resulting In between-ltem Interaction

of Information. This Interaction causes the output to be other than those explicitly trained to the

memory. Instead the output Is a function of how similar the Input Is to the trained Inputs, and how

similar the trained associations are to each other. This and the fact that the memory can respond to

novel Inputs results In a memory that Is capable of various •memory tasks1 during retrieval.

The most obvious (and mundane) of these Is "Item memory*. For this task, the memory Is treated

Just as a local-storage device by storing associations (f , g ), m = 1,2 M and subsequently using

f as an 'input address1 to the memory which In turn returns Information about g as *dataV

Another memory task Is having the memory system distinguish which among the M output prototypes,

Is the one that matches the input prototype present at the Input. Specifically, one first stores the



associations (f , g , J where K is a permutation of the M Indices 1,2 M. One of the Input

prototypes, say f. is then presented to the memory resulting in an output. This output is compared with

all the output prototypes to Identify one of the latter as a best match. The memory is successful at the

task if g / x is the prototype chosen as the best match. This is called "channel-memory* since the

memory acts analogously to a communication channel. Another term used is "permutation memory*

indicating that the memory acts as a device that remembers which permutation K of the output

prototypes was associated to the input prototypes.

Though this task may seem artificial, Its consideration serves two main purposes. First, proper

performance of this task is a demonstration that the memory can distinguish the associations it has

stored. If a system has stored too many associations, it may fall this task. If so, it is not providing

enough Information at the output to distinguish which prototype output was "intended* as the output of

the memory. The stipulation that the memory succeed at this task Is a minimal requirement called the

"channel-criterion". The channel-criterion Is used to derive upper bounds on the number of associations

storable in the memory.

The second purpose for considering the matrix as a channel-memory is that we can then study the

system performance with regard to the task of "input-classification1. In particular, after the system has

stored M association pairs (f , g ) , non-prototype vectors are allowed at the memory Input. Assuming

that the input is most similar to the prototype f. , we will call the Input vector f/. To be successful

classifying f̂ ', the matrix must generate an output that Is most similar to g^ . This Is Identical to the

channel-memory task except that more freedom Is allowed at the Input. The classification task is

Important for understanding the system's ability to respond to a vector f̂ f that Is a partial or degraded

(say, by noise) version of the "Intended" Input fk . The channel-criterion again provides a means of

specifying limits on the number of associations storable In the memory for proper classification. In this

case, a tradeoff Is quantified between the number of associations permitted In the memory versus how

"sloppy" f̂ ' can be as a rendition of f̂  . Consideration of the classification task allows one to Identify

the amount of information required by a llnear-assoclator to classify an input-vector set of a given size

into a given number of categories.

The classification task also brings up the issue of the reliability of the information at the output of

the memory as a function of the reliability of the information presented to the memory input. This

function depends on the number of associations stored In the memory. Storing more items taxes the

memory capability and so requires that more reliable Information be present at the Input to maintain a

given output reliability. An Important issue is the determination of conditions necessary for the output

information of the memory to be more reliable than the input information. Under such conditions, the

memory could effectively suppliment Incomplete/degraded input information with Its own stored
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information to provide an output that is more compiete/reiiabie. The memory task performed would be

that of Information •enhancement*. An associator performing this task would be valuable as a Bfront

end" to later stages of associator memories or processors that required Bhigh-gradeB information as Input.

Even more intriguing is the possible use of this "enhancement memory* to iteratlvely improve the

information it receives by passing the received information •through1 the memory several times. Using

two memory systems A and B, one stores associations (tm, gm) in A and stores their inverses

(g , f ) in B . One then sends an degraded copy f.' of f, to the input of memory A . The output of

A is then Input to B whose output is then fed back to the Input of A . The process is then repeated. IT

both memories are •enhancement" devices, then the information that Is passed back and forth between

Chem should Improve with each pass through the loop. Using the theory developed In this here, this

possibility could be explored as a way to Improve the performance of enhancement memories that have

stored a given number of associations.

A final note concerning memory tasks Is that they Identify modes of "computation" that may serve

as design tools for the architecture of connectlonlst "knowledge engines".

1.3.2. Characterization of Memory

Another important consideration is the definition of the "storage" of the memory. That is, defining

the amount of Information "contained" by the memory that Is useful for retrieval. In particular, once M

associations are stored, we consider the matrix f whose columns are the Input prototype-vectors

f ,f2, . . . ,tM and the matrix g whose columns are likewise the output-prototypes. For Item memory

discussed in the last section, the storage of the memory will be defined as the Information that the matrix

f provides about the matrix g via the memory. The question arises as to whether this is equal to the

•item-information" which is simply the sum over m = 1,2, . . . ,M of the information that f provides
m

about g^ via the memory. This work indicates an answer In the negative for linear-associative Item-

memory, under most conditions However, channel-memory does have this feature, again under most

conditions. A memory having this feature will be called "Item-accessible" meaning that essentially all the

Information that f provides about g via the memory can be retrieved "Item-by-item". Like digital

RAM memory (local storage), one can apply one input prototype at a time to the Input of the memory

and record the matrix output to retrieve all the information about g . In fact, the information retrieved in

this way Is virtually non-redundant.

Characterization of memory as item-accessible allows upper bounds to be derived for the

information retrievable from the application of a single input vector (called a single •access1). Since the

system is symmetrically or uniformly defined over its input prototypes t.J. f.,, the Information



retrievable on applying any of these to the input is the same. From this it follows that the memory

storage Is Just M times the amount of information retrievable from a single access Just as is the case for

local memory. The bounds that will be derived for the memory storage can thereby be mapped Into

bounds on the amount of information retrievable for a single memory access. Even for memory that is

not item accessible however, the single-access bound will still hold. The difference is that the information

retrieved by applying the M input vectors in sequence may •overlap1 (redundancy) and as a result will

not completely specify g . We will characterize memory and address these Issues after basic notions of

information theory are Introduced in the next chapter.

1.4. Methods and Focus of the Investigation

This Investigation views the asymptotic performance of the ilnear-associator. That Is, we examine

the capabilities of the systems as they are allowed to get arbitrarily large. This will allow us to ascertain

how well their performance scales with system size. Large systems benefit from the high diminsionality of

their input/output signals and so perform better. Larger systems will therefore be most useful In

memory/classification tasks and deserve the emphasis provided in this work.

The work is confined to finding upper bounds for system performance, though an effort is made to

keep the bounds tight. Approximations are used extensively, but are accurate for the range of parameter-

values considered. The approximations pertain particularly well to large-scale systems, with a

correspondingly large number of associations stored. Pushing the lower limits of system size that the

theory will accomodate, a system should have Input/output dimensionalities of say 50 or 100 and at least

5000 weights. The number of associations should be at least 8 or 10 times the larger of the Input/output

dimensionalities, but generally no more than the number of weights in the system. More typically

however, the Input/output dimensionalities are taken to be at least several hundred each, and the number

of Items stored should be at least 25,000-50,000. The number of weights should generally be twice the

number of stored associations or more.

In this work, an attempt has been made throughout to make explicit the range of applicability of

the theory. The reader Is advised to note parameter-value restrictions/assumptions made in what follows.



10

Chapter 2
Definitions, Identities and Notation

Before the presentation of memory theory, some preliminary material must be presented concerning

the notation used and relationships that hold among Information-theoretic quantities considered. More

background concerning concepts of Information theory can be found in texts (8, 12, 33).

2.1. General Relations of Information Theory

Unless otherwise stated, capltol letters always symbolize random variables whereas lowercase letters

symbolize a specific value or random-variable outcome. Scrlpt-capltols represent sample-spaces. Within

this convention, boldface unsubscripted letters represent matrices whereas boldface subscripted variables

represent vectors. The letters W, F, G for Instance, are random matrices; V, / , $ are their respective

sample-spaces; w, f, g , represent respectively specific outcomes from each sample-space. Similarly

F , G are random vectors with respective outcomes f , g . The abbreviation "r.v." will be
mm m 9m

frequently used for "random variable" and the abbreviation "I.l.d." will be used for "independent,

Identically-distributed" when this condition applies to a random variable. The "equivalence sign", " s •* *
will be used to denote "equality by definition" or the equivalence of two random variables. The random

variables In this work are discrete with finite sample-spaces unless otherwise stated.

If X Is the sample space for the r.v. X and for any x € X, P{X = x) Is the probability that

A" = x then the entropy of X denoted H(X) Is defined as

If we define p(x) = P[X = z) then

p(x)\ogoP(x) (2.1)

Heuristlcaliy, H{X) is the average taken over all outcomes of X, of the minimum number of yes/no

questions required to determine the outcome of X (see sections of [8, 12, 33) relevant to Huffman coding).
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We call H(X) the uncertainty of X, the Information content of X or the Information

represented by X since it Is the average amount of Information required to determine X .

When considering two random variables X, Y the conditional entropy of X given Y is given by

where X and j / are the respective sample spaces of X and V. This entropy can also be written

H(X\ Y) = -

where H(X \ Y = y) = - £ , € r fl[X = *. Y = yjlo*, P(X = x | Y= y)

The definition of entropy can be extended to n-tuples of r.v/s X^ s (X. JT2 X ) . Examination of

definition (2.1) reveals that H(X) Is not a function of the outcomes of X but of the probability function

defined on those outcomes. In particular, X In equation (2.1) could be the Yector-valued r.v. X or a
ft

matrix-valued r.Y. X . If the probability function Pn Is defined over the sample space X of X n then

substitution of P for P In equation (2.1) gives
ft

y 2 XJ = -

Note that x 6 X Implies that x Is an n-dlmensional vector whose tl component Is a possible outcome

of X.. If YttYnt . . . ,Y is an m-tuple of r.v.'s, then we can extend the definition of conditional entropy
t 1 2 m -

to include H(Xt,Xo, . . . ,X I K.K. . . . y ) which is the entropy of X.,X9, . . . JC conditioned on
1 £ ft 1 * f/1 1 & ft,Y (see |8, 12, 33]). The Important relationships are

H(XVX2 X n - 1 ) < H(XVX2 Xn) < 2^ H(X.) (2.2)

where equality holds between the first and middle terms If and only if there Is a function / so
that A' = f{X.,Xn X J with probability one. Equality holds between the second
and third terms If and only If the X. 's are mutually Independent.

2. Xn | y ,yo Y) < H{Xy,X- X) | YtY, Ym J (2.3)

with equality If and only If X%,Xn, . . . ,X are Independent of Y whenever the outcomes of
1 2 n rn

Y..Yn y , are known.
1 * m—1
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3. H(XyX2 Xn\ YvYr . . . ,YJ > 0 (2.4)

with equality If and only if Xt,X~ X are completely determined by of Yt.Yn Y ,
l * n \ i m

that Is, for each t = 1,2 n there Is a function / . such that X. = /(V, ,K Y )
with probability one.

Relation (2.4) holds when m = 0 , that Is

H(XVX2, Xn) > 0 (2.5)

Particular Inequalities Implied by these relations are of concern, such as

0 < H(X\Y) < H{X) < H(XX) < H(X) + H(Y) (2.6)

Equality holds respectively In each of the above Inequalities If and only If X = f(Y) with probability one;

X and Y are Independent; Y= f(X) with probability one; X and Y are independent. Finally since

we are only considering only discrete r.v.'s, for any deterministic function f(z) we have

H(f(X)) < H(X) H(f(X)\Y) < H(X\Y) (2.7)

H(f(X) | X) = 0 (2.8)

H(Y\ f(X)) > H(Y\ X) (2.9)

As remarked earlier, the entropy functions are functions of probability functions defined over sample

spaces. Therefore the relations above hold even If the r.v.'s that appear in the expressions are scalar,

vector, or matrix valued.

The average mutual Information (or briefly §mutuai information1) between X and Y denoted

as I(X: Y) can now be defined

I(X ; Y) = H(X) - H(X \ Y) (2.10)

It can be shown [12| that I(X; Y) Is symmetric In Its arguments so that I(X; Y) = I(Y; X). From this

we also have
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Also by equation (2.6) we have

I{X\Y) > 0 (2.11)

with I(X ; V) = 0 If and only If X and Y are Independent.

Consider again to the yes/no-questlon heuristic for guessing the value of X. Knowledge of Y Is

the equivalent of being provided answers to some of the questions required to determine X. This

subsequently reduces the number of questions needed. The reduction given is precisely the uncertainty of

X before Y Is known minus the uncertainty of X after Y Is known (i.e. Identity (2.10)). We call this

the Information Y provides about X. By symmetry, this Is also the Information X provides about Y.

As Indicated In the previous paragraph, r.v.'s X and Y provide no Information about each other If and

only If they are Independent.

If / Is a deterministic function defined on the sample space X of X then then H(f{X) \ X) = 0

and so

; f(X)) = H(f(X)) (2.12)

That Is, the Information X provides about f(X) Is precisely the Information represented by f(X). For

any other r.v., Y, we have that H{Y\ f(X)) > H(Y\ f(X)f X) = H(Y\ X) which Implies

I(Y; f(X)) = H{Y) - H(Y\ f(X)) < H(Y) - H(Y\ X) and we have

(2.13)

The concept of mutual information can be extended In ways analogous to the extensions of entropy

outlined above. Two extensions concern us. First, the Information I(X; Y, Z) that two r.v.s Y and Z

Jointly provide about the r.v. X Is defined by considering the pair (Y, Z) as a single r.v. replacing the

Y term In equation (2.10)

I(X ;Y.Z) = H(X) - H(X \ Y. Z) (2.14)

Second, the Information I(X ; Y\ Z) that Y provides about X when Z Is known is derived from the

equation for I(X ; Y) by conditioning the entropies in (2.10) on Z
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~ H(X | Y. Z)

A useful relation between I(X; Y, Z) and I(X ;Y\ Z) Is

; Z)

This can readily be shown by substituting for each term above Its definition as a function of entropy.

We also need a fact used later about Joint dependence. If W Is a function of two r.v.'s X and Y

Jointly It Is possible that W Is Independent of each of X and Y singly. That Is

I(W; X) = 0 I(W; Y) = 0 (2.18)

An example Is where X and Y are Independent-identically-distributed (l.l.d.) r.v's; each takes values

± 1 with probability 1/2 that either value occurs. If W a XY, no Information Is conveyed about the

outcome of W given only the outcome of X or given only the outcome of Y.

2.2. Specific Notation and Relations Required

2.2.1. Notation for Sett and r.v. Distribution*

The symbol, R , will be used In reference to the real-numbers. When speaking of a sequence of N

entitles an, n = 1, 2 N, we will sometimes use the notation {<*n}nmml • For Infinite sequences, we

substitute •oo1 for TV. Now let {Xn}
(^wml be a sequence of l.l.d. Bernoulli r.v.'s [30, p. 16lj, taking

values a, b 6 R with probabilities p and (1 - p) respectively. If Y Is the sum of the first n
fi

Bernoulli r.v.'s. then Yn Is a binomial r.v. [30, p. 163J and we say Y Is • Bin(a,b,p,n) • or more

concisely, we put Yn — Bin(a,bfp,n). If a = 1, b = - 1 , and p = 1/2, then we put

Yn — Bin(±i, l/2,n) . Notice that in this case, the variance of Y is n . For a normal r.v., X with

mean /i and variance a2, we put X — N(p. a2). A normal r.v. with zero-mean and unit-variance is

called a standard normal r.v. and • # • denotes the standard normal distribution function. The

mean of an arbitrary r.v. X is denoted by EX and the variance by VAR X. The term, random, is

used to refer to selection of an outcome of a uniform r.v. over a particular sample-space. The term

reliably refers to an outcome or class of outcomes that occur with probability near one or with

probability approaching unity as some relevant parameter gets large.
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Most of the random vectors we consider will consist of ± l's for components. We will call such

vectors ±l-vcctor» or bit-vector* since the components are binary. The set of n-dimensional bit-

vectors is sometimes denoted by {-1, l } n and often referred to as a "space" even though the set is not a

proper vector-space over the real or complex numbers. If X = (Xt, X2, . . . ,Xn) is a random vector

whose components X. i = 1, 2, . . . , n are 1.1.d. each taking only the values ± 1 , then X is called a

Bernoulli vector. For the case that each of the two values ± 1 is taken with probability 1/2 , the

vector X is called a balanced-Bernoulli vector. Note that choosing an n-dlmenslonal balanced-

Bernoulli vector is the same as choosing a vector at random from the n-dlmensionat space of bit-Yectors.

2.2.2. Notations for Prototype-Vectors and the Assoclator Matrix

The vectors fxS2* ' ' ' ^M a n d t h c v e c t o r s B j ^ ' * ' * '*A# wl1* b c c o n s l ( l e r e ( 1 *& outcomes of

random input-vectors F r F 2 , . . . . F ^ and random output-vectors Gj.G2, . . . . G ^ respectively. The

F 's will be called input-prototypes and the Gm *s will be called output-prototypes. These vectors

are assumed to be balanced-Bernoulli vectors with rij as the dimensionality of the input-prototypes and

nQ as the dimensionality of the output-prototypes. We also form the random matrix F whose columns

are F^Fg, . . . ,FM in index-order. Similarly, we form the matrix G from the output prototypes. The

symbols f and g of course denote particular matrix-valued outcomes of F and G respectively. The

storage equation (1.1) becomes

M
<tmr \ ^
W - 1* 'mm

m - 1

(2.19)

in terms of the random prototype-vectors. This can be expressed more concisely in terms of the matrices

F and G :

W = GFT (2.20)

For retrieval, we form the matrix Gf whose columns G f
t are given by

M M

or, In terms of the matrices

G1 = WF = GFTF (2.22)



Another form of storage Is called channel-memory or permutation memory. In this case, the

output prototypes are considered to be known the retrieval device (later called the detector) and therefore

will be denoted as specific outcomes g r g 2 , . . . ,gM. The Input-prototypes F ,F F ^ will still be

considered as random vectors. In addition, we will have need for the r.v. K whose outcome K IS one of

Ml permutations of the indeces {l,2 A / } . That Is, K IS a function that maps any

m 6 {l,2, . . . ,M) to a unique value *(m) from the same set. This permutation Is to be applied to

the columns g r g 2 . . • • >gM of the g-matrix to produce the matrix K(TTI) whose columns are
g*(i)'gK(2)' * ' * (g«(A/) ' W h c n considering the outcome K of K as undetermined, we denote by K(m)

the r.v. whose outcome Is the value *(m). The random matrix that results when K IS applied to g Is

denoted by /c(g). Under these conventions the storage equation for permutation storage is

M
W = L *K(m)Fm (2.23)

(2.24)

or more concisely

W = K(g)FT

one says that the permutation K is stored In the memory.

2.3. Probabilistic Analysis of Sums

2.3.1. Distribution of Sums

Using the rightmost sum In equation (2.21), we can write the expression for the /** component

G of the random vector G.

M

Crk. = Y (F -FJG .
m—l

A/

(Fk-F)G + J2 ( F .F.)G .

nIGkj +

; j k

i F F ^ (2-25)
m—l; ^ k
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To extend the definition, we will have need for calculating the mean, variance, and entropy of such a sum.

For this it will be useful to understand the independence of the terms under the summation.

To start, if X, Y , Z are n-dlmensional balanced Bernoulli-vectors with respective components

X . , Y., Z., then the dot-products X • Y and X • Z are Independent. This follows from the fact that

the products X. • Y. and X. • Z. are Independent of their respective factors. In fact, this Implies that

X - Y is Independent of X when Y is not known and vice-versa. Since the Input-prototypes are

balanced Bernoulli vectors, the dot products F , • F. and F • F. are Independent when m' j& m .

Also the components of G are Independent so the terms (F m -F^)G m . in (2.25) are mutually

independent.

Because of this independence, the variance of the sum is the sum of the variances of the summed

terms. Furthermore, If two r.v.'s are Independent with zero mean, then the variance of the product is the

product of the variances. For each component X. of an n-dlmenslonal balanced Bernoulli vector X , the

mean EX. Is zero and the variance is one. Therefore, if Y Is an Independent n-dlmenslonal Bernoulli

vector the variance VAR (Xf. • Y.) is Just (VAR X{)(VAR Y{) = 1 . From this we have the variance

n n

VAR(X-Y) = VAR{ TX.-Y. ) = Y.VAR{X,-YJ - n

From this we see that VAR(F • F.) is n. when m j& k. Since the mean of G . i s zero and

the variance is one, we also have that the variance of (F • F J G . Is n . . These terms in the sum of

(2.25) are Independent and there are A/—1 of them so the variance of the sum is (Af— l)rij.

Considering the mean and variance of the ^G^. term as well, we find that the mean of G^. Is zero and

the variance is Afn.. The distribution of the sum on the right-hand side of (2.25) is

Bin(±l, 1/2, M- rij) which is roughly normal. Considering the term HjG^. again, we see that it takes

values ±n. with equal probability. We conclude that G f,. is blmodal, each mode having a roughly

normal distribution. Since A/— 1 «=̂  M for large values of M the variance of each mode is taken to be

Mrij . Methods such as this are used in the chapter on classification to determine the distribution of

sums.

2.3.2. Binomial Entropy

Another consideration Is the entropy H(S ) of a sum 5 of n balanced Bernoulli r.v.'s

X. i = 1,2 n . In the appendix It is shown that

= (l/2)log,(jren/2) (2.26)
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Briefly the result is obtained as follows. First define a standard Bernoulli r.v. to be a r.v. that takes

the value one with probability 1/2 and the value zero with probability 1/2. The sum 5 ' of n standard

Bernoulli r.v.'s is binomlally distributed and takes on values $ ' that are in one-to-one correspondence

with the possible values a of the sum S_ . To see this, note that the number a ' is the number of
ft fl ft

summands of 5 ' whose value is one. When the number of 1-valued summands of 5 is a ' there will
f% fi fif%

be n — s ' minus-1-valued summands of S_ . The value of 5 will therefore be a 9 n — 2a ' , This
n fl fl ft fi

can also be written a ' = (n — a )/2 completing the correspondence.
fi ft

Under the one-to-one correspondence, 5 , and 5 ' have equivalent probability distributions and so
ft ft

have the same entropy. Since the probability distribution of 5 ' Is determined by the binomial
ft

coefficients, we find the entropy of SJ to get the entropy of 5 . Note that 5 ' Is binomlally
*• fi ft

distributed and so is approximately normal with variance n/4 . One might expect that the entropy of

5 ' Is approximately the same as that of a normal r.v. with the same variance. Appendix A shows that
fi

this is in fact true. That is, the entropy of SJ Is roughly (1/2)10^ {ten/2) where the approximation

approaches perfection as n gets large. This of course Implies that the entropy of 5 Is
ft

(l/2)Iog2 (jrcn/2).

It Is useful to note that although 5 is roughly normal with variance n , It does not have the same
ft

entropy as a normal r.v. with the same variance. Such a normal r.v. would have entropy

(l/2)log0 (2nen) = (l/2)log- (nen/2) + 1 which Is 1 bit larger than the actual entropy of 5 . This
m m f l

discrepancy is due to the fact that we can multiply a discrete r.v. by any factor thereby changing Its

variance without changing Its entropy. There Is no strict correspondence between the variance and the

entropy for discrete r.v.'s.

2.4. Special Functions

An entropy function of particular interest Is the binary entropy function M(p). Let X be a r.v.

with two outcomes xx and *2 and probability p that x occurs and probability 1 — p that x2 occurs. Then

M(p) == H(X) = -plog2 p - (1 - pjlogj (1 - p), 0 < p < 1 (2.27)

Here //(O) Is taken to be llm M(p) = 0. The function is continuous over the Interval [0, 1) and

dlfferentlable on (0, l).3 It Is strictly Increasing on (0, 1/2) and strictly decreasing on [1/2, l). By taking

For reil numbers a < 6, the open interval («, b) is the set of re*l numbers between a and 6 excluding the
endpoiots. The do$ed interval [a, 6] includes the endpointi.
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the Taylor series expansion of X(x) about x = 1/2 and truncating one can get an approximation of

for x *& 1/2. We also approximate <P(x) for x near 0 In the same manner. These approximations are:

M{x) « 1 - (21o&> e)(x - 1/2)2 \x - 1/2| < 0.38 implies error < 10% (2.28)

1 — M(x) = (210^ e)(x — 1/2)2 same error as above (2.20)

. +J

2.5. Measuring Similarity

Just as storage of information is attributed to a "memory device* retrieval of the Information Is

attributed to a •detection device* or detector. Both the memory and detector are characterized as

mathematical processes. A particular mathematical process for the detector is that of measuring

similarity between two vectors as Is the case when the detector is a best-match process. The Information

retrievable by the detector will depend upon the similarity measure employed. Therefore, the performance

of a system must be defined with respect to a particular similarity measure. We will define a first order

similarity measure by way of the Hamming-distance function.

Definition 1: Define { - l , l } n to be the set { x 6 R n | x. 6 { -14} , t = l , 2 n} .

The Hamming-distance between two vectors is the function /fD:{— l , l}n X {—l,l}n - • R

given by HD{x.y) = ;EjLi K ~ ¥,•!• "

The Hamming Distance Is the number of components at which x and y disagree. Its negative Is a

prototypical similarity measure on {—l.l}n from which the componentwise similarity measure is defined.

Definition 2: Componentwise Similarity Measures If V Is an n-dlmenslonal
vector-space, then a (componentwise) similarity measure Is a function S : F x V - * R
having the following properties:

1. Symmetry: For all x,y 6 V, we have S(x,y) = S{yji) .

2. Reflexively-Maximlzed: For x, y 6 {x G V| |x| = l} , S(x,y) Is maximized by

3. Hamming-Consistency: For vectors x, y, w, 8 6 {—l.l}n. the Hamming-distance
Inequality -HD(x.y) < -HD(m, s) Implies S(x,y) < S(w, i ) .
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4. First-Order Invariant! If K IS a permutation of the indices 1,2. . . . ,n and K(X) is
the vector whose components are the components of x permuted by K then
S(x. y) = S(K(X), K(y)).

Under this type of similarity, x and y are to said to be more similar than w, i whenever

S(x,y) < 5(w,i) . Condition 3 requires the similarity measure to be consistent with the negative

Hamming-distance similarity, —HD(x, y) on {-l,l}n. We allow the word •minimized* to be replaced by

"maximized* in 2 provided that the second inequality in 3 is reversed. This results in a function that is

minimal for similar vectors. The negative of a similarity function Is therefore also a similarity function.

Examples of first-order similarity measures Include those based on Minkowski Metrics, That is, the

form S(x, y) = H ^ i I*,-"" l/,-IP °r its negative can be used. An Inner-product can also be used, e.g. the

dot-product. S(xty) = 5Z I -B l ^iVi •

The notion of similarity presented here is meant to be • distance-based". In a vector space, two

vectors of the same length will become similar if their distance (as determined by the appropriate vector-

norm) Is decreased. For vectors of a fixed length, this amounts to decreasing the angle between the

directions of the two vectors. This corresponds to minimizing their dot-product. Distance-based

similarity measures, particularly the dot-product, are especially relevant to the study of the associator.

The output of the associator is based upon the similarity of the Input-vector to the assoclator's input-

prototypees as determined by the dot-product (see equation (2.25)).

We do not discuss detection or best-match processes in this investigation, but point out that they

play a role in the considerations made In the analysis. When discussing information that one vector

provides about another, we have assumed the information Is distance-information. This characterization

of Information is consistent with the dynamics of most *neural-networks*. Each cell or unit computes Its

output as a function of the dot-product similarity of the input-vector and the unit's weight-vector. The

"computation" done by an associator is therefore based on similarity/distance information.

A best-match process used for detection (second-stage, as shown in 1-1) can itself be an associator or

rather, an auto-associator and so will base Its output upon distance-information relating the (first-stage)

assoclator's output to the output-prototypes of the combined classifier. When speaking in later chapters

of the information that the first-stage provides at Its output, we will assume the Information Is

distance/similarity information so as to be consistent with the nature of the best-match process. We also

mention that the performance of a best-match process as a classification device will depend upon the

similarity measure It uses. When comparing vectors, such a measure must preserve all distance

Information for optimal performance. We've assumed that distance information between two vectors Is
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completely specified by componentwlse-slmilarlty. Under this assumption, the dot-product seems optimal,

at least for bit-vectors. When blt-Yectors are to be compared, there is a one-to-one correspondence

between the dot-product and the Hamming-distance so that the dot-product preserves Hamming-distance

Information.
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Chapter 3
Information Theory of Memory

3.1. Introduction: Access v.s. Aggregate Memory

In this chapter a general Information-theoretic formulation of memory Is presented. Storage Is

characterized as the generation of a memory r.v. called the "memory trace1 from two random variables

called the address and the datum. Even If the memory trace is a deterministic function of the address and

the datum, the address and datum are r.v.'s, so the memory state they generate during storage can be

viewed as a r.v. from the polnt-of-vlew of retrieval. Retrieval Is then the process of recovering

Information about the stored datum from the retrieval-address In the presence of the of the memory-state.

The signal configuration for both storage and retrieval are specified allowing subsequent derivation of

information-theoretic relations/limitations. These limitations are strongly dependent upon the retrieval

strategy which may not utilize all Information available from the memory. Retrieval methods will be

formulated and performance of the system will be evaluated with respect to a particular retrieval strategy.

3.2. Information-Theoretic Characterization of Memory

3.2* 1. Access v.s. Aggregate Retrieval

In this section we characterize memory as a configuration of r.v.'s and subsequently define memory

retrieval. We show how information Is stored/retrieved as an aggregate and then how it can be

stored/retrieved as a collection of seperate datum-elements. The first of these modes is referred to as

aggregate-memory and the second Is access-memory. When an aggregate memory can be partitioned

Into access memory, we say that It Is accessible and the storage (retrieval) of a datum-element Is called a

storage-access (retrieval-access).

For accessible systems, an upper bound Is found for the aggregate-information the memory can

provide and this Is then used to upper-bound the amount of information the memory can provide during a

single access (called access-Information).
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More explicitly, we have Tor aggregate memory the random variables called the storage-address

A and the storage-datum D. These are used during storage to generate the random variable T

called the memory trace or simply the memory. During retrieval, the retrieval-address A* Is used

in conjunction with the memory trace T to obtain the retrieval-datum D \ As a rule, the address

r.v.'s A and Af must share information. That Is / (A; A') > 0 and from this one expects that during

retrieval the memory will provide Df such that /(D ; Df) > 0. A3 a rule, the larger the mutual

Information between A and A ' Is, the larger the mutual information between D and Df should be.

For given r.v.'s A and A', the memory Is optimal If I(D ; Df) = H(D). That Is, the mutual

information that the retrieval datum provides about the storage datum Is maximized so that the retrieval

datum completely specifies the storage datum.

For an aggregate memory to be accessible, It must have an address-partition. That Is, there must

exist r.v/s A . D , A1 . D ' , m = 1, 2 A/, that partition A, D, A', Df respectively so that

A = ( A r A2 A^ ) , D = ( D r D2, . . . , D^) , and similarly for A', D ' . The storage and the

retrieval processes must have partitions consistent with the address-partition. In particular, the memory

trace T must be determinate from memory traces T , m = 1, 2, . . . , A/; each T Is generated

exclusively from A , D . Similarly, the retrieval process should be capable of generating Df from
mm ° m

T and A ' alone. Also we require /(A1 ; A ) > 0 and expect that retrieval produces a retrieval
•n m m

datum D' such that /(Df ; D ) > 0 . In many cases (though not necessarily), optimal memory

retrieval is taken to be the case in which each of the retrieval data Df completely specify each of them
storage data D .

m

We will make these notions more precise in the next section.

3.2.2. Formal Definition of Memory

Storage will be viewed as the generation of a memory trace T as a function of the storage

address A and the storage datum D :

T = t(A. D) (3.1)

Retrieval is the subsequent generation of the retrieval datum Df as a function of the retrieval

address A1 and the memory trace T 4

The memory trace t(-) and the retrieval df(-) functions treated as determinittie in this development, hence the use of
lower case letters t, d \ A more general formulation would allow the use of stochastic functions. However the deterministic
case is pertinent to our situation and we deal with it specifically for the sake of simplicity. Note that a deterministic
function of random variables produces a random variable.
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Df = df(T, Af) (3.2)

The memory Is defined to be the quintuple (A, D, A \ t, d1). Notice that the memory trace and

retrieval data are r.v.'s since they are functions of r.v/s. The retrieval address Is typically Identical to the

storage address or Is a •degraded1 version of It. We will generally consider the storage and retrieval

address to be Identical. If A, D, A', D' and T are matrices, this retrieval process Is equivalent to

presenting the entire retrieval-address matrix Af to the memory to obtain the retrieval-datum matrix

D' which In turn provides Information about the entire storage-datum matrix D . The aggregate-

retrievable Information /(Df ; D) will therefore characterize the Information that the memory can

provide. For a given storage function for constructing T • It is desirable to choose a retrieval function

determining Df that maximizes J(D' ; D).

3.2.3. Partitioning Memory: Formal Definition of Access-Memory

For access storage and retrieval, one partitions the storage address A and datum D into M parts

A,,A« A w and D,JDO D ^ respectively. For our situation the A 's will be mutually
1 £ IM 1 Z In 171

Independent and Identically distributed over a common sample space and similarly for the D 's. The

storage process Is In turn divided Into A/ parts given by the relation

Tm = V ^ W Dm> ' m = *• 2

The access-storage function t must be chosen so that T specified in (3.1) is a symmetric function

T s t (T,,TO T . J of the T *s. In other words, permuting the arguments of tc doesn't
5 1 * In TO s

change the value of the function determining T .

The retrieval process Is similarly divided Into M parts. The retrieval address A* Is partitioned

into parts A'^A'j , . . . ,Af and the retrieval datum D* into parts

D'm = d'A(T. A ' J . m = i. 2 M (3.4)

The access-retrieval function d' must be chosen so that Df specified by (3.2) is the M-tuple

Df = (D f
r Df

o, . . . , D'M). We call the quintuple

the access-partition of the memory. A memory that has an access partition Is called access-memory.
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Under the conditions stated above, the Information 7(Df ; D ) that the m th retrieved datum provides
in m r

about the m storage datum should be Independent of m . This hasn't been proven here, but the

condition holds for memory systems we are Interested In. We therefore assume that 7(D' ; D ) , called
m TO

the access-retrievable Information, is independent of m . The access-memory is said to be

access-separable or separable if the r.v.'s D1 and D and their respective partitions satisfy

1. Access-Inclusive: 7(D f; D ) = /(D* ; D ) m = 1,2 M (3.5)

2. Access-Exclusive: /(D ; D* ) = /(D ; D* ) m = 1,2 M (3.6)
m' x m ' m

M

3. Access-Summable: 7(D f; D) = £ 7(Df
m ; Dm) (3.7)

If additionally, the value of 7(Df ; D ) Is the same for all m , then the memory Information Is said to

be uniformly access-separable or simply uniformly-separable. In this case, for fixed m

7(D'; D) = A/ 7(D'm ; Dm) (3.8)

The first of the three conditions above states that the information that the m retrieval

datum D ' provides as much information about the m stored datum D as does the entire retrieved
m m

tuplet D* s ( D \ , D* , . . . , Df . J . The idea Is that D1 includes all the Information available about

D that is available from D f . Likewise, the second condition states that the information that D1

m m

provides about D is no greater than the Information that It provides about D f
m . Again, the idea is

that Df excludes information about D, , k j& m . Heurlstlcally, the first condition states that D f

TO m ' TO

provides all the Information obtainable about D and the second states that It provides only information

about D . These two conditions would seem to Imply the third, but the author has no proof for this.

The conjecture, which could be false, is left here as an open question.

3.3. Characterization of Storage Capacity

3.3.1. Bounds on Retrievable Information

We now show that when the retrieval-address A' provides no direct information about the stored

datum D , the Information, 7(Df ; D) , that the retrieval-datum Df provides about the storage-datum

D Is bounded by the storage-matrix entropy. Explicitly, we show



Theorem Is Let (A, D, A \ t, df) be a memory with A ' independent of D . Then

/ (D f ;D) < H(T) (3.Q)

Proof: Since D1 is a function of A1 and T . we have by (2.13) that
/(Df ; D) < / (A\ T ; D ) . By (2.10) we have

/(A\ T ; D) = /(T ; D | A1) + /(D ; Af)

= H(T | Af) - H(T | D, Af) < H(T)

where J(D ; A') = 0 since A' is Independent of D . The theorem follows.

We see from the proof of the theorem that

/(D f;D) < / (A \T;D) < H(T) (3.10)

If A is independent of D then this relation holds for the case that Af s A . If additionally, A Is

Independent of T then the condition A* s A Is optimal In that the second Inequality of (3.10) becomes

an equality. Since this will hold for the memory systems we consider, the relation will be displayed for

future reference:

Corallary: When the conditions of theorem 1 hold for Af 3 A and A is Independent of T we have

/ ( D \ D ) < /(T, A ; D) = H(T) (3.11)

We now have a bound for the aggregate-retrievable Information. If the memory is uniformly separable,

then we will have a bound on the information retrievable on each access.

3.3.2. Storage and Storage Capacity

To obtain a bound on the Information retrievable on the m access, assume that the memory

(A, D, A \ t, d1) Is uniformly separable. We then have for any m = 1,2 A/:

M I(D9
m ; Dm) = /(Df ; D) < H(T) (3.12)

so that



27

m m
< H(T)/M (3.13)

We will call this the uniform-access bound.

The uniform-access bound motivates the definition of storage and storage capacity for uniformly

separable memory. For the systems we will consider, A1 s A Is optimal In the sense mentioned In the

previous section. We assume then that the retrieval address is Identical to the storage address and

suppose that /(D f
m ; Dm) is Independent of index m but is a function /(A/) of the number A/ of Items

stored. From (3.12), I(M) must satisfy

< H(T) (3.14)

The product on the left Is the Information storage of the system. The storage capacity will be defined

as

CQ == max M /(A/) (3.15)

There are two ways to obtain a maximum of the number A/ of storable Items. The first assumes that

the product M• /(A/) increases to a maximum as M Increases to a value, M , then decreases. In this

case equation (3.15) Implies

/A/j = M • I(M) (3.18)

where the right-hand-side is bounded above by the entropy //(T) evaluated at M which we denote

H(T, \f). If I{M ) can be determined, then by (3.15)

M < max H(T, A/#) / /(A/*) (3.17)

Another bound for M utilizes a lower bound L(M) for /(Df ; D ) as a criterion for system

performance. Specifically, we make the constraint that

UM) < I(M) (3.18)

as a requirement for minimal system performance. If L(M) is smaller than /(A/) for small values of M

but overtakes /(A/) as M grows, a bound for M can be obtained from the constraint.
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For the case that the memory is not separable, It may still be uniform in the sense that

/(D f ; D ) is independent of m € {l. 2 Ai) . For the instances we consider, relations (3.12) and

(3.13) still hold so the methods of bounding M explained above apply. These methods will be utilized In

the next chapter.

3.4. Relation of Separability of Memory to Performance

3.4.1. Non-Separability of Distributed Memory

For associative item-memory, we make the indentiflcation A, A ' s F , D = G , T s W and

D ' s G ' . Aggregate storage Is then given by (2.20) and aggregate retrieval by (2.22). The access-

partition of the address and datum is just the division of the matrices into columns corresponding to the

prototype vectors. The input-prototypes partition the address P , each acting as a separate •address

word" and the output-prototypes partition the stored-datum G , acting as individual •datum words1.

The datum G is said to be stored at "location" F . Access-storage is specified by (2.19) and access-
17% fTI

retrieval is given by (2.21).

From calculations done outside this investigation, the llnear-associator as an item memory Is

conjectured not to be separable except in limited cases. A preliminary development by the author has

determined that item memory might be access-Inclusive when M < n^/5. Further, it may actually be

separable when n^/5 > M > exp2{no). These are submitted as sufficient conditions for separability

but may not be necessary. A memory with an input-dimensionality exceeding 2-A/ and an output-

dimensionality a few times log2 M might be separable. Such a configuration Is consistent with those

considered later In the chapter on classification. For classification, systems with input-dimensionality

greatly exceeding the output-dimensionality are most efficiently suited to the task.

On the other hand, separable memory Is Identical In function to digital RAM or local memory. The

fact that matrix-based memories distribute the Information for each association over the entire matrix

means that the Information for each association is overlaid with that of the others. This feature is what

allows the information for separate associations to Interact. Regularities In the Input-to-output mappings

specified by many associations should be •amplified1 whereas irregularities/inconsistencies would be

attenuated in the memory's Input-to-output map. This interaction Is contrary to the notion of

separability. In fact, non-separability Is the very feature that constitutes the capacity of distributed

memory for 'pattern discovery1 [6, 40, ch. 1] and other functions that make them of computational

Interest. The non-separablllty of these systems makes their storage capacity more difficult to ascertain.

However, the property •super-summable1 exists for these systems so that bounds on the per-ltem
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retrieval-Information can be found In terms of the entropy of the matrix. This results In a bound on the

number of Items storable In the system with respect to a minimal performance criterion.

3.4.2. Super-Summabllity of Item Memory

Assuming that item-memory Is not separable. It may not be summable. However, the Independence

of the entries Gk. of the G matrix Insures that the memory Is tuper-summable. That is

M

/(Gf; G) > £ I(G'k ; Gk) (3.19)

As we will see, this relation Is quite useful In subsequent chapters on storage and classification. For the

sake of later analysis then, we will start by showing this Inequality and a useful extension of It hold. To

start, H(G) = Hmmml H(GJ s i n c e t h e G* ' s a r c Independent. Also since G = ( G r G-, . . . . G J

and G1 == ( G f
r G

f
2 , . . . . G'M) we have that

M M

H(G | G') <

always holds. Combining these, we get

= H(G) - H(G | G1)

M M

H(Gk) - H(G J G')

M hi

* i G v ) =

so that (3.19) holds. The extension of this Is

M nO

> 22

which Is proven In a similar manner by showing

The term, •super-summable", is coined in analogy to the term "sub-sumable" used by mathematicians to describe
non-linear functions p(x) that obey p(x +y) < p(x) -f p(y) . For our purposes, a •super-summable" function would have
the inequality reversed.
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O

which holds because the components of are Independent.

The relations (3.19) and (3.20) are useful because 7(Gf ; G) is bounded above by H(W) and so we

have both

A/

I(G\ ; G )̂ < H(W) (3.22)

and

M nO

Additionally, if the memory is uniform so that

same for all k, j , then (3.22) and (3.23) become

; G^) is the same for all k , and

(3.23)

^ . ; Gk-) is the

< H(W)/M = l f 2 t M (3.24)

I(G'kj ; Gk) < H(W)/MnQ , k = 1, 2 M . ; = 1, 2 n
Q

(3.25)

Thus we get a bound on the Information provided by any access-retrieval-data, G'^ about the storage-

data G, and also a bound on the amount of Information any of the access-retrieval components Gf, .

provide about the storage components O...

These arguments hold when G f Is replaced by some componentwise function G" s g"(G f) or

f{G' ) , as the retrieval function. The Inequalities will be shown here for future

reference

rather G". . =

I(G"k;Gk) < H(W)/M (3.26)

I{G\.;Gkj) < H(W)/Mno (3.27)

These bounds will be useful In later chapters on storage and classification.
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3.4.3. Separability of Permutation Memory

For permutation memory, the storage address Is the matrix F = (Fff Fo , . . . , F . J . The

g-matrlx In this equation Is known to the detector and so Is shown as a constant rather than a r.v.

matrix. The storage-datum, D , Is a permutation r.v. K whose outcome K IS one of the Ml

permutations of the Indices {l,2, . . . ,A/} . That Is, K IS a function that matches a given value m In

{l,2 A/} with a unique value *(m) from the same set. To store the datum K, one applies K to

the columns g r g2 gM of the matrix g to get the matrix, K(g), whose columns are

*K(iY *AT(O)' ' # ' ' *K(M) ' T h e s t o r a g c r v * m a t r l x Is t h e n obtained from F and K as In equation

(2.24). The retrieval address F f Is a matrix r.v. with /(F*; F) > 0 . Often, we will take F 1 to be F .

The retrieval-datum, FC Is a r.v. whose outcome K1 IS determined as follows:

1. For m = l, 2 A/, compute the vector Gf = WF f and select via a similarity
measure the vector g, from among the output-prototypes that Is a best-match of
Gf . (In the case there Is more than one such best-match, select one of them at

random.)

2. Set K'(m) = k .

This process represents the aggregate-retrieval function d f . The access partition Is the quintuple

and the

access-retrieval function d'A is calculated as shown In the two steps above for only one value of m at a

time.

For storage of a permutation K chosen randomly, the values /c(l), /c(2), . . . , K(M) are nearly

independent for large A/. The only restriction on the /c(m)'s Is that /e(m') 7^ /e(m) when m' ?£ m.

For large M, this restriction Introduces little dependence among the values of K(TT\) m = 1, 2, . . . , M.

Since these A/ values are nearly Independent, their Joint entropy Is approximately the sum of their

Individual entropies. The individual entropy Is log0 A/ bits, so the Joint entropy roughly Is Aflog^ M

bits. More precisely, the Joint entropy Is log2 A/! bits since the values AC(TO) specify one of M!

permutations. But log2 A/! is roughly A/log M for large A/ (say for M > 3000). Taking the

values K(m) , m = 1, 2, . . . , M to be independent Is therefore a good approximation.

In the same way, retrieval of hC(m) always gives some information about IC{1) for / ^ m . This

Is because if the memory is accurate, then /^(m) = K{m) with probability near one. Therefore, since

K(l) 7^ K(m) , the value of K*(l) Is not equal to fC(m) again with probability near one. In short,

knowing the value of /^(m) gives "cross-over" information about K7^), I y& m . In particular, the

value of K*{1) will probably not be the one observed for frC{m). For accurate memory, we can compute
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this cross-over Information:

I{FC(m); *7(0) = H{IC(l))-H{IC{l)\FCim))

^ log2 M - l o g 2 ( A f - 1 ) « I/A/

This Is negligible compared to the uncertainty of K*{1) for large A/.

Due to the symmetry of the memory, and retrieval functions (the F *s are l.l.d.) the probability

P(Kf\m) j& K(m)) Is Independent of m . Letting P be this probability, we seek the Information

I(K f(m); K(m)) . To do so, we note that a best-match process that produces K\m) as Its output, acts

probabilistically as an M-ary symmetric communications channel [12) with K (m) as the Item to be

•transmitted" and Kf(m) as the Item produced at the "receiving end". We also have P as the

probability of error at the receiving end. From this It follows that the information that the output

provides about the input is given by

K(m)) = log2 M- P\o^ ( A / - 1) -

(3.28)

which Is the Information that the received signal provides about a transmitted signal that was sent over

the communication channel. For small P , I{K*(m); K(m)) is approximately log Af. On the other

hand

l o g 2 M < I(K{rn); K(m)) < I(FC ; K(m)) < H(K(m)) = log2 M

so that /(K7 ; K(m)) ^ /(/C^m); K(m)) so the memory Is access-Inclusive.

To show that the memory is access-exclusive, the arguement Is similar. Assuming P is small,

knowledge of either K(m) or of K tells us with high probability, what /C^m) will be (namely the same

value as K(m) ). We have

; K) ** H(K(m)) and I(K*(m); K(m)) ** H(K(m))

so I{IC(m) ; K)

To show the memory is access-summable, we retain the assumption that P Is small so that K

and /C1 will be Identical with near-unity probability. This gives the relation
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I(IC ; K) «» H(K) = log, A/! « A/iog0 A/

As mentioned earlier I(FC(m) ; /f(m)) « log2 M so

A/

We have shown that the memory Is access-separable. Uniformity follows from the fact that

I(Kf{m); K(m)) « log2 M for all m = 1, 2 A/. In the low-error case then, the memory is

uniformly separable. The question regarding how separable the memory is for larger error is a subject

open for further Investigation. Since P is independent of M, uniformity should hold even In the case

that P Is large. The author's conjecture is that greater error will degrade separability gradually and
V

perhaps negligibly provided that (1 - P )log« M> U{P ) .

3.4.4. Relation of Performance, Item-Memory and Channel-Memory

The notion of permutation-memory is merely a formulation of the memory's ability to keep track of

which Input-prototype is mapped to which output-prototype. For fixed outcomes f and

g , m = 1 , 2 A/ of the prototypes and two random permutations, K and IC, a matrix storing

the associations (f , g-., J should be different from the matrix storing the associations (f ,

The difference should be reflected In the response of the two matrices to a given input. For associative

memory, the input will be some prototype tk . For the associative-classifier, the input will be some bit-

vector f̂ ' that Is closer to tk than It is to the other prototypes. For either case, the matrix-output, call

it g'^ , should reflect which output-prototype, 9K,k\ or g^^\» was associated with tk . If (f̂ , 9Kfk\) Is

stored, then g'^ should be closer to &Ktm\ than to the other output-prototypes. Likewise for the case

that (f̂ , Bftttft) Is stored. In either case, the matrix-output should provide an outside observer (a

detector/best-match-process that has access to the output-prototypes) enough information to decipher

which output-prototype Is matched-up with f, within the associator. In effect, the matrix-output must

provide enough information about the proper output-prototype (e.g. g^.x for the first matrix and

*Kf(k) ^or t h e s e c o n d ) t 0 distinguish It from among the A/ alternatives. Of course, the permutation used

Is imaginary In the sense that we can relabel the output-prototypes so that the matrix Is seen to store the

associations (f^, g^ ) . With this convention, the output g ' should provide the detector with enough

Information, that Is, log M bits, to allow a detector to decide which output-prototype Is - g , V

In terms of the random vectors, G'^ has a mean determined by G^ but Is Independent of the

individual prototypes G , m j& k , and so G1, provides no Information about any individual G .
m ' m m
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The information that G \ provides about the output-prototypes to discern G, from among the M

alternative prototypes, should be largely due to the Information It shares with Gk . This must be at least

log M bits so

I(G'k:Gk) > log2M (3.29)

would seem to be the necessary constraint on Item-memory.

The problem is that G \ may not be Independent of the set {G | m = I 2 M, m 5^ It}

as a whole, especially when G, is known. Therefore the Information It provides about the "correct

choice1 among the prototypes may be dispersed among all prototypes. The author has no precise

formulation for this problem other than the definition of access-separability mentioned earlier. With

access-separable memory, the information that G*k provides about the output-prototypes Is exactly the

Information It provides about Gfc so that (3.29) would be a natural consequence of the present discussion.

Although item-memory appears not to be separable, our dilemma Is resolved by the following

observations. First, since

GM) > /(Gy.Gk)

the constraint (3.29) will assure that the left-hand member of the above relation Is at least log M.

Another consideration Is the detector Itself. We assume that It merely compares G \ with each of the

prototypes Individually, and then compares the M results. No calculation Involving G \ with more

than one prototype at a time Is allowed. A detector of this sort should only be sensitive to Information

G*k provides about Individual prototypes. This Information Is zero for all prototypes except Gk .

Condition (3.29) will therefore be necessary for the detector. Of course, a more sophisticated detector

which may not require this condition for reliable performance, may perform better than Indicated In the

subsequent chapters.
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Chapter 4
Evaluation of Information-Storage Capacity

The analysis to follow is concerned with the case that the number, A/, of stored associations is

larger than the input dimensionality, n . , so that the Input vectors are linearly dependent and Interference

effects must be accounted for. In this case the output vector Is only an approximation of the proper

prototype output. Our concern is the number A/of associations that can be stored in a matrix of a given

size before the output becomes unrecognizable.

4.1. Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored A/

associations (f , g ) , m = 1,2, . . . ,M for some A/. The input-prototype vectors are n.-dlmenslonal

and the output-prototypes are n^-dlmenslonal. For simplicity of analysis the prototypes will be balanced

Bernoulli-vectors (see chapter 2, p. 15). All Input-prototypes will then have If | 2 = n r and all output-

prototypes will have |g I = n^ . To motivate the method of storage measurement, we make an analogy
1 TT%' \J

with digital memory. The address to the .digital memory can be viewed as an Input vector and the

retrieved data as the output vector. A particular address vector and the data vector stored at the address

location can be regarded as a vector-association pair. The number of bits represented by the data vector

Is the information the system provides upon performing the Input-to-output association. For digital

memory, the number of bits represented Is the same as the number of bit-locations in the data vector and

so Is Identical with the dimensionality of the data vector. Storage Is defined in this chapter as the

amount of Information per association multiplied by the number of associtlons stored In memory.

Storage capacity Is the maximum storage the system can provide. In this case, the storage capacity Is

limited by the number of storage locations of the memory. Though the dimensionality of both the Input

and output vectors Is specified In advance, the data Items are not. That Is, the number of Items that can

be stored is not determined by what they are. In effect, being able to retrieve data from the memory has

no meaning unless we are able to store an arbitrary data set at the outset (ROM Is no exception, when we

consider all memory configurations possible before burn-In). In essence, the question "What Is the storage-

capacity of the memory?" has no meaning when one Is considering a specific device whose Identity and
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Input-tooutput mapping Is already determined/unchangeable. A burned-ln ROM for Is no longer a

storage device, merely a retrieval device.

For the matrix memory, the storage Is likewise given by the Informatlon-per-association multiplied

by the number of associations stored. The dimensionality of the Input and output prototypes are specified

in advance, but the prototypes themselves are not. That Is, we cannot assume specific values for the

prototypes in the analysis to determine the storage capability of the system. Since the prototypes to be

stored determine the values of the weights of the memory-matrix, the matrix is Itself unknown. For this

reason, the storage of the memory Is not defined for a particular matrix but rather for a class of matrices

all of the same size.* The class of outer-product matrix-associators of a given size Is the set of all

matrices that can be generated from balanced-Bernoulli vectors via equation (1.1). The discussion above

Indicates that an association Is not considered to be stored in a particular matrix of the class unless It Is

explicitly included in the sum, (1.1) that determines the matrix.

The Informatlon-per-associatlon for matrix memory can be characterized In several ways, two of

which are considered here. The first called Item-memory chooses an arbitrary k 6 (l,2 M} and

presents the k Input prototype to the system. The matrix-output Is then regarded as a probabilistic

rendition of the k output prototype. On the average (over all matrices of the class), given M. the

matrix-output will provide a certain amount of Information about the prototype output and this Is taken

as the information provided by the association.

The second method, channel-memory or permutation-memory, acts analogously to an

information channel. The k th Input Is presented to the system and an output Is generated. The latter is

compared with each prototype-output vector via a similarity measure and the best match from the

prototypes Is chosen. To perform correctly, the system Is expected to produce the k1 output prototype as

the best-match. If the 1th output prototype Is chosen, an error is identified with I j ^ k. The probability

of error averaged over the matrix-class Is taken as the error probability for the assoclator as an M-ary

symmetric channel (see section 3.4.3). The average mutual Information between the output and Input Is

thus defined. This average is considered as the information per association. For channel memory, we

In fact, Hinton (personal communication) observed that in n by n identity matrix seems to have an exponential amount

of "storage* since 2 vector-pain seem to be •stored". That is, using n-dimensional vectors of ± l's, one select! one from

among the 2 possible. This vector is placed at the input of the system to retrieve the same vector at the output. More
generally however, this can be done with an arbitrary matrix. Simply select a vector (address) of ± l's, present it at the
input, •digitize" the output into ± l't and say that the resulting vector (data) is the one "stored" at that address. This
would give all matrices exponential retrieval but there is no $torage proettt that allows one to specify which addresses are to
be known by the matrix and what datum is stored at each address. This illustrates that storage and retrieval are not to be
confused as being the same. On the other hand, they are not independent of each other either. Reliable retrieval of a stored
association or •item" will require, for the usociator at least, th> < .oss than an exponential number of items be specified
during the storage process.
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define for each pair of positive integers (TV, A/) the matrix channel of size N on A/ associations. It

consists of the ensemble of all possible matrices with n J i^ = N that can be constructed from a set of \f

balanced-Bernoulll-vector prototype-pairs (f^, gm), m = 1, 2 A/. Mathematically the ensemble

acts as a communication-channel of Information theory. Once a particular set of associations Is chosen

for storage, a particular matrix Is selected from the ensemble via equation (1.1). This matrix Is

deterministic and Is not itself a communication channel and Its storage Is not defined.

For both Item and channel memory, the storage Is the product of M and the Information /

represented by a single association. Initially, the storage MI of the matrix increases proportionally with

M. However the error probability Increases with M as well so that the Informatlon-per-assoclatlon /

gradually decreases. For some value M of A/, the Information per association begins to diminish more

rapidly than A/ Increases. At this point, storing more associations decreases the total Information storage

of the system. For A/ = M , the system has reached Its storage capacity.

The fact that the total retrievable Information decreases eventually as M gets large Is not proven

in this work. In fact, this may not be the case. On the other hand, the channel memory provides a

minimal criterion for memory performance. To perform well as a channel, a system need only produce an

output that Is more similar to the appropriate output-prototype than to the others. In effect, this

demands only that the system be able to tell the stored associations apart. This seems a natural minimal

capability since item-memory by contrast demands that the matrix actually "reconstruct1 the appropriate

output prototype. A system that can do this even with low fidelity of reproduction, can still perform well

as a channel. The channel memory defines a lower limit allowable for the fidelity. Since fidelity

deteriorates as more items are stored, we obtain a maximum number of useful associations that can be

stored by the system. Channel memory then Is crucial In determining the "absolute maximum" number of

associations to be stored in a system.

4.2. Bounds on Storage Capacity

4.2.1. Restrictions on Relative Magnitudes of Parameters

The analysis that follows assumes Important restrictions on the magnitudes and relative sizes of the

parameters. These restrictions are in addition to any others derived later In this chapter.

We begin with the requirement that the input prototypes and the output prototypes be distinct

vectors. With this, the number M of prototype-pairs must satisfy flog2 M] < nf and

flog2 M] < nQ. However if each of these relations is an equality, the prototypes are already

determined. The only thing that can vary Is which input prototype is paired to which output prototype.
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There are M\ ways to form the prototype pairs and so M\ ways to form the matrix. Therefore the

matrix entropy Is log- M\ «a Aflog M bits which Is somewhat less than we will find It to be when the

prototypes are randomly selected. The "entropy-degradation1 caused by a fixed prototype-set, would

seriously limit the amount the amount of Information the matrix can provide at Its output.

In order to ensure that the matrix entropy Is not compromised, we must be able to choose either the

Input prototypes or the output prototypes (or both) at random. If the randomly chosen Input-prototypes

are to be distinct with high probability, we must have 21og2 M < n^ and If the output-prototypes are to

be randomly chosen, we need 21og^ M < nQ. These requirements ensure that sampling without

replacement Is virtually Identical to sampling with replacement so that no duplicate selections occur. If at

least one of these two requirements Is met, the matrix-entropy should not be degraded.

More stringent requirements are needed If the prototype vectors are to be dissimilar to each other.

This requirement Is necessary for the output prototypes If a best-match algorithm Is to match the output

of the linear-associator with the correct output-prototype. A few errors In the matrix output should not

confuse the best-match process as they would If the prototypes are too similar. The requirement Is also

necessary for the Input-prototypes when the llnear-assoclator Is doing classification (see next chapter) and

the Inputs to the matrix are expected to be similar but not Identical to an Input-prototype. To meet the

requirement, the dimensionality of a vector space from which prototypes are to be chosen cannot be too

small. If two balanced-Bernoulli vectors are chosen from an n-dlmenslonal space then the number of

components that are Identical between the two has average n/2 and standard deviation of v n / 2 . Since

agreement of exactly n/2 components corresponds to orthogonality and most vectors will fall within 2 or

3 standard deviations of the mean, the prototypes will be highly orthogonal If the mean Is large compared

to the standard deviation. For this, n should be at least 100 or so.

To ensure dissimilar vectors one must also consider the number of prototypes to be chosen. The

minimal distance occurring between two balanced-Bernoulli vectors from among M vectors chosen from

n-dlmenslonal space is roughly n/2 — >/21n M• v n / 2 (see appendix B). In order that the two most

similar prototypes be dissimilar, we require that the above minimal distance be nearly n/2 . This will

occur when v21n M• v n / 2 is small in comparison. As we shall see, the number M of prototype-pairs

to be stored In the matrix should not exceed the number of weights In the matrix. If the matrix Is square,

this means M will not exceed n2 where n Is both the Input and output dimensionality. For this

maximal value of M we need \/21n Af • v n / 2 to be several times smaller than n / 2 . This sets a

minimal bound on n . If we require at least an eight-fold difference between n/2 and vZtiihl • v n / 2 ,

then n must be Just over 1000 or larger. A four-fold difference produces a lower bound Just under 400.

In any event, the prototype dimensionality, both input and output, should be several hundred If an

associator is to discriminate well between a large number of stored prototypes.
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4.2.2. Matrix Entropy

As shown In the previous chapter, the amount of Information retrievable from the matrix W Is

bounded above by its entropy H(W). In this section, the matrix-entropy Is estimated and used to

ascertain the storage capacity of the matrix.

Given the M input-output prototype-pairs (fm, g m ) , the matrix defined by equation (1.1) is seenm , g m

as the sum of M outer-product matrices. The m* outer-product or association-plane or plane, is

completely determined by the nJ + nQ bits of tm and g^ . Its Jl* component c. is the product / .g .,

which takes values in {—1,1}. The m l association-plane is not changed If both f and g are multiplied

by - 1 . This indicates that the m l plane represents at most n . + nQ — 1 bits of information. In fact, the

entries of any given row and column are enough to determine every other entry in the plane. To

illustrate, examine the kl row and I1 column and the entry c = / .g .. These three entries (bits)

c,., c,. and cn determine c. so that the parity of these four numbers is even. The n . + n •— 1 entries
Kt fCl Jt Jt 1 \J

that make up a particular row and column, are easily seen to be Independent, so that n . + nQ — 1 is also

the lower bound on the information in a plane. We conclude that each association-plane represents

exactly n ; + n o - l bits. We mention also that the entropy of the association plane is the same even

when the output (input) prototypes are fixed outcomes leaving only the input (output) prototypes as

balanced-Bernoulli vectors. From this we have that the matrix-sum W of the association planes has the

same entropy from the point of view of an external process that has knowledge of either (but not both)

the set of input-prototypes or the set of output-prototypes.

When the association-planes are summed, Information is lost. To assess the matrix entropy, note

that each of the entries W.. of the matrix is the sum of M "bits* / .g ., m = 1,2, . . . ,M. Therefore
j% mi fnj

mi

XV.. ~ Bin(±\,M,l/2). As shown in appendix A, the entropy of W.. Is

neM
(4.1)

As mentioned In the previous chapter, the entropy of a set of random variables is bounded above by the

sum of the Individual entropies (see equation (2.2)). Since there are /V weights, where A f = n.n , and

since the weights have Identical entropies, the upper bound of H(W) is obtained by multiplying the

common weight-entropy (l/2)log2 (7reA//2) by N. The entropy H(W) will obtain this upper bound If

and only If the weights are Independent. The assumption that the weights are independent is false for

Individual association planes. However the planes are Independent and the bit-patterns in one plane will

not generally be present In the others. For the sum of M such planes where M Is large, the weight-

Independence assumption should provide a close approximation the the true matrix entropy when M Is

much larger than both n. and n ~ We conclude then that
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neM
(4.2)

is a good approximation when M*> n. and M>• n^.

4.2.3. Bound on the Number of Items Storable

Consider the situation In which the k Input-prototype, Ffc Is present at the Input of the llnear-

assoclator and some process provides Information about the kl output-prototype G, on the basis of

what It sees at the memory output. If the average Information It provides about G. Is / bits then from

relation (3.12) of the previous chapter, we must have

MI < tf(W)

Replacing H(W) with Its upper bound

1 ireM
MI < -Mog0

— 2 2 2

so that

N

log2(7re/2)

We make the approximation log« (7rc/2) « 2 to get

log2 M + 2

7v (4.3)

In the case that the process at the output of the matrix Is a best-match algorithm, the matrix Is acting as

a channel. By equation (3.28), page 32, we have

- Pk>g o (Af- l ) -

where P Is the probability that the best-match process chooses a prototype other than G, as the one

most closely resembling the matrix-output vector. For our purposes, M — X «^ M and so

U-P e) log0A/ - K(Pe) (4.4)
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Equation (4.3) becomes

M 1 log0 M + 2
(4.5)

2 ( l - P € ) l o g 2 A f - H(P€

Our criterion for minimal channel performance Is that Pe = 0 In which case / = log2 M. This gives the

upper bound on M/N

M 1 1

N ~ 2 log2 M
(4.6)

for perfect channel performance. When M Is large, say log2 M > 16 , the upper bound for M/N Is

only negligibly larger than 1/2. Therefore we define the storage load or load, L , of the system to be

the ratio 2M/N. A load of 1 corresponds to storing half as many prototype-pairs In the memory as

there are weights In the matrix. For large systems (50,000 weights or more), a load larger than one

precludes operation of the memory as a perfect channel.

4.2.4. Trading Storage with Error

To understand how the load trades with error rate P , we rewrite equation (4.5) as the quotient

M l . . .

~N ~ 2' (l-Pe)\og2M ' 1 - «(P,)/|(1 - Pe)log2 Ail

letting r = #(P )/((l — P )log, M\ and assuming this fraction Is less than 1/3, we use the approximation

1/(1 - 1 ) ^ 1 + 1 to get

M i ' 06 2 W+2 X(Pe)
— < r — 1 +
N ~ 2 ( 1 - Pe)log2 Xf (1 - Pe)log2 M

i
- + — 1 +- P e ) 2 log2M (1-P e) log2 Af

If we assume that P^ < 1/2 and that 2/(log A/)2 Is less than say 1/16, then when we multiply out the

right-hand-side, we can ignore the U(P )/[(l - P )(iog0 M)2\ term to get

N P) 2 log2M + 2(1 - P)log2 A/2(1 - P€
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This approximation is good for M > 2* when Pe < 1/2 . These restrictions ensure that the -x" term

defined above is less than 1/3 which in turn ensures that the term we Ignored to get relation (4.7) is small.

If we allow P to be as large as 3/4, then we obtain a minimum value, 2 U , of M required for the

validity of (4.7).

A simpler bound for M/N Is afforded for A/ > 218 . In this case, If P is less than 1/2, the term

(1 — P )\ogo M is much larger than M(P ) so that the latter can be ignored In relation (4.5). The

relation then becomes

M
< +

N "~ (l - P) 2 log M
(4.8)

Notice that this Is the bound in equation (4.6) multiplied by the Inverse of the "success rate" (1 — P ) .

The approximation Is valid for more modest values of M when P Is smaller than 1/2. Summarizing the

analysis for larger systems, the number N of weights needed to store M associations for fixed P is

O (A/). Allowing the load factor L s 2A//N to be larger than 1, say L = 1/(1 — r ) , 0 < r < l ,

implies the error rate P will be at least as large as r .

4.2.5. Storage Limits for Item Memory

Now we turn our attention to Item-memory. We assume that when the kl Input prototype Is

presented to the matrix, the matrix output Is used exclusively to produce a bit vector that Is as accurate a

rendition of the k output prototype as possible. It Is assumed that no Information other than that

provided by the matrix-output Is allowed for production of the bit-vector. To be consistent with the other

sections of this thesis, we denote the systems •rendition1 of G. as G/ ' . The term, / , In equation (4.3)

is now /(G^;G^) . For the case that P(Gk!
f = Gk) « 1 , j = 1, 2 M, we have that / must be

nQ bits and so

M

Substituting njnQ for N and rearranging, a criterion for n . Is found

n. >
1 ~ log0 M T 2

(4.9)

For large \{ (say M > IQ ) we can Ignore the 2 in the denominator to get
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2A/
n. > —

1 - log2 M
(4.10)

Since the bit-error rate Is near zero, G^" should be virtually Identical to G^ . If a best-match Is used to

select the output-prototype that Is nearest to G^" , then G^ will be chosen with near certainty. In other

words, If we define P as the probability that G. Is not chosen then P should be near zero.

For this condition to hold, the memory must provide enough Information at Its output to act as a

channel with no errors. Therefore relation (4.6) must be satisfied. Using this together with (4.9) and the

fact that N = KTHQ one gets a lower bound on nQ

nQ > log2 M + 2

which Is a minimal requirement to be made considering the parameter constraints discussed earlier In the

chapter.

For Illustration, we design a matrix to store A / = 60,000 pairs. With this large number, relation

(4.6) Implies that at TV Is at least 100,000. The minimal value for n . becomes about 5700 and the

minimum for nQ Is about 18. With these values, the number of weights becomes 106,200. We will

compare this with the matrix parameters derived in the next section in which the system is allowed to

make errors.

4.2.0. Item-Memory with Errors

Now consider the case that the components of G," each agree with their counterparts In G^ with
n

probability noticeably less than 1. Assume that the probability that a pair G..andG^. agree Is

Independent of y = 1, 2 nQ and call this probability pG . The probability of disagreement between

a pair of components Is 1 — p^ which Is non-zero and so G." will contain a substantial number of bits

that are In error. In this case, a best-match algorithm that compares G," with the output-prototypes

will have a probability P > 0 that the wrong match Is made.

The Information that G^" provides about G^ Is bounded above by the Information G^' provides

about G^ and bounded below by the sum £ n j I(Gk." ; Gk) of the Information that G^ provides on a

bit-by-bit basis. The argument that this Is a lower bound Is similar to the argument given in the previous

chapter to substantiate relations (3.19) and (3.20). The Information that Gk" provides about Gk. is

given by (i - X(pG)) . Using the above lower bound for / , this Implies that relation (4.3) holds with /
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replaced by n (1 - H(pG)) • Assume that pQ < 0.88 so we can approximate l - H(pG)

(21ogn e)(p^ - 1/2)2 as per equation (2.29). Inequality (4.3) becomes

M .UK. M + 2
— < (4.11)

For Af > exp (16) , we can ignore the 2 In the numerator on the right to get

M In M
(4.12)

We can get a lower bound on n. by replacing N In (4.11) by n^iQ and rearranging

4A/(log2 e)(pQ - 1/2)2

— (4.13)
log2 Af + 2 v }

Again, assuming Af > 50,000 we can use (4.12) to get

4M(pG - 1/2)2

(4.14)

which holds for larger systems. We assume that pG > 1/2 since G^" is supposed to be a better-than-

chance rendition of G.. With this assumption the above relation can be expressed as an upper bound on

PG achievable by a given n.

1
pG < - ( 1 + y/rijln M/M) (4.15)

Since pG is less than 1, there is a non-zero probability P that G." will be mistaken for some prototype

other than G^ . If we assume that a best-match among the output prototypes Is sought using the vector

G^" then the information I(G," ; G,) must exceed that required to operate the best-match process.

The information required for a best-match process with error rate P is given by (3.28) of the previous

chapter and we can assure that I(Gk" ; G^) is larger than this by requiring

n o ( l - V(pG)) > (l - Pc)log2 Af-

Assuming that P < 1/2 so that (l - P )log<> M > (l/2)log0 Af. we take A/to be larger than 50,000 as

usual. This allows one to Ignore the yA(P ) term so that we have
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no(l - X{pG)) > (1 - Pt)\og

With the assumption that 1/2 < pn < 0.88 we use the approximation (2.29) to get

22nQ(log2 e)(pG - 1/2)2 > (1 - P M

which yields the reciprocal relations between the error probabilities

2no
Pe > 1 (4.16)

pG > 1/2 + >/(l - Pe)\n M/(2no) (4.17)

To obtain a bound on the matrix size, nQ can also be expressed In terms of the other parameters:

(1 - Pe)\n M

* o > r «-l8)
2{pG - i /2r

Note that relation (4.18) must hold for pG to satisfy both (4.17) and (4.15) simultaneously. From (4.18)

and (4.14) we have N > 2(1 — Pf)M which Is the same bound as given in (4.8) for M large. While n.

and n_ depend on p_ , their dependence is reciprocal so the matrix-size needed to store M items Is not

affected by pn given a fixed P .

We use these relations to design a matrix that can store A / = 50,000 Items with a channel error

Pe = 1/2 and a output-bit error pQ = 3/4. From relation (4.18) we obtain no = 44. From (4.14) we also

have rij > 1156 , so that ^j^o^ 50,900. Again the matrix Is one which •fans-ln" to produce a highly

reliable output under a large storage load. Notice that in accordance with (1 — P) = 1/2 , this system

Is roughly half the size of the one designed earlier for "perfect" item retrieval.

Under any of the above circumstances, the number of weights needed for storage is O (M). Allowing

P > 0 allows an advantage with hi Increasing roughly proportional to 1/(1 — P), (P < 1/2). If a

bit-error pQ < l Is allowed, then Pe must be specified to determine n^ and nQ as a function of A/.

Notice that relations (4.13), (4.14) and (4.18) Imply that rij can be made smaller when pQ is near 1/2,

whereas nQ : ast be made larger to meet the same storage requirements since the number of weights must

satisfy relations (4.11) and (4.5). Requiring that the bits of G^" to be accurate forces either M o r nQ to
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be small. That Is, cither the matrix must store few vectors (small ratio M/N) or the size N = n / l
o

the matrix must be due largely to n . . Heurlstlcaily, the matrix must be able to gather a large amount of

Information at the Input compared with the amount It supplies at the output. One would suspect that the

Information supplied at the output Is a function of the Information available at the Input. This

observation, which will be shown to be true In the next chapter, will be Instrumental In deriving results

regarding classification.

4.3, Storage Efficiency

Storage efficiency of a matrix will be defined as the matrix-storage divided by the Information

required to represent a matrix assoclator on M associations. We know that the number of bits stored by

the matrix Is the matrix entropy H(W). To get the number of bits required to store the matrix, we

examine equation (1.1) to ascertain the range of values that the weights can assume. This equation

reveals that each entry (weight) In an outer-product matrix is the sum of M bits. The range of values of

each entry Is the set of Integers between — M and M. The extremes are realized whenever the bits for

that entry all agree In value. Further, the entry will be be even if and only if M is even. It follows that

the number of values an entry can assume Is M + 1 . This means that N weights will require

Mog2 (M + 1) fca Mog^ M bits for storage. We define the efficiency r\ by the matrix-entropy divided by

the number of bits needed to represent the matrix

H(W) U/2)/V(log2Af+2) x x

1 N\og2 M Nlog2 M 2 log2 M

which Is the upper bound for the ratio of M to N . In this case, the efficiency Is asymptotically 1/2.

This Is not the best we can do however. From the proof of the •tails lemma1 In appendix A, page

100, the entropy H(W..) of a weight of the W-matrlx can be approximated by considering only 2 r . , + 1

of the most central values that the weight can achieve where r w = [ v 2 M o g 2 M\ . This means that

only these values occur often enough to represent a significant amount of the Information represented by

the weight. So we can Ignore the more extreme values the weight might take and thereby only need

roughly log,, (2w2\fiog^M) =** (l/2)log2 (2Mog2 M) + 1 bits to store each weight.

Let A/Q be a positive Integer representing the maximum number of associations to be stored In the

matrix. If we restrict the weights to range In value from —[2AfQlog0 MA to [2Af log MA then when

the number M of associations stored Is no greater than AfQ , the tails lemma prescribes the maximum

number of bits of Information lost by making the range restriction. The maximum Information lost Is

given by the upper bound for i In the tails-lemma which Is 21og0 e/(eAfQ) (see (A.42), condition 2 and
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related footnote, page 100). Assuming that this Is the amount of Information that Is lost for each weight,

the total lost for the entire matrLx Is no more than 2Mog2 e/(eA/Q) bits. If the matrix Is required to lose

no than r bits of Information due to the weight restriction, then set AfQ equal to N/r so that the

maximum Information loss Is 2Mog2 e/(eN/r) = 2rlog2 e/e ^ r bits. For the case that the load L Is

expected to be less than 1 (that Is we don't Intend to overload the matrix), we can set MQ to be N/2

and will lose no more than one bit for the whole matrix by restricting the weights to the prescribed range.

The efficiency of this new system Is again the matrix-entropy divided by N times the logarithm of

the number of values permitted for each weight

(l/2)N(iog2 Af+2)

V =
JV((l/2)lo*, (2Af) + (l/2)log- (log,, M) + 1)

log2 M

log2 A/-hlog2(log2 M)
for large M (4.20)

which Is asymptotically near 1. Therefore, by simply truncating the range of the weights, we can for a

fully loaded matrix, achieve a storage efficiency near unity while losing an Insignificant amount of

Information about the matrix.
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Chapter 5
Classification

.1. Introduction

Whereas the previous chapter considered the linear-assoclator as a memory, the present chapter will

treat it as a classifier. The classifier is merely a generalization of the memory In which the Input-vectors

are no longer constrained to be input-prototypes. In this case, input-prototypes are each a representative

or "prototype" of a distinct category of vectors In the Input-space. An vector from the Input-space

belongs to a category If it Is closer, under the Hamming-distance metric, to the prototype of that category

than to other Input-prototypes. The input-prototype and Its category have a corresponding output-

prototype that represents the category In the output vector-space and the assoclator has stored the

correspondence between the input and output prototypes. In this characterization, classification Is similar

to channel-memory (see figure 5-1). The input-vector by virtue of Its membership in a particular

category, has a corresponding output-prototype which Is the category's corresponding output-prototype.

Proper classification consists of associating the Input-vector to an output-vector that Is closer to the

Input-vector's corresponding output-prototype than to the other output-prototypes.

The analysis begins with the characterization of the linear-assoclator as a classification device. A

non-linearity is applied to the associator-output to facilitate the analysis. Minimal requirements necessary

for proper performance of the classifier are explained and we describe the assoclator's Information

characteristics relating to achieving these requirements. Methods of generating Input-vectors are

formulated and are eventually shown to be equivalent from the polnt-of-vlew of the assoclator. The

Information flow from Input to output, called the "throughput" of the assoclator, is then quantified and

related to performance capability of the assoclator. We will then be In a position to determine the

minimal size of sub-vectors within Input-vectors that act as "cues" for the input-vector category. We will

also quantify the percentage of the Input-space that is classifiable by the system. We then "revisit"

storage capacity and quantify Its degradation due to the use of the non-linearity at the assoclator output.

Near the end of the chapter, the theory Is Illustrated with a few classifier designs and a discussion of

Important aspects of their operation. Finally, we derive some merit parameters for Judging

storage/classification performance of the assoclator as It compares with the best theoretically possible.
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Figure 5-1: Classification by Prototype-Correspondence

5.2. The Associator as a Classifier

5.2.1. Characterization of Classification

Consider an arbitrary classification device as shown In figure 5-2. The device can receive any

rij-dlmenslonal ±l-vector as an Input which will be referred to as the Input-vector. The device has

stored Information about M vectors called Input-prototypes. These prototypes are the n.-dlmenslonal

balanced-Bernoulli vectors F r F 2 YM . Each one Is considered to be an exemplar of a distinct

category of n^-dlmenslonal ±i-vectors. An Input-vector that Is closest In Hamming-distance to the

prototype F^ than to any of the other Input-prototypes will be denoted by F . ' and Is said to belong to

the kl category. Thus, there are M categories, each "centered" about Its exemplar. After receiving the

Input F ' , the classifier Is expected to emit the number k at Its output to signal that the Input belongs

to category k . A classlflcatXon-error (or briefly an "error") Is said to have occurred when the response

of the classifier Is some number other than k . The probability of classification error Is denoted Pg .
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Figure 5-2: General Classifier for n.-dimenslonai ±l-vectors

If the classification device Is to operate with negligibly small P , the input-vector, F ' must
€ ft

provide at least log2 M bits of Information about Its category-exemplar F , . This is due to the fact that

Fk
f must be distinguished as belonging to one of M categories and the only way the distinction can be

made is to determine which of M exemplars is closest (see the chapter on the information-theory of

memory). We therefore have the constraint

log2M (5.1)

Now consider the classification system of figure 5-3. In this case, the classifier is divided into two

stages. The first-stage is a linear-associator whose output is fed to a Hopfleld-non-linearlty (defined

later). This stage, called the associator, translates n.-dlmensional ±l-vectors into n0-dlmenslonal

±l-vectors where nQ is the dimensionality of the assoclator's output-prototypes G , G2 G . , .

The second-stage Is a best-match process that compares the output of the first-stage with the output

prototypes. In this case, the M category-exemplars for the classifier are the input-prototypes

2 F ^ . As Is the case for the general classifier of figure 5-2, an input-vector that belongs to

the k category will be denoted F^r . The resulting output of the llnear-assoclator matrix will be called

G^' and the output of the Hopfleld non-linearity is called Gk" .

Upon receipt of F^' at the Input, the resulting vector, G^" , at the output Is expected to be closer

to G^ than to any other output-prototype. In this case, the best-match process of the second-stage

process will respond with the number k at the output. We regard the best-match device as an error-free

device. Errors will only occur If the first-stage produces a vector G," that Is closer to some output-
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Associator

2» " • '

1st Stage

Best-Match

' 2 ' "" ' M

2nd Stage

Figure 5-3: Associator Classifier for n^dimensional ±1-vectors

prototype other than . In other words, the analysis is concerned with the performance limitations of

the first stage. The second-stage is merely an artifice for the sake of the characterization of the

classification "taskg of the linear-associator. In fact, the •classification" done by the associator is Just its

passing Information to the output that enables one to determine which input-category is present at the

matrix-Input.

We observe that the second-stage of figure 6-3 Is Itself a classifier of an arbitrary sort. Its category

exemplars are the vectors G , G 2

about G^ If the second-stage is to classify reliably. The assumption that

so its input Gk
ff must provide log M bits of information

I(Gk''iGk) > log2A/ (5.2)

Is thereby obtained as a constraint on the output G , " of the first-stage.

In a later section It will be shown that the output-Information / (G , " ; G,) of the first-stage can

be regarded as a linear function of the Input-information / ( F / ; F , ) . The ratio

I{Gk" ; Gk)/I(Fk' • Fk) will be denoted by TfW) and is called the throughput of the associator.

Knowledge of the throughput will allow us to translate the constraint of (5.2) into a constraint on the

input-vectors F^' . This in turn will reveal the fraction of the input-space 7 that can be classified.

The general Idea Is to define the input-redundancy (or simply the redundancy) R of the input F^' to
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be the ratio

R = I(Fk'-Fk)/\og2M (5.3)

The constraint (5.1) then stipulates that R > 1 . The question Is Just how much redundancy must be

present at the Input to the assoclator to ensure reliable classification. The answer lies In the definition of

throughput from which we have J(Gfc" ; Gfc) = T(W)I(Fk'; F^) ,-and so relations (5.2) and (5.3) Imply

that the Inequality 71(W)J?log2 M > log2 M holds. That Is

R (5.4)

In the case that the assoclator Is not lightly loaded, ITW) will be less than 1 so that by (5.3), the

constraint (5.4) Is more stringent than relation (5.1). Later It will be shown that at most Ml ~" of the

Input-space I Is classifiable. A heavily loaded assoclator will have a low throughput and so require a

high redundancy. As a result, It can classify only a small portion of the Input-space.
*

Since the classifier of figure 5-3 Is merely an assoclator followed by a classifier, one may wonder why

we should bother with the first-stage assoclator at all. One reason Is that the assoclator translates Input-

vectors Into output-vector "codes1 that are more useful to subsequent processing stages. Another reason

as we shall see. Is the data-compression afforded by the assoclator. What data-compression Is and Its

usefulness will be seen near the end of the chapter.

5,2.2. Generation of Input Vectors

An Important aspect of associative memory Is the ability to respond to input-patterns that deviate

from the stored Input-prototypes. In particular, suppose each Input-prototype F . Is divided up into

subvectors called features (see figure 5-4). That Is, some subset of the n. components of F , represent

a "field1 in which a particular "piece1 of Information Is coded. If F^' has only this single piece of

Information in common with F , and nothing (other than coincidental similarities) In common with the

other input-prototypes, then we call F / a single-feature vector. It Is desirable that an Input-vector

F , ' be classifiable even If It Is a single-feature vector. Call the number of components of F . that

compose a particular feature the feature-site. We seek the minimal feature-size necessary for reliable

classification of a single-feature vector.

Several methods of Incorporating a feature of F, In F ' or Inserting Information about F , Into

F^' are considered here. The first Is to copy r components of F^ Into F^' and set the rest of the

components of F ' to zero. This case can be reduced to analyzing the storage characteristics of an
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Prototype: (feature-1, feature-2, , feature-k, , feature-r)

ngle-feature •
input: ( "random11 , feature-k,...."random"...)

Figure 5-4: Features Within Vectors

assoclator with r-dimensional Input. This method therefore Is not as Interesting as other methods which

don't allow zeros as components of the Input-vector. Zeroing the •unused" components however does

have the advantage that no spurious Information Is Incorporated Into the Input-vector. As far as the

matrix Is concerned, r bits of Information are actually present at the Input.

Another method Is again to copy r of F . ' s components to F . f and choose the rest of

components as a random selection of ± l ' s . This case Is more Interesting because It corresponds to ^

containing Information other than that of the r-dimenslonal feature of F . . This additional Information

however Is not relevant to the prototypes of the assoclator. Rather, It is used by other assoclator-

classlflers In a multi-classifier system (see figure 5-5). Each associator would sample the Input-vector and

only act on the features the Input contains that are relevant to the prototypes of the assoclator. The

Input might represent the functional description of an object, each feature of the Input-vector representing

a different functional aspect of the object. Each associator would have Information about a specific

•feature-type1 and associate features of this type to relevant "concepts* or "goals" of the system.

This method of generating the Input-vectors actually Incorporates r bits of information about F ,

Into F ^ ' . However, the network is probably not capable of using all r bits of Information. In the first

place, the assoclator has no way of knowing which of the r of F / are the copies. What's more, It never

varies the way In which It "weighs" a given component of F^' when determining Its output

Whether or not It happens to weigh the r components of the feature heavier than the other components

of the Input, Is a matter of "happenstance". Another related problem is that generating the input-vector

with Inconsistent information Is not well-accounted for by information theory. An input-vector F '
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Figure 5-5: A Multi-Associator System

should be classified with the category-exemplar F^ even when it contains Information in direct opposition

to this choice of category. More precisely, copy r components of F . to F^' and copy the negative of

each of r2 other components to F ^ ' . Choose the remaining components of F^' randomly. We assume

rx — r2 > 0 so that the net feature-size is r > r — r . Again, If r is large enough, then the

consistent Information should 'override" the Inconsistent information so that F^' is properly classified

Into the kl category.

were negated could Infer the rx +

From an Information-theory point-of-vlew however, the mutual information I(Fk'; F^) is no longer

r bits but Tj -f r2 bits. An observer of F ^ ' , knowing which components were copied directly and which

^ values of those components of F^ . Of course, the associator treats

all the components of the Input-vector the same. If r is large, the dot-product F ' • F , of equation

(5.12). page 57, will be large and F^' will be correctly classified. From the point-of-vlew of the

assoclator-matrlx. the useful information Is r bits not r + r bits. A more substantial argument for this
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view will be given later. The arguement depends on the fact that the distribution of the matrix-output is

a function of r only and does not otherwise depend on which of the above methods are used to generate

the Input-vector.

Another method of generating the Input F^' Is to choose It within a region surrounding the

prototype F , . We define the ball of radius p about F . to be the set

Bk(p) = {x € 7\HD(Fh,x) < p) (5.5)

where HD(x, y) Is the Hamming-distance between the vectors x and y . If p > 0 has a value such

that BAp) £& l /A / then conceivably, each of the A/ balls B (p) m— 1,2 A/ could occupy Its
n Www

own region of the Input-space 7 with little overlap. That Is, most vectors of 7 would lie In exactly one

ball. The likelihood of small overlap of all the balls Is small but the Important notion is that the largest

portion of space each can occupy Is I/A/ without unavoidable overlap.

Now consider generating F^' by choosing It at random from BAp). We will call this method of

Input-generation the neighborhood method. An observer of F . ' knowing how It was generated, knows

that the input-prototype F^ lies within p of F^ ' . Only I/A/ of the Input-space Is this near F^' so

this knowledge constitutes an A/-fold decrease In the number of possible values of F , . Therefore the

vector F^' chosen at random from Bk{p) provides log2 A/ bits of Information about F , . Observe that

If p were decreased so that Bk(p) encompassed only A / " * of the space, where R > 1 , then the input

information / ( F ^ ; F^) would Increase to Rlog^ M. This observation will be useful later when

comparing the methods of generating the associator-lnput.

A final method of input-vector generation Is that of flipping a biased coin to determine for each

component (bit) of the Input-vector F / whether It agrees with the corresponding component (bit) of F , .

This will be referred to as the coin method. If the coin lands "heads*, we copy a component of F^ to

Fk
f. If It lands •tails", we copy Its negative to F / . Letting pF be the probability of "heads", the

probability that a component of F^' agrees with Its counterpart In F^ Is p _ . In order that F^' be a

better-than-chance rendition of F^ , we assume that pF > 1/2 . In this case, the information that F^'

provides about F^ is the sum over all n^ components of the information that each component of

provides about Its counterpart In F , . We can write

nI

The Information I(Fk? \Fki) is the function 1 - M{pp) which Is 1 bit minus the uncertainty M{pF) that



F ' agrees with F... When p r Is not too near 1, (say pF < 0.88 ) we can approximate l - U(p ) by

2(log e)(pF- 1/2)2 (see approximation (2.20) page 10). The result Is

2n /(log2e)(pF-l/2)2 1/2 < pp < 0.88 (5.7)

We can assess the similarity of the Input-vector F^' to the prototype F^ as measured by the

dot-product. The average number of components of F^' that agree with their counterparts In F^ Is

njpF. The average number that disagree Is n^l — p^) . The components that agree contribute a 1 to

the value of the dot-product F^F^' and the components that disagree add a -1. Therefore the mean of

the similarity is

+ n / l - P f0(-l) = ( 2 p F - l ) n 7 (5.8)

For the method of copying r components to generate F . ' , the mean similarity is r . We therefore set

r = (2pF~ l)n. to obtain the same mean similarity as for the coin method. This gives the reciprocal

relations

= ( 2 p r - l ) n (5.0)

and

p r = - + (5.10)
F 2 2nj

It will be argued later that the various methods we described for generating the Input-vector are

equivalent, from the point-of-Ylew of the assoclator, to the coin method with pv given In (5.10).

5.2.3. Throughput of the A* sod at or

To ascertain the throughput of the first stage of the classifier in figure 5-3 we must consider the

probability distribution of the components of G. f . For j = 1, 2, . . . . nQ . we show that the probability

that Gk" = Gk. is Independent of j . Calling this probability pQ , It is shown to be a function of the

probability p F defined earlier. Consequently, the output information /(G^ff; G^), Itself a function of

pG , is a function of the input-Information I(Fk';
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To assess pr , note that G^" Is produced from G^' via the "Hopfleld1 [24, 25| non-linearity

( l ifG ' > 0
G " = \ J (5.11)

^—1 otherwise

The probability that Gk!' = Gk- is the probability that Gk!G,. > 0 since the two relations are

equivalent. As a result, we can compute p G once the probability distribution of G.f-G,. Is known.

Using the fact that G^' = WF^' where W is given by (2.19) we have

M

G.I'G.. = Y (F F ')G G..
kj kj L-4 v m k ' mj kj

M

Using methods outlined In the chapter on notation, page 16, the probability function of the term

(F,'F,f)G,. In (5.12), call it the "first term1, can be determined. The same can be done for the

summation (call it the -second term1) in (5.12). Both the first term and the second term are sums of I.i.d.

r.v.'s so that the central limit theorem implies the two are both normally distributed. The sum of two

Independent normal r.v's is normal so we conclude that G,!GL. Is normal. The mean of G,!G.. Is the
kj kj kj kj

sum of the means of the first and second terms of (5.12) and similarly for the variance. Recalling that

F^' is generated by the coin method with pF = 1/2 + r / (2n.) , the mean of the first term is

nJ2pF— 1) and the variance Is 4 p J l — pJ . The mean of the second term Is zero and the variance is

( A / — l ) n . . Therefore the mean of G,!Gk. is nJ2pF~ 1) = r and the variance is

4*1^^1 — pF) + (A/— l ) n 7 . The latter is very nearly equal to Mrij for any value of pF provided

M > 10.

Before calculating pG In terms of pF, we make some observations with regard to the effect of

generating F . ' on the distribution of G,!G... When M > 10 , the variance of G.fG,. is
k kj kj — kj KJ

determined entirely by the second term of equation (5.12). The balanced-Bernoulli vectors,

^ , m T«£ & , appearing In the second term are Independent of F / regardless of how F , ' depends on

^ (see chapter 2, page 16, concerning dot-product Independence). Thus the mean and variance of

^-F^' will not not be affected by any of the methods of generating a ±l-vector F^' from F^ . From

this we see that the variance of the second term will always be (A/— l )n . Irrespective of the method of

generating F^'. Since F^ is a ±l-vector, the variance of the first term of (5.12) can never exceed n / .

The first term will therefore not contribute substantially to the variance of Gk!Gk. under any method of

input-generation. Also G,!G,. Is normally distributed since the second term Is a large sum of I.i.d.
KJ Kj
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r.v.'s. The nature of the first term is Inconsequential due to its small variance. Further the mean of

G, !G, . is r for any of the methods given for generation of F ' . We see then that the product
k) kj *

G fG, . has virtually the same distribution for any method of input-generation. In particular, we have
kj k)

that G,!G.. ~* N{r, Afn.) . We conclude that the various methods of generating the Input-vector are

virtually equivalent from the viewpoint of the assoclator. From this point on, these methods will be

discussed Interchangeably.

From this, we have also that the Input-Information provided by the coin method represents the

maximum amount of information utilized by the assoclator Tor any mode of input-generation. This can be

seen by replacing p^ —1/2 by the equivalent r/(2n^) In equation (5.7) to get

(log2 e)r2

(5.13)

This Information Is less than r bits when r < rij/\og t. This will be the case In the analysis to follow

since (5.13) Is necessary for (5.7) to hold. We conclude that the coin method provides the smallest Input-

information compared with the other methods (the neighborhood method provides roughly the same

amount of Input-Information as the coin method). Because the assoclator sees no difference In these

methods, the Input-information provided by the coin method must be the maximum amount useful to the

assoclator when computing the output vector. The coin method of generation can therefore be used to

ascertain the performance of the assoclator despite of the actual method of Input-generation. This allows

us to exploit the simplicity of analysis afforded by the coin method while retaining the generality to

performance under the other input-generation modes.

We now begin to calculate the probability pQ that G .̂" = Gfc. which Is the same as the

probability that Gk!Gk. > 0 . Since the product G^/G^. Is normal with mean (2p ,̂— l)rtj and

variance Mn., the probability pG Is easily determined

. > 0)

= 1 - f\Gk!Gkj < 0)

The equivalence of the neighborhood method to the coin method follows from the fact that the v « t majority of vectors
in the interior of the ball in (5.5) lie near the boundary provided the radius is less thao n/2 (see Kanerva (26|). The ball
method and coin method will be consistent if the radius of the ball b roughly n i l — p J (see appendix B). The

distribution of vectors generated via either method is that of a "ring" surrounding the central category-prototype. The
•thickness' of the ring being determined by the variance of the coin method.



= 1 - Pr{Gk!Gk. Is {2pF~ l ) n / / v MnI standard dev's below the mean)

= 1 - *
- ( 2 p F - \)nF

Mn

since *(x) = l — $(— x) (5.14)

where $ Is the standard normal distribution function. Since pG < l , and Af will generally be larger

than n . , It follows that (2p F — l )vn^/M Is typically less than 1. This allows use of the Taylor

approximation to <P given In chapter 2 page 10. We get

1 1 / 1
- + -Vn //A/(2pF- 1) = " +

V27T

In a manner similar to the derivation of equation (5.7) we have

j / t fAf(pF - 1/2) (5.15)

> no(l -o (

2no(log2 e)(pc - - 0.5 < p̂ , < 0.88 (5.16)

Assuming pG Is In the stated range, we appeal to (5.15) and substitute v2n./7rA/(pF— 1/2) for

P G - 1/2 In (5.16)

2nO
-7? / (P*' :Pfc> (5.17)

where the second approximation Is due to (5.7). Dividing by / ( F / ; F J (assumed larger than zero), we

have a lower bound on the throughput of the assoclator

2n
7VW) >

o
(5.18)
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5.3. Classifiable Inputs

5.3.1. Lower Bounds on Input Information

As stated earlier, the redundancy, R, must be larger than 1/T(W) for reliable classification. Now

that the throughput of the assoclator has been found, we have the lower bound

R >

By definition (5.3), the Input-Information Is given by

(6.1Q)

I(Fk';Vk) = R\og2M (5.20)

Together, (5.19) and (5.20) imply a lower bound on the Input-Information

M
— (5.21)2no

By our assumption, F^' is generated by the coin method. Thus the bitwise Information

I ( F k i
f ; F k i ) , i = l , 2 M Is Independent of i = {l, 2, . . . , A/} . Also the Input-Information

I{Fk
f; F^) Is given by (5.6). We conclude that the Input-information Is n. times the bitwise

information. Dividing relation (5.21) by n . , we get the lower bound

M

for the bit-wise information.

5.3.2. Lower Bounds on Feature Size

We can obtain minimal requirements on pF and r by inverting the approximations of (5.7) and

(5.13) to get each parameter In terms of I{Fk
f ; F^) . From (5.7) and the assumption that p > 1/2 we

have

l
PF = - + v//(F^ ; Fjfe)/(2n/Jog2 e)

= - ( 1 - y / 2 l ( F k ' : F k ) / ( n j l o g e ) ) (5.23)



The relation for r Is obtained from (5.13), (5.23) and the fact that r = (2pf— 1)

(5.24)

where /(F '; F,) / log 0 e Is the input-Information In natural-logarithm units or "nats". Using equation
K K £

(5.20) we get pF in terms of the redundancy

1 /

PF = - + V^ln M/(2nJ) (5.25)
2

Similarly for r ,

njR\n M (5.28)

The lower bound (5.19) for R gives a lower bound for each parameter

1

2
(5.27)

and

M (5.28)

This means that if F^' is generated from F^ by copying r of F, 's components we need to copy at

least [v(n//no)7TiV/ln M] components for classification to be possible. Reliable classification requires

that this number be the minimum feature-size allowable for the input-vector if it Is a single-feature vector.

The number of non-overlapping features (sub-vectors) an input-vector can have is obviously the

dimensionality of the vector divided by the minimal feature-size [n / / |V(n / /no)7rAiln A/"j J . If we let

A™« b e t h e minimal feature size and n be the maximal number of non-overlapping features

allowable In an Input-vector, then we have roughly

min
Imin ** >/(n /no)TA/ln M (5.29)

and
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n ft* y/N/(*Min M) (5.30)
max / v / /

As shown later, the fraction under the radical In (5.30) cannot be less than one for reliable classification.

We see then that If we are to have n non-overlapping features In our vectors, then the number of weights

in the assoclator will have to exceed nM\n M by a factor of n2 . This Is a rather heavy price to pay for

the ability to classify vectors on the basis of a single feature.

We make one Important observation regarding the information content of an n-dlmenslonal

iil-vector. If X Is the number of l's that occur In a balanced-Bernoulli vector, A , then X Is a r.v.

with mean n/2 and standard deviation v n / 2 . It stands to reason therefore, that a sub-vector of A of

length vn/2 represents a unit of Information of A . To verify this, let R be the redundancy (as defined

by (5.3) for some M > 0 ) of the Information that A Is to provide about another vector, B . If we are

to copy components of B to A , then equation (5.26) gives the minimal number r of components that

should be copied (the rest are chosen independently of the components of B ). This number can be

expressed In terms of the number of standard-deviation-length sub-vectors needed

r = 2\/2/?ln A/(\/n/2) (5.31)

To provide Rlog2 M bits of Information, we must copy at least 2v2/?ln M sub-vector "units* of

Information from B . The "square-root* relationship between the number of bits of Information and the

number of sub-vector "units" is due to the quadratic dependence of Information on the probability that a

component of one vector agrees with Its counterpart in another vector (see relation (5.7)). The fact that

Information In balanced-Bernoulli vectors Is closely related to vn//2-length sub-vectors must play a part

of any mode of representation that codes Information into ±l-vectors. If Information coded Into sub-

regions of the input-vector Is to provide the sole cue to an associator for classification, the subregions

must cover at least 2v2/?ln M sub-vector "units" of the Input-vector, where R Is the minimal Input-

redundancy required by the assoclator.

5.3.3. Fraction of the Input Space tha t It Classifiable

An analysis of minimal requirements for the neighborhood method of Input-generation are derived In

appendix B. Because this method Is roughly equivalent to the coin method and because It gives us an

estimate of the number of vectors that can be classified, we relate the results here. First, for a ball

centered about an Input-prototype, If a randomly chosen vector from the ball Is to provide /?log0 Af bits

of Information about the prototype, then the ball must comprise M"~R of the Input-space. From

appendix B, the radius p Is roughly
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p Bd — V2/?ln M - In (4*r/?ln A/) (5.32)

2 2

The lower bound on the redundancy in (5.19) gives an upper bound on the radius

7

p < — -
\ArAfln M/nQ - in (2?r2Afln M)/nQ (5.33)

In appendix B, geometrical considerations of the output space suggest that this radius Is too large. The

excess redundancy required however should not be more than twice the minimum (see appendix B for a

discussion of this point). This gives us a lower bound for p

nJ

p > — VWiWln M/nQ - In (4?r2Mn M)/nQ (5.34)

We now derive the upper bound on the fraction of the input-space that can be classified. This result

is obtained from the lower bound on the information required at the associator Input. Since the associator

produces an output on the basis of the Hamming-distance between the input-vector and the input-

prototypes, input-vectors providing the associator a specified amount of Information about an Input-

prototype should come from a set of vectors nearest to the prototype. If the set Is a ball of radius p

about the prototype, then random selection of a vector from the ball (neighborhood method of Input-

generation) Is roughly equivalent to the coin method of input-generation when p « n i l — pF). When an

Input-vector F^' is generated by the neighborhood method, and the information it provides about F^ is

I{Fk
r; F^) , the ball it comes from will encompass exp2(-/(FA'; F^)) of the total input-space. For our

system, there are M balls surrounding M input-prototypes so the total fraction of the Input space

covered by the M balls is at most Afexp (-/(F^'; F^)). The regions could overlap, though the overlap

will be negligible If the Input-Information Is at least 21og0 M. Now if R Is the redundancy of the Input,

then the Input Information Is /?log. M bits and the fraction C of the input-space that Is classifiable Is

A/ (5.35)

Using the lower bound on R we have the upper bound on C In fact, as we shall see later, A/ will

usually be greater than nQ by a large factor so that the fraction of the space that Is classifiable will be

quite small.
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where M Is assumed to be larger than nQ .

5.3.4. Restrictions on Matrix Dimensions

The Inequality of (5.33) Is required for reliable classification, whereas Inequality (5.34) Is merely a

reasonable bound on how small the value of p need be made to Insure the system will work. Therefore

Inequality (5.33) must be larger than zero If the system Is to classify Its Inputs. This constraint leads to a

lower bound on N which will be derived by different means later (see equation (5.42)). The lower bound

on N Is the minimal number of vectors required merely for storing the prototypes when the Hopfleld

non-linearity Is present at the assoclator output.

An even tighter constraint on the required matrix size Is obtained when we require that the system

be capable of classifying 'highly-degraded* Input-vectors. A highly-degraded Input-vector Is a vector that

Is nearly orthogonal to Its category-exemplar (the nearest Input-prototype). From (5.33), we see that

classification of such Inputs Is possible when n^ Is large compared to v ^ M n A / V n / / n o . In this case, If

p Is near the theoretical maximum given In (5.33), the input-vectors at the edge of the neighborhood of a

prototype will be at a Hamming-distance nearly n./2 from the prototype. A reasonable way to make

n. large enough Is to require n. > 8 v ^ M n AfVn. /n^. Multiplying through by wry^n' and

squaring both sides of this Inequality gives us a lower bound on the number N of weights

N > 647rMn M (5.37)

Comparing this to the requirement (5.42) for storage, we see that classification of "highly-degraded1

input-vectors requires roughly 50-100 times the number of weights required for merely storing the

prototype vectors.

We note a few restrictions on the parameters Inferred by the analysis In appendix B. First, if the

input-vector is to have a redundancy no greater than R (keeping R low, makes a larger portion of the

input-space classifiable, see equation (5.35)), then we must have p > 0 In equation (B.6), page 109. This

becomes the constraint

2R\n Xf (5.38)

This constraint applies equally well for the output dimensionality with R between 1 and 2 so that
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nQ > 21n M (5.39)

Is a minimal requirement for the output-dimensionality (see equation (B.8)). In the "throughput1 section,

restrictions on the parameters n^ nQ and M were also made to obtain the approximations used to

obtain the associator throughput. The linear approximation made In equation (5.14) assumed that M

was at least as large as n.. This assumption assures that the argument to # was no larger than 1 so

that higher terms in the Taylor approximation to $ can be dropped.

The assumption that the argument to # in equation (5.14) was less than 1 leads to a restriction on

^ . This assumption together with (5.15) gives the upper bound

1 1
pn < - + ^ 0.9 (5.40)

V27T

These relations illustrate the limitations of the theory that has been developed. A designer of an

associator on A/ associations must stay within the parameter-assumptions In order for the performance

predictions of the theory to apply.

5.4. Performance Degradation Due to Non-Linear Output

The 'Hopfleld non-linearity" in figure 5-3 was introduced for the sake of simplifying the analysis.

The problem of determining the information / ( G / ; G,) available directly from the associator-matrix is

somewhat more difficult than finding the Information J ( G L " » G^) available from the non-linearity.

Unfortunately, however, addition of the non-llnearlty eliminates much of the Information available from

' . That this is so is evidenced by the degradation of storage capacity due to the non-llnearlty.

To estimate the storage capacity of the non-linear associator In figure 5-3, put p « = 1 to constrain

the input vectors to belong to the set of input-prototypes. The formula pQ that gives pG In terms of

pF becomes

l

2{1 (5.41)

This approximation is good when pQ is near 1/2, so in particular, M must be at least nJ an (5.41).

The approximation was obtained from (5.15) which is a linearization of the normal distribution function

<P{x) about x = 0 It overestimates pQ with the overestimate becoming large as pQ nears 1. In fact

one pays a high penalty In storage capacity when insisting that each bit of G^" match its counterpart in
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G with high probability. This Is due seen from the fact that when rij/Xf Is Increased pG does not

increase as rapidly as (5.15) would Indicate. In any event, using equation (5.15) will give an upper bound

on the storage capacity.

As stated In the chapter on storage capacity, useful storage requires the output Information to be at

least log M bits. During retrieval, the number of bits present at the Input Is nJ . If we multiply n. by

the throughput J\W) and require the result to be larger than log2 M, a constraint on the matrix size Is

obtained. Unfortuneately T{W) was obtained by assuming pF was not too near 1. We will have to use

equations (5.41) and (5.16) Instead to get the constraint. Remember however, (5.41) assumes pG Is not

too near 1, which will be the case If M > 2nl. From (5.41) and (5.16) we have

By the constraint (5.2), the right-hand-side must be larger than log2Af. The resulting Inequality can

then be rearranged to get

n M
- < 1

To put (5.42) another way, N must be at least O (Mn M). This Is a stronger requirement than the one

derived for storage In the previous chapter. This new bound Implies that If no Is O (In M) , then n.

must be O (M) .

If errors are allowed at the output of the second stage of figure 5-3 then the storage can be

Increased. If P Is the error probability, then for 0 < P < 1/2 , M large, we need (1 - PJlog0 M

bits at the output. From this and (5.16) we have

2nQ(log2 e)(pc - 1/2)2 > (1 - Pc)log2 M (5.43)

and from (5.41)

nI
2nn(log0 e) > (1 - P > g M

which gives

jrAfln M

N
(5.44)
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As with the case with storage treated in the previous chapter, the number of required weights is

proportional to 1 — P . On the other hand, the maximal value of M no longer Increases in proportion

to 1/(1 - P f ) .

The reason the non-linearity decreases the information content of the output of the associator is

that it forces the best-match process of figure 5-3 to "count" the number of places that the output G.'

disagrees in sign with G^ (recall the method of computing G^"). This can be seen from figure 5-3 with

the non-linearity removed and from equation (5.12) which Is the formula for one summand-term In the

dot-product G^'-G^ . If the best-match process in figure 5-3 uses the output of the associator-matrix

directly, It can use the dot-product similarity-measure to compare G^' with every one of the output-

prototypes. Now, a single summand in the dot-product H-G^.'-G^. is blnomlally distributed with

positive mean {2pf— l )n 7 . Such a term will tend to have larger magnitude when It is positive than when

it Is negative. This means that the dot-product can do more than "count" how many positions G. /

agree In sign with their counterparts G^.. The dot-product also uses "magnitude" Information to

ascertain the "confidence" that a specific component of G^' Is of the proper sign. On the other hand,

whether the performance limits of the previous chapter can be achieved depends on whether retrieval in

the llnear-assoclator Is optimal. For this to be so, the full entropy of the matrix (per storage item) must

be available at the memory output. What's more, the information available must be useful to the best-

match process.

The analysis of the linear case should entail evaluation of the information content of G,' by

evaluating It as a rendition of the "signal" G^ with added binomial "noise". The "slgnal-to-noise ratio"

as a function of M would then be used to quantify the information content. The analysis is similar in

concept with evaluation of Information contained by a gaussian signal in the presence of gaussian noise

(see Gallager, [12, p. 32, Example 4]). The difference is that the "signal" components G^. are not

gaussian but Bernoulli r.v.'s and the "noise" In G,' due to the associator-matrix is binomial rather than

gaussian. These differences are responsible for the difficulty In determining the information ^ ^

The difficulties are not insurmountable, but the analysis may be as involved as that in Appendix A, since

the problem of approximating a discrete entropy with a continuous one In the appendix seems related to

the problem of approximating the Information in

5.5. Classifier Design Considerations

At this point,we are ready to illustrate the design of an associator to meet specific requirements.

Two designs will be given to show how the relative sizes of parameters interact. Given the number M of

categories, a fraction a of the space to be classified and the maximum classification error-probability,
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P , we wish to find the dimensions rtj and nQ that result in a matrix of minimal size N that meet the

requirements.8 To begin, let Pe = 0 for simplicity. Notice that a ball Bk(p) about a prototype must

contain about a/M of the input space. Since the fraction of input-vectors in the ball Is

exp2(-I(Fk'; F^)) , we have

= exp (- / (FA ' ; Fk)) (5.45)
M

so that

I(Fk'; Fk) = log2 M - l o ^ a (5.46)

Now R = I(Fk' ;Fk)/\og2 M so by (5.46) we have l o ^ a - log2 M = -Rlog2M. Rearranging

and converting to natural logarithms gives a more convenient form

R = (5.47)

The two classifiers we produce will be called the large-a model and the sm&U-a model.9 The large-a

model will have —In a proportional to In M, so that for some positive K > 10 we write

- I n a = K\T\ M (5.48)

The small-a model assumes that —In a is proportional to A/. In this case we put

M
-In a = — (5.49)

with K < A//(lOln \f) . Calculating the redundancy from (5.47) for the large-a model we have

R = i + K ** K (5.50)

and for the small-a model

g
Of course, a design problem may differ %s to which parameters are initially specified. Most notably is the case when a

designer is dealing with an input-space whose vector-dimensionality n . is already known.
g

Since 0 < a < 1 , the quantity —In a is positive and grows without bound as a —* 0 . The terms "large-a" and
•small-a - are of course relative. A large-a model will only classify a small portion of the input-space. A small-a model will
classify a portion orders of magnitude smaller. Even in the case of the small-a model however, there are expo(n.) possible

input-vectors so that the actual number of vectors classifiable is still very large.
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R = 1 +

Kin Af Kin M
(5.51)

Recall that relation (5.19) must hold for reliable classification. From this we get the lower bound on nQ

(5.52)

For the large-a model, this implies

(5.53)

For the small-a model

nQ = -Kin M (5.54)

To get a constraint on n^, we use the fact that the maximum Hamming-distance between an Input-

vector an its category-exemplar Is roughly

n,
p = — V2i?ln M (5.55)
rmax '2 2

If we are to classify vectors that are nearly orthogonal to their category vectors, then p should be

nearly n./2 . For the large-a model, this is more Important than for the small-a model since the former

must classify more of Its Input-space. The closer p Is to n./2 however, the more weights are

required for either model given a fixed value of K . For the sake of comparison then, we will use the

same value p = (2/3)n./2 for both models. This Isn't much of a constraint. A better one is

p = (9/lO)n./2 but the number of weights required would be about 10 times as large. From
ma x l

equation (5.55) and our constraint, we get

\fn'l = 3\/2Rln M

so that

= \&R\n M «a 20/?ln M (5.56)
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For the large-a model R ^ K so

= 20K\n (5.57)

whereas the small-a model has R — M/(K\n M) so

20 A/
wmmmmm

K
(5.58)

The number TV of weights In both cases Is lOffAiln M or 10 times the minimum required for storing M

prototypes.

The thing to notice Is that the large-a model has n^ of order In M and nQ of order A/. In other

words, the Input-dlmenslonallty far exceeds the Input-dlmenslonallty. In order to classify such a large

portion of the input-space, the Input-redundancy must not be large. This Is seen from relation (5.47).

When a -• 1 , we have —In a -* 0 so that R - • l . The throughput of the system must be large so

many units are needed to produce the output.

For the small-a the situation Is reversed. The Input-dlmenslonallty Is large and so can accomodate

the large input-redundancy (The redundancy can never exceed n./log2 A/). The number of units can be

small since the high redundancy Insures adequate output Information even with low throughput.

As a numerical example, suppose that M = 50,000 and to assure A/ > n. In (5.58), let

K = 50 . For the large-a model, R = 50 so by (5.57) n 7 « 10,800 , and by (5.53) nQ «a 1570 . For

the small-a model R = 92 , equation (5.58) Implies n. = 20,000 and (5.54) gives nQ = 850 . Both

models have roughly 1.7-107 weights.

Now let <; be the number of classifiable vectors In each case. We want to estimate the entropy

log2 c °f the classifiable portion of the Input-space. By equation (5.35), this entropy Is roughly

log2 (A/1 " *exp2(n ;)) , or approximately f = n7 + (l - /?)log2 A/. By equation (5.47) we have

= n ; + log2 a (5.59)

For the large-a model, c = ^ - / O o g 2 iV/«a 10,000 . For the small-a model.

f = nf- A/log2 e/K ** 18,600 . The proportion of the space classified by the large-a model is 10 ~2 4 0

whereas the small-a model classifies roughly 10 ~ 4 4 0 of its input-space (computed from the respective

values of a ).
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The moral however, Is that the small-a does not classify fewer vectors than does the large-a model.

The input-space for the small-a model Is so much larger than that of the large-a model that the actual

number of vectors classifiable by the small-a is much larger. In fact, the number of vectors that can be

classified by the small-a model dwarfs the number of vectors In the entire Input-space of the large-a

model.

One way of viewing this numerical advantage of the small-a model Is In terms of data

compression. Whereas the number of Input-vectors to be classified Is potentially very large, the number

M of categories at the output Is relatively miniscule (the number of categories should be less than the

number of weights or even smaller). The entropy of the output relative to that of the Input Is therefore

quite small and this Is what Is meant by "data-compression1. The fact that the matrix faces less

Information at Its output than at Its Input should be reflected by Its architecture If high-performance Is

expected. For a classifier with N weights that Is to classify a large number of Input-vectors, the output-

dimensionality should be as small as possible (within the constraints described In appendix B) compared

with the input-dimensionality. Such a system will classify a maximal number of Input-vectors for a given

number of associations (categories) stored.

One should also notice that the classifier classifies only a very small portion of the Input-space. This

results In a "double-data-compresslon". Most Inputs are simply not considered to be valid Input "signals".

Those that are will then be mapped to a relatively small number of categories. The final result Is an

output that has far less entropy than the total Input-space. We conclude that the assoclator-as-classifler

assumes that most of the space of possible Inputs are Irrelevant to Its task. The portion of the space that

Is considered relevant Is specified by the collection of prototype-vectors. These In turn specify the

pertinent Informational-features of the Input-space. All other Information Is Ignored, resulting In an

output that Is a compact representation of the salient features of the Input.

5.6. Maximal Performance and Figures of Merit

5.6.1, Merit Parameters and Figures of Merit

We define a merit-parameter to be some measure of system performance with regard to storage

or classification. In the case that there Is a maximal value for the merit-parameter, we divide the merit-

parameter by the maximal value to get a figure-of-merit. The maximal value for the parameter is

determined via Information-theoretic constraints on an arbitrary memory/classification system and so Is

Independent of features specific to a particular device. The flgure-of-merit will generally take on a value

between zero and one with the value " l " corresponding to optimal performance. Thus the merit-figure

can be used for comparison of various systems whose merit-figures are known.
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5.5.2, Load, Efficiency, Throughput and Retrievable Information

In the chapter on storage, we derived a flgure-of-merit L called the load. It was defined as the

ratio of the number of Items stored (a merit-parameter) divided by the number of Items storable. Another

flgure-of-merlt we defined was called the efficiency, rj , that was the ratio of the number of bits stored In

the memory divided by the number of bits required to represent the memory itself. For classification, It Is

also desirable to obtain relevant merit-parameters and flgures-of-merlt.

An obvious merit-parameter for classification Is the throughput T(W) defined earlier. The optimal

value T can be be derived for an arbitrary memory obeying relation (3.13). The throughput-merit,

r , of a system Is then defined as T(W) /T . To obtain TQ , we divide the maximum-possible output-

Information by the minimum allowable Input-Information. For systems obeying equation (3.13), the

maximum output-Information per association Is H(W, M)/M. The minimal Input-information required Is

log2 M bits so we have

, M)/(Mog2 M) (5.00)

So the throughput-merit Is given by

T =5
7TW) " * v " I'WVH^ M

= H(W. M)

where

Aflog2 M M-I{Gk" ;

H(W, M) ~ H(W. M) ( 5*6 1 )

If we use the fact that H(W, M) &* (l/2)Mog2 M then the flgure-of-merit r for ilnear-associator

systems satisfies

M
r = — = 7TW) = 7TW)-L (5.62)

(l/2)Mog2A/ V HT V ]

where L Is the load. Thus the throughput-merit for the outer-product assoclator is Just the product of

the two merit parameters derived earlier. This product however has the additional property that it can

never exceed l. It would be of interest as to whether the throughput-merit for the llnear-assoclator

(without the Hopfleld non-linearity) is roughly equal to 1 (or at least constant) for a large range of values

of the load. If so, we'd have that the throughput trades directly with load as more associations are stored.
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In any event, we have that

iV
(5.63)

for the linear-assoclator. For the assoclator with no non-llnearlty then, the upper bound can be quite large

when M Is much smaller than N.

For the case that the Hopfleld non-llnearlty Is present at the matrix-output, we can obtain the

maximum r achievable by the assoclator (see figure 5-3). By (5.42), the number N in (5.62) Is larger

than TrMln A/. Replacing N by this value In (5.62) gives the upper bound

2 A/ 27TW)
r < 7TW) = — — - (5.64)

jrMn M ffln M

Since T|[W) = 2no/(nM), we have the bound

T <

2nO 2 4 n O

n
2Mln M

(5.65)

which is much smaller than 1 if the number of stored prototypes is larger than nQ . By way of

comparison, the linear assoclator could conceivably have a r as large as 1. However this has not been

established since the throughput of the linear-assoclator has not been determined.

A flgure-of-merit relevant to the memory Is apparent from the results of chapter 2. By relation

(3.13), we have /(G^" ; G^) < H(W). Therefore the retrievable-fraction of stored information is

MHGk";Gk)

" ^ H(W) (5'66)

The retrievable fraction, by relation (3.14), cannot exceed 1.

For the non-linear associator, we can find the maximal retrievable-fraction from knowledge of the

throughput. Remembering that the largest that the Input-Information can be Is Uj bits, we use the

definition of throughput to get

A/7TW)/(F^ ; F )̂ M(2nQ/'nM)n; 4

~ (l/2)MogiV/ - (i/2)Nlog0 A/ ~~ 7rlog0 M
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This parameter is quite small for large systems that store many associations. For the Hopfleld-non-Unear

assoclator, systems become extremely sub-optimal as the system-size gets large.

5.5.3. Search for an Overall Figure of Merit for Memory

It would be preferable If an overall flgure-of-merlt for memory-performance could be found. This

figure, called the memory-merit, «M , should reflect all aspects of memory operation and have the

property that a memory could In principle attain a memory-merit of one. An attempt to define M might

Involve taking the product of r, n , and r; to get

= fur) (5.68)

For memory systems whose load L can be defined, one can restrict consideration to memories that are

not overloaded (I.e. L < 1 ). The load could then be Incorporated Into M

M = (5.69)

The efficiency r\ Is Just related to the representation used for the weights of the memory and Is therefore

Indicative of limitations of the memory's Implementation. This parameter should be dropped If only the

memory's Inherent properties are to be considered

M = (5.70)

If there Is a general Hgure-of-merit for memory, this last one may be close to the mark. On the other

hand, we saw In relations (5.61), (5.62) and (5.66) that r Is related to both /1 and L , so one may wonder

If M In (5.70) may contain redundant Information. Also, there may be tradeoffs that force the value of

one of the factors In (5.70) to be low when the other Is high. If this true even In principle, then It Is

possible that no memory can achieve a merit of one and the memory-merit would not satisfy the

definition of a flgure-of-merlt. This possibility seems unlikely based on calculations done by the author.

In fact, If the outer-product Unear-associator has an optimal throughput ( r near one for large systems), It

is possible that It could be have a memory-merit approaching one as the assoclator size gets large.

5.0.4. Classification Figures of Merit

For classification, a merit parameter that can be "normalized' to produce a flgure-of-merlt Is hard

to obtain without imposing artificial constraints. One merit measure worthy of consideration however Is

the ratio of the bits needed to encode the classifiable Input set to the number of bits needed to represent

the categories at the output. This Is called the fan-In. The parameter Is of Interest because It represents
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the capability of the system to react to a very large Input-space when It has stored a relatively small

•representation-space". Indeed, this Is the very essence of classification. A classifier 'filters out" non-

essential Information allowing subsequent systems to provide for far fewer contingencies. Unfortunately, a

classifier can achieve a high fan-in by classifying all possible Input-vectors Into one "category".

One remedy, Is to multiply the fan-In by the storage-load of the system. A system with a large load

will have stored a maximal number of categories and so the product of the fan-In and load will be

maximized by systems that can classify a large portion of the Input-space even when storing a large

number M of categories. With this In mind, we consider the fan-In alone when the number of categories

is a fixed value M. We will derive the optimal of fan-In for this number of categories and use It to find

the "normalized" fan-In merit.

To calculate the fan-in merit / for the Unear-assoclator, note that the logarithm of the classifiable

space is roughly Uj + (1 — /?)log2 A/ by equation (5.36), where R Is the redundancy. The number of bits

needed to label the A/ different categories Is log2 M bits so the fan-In / Is

- R)log2 M

log2 M log2
- R

where R Is the Input redundancy. Note that n7/log2 M Is the maximum redundancy that can be

facilitated by the input. To get a normalized figure of merit, we first make the constraint that the Input-

space has entropy n^ and the output-space being composed of M categories, has entropy log M. Also

note that R > 1/7TW) > l/T , so by (5.60)

R >
Ailog2 A/

H(W)
(5.71)

and so the largest value / of / Is defined by

log0A/ + l H(W)

Ailog0 M
(5.72)

The fan-in merit / Is then
4 m

(5.73)

To get the merit for the non-linear assoclator, recall from relation (5.42) that TV > n\fln M so that
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A/log M/H(W) < 2/(7rln M) and because R > tM/{2n[) we have

nl nM nI
/m "" log2 M 2nQ log2 M Trln M

One final consideration Is a parameter that measures the ratio of the size of the classification space

C to the size of the Input space 7'. The higher the ratio, the more of the Input Is classifiable. The ratio

will be called the Inclusion I and Is defined by

I = rr

The theoretical maximum for this ratio Is M where R equals the lower bound In (5.71), so

(S.75)

So the inclusion-merit t Is / divided by this theoretical maximum. The result Is

Mi-M\og2M/H(Vf)

From previous considerations, the i for the non-linear associator has the upper bound

(5.77)

(5.78)

A good overall merit parameter for classification might be the product of the load, the fan-In merit,

and the Inclusion merit. The Issue of finding an overall flgure-of-merlt for memory and classification

might not be hard to address. The author has only recently defined these merit measures and has not yet

fully explored the alternatives.

In passing, we might add that these figures of merit can be quantified for the llnear-assoclator once

the throughput of the linear version of the classifier can be determined. We conjecture that the llnear-

assoclator may be very nearly optimal In most respects when the matrix size Is large. As far as non-

llnearlties are concerned, any non-linearity will cause performance degradation. However, 'slgmold" non-

linearlties used in so many connectionist systems (see [22, 24, 40|), will perform reasonably well If they are

not too "steep*. In particular, if the rising portion of the slgmold Is broad enough to encompass most of

the variance of the components of the matrix-output-vector, most of the matrix-output information will
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be retained. Though the author has not made the attempt, a "maximal steepness1 necessary for negligible

Information loss should be easily obtainable using something like the tails-lemma of appendix A. Here, one

would use the sigmold to limit the range of values that the components can assume as was done for the

matrix-weights In the previous chapter to Improve efficiency. In any event, the Hopfleld non-llnearlty

represents a sigmold with "Infinite steepness" and so provides the lower-bound on performance for

slgmold-non-llnear outer-product assoclators.
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Chapter 6
Summary

6.1. Contributions and Accomplishments

The most Important contribution of this work Is the characterization of memory and storage In

terms of Information theory. For memory, the primary accomplishment was evaluation of the matrix-

entropy and the proof that It bounds the retrievable Information. The bound was subsequently used to

determine the amount of Information stored as a function of matrix-size and number of associations

stored. A criterion for minimal performance was obtained through the definition of channel memory.

This criterion was then used to bound the number of Items storable. We also dealt with the notion of

retrieving Information via separate "accesses1 to the memory, one for each Item stored. Though

information obtained this way is not the same as that actually stored In the matrix, we find that the

latter is an upper bound on the former.

Use of the concept of the matrix-channel allowed us to characterize and evaluate classification of the

associator. For this, the fundamental concept defined was the matrix-throughput which Is the ratio of the

output Information to the input information. The simple linear relation between the two for the

associator with Hopfleld non-llnearlty allowed us to quantify the fraction of the Input-space that Is

classifiable and obtain minimal requirements on sub-features of Incomplete-Input vectors needed for their

proper classification. We also noted requirements on the matrix-size as they relate to the task required.

We found that an associator with Hopfleld non-llnearlty. expected to classify inputs that are nearly

orthogonal to their category-exemplars, requires 50-100 times as many weights as does one that merely

stores Its prototypes. The latter system is a •degenerate" classifier. It can properly "categorize" an input

vector if that vector is an Input-prototype. Such a system would not be very robust In its classification of

Input-vectors that have a significant number of "bits" In error. In any event, there is obviously a tradeoff

between the number of categories over which the associator can divide the Input-space and the fraction of

the Input-space that can be classified. The more category discrimination required of the system, the fewer

vectors can be classified given a fixed matrix-dimensionalities.
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We mention that in some sense, the assoclator Is not really doing classification unless the output-

dimensionality Is very nearly equal to the logarithm of the number of categories stored. We were merely

Interested In conditions under which the assoclator would pass through Information useful to a subsequent

stage that Is to determine the category to which the Input to the associator belongs (see second-stage of

5-3). An associator could be said to classify Its Inputs If the outputs It produced were much nearer to the

output-prototypes than the respective Input-vectors were to their exemplar-prototypes. In the case of the

Hopfleld-non-linear assoclator, the average distance of the matrix-output from the "correct1 output-

prototype is nJl — pG). We can decrease this distance by forcing pG to be near one or by keeping nQ

small. The first of these can only be done by storing less than n^ categories where n. Is the dimension

of the Input-vectors (see equation (5.15), page 59). The second option Is fortunately in keeping with

optimal performance of the classifier. In fact, we found earlier that a large input-dimensionality allows

classification of a very large number of vectors for a given matrix-size and storage-load. This is probably

the most Important finding concerning associator-classlflcatlon. A matrix that "fans In" so that Its Input-

dimension is much larger than Its output dimension will give the best classification performance for a fixed

matrix-size and number of stored categories. Thus we have an architectural specification based on

Information theory. A classifier does data-compression so that the output-handles much less entropy than

does the Input and the matrix dimensionalities should reflect this fact for optimal performance.

After evaluation of the performance of the system, we obtained figures of merit for both memory

and classification performance. These were "normalized" with respect to optimal Information-theoretic

performance limits and so serve as a basis of comparison of general memory/classifier systems. The

assoclator with Hopfield, non-linearity was shown to perform suboptlmally, In fact, disappointingly so. On

the "up side", the Hopfleld-non-llnear system provides a lower bound for performance of assoclators with

•slgmold" type non-llnearltles.

6.2. Limitations of this Investigation and Future Directions

The main limitation of this work was that It did not address the Information content of the actual

matrix-output (labelled G^' In figure 5-3). The problems with the analysis are mentioned on page 67.

Once this Issue Is addressed, one may be able to determine the optimal performance of any assoclator with

sigmold non-linearity on Its output. What's more, the storage bound was merely an upper bound to

performance. Knowledge of the amount of information present in the matrix-output would determine Just

how tight this bound Is. We also assumed that the information at the output of the matrix Is all useful to

a second-stage process that must classify the output-vectors. This Is not necessarily true but Is probably a

good assumption due to the fact that the assoclator maps similar Inputs to similar outputs and the fact

that we characterized information at both Input and output in terms of vector-similarity.
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A rather serious shortcoming of the analysis was that It assumed that the prototype vectors were

chosen randomly, that is they were •balanced-Bernoulli* vectors. In reality. If a system acquires its

prototypes by encoding representations of "stimuli1 or •concepts* etc.. it will most likely have correlated

prototypes. So while we did not require orthogonality of the prototypes, the requirement that they be

uncorrelated (randomly selected) is too stringent. The problem Is confounded by the fact that storage

capacity most probably degrades in the presence of inter-prototype correlation; the sensitivity to

correlation becomes more pronounced as the system-size gets large.10 This Is a serious flaw since It

indicates that the storage capacity may not be achievable In practice. On the other hand, the relation of

mutual information to vector geometry outlined In appendix B may provide a means by which a set of

prototypes can be strategically chosen so as to minimize correlation or equivalents maximize mutual

Hamming-distance. If such a method could be easily incorporated Into the encoding process, these systems

could in fact achieve better-than-optimal performance since •de-correlatlon* could produce prototypes

more mutually distant than random selection can.

Another Issue not addressed was classification performance when the number of stored categories

was less than the Input-dimensionality. The analysis in the classification chapter would probably extend

to this case if the linear approximation to $ on page 50 was changed to a quadratic one for more

accuracy. Even without this change however, the linear approximation overestimates p~ so the

performance bounds derived in the classification chapter apply to the case that the number of stored

categories Is small. The upper bound merely becomes looser. As the number of stored categories is

diminished, pQ Increases but not as rapidly as the linear approximation would indicate. Note that even

when the number of categories Is less than the input-dimensionality, the analysis applies to randomly

selected Input-prototypes not orthogonalized (forcefully-decorrelated) prototypes. This is an advantage

since it represents a relaxation of the orthogonality restriction needed for perfect retrieval (see [21, p. 18|).

Regarding future directions, there are too many possible avenues for continuing this work to

mention here. Two however are of primary concern to the author. First is the analysis of the auto-

associator as both memory and classifier. This extension Is not without obstacles however. With respect

to memory, the weights of an outer-product matrix are less Independent when the output-prototypes are

Identical to the Input-prototypes. On the other hand, the Individual weights (excluding those on the

diagonal which are constant and so contribute nothing to the matrix-entropy) will have the same

distribution as those of the hetero-assoclator and should be nearly Independent when many prototypes are

stored. In any event, the matrix-entropy of the associator Is less than for a heteroassociator so the

storage will be limited accordingly. Another problem regards classification. An autoassoclator requires

The evidence for this w u obtained by a "cursory" Investigation conducted by the author. This analysis w&j not
included since it depended upon erroneous independence assumptions of vector dot-products and so may have been
inaccurate.
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the output-dimensionality to be the same as that of the Input. The present Investigation Indicates this

condition Is suboptlmal for classification performance.

One method for solving both problems Is to use a hetero-assoclator (with output-dimension smaller

than that of the Input) but feed back the output Information In some constructive fashion. However, even

If this can be done, the amount of output Information must be sizable In comparison with the amount of

Input Information present at the start of the auto-association process. If the amount of output

Information is less than 1/2 or 1/3 of the amount of Input Information, the Incremental Increase In

Information available at the output after several "Iterations1 of the auto-assoclator will be only

marginally better than that available to begin with. The author believes that the autoassoclator will

therefore have greatly Improved classification performance for light storage loads but will not gain much

storage capacity as a result of the auto-assoclatlve feedback.

We also mention that theorem 1, page 26, does not apply to the auto-assoclator since the "retrieval-

address" Is not Independent of the datum to be retrieved since the Input Is generally a partial rendition of

the datum to be retrieved. The theorem could be modified to take this Into account, but the bound on

retrievable Information will be different. The auto-associator has the advantage that the input partially

specifies the output, so the auto-assoclator needn't "work as hard" when the Input specifies a substantial

portion of the output. The result should be Improved classification-performance over the hetero-assoclator

even though the auto-assoclator has a (perhaps marginally) smaller matrix-entropy. In any event, the

author believes that the methods used to evaluate classification of "single-feature" vectors might aid

quantification of the performance of the auto-assoclator.

The other direction of research to be mentioned Is the storage of prototypes whose components are

zero-mean gausslans. This is a more natural mode of storage for the outer-product assoclator since the

output vector produced is best characterized as the proper output-prototype embedded In gaussian noise.

The author believes that the analysis would begin with the nolsy-slgnal analysis of Gailager in [12, p. 32,

Example 4| and proceed with evaluation of the matrix throughput.

Lastly, we mention that assoclators built from other storage rules such as error correction have not

been treated. This may be a much more difficult problem since evaluation of the matrix-entropy could

problematic. In the event that it can be determined or approximated, the theory presented here would

then be applicable for performance evaluation. The result could be a theory relevant to multi-layer error-

correction systems such as the Parker/Rummelhart "backpropagation" networks.
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6-3. Epilog

At this point, I'd like to let my editorial hair down and relate a couple Interesting observations.

First, notice that the prototypes were treated as vectors that were to be distinguished as exemplars of

distinct categories. As such, a premium was put on their dissimilarity so that the system could tell them

apart. Though this may not be desirable In all assoclator tasks, It points up an Issue regarding the

•symbol" view of Intelligence. If we Identify the stored prototypes as 'symbols1 one could view symbols

as a means of performing large-scale data-compression on the environment. This not only enables a

system to vastly simplify Its representation of the environment, but the identification of such symbols In a

cognitive system could subsequently provide a parsimonious theory of cognition (Yes, I know, 'traditional

AI1 already knows this). Not that the Identification would be easy, (if symbols can be said to exist at all,

they are probably too "plastic1 and malleable to be static entitles) but in the associator at least, the

symbols are the prototype pairs. The Input-prototype reflects the system's "Idea1 of a most typical

"object type" within a large class of objects, and the output-prototype reflects the system's representation

of the object. The object at this level, Is known only as It belongs to a generic class of objects. All other

Information Is "discarded1 as Irrelevant. The analysis done here showed data-compression as a

consequence of the presence of symbol/prototypes. However, the relation should go the other way as well,

as evidenced by studies of "compressed1, •hidden-unit1 representations generated within backpropagatlon

networks. The symbol Is doubtfully an explicit feature of the brain, but Is probably an emergent property

of data-compression.

While I'm making conjectures about how the brain works, I might as well take a stab at the amount

of information It can store. The figures obtained here are doubtfully accurate for biological brains but

serves as a prediction made by the following simplistic assumptions

1. The whole brain participates In storing roughly N Items where N Is the number of connections
In the brain.

2. The connection strengths are normally distributed with variance roughly N.

3. The effect of all connections on a neuron Is the linear sum of the Individual effects.

How embarasslng! Anyway, assuming 10,000 connections per neuron and 1010 to 1 0 n neurons per brain,

we get 1014 to 1015 for the number of connections. The Information storable Is then roughly Nlog2 N or

4.5X1015 to SxlO18 bits, or roughly a billion megabytes.

The only thing that will rescue this estimation Is Its crudeness. The noteworthy thing though Is that

the theory does make a prediction. It would be Interesting If In the future, a better understanding of
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Appendix A
Entropy of a Binomial Random Variable

In this section, we show that the entropy of a binomial r.v. is approximated by the entropy of a

corresponding normal r.v. In this development, a binomial r.v. 5 is a sum of n l.i.d. Bernoulli trials,

where a Bernoulli trial is an r.v. with outcome 0 or 1 . We will only consider binomial sums of

balanced Bernoulli-trials, that Is, Bernoulli trials whose two outcomes are equiprobable. Such a binomial

r.v. has variance n/4 , and as we will show, has entropy that approaches that of a normal r.v. of the same

variance. The entropy of a normal r.v. with variance n/4 is (l/2)\og2(nen/2). Therefore the following

theorem will be proven In this appendix:

Theorem 1: Let 5 be the binomial r.v. associated with the sum of n i.i.d. balanced
n

Bernoulli-trials. Then

Hm (//(Sn)-(l/2)log2(jrcn/2)) = 0 (Al)
n —» oo

The rate of convergence is not treated, but numerical tests have Indicated it to be fairly rapid. It would

be of interest to study not only the rate of convergence, but whether or not the convergence is monotone

in n . That Is, one would expect that

< | H{Sn) - (l/2)log2 (xen/2) \ {A.2)

for all n = 1, 2

The rate and manner of convergence are not explicitly dealt with though they possibly could be Inferred

from the proof that follows.

A few lemmas are needed to obtain the result. Each lemma specifies that some sequence or class of

sequences exists that ensure that a specific Inequality be true. Constraints on the sequences sufficient for

the inequality to hold are specified by each lemma. After the proof of the lemmas, the proof of the main

theorem begins by showing that a sequence exists that obeys the constraints of all the lemmas

simultaneously. All the respective Inequalities will then hold and they can be linked together with the
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•triangle-Inequality* to give the result of the theorem. Arguments used In the various proofs were

motivated from developments In Feller [11] and Rudln (39).

The proofs to follow generally require that, given an arbitrarily small real number e > 0 , some

positive quantity that Is a function of the positive Integer n will be smaller than e for all sufficiently

large values of n. No generality Is lost by assuming that e is less than 1. This assumption will be used

throughout (except where otherwise stated). Further, to simply the arguments and notation, we consider

only even values of n . The arguments for odd n would be the same but n/2 would have to be

replaced by (n — l)/2 . Finally, the result of each lemma will hold when i Is replaced by c/4 since e is

an arbitrary positive constant. This will be Instrumental in the proof of the main result.

Notatlonally, <t> (*) Is the normal probability-density function, \l(y2xo) • exp(—x2/2c?) for a

normal r.v. X with a mean equal to zero and variance a2 where a > 0. We will be concerned with
n

a = v n / 2 and will use this value for a throughout. The standard normal density function

l / v ^ r - exp(-z2/2) will be denoted 0(r).

A.I. Ignoring Tails of the Normal Entropy Integral

The entropy of the a normal r.v. with variance <f is given by the integral

/

CO
_oo — 0^(z)log2 <t>ff(x)dx . The first lemma allows approximation of the normal entropy by Ignoring the

•tails1 of this integral. We show that for a = <j{n) s vn /2 , a positive-Integer sequence {r } , of order

O (vnlog2 (log2 n)) exists that grows rapidly enough so that for any positive e » the integral

r
n

is within t of the true entropy for all sufficiently large n . From this It follows that If Is } Is a

sequence whose elements exceed those of (r } for all sufficiently large n then the Integral

i

n
~ o loe d> dx

n

will be within e of the true entropy. This property we will call asymptotic convergence. In

particular, If {sn} Is of higher order than {r } then the Just mentioned Integral has this asymptotic

property. Our concern is to find a lower estimate of the order of {r } that is sufficient to guarantee

asymptotic convergence. The following lemma and Its corallary state the result.



Lemma 2: For each n = 1, 2, . . . , let Xn be a normal r.v. with variance or2 where

a = y/n/2 . Given e > 0 there exists a positive-Integer sequence {r } of order

O (>/nlog0 (logo n)) with the following properties:

1. First property: There exists a positive Integer iV such that If n > N f then

) f 0a(x)log2 4>{z)dz \ < t (A.3)

2. Second property: If {s } has the property that for some positive Integer

n > AL implies a > r then {s } has the first property.
—" 2 fi ""•" fl fl

Proof: For any n the entropy of X is defined by
n

H(X_) =
*— OO

Urn / -
r —* oo J—r

= llm / —0 (x)log« ^ (x)di (A.4)

Since X Is normal with variance a2 the entropy H(X ) Is equal to

l/2iog2 2*cP < oo [12, p. 32]. Therefore the limit above Is finite and by definition of
• llm ' , a positive Integer r exists so that r > r Implies equation (A.3) with r

fi "•"* fi nr —» oo
replaced by r . We now show that for fixed c > 0 , a positive-Integer sequence {r^} can be

chosen as an O (vrtlog^ (log2 n)) function of n so that property 1 holds.^ (log2

Note that <t>a(eu) = \jo • <t>(u) . Substituting the variable u = x/a Into the Integral of
(A.3) and letting 6 = r ja , one obtains

n fi

ffn fb
n

/ -0cT(x)log2 <Pa(x)dx = a / -0a(cru)log2 ^(<7u)ciu

= <7 / -log (0(U)/C7)dtt
J-b Q *

n

4>(u)du + l o g 0 a / n0(u)ciu (A.5)
n
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We denote / _ 6 -0(u)log 2 <t>(u)du by 7^6) and denote / _ 6 <f>(u)du by 72(6).

If 6 Is allowed to approach infinity, then 7 (6) converges to the entropy (l /2)log0 {2ne)

of a standard normal r.v. We can therefore choose a constant b such that b > b Implies

that I (b) Is within c/2 of Its limit. No harm Is done If for convenience we take b to be

larger than 1.

Since the lemma Is concerned with the dependence of b on n as n gets large, no

generality Is lost by considering only n > 132 and c < 1/4 . For such n, let11

= \ (V^/2)(v"21og2(4/e)(log2 (log2 (V^/2))) 1 / 2 + 6

Since n > 132 and e < 1 the quantities under radicals are non-negative. Also b is

Independent of a , so that ^ = O (vlog 2 (log2 n ) ) . The lemma will follow if we can show for

fixed n > 132 that b > b implies

H(Xn) - (Ix(b) + (log2V)./2(6)) | < 6 (A6)

Denote llm 7.(6) by /.(oo), t = 1,2. From the derivation above one can see that
—• o o

H(Xn) = /j(oo) + log2 <7/2(oo) so that (A.6) is equivalent to

(\og2<7)I2(oo) - (Ix(b) + (log2

If we show that the conditions

l. | / ( o o ) - 7 ( 6 ) | < ;

2.
2| log2 a

hold for 6 > 6n, then the left-hand-side of (A.7) satisfies the following

log2 <T72(OO) - (Ix(b) + log2 aI2(b))

The restriction, n > 132 is used to diminish the chain of inequalities on the next page concerning the parameter 6 .
It also allows use of a sequence {r } whose terms are as small aj possible, though this isn't necessary to obtain a suitable

sequence.
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7 (oo) - 7,(6) + log2 a(/ (oo) - 7 (6))

< | 7,(00) - 7,(6)1 + |log2 <r|| 72(oo) - 72(4)

and the conclusion will follow. Since 6 > 6 , condition 1 Is satisfied by definition of brt. We
n

therefore need only consider condition 2.

To show condition 2 Is satisfied, we observe that if #(x) is the standard normal
distribution function then we have [11, vol. 1, p. 176)

1 <>
1 - *(x) < exp(-x72) all x > 0 (A.Q)

V27T X

Also for b 6 R. # ( - 6 ) = 1 - #(6) so that

I2(b) = / <(>(u)du = #(&) - # ( - 6 ) = 2#(6) - 1 (A.IO)
J — 6

and

/ o ( o o ) = llm /
1 J-b

This gives

|JJoo)-/J6)| = |1 — (2#(6) — 1)| = 2|1-#(6)| = 2(1 -#(6)) (A.12)

We make the observation that the equation x + y < x • y is satisfied for all x > 4 if
y > 4 / 3 . Identifying x with Iog2(4/e) and y with iog2 (log2 a) t we see that under the

assumptions for n and i that have been made on the previous page, we have x > 4 and
y > 4/3 . For b > bn , we have the following chain of Inequalities:

6 > 6

> >/21og2 (4 /e) \ / log 2 (log2 a)

> \/21og. ( 4 / 0 -f 21og^ (log, a)rt V * / W ' •**>-'»#> V I V 6 A



= >/21og2((4/c)Iog2<7)

62

Therefore < - logn ((4/e)log0 a) so that exp(-62/2) < l2 Now 6 > b > 1 (by
2 - * *log0 ^ "~ n

choice of 6 > 1) and we have by (A.9)

2 2
2(1-#(6)) < exp(-62/2) < 2 exp(-62/2) <

Using (A.12) this gives condition 2.

To finish the proof, we note that {rn} as defined Is O (V^nlog2 (log2 n ) ) . We have finished

showing that the first property of (r } holds for Nt = 132.

If {s } Is a sequence and 7VL a positive Integer such that n > Nn Implies s > r ,

then set i V = max { Ny N2 }. Since —^(z)log2 0 (x) > 0 for all x , It follows that for
n > N

—oo

- 0 (x)lOg,
n

> y n -
so that

H(Xn) - / " -
n

< \H{Xn)~ j ^ -
"" n

From this we see that {a } has property l mentioned In the statement of the lemma.

"We get away with freely intermixing base-2 and natural-base logarithms due to the use of the inequality. That is, for

x < 1 , we have that y < log2 z implies exp(y) < exp((log0 e)ln x) « * I o g2 * < x . In this case, y =- - 6 2 / 2 and

x — </(4log0 (7) .



The following result is Immediate

Corallary: If {s } Is a sequence of order larger than O (vnlog2 (log0 n) ) , then there is a

positive integer N such that n > N Implies13

H(Xn) - j n -<^(x)log2 <t>a(x)dx

A.2. Discretization of the Normal Entropy Integral

The statement and proof of the next lemma use notation borrowed from Rudln In [39, Ch. 6) In his

development of the Relmann-Stelltjes Integral. The arguments he gives In theorem 6.8 [39, p. 125) for the

lntegrability of a continuous function on a closed Interval is extended to our situation. We desire to

approximate an integral with a Reimann-sum, however the limits of Integration are not fixed and the

Integrand varies with the number of points on which we sum. Our notation, which Is only slightly

different from Rudln's, is as follows. If 6 > 0 then a partition P of the closed interval [—6, 6] is a

finite set of points {x f } | a B _ f such that —6 = x_ f < x_ < . . . < xf = 6. If f(x) is a continuous

function defined over [—6, 6], its maximum and minimum are attained over any closed interval In the

domain of / so we put A/.. = max /(x), mf. = min /(x), i == — r,—r+1 r—1. The

quantities Ub(P,f), and L^P.f) will denote the sums

—r

If \ntUAP,f) and sup LAP, f) are finite and have the same value, their common value Is called the
P P

Relmann-Stelltjes Integral of / over [—6,6) denoted by f^bf{x)dx. From the definition of the

Integral Just given, It is apparent that for any fixed P

fb

< / f(x)dx < Ub(P.f)

Er—1
/(x.)(x. „ —x.) since m,. < fix.) < M,. for

i = — r,—r4-l r—1.

By "Urger th*n O {/{n))m where f[n) > 0 , we mem a sequence {f } such that for any constant C > 0 there is

an iV so that n > ,V implies • > C-f{n).
n
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Before proceeding to the lemma we state the following propositions.

Proposition 3: For any a > 0 the functions 0 and f{x) = — <t>(x)\og <fi(x) have
bounded first-derivatives over the domain R.

One can show that both \f(x)\ and |0'(x)| are continuous over R and approach zero as : - • ±oo

These together imply boundedness over R . The second proposition Is

Proposition 4: Let g be a function dlfferentlable over a connected domain D C R
and let B be a positive constant so that the derivative tf satisfies \<f{x)\ < B over D .
Then g is uniformly continuous on D with \g{x) — g(y)\ < B\x — y\ for all x, y 6 D .

Proof: Because g is differentiate, it It continuous and so integrable over finite
Intervals. We have the following inequalities

\g{x) - g(y)\ = | / g(u)du \ < f'\ g(u) \du < B-\x - y\

yielding the desired result.

We now state and prove

Lemma 5: Let a = v n / 2 and let {r } be a sequence of positive Integers such that

b{n) = r I a Is o(vn/\og n). Given c > 0, there exists a positive Integer N such that
n > N implies

r
/ n (A13)

n t»—r
n

Proof: We continue to use f(x) s — #(x)log2 <t>(x). As shown in the previous lemma,
the integral in equation (A.13) is the sum of IJb(n)) and log al'Jb(n)) where the functions /
and /2 were defined on page 86. In a similar fashion, one has

r r r
1 " I

^ 2 ^

Let 5j(n) and So{n) denote the first and second sums on the right hand side respectively. The

lemma will follow if we can find an /V so that n > TV Implies



(6) - -Stin)\

log2 a\I2(b) - is2(n)| < j (A 15)

To obtain, this we will require that AT be large enough so that

-ftr/o) < - (A17)
<J n 4

1 €

-(logj o)t(rjo) < - (A

for all n > N. From proposition 3, we have the numbers Z? = max 1/(2)1 and
R

o = max|0'(x)| . Let N , iV be Integers such that
2 R l *

l. N. >

2.
i

and so that all n > N. satisfies each of these when substituted for N., i = 1, 2 . We also

require that A^ Is large enough that n > TV Implies relation (A.17) and N2 Is large

enough that n > N2 Implies relation (A.18). Such numbers N , AT exist since (6(n)) and

(b(n)\og2 (y/n/2)f are o(n) and the left-hand-sides of (A.17), (A.18) are o(l) .

Fix n > max { Nt, 7VA } and for notatlonal convenience let r = r and 6 s b{n).

Let P = {r .}^ f be the partition of [-6,61 with x. = i/o, i = —r, - ( r—1) r

(remember r = 6<7 by definition of 6 ). Notice x. - r̂  = 1/(7 = 2 /vn . To show (A.15),

we use the fact that n > Nx . Now A/.. - m.. = f(x) - /(y) for some x.y 6 [x^x^] and

we have \x — y| < 2 /vn . From this one obtains A/.. — m.. < B 2/vn by proposition 4.

Since n > Nt. n satisfies Item 1 above so that 1/vn < and we can write

2
- m,. < flt< 7

l / -
vn



From this It follows that

Ub{P.f) - Lb[P.f) =

Also

f f -1

-f(r/<r)

f 1

where Q^n) Is the sum 2 j » - f ^ z i ^ r t > i "" Xt̂  * ISJote t h a t ^i(n^ l s b o u n d c d above and
below by Ub(P,f) and Lh{P,f) respectively (by definition of these two latter quantities). By
definition of the Integral, 7^6) Is bounded above and below by these same quantities. It follows
that 1^(6) - Qx{n)\ < 6/4 . From this and relation (A.17), we have that (l/a)Sx{n) Is
within e/2 of I^b) so that (A.15) holds.

The arguement that equation (A.16) holds Is similar. In this case, recall that n > N2 so that
Item 2 holds. Using the notation for the function <£ analogous to that we used for / , we have

M,. — m . . < <
4 01 >/n 86log2(\/n/2)

and

l

- Lh(P.<t>) = > " ( A f ^ . - m ^ . X x . ^ - r . )

< 26 =
86log0 (y/n/2) 4l0go (Vn/2)

Finally, let Qo(n) = 2Z_r 0(x.)(x. — r.) and notice that Qo(n) Is bounded above and

below by UAP.b) and Lb(P.<t>) respectively as Is /o(6). Therefore we have that
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\I2(t>) - Q2(n)\ < €/4log2<r. The Identity (l/a)S2(n) = Q2{n) + (l/a)<t>(r/<7) and relation

(A.18) then Imply the Inequality (A.18). The lemma follows with N = max {NVN2}.

A.3. Approximation of Binomial Entropy

A.3.1. Error Bounds for Logarithm Term*

Feller's development [11, vol. 1, p. 170-182) Is expanded here for the sake of providing

approximations to terms of the binomial probability function and bounds on the error of approximation.

First a few observations with respect to logarithm approximation. We start with the Taylor series for

In (1 + t) which Is known to be

°° (-0*
In (1 + 0 = t-J2 T-̂ -j- 0 < | t | < 1 (AlO)

and for In (1 - 0 It Is

00 t*
-in (l - 0 = t Y, T-J«Y 0 < 111 < 1 (A.2O)

t—0

so that

In = In (1 + t) - In ( 1 - 0 = 2t • V — 0 < \t\ < l (A.21)
1 """ * . 2l "t* 1

Is obtained by adding the two series In (A.10) and (A.20). See [11, vol. 1, p. 51) for details of the

derivation. Subtracting 2t from both sides of (A.21) gives

* i 4 °° j2l
l n — - 2t = 2t l.^TZ 0 < M| < 1 (A22)

We are Interested only ln values of t between 0 and 1/3 so that the series ln (A.22) is positive. In other
l + t

words ln — - - 2t Is positive. Comparing this with a geometric series with t = 1/3, we have the chain

of inequalities

A _ ^ - 3 1 - 1 / 0

Since the series In (A.22) contains only positive terms and the first term is l, we also have
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In 2t > — . Putting these Inequalities together we have
1 - t 3

1 + t
— < In - 2t < — when 0 < t < 1/3 (A.23)
3 1 - t 4

Similarly we can evaluate In (1 + t) — t for t In the stated range. Subtraction of t from the series

(A.19) yields

oo

•—0

The series is absolutely convergent over the range of t considered.14 One can therefore consider the

terms of the series In any order without altering the sum [30, p. 78). We group the terms of the

summation In pairs to get

0 0 1 t
2 \~** i

r** » + 2 i + 3

Since the terms of the sum are positive, In (1 + t) — t Is negative. To assess Its magnitude calculate

o o / *vt o o
^ *2, 2

In (1 + t) - t\ = - r
t—0 t—0

oo .2

l - t

1
Since 0 < t < 1/3 , we have < 3/2 and so

l - t

In (1 +

and therefore

0 -

o

• • • •

o

11

<

< —
o

In (1 4 - t < 0 0 < f < 1/3 (A.24)

A series is said to be absolutely convergent if and only if it converges when each of its terms is replaced by its absolute
value.



A.3.2. Expansion of Binomial Coefficient!

These observations made, one can now follow the development of [11, vol. 1, Ch. VT1.2|, who derives

an approximation to the •central1 binomial coefficients. We will take n to be even throughout and set

v to be n/2 to simplify notation. The case for n odd would be treated similarly with v = (n — l ) /2 .

Let a, = 2""n{ n , ) be the probability that the binomial sum S exceeds the mean, n/2, by k .

Since a . equals a,, we will only consider non-negative Integers k . Our goal Is the analysis of the error

Incurred when a. Is approximated by the normal density of variance n/2 .

It Is easy enough to verify that

There are k terms In the numerator and In the denominator so we may divide each term by v without

changing the value of the fraction

(A.26)

For k < v/z. and | j | < k we use the approximation 1 + ; / ^ ^ ex\>(j/i/) to transform the product In

(A.26)Into

— — > -

Using the Tact that £ , . x j = k(k — l) /2 one has

fc Q (A.27)

Using Stirling's formula to approximate factorials, the term a = 2~nfn>\ Is approximately >/2/7rn and

we obtain the normal-density approximation to the binomial coefficient a,

2/nn • exp(- (A.28)

Notice that the right-hand-side of this equation is the normal probability-density function of an r.v. X

with variance <T = n/4 evaluated at k/a standard deviations from the mean. Allowing c and t to
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represent the errors occurring In the approximation (A.27) and In that of aQ respectively put

= aQ

so that15

This defines c and e2 and the relation

t = £[ (1 - J/I/) / (1 -f

Is obtained from equations (A.26) and (A.29). Taking logarithms of both sides

Using the fact that k2/v = 2 £ . x j/v + k/u we solve for

(A.2Q)

exp(c2) (A.30)

^ j / 2j k k
€, = > In - — + In 1 + - - - (A33)

A.3.3. Upper Bound on Binomial Tail Coefficients

We are ready to state and prove

Proposition o: For integers i/ s n/2 and ^ In the range fv7n] < /fe < n/6 , the
relation a, < a exp(—^"/^) holds.

Here Feller omits the leading sign in the error-exponent by setting a, =• \/2/jrn exp(—i:*'/^) exp(( — *o
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Proof: The observations made In the previous section now come Into play. By
hypothesis, we have that k < n/6 so k/u < 1/3. We substitute t = k/v Into equation
(A.22) and see that the terms of the sum In equation (A.33) are positive with the / term less
than 3 0 » 3 / 4 . Since £ ."J / = (*(* - l))2/4, this sum Is less than

3 £ \ . 3 i t 4 - i t 2 <

4

We can get a lower bound on the term to the right of the sum In equation (A.33) by putting
t = k/u Into equation (A.24). The sum In (A.24) Is negative and larger than — 3/2(k/v)2.

From equation (A.33) and these bounds, we get an upper and lower bound on e :

3 it
--•(k/v)2 < £ < — ; (A34)

* Air

On the other hand, from equation (A.23) each term of the sum In equation (A.33) Is larger than
3 so that for k In the stated range the sum itself is larger than

2 3 _ 2

3

Therefore a tighter lower bound on e Is

For 6 , Feller [11, vol. 1, p. 182) shows that

1 1
< € < — + (A.36)

* 4 3
< € < +

4 n 20n3 * 4 n 360n3

so that 0 < c2 < n /3 In any event. Combining this with the lower bound for 6j we get

3 A:2

We set

k4 3 A:2 1
— _ — > o

3n

In this section, only the lower bound will be useful. The upper bound will be useful in & Uter section.



to get a sufficient condition for c — t^ to be positive. This condition Is met for all

k > V7n. Therefore for k in the range stated in the hypothesis, we have that the term
exp(—(e, — ej) of equation (A.31) Is less than 1. Equation (A.31) then implies that

a, < a exp(—k~/is) and the lemma Is proved.

A.4. Ignoring tails of the Binomial Entropy Sum

In this section, we state and prove a lemma (called In this section, the tails lemma) that shows one

can approximate the binomial-entropy by summing relatively few terms of the entropy-sum. The

approximation approaches the entropy of Sn as the total number n of terms gets large.

A.4.1. Relations Used In the Proof of the Tails Lemma

Before proving the last two lemmas, a few observations necessary. These relate to the error-

magnitude to be encountered in the tails lemma.

Proposition 7: For t In the range —1/3 < t < 1/3 , the relation

| 1 - exp(-*) | < 3 / 2 . | * |

Proof: This is easily seen from the inequalities obtained from the Taylor series for
exp(-0

oo , t>i oo , ^ i oo

t 1 3
; 1 |- t ' - 1 - 1/3 ' ' 2

One more observation must be made before proceeding to the lemma. Since llm zlog^ x = 0 the

* — o *

function rlog0 x Is continuous over the closed Interval [0, l) provided we define Olog. 0 = 0 to be

consistent with the mentioned limit. Taking derivatives, (log^ x = (In r)log e) one can verify that the

function — xlog0 x Is unlmodal with maximum value e^log^ e achieved at x = e - 1 . The function is

continuous on the closed Interval [0,1] and so Is uniformly continuous In this range.
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Given i > 0 , we seek conditions on x positive such that | xlog2 z \ < t.

Proposition 8: Let c > 0 be given. Then If x 6 [0, 1] and a Is any number In the
range 0 < a < 1 the Inequality

Implies that

< - • x 1 ~" a • e •
"" a

The last expression Is less than € by relation (A.40) so that the proof Is complete,

A.4.2. Proof of the Binomial Tails Lemma

We are now ready to state and prove the tails lemma.

(A.38)

xlog2 x I < e (A.30)

Proof: Given the hypothesis, (A.38), solve for t to get

i > l / a • x1 ~ a • c"1 • log2 c (A.40)

Since x a 6 [0,1], It follows that xorlog2 x
a < e""1 log^ c. From this we have

| xlog x | = -xlog x = - x 1 " ̂ x^log^ ((x0)1/0]

For our purposes a = 1/2 can be chosen to give

x < (ec/21og2e)2 =* | xlog2 x | < i (A.41)

Lemma Qi Given e > 0 . there Is a sequence {r } of order O (\/nlog n) such that

rn

H(Sn) - Y, -ak\og2ak\ < t (A.42)

•<
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Proof: For n < 10 , we can take r^ = n. For n > 10 choose r̂  = [v2nlog2 n\

and notice r -hi > >/7n . Since r Is O (vnlog7n), we can choose an N large enough
n n £

that the following conditions hold for all n > N:

1. r < n/6 - 1

2. n > e/(ec))

For fixed n > N , let Jfc = r + 1 and write the following inequalities

k > \/2nlog2 n = \/nlog2 n + nlog^ n > n + nlog2 (21og2 e/{et))

so that

> nlog2 |2nlog2 e/(et)\

and

-2k2/n < 21og9 (c€/(2nlog, c))

This Implies

(ee/(2nlogo e))'

Since sfrn < k < n/6 . proposition 6 Implies a^ < aQ exp(-2fc2/n). Together with the

fact that a < 1 this Implies for I > k :

exp(-2it2/n) < n) < (ee/(2nlogo e

We see that a. satisfies the hypothesis of proposition 8 with t replaced by t/n and therefore

a.log. a. I < -
l 2 I ' n

l7Notice th»t the second condition stipulates that the left-hand-side of (A.42) will be less than any t > 2log0 e/{cn) .

Therefore, 2log0 e/{m) is roughly the maximum entropy lost when S^ is "approximated* by a random variable

S ' *» min {S , r } . We say "roughly" because we have not accounted for the fact that 5 ' will equal ± r with a

slightly higher probability than the probability that S will assume these two values.
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Is the desired upper bound on •tail* terms of the binomial-entropy sum. We can now verify
the conclusion (remember, n Is even)

fn n/2 Tn

i—f kwm—n/2 * • •— f
n ' n

n/2

= l 2 £ -a* lo«2a*

< 2 2 * I a*1O«2 a*

The lemma is proved. We also have the following corallary for sequences of higher order than
the sequence {r } :

Corallary; For e, {rn} as In the lemma, let {s } be a positive Integer sequence such

that n > s > r for all n , then
— n — n

$n

Proof: The terms In the sum above are all positive. Since n > 3 > r , we have

n n

»—n *»—t
n

rn

—r
n

Because the leftmost quantity In this string of Inequalities Is within t of the rightmost
quantity, the result of the corallary follows.
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A.5. Similarity of Binomial and Normal Entropy Approximations

We have •chopped1 the tails of the normal entropy integral and then discretized it to obtain a sum

as a close approximation. The tails of the binomial entropy sum were also "chopped* to obtain an

approximation that is a sum of far fewer terms. We now need to show that the resulting approximations

for the normal entropy and for the binomial entropy are good approximations of each other.

Lemma 10: For n = l , 2 , . . . let a = v n / 2 and let {r } be a positive-Integer

sequence in O (vnlog2 n ) . Given e > 0, there exists a positive Integer N such that

n > TV implies

r r
n n

<t>o{k)

n

Proof: The sequence {r } is in O (VnlogTn) so we consider the case that r > V3n

for ail sufficiently large n . Also there exists a C > 0 such so that r < C • vnlogTn

for all n. It follows that a positive Integer 7V_ can be chosen so that v3n < r < n/6 for

all n > NQ. Let n be In this range and put t = i — e where t , e2 are defined by

equations (A.29) and (A.30) as functions of the positive integer n and k = 1, 2 n.
From these two equations we have that a, = <t> {k) exp(—t) and for k = 1, 2 r we

can bound the terms of the difference (A.43):

ak - ( -

exp(-01og2 (* (*) cxp(-O) - ( -

exp(-0)log2 ^ ( * ) + *,(*).*. exp(-0'log2 e|
2

4>o{k) |-|l - exp(-0| + |*,(*)H«H exp(-0|-|log2 e|

We need upper bounds on the terms | t\ t and |l — exp(—1)\ . To get an upper bound on | t \ ,
consider the following.

Since r > V3n, we have r AI\v% > 3r 2j2iT. For any k < r we get
n — n

18 /•"""
The c^se th*t r < v3n results in A smaller number of terms being summed in relation (A.43). The upper bounds

for the error derived in this section would still applicable to these terms. By summing less terms the total discrepancy

between the two sums in (A.43) will be less, hence the case that r < v3n b subsumed by the case that r > v3n .
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3 r 2 r 4

n n

also kA/(4vz) < r /(4^3) . By equation (A.34) then, we have that
n

n

Since | 62 | < n/3 we also have *2 < r^l(Aul) and so

= I S - <2 I < I «, I + I *2 I < r f |
4

In turn, r 4/(2z/3) Is less than 4(74(log-> n)2/n where C was defined at the beginning of the
fi *

proof.

To get a bound on | 1 — exp(—0 | we take a positive integer N so that n > N

Implies that 4(74(logo n)2/n < 1/3. Therefore we have | 11 < 1/3 and so

| l - exp( -0 | < 3/2| t | by proposition 7.

Finally, for | t \ < 1/3, exp(—t) Is bounded. Let K be a constant so that
exp(—t) < K for | t | < 1/3. Continuing the chain of Inequalities in (A.44), noting that

(k) I < 1, we have

2 ray*> i i 1 ~ «xp(-0 | + I * (*) I • | < || exp(-t) || log2 e

' + fOdogj e^Clogj nf/n

2 n)2/n

where .4 Is the positive constant ((3/2)-e~I + K)(log2 e)C*. To finish the lemma consider

again the left-hand-side of (A.43) which Is seen to satisfy
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n n

r 4r—r
n n

rn

«—rn

There are 2r + l terms In this sum, each positive and less than A(lo^ n)2/n. Since

r < C - vnlogTn , the sum is less than

[2CVnlog2 n + l]-i4(log2 n)2/n

which is O ((log2 n) 5 ' 2 /Vn) . It follows that there is a positive Integer TV such that if

n> N2 then

n + I|i4(log2 n)2 /n

From these inequalities, the lemma follows with AT=max { NQ, N , N^ } .

A.6. Proof of the Main Theorem

We now restate and then prove the main theorem.

Theorem l l s Let 5 be the binomial r.v. associated with the sum of n l.I.d. balanced
ft

bernoulli trials. Then

lim (H(Sn) - (l/2)\og2(iren/2)) = 0 (AAS)
n —• oo

Proof: We will show that for a given t > 0, there exists a positive Integer N such
that n > ;V Implies

\H(Sn) - ( l /2) log 2 (Ten/2) | < £ (AAQ)

Lemmas 2. 5, 9, and 10 can each be restated with mem replaced by "c/4 - In their respective
relations: (A.3); (A. 13); (A.42); (A.43). These lemmas will still be true when modified in this
way. Each lemma required a sequence that was constrained in some way to produce that
particular lemma's result. Our plan is to exhibit a sequence {s } that simultaneously satisfies

the constraints of all four lemmas. The Inequality mentioned in the conclusion of each lemma
will then be true. The triangle inequality can then be used to show that the Inequality (A.46)
holds.
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Let {s } be the sequence

n < 10
3 =n [>/2nlog n J otherwise

This is the sequence used In the proof of lemma 9 to render the inequality (A.42) (with
replaced by •c/4" ). In particular, for some N% > 0

n

for all n > N%.

Since (« } Is O (vnlog0 n) > O (vnlog'(log- n)) the corallary to lemma 2 Implies that} Is O (vnlog0 n) > O (vnlog( log-

there exists a positive Integer ;V2 such that for n > N. we have

^

Also s jo — O (viogTri), that Is, s /a = o(\/n/\og0n) and by lemma 5 there exists a

positive Integer AT so that for n > N. we have3

<j>a(x)dx - ^

~ f

Finally, from lemma 10, we have that there Is a positive Integer N4 so that n >

Implies10

n n

•

n

Now let iV = max { Ny No, Ny N4 } and consider any n with n > N. Since the entropy

of a normal r.v. with variance n/4 is l/21og (nen/2) , we can write

1 0 rmmm

The requirement that « > \/7n in lemma 0 is satisfied for n > 12 . We take one of N , N~, N,,iV to be greater
than 12 so that these requirements will be met for n > max { N%t Nn, N~t N } In what follows.

""" 1 2 3 4
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- msn)\ =

f°° f'n f'n
= I / —<{> (x)log0 <p (x)dx — / —<t> (z) log 0 <t> (x)dx + / — <t> (x) log0 <t> (x)dx

J-oo J-.n J—

n n

n

n

—$
n

f f

n n

n n

/•oo rf
< | / - * (x)log ^(x)(fe - / - ^ (x)log^ ^ (x)rfx I

J—oo J—t
n

' "

n A

t §

n

f
n ft

-a tlog2aA - H(Sn)\

Since each of the four absolute-value terms Is less than e/4 by the previous lemmas, their sum
is less than e . The theorem Is proved.
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Appendix B
Mutual Information and Vector Geometry

In this appendix, we derive a relation between the mutual information shared by two ±l-vectors,

A and B , and their Hamming-distance. The vector A will be a balanced-Bernoulli vector and the

vector B will be chosen at random from within a neighborhood of A of a given radius p . Vector B

will therefore provide information about A . We will determine the relation between the Information B

provides and the neighborhood radius.

B.I. Relation of Neighborhood-Size to Neighborhood-Radius

Let A be the set of n-dimenslonal ±l-vectors, and for the moment, let A and B be chosen

randomly from A . We wish to know the fraction of A lying within a given radius p of A . Toward

this end, consider the bail B{p) of vectors of A that are within a radius p of A . Since all vectors of

A are equlprobable outcomes of B , we can determine the fraction of vectors lying in B(p) by

determining the probability that B will come from B(p). Because these vectors are chosen at random

from A , they are balanced-Bernoulli vectors. Let X be the number of components of B that disagree

with their counterparts in A . The r.v. X Is the Hamming-distance HD(A, B) between A and B . It

is blnomlally distributed with mean n/2 and variance n/4 [26). By the central-limit theorem, we can

approximate the cumulative binomial probabilities with a normal distribution having the same mean and

variance (see Lindgren [30, p. 158]).

From this we see that the probability that B will He in B(p) is P[X < p) which can be

determined by the normal distribution with mean n/2 and variance n/4 . Half the vectors of A will lie

within a distance of n/2 of A , so so we consider the case that p < n/2 so that B(p) comprises less

than 1/2 of A . If we put Z = (X - n/2)/(>/n/2) , then Z Is a standard normal r.v. and we can write

P(X < p) = P[Z < (p - n/2)/(\/^/2)) = *(-z) (B.I)

where z Is the positive number (n/2 - p)/(vn/2). It is known that for z positive (say z > 3 ) the

approximation



exp(-z2/2)
—

V27T27TJ

Is quite accurate. [11, v. lf p. 175)

Now suppose we want the ball B(p) to comprise A /~* of A , where R > 1 . We put

X < p) = M~R in (B.I) and use the approximation (B.2) to get

A / - * =
cxp(-g*)/2

V2ffz

This can be rearranged to get the mzm In the exponent In terms of the other parameters

n A / - In

which is a recursive expression in 2 . As M grows, z should grow slowly. For large M then, the

• 2R\n M term under the radical should dominate so that z e& v2/?InA/. We put this value In for the

':" under the radical in (B.4) to get

V2R\n A / - In (4*r/fln M) (B.S)

which is a good approximation to z when A/ Is large (this can be verified by plugging the right-hand-

side of (B.5) in for z in equation (B.3)). The value of p Is ascertained from the definition of z to be

n v n n v n ,
/> = - - — * = - - —V2/?ln A / - In (4nR\n A/) (£.6)

2 2 2 2

So a ball encompassing roughly A/ of ^ has the radius given above.

B.2. Relation of Mutual Information to Neighborhood-Radius

Now suppose B Is chosen at random from B(p) rather than from A . An observer of B can infer

that A lies In a radius p of B . This radius is such that a neighborhood (or ball) about B comprises

A/ of A . Knowledge of B therefore constitutes an M -fold decrease In the possible values of A .

Therefore the Information B provides about A is log MR = <Rlog2 A/ bits.
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With regard to the n.-dimenslonal Input-vectors, of an assoclator, the vector A represents an

Input-prototype F . and B represents the associator-input F^' chosen from Bk(p) (see the chapter on

classification, page 55). The minimum value of R allowed In this case Is nM/(2nQ) where nQ Is the

dimension of the assoclator-output and M Is the number of stored associations. Plugging this In for R

In (B.6) gives an upper bound for p

< \ArMn M/nQ - In (2*2 Mn M/nQ) (B.7)
2 m

If we examine the n0-dlmenslonal output-vectors on the other hand, the vector A represents the

output-prototype G. and B Is the assoclator-output G." . We want a classifier sampling B to be able

to categorize It with A on the basis of B *s distance from A (see figure 6-3, page 61). It is the maximal

distance p that B can be from A that must be determined. To find this maximal distance, recall that

the minimal Information that B must provide about A in this case is log2 M bits. We can substitute

the value l for R In equation (B.6) to get an upper bound for the distance that B can be from A . The

bound is

noo \> ,
p < — - v 21n M - In (4*ln M) {B.6)

2 2

There Is a problem however. In this case, each ball about an output-prototype, of the radius on the

rlght-hand-slde of (B.8), encompasses 1/Af of the total number of possible n^-dlmenslonal output-

vectors. This means that each prototype has a I/A/ chance of lying in the ball about A . Since there

are Af — 1 output-prototypes aside from A Itself, we would expect one of them (on average) to He In the

ball about A . We call this a collision. In the case of a collision of two output-prototypes, the ball

about one prototype would largely overlap with the ball about the other. Many of the vectors within p

of one of the prototypes would not get classified with that prototype. This problem exists for all the

output-prototypes. That Is, each prototype will have a collision with an average of one other when p Is

given by the right-hand-side of (B.8)

To remedy the problem, we make the radius, p , small enough so that each ball contains only

I/A/ 2 of the output-space. Now any two output-prototypes have a 1/Af2 chance of collision with each

other. Since there are roughly Af /2 possible pairs of output-prototypes, less than one such pair on

average will suffer from collision. If the assoclator produces B to lie within this smaller neighborhood of

A , then A will be reliably classifiable. Since the ball constitutes Af ~2 of the output space, we put



I l l

R = 2 In (B.6) to get

nO
p > — - V41n Af - ln(8;rln M) (B.9)

2

This Is shown as a lower bound on p since It Is sufficient but not necessary for proper performance. In

other words, some values of p Intermediate between that of relation (B.9) and relation (B.8) should be

workable. In fact, using

no
p = (B.io)

would result In O (vA/ ) collisions among the M output-prototypes so that a vanishlngly small fraction

of the prototypes represent 'degenerate1 categories. We conclude then, that large systems having stored

a correspondingly large number of prototypes should be able to operate nearly optimally. That Is, an

output-vector, B , will be constrained to lie within pM of Its output-prototype A , where pM nears the

upper-bound In (B.8) as M gets large. On the other hand, for smaller M we may need a redundancy at

the Input that Is 1-1/2 to 2 times the minimal nM/(2nQ). This assures the output information Is

(3/2)log2 M to 21og2 A/ respectively as required by (the respective) relations (B.IO) or (B.9).
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