NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

STORAGE CAPACITY OF THE LINEAR ASSOCIATOR: BEGINNINGS OF A THEORY OF COMPUTATIONAL MEMORY

Technical Report AIP - 37
Dean C. Mumme
Learning Research and Development Center
and Psychology Department
University of Pittsburgh
Pittsburgh, PA. 15260

April 1987

This research was supported by the Computer Sciences Division, Office of Naval Research and DARPA under Contract Number N00014-86-K-0678; Army Research Institute, under Contract No. MD903-86-C-0149; and Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract N-0014986-K0107. Work submitted as Ph.D. thesis to the University of Illinois. Reproduction in whole or in part is permitted for purposes of the United States Government. Approved for public release; distribution unlimited.
$006: 2$
(:)
1

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified	10. restrictive markings			
2a. SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; Distribution unlimited			
26. DECLASSIFCATION / DOWNGRADING SCHEDULE				
4. PERFORMING ORGANIZATION REPORT NuMBER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (If applicable) Earnegie-Mellon University	7a name of monitoring organization Computer Sciences Division Office of Naval Research			
$6 c$ ADORESS (City, State, and ZIP Code) Department of Psychology Pittsburgh, Pennsylvania 15213	Tb ADORESS (City, State, and ZIP COde) 800 N. Quincy Street Arlington, Virginia 22217-5000			
3a. NAME OF FUNDING/SPONSORING organization Same as Monitoring Organizatior 8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERN00014-86-K-0678			
3c. ADORESS (City, State, and IIP Code)	10 SOURCE OF FUNDING NUMBERS p4000ub201/7-4-86			
	PROGRAM element no N / A	PROJECT NO N/A	TASK NO N/A	$\begin{gathered} \text { WORI } \\ \begin{array}{c} \text { ACCE } \\ \mathrm{N} / \end{array} \end{gathered}$
11. TITLE (Inciude Security Classfication) Storage capacity of the linear associator: Beginnings of a theory of computational memory				
2. PERSONAL AUTHOR(S) Mumme, Dean C.				
3a. TYPE OF REPORT Technical\quad13b. TIME COVERED FROM 86 Sept. 5 TO 91Sept 1	14. DATE OF REPORT (Year, MONTh, Day)1988 April 27 15. PAGE COUNT			

7	COSATI CODES	18 SUBJECT TERMS (Continue on reverse if necessary and dentify oy olock number)		
FIELD	GROUP	SUB-GROUP	COnnectionism, simulation, learning, memory, neural models	

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

See reverse side

0 distaibution/avallability of abstract \square unclassifiedunlimited SAME AS RPT onc useas	21 ABSTRACT SECURITY CLASSIFICATION	
2a NAME OF RESPONSIBLE NDIVIDUAL Dr. Alan L. Meyrowitz	220 TELEPHONE (Include Area Coode) $\text { (202) } 696-4302$	$\begin{aligned} & \text { 22C. OFFICE SYMBOL } \\ & \text { NOOO14 } \end{aligned}$

33 APR edition may de used unill exnausted Altother editions are obsolete
security classification of this page
Unc lass if iqgiviversity LIRRARIES

Storage capacity of the linear associator: Beginnings of a theory of computational memory

Dean C. Mumme
Learning Research and Development Center University of Pittsburgh

This paper presents a characterization of a simple connectionist-system, the linear-associator, as both a memory and a classifier. Toward this end, a theory of memory based on information-theory is devised. The principles of the information-theory of memory are then used in conjunction with the dynamics of the linear-associator to discern its storage capacity and classification capabilities as they scale with system size. To determine storage capacity, a set of M vector-pairs called "items" are stored in an associator with N connection-weights. The number of bits of information stored by the system is then determined to be about ($N / 2$) $\log _{2} M$. The maximum number of items storable is found to be half the number of weights so that the information capacity of the system is quantified to be (N/2) $\log _{2} N$.

Classification capability is determined by allowing vectors not stored by the associator to appear at its input. Conditions necessary for the associator to make a correct response are derived from constraints of information-throughput of the associator, the amount of information that must be present in an inputvector and the number of vectors that can be classified by an associator of a given size with a given storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems. For an associator with a simple non- linearity on its output, the merit figures are evaluated and shown to be suboptimal. Constant attention is devoted to relative parameter size required to obtain the derived performance characteristics. Large systems are shown to perform nearest the optimum performance limits and suggestions are made concerning system architecture needed for best results. Finally, avenues for extension of the theory to more general systems are indicated. ${ }^{1}$

[^0]
STORAGE CAPACITY OF THE LINEAR ASSOCLATOR: BEGINNINGS OF A THEORY OF COMPUTATIONAL MEMORY

Dean C. Mumme, Ph.D.
Department of Computer Sclence
Unlversity of Illinols at Urbana-Champalgn, 1988
Walter Schnelder, Advisor

This thesis presents a characterization of a simple connectlonist-system, the linear-assoclator, as both a memory and a classiner. Toward thls end, a theory of memory based on information-theory is devised. The princlples of the Information-theory of memory are then used \ln conjunction with the dynamics of the linear-associator to discern lts storage capacity and classification capabllities as they scale with system size. To determine storage capacity, a set of M vector-palrs called "ltems" are stored in an assoclator with N connection-welghts. The number of bits of information stored by the system is then determined to be about $(N / 2) \log _{2} M$. The maximum number of items storable is found to be balf the number of weights so that the information capacity of the system is quantifled to be $(N / 2) \log _{2} N$.

Classincation capabillty is determined by allowing vectors not stored by the assoclator to appear at Its input. Conditions necessary for the assoclator to make a correct response are derlved from constralnts of Information theory and the geometry of the space of Input-vectors. Results Include derivation of the Information-throughput of the assoclator, the amount of Information that must be present in an inputvector and the number of vectors that can be classined by an assoclator of a given slze with a given storage load.

Figures of merit are obtalned that allow comparison of capabllitles of general memory/classiffer systems. For an assoclator with a slmple non-llnearity on its output, the merit ngures are evaluated and shown to be suboptimal. Constant attention is devoted to relative parameter size required to obtaln the derived performance characteristles. Large systems are shown to perform nearest the optlmum performance llmits and suggestlons are made concerning system archltecture needed for best results. Finally, avenues for extension of the theory to more general systems are indicated.

Acknowledgements

Special thanks to the people on my Ph.D. committee, Walter Schnelder, research-advisor, Mlchael Falman, committee chalrman, Robert Stepp, Gerald DeJong, Sylvian Ray. Thelr views durlng my prellminary examination provided direction to this research. Thanks also to Geoffrey Hinton, James McClelland, and Edward Posner who allowed me to present my work at thelr research seminars. Comments and observations made by these people clarifled several relevant issues. In addition, I am Indebted to Rlch Golden for a deeper understanding of connectionlst systems and to James Stanlaw who provided a broader perspective for the results of thls investigation.

Most everyone owes their success to secretarles and other unsung heros/heroines. Most notable were the efforts of Cathy Rupp and Nelle Payne at the Unlversity of Pittsburgh, Learalng Research and Development Center, who pulled my coals out of the nire on several occasions. Additionally, my greatest regard and appreclation is due the clerlcal staff who worked for the University of Illnols Department of Computer Sclence during my stay on the Urbana-Champalgn campus. Many Ph.D.'s Including myself owe thelr success to the efforts of these highly professional, caring Individuals.

This research was sponsored by grants for Walter Schneider Sr. Scientist, University of Pittsburgh, Learnlng Research and Development Center, with the Army Research Instltute, under Contract No. MDA903-86-C-0149 and Personnel and with Tralning Research Programs, Psychological Sciences Division, Offlce of Naval Research under Contract Nos. N-00140-86-K-0107 and N-00014-86-K-0878.

Preface

The approach of Mlasky and Papert in their book Perceptrons [35] provided the motivation for thls research. Their analysis of the perceptron introduced useful mathematical tools for understanding performance-llmitations of "neural-based" systems. In addition, It charted and quantifed these llmitations and identified important areas for future investigation. As a result, the book Perceptrons identifed issues of learning and performance that have continued to be of concern to Connectionist researchers even now that the challenge for multi-level learning algorithms has to some extent, been answered. The author belleves that the mathematical tools developed by Papert and Minsky will themselves be useful for better understanding of connectionist architectures. In the author's view, the only short-coming of the work done by Minsky and Papert (and perhaps Rosenblatt as well) was their perspective. They treated the perceptron from a "computer" point-of-view. It was expected, for example, to determine whether or not a "retinal object" was "connected" even when the off-on state of a single "plxel" could determine the correct answer.

Most certainly, natural perception-systems don't work In thls fashlon. Indeed, they must determine the connectivity of objects despite Inconsistencies or nolse in the input-stimull. Thls ellminates the possibllity of "computations" whose result is affected by a single stimulus element. The proper perspective for these systems in the author's view is a probabllistic one in which the system's proper response is characterizable in some way but is robust to uncertaln, degraded, incomplete, and even Inconsistent information. The classiner identined In thls work typines Just such a system and the forgone analysis should exemplify the proper viewpolnt and methods for future Investigations of systems of thls nature. In this llght, thls work will have been of merlt if it has identined issues valuable to future efforts and provides methods for analysis of perceptual/cognitive systems.

Table of Contents

1. Introduction 1
1.1. 'Neural-Based" Systems 2
1.2. Auto-Assoclation 4
1.3. Overview of Major Issues 6
1.3.1. Tasks of Computatlonal Memory 6
1.3.2. Characterlzation of Memory 8
1.4. Methods and Focus of the Investigation 0
2. Definitions, Identities and Notation 10
2.1. General Relations of Information Theory 10
2.2. Specinc Notation and Relations Required 14
2.2.1. Notation for Sets and r.v. Distributions 14
2.2.2. Notations for Prototype-Vectors and the Assoclator Matrix 15
2.3. Probabillstic Analysis of Sums 16
2.3.1. Distribution of Sums 16
2.3.2. Blnomial Entropy 17
2.4. Special Functions 18
2.5. Measuring Similarity 19
3. Information Theory of Memory 22
3.1. Introductlon: Assess v.s. Aggregate Memory 22
3.2. Information-Theoretic Characterization of Memory 22
3.2.1. Access v.s. Aggregate Retrieval 22
3.2.2. Formal Deflnition of Memory 23
3.2.3. Partitloning Memory: Formal Dennition of Access-Memory 24
3.3. Characterization of Storage Capacity 25
3.3.1. Bounds on Retrievable Information 25
3.3.2. Storage and Storage Capacity 26
3.4. Relation of Separabillty of Memory to Performance 28
3.4.1. Non-Separabllity of Distributed Memory 28
3.4.2. Super-Summabllity of Item Memory 29
3.4.3. Separabllity of Permutation Memory 31
3.4.4. Relation of Performance, Item-Memory and Channel-Memory 33
4. Evaluation of Information-Storage Capacity 35
4.1. Characterizing Storage Capacity 35
4.2. Bounds on Storage Capacity 37
4.2.1. Restrlctions on Relative Magnitudes of Parameters 37
4.2.2. Matrix Entropy 39
4.2.3. Bound on the Number of Items Storable 40
4.2.4. Trading Storage with Error 41
4.2.5. Storage LImits for Item-Memory 42
4.2.6. Item-Memory with Errors 43
4.3. Storage Emclency 46
5. Classiffeation 48
5.1. Introduction 48
5.2. The Assoclator as a Classiner 49
5.2.1. Characterization or Classincation 40
5.2.2. Generation of Input Vectors 52
5.2.3. Throughput of the Assoclator 56
5.3. Classinable Inputs 60
5.3.1. Lower Bounds on Input Information 60
5.3.2. Lower Bounds on Feature Slze 60
5.3.3. Fraction of the Input Space that is Classinable. 62
5.3.4. Restrictions on Matrix Dimenslons. 64
5.4. Performance Degradation Due to Non-Linear Output 85
5.5. Classiffer Design Considerations 67
5.6. Maximal Performance and Figures of Merit 71
5.6.1. Merit Parameters and Flgures of Merit 71
5.6.2. Load, Efficiency, Throughput and Retrieval Information. 72
5.6.3. Search for an Overall Figure of Merlt for Memory 74
5.6.4. Classification Figures of Merit 74
6. Summary 78
6.1. Contributions and Accompllshments 78
6.2. Limitations of this Investigation and Future Directions 79
6.3. Epllog 82
Appendix A. Entropy of a Binomial Random Variable. 84
A.1. Ignoring Talls of the Normal Entropy Integral. 85
A.2. Discretization of the Normal Entropy Integral 90
A.3. Approximation of Binomial Entropy 94
A.3.1. Error Bounds for Logarithm Terms. 94
A.3.2. Expansion of Blnomlal Coemcients 96
A.3.3. Upper Bound on Binomial Tall Coemclents 97
A.4. Ignoring Talls of the Binomial Entropy Sum 99
A.4.1. Relations Used In the Proof of the Talls Lemma 99
A.4.2. Proof of the Binomial Talls Lemma 100
A.5. Similarity of Binomial and Normal Entropy Approximatlons 103
A.6. Proof of the Maln Theorem 105
Appendix B. Mutual Information and Vector Geometry 108
B.1. Relation of Nelghborhood-Size to Nelghborhood-Radlus 108
B.2. Relation of Mutual Information to Neighborhood-Radius 109
References 112
Vita 115

Chapter 1

Introduction

The systems under consideration are an outgrowth of work done on self-organlzing automata and perceptrons $[35,38]$ and later work In parallel associative memories, e.g. [21, 40]. Minsky and Papert In [35] had carrled out rather extenslve mathematleal analysls on perceptrons revealling Inherent Ilmitations in the classes of problems they could solve. These systems were "learning ${ }^{\circ}$ automata expected to classify input "stimull" based on their past experience on "trainlng" Inputs. Minsky and Papert showed that multiple-stages of perceptrons were required for many problems of laterest yet no tralning algorithm guaranteed to converge to a solution was known at the time for multi-level systems. They concluded in their book that the systems held llttle promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development of several multl-level learning algorithms $[9,22,36,40, \mathrm{ch} .5-8]$, descendant offshoots of the perceptron have regalned interest. Currently a varlety of these automata exist and are known by names such as "Neural-nets", "Parallel Distributed Processors" (PDP networks), "Assoclative Memories". They are collectively called "connectionist architectures" and have been studied as self-organizing memorles of perception [28] content-addressable memories, helrarchlcal knowledge bases, and classification systems $[5,6 \mid$ models of human "neural-computation" $[6,18]$ of human task performance and attentional learning $\mid 41,44$ | speech performance and natural language understanding $|13,40, \mathrm{ch} .18,42|$.

These and other efforts have led to guarded optlmlsm for the future of connectlonist architectures as knowledge engines or as models of human intelligence. Capabllities and llmitations of both task learning and performance have been demonstrated. ${ }^{1}$ However, though many mathematical lnvestigatlons (e.g. Barto [9], Golden $|15,14|$, Grossberg $|19,18|$, Kohonen $[28 \mid$), have been conducted, including informationcapacity studles (see Abu-Mostafa [1, 2|, Amlt [3, 4], Keeler [27|, Little, et. al. [32|, McEllece, et. al. [34]), there is much room for development of analytical understanding of the capabllitles of these systems.

[^1]Development of connectlonist memory systems in several forms has changed the concept of memory from storage memory to what the author calls computational memory. Digltal and other local memorles are examples of storage memory and have been suppllmented by the distributed/overlayed memory systems. The latter have more complex characterlstlcs. Interference between ltems stored result In the capabllity of these systems to implicitly represent the regularitles/relatlonships among the Items. Subsequently, computation and storage in the system are no longer distinct processes but integral aspects of the same phenomenon. These systems are "Information englnes" or "computational memory" rather than "information receptacles".

A formulation is needed of memory as a general mode of storage and computation. An informationtheoretic approach appears most natural and promises to ldentify the essentlal features of memory operation. The purpose of this thesis is threefold:

1. Analytical Models: A germinal characterization of memory theory will be presented. The capabilitles and limitations of any memory should then be expressible in terms of information now. Resultant information-theoretic relations will provide the desired means of analysis and a framework for understanding any particular memory system as a member of the general class of computational systems.
2. Relavant Issues: Theory in 1 is used to Identify major issues to be addressed for the understanding of storage memory. These lssues lnclude identincation of "memory tasks", amount of Information provided by the memory for the task, amount of information required by the task for a given amount of storage, the maximum number of items storable in the system with respect to the specined task, defliltion of memory load, memory load v.s. performance, identincation of particular tasks useful to computation.
3. Evaluation of quantitative performance: Performance of the associator with respect to issues identified in objective 2 is quantified utilizing the theory from objective 1. First, storage-capacity is evaluated so that the notion of "memory-load" can be developed. Classincation capabillties are then evaluated as the memory-load is increased. Architectural conslderations and hardware tradeoffs are addressed, as well as performance degradation due to the introduction of non-llnearitles at the system-output. Finally, ngures of merit are used to compare system performance with the optlmal.

It is intended that this work will provide the proper context and starting point for further Investigation of memory as a computational structure.

1.1. "Neural-based" systems

Matrix models of parallel distributed memories were derlved as $=$ slmplistic model of brain cell computation. In the model, the output of each cell is a real number, y representing the deviation of the cell's nring frequency from some reference frequency. As such, y can be negative as well as positlve. The inputs $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ to the cell are slmilarly real valued and each lnput, x_{i} has an assoclated couplling strength w_{i} to the cell which determines the effectiveness of that input on the cell output. The
cell determines its output by taking the welghted average of the laputs,

$$
y=\frac{1}{n} \sum_{i=1}^{n} w_{i} x_{i}
$$

where $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is called the cell's "weight-vector". The matrix memory is constructed from a collection of these cells, each sampling the same set of lnputs. If n_{I} is the number of Inputs to the memory and n_{O} is the number of cells in the memory, the vector $x \equiv\left(x_{1}, x_{2}, \ldots, x_{n(n)}\right)$ of inputs when presented to the input of the system produces an output vector, $y \equiv\left(y_{1}, y_{2}, \ldots, y_{n(O)}\right)$ given by the relation $y=\frac{1}{n_{I}} W x$ where W is the matrix of coupling welghts $w_{j i}$ connecting the ith input to the jth cell [21, 28]. We note that each "cell" or "unit" is merely taking the dot-product between the inputvector and the unlt's weight-vector.

To store information in this system, two sets of vectors called the input prototypes $\left\{\boldsymbol{f}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{f}_{M}\right\}$ and the output prototypes $\left\{\mathbf{8}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{8}_{M}\right\}$ are used. For each input prototype $\boldsymbol{f}_{\boldsymbol{m}}$, the weights of the system are adjusted so that the \mathbf{g}_{m} vector results at the system output when \boldsymbol{f}_{m} is presented at the input. The system is then sald to associate \boldsymbol{f}_{m} with \boldsymbol{g}_{m}. For each $m=1,2, \ldots, M$, the matrix that is used to associate \boldsymbol{f}_{m} with \boldsymbol{g}_{m} (called the $m^{\text {th }}$ association) is the outer-product $\boldsymbol{g}_{\boldsymbol{m}} \boldsymbol{f}_{m}^{\boldsymbol{T}} \quad$ [21, p. 18]. To store the M assoclatlons, these M matrices are added to obtaln:

$$
\begin{equation*}
W=\sum_{m=1}^{M} \mathbf{g}_{m} \mathbf{f}_{m}^{\mathbf{T}} \tag{1.1}
\end{equation*}
$$

The information for each assoclation is distributed over the whole of W and therefore is overlald with the Information for the other assoclations. The resulting interference between associations increases with M, and ultimately llmits the number of assoclations storable in the system.

In the case that $\boldsymbol{f}_{1}, \boldsymbol{P}_{\mathbf{2}}, \ldots, \boldsymbol{f}_{\boldsymbol{M}}$ are mutually orthogonal, no Interference exists. When $\boldsymbol{f}_{\boldsymbol{k}}$ is input to the system, we have ${ }^{2}$

$$
\begin{aligned}
W \boldsymbol{f}_{m} & =\frac{1}{n_{I}} \sum_{m=1}^{M} \mathbf{g}_{m} \mathbf{P}_{m}^{\mathrm{T}} \boldsymbol{\rho}_{k} \\
& =\frac{1}{n_{I}} \mathbf{g}_{k} \mathbf{f}_{k}^{\mathrm{T}} \boldsymbol{\rho}_{k}
\end{aligned}
$$

[^2]$$
=\frac{1}{n_{I}}\left|P_{k}\right|^{2} \mathrm{~g}_{k^{\prime}} \quad k=1,2, \ldots . M
$$

The matrix produces a multiple of $\boldsymbol{g}_{\boldsymbol{k}}$ when \boldsymbol{f}_{k} is present at the input. If the $\boldsymbol{f}_{\boldsymbol{k}}$ are chosen so that $\left|\mathcal{P}_{k}\right|^{2}=n_{I}$ then g_{k} is reproduced exactly $\mid 6$, p. 804, 21, p. 18|.

We will be concerned with the case that the Input prototypes are not orthogonal. Noting that $f_{m}^{T} f_{k}$ is the dot-product $\mathbf{f}_{k} \cdot \mathbf{P}_{m}$ we can rewrite the product $W \mathbf{F}_{k}$ as

$$
W \mathbf{f}_{k}=\sum_{m=1}^{M}\left(\boldsymbol{P}_{k} \cdot \mathbf{P}_{m}\right) \mathbf{g}_{m}
$$

Now the dot-product between two vectors is a measure of how well they "match" (assuming all vectors have the same length). The product $W \boldsymbol{f}_{k}$ is therefore a llnear comblation of the output-prototypes with the coefficient of \mathbf{g}_{m} being proportional to how well \boldsymbol{f}_{m} matches $\boldsymbol{f}_{k}, \quad m=1,2, \ldots, M$. Since the Input-prototype that best matches \boldsymbol{f}_{k} is the vector ltself, It follows that the output-prototype that has the largest coeffcient in the linear combination is the vector $\mathbf{g}_{\boldsymbol{k}}$. In the chapters that follow, the prototypes will be chosen randomly In such a way that they will be very nearly orthogonal to each other. Therefore, the dot-products $\boldsymbol{P}_{k} \cdot \mathbf{f}_{m}$ will be small for $m=1,2, \ldots, M, m \neq k$. This means that as long as there are not too many prototypes stored In the system, $\mathbf{P}_{k} \cdot \mathbf{P}_{m} \mathbf{g}_{k}$ will be the dominant term in the sutput prototypes. We conclude that the linear-assoclator can be seen as a particular, it produces an output vector that is a best match to the prototype it-matches \boldsymbol{P}_{k} (from among all the Input-prototypes) is present at the input. tput vector will have contributions from other output prototypes and so is not a strict sense. When a better best-match computation is needed, a device s used.

1.2. Auto-association

The systems described above are called "hetero-assoclators" because the "input prototypes" are distinct from the "output prototypes". That is, $\boldsymbol{P}_{\boldsymbol{m}} \neq \mathbf{g}_{\boldsymbol{m}}$. In fact the dimensionality of the input prototypes may differ from the dimenslonallty of the output prototypes as seen above. An eauto assoclator" is similar to the heteroassoclator except that the input and output dimenslonalltes are the same as are the input and output prototypes. That is $\mathbf{f}_{m} \equiv \mathbf{g}_{m} m=1,2, \ldots, M$. After the welghts are adjusted for storage of the M assoclations, retrleval occurs when a "damaged" input is presented to the system. The "damage" is due to nolse in the input signal or the fact that the input may be specined Incompletely. The output that results is passed through a non-llnearlty (6, 40, p. 81-65, 324-325) to llmit
the growth of the size of the vector components. The output will be a better rendition of the proper Input prototype provided the matrix is not overloaded (l.e. provided M is not too large).

Since the output is an Improved version of the Input, the signal can be fed back to the Input of the system to obtaln further improvement. The process is repeated several times untll the vector stablizes. the result is generally a highly improved version of the Inltal Input. The llmitation keeps the output vector from growing without llmit and tends to force it to stabllize at or very near the proper prototype [6, 24|. Variations of the auto-assoclator Include the "Hopneld net" $\{23,24,25 \mid$, the "Braln-State-in-a-Box" or "BSB" model [6, 14|, and the "Boltzmann Machine" [22|.

From the perspective of memory systems, the difference between hetero assoclators and auto assoclators is that for the latter, the input signal provides direct information about the output. In the hetero-associator, the input serves only as an "address" or "approximate address" from whlch the proper output is to be retrieved. The auto-assoclator's Input is both an address and a partial specification of the proper output. In any event, the auto-assoclator produces an output that is the prototype that bestmatches the input vector. The algorithm degrades as the system stores more prototypes but should be an improvement on the hetero-associator for the same storage load.

In the chapters to follow, we will often study the performance of a best-match algorithm that takes as its Input a vector produced at the output of a linear-assoclator. The best-match algorithm considered In the analysis is arbitrary but could just as well be an auto-assoclator. The auto-assoclator's stored prototypes would be Identical to the llnear-associator's stored output-prototypes. The analysis will be concerned with the conditions under which the llnear-assoclator (Inst-stage) can produce an output vector "recognizable" by the best-match process (second stage). The best-match algorithm will have "recognized" the output of the linear-assoclator if the algorithm produces the output-prototype of the linear-associator that corresponds to the input-prototype of the assoclator that is most similar to the assoclator's input vector (see ngure 1-1). In this configuration, the comblnation of the llnear-assoclator and the best-match algorithm form a classiner. The llnear-2ssoclator "translates" the input vectors of a form similar to the Input prototypes Into a form simllar to the output-prototypes. The best-match algorithm (possibly an auto-associator) then selects the output prototype that most corresponds to the Input to the combined system. Each input prototype corresponds to a vector that the system is most llkely to "see" at the input or that is most representative of a class/category of input that is important to the system. The corresponding output prototype constltutes the system response and is of a form corresponding with the system's internal representation of the category. The comblned system produces a particular output prototype corresponding to the category to which the system Input belongs. Our concern is with the performance of the llnear-assoclator. We will Identify the conditions under which it will produce an output vector of high enough "ndelly" that the comblned system can categorize its input.

Figure 1-1: Linear-assoclator and Best-Match Classiner

Proper performance in this configuration is considered a minlmal requirement on the llnear-assoclator if it Is to produce output "signals" useful to subsequent Information-processing "stages".

1.3. Overview of Major Issues

1.3.1. Tasks of Computational Memory

The llinear-assoclator is an example of "computational memory". As opposed to local memory which is merely an information storage device, computational memory is characterized as an Input-output device that can respond to Inputs that are not expllcitly specifed during storage. Simllarly, the system can produce outputs not expllcitly stored. The Information stored in the memory is "overlald" in the sense that all ltems (associations) stored share a common storage medium, resulting in between-item interaction of Information. This interaction causes the output to be other than those explicitly trained to the memory. Instead the output is a function of how simllar the input is to the tralned laputs, and how simllar the tralned assoclations are to each other. Thls and the fact that the memory can respond to novel inputs results in a memory that is capable of varlous "memory tasks" during retrleval.

The most obvious (and mundane) of these is "Item memory". For thls task, the memory is treated Just as a local-storage device by storing assoclations $\left(\boldsymbol{f}_{m}, \mathbf{B}_{m}\right), m=1,2, \ldots, M$ and subsequently using \mathbf{f}_{m} as an "Input address" to the memory which in turn returns information about $\boldsymbol{s}_{\boldsymbol{m}}$ as "data". Another memory task is having the memory system distlagulsh which among the M output prototypes, Is the one that matches the input prototype present at the laput. Specincally, one first stores the
associations $\left(f_{m}, \boldsymbol{g}_{\kappa(m)}\right)$ where κ is a permutation of the M indices $1,2, \ldots, M$. One of the laput prototypes, say f_{k} is then presented to the memory resulting In an output. This output is compared with all the output prototypes to Identify one of the latter as a best match. The memory is successful at the task if $\mathbf{g}_{\kappa(m)}$ is the prototype chosen as the best match. This is called "channel-memory" since the memory acts analogously to a communlcation channel. Another term used is "permutation memory" Indicating that the memory acts as a device that remembers whlch permutation κ of the output prototypes was assoclated to the Input prototypes.

Though this task may seem artinclal, its consideration serves two main purposes. First, proper performance of this task is a demonstration that the memory can distingulsh the associations it has stored. If a system has stored too many assoclations, it may fall thls task. If so, it is not providing enough information at the output to distinguish which prototype output was "Intended" as the output of the memory. The stipulation that the memory succeed at this task is a minimal requirement called the "channel-criterion". The channel-criterion is used to derive upper bounds on the number of associations storable in the memory.

The second purpose for considering the matrix as a channel-memory is that we can then study the system performance with regard to the task of "Input-classincation". In particular, after the system has stored M association palrs $\left(\mathbf{f}_{m}, \mathbf{g}_{m}\right)$, non-prototype vectors are allowed at the memory input. Assuming that the input is most similar to the prototype \boldsymbol{f}_{k}, we will call the input vector $\boldsymbol{p}_{\boldsymbol{k}}{ }^{\prime}$. To be successful classifying $\mathbf{f}_{\boldsymbol{k}}{ }^{\prime}$, the matrix must generate an output that is most slmilar to $\mathbf{g}_{\boldsymbol{k}}$. This is identical to the channel-memory task except that more freedom is allowed at the Input. The classincation task is important for understanding the system's abllity to respond to a vector $\boldsymbol{f}_{\boldsymbol{k}}^{\prime}$ that is a partlal or degraded (say, by nolse) version of the "Intended" Input \mathbf{P}_{k}. The channel-criterion again provides a means of specifying llmits on the number of assoclations storable in the memory for proper classincation. In this case, a tradeoff is quantined between the number of assoclations permitted in the memory versus how "sloppy " \boldsymbol{P}_{k} ' can be as a rendition of \boldsymbol{P}_{k}. Consideration of the classification task allows one to identify the amount of information required by a llnear-assoclator to classify an Input-vector set of a given size Into a glven number of categorles.

The classincation task also brings up the issue of the rellability of the information at the output of the memory as a function of the rellabllity of the information presented to the memory input. This function depends on the number of assoclations stored in the memory. Storing more ltems taxes the memory capabllity and so requires that more rellable information be present at the Input to malntain a given output rellability. An important issue is the determination of conditions necessary for the output Information of the memory to be more rellable than the Input Information. Under such conditions, the memory could effectively suppliment incomplete/degraded input information with its own stored

Information to provide an output that is more complete/rellable. The memory task performed would be that of Information "enhancement". An assoclator performing thls task would be valuable as a "front end" to later stages of assoclator memorles or processors that required "high-grade" Information as Input.

Even more intriguing is the possible use of this "enhancement memory" to iteratively improve the Information it recelves by passing the recelved Information "through" the memory several times. Using two memory systems A and B, one stores assoclations $\left(\boldsymbol{f}_{m}, \boldsymbol{g}_{m}\right)$ in A and stores their inverses $\left(\boldsymbol{g}_{m}, \boldsymbol{f}_{m}\right)$ in B. One then sends an degraded copy $\boldsymbol{f}_{k}^{\prime}$ of \boldsymbol{f}_{k} to the Input of memory A. The output of A is then input to B whose output is then fed back to the Input of A. The process is then repeated. If both memories are "enhancement" devices, then the Information that is passed back and forth between them should improve with each pass through the loop. Using the theory developed in this here, this possibility could be explored as a way to Improve the performance of enhancement memorles that have stored a given number of assoclations.

A ninal note concerning memory tasks is that they identiry modes of "computation" that may serve as design tools for the architecture of connectlonist "knowledge engines".

1.3.2. Characterization of Memory

Another important consideration is the definition of the "storage" of the memory. That is, defining the amount of information "contained" by the memory that is useful for retrieval. In particular, once M assoclations are stored, we consider the matrix f whose columns are the input prototype-vectors $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{f}_{M}$ and the matrix \mathbf{g} whose columns are llkewise the output-prototypes. For item memory discussed in the last section, the storage of the memory will be defined as the information that the matrix f provides about the matrix g via the memory. The question arises as to whether this is equal to the "Item-Information" which is simply the sum over $m=1,2, \ldots, M$ of the Information that f_{m} provides about \mathbf{g}_{m} via the memory. This work Indicates an answer \ln the negative for linear-assoclative ltemmemory, under most conditions. However, channel-memory does have thls feature, again under most conditions. A memory having thls feature will be called "Item-accessible" meaning that essentlally all the Information that P provides about g via the memory can be retrieved "Item-by-ltem". Like digital RAM memory (local storage), one can apply one input prototype at a time to the Input of the memory and record the matrix output to retrleve all the Information about $\mathbf{8}$. In fact. the Information retrleved in thls way is virtually non-redundant.

Characterization of memory as item-accessible allows upper bounds to be derived for the Information retrievable from the appllcation of a single input vector (called a single "access"). Since the system is symmetrically or uniformly denned over its input prototypes $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{\boldsymbol{M}}$, the information
retrievable on applying any of these to the laput is the same. From this it follows that the memory storage is Just M times the amount of Information retrievable from a slagle access Just as is the case for local memory. The bounds that will be derived for the memory storage can thereby be mapped into bounds on the amount of information retrievable for a single memory access. Even for memory that is not item accessible however, the single-access bound will still bold. The difference is that the information retrieved by applying the M input vectors in sequence may "overlap" (redundancy) and as a result will not completely specify g . We will characterize memory and address these lssues after basle notions of Information theory are Introduced in the next chapter.

1.4. Methods and Focus of the Investigation

This Investigation views the asymptotic performance of the llnear-assoclator. That is, we examine the capabllities of the systems as they are allowed to get arbltrarily large. This will allow us to ascertaln how well their performance scales with system size. Large systems benent from the high diminsionallty of their input/output signals and so perform better. Larger systems will therefore be most useful in memory / classiflication tasks and deserve the emphasls provided In thls work.

The work is confined to finding upper bounds for system performance, though an effort is made to keep the bounds tight. Approximations are used extenslvely, but are accurate for the range of parametervalues considered. The approximatlons pertaln particularly well to large-scale systems, with a correspondingly large number of assoclations stored. Pushing the lower llmits of system size that the theory will accomodate, a system should have Input/output dimenslonallties of say 50 or 100 and at least 5000 welghts. The number of associations should be at least 8 or 10 times the larger of the input/output dimenslonalitles, but generally no more than the number of welghts in the system. More typlcally however, the input/output dimensionallties are taken to be at least several hundred each, and the number of Items stored should be at least $25,000-50,000$. The number of welghts should generally be twice the number of stored assoclatlons or more.

In this work, an attempt has been made throughout to make explicit the range of applicablilty of the theory. The reader is advised to note parameter-value restrictions/assumptions made in what follows.

Chapter 2

Definitions, Identities and Notation

Before the presentation of memory theory, some prellminary material must be presented concerning the notation used and relationships that hold among information-theoretle quantitles considered. More background concerning concepts of information theory can be found in texts $[8,12,33)$.

2.1. General Relations of Information Theory

Unless otherwise stated, capitol letters always symbolize random varlables whereas lowercase letters symbolize a specinc value or random-variable outcome. Script-capltols represent sample-spaces. Within this convention, boldface unsubscripted letters represent matrices whereas boldface subscripted varlables represent vectors. The letters W, F, G for instance, are random matrices; $\mathcal{W}, \mathcal{F}, \mathcal{G}$ are their respective sample-spaces; w, f, g. represent respectively specinc outcomes from each sample-space. Similarly $\boldsymbol{F}_{\boldsymbol{m}}, \mathbf{G}_{\boldsymbol{m}}$ are random vectors with respective outcomes $\boldsymbol{f}_{\boldsymbol{m}}, \boldsymbol{g}_{\boldsymbol{m}}$. The abbreviation "r.v." will be frequently used for "random varlable" and the abbreviation "l.I.d." will be used for "Independent, identically-distributed" when thls condition applles to a random varlable. The "equlvalence sign", " ${ }^{\text {• }}$ will be used to denote "equallty by dennition" or the equivalence of two random variables. The random varlables in thls work are discrete with nilte sample-spaces unless otherwise stated.

If \mathcal{X} is the sample space for the r.v. X and for any $x \in X, P(X=x)$ is the probability that $X=x$ then the entropy of X denoted $H(X)$ is deflned as

$$
H(X)=-\sum_{x \in Y} P(X=x) \log _{2} P(X=x)
$$

If we denne $p(x) \equiv P(X=x)$ then

$$
\begin{equation*}
H(\lambda)=-\sum_{x \in Y} p(x) \log _{2} p(x) \tag{2.1}
\end{equation*}
$$

Heurlstically, $H(X)$ is the average taken over all outcomes of X, of the minimum number of yes/no questions required to determine the outcome of X (see sectlons of $[8,12,33 \mid$ relevant to Huffman coding).

We call $H(X)$ the uncertainty of X, the information content of X or the information represented by X since it is the average amount of information required to determine X.

When considering two random varlables X, Y the conditional entropy of X given Y is given by

$$
H\left(X \mid Y=-\sum_{x \in X} \sum_{y \in y} P(X=x, Y=y) \log _{2} P(X=x \mid Y=y)\right.
$$

where \mathcal{X} and y are the respective sample spaces of X and Y. This entropy can also be written

$$
H(X \mid Y)=-\sum_{y \in y} H(X \mid Y=y) P(Y=y)
$$

where $H(X \mid Y=y)=-\sum_{x \in X} P(X=x, Y=y) \log _{2} P(X=x \mid Y=y)$

The defnition of entropy can be extended to n-tuples of r.v.'s $X_{n} \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Examination of definition (2.1) reveals that $H(X)$ is not a function of the outcomes of X but of the probabllity function deflned on those outcomes. In particular, X in equation (2.1) could be the vector-valued r.v. X_{n} or a matrix-valued r.v. \mathbf{X}. If the probabillty function P_{n} is deflned over the sample space X_{n} of \mathbf{X}_{n} then substitution of P_{n} for P in equation (2.1) gives

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=-\sum_{x \in X_{n}} P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}=x\right) \log _{2} P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}=x\right)
$$

Note that $x \in X_{n}$ implies that x is an n-dimensional vector whose $i^{\text {th }}$ component is a possible outcome of X_{i}. If $Y_{1}, Y_{2}, \ldots, Y_{m}$ is an m-tuple of r.v.'s, then we can extend the defnition of conditional entropy to include $H\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ which is the entropy of $X_{1}, X_{2}, \ldots, X_{n}$ conditioned on $Y_{1}, Y_{2}, \ldots, Y_{m}$ (see $[8,12,33 \mid)$. The Important relatlonshlps are

1. $H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \leq H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)$
where equality holds between the first and middle terms If and only if there is a function f so that $X_{n}=f\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)$ with probablllty one. Equallty holds between the second and third terms if and only if the X_{i} 's are mutually Independent.
2. $\left.H\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y_{1}, Y_{2}, \ldots, Y_{m}\right) \leq H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mid Y_{1}, Y_{2}, \ldots, Y_{m-1}\right)$
with equallty if and only if $X_{1}, X_{2} \ldots, X_{n}$ are independent of Y_{m} whenever the outcomes of $Y_{1}, Y_{2}, \ldots . Y_{m-1}$ are known.
3. $H\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y_{1}, Y_{2}, \ldots, Y_{m}\right) \geq 0$
with equallty if and only if $X_{1}, X_{2} \ldots, X_{n}$ are completely determined by of $Y_{1}, Y_{2}, \ldots, Y_{m}$, that is, for each $i=1,2 \ldots, n$ there is a function f_{i} such that $X_{i}=f_{i}\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ with probabillty one.

Relation (2.4) holds when $m=0$, that is

$$
\begin{equation*}
H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

Particular inequalitles implled by these relations are of concern, such as

$$
\begin{equation*}
0 \leq H(X \mid Y \leq H(X) \leq H(X, Y) \leq H(X)+H(Y) \tag{2.6}
\end{equation*}
$$

Equallty holds respectively in each of the above inequalliles if and only if $X=f(Y)$ with probability one; X and Y are independent; $Y=f(X)$ with probabillty one; X and Y are independent. Finally since we are only considering only discrete r.v.'s, for any deterministic function $f(x)$ we have

$$
\begin{array}{ll}
H(f(X)) \leq H(X) & H(f(X) \mid Y) \leq H(X \mid Y) \\
H(f(X) \mid X)=0 \\
H(Y \mid f(X)) \geq H(Y \mid X) & \tag{2.9}
\end{array}
$$

As remarked earller, the entropy functions are functions of probabllity functions denned over sample spaces. Therefore the relations above hold even if the r.v.'s that appear in the expressions are scalar, vector, or matrix valued.

The average mutual Information (or brieny "mutual Information") between X and Y denoted as $I(X ; Y$ can now be denned

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y) \tag{2.10}
\end{equation*}
$$

It can be shown $12 \mid$ that $I(X ; Y)$ is symmetric in its arguments so that $I(X ; Y)=I(Y ; X)$. From this we also have

$$
I(X ; Y)=H(Y)-H(Y \mid X)
$$

Also by equation (2.6) we have

$$
\begin{equation*}
I(X ; Y) \geq 0 \tag{2.11}
\end{equation*}
$$

with $I(X ; Y)=0$ if and only if X and Y are independent.

Consider again to the yes/no-question heurlstic for guessing the value of X. Knowledge of Y is the equivalent of being provided answers to some of the questlons required to determine X. This subsequently reduces the number of questions needed. The reduction given is preclsely the uncertalnty of X before Y is known minus the uncertainty of X after Y is known (i.e. Identity (2.10)). We call this the information Y provides about X. By symmetry, thls ls also the information X provides about Y. As indicated in the previous paragraph, r.v.'s X and Y provide no information about each other if and only if they are independent.

If f is a deterministic function deflned on the sample space \mathcal{L} of X then then $H(f(X) \mid X)=0$ and so

$$
\begin{equation*}
I(X ; f(X))=H(f(X)) \tag{2.12}
\end{equation*}
$$

That is, the information X provides about $f(X)$ is precisely the information represented by $f(X)$. For any other r.v., Y, we have that $H(Y \mid f(X)) \geq H(Y \mid f(X), X)=H(Y \mid X) \quad$ which implles $I(Y ; f(X))=H(Y)-H(Y \mid f(X)) \leq H(Y)-H(Y \mid X)$ and we have

$$
\begin{equation*}
I(Y ; f(X)) \leq I(Y ; X) \tag{2.13}
\end{equation*}
$$

The concept of mutual information can be extended In ways analogous to the extensions of entropy outlined above. Two extensions concern us. First, the information $I(X ; Y, Z)$ that two r.v.s Y and Z jolntly provide about the r.v. X is defined by considering the pair (Y, Z) as a single r.v. replacing the Y term in equation (2.10)

$$
\begin{equation*}
I(X ; Y, Z)=H(X)-H(X \mid Y, Z) \tag{2.14}
\end{equation*}
$$

Second, the information $I(X ; Y \mid Z)$ that Y provides about X when Z is known is derived from the equation for $I(X ; Y)$ by conditioning the entroples $\ln (2.10)$ on Z

$$
\begin{equation*}
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z) \tag{2.15}
\end{equation*}
$$

A useful relation between $I(X ; Y, Z)$ and $I(X ; Y \mid Z)$ is

$$
\begin{equation*}
I(X ; Y, Z)=I(X ; Y \mid Z)+I(X ; Z) \tag{2.16}
\end{equation*}
$$

This can readlly be shown by substituting for each term above its definition as a function of entropy.

We also need a fact used later about joint dependence. If W is a function of two r.v.'s X and Y jolntly it is possible that W is independent of each of X and Y slagly. That is

$$
\begin{align*}
& I(W ; X, Y)=H(W) \tag{2.17}\\
& I(W ; X)=0 \quad I(W ; Y)=0 \tag{2.18}
\end{align*}
$$

An example is where X and Y are independent-identically-distributed (i.l.d.) r.v's; each takes values ± 1 with probabillty $1 / 2$ that elther value occurs. If $W \equiv X \cdot Y$, no information is conveyed about the outcome of W given only the outcome of X or given only the outcome of Y.

2.2. Specific Notation and Relations Required

2.2.1. Notation for Sets and r.v. Distributions

The symbol, \mathbf{R}, will be used in reference to the real-numbers. When speaking of a sequence of N entitles $a_{n}, n=1,2, \ldots N$, we will sometimes use the notation $\left\{a_{n}\right\}_{n=1}^{N}$. For innalte sequences, we substltute " ∞ " for N. Now let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of I.I.d. Bernoulli r.v.'s [30, p. 161], taking values $a, b \in \mathbf{R}$ with probabillties p and $(1-p)$ respectively. If Y_{n} is the sum of the nirst n Bernoulll r.v.'s, then Y_{n} is a binomial r.v. $|30, p .163|$ and we say Y_{n} is ${ }^{-1} \operatorname{Bin}(a, b, p, n)$ or more conctsely, we put $Y_{n} \sim \operatorname{Bin}(a, b, p, n)$. If $a=1, b=-1$, and $p=1 / 2$, then we put $Y_{n} \sim \operatorname{Bin}(\pm 1,1 / 2, n)$. Notice that in this case, the variance of Y_{n} is n. For a normal r.v., X with mean μ and varlance σ^{2}, we put $X \sim N\left(\mu, \sigma^{2}\right)$. A normal r.v. with zero-mean and unlt-varlance is called a standard normal r.v. and ${ }^{\prime \prime}$ ' denotes the standard normal distribution function. The mean of an arbltrary r.v. X is denoted by $E X$ and the varlance by $V A R X$. The term, random, is used to refer to selection of an outcome of a uniform r.v. over a particular sample-space. The term rellably refers to an outcome or class of outcomes that occur with probabllity near one or with probablllty approaching unity as some relevant parameter gets large.

Most of the random vectors we consider will consist of ± 1 's for components. We will call such vectors ± 1-vectors or bit-vectors since the components are binary. The set of n-dimenslonal bltvectors is sometimes denoted by $\{-1,1\}^{n}$ and often referred to as a "space" even though the set is not a proper vector-space over the real or complex numbers. If $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a random vector whose components $X_{i} i=1,2, \ldots, n$ are l.l.d. each taking only the values ± 1, then X is called a Bernoulli vector. For the case that each of the two values ± 1 is taken with probabllity $1 / 2$, the vector X is called a balanced-Bernoulli vector. Note that choosing an n-dimensional balancedBernoulll vector is the same as choosing a vector at random from the n-dimensionai space of blt-vectors.

2.2.2. Notations for Prototype-Vectors and the Associator Matrix

The vectors $P_{1}, P_{2}, \ldots, P_{M}$ and the vectors $g_{1}, g_{2}, \ldots, g_{M}$ will be considered as outcomes of random input-vectors $\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \boldsymbol{F}_{\boldsymbol{M}}$ and random output-vectors $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \ldots, \mathbf{G}_{\boldsymbol{M}}$ respectively. The \boldsymbol{F}_{m} 's will be called input-prototypes and the \mathbf{G}_{m} 's will be called output-prototypen. These vectors are assumed to be balanced-Bernoulll vectors with n_{I} as the dimensionallty of the Input-prototypes and n_{O} as the dimensionallty of the output-prototypes. We also form the random matrix F whose columns are $F_{1}, F_{2}, \ldots, F_{M}$ in index-order. Simllarly, we form the matrix \mathbf{G} from the output prototypes. The symbols \mathbf{f} and \mathbf{g} of course denote particular matrix-valued outcomes of \mathbf{F} and \mathbf{G} respectively. The storage equation (1.1) becomes

$$
\begin{equation*}
\mathbf{W}=\sum_{m=1}^{M} \mathbf{G}_{m} \mathbf{F}_{m}^{\mathbf{T}} \tag{2.19}
\end{equation*}
$$

In terms of the random prototype-vectors. This can be expressed more conclsely in terms of the matrices F and \mathbf{G} :

$$
\begin{equation*}
\mathbf{W}=\mathbf{G F}^{\mathbf{T}} \tag{2.20}
\end{equation*}
$$

For retrleval, we form the matrix \mathbf{G}^{\prime} whose columns \mathbf{G}^{\prime} are glven by

$$
\begin{equation*}
\mathbf{G}_{k}^{\prime}=\mathbf{W} \mathbf{F}_{k}=\sum_{m=1}^{M}\left(\mathbf{G}_{m} \mathbf{F}_{m}^{\mathbf{T}}\right) \mathbf{F}_{k}=\sum_{m=1}^{M}\left(\mathbf{F}_{m} \cdot \mathbf{F}_{k}\right) \mathbf{G}_{m} \tag{2.21}
\end{equation*}
$$

or, In terms of the matrices

$$
\begin{equation*}
\mathbf{G}^{\prime}=\mathbf{W F}=\mathbf{G F}^{\mathbf{T}} \mathbf{F} \tag{2.22}
\end{equation*}
$$

Another form of storage is called channel-memory or permutation memory. In this case, the output prototypes are consldered to be known the retrleval device (later called the detector) and therefore will be denoted as specinc outcomes $\mathbf{g}_{\mathbf{1}}, \mathbf{g}_{\mathbf{2}} \ldots, \mathbf{g}_{\boldsymbol{M}}$. The input-prototypes $\boldsymbol{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} \ldots, \boldsymbol{F}_{\boldsymbol{M}}$ will still be considered as random vectors. In addition, we will have need for the r.v. K whose outcome κ is one of M ! permutations of the indeces $\{1,2, \ldots, M\}$. That is, κ is a function that maps any $m \in\{1,2, \ldots, M\}$ to a unlque value $\kappa(m)$ from the same set. This permutation is to be applled to the columns $g_{1}, g_{2}, \ldots, g_{M}$ of the g-matrix to produce the matrix $\kappa(m)$ whose columns are $\boldsymbol{8}_{\kappa(1)}, \boldsymbol{8}_{\kappa(2)}, \cdots, \boldsymbol{g}_{\kappa(M)}$. When considering the outcome κ of K as undetermined, we denote by $K(m)$ the r.v. whose outcome is the value $\kappa(m)$. The random matrix that results when κ is applled to g is denoted by $\kappa(\mathbf{g})$. Under these conventlons the storage equation for permutation storage is

$$
\begin{equation*}
W=\sum_{m=1}^{M} \boldsymbol{g}_{K(m)} F_{m}^{T} \tag{2.23}
\end{equation*}
$$

or more conclsely

$$
\begin{equation*}
\mathbf{W}=K(\mathbf{g}) \mathbf{F}^{\mathbf{T}} \tag{2.24}
\end{equation*}
$$

one says that the permutation K is stored In the memory.

2.3. Probabilistic Analysis of Sums

2.3.1. Distribution of Sums

Using the rightmost sum in equation (2.21), we can write the expression for the $f^{\text {sh }}$ component $G_{k j}^{\prime}$ of the random vector \mathbf{G}_{k}

$$
\begin{align*}
G_{k j}^{\prime} & =\sum_{m=1}^{M}\left(F_{m} \cdot \mathbf{F}_{k}\right) G_{m j} \\
& =\left(F_{k} \cdot F_{k}\right) G_{k j}+\sum_{m=1 ; \neq k}^{M}\left(F_{m} \cdot F_{k}\right) G_{m j} \\
& =n_{I} G_{k j}+\sum_{m=1 ; \neq k}^{M}\left(F_{m} \cdot F_{k}\right) G_{m j} \tag{2.25}
\end{align*}
$$

To extend the deflition, we will bave need for calculating the mean, variance, and entropy of such a sum. For this it will be useful to understand the independence of the terms under the summation.

To start, if $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are n -dimensional balanced Bernoulli-vectors with respectlve components X_{i}, Y_{i}, Z_{i}, then the dot-products $\mathbf{X} \cdot \mathbf{Y}$ and $\mathbf{X} \cdot \mathbf{Z}$ are independent. Thls follows from the fact that the products $X_{i} \cdot Y_{i}$ and $X_{i} \cdot Z_{i}$ are independent of their respective factors. In fact, this implles that $\mathbf{X} \cdot \mathbf{Y}$ is independent of \mathbf{X} when \mathbf{Y} is not known and vice-versa. Since the Input-prototypes are balanced Bernoulll vectors, the dot products $\mathbf{F}_{m^{\prime}} \cdot \mathbf{F}_{k}$ and $\mathbf{F}_{\boldsymbol{m}} \cdot \mathbf{F}_{k}$ are Independent when $\boldsymbol{m}^{\prime} \neq \boldsymbol{m}$. Also the components of G are independent so the terms $\left(F_{m} \cdot F_{k}\right) G_{m j}$ in (2.25) are mutually Independent.

Because of this independence, the variance of the sum is the sum of the varlances of the summed terms. Furthermore, If two r.v.'s are Independent with zero mean, then the varlance of the product is the product of the varlances. For each component X_{i} of an n-dimenslonal balanced Bernoulll vector \mathbf{X}, the mean $E X_{i}$ is zero and the varlance is one. Therefore, if Y is an Independent n-dimensional Bernoulll vector the variance $\operatorname{VAR}\left(X_{i} \cdot Y_{i}\right)$ is just $\left(\operatorname{VAR} X_{i}\right)\left(\operatorname{VAR} Y_{i}\right)=1$. From this we have the variance

$$
\operatorname{VAR}(\mathbf{X} \cdot \mathbf{Y})=\operatorname{VAR}\left(\sum_{i=1}^{n} X_{i} \cdot Y_{i}\right)=\sum_{i=1}^{n} \operatorname{VAR}\left(X_{i} \cdot Y_{i}\right)=n
$$

From this we see that $\operatorname{VAR}\left(F_{m} \cdot F_{k}\right)$ is n_{I} when $m \neq k$. Since the mean of $G_{m j}$ is zero and the varlance is one, we also have that the variance of $\left(F_{m} \cdot F_{k}\right) G_{m j}$ is n_{I}. These terms in the sum of (2.25) are independent and there are $M-1$ of them so the variance of the sum is $(M-1) n_{I}$. Considering the mean and variance of the $n_{I} G_{k j}$ term as well, we nind that the mean of $G_{k j}$ is zero and the variance is $M n_{I}$. The distribution of the sum on the right-hand slde of (2.25) is $\operatorname{Bin}\left(\pm 1,1 / 2, M \cdot n_{I}\right)$ which is roughly normal. Considering the term $n_{I} G_{k j}$ agaln, we see that it takes values $\pm n_{I}$ with equal probabillty. We conclude that $G_{k j}$ is blmodal, each mode having a roughly normal distribution. Slnce $M-1 \approx M$ for large values of M the variance of each mode is taken to be $M n_{I}$. Methods such as this are used in the chapter on classincation to determine the distribution of sums.

2.3.2. Binomial Entropy

Another consideration is the entropy $H\left(S_{n}\right)$ of a sum S_{n} of n balanced Bernoulll r.v.'s $X_{i} i=1.2, \ldots n$. In the appendix it is shown that

$$
\begin{equation*}
H\left(S_{n}\right)=(1 / 2) \log _{2}(\pi e n / 2) \tag{2.26}
\end{equation*}
$$

Brieny the result is obtalned as follows. First deflie a standard Bernoulli r.v. to be a r.v. that takes the value one with probabllity $1 / 2$ and the value zero with probabllity $1 / 2$. The sum S_{n}^{\prime} of n standard Bernoulli r.v.'s is blnomially distributed and takes on values θ_{n}^{\prime} that are in one-to-one correspondence with the possible values s_{n} of the sum S_{n}. To see thls, note that the number s_{n} is the number of summands of S_{n}^{\prime} whose value is one. When the number of 1 -valued summands of S_{n} is θ_{n}^{\prime} there will be $n-s_{n}^{\prime}$ minus-1-valued summands of S_{n}. The value of S_{n} will therefore be $s_{n} \equiv n-2 s_{n}^{\prime}$. Thls can also be written $s_{n}^{\prime}=\left(n-s_{n}\right) / 2$ completing the correspondence.

Under the one-to-one correspondence, S_{n}, and $S_{n}{ }^{\prime}$ bave equivalent probabillty distributions and so have the same entropy. Since the probability distribution of $S_{n}{ }^{\prime}$ is determined by the binomial coeffclents, we nind the entropy of S_{n}^{\prime} to get the entropy of S_{n}. Note that $S_{n}{ }^{\prime}$ is blamially distributed and so is approximately normal with varlance $n / 4$. One might expect that the entropy of $S_{n}{ }^{\prime}$ is approximately the same as that of a normal r.v. With the same variance. Appendix A shows that this is in fact true. That is, the entropy of $S_{n}{ }^{\prime}$ is roughly ($1 / 2$) $\log _{2}(\pi e n / 2)$ where the approximation approaches perfection as n gets large. Thls of course implles that the entropy of S_{n} is $(1 / 2) \log _{2}(\pi e n / 2)$.

It is useful to note that although S_{n} is roughly normal with variance n, it does not have the same entropy as a normal r.v. with the same variance. Such a normal r.v. would have entropy $(1 / 2) \log _{2}(2 \pi e n)=(1 / 2) \log _{2}(\pi e n / 2)+1$ which is 1 blt larger than the actual entropy of S_{n}. Thls discrepancy is due to the fact that we can multiply a discrete r.v. by any factor thereby changing its variance without changing its entropy. There is no strict correspondence between the varlance and the entropy for discrete r.v.'s.

2.4. Special Functions

An entropy function of particular Interest is the blary entropy function $\mathcal{N}(p)$. Let X be a r.v. with two outcomes x_{1} and x_{2} and probabillty p that x_{1} occurs and probabllity $1-p$ that x_{2} occurs. Then

$$
\begin{equation*}
H(p) \equiv H(X)=-p \log _{2} p-(1-p) \log _{2}(1-p), \quad 0 \leq p \leq 1 \tag{2.27}
\end{equation*}
$$

Here $\dot{\lambda}(0)$ is taken to be $\lim _{p \rightarrow 0} \mu(p)=0$. The function is continuous over the interval $|0,1|$ and differentiable on $(0,1)$. 3 It is strictly increasing on $|0,1 / 2|$ and strictly decreasing on $|1 / 2,1|$. By taking

[^3]the Taylor series expansion of $\psi(x)$ about $x=1 / 2$ and truncating one can get an approximation of $\lambda(x)$ for $x \approx 1 / 2$. We also approximate $\Phi(x)$ for x near 0 ln the same manner. These approximations are:
\[

$$
\begin{array}{ll}
\not(x) \approx 1-\left(2 \log _{2} e\right)(x-1 / 2)^{2} & |x-1 / 2| \leq 0.38 \text { Implles error } \leq 10 \% \\
1-\not(x)=\left(2 \log _{2} e\right)(x-1 / 2)^{2} & \text { same error as above } \\
\Phi(x) \approx \frac{1}{2}+\frac{x}{\sqrt{2 \pi}} & |x|<1 \tag{2.30}
\end{array}
$$
\]

2.5. Measuring Similarity

Just as storage of Information is attributed to a "memory device" retrieval of the information is attributed to a "detection device" or detector. Both the memory and detector are characterized as mathematical processes. A particular mathematical process for the detector is that of measuring similarity between two vectors as is the case when the detector is a best-match process. The information retrievable by the detector will depend upon the simllarlty measure employed. Therefore, the performance of a system must be deflned with respect to a particular simllarity measure. We will define a first order similarity measure by way of the Hamming-distance function.

Deflnition 1: Define $\{-1,1\}^{n}$ to be the set $\left\{x \in R^{n} \mid x_{i} \in\{-1,1\}, i=1,2, \ldots, n\right\}$. The Hamming-distance between two vectors is the function $H D:\{-1,1\}^{n} \times\{-1,1\}^{n} \rightarrow \mathbf{R}$ given by $H D(x, y)=\frac{1}{2} \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$.

The Hamming Distance is the number of components at which x and y disagree. Its negative is a prototypical simllarity measure on $\{-1,1\}^{n}$ from which the componentwise similarity measure is denned.

Definition 2: Componentwise Similarity Measures if V is an n-dimensional vector-space, then a (componentwise) similarity measure is a function $S: V \times V \rightarrow \mathbf{R}$ having the following propertles:

1. Symmetry: For all $x, y \in V$, we have $S(x, y)=S(y, x)$.
2. Reflexively-Maximized: For $x, y \in\{x \in V| | x \mid=1\}, S(x, y)$ is maximized by $x=y$.
3. Hamming-Consistency: For vectors $x, y, w, z \in\{-1,1\}^{n}$, the Hamming-distance inequally $-H D(\mathbf{x}, \mathbf{y}) \leq-H D(\mathbf{w}, \mathbf{s})$ Implles $S(\mathbf{x}, \mathbf{y}) \leq S(\mathbf{w}, \mathbf{z})$.
4. First-Order Invariant: if κ is a permutation of the Indlces $1,2 \ldots, n$ and $\kappa(x)$ is the vector whose components are the components of x permuted by x then $S(x, y)=S(\kappa(x), \kappa(y))$.

Abstract

Under thls type of simllarity, x and y are to sald to be more similar than w, whenever $S(x, y)<S(w, s)$. Condition 3 requires the similarity measure to be consistent with the negative Hamming-distance similarity, $-H D(x, y)$ on $\{-1,1\}^{n}$. We allow the word "minlmized' to be replaced by "maximized" in 2 provided that the second inequallty in 3 is reversed. This results in a function that is minimal for similar vectors. The negative of a similarity function is therefore also a similarity function.

Examples of nrst-order similarity measures lnclude those based on Minkowski Metrics. That is, the form $S(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}$ or its negative can be used. An Inner-product can also be used, e.g. the dot-product, $S(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$.

The notion of slmilarity presented here is meant to be "distance-based". In a vector space, two vectors of the same length will become similar if thelr distance (as determined by the appropriate vectornorm) is decreased. For vectors of a nxed length, thls amounts to decreasing the angle between the directions of the two vectors. This corresponds to minimizing their dot-product. Distance-based simllarlty measures, partlcularly the dot-product, are especially relevant to the study of the assoclator. The output of the assoclator is based upon the similarity of the input-vector to the assoclator's inputprototypees as determined by the dot-product (see equation (2.25)).

We do not discuss detection or best-match processes in thls investigation, but polint out that they play a role in the consideratlons made in the analysls. When discussing information that one vector provides about another, we have assumed the information is distance-information. This characterization of Information is consistent with the dynamics of most "neural-networks". Each cell or unlt computes its output as a function of the dot-product slmilarlty of the input-vector and the unlt's welght-vector. The "computation" done by an assoclator is therefore based on simllarity/distance Information.

A best-match process used for detection (second-stage, as shown $\ln 1-1$) can itself be an associator or rather, an auto-assoclator and so will base lts output upon distance-Information relating the (nrst-stage) associator's output to the output-prototypes of the comblned classiner. When speaking in later chapters of the information that the nrst-stage provides at its output, we will assume the information is distance/similarity information so as to be conslstent with the nature of the best-match process. We also mention that the performance of a best-match process as a classincation device will depend upon the simllarity measure it uses. When comparing vectors, such a measure must preserve all distance Information for optimal performance. We've assumed that distance information between two vectors is
completely specifed by componentwise-similarity. Under thls assumption, the dot-product seems optlmal, at least for blt-vectors. When blt-vectors are to be compared, there is a one-to-one correspondence between the dot-product and the Hamming-dlstance so that the dot-product preserves Hamming-distance Information.

Chapter 3

 Information Theory of Memory

 Information Theory of Memory}

3.1. Introduction: Access v.s. Aggregate Memory

In this chapter a general Information-theoretic formulation of memory is presented. Storage is characterized as the generation of a memory r.v. called the "memory trace" from two random variables called the address and the datum. Even if the memory trace is a deterministic function of the address and the datum, the address and datum are r.v.s, so the memory state they generate during storage can be viewed as a r.v. from the point-of-view of retrieval. Retrieval is then the process of recovering Information about the stored datum from the retrieval-address In the presence of the of the memory-state. The signal connguration for both storage and retrieval are specified allowing subsequent derivation of information-theoretic relations/limitations. These limitations are strongly dependent upon the retrieval strategy which may not utllize all Information avallable from the memory. Retrleval methods will be formulated and performance of the system will be evaluated with respect to a particular retrieval strategy.

3.2. Information-Theoretic Characterization of Memory

3.2.1. Access v.s. Aggregate Retrieval

In this section we characterize memory as a connguration of r.v.'s and subsequently define memory retrieval. We show how information is stored/retrieved as an aggregate and then bow it can be stored/retrieved as a collection of seperate datum-elements. The first of these modes is referred to as aggregate-memory and the second is access-memory. When an aggregate memory can be partitioned Into access memory, we say that It is accessible and the storage (retrleval) of a datum-element is called a storage-access (retrieval-access).

For accessible systems, an upper bound is found for the aggregate-information the memory can provide and this is then used to upper-bound the amount of information the memory can provide during a single access (called access-information).

More expllcitly, we have for aggregate memory the random variables called the storage-address A and the storage-datum D. These are used during storage to generate the random varlable T called the memory trace or slmply the memory. During retrieval, the retrieval-address A^{\prime} is used In conjunction with the memory trace \mathbf{T} to obtain the retrieval-datum D^{\prime}. As a rule, the address r.v.'s \mathbf{A} and \mathbf{A}^{\prime} must share information. That is $I\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)>0$ and from thls one expects that during retrieval the memory will provide D^{\prime} such that $I\left(D ; D^{\prime}\right)>0$. As a rule, the larger the mutual Information between A and A^{\prime} is, the larger the mutual information between D and D^{\prime} should be. For given r.v.'s \mathbf{A} and \mathbf{A}^{\prime}, the memory is optimal if $I\left(\mathbf{D} ; \mathbf{D}^{\prime}\right)=H(\mathbf{D})$. That is, the mutual information that the retrieval datum provides about the storage datum is maximized so that the retrieval datum completely specines the storage datum.

For an aggregate memory to be accessible, it must have an addrese-partition. That is, there must exist r.v.'s $\mathbf{A}_{m}, \mathbf{D}_{m}, \mathbf{A}_{m}^{\prime}, \mathbf{D}^{\prime}{ }_{m}, m=1,2, \ldots, M$, that partition $\mathbf{A}, \mathbf{D}, \mathbf{A}^{\prime}, \mathrm{D}^{\prime}$ respectively so that $A=\left(A_{1}, A_{2}, \ldots, A_{M}\right), D=\left(D_{1}, D_{2}, \ldots, D_{M}\right)$, and slmilarly for A^{\prime}, D^{\prime}. The storage and the retrieval processes must have partitions consistent with the address-partition. In particular, the memory trace \mathbf{T} must be determinable from memory traces $\mathbf{T}_{\boldsymbol{m}}, m=1,2, \ldots, M$; each $\mathbf{T}_{\boldsymbol{m}}$ is generated exclusively from $\mathbf{A}_{\boldsymbol{m}}, \mathbf{D}_{\boldsymbol{m}}$. Similarly, the retrieval process should be capable of generating $\mathbf{D}_{\boldsymbol{m}}$ from \mathbf{T} and \mathbf{A}_{m}^{\prime} alone. Also we require $I\left(\mathbf{A}_{m}^{\prime} ; \mathbf{A}_{m}\right)>0$ and expect that retrieval produces a retrieval datum D^{\prime} such that $I\left(\mathbf{D}_{m}^{\prime} ; \mathbf{D}_{m}\right)>0$. In many cases (though not necessarlly), optimal memory retrieval is taken to be the case in which each of the retrieval data D_{m}^{\prime} completely specify each of the storage data $\mathbf{D}_{\boldsymbol{m}}$.

We will make these notions more precise in the next section.

3.2.2. Formal Definition of Memory

Storage will be viewed as the generation of a memory trace \mathbf{T} as a function of the storage address \mathbf{A} and the storage datum \mathbf{D} :

$$
\begin{equation*}
\mathbf{T}=\mathbf{t}(\mathbf{A} . \mathbf{D}) \tag{3.1}
\end{equation*}
$$

Retrieval is the subsequent generation of the retrieval datum D^{\prime} as a function of the retrieval address A^{\prime} and the memory trace \mathbf{T}^{4}

[^4]\[

$$
\begin{equation*}
D^{\prime}=d^{\prime}\left(T, A^{\prime}\right) \tag{3.2}
\end{equation*}
$$

\]

The memory is deflned to be the quintuple ($\mathbf{A}, \mathbf{D}, \mathbf{A}^{\prime}, \mathbf{t}, \mathbf{d}^{\prime}$). Notice that the memory trace and retrieval data are r.v.'s since they are functions of r.v.s. The retrieval address is typleally identical to the storage address or is a "degraded" version of it. We will generally consider the storage and retrieval address to be identical. If $\mathbf{A}, \mathbf{D}, \mathbf{A}^{\prime}, \mathbf{D}^{\prime}$ and \mathbf{T} are matrices, this retrieval process is equivalent to presenting the entire retrieval-address matrix \mathbf{A}^{\prime} to the memory to obtain the retrieval-datum matrix \mathbf{D}^{\prime} which in turn provides information about the entire storage-datum matrix \mathbf{D}. The aggregateretrievable information $I\left(D^{\prime} ; D\right)$ will therefore characterize the information that the memory can provide. For a given storage function for constructing \mathbf{T}, it is desirable to choose a retrieval function determining \mathbf{D}^{\prime} that maximizes $I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right)$.

3.2.3. Partitioning Memory: Formal Definition of Accese-Memory

For access storage and retrieval, one partitions the storage address \mathbf{A} and datum \mathbf{D} Into M parts $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{M}$ and $\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mathbf{D}_{M}$ respectively. For our situation the \mathbf{A}_{m} 's will be mutually Independent and identically distributed over a common sample space and similarly for the \mathbf{D}_{m} 's. The storage process is in turn divided into M parts given by the relation

$$
\begin{equation*}
\mathbf{T}_{m}=t_{A}\left(A_{m}, \mathbf{D}_{m}\right), \quad m=1,2, \ldots, M \tag{3.3}
\end{equation*}
$$

The access-storage function t_{A} must be chosen so that T specined $\ln (3.1)$ is a symmetric function $\mathbf{T} \equiv \mathbf{t}_{\mathbf{s}}\left(\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}, \ldots, \mathbf{T}_{\boldsymbol{M}}\right)$ of the $\mathbf{T}_{\boldsymbol{m}}$'s. In other words, permuting the arguments of $\mathbf{t}_{\mathbf{s}}$ doesn't change the value of the function determining \mathbf{T}.

The retrieval process is similarly divided into M parts. The retrieval address A^{\prime} is partitioned Into parts $\mathbf{A}_{1}^{\prime}, \mathbf{A}_{2}^{\prime}, \ldots, \mathbf{A}_{\mathbf{M}}^{\prime}$ and the retrieval datum D^{\prime} Into parts

$$
\begin{equation*}
\mathbf{D}_{m}^{\prime}=\mathrm{d}_{\mathrm{A}}^{\prime}\left(\mathbf{T}, \mathbf{A}_{m}^{\prime}\right), \quad m=1,2, \ldots, M \tag{3.4}
\end{equation*}
$$

The access-retrieval function d^{\prime}, must be chosen so that D^{\prime} specined by (3.2) is the M-tuple $D^{\prime}=\left(D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{M}^{\prime}\right)$. We call the quintuple

$$
\left(\left\{A_{m}\right\}_{m=1}^{M},\left\{D_{m}\right\}_{m=1}^{M},\left\{A_{m}^{\prime}\right\}_{m=1}^{M}, t_{A^{\prime}}, d_{A}^{\prime}\right)
$$

the access-partition of the memory. A memory that has an access partlition is called access-memory.

Under the conditions stated above, the information $I\left(D_{m}^{\prime} ; D_{m}\right)$ that the $m^{\text {th }}$ retrieved datum provides about the $\mathrm{m}^{\text {th }}$ storage datum should be ladependent of m. Thls hasn't been proven bere, but the condltion holds for memory systems we are laterested \ln. We therefore assume that $I\left(D_{m}^{\prime} ; \mathbf{D}_{m}\right.$), called the access-retrievable information, is independent of m. The access-memory is sald to be access-separable or separable If the r.v.'s D^{\prime} and D and their respective partitions satisfy

1. Access-Inclusive: $I\left(\mathbf{D}^{\prime} ; \mathbf{D}_{m}\right)=I\left(\mathbf{D}_{m}^{\prime} ; \mathbf{D}_{m}\right) \quad m=1,2, \ldots, M$
2. Access-Exclusive: $I\left(\mathbf{D} ; \mathbf{D}_{m}^{\prime}\right)=I\left(\mathbf{D}_{m} ; \mathbf{D}_{\mathbf{m}}^{\prime}\right) \quad m=1,2, \ldots, M$
3. Access-Summable: $I\left(\mathrm{D}^{\prime} ; \mathrm{D}\right)=\sum_{m=1}^{M} I\left(\mathrm{D}_{m}^{\prime} ; \mathrm{D}_{m}\right)$

If additionally, the value of $I\left(\mathbf{D}^{\prime} ; \mathbf{D}_{m}\right)$ is the same for all m, then the memory information is sald to be uniformly access-separable or simply uniformly-separable. In thls case, for nxed m

$$
\begin{equation*}
I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right)=M \cdot I\left(\mathbf{D}_{m}^{\prime} ; \mathbf{D}_{m}\right) \tag{3.8}
\end{equation*}
$$

The first of the three conditions above states that the Information that the $m^{\text {th }}$ retrieval datum D_{m}^{\prime} provides as much information about the $m^{\text {th }}$ stored datum \mathbf{D}_{m} as does the entire retrieved tuplet $D^{\prime} \equiv\left(D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{M}^{\prime}\right)$. The idea is that D_{m}^{\prime} includes all the information avallable about \mathbf{D}_{m} that is avallable from \mathbf{D}^{\prime}. Likewlse, the second condition states that the information that \mathbf{D}_{m} provides about D is no greater than the information that it provides about $\mathbf{D}_{\boldsymbol{m}}^{\prime}$. Again, the idea is that \mathbf{D}_{m}^{\prime} excludes information about $\mathbf{D}_{k}, k \neq m$. Heuristically, the frst condition states that $\mathbf{D}_{\boldsymbol{m}}^{\prime}$ provides all the information obtainable about \mathbf{D}_{m} and the second states that it provides only information about D_{m}. These two conditions would seem to Imply the third, but the author has no proof for this. The conjecture, which could be false, is left here as an open question.

3.3. Characterization of Storage Capacity

3.3.1. Bounds on Retrievable Information

We now show that when the retrieval-address \mathbf{A}^{\prime} provides no direct information arout the stored datum \mathbf{D}, the information, $I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right)$, that the retrleval-datum D^{\prime} provides about the storage-datum D is bounded by the storage-matrix entropy. Expllcitly, we show

Theorem 1: Let ($\mathbf{A}, \mathbf{D}, \mathbf{A}^{\prime}, t, \mathbf{d}^{\prime}$) be a memory with \mathbf{A}^{\prime} Independent of \mathbf{D}. Then

$$
\begin{equation*}
I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right) \leq H(\mathbf{T}) \tag{3.9}
\end{equation*}
$$

Proof: Slnce D^{\prime} is a function of \mathbf{A}^{\prime} and \mathbf{T}. we bave by (2.13) that $I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right) \leq I\left(\mathbf{A}^{\prime}, \mathbf{T} ; \mathbf{D}\right)$. By (2.16) we have

$$
\begin{aligned}
I\left(\mathbf{A}^{\prime}, \mathbf{T} ; \mathbf{D}\right) & =I\left(\mathbf{T} ; \mathbf{D} \mid \mathbf{A}^{\prime}\right)+I\left(\mathbf{D} ; \mathbf{A}^{\prime}\right) \\
& =H\left(\mathbf{T} \mid \mathbf{A}^{\prime}\right)-H\left(\mathbf{T} \mid \mathbf{D}, \mathbf{A}^{\prime}\right) \leq H(\mathbf{T})
\end{aligned}
$$

where $I\left(\mathbf{D} ; \mathbf{A}^{\prime}\right)=0$ since \mathbf{A}^{\prime} is independent of \mathbf{D}. The theorem follows.

We see from the proof of the theorem that

$$
\begin{equation*}
I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right) \leq I\left(\mathbf{A}^{\prime}, \mathbf{T} ; \mathbf{D}\right) \leq H(\mathbf{T}) \tag{3.10}
\end{equation*}
$$

If \mathbf{A} is independent of \mathbf{D} then this relation holds for the case that $\mathbf{A}^{\prime} \equiv \mathbf{A}$. If additionally, \mathbf{A} is Independent of T then the condition $A^{\prime} \equiv \mathbf{A}$ is optimal in that the second Inequallty of (3.10) becomes an equality. Since thls will hold for the memory systems we consider, the relation will be displayed for Puture reference:

Corallary: When the conditions of theorem 1 hold for $\mathbf{A}^{\prime} \equiv \mathbf{A}$ and \mathbf{A} is independent of \mathbf{T} we have

$$
\begin{equation*}
I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right) \leq I(\mathbf{T}, \mathbf{A} ; \mathbf{D})=H(\mathbf{T}) \tag{3.11}
\end{equation*}
$$

We now have a bound for the aggregate-retrievable Information. If the memory is unlformly separable, then we will have a bound on the Information retrievable on each access.

3.3.2. Storage and Storage Capacity

To obtain a bound on the information retrievable on the $\mathrm{m}^{\text {th }}$ access, assume that the memory (A, D, $\mathbf{A}^{\prime}, \mathrm{t}, \mathrm{d}^{\prime}$) is unlformly separable. We then have for any $m=1,2, \ldots, M$:

$$
\begin{equation*}
M \cdot I\left(\mathbf{D}_{m}^{\prime} ; \mathbf{D}_{m}\right)=I\left(\mathbf{D}^{\prime} ; \mathbf{D}\right) \leq H(\mathbf{T}) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
I\left(\mathbf{D}_{m}^{\prime} ; \mathbf{D}_{m}\right) \leq H(\mathbf{T}) / M \tag{3.13}
\end{equation*}
$$

We will call this the uniform-access bound.

The uniform-access bound motlvates the defnitlon of storage and storage capacity for uniformly separable memory. For the systems we will consider, $A^{\prime} \equiv \mathbf{A}$ is optimal in the sense mentioned in the previous section. We assume then that the retrleval address is identical to the storage address and suppose that $I\left(D_{m}^{\prime} ; D_{m}\right)$ is independent of index m but is a function $I(M)$ of the number M of items stored. From (3.12), $I(M)$ must satisfy

$$
\begin{equation*}
M \cdot I(M) \leq H(\mathbf{T}) \tag{3.14}
\end{equation*}
$$

The product on the left is the information storage of the system. The atorage capacity will be denned as

$$
\begin{equation*}
C_{S} \equiv \max _{M} M \cdot I(M) \tag{3.15}
\end{equation*}
$$

There are two ways to obtaln a maximum of the number M of storable items. The first assumes that the product $M \cdot I(M)$ increases to a maximum as M increases to a value, M^{*}, then decreases. In this case equation (3.15) Implles

$$
\begin{equation*}
C_{S}=M^{*} \cdot I\left(M^{*}\right) \tag{3.16}
\end{equation*}
$$

where the right-hand-side is bounded above by the entropy $H(\mathbf{T})$ evaluated at M^{*} which we denote $H\left(\mathbf{T}, M^{*}\right)$. If $I\left(M^{*}\right)$ can be determined, then by (3.15)

$$
\begin{equation*}
M^{*} \leq \max _{\boldsymbol{M}} H\left(\mathbf{T}, M^{*}\right) / I\left(M^{*}\right) \tag{3.17}
\end{equation*}
$$

Another bound for M utllizes a lower bound $L(M)$ for $I\left(\mathbf{D}_{m} ; \mathbf{D}_{m}\right)$ as a criterion for system performance. Specincally, we make the constralnt that

$$
\begin{equation*}
L(M) \leq I(M) \tag{3.18}
\end{equation*}
$$

as a requirement for minimal system performance. If $L(M)$ is smaller than $I(M)$ for small values of M but overtakes $I(M)$ as M grows, a bound for M can be obtalned from the constralnt.

For the case that the memory is not separable, it may stlll be ualform la the sense that $I\left(\mathrm{D}_{m}^{\prime} ; \mathrm{D}_{m}\right)$ is independent of $m \in\{1,2, \ldots, M\}$. For the Instances we consider, relations (3.12) and (3.13) still hold so the methods of bounding M explalned above apply. These methods will be utllized in the next chapter.

3.4. Relation of Separability of Memory to Performance

3.4.1. Non-Separability of Distributed Memory

For assoclative ltem-memory, we make the indentincation $\mathbf{A}, \mathbf{A}^{\prime} \equiv \mathbf{F}, \mathbf{D} \equiv \mathbf{G}, \mathbf{T} \equiv \mathbf{W}$ and $\mathbf{D}^{\prime} \equiv \mathbf{G}^{\prime}$. Aggregate storage is then given by (2.20) and aggregate retrieval by (2.22). The accesspartition of the address and datum is Just the division of the matrices lato columns corresponding to the prototype vectors. The input-prototypes partition the address F, each acting as a separate address word" and the output-prototypes partition the stored-datum G, acting as Individual ${ }^{\text {• datum words }}$ ". The datum \mathbf{G}_{m} is sald to be stored at "location" \mathbf{F}_{m}. Access-storage is specifled by (2.10) and accessretrieval is given by (2.21).

From calculations done outside this investigation, the llnear-assoclator as an item memory is conjectured not to be separable except In llmited cases. A prellminary development by the author has determined that ltem memory might be access-Inclusive when $M \leq n_{I} / 5$. Further, it may actually be separable when $n_{I} / 5 \geq M \geq \exp _{2}\left(n_{O}\right)$. These are submitted as sumclent conditions for separabllity but may not be necessary. A memory with an input-dimensionallity exceeding $2 \cdot M$ and an outputdimenslonallty a few times $\log _{2} M$ might be separable. Such a configuration is consistent with those considered later In the chapter on classincation. For classincation, systems with input-dimensionallty greatly exceeding the output-dimensionallty are most emciently suited to the task.

On the other hand, separable memory is Identical In function to digital RAM or local memory. The fact that matrix-based memories distribute the Information for each assoclation over the entire matrix means that the information for each assoclation is overlaid with that of the others. Thls feature is what allows the information for separate associations to Interact. Regularitles in the input-to-output mappings specined by many associations should be "amplined" whereas Irregularlties/inconsistencles would be attenuated in the memory's input-tooutput map. This interaction is contrary to the notion of separabllity. In fact, non-separabllity is the very feature that constltutes the capacity of distrlbuted memory for "pattern discovery $|6,40, \mathrm{ch} .1|$ and other functions that make them of computational interest. The non-separabllity of these systems makes thelr storage capacity more difficult to ascertaln. However, the property "super-summable" exists for these systems so that bounds on the per-item
retrieval-Information can be found in terms of the entropy of the matrix. ${ }^{5}$ This results in a bound on the number of items storable in the system with respect to a minlmal performance criterion.

3.4.2. Super-Summabllity of Item Memory

Assuming that item-memory is not separable, it may not be summable. However, the Independence of the entries $G_{k j}$ of the \mathbf{G} matrix insures that the memory is super-summable. That is

$$
\begin{equation*}
I\left(\mathbf{G}^{\prime} ; \mathbf{G}\right) \geq \sum_{k=1}^{M} I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right) \tag{3.19}
\end{equation*}
$$

As we will see, this relation is quite useful in subsequent chapters on storage and classincation. For the sake of later analysis then, we will start by showing this inequallty and a useful extension of it hold. To start, $H(\mathbf{G})=\sum_{m=1}^{M} H\left(\mathbf{G}_{\boldsymbol{k}}\right)$ since the $\mathbf{G}_{\boldsymbol{k}}$'s are independent. Also since $\mathbf{G} \equiv\left(\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \ldots, \mathbf{G}_{\mathbf{M}}\right)$ and $\mathbf{G}^{\prime} \equiv\left(\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}} \mathbf{\prime}^{\prime} \ldots, \mathbf{G}_{\boldsymbol{M}}\right)$ we have that

$$
H\left(\mathbf{G} \mid \mathbf{G}^{\prime}\right) \leq \sum_{k=1}^{M} H\left(\mathbf{G}_{k} \mid \mathbf{G}^{\prime}\right) \leq \sum_{m=1}^{M} H\left(\mathbf{G}_{k} \mid \mathbf{G}_{k}^{\prime}\right)
$$

always holds. Combining these, we get

$$
\begin{aligned}
I\left(\mathbf{G}^{\prime} ; \mathbf{G}\right) & =H(\mathbf{G})-H\left(\mathbf{G} \mid \mathbf{G}^{\prime}\right) \\
& =\sum_{k=1}^{M} H\left(\mathbf{G}_{k}\right)-H\left(\mathbf{G} \mid \mathbf{G}^{\prime}\right) \geq \sum_{k=1}^{M}\left(H\left(\mathbf{G}_{k}\right)-H\left(\mathbf{G}_{k} \mid \mathbf{G}^{\prime}\right)\right) \\
& \geq \sum_{k=1}^{M}\left(H\left(\mathbf{G}_{k}\right)-H\left(\mathbf{G}_{k} \mid \mathbf{G}_{k}^{\prime}\right)\right)=\sum_{k=1}^{M} I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right)
\end{aligned}
$$

so that (3.18) holds. The extension of this is

$$
\begin{equation*}
I\left(\mathbf{G}^{\prime} ; \mathbf{G}\right) \geq \sum_{k=1}^{M} \sum_{j=1}^{n_{O}} I\left(G_{k j}^{\prime} ; G_{k j}\right) \tag{3.20}
\end{equation*}
$$

which is proven in a similar manner by showing

[^5]\[

$$
\begin{equation*}
I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right) \geq \sum_{j=1}^{n} I\left(G_{k j}^{\prime} ; G_{k j}\right) \tag{3.21}
\end{equation*}
$$

\]

which holds because the components of $\mathbf{G}_{\boldsymbol{k}}$ are Independent.

The relations (3.19) and (3.20) are useful because $I\left(\mathbf{G}^{\prime} ; \mathbf{G}\right)$ is bounded above by $H(\mathbf{W})$ and so we have both

$$
\begin{equation*}
\sum_{k=1}^{\mathbf{M}} I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right) \leq H(\mathbf{W}) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{M} \sum_{j=1}^{n_{0} O} I\left(G_{k j}^{\prime} ; G_{k j}\right) \leq H(W) \tag{3.23}
\end{equation*}
$$

Additionally, if the memory is uniform so that $I\left(\mathbf{G}_{\boldsymbol{k}} ; \mathbf{G}_{\boldsymbol{k}}\right)$ is the same for all k, and $I\left(\boldsymbol{G}_{\boldsymbol{k j}} ; \boldsymbol{G}_{k j}\right)$ is the same for all k, j, then (3.22) and (3.23) become

$$
\begin{array}{ll}
I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right) \leq H(\mathbf{W}) / M & k=1,2, \ldots, M \\
I\left(G_{k j}^{\prime} ; G_{k j}\right) \leq H(\mathbf{W}) / M n_{O}, & k=1,2, \ldots, M, j=1,2, \ldots, n_{O} \tag{3.25}
\end{array}
$$

Thus we get a bound on the information provided by any access-retrieval-data, $\mathbf{G}_{\boldsymbol{k}}$ about the storagedata \mathbf{G}_{k} and also a bound on the amount of Information any of the access-retrleval components $G_{k j}^{\prime}$ provide about the storage components $G_{k j}$.

These arguments hold when \mathbf{G}^{\prime} is replaced by some componentwlse function $\mathbf{G}^{\prime \prime} \equiv \mathbf{g}^{\prime \prime}\left(\mathbf{G}^{\prime}\right)$ or rather $G_{k j}^{\prime \prime} \equiv g^{\prime \prime}\left(G_{k j}^{\prime}\right)$, as the retrieval function. The inequallties will be shown here for future reference

$$
\begin{align*}
& I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right) \leq H(\mathbf{W}) / M \tag{3.26}\\
& I\left(G_{k j}^{\prime \prime} ; G_{k j}\right) \leq H(\mathbf{W}) / M n_{O} \tag{3.27}
\end{align*}
$$

These bounds will be useful In later chapters on storage and classincation.

3.4.3. Separabllity of Permutation Memory

For permutation memory, the storage address is the matrix $F \equiv\left(F_{1}, F_{2}, \ldots, F_{M}\right)$. The g-matrix in this equation is known to the detector and so is shown as a constant rather than a r.v. matrix. The storage-datum, \mathbf{D}, is a permutation r.v. K whose outcome κ is one of the M ! permutations of the indices $\{1,2, \ldots, M\}$. That is, κ is a function that matches a given value m in $\{1,2, \ldots, M\}$ with a unique value $\kappa(m)$ from the same set. To store the datum K, one applles K to the columns $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{M}$ of the matrix \mathbf{g} to get the matrix, $K(\mathbf{g})$, whose columns are $\mathbf{g}_{K(1)}, \mathbf{g}_{K(2)}, \cdots, \boldsymbol{g}_{K(M)}$. The storage r.v. matrix is then obtalned from \mathbf{F} and K as in equation (2.24). The retrieval address F^{\prime} is a matrix r.v. with $I\left(F^{\prime} ; F\right)>0$. Often, we will take F^{\prime} to be F. The retrieval-datum, K^{\prime} is a r.v. whose outcome κ^{\prime} is determined as follows:

1. For $m=1,2, \ldots, M$, compute the vector $\mathbf{G '}_{m}=\mathbf{W F}_{m}$ and select via a similarity measure the vector $\mathbf{g}_{\boldsymbol{k}}$ from among the output-prototypes that is a best-match of $\mathbf{G}^{\prime}{ }_{m}$. (In the case there is more than one such best-match, select one of them at random.)
2. Set $\kappa^{\prime}(m)=k$.

This process represents the aggregate-retrieval function d^{\prime}. The access partition is the quintuple $\left(\left\{F_{m}\right\}_{m=1}^{M}\{K(m)\}_{m=1}^{M},\left\{F_{m}^{\prime}\right\}_{m=1}^{M}, t_{A}, d_{A}^{\prime}\right)$ where t_{A} is glven by $t_{A}\left(F_{m}, K(m)\right) \equiv \mathbf{g}_{K(m)} \mathbf{F}_{m}^{\mathbf{T}}$ and the access-retrieval function d_{A}^{\prime} is calculated as shown in the two steps above for only one value of m at a time.

For storage of a permutation κ chosen randomly, the values $\kappa(1), \kappa(2), \ldots, \kappa(M)$ are nearly Independent for large M. The only restriction on the $\kappa(m)$'s is that $\kappa\left(m^{\prime}\right) \neq \kappa(m)$ when $m^{\prime} \neq m$. For large M, this restriction introduces little dependence among the values of $\kappa(m) m=1,2, \ldots, M$. Since these M values are nearly Independent, their jolnt entropy is approximately the sum of their Individual entroples. The individual entropy is $\log _{2} M$ bits, so the joint entropy roughly is $M \cdot \log _{2} M$ blts. More precisely, the Joint entropy is $\log _{2} M$! blts slace the values $\kappa(m)$ specify one of M ! permutations. But $\log _{2} M$! is roughly $M \cdot \log _{2} M$ for large M (say for $M \geq 3000$). Taking the values $\kappa(m), m=1,2, \ldots, M$ to be independent is therefore a good approximation.

In the same way, retrieval of $K^{\prime}(m)$ always glves some information about $K^{\prime}(l)$ for $l \neq m$. This is because if the memory is accurate, then $K^{\prime}(m)=K(m)$ with probabillty near one. Therefore, slace $K(l) \neq K^{\prime}(m)$, the value of $K^{\prime}(l)$ is not equal to $K^{\prime}(m)$ agaln with probabllity near one. In short, knowing the value of $K^{\prime}(m)$ glves "cross-over" information about $K^{\prime}(l), l \neq m$. In particular, the value of $K^{\prime}(l)$ will probably not be the one observed for $K^{\prime}(m)$. For accurate memory, we can compute
this cross-over Information:

$$
\begin{aligned}
I\left(K^{\prime}(m) ; K^{\prime}(l)\right) & =H\left(K^{\prime}(l)\right)-H\left(K^{\prime}(l) \mid K^{\top}(m)\right) \\
& \approx \log _{2} M-\log _{2}(M-1) \approx 1 / M
\end{aligned}
$$

This is negligible compared to the uncertalnty of $K^{\prime}(l)$ for large M.

Due to the symmetry of the memory, and retrieval functions (the F_{m} s are l.1.d.) the probabllity $P\left(K^{\prime \prime}, m\right) \neq K(m)$) is independent of m. Letting P_{e} be this probabllity, we seek the information $I\left(K^{\prime}(m) ; K(m)\right)$. To do so, we note that a best-match process that produces $K^{\prime}(m)$ as its output, acts probabillstically as an M-ary symmetric communlcations channel |12| with $K(m)$ as the item to be "transmitted" and $K^{\prime}(m)$ as the item produced at the "receiving end". We also have P_{e} as the probabllity of error at the recelving end. From this it follows that the information that the output provides about the input is given by

$$
\begin{align*}
I\left(K^{\prime}(m) ; K(m)\right) & =\log _{2} M-P_{e} \log _{2}(M-1)-\psi\left(P_{e}\right) \\
& \approx\left(1-P_{e}\right) \log _{2} M-\nexists\left(P_{e}\right) \tag{3.28}
\end{align*}
$$

which is the Information that the recelved signal provides about a transmitted signal that was sent over the communication channel. For small $P_{e}, I\left(K^{\prime}(m) ; K(m)\right)$ is approximately $\log _{2} M$. On the other hand

$$
\log _{2} M \leq I\left(K^{\prime}(m) ; K(m)\right) \leq I\left(K^{\prime} ; K(m)\right) \leq H(K(m))=\log _{2} M
$$

so that $I\left(K^{\prime} ; K(m)\right) \approx I\left(K^{\prime}(m) ; K(m)\right)$ so the memory is access-Inclusive.

To show that the memory is access-exclusive, the arguement is similar. Assuming P_{e} is small, knowledge of elther $K(m)$ or of K tells us with high probabllity, what $K^{\prime}(m)$ will be (namely the same value as $K(m)$). We have
$I\left(K^{\prime}(m) ; K\right) \approx H(K(m)) \quad$ and $\quad I\left(K^{\prime}(m) ; K(m)\right) \approx H(K(m))$
so $I\left(K^{\prime}(m) ; K\right) \approx I\left(K^{\prime}(m) ; K(m)\right)$.

To show the memory is access-summable, we retaln the assumption that P_{e} is small so that K and K^{\prime} will be identical with near-unlty probabllity. Thls gives the relation

$$
I\left(K^{\prime} ; K\right) \approx H(K)=\log _{2} M!\approx M \cdot \log _{2} M
$$

As mentloned eariler $I\left(K^{\prime}(m) ; K(m)\right) \approx \log _{2} M$ so

$$
I\left(K^{\prime} ; K\right) \approx \sum_{m=1}^{M} I\left(K^{\prime}(m) ; K(m)\right)
$$

We have shown that the memory is access-separable. Uniformity follows from the fact that $I\left(K^{\prime}(m) ; K(m)\right) \approx \log _{2} M$ for all $m=1,2, \ldots, M$. In the low-error case then, the memory is uniformly separable. The question regarding how separable the memory is for larger error is a sublect open for further investigation. Since P_{e} is independent of M, uniformity should hold even in the case that P_{e} is large. The author's conjecture is that greater error will degrade separabllty gradually and perhaps negliglbly provided that $\left(1-P_{e}\right) \log _{2} M>\nexists\left(P_{e}\right)$.

3.4.4. Relation of Performance, Item-Memory and Channel-Memory

The notion of permutation-memory is merely a formulation of the memory's abllity to keep track of which Input-prototype is mapped to which output-prototype. For fixed outcomes \boldsymbol{f}_{m} and $\boldsymbol{g}_{m}, m=1,2, \ldots, M$ of the prototypes and two random permutatlons, K and K^{\prime}, a matrix storing the assoclations $\left(\boldsymbol{f}_{m}, \mathbf{g}_{K(m)}\right)$ should be different from the matrix storing the associations $\left(\boldsymbol{f}_{m}, \mathbf{g}_{K^{\prime}(m)}\right)$. The difference should be reflected in the response of the two matrices to a given input. For assoclative memory, the input will be some prototype f_{k}. For the assoclative-classinler, the input will be some bitvector $\boldsymbol{P}_{k}^{\prime}$ that is closer to \boldsymbol{f}_{k} than it is to the other prototypes. For elther case, the matrix-output, call it $\boldsymbol{g}_{k}^{\prime}$, should reflect which output-prototype, $\boldsymbol{g}_{K(k)}$ or $\boldsymbol{g}_{K^{\prime}(k)}$, was assoclated with $\boldsymbol{f}_{\boldsymbol{k}}$. If $\left(\boldsymbol{f}_{k^{\prime}} \boldsymbol{g}_{\boldsymbol{K}(k)}\right)$ is stored, then $\boldsymbol{g}_{k}^{\prime}$ should be closer to $\boldsymbol{g}_{K(m)}$ than to the other output-prototypes. Likewlse for the case that $\left(\boldsymbol{f}_{k^{\prime}}, \mathbf{B}_{K^{\prime}(k)}\right)$ is stored. In elther case, the matrix-output should provide an outside observer (a detector/best-match-process that has access to the output-prototypes) enough information to decipher which output-prototype is matched-up with \boldsymbol{f}_{k} withln the assoclator. In effect, the matrix-output must provide enough information about the proper output-prototype (e.g. $\mathbf{g}_{\boldsymbol{K}(\boldsymbol{k})}$ for the nrst matrix and $\boldsymbol{8}_{K^{\prime}(k)}$ for the second) to distingulsh it from among the M alternatives. Of course, the permutation used Is Imaginary in the sense that we can relabel the output-prototypes so that the matrix is seen to store the assoclations $\left(\boldsymbol{f}_{m}, \mathbf{g}_{m}\right)$. With this convention, the output $\mathbf{g}_{k}{ }^{\prime}$ should provide the detector with enough information, that is, $\log _{2} M$ blts, to allow a detector to decide which output-prototype is " \mathbf{g}_{k} ".

In terms of the random vectors, \mathbf{G}^{\prime}, has a mean determined by $\mathbf{G}_{\boldsymbol{k}}$ but is Independent of the individual prototypes $\mathbf{G}_{m}, m \neq k$, and so $\mathbf{G}^{\prime}{ }_{k}$ provides no information about any individual $\mathbf{G}_{\boldsymbol{m}}$.

The information that G_{k}^{\prime} provides about the output-prototypes to discern \mathbf{G}_{k} from among the M alternative prototypes, should be largely due to the information it shares with \mathbf{G}_{k}. Thls must be at least $\log _{2} M$ bits so

$$
\begin{equation*}
I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right) \geq \log _{2} M \tag{3.29}
\end{equation*}
$$

would seem to be the necessary constraint on ltem-memory.

The problem is that G_{k}^{\prime} may not be Independent of the set $\left\{\mathbf{G}_{m} \mid m=1,2, \ldots, M, m \neq k\right\}$ as a whole, especially when \mathbf{G}_{k} is known. Therefore the information it provides about the correct cholce" among the prototypes may be dispersed among all prototypes. The author has no precise formulation for this problem other than the deflnition of access-separabllity mentioned earller. With access-separable memory, the information that G_{k}^{\prime} provides about the output-prototypes is exactly the Information it provides about \mathbf{G}_{k} so that (3.29) would be a natural consequence of the present discussion.

Although item-memory appears not to be separable, our dllemma is resolved by the following observatlons. First, since

$$
I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{1}, \mathbf{G}_{2}, \ldots, \mathbf{G}_{M}\right) \geq I\left(\mathbf{G}_{k}^{\prime} ; \mathbf{G}_{k}\right)
$$

the constralnt (3.29) will assure that the left-hand member of the above relation is at least log M. Another consideration is the detector itself. We assume that it merely compares \mathbf{G}_{k}^{\prime} with each of the prototypes Individually, and then compares the M results. No calculation involving G_{k} with more than one prototype at a time is allowed. A detector of thls sort should only be sensitive to information $\mathbf{G}_{\boldsymbol{k}}$ provides about individual prototypes. This information is zero for all prototypes except $\mathbf{G}_{\boldsymbol{k}}$. Condltion (3.29) will therefore be necessary for the detector. Of course, a more sophlstlcated detector which may not require this condition for rellable performance, may perform better than ladleated in the subsequent chapters.

Chapter 4
 Evaluation of Information-Storage Capacity

The analysis to follow is concerned with the case that the number, M, of stored associations is larger than the input dimensionality, n_{I}, so that the input vectors are llnearly dependent and Interference effects must be accounted for. In thls case the output vector is only an approximation of the proper prototype output. Our concern is the number M of assoclations that can be stored in a matrix of a given size before the output becomes unrecognlzable.

4.1. Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M assoclations $\left(f_{m}, g_{m}\right), m=1,2, \ldots, M$ for some M. The input-prototype vectors are n_{I}-dimensional and the output-prototypes are n_{o}-dimensional. For simplicity of analysis the prototypes will be balanced Bernoulli-vectors (see chapter 2, p. 15). All Input-prototypes will then have $\left|f_{m}\right|^{2}=n_{I}$ and all outputprototypes will have $\left|g_{m}\right|^{2}=n_{O}$. To motlvate the method of storage measurement, we make an analogy with digital memory. The address to the digltal memory can be viewed as an laput vector and the retrieved data as the output vector. A particular address vector and the data vector stored at the address location can be regarded as a vector-association palr. The number of bits represented by the data vector Is the information the system provides upon performing the Input-to-output association. For digltal memory, the number of blts represented is the same as the number of blt-locations in the data vector and so is identical with the dimenslonallty of the data vector. Storage is defined in thls chapter as the amount of information per association multiplled by the number of associtions stored in memory. Storage capacity is the maximum storage the system can provide. In thls case, the storage capacity is llmited by the number of storage locatlons of the memory. Though the dimenslonally of both the laput and output vectors is specined In advance, the data ltems are not. That Is, the number of items that can be stored is not determined by what they are. In effect, belng able to retrieve data from the memory has no meaning unless we are able to store an arbitrary data set at the outset (ROM is no exceptlon, when we consider all memory conngurations possible before burn-ln). In essence, the question "What is the storagecapacity of the memory?" has no meaning when one is considering a specinc device whose identity and

Input-tooutput mapping is already determined/unchangeable. A burned-in ROM for is no longer a storage device, merely a retrieval device.

For the matrix memory, the storage is likewise given by the lnformation-per-association multiplled by the number of associatlons stored. The dlmenslonallty of the lnput and output prototypes are specined In advance, but the prototypes themselves are not. That is, we cannot assume specinc values for the prototypes in the analysis to determine the storage capabillty of the system. Slace the prototypes to be stored determine the values of the welghts of the memory-matrix, the matrix is itself unknown. For this reason, the storage of the memory is not denned for a partlcular matrix but rather for a class of matrices all of the same slze. ${ }^{6}$ The class of outer-product matrix-assoclators of a given size ts the set of all matrices that can be generated from balanced-Bernoulll vectors via equation (1.1). The discussion above Indicates that an assoclation is not considered to be stored ln a particular matrix of the class unless it is expllcitly included in the sum, (1.1) that determines the matrix.

The information-per-assoclation for matrix memory can be characterized in several ways, two of which are considered here. The nrst called ltem-memory chooses an arbltrary $k \in\{1,2, \ldots, M\}$ and presents the $k^{\text {th }}$ Input prototype to the system. The matrix-output is then regarded as a probabilistic rendition of the $k^{t h}$ output prototype. On the average (over all matrices of the class), given M, the matrix-output will provide a certaln amount of Information about the prototype output and this is taken as the Information provided by the assoclation.

The second method, channel-memory or permutation-memory, acts analogously to an Information channel. The $\mathrm{K}^{\text {th }}$ Input is presented to the system and an output is generated. The latter is compared with each prototype-output vector via a simllarity measure and the best match from the prototypes is chosen. To perform correctly, the system is expected to produce the $k^{\text {th }}$ output prototype as the best-match. If the $1^{\text {th }}$ output prototype is chosen, an error is identifed with $\boldsymbol{l} \neq k$. The probabillty of error averaged over the matrix-class is taken as the error probabillty for the assoclator as an M-ary symmetrlc channel (see section 3.4.3). The average mutual Information between the output and Input is thus denned. Thls average is considered as the information per assoclation. For channel memory, we

[^6]denne for each pair of positive integers (N, M) the matrix channel of size N on M associations. It consists of the ensemble of all possible matrices with $n_{n_{O}}=N$ that can be constructed from a set of M balanced-Bernoulli-vector prototype-palrs $\left(\mathbf{f}_{m}, \mathbf{g}_{m}\right), m=1,2, \ldots, M$. Mathematically the ensemble acts as a communication-channel of information theory. Once a particular set of assoclations is chosen for storage, a partlcular matrix is selected from the ensemble via equation (1.1). This matrix is deterministic and is not itself a communication channel and its storage is not defned.

For both item and channel memory, the storage is the product of M and the information I represented by a single assoclation. Inltlally, the storage $M \cdot I$ of the matrix lncreases proportionally with M. However the error probabllity increases with M as well so that the information-per-association I gradually decreases. For some value M^{*} of M, the information per association begins to diminish more rapidly than M increases. At this polnt, storing more assoclations decreases the total information storage of the system. For $M=M^{*}$, the system has reached its storage capacity.

The fact that the total retrievable Information decreases eventually as M gets large is not proven In this work. In fact, thls may not be the case. On the other hand, the channel memory provides a minimal criterion for memory performance. To perform well as a channel, a system need only produce an output that is more slmilar to the appropriate output-prototype than to the others. In effect, thls demands only that the system be able to tell the stored associations apart. This seems a natural minimal capabllity since item-memory by contrast demands that the matrix actually "reconstruct" the approprlate output prototype. A system that can do this even with low fidellty of reproduction, can stlll perform well as a channel. The channel memory deflnes a lower llmit allowable for the fidellty. Since ndellty deterlorates as more items are stored, we obtaln a maximum number of useful assoclations that can be stored by the system. Channel memory then ls cruclal In determining the "absolute maximum" number of assoclations to be stored in a system.

4.2. Bounds on Storage Capacity

4.2.1. Restrictions on Relative Magnitudea of Parameters

The analysis that follows assumes Important restrictions on the magnitudes and relative slzes of the parameters. These restrictlons are in addition to any others derived later in thls chapter.

We begin with the requirement that the input prototypes and the output prototypes be distinct vectors. With thls, the number M of prototype-palrs must satlsfy $\left\lceil\log _{2} M \leq n_{I}\right.$ and $\left\lceil\log _{2} M \leq n_{O}\right.$. However if each of these relations is an equallty, the prototypes are already determined. The only thing that can vary is which input prototype is palred to which output prototype.

There are M ! ways to form the prototype palrs and so M ! ways to form the matrlx. Therefore the matrix entropy is $\log _{2} M!\approx \operatorname{Mog}_{2} M$ bits which is somewhat less than we will nind to be when the prototypes are randomly selected. The "entropy-degradation" caused by a nxed prototype-set, would serlously limit the amount the amount of information the matrix can provide at its output.

In order to ensure that the matrix entropy is not compromised, we must be able to choose elther the Input prototypes or the output prototypes (or both) at random. If the randomly chosen input-prototypes are to be distinct with high probabillty, we must have $2 \log _{2} M<n_{I}$ and if the output-prototypes are to be randomly chosen, we need $2 \log _{2} M<n_{O}$. These requirements ensure that sampling without replacement is virtually identical to sampling with replacement so that no dupllcate selections occur. If at least one of these two requirements is met, the matrix-entropy should not be degraded.

More stringent requirements are needed if the prototype vectors are to be dissimilar to each other. This requirement is necessary for the output prototypes if a best-match algorithm is to match the output of the llnear-associator with the correct output-prototype. A few errors in the matrix output should not confuse the best-match process as they would if the prototypes are too similar. The requirement is also necessary for the input-prototypes when the linear-associator is doing classincation (see next chapter) and the inputs to the matrix are expected to be simllar but not identical to an input-prototype. To meet the requirement, the dimensionallty of a vector space from whlch prototypes are to be chosen cannot be too small. If two balanced-Bernoulll vectors are chosen from an n-dimensional space then the number of components that are Identical between the two has average $n / 2$ and standard deviation of $\sqrt{n} / 2$. Since agreement of exactly $n / 2$ components corresponds to orthogonallty and most vectors will fall within 2 or 3 standard deviations of the mean, the prototypes will be highly orthogonal if the mean is large compared to the standard deviation. For this, n should be at least 100 or so.

To ensure dissimilar vectors one must also consider the number of prototypes to be chosen. The minimal distance occurfing between two balanced-Bernoulll vectors from among M vectors chosen from n-dimensional space is roughly $n / 2-\sqrt{2 \ln M} \cdot \sqrt{n} / 2$ (see appendix B). In order that the two most similar prototypes be dissimilar, we require that the above minimal distance be nearly $n / 2$. This will occur when $\sqrt{2 \ln M} \cdot \sqrt{n} / 2$ is small in comparison. As we shall see, the number M of prototype-palrs to be stored in the matrix should not exceed the number of weights in the matrix. If the matrix is square, this means M will not exceed n^{2} where n is both the input and output dimenslonallty. For thls maximal value of M we need $\sqrt{2 \ln M} \cdot \sqrt{n} / 2$ to be several times smaller than $n / 2$. This sets a minimal bound on n. If we require at least an elght-fold difference between $n / 2$ and $\sqrt{2 \ln M} \cdot \sqrt{n} / 2$, then n must be Just over 1800 or larger. A four-fold difference produces a lower bound just under 400. In any event, the prototype dimenslonallty, both input and output, should be several bundred if an assoclator is to discriminate well between a large number of stored prototypes.

4.2.2. Matrix Entropy

As shown in the previous chapter, the amount of information retrievable from the matrix \mathbf{W} is bounded above by its entropy $H(\mathbf{W})$. In this section, the matrix-entropy is estimated and used to ascertain the storage capacity of the matrix.

Given the M input-output prototype-pairs $\left(\mathbf{f}_{m}, \mathbf{8}_{m}\right)$, the matrix denned by equation (1.1) is seen as the sum of M outer-product matrices. The $\mathrm{m}^{\text {th }}$ outer-product or association-plane or plane, is completely determined by the $n_{I}+n_{O}$ bits of \mathbf{f}_{m} and \mathbf{g}_{m}. Its $\mathrm{j}^{\text {th }}$ component $c_{j i}$ is the product $f_{m i} g_{m j}$; which takes values in $\{-1,1\}$. The $m^{\text {th }}$ association-plane is not changed if both \boldsymbol{f}_{m} and \boldsymbol{g}_{m} are multiplled by -1. This indicates that the $\mathrm{m}^{\text {th }}$ plane represents at most $n_{I}+n_{O}-1$ bits of information. In fact, the entrles of any given row and column are enough to determine every other entry in the plane. To Illustrate, examine the $k^{\text {th }}$ row and $1^{\text {th }}$ column and the entry $c_{j i}=f_{m i} g_{m j}$. These three entrles (bits) $c_{k i}, c_{k l}$ and $c_{j l}$ determine $c_{j i}$ so that the parity of these four numbers is even. The $n_{I}+n_{o}-1$ entries that make up a particular row and column, are easily seen to be Independent, so that $n_{I}+n_{O}-1$ is also the lower bound on the information in a plane. We conclude that each assoclation-plane represents exactly $n_{I}+n_{O}-1$ bits. We mention also that the entropy of the assoclation plane is the same even when the output (input) prototypes are nixed outcomes leaving only the input (output) prototypes as balanced-Bernoulli vectors. From this we have that the matrix-sum \mathbf{W} of the association planes has the same entropy from the point of view of an external process that has knowledge of either (but not both) the set of input-prototypes or the set of output-prototypes.

When the assoclation-planes are summed, information is lost. To assess the matrix entropy, note that each of the entries $W_{j i}$ of the matrix is the sum of M "blts" $f_{m i} g_{m j}, m=1,2, \ldots, M$. Therefore $W_{j i} \sim \operatorname{Bin}(\pm 1, M, 1 / 2)$. As shown in appendix A. the entropy of $W_{j i}$ is

$$
\begin{equation*}
H\left(W_{j i}\right) \approx \frac{1}{2} \log _{2} \frac{\pi e M}{2} \tag{4.1}
\end{equation*}
$$

As mentloned in the prevlous chapter, the entropy of a set of random variables is bounded above by the sum of the individual entroples (see equation (2.2)). SInce there are N weights, where $N=n_{I} n_{O}$, and since the welghts have identical entroples, the upper bound of $H(\mathbf{W})$ is obtalned by multiplying the common welght-entropy $(1 / 2) \log _{2}(\pi e M / 2)$ by N. The entropy $H(\mathbf{W})$ will obtain this upper bound if and only if the welghts are independent. The assumption that the welghts are independent is false for Individual assoclation planes. However the planes are Independent and the blt-patterns in one plane will not generally be present in the others. For the sum of M such planes where M is large, the welghtIndependence assumption should provide a close approximation the the true matrix entropy when M is much larger than both n_{I} and n_{O}. We conclude then that

$$
\begin{equation*}
H(\mathbf{W}) \approx \frac{1}{2} \log _{2} \frac{\pi e M}{2} \tag{4.2}
\end{equation*}
$$

is a good approximation when $M>n_{I}$ and $M>n_{O}$.

4.2.3. Bound on the Number of Items Storable

Consider the situation in which the $k^{\text {th }}$ input-prototype, \mathbf{F}_{k} is present at the input of the linearassoclator and some process provides information about the $k^{\text {th }}$ output-prototype \mathbf{G}_{k} on the basis of what it sees at the memory output. If the average information it provides about $\mathbf{G}_{\boldsymbol{k}}$ is I blts then from relation (3.12) of the previous chapter, we must have

$$
M \cdot I \leq H(\mathbf{W})
$$

Replacing $H(\mathbf{W})$ with its upper bound

$$
M \cdot I \leq \frac{1}{2} \log _{2} \frac{\pi e M}{2}
$$

so that

$$
\frac{M}{N} \leq \frac{\log _{2} M+\log _{2}(\pi e / 2)}{2 \cdot I}
$$

We make the approximation $\log _{2}(\pi e / 2) \approx 2$ to get

$$
\begin{equation*}
\frac{M}{N} \leq \frac{\log _{2} M+2}{2 \cdot I} \tag{4.3}
\end{equation*}
$$

In the case that the process at the output of the matrix is a best-match algorithm, the matrix is acting as a channel. By equation (3.28), page 32, we have

$$
I=\log _{2} M-P_{e} \log _{2}(M-1)-M\left(P_{e}\right)
$$

where P_{e} is the probabillty that the best-match process chooses a prototype other than \mathbf{G}_{k} as the one most closely resembling the matrlx-output vector. For our purposes, $M-1 \approx M$ and so

$$
\begin{equation*}
I \approx\left(1-P_{e}\right) \log _{2} M-\lambda\left(P_{e}\right) \tag{4.4}
\end{equation*}
$$

Equation (4.3) becomes

$$
\begin{equation*}
\frac{M}{N} \leq \frac{1}{2} \cdot \frac{\log _{2} M+2}{\left(1-P_{e}\right) \log _{2} M-2\left(P_{e}\right)} \tag{4.5}
\end{equation*}
$$

Our criterion for minimal channel performance is that $P_{e}=0 \ln$ which case $I=\log _{2} M$. This gives the upper bound on M / N

$$
\begin{equation*}
\frac{M}{N} \leq \frac{1}{2}+\frac{1}{\log _{2} M} \tag{4.8}
\end{equation*}
$$

for perfect channel performance. When M is large, say $\log _{2} M \geq 16$, the upper bound for M / N is only negllglbly larger than $1 / 2$. Therefore we denne the storage load or load, L, of the system to be the ratlo $2 M / N$. A load of 1 corresponds to storing half as many prototype-pairs in the memory as there are weights in the matrix. For large systems (50,000 welghts or more), a load larger than one precludes operation of the memory as a perfect channel.

4.2.4. Trading Storage with Error

To understand how the load trades with error rate P_{e}, we rewrite equation (4.5) as the quotient

$$
\frac{M}{N} \leq \frac{1}{2} \cdot \frac{\log _{2} M+2}{\left(1-P_{e}\right) \log _{2} M} / \frac{1}{1-\psi\left(P_{e}\right) /\left[\left(1-P_{e}\right) \log _{2} M\right]}
$$

letting $x=\neq\left(P_{e}\right) /\left[\left(1-P_{e}\right) \log _{2} M\right.$ and assuming this fraction is less than $1 / 3$, we use the approximation $1 /(1-x) \approx 1+x$ to get

$$
\begin{aligned}
\frac{M}{N} & \leq \frac{1}{2} \cdot \frac{\log _{2} M+2}{\left(1-P_{e}\right) \log _{2} M} 1+\frac{\not\left(\left(P_{e}\right)\right.}{\left(1-P_{e}\right) \log _{2} M} \\
& =\frac{1}{\left(1-P_{e}\right)} \frac{1}{2}+\frac{1}{\log _{2} M} 1+\frac{\psi\left(P_{e}\right)}{\left(1-P_{e}\right) \log _{2} M}
\end{aligned}
$$

If we assume that $P_{e} \leq 1 / 2$ and that $2 /\left(\log _{2} M\right)^{2}$ is less than say $1 / 16$, then when we multiply out the right-hand-side, we can ignore the $\nexists\left(P_{e}\right) /\left\{\left(1-P_{e}\right)\left(\log _{2} M\right)^{2} \mid\right.$ term to get

$$
\begin{equation*}
\frac{M}{N} \leq \frac{1}{\left(1-P_{e}\right)} \frac{1}{2}+\frac{1}{\log _{2} M}+\frac{H\left(P_{e}\right)}{2\left(1-P_{e}\right) \log _{2} M} \tag{4.7}
\end{equation*}
$$

This approximation is good for $M \geq 2^{6}$ when $P_{e} \leq 1 / 2$. These restrictions ensure that the ' x ' term defned above is less than $1 / 3$ which in turn ensures that the term we lgnored to get relation (4.7) is small. If we allow P_{e} to be as large as $3 / 4$, then we obtaln a minimum value, 2^{12}, of M required for the valldity of (4.7).

A simpler bound for M / N is afforded for $M \geq 2^{16}$. In this case. If P_{e} is less than $1 / 2$, the term ($\left.1-P_{e}\right) \log _{2} M$ is much larger than $\lambda\left(P_{e}\right)$ so that the latter can be ignored in relation (4.5). The relation then becomes

$$
\begin{equation*}
\frac{M}{N} \leq \frac{1}{\left(1-P_{e}\right)} \frac{1}{2}+\frac{1}{\log _{2} M} \tag{4.8}
\end{equation*}
$$

Notice that this is the bound in equation (4.6) multiplied by the Inverse of the "success rate" ($1-P_{e}$). The approximation is valld for more modest values of M when P_{e} is smaller than $1 / 2$. Summarizing the analysis for larger systems, the number N of welghts needed to store M assoclations for nxed P_{e} is $\mathrm{O}(M)$. Allowing the load factor $L \equiv 2 M / N$ to be larger than 1 , say $L=1 /(1-r), 0<r<1$, implles the error rate P_{e} will be at least as large as r.

4.2.5. Storage Limits for Item Memory

Now we turn our attention to ltem-memory. We assume that when the $k^{\text {th }}$ Input prototype is presented to the matrix, the matrix output is used exclusively to produce a blt vector that is as accurate a rendition of the $k^{\text {th }}$ output prototype as possible. It is assumed that no information other than that provided by the matrix-output is allowed for production of the blt-vector. To be consistent with the other sections of this thesis, we denote the systems "rendition" of \mathbf{G}_{k} as $\mathbf{G}_{k}{ }^{\prime \prime}$. The term, I, in equation (4.3) Is now $I\left(\mathbf{G}_{k}{ }^{\prime \prime} ; \mathbf{G}_{k}\right)$. For the case that $P\left(G_{k j}^{\prime \prime}=G_{k j}\right) \approx 1, j=1,2, \ldots, M$, we have that I must be n_{O} blts and so

$$
\frac{M}{N} \leq \frac{\log _{2} M+2}{2 n_{O}}
$$

Substituting $n_{I} n_{O}$ for N and rearranging, a criterion for n_{I} is found

$$
\begin{equation*}
n_{I} \geq \frac{2 M}{\log _{2} M+2} \tag{4.8}
\end{equation*}
$$

For large M (say $M \geq 16$) we can Ignore the 2 in the denominator to get

$$
\begin{equation*}
n_{I} \geq \frac{2 M}{\log _{2} M} \tag{4.10}
\end{equation*}
$$

Since the blt-error rate is near zero, $\mathbf{G}_{k}{ }^{\prime \prime}$ should be virtually identical to \mathbf{G}_{k}. If a best-match is used to select the output-prototype that is nearest to $\mathbf{G}_{k}{ }^{\prime \prime}$, then \mathbf{G}_{k} will be chosen with near certalnty. In other words, If we deflne P_{e} as the probability that G_{k} is not chosen then P_{e} should be near zero.

For this condition to hold, the memory must provide enough Information at its output to act as a channel with no errors. Therefore relation (4.6) must be satisfled. Using this together with (4.9) and the fact that $N=n_{I} n_{O}$ one gets a lower bound on n_{O}

$$
n_{O} \geq \log _{2} M+2
$$

which is a minimal requirement to be made considering the parameter constraints discussed earller in the chapter.

For lllustration, we design a matrix to store $M=50,000$ pairs. With this large number, relation (4.6) Implles that at N is at least 100,000 . The minimal value for n_{I} becomes about 5700 and the minlmum for n_{O} is about 18. With these values, the number of welghts becomes 106,200 . We will compare this with the matrix parameters derived in the next section in which the system is allowed to make errors.

4.2.6. Item-Memory with Errors

Now consider the case that the components of $\mathbf{G}_{k}^{\prime \prime}$ each agree with their counterparts $\ln \mathbf{G}_{k}$ with probabllity notlceably less than 1 . Assume that the probabllity that a palr $G_{k j}^{\prime \prime}$ and $G_{k j}$ agree is Independent of $j=1,2, \ldots, n_{O}$ and call this probabllity p_{G}. The probabllity of disagreement between a pair of components is $1-p_{G}$ which is non-zero and so $\mathbf{G}_{k}^{\prime \prime}$ will contaln a substantial number of blts that are in error. In this case, a best-match algorlthm that compares $\mathbf{G}_{k}^{\prime \prime}$ with the output-prototypes will have a probabillty $P_{e}>0$ that the wrong match is made.

The Information that $\mathbf{G}_{\boldsymbol{k}}^{\prime \prime}$ provides about $\mathbf{G}_{\boldsymbol{k}}$ is bounded above by the information $\mathbf{G}_{\boldsymbol{k}}^{\prime}$ provides about G_{k} and Dounded below by the sum $\sum_{j=1}^{n(0)} I\left(G_{k j}^{\prime \prime} ; G_{k j}\right)$ of the information that \mathbf{G}_{k} provides on a blt-by-blt basls. The argument that thls is a lower bound is similar to the argument given in the previous chapter to substantlate relatlons (3.10) and (3.20). The Information that $G_{k j}^{\prime \prime}$ provides about $G_{k j}$ is given by $\left(1-\dot{\mu}\left(p_{G}\right)\right)$. Using the above lower bound for I, thls Implles that relation (4.3) holds with I
replaced by $n_{O}\left(1-\lambda\left(p_{G}\right)\right)$. Assume that $p_{G} \leq 0.88$ so we can approximate $1-\lambda\left(p_{G}\right)$ by $\left(2 \log _{2} e\right)\left(p_{G}-1 / 2\right)^{2}$ as per equation (2.29). Inequallty (4.3) becomes

$$
\begin{equation*}
\frac{M}{N} \leq \frac{\log _{2} M+2}{2 n_{O}\left(2 \log _{2} e\right)\left(p_{G}-1 / 2\right)^{2}} \tag{4.11}
\end{equation*}
$$

For $M \geq \exp _{2}(16)$, we can ignore the 2 In the numerator on the right to get

$$
\begin{equation*}
\frac{M}{N} \leq \frac{\ln M}{4 n_{O}\left(p_{G}-1 / 2\right)^{2}} \tag{4.12}
\end{equation*}
$$

We can get a lower bound on n_{I} by replacing $N \ln (4.11)$ by $n_{I} n_{O}$ and rearranging

$$
\begin{equation*}
n_{I} \geq \frac{4 M\left(\log _{2} e\right)\left(p_{G}-1 / 2\right)^{2}}{\log _{2} M+2} \tag{4.13}
\end{equation*}
$$

Agaln, assuming $M \geq 50,000$ we can use (4.12) to get

$$
\begin{equation*}
n_{I} \geq \frac{4 M\left(p_{G}-1 / 2\right)^{2}}{\ln M} \tag{4.14}
\end{equation*}
$$

which holds for larger systems. We assume that $p_{G}>1 / 2$ since $G_{k}{ }^{\prime \prime}$ is supposed to be a better-thanchance rendition of \mathbf{G}_{k}. Wlth this assumption the above relation can be expressed as an upper bound on p_{G} achlevable by a given n_{I}

$$
\begin{equation*}
p_{G} \leq \frac{1}{2}\left(1+\sqrt{n_{I} \ln M / M}\right) \tag{4.15}
\end{equation*}
$$

Since p_{G} is less than 1 , there is a non-zero probabillty P_{e} that $G_{k}{ }^{\prime \prime}$ will be mistaken for some prototype other than \mathbf{G}_{k}. If we assume that a best-match among the output prototypes is sought using the vector $\mathbf{G}_{k}{ }^{\prime \prime}$ then the information $I\left(\mathbf{G}_{k}{ }^{\prime \prime} ; \mathbf{G}_{k}\right)$ must exceed that required to operate the best-match process. The information required for a best-match process with error rate P_{e} is given by (3.28) of the prevlous chapter and we can assure that $I\left(\mathbf{G}_{k}{ }^{\prime \prime} ; \mathbf{G}_{k}\right)$ is larger than this by requiring

$$
n_{O}\left(1-\lambda\left(p_{G}\right)\right) \geq\left(1-P_{e}\right) \log _{2} M-\lambda\left(P_{e}\right)
$$

Assuming that $P_{e} \leq 1 / 2$ so that $\left(1-P_{e}\right) \log _{2} M \geq(1 / 2) \log _{2} M$, we take M to be larger than 50.000 as usual. This allows one to lgnore the $\hat{\lambda}\left(P_{e}\right)$ term so that we have

$$
n_{o}\left(1-\nsim\left(p_{G}\right)\right) \geq\left(1-P_{e}\right) \log _{2} M
$$

With the assumption that $1 / 2 \leq p_{G} \leq 0.88$ we use the approximation (2.29) to get

$$
2 n_{O}\left(\log _{2} e\right)\left(p_{G}-1 / 2\right)^{2} \geq\left(1-P_{e}\right) \log _{2} M
$$

which ylelds the reclprocal relations between the error probabillties

$$
\begin{align*}
& P_{e} \geq 1-\frac{2 n_{O}}{\ln M\left(p_{G}-1 / 2\right)^{2}} \tag{4.16}\\
& p_{G} \geq 1 / 2+\sqrt{\left(1-P_{e}\right) \ln M /\left(2 n_{O}\right)} \tag{4.17}
\end{align*}
$$

To obtain a bound on the matrix size, n_{O} can also be expressed in terms of the other parameters:

$$
\begin{equation*}
n_{O} \geq \frac{\left(1-P_{e}\right) \ln M}{2\left(p_{G}-1 / 2\right)^{2}} \tag{4.18}
\end{equation*}
$$

Note that relation (4.18) must hold for p_{G} to satlsfy both (4.17) and (4.15) simultaneously. From (4.18) and (4.14) we have $N \geq 2\left(1-P_{e}\right) M$ which is the same bound as given in (4.8) for M large. While n_{I} and n_{O} depend on p_{G}, their dependence is reciprocal so the matrix-size needed to store M items is not affected by p_{G} given a nxed P_{e}.

We use these relations to design a matrix that can store $M=50,000$ tems with a channel error $P_{e}=1 / 2$ and a output-blt error $p_{G}=3 / 4$. From relation (4.18) we obtaln $n_{O}=44$. From (4.14) we also have $n_{I} \geq 1156$, so that $n_{I} n_{O} \approx 50,900$. Again the matrix is one which "fans-ln" to produce a highly rellable output under a large storage load. Notice that in accordance with ($1-P_{e}$) = 1/2, thls system is roughly half the size of the one designed earller for "perfect" item retrieval.

Under any of the above circumstances, the number of welghts needed for storage is $O(M)$. Allowing $P_{e} \geq 0$ allows an advantage with M increasing roughly proportional to $1 /\left(1-P_{e}\right),\left(P_{e} \leq 1 / 2\right)$. If a blt-error $p_{G}<1$ is allowed, then P_{e} must be specined to determine n_{I} and n_{O} as a function of M. Notice that relatlons (4.13), (4.14) and (4.18) Imply that n_{I} can be made smaller when p_{G} is near $1 / 2$, whereas n_{O} ust be made larger to meet the same storage requirements since the number of welghts must satisfy relations (4.11) and (4.5). Requiring that the blts of $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$ to be accurate forces elther M or n_{O} to
be small. That is, elther the matrix must store few vectors (small ratio M / N) or the slze $N=n_{r} \boldsymbol{r}_{0}$ of the matrlx must be due largely to n_{I}. Heuristically, the matrlx must be able to gather a large amount of Information at the Input compared with the amount it supplles at the output. One would suspect that the Information supplled at the output is a function of the Information avallable at the input. This observation, which will be shown to be true in the next chapter, will be Instrumental in derlving results regarding classincatlon.

4.3. Storage Efficiency

Storage effclency of a matrix will be denned as the matrlx-storage divided by the information required to represent a matrix associator on M assoclations. We know that the number of blts stored by the matrix is the matrix entropy $H(\mathbf{W})$. To get the number of blts required to store the matrix, we examine equation (1.1) to ascertain the range of values that the weights can assume. This equation reveals that each entry (welght) in an outer-product matrix is the sum of M blts. The range of values of each entry is the set of Integers between $-M$ and M. The extremes are reallzed whenever the blts for that entry all agree in value. Further, the entry will be be even if and only if M is even. It follows that the number of values an entry can assume is $M+1$. Thls means that N welghts will require $\operatorname{Mog}_{2}(M+1) \approx \operatorname{Mog}_{2} M$ blts for storage. We deflne the effciency η by the matrix-entropy divided by the number of blts needed to represent the matrix

$$
\begin{equation*}
\eta=\frac{H(\mathbf{W})}{\operatorname{Mog}_{2} M}=\frac{(1 / 2) N\left(\log _{2} M+2\right)}{\operatorname{Mog}_{2} M} \approx \frac{1}{2}+\frac{1}{\log _{2} M} \tag{4.19}
\end{equation*}
$$

which is the upper bound for the ratio of M to N. In this case, the emciency is asymptotically $1 / 2$.

This is not the best we can do however. From the proof of the "talls lemma" in appendlx A, page 100, the entropy $H\left(W_{j i}\right)$ of a welght of the W-matrix can be approximated by considering only $2 r_{M}+1$ of the most central values that the welght can achleve where $r_{M}=\left\lfloor\sqrt{2 M_{0} g_{2} M}\right\rfloor$. This means that only these values occur often enough to represent a signincant amount of the information represented by the welght. So we can ignore the more extreme values the welght might take and thereby only need roughly $\log _{2}\left(2 \sqrt{2 M \log _{2} M}\right) \approx(1 / 2) \log _{2}\left(2 \operatorname{Mog}_{2} M\right)+1$ bits to store each welght.

Let M_{0} be a positive integer representing the maximum number of assoclations to be stored in the matrix. If we restrict the welghts to range in value from $-\left\lfloor 2 M_{0} \log _{2} M_{0}\right\rfloor$ to $\left\lfloor 2 M_{0} \log _{2} M_{0}\right\rfloor$ then when the number M of assoclations stored is no greater than M_{0}, the talls lemma prescribes the maximum number of bits of information lost by making the range restriction. The maximum information lost is glven by the upper bound for ε in the talls-lemma whlch is $2 \log _{2} e /\left(e M_{0}\right)$ (see (A.42), condition 2 and
related footnote, page 100). Assuming that this is the amount of information that is lost for each weight, the total lost for the entire matrix is no more than $2 \operatorname{Mog}_{2} e /\left(e M_{0}\right)$ bits. If the matrix is required to lose no than r bits of information due to the welght restriction, then set M_{0} equal to N / r so that the maximum information loss is $2 \operatorname{Mog}_{2} e /(e N / r)=2 r \log _{2} e / e \approx r$ bits. For the case that the load L is expected to be less than 1 (that is we don't Intend to overload the matrix), we can set M_{0} to be $N / 2$ and will lose no more than one bit for the whole matrix by restricting the weights to the prescribed range.

The efnclency of this new system is again the matrix-entropy divided by N times the logarithm of the number of values permitted for each welght

$$
\begin{align*}
\eta & =\frac{(1 / 2) N\left(\log _{2} M+2\right)}{N\left((1 / 2) \log _{2}(2 M)+(1 / 2) \log _{2}\left(\log _{2} M\right)+1\right)} \\
& \approx \frac{\log _{2} M}{\log _{2} M+\log _{2}\left(\log _{2} M\right)} \quad \text { for large } M
\end{align*}
$$

which is asymptotically near 1 . Therefore, by simply truncating the range of the weights, we can for a fully loaded matrix, achieve a storage emclency near unlty whlle losing an insignincant amount of Information about the matrix.

Chapter 5 Classification

5.1. Introduction

Whereas the prevlous chapter consldered the llnear-assoclator as a memory, the present chapter will treat it as a classifler. The classiner is merely a generallzation of the memory in which the Input-vectors are no longer constrained to be input-prototypes. In thls case, Input-prototypes are each a representative or "prototype" of a distinct category of vectors in the input-space. An vector from the input-space belongs to a category if it is closer, under the Hamming-distance metric, to the prototype of that category than to other input-prototypes. The input-prototype and its category have a corresponding outputprototype that represents the category in the output vector-space and the assoclator has stored the correspondence between the input and output prototypes. In this characterization, classification is similar to channel-memory (see ngure 5-1). The input-vector by virtue of its membership in a particular category, has a corresponding output-prototype which is the category's corresponding output-prototype. Proper classincation consists of assoclating the input-vector to an output-vector that is closer to the Input-vector's corresponding output-prototype than to the other output-prototypes.

The analysis begins with the characterization of the llnear-assoclator as a classincation device. A non-llnearity is applled to the assoclator-output to facllltate the analysis. Minlmal requirements necessary for proper performance of the classinfer are explalned and we describe the assoclator's information characteristics relating to achleving these requirements. Methods of generating input-vectors are formulated and are eventually shown to be equivalent from the polnt-of-vlew of the associator. The Information now from input to output. called the "throughput" of the associator, is then quantined and related to performance capabllity of the assoclator. We will then be in a position to determine the minimal size of sub-vectors within input-vectors that act as "cues" for the input-vector category. We will also quantify the percentage of the input-space that is classinable by the system. We then "revisit" storage capacity and quantlfy its degradation due to the use of the non-llnearlty at the associator output. Near the end of the chapter, the theory is Illustrated with a few classinfer designs and a discussion of Important aspects of their operation. Finally, we derlve some merlt parameters for judging storage/classincation performance of the assoclator as it compares with the best theoretlcally possible.

Figure 5-1: Classincation by Prototype-Correspondence

5.2. The Associator as a Classifier

5.2.1. Characterization of Classification

Conslder an arbltrary classincation device as shown in ngure 5-2. The device can recelve any n_{I}-dimenslonal ± 1-vector as an input which will be referred to as the input-vector. The device has stored information about M vectors called input-prototypes. These prototypes are the n_{i}-dimensional balanced-Bernoullt vectors $\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} \ldots, \mathbf{F}_{\boldsymbol{M}}$. Each one is considered to be an exemplar of a distinct category of n_{i}-dimensional ± 1-vectors. An Input-vector that is closest in Hamming-distance to the prototype \mathbf{F}_{k} than to any of the other Input-prototypes will be denoted by \mathbf{F}_{k}^{\prime} and is sald to belong to the $k^{\text {th }}$ category. Thus, there are M categorles, each "centered" about its exemplar. After recelving the Input $\boldsymbol{F}_{k}{ }^{\prime}$, the classiner Is expected to emit the number k at its output to signal that the input belongs to category k. A classification-error (or brieny an "error") Is sald to have occurred when the response of the classiner is some number other than k. The probabllity of classincation error is denoted P_{e}.

Figure 5-2: General Classifier for n_{i}-dimensional ± 1-vectors

If the classification device is to operate with negliglbly small P_{e}, the input-vector, F_{k}^{\prime} must provide at least $\log _{2} M$ bits of information about its category-exemplar $\boldsymbol{F}_{\boldsymbol{k}}$. This is due to the fact that F_{k}^{\prime} must be distingulshed as belonging to one of M categories and the only way the distinction can be made is to determine which of M exemplars is closest (see the chapter on the information-theory of memory). We therefore have the constraint

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) \geq \log _{2} M \tag{5.1}
\end{equation*}
$$

Now consider the classincation system of ngure 5-3. In this case, the classiner is divided into two stages. The first-stage is a llnear-assoclator whose output is fed to a Hopfield-non-llnearity (denned later). Thls stage, called the associator, translates n_{i}-dimensional ± 1-vectors into n_{o}-dimensional ± 1-vectors where n_{O} is the dimenslonally of the assoclator's output-prototypes $\mathbf{G}_{1}, \mathbf{G}_{2}, \ldots, \mathbf{G}_{M}$. The second-stage is a best-match process that compares the output of the first-stage with the output prototypes. In this case, the M category-exemplars for the classiner are the input-prototypes $\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \mathbf{F}_{M}$. As is the case for the general classiner of ngure 5-2, an input-vector that belongs to the $k^{t h}$ category will be denoted $\mathbf{F}_{k}{ }^{\prime}$. The resulting output of the llnear-assoclator matrix will be called $\mathbf{G}_{k}{ }^{\prime}$ and the output of the Hoprield non-llnearlty is called $\mathbf{G}_{k}{ }^{\prime \prime}$.

Upon recelpt of $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ at the input, the resulting vector, $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$, at the output is expected to be closer to \mathbf{G}_{k} than to any other output-prototype. In this case, the best-match process of the second-stage process will respond with the number k at the output. We regard the best-match device as an error-free device. Errors will only occur ir the nrst-stage produces a vector $\mathbf{G}_{k}{ }^{\prime \prime}$ that is closer to some output-

Figure 5-3: Assoclator Classifier for n_{I}-dimenslonal ± 1-vectors
prototype other than $\mathbf{G}_{\boldsymbol{k}}$. In other words, the analysis is concerned with the performance limitations of the first stage. The second-stage is merely an artince for the sake of the characterization of the classincation "task" of the linear-associator. In fact, the "classincation" done by the associator is Just its passing information to the output that enables one to determine which input-category is present at the matrix-input.

We observe that the second-stage of ngure $5-3$ is itself a classiner of an arbltrary sort. Its category exemplars are the vectors $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \ldots, \mathbf{G}_{\mathbf{M}}$ so its input $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$ must provide $\log _{\mathbf{2}} \boldsymbol{M}$ bits of information about $\mathbf{G}_{\boldsymbol{k}}$ if the second-stage is to classify rellably. The assumption that

$$
\begin{equation*}
I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right) \geq \log _{2} M \tag{5.2}
\end{equation*}
$$

Is thereby obtalned as a constraint on the output $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$ of the first-stage.

In a later section it will be shown that the output-information $I\left(\mathbf{G}_{k}{ }^{\prime \prime} ; \mathbf{G}_{k}\right)$ of the first-stage can be regarded as a linear function of the input-information $I\left(\mathbf{F}_{\boldsymbol{k}}{ }^{\prime} ; \mathbf{F}_{\boldsymbol{k}}\right)$. The ratio $I\left(\mathbf{G}_{k}{ }^{\prime \prime}: \mathbf{G}_{k}\right) / I\left(\mathbf{F}_{k}^{\prime} \cdot \mathbf{F}_{k}\right)$ will be denoted by $\left.T \mathbf{W}\right)$ and is called the throughput of the associator. Knowledge of the throughput will allow us to translate the constralnt of (5.2) Into a constralnt on the input-vectors $\mathbf{F}_{k}{ }^{\prime}$. This in turn will reveal the fraction of the input-space f that can be classined. The general idea ls to defne the input-redundancy (or slmply the redundancy) R of the Input $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ to
be the ratlo

$$
\begin{equation*}
R=I\left(\mathbf{F}_{k}^{\prime} \cdot \mathbf{F}_{k}\right) / \log _{2} M \tag{5.3}
\end{equation*}
$$

The constraint (5.1) then stipulates that $R \geq 1$. The question is just how much redundancy must be present at the input to the assoclator to ensure rellable classiffation. The answer lles in the definition of throughput from which we have $I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right)=T(\mathbf{W}) I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)$, and so relations (5.2) and (5.3) Imply that the inequallty $T(W) R \log _{2} M \geq \log _{2} M$ holds. That is

$$
\begin{equation*}
R \geq \frac{1}{T(\mathbf{W})} \tag{5.4}
\end{equation*}
$$

In the case that the assoclator is not llghtly loaded, $T(W)$ will be less than 1 so that by (5.3), the constraint (5.4) is more stringent than relation (5.1). Later It will be shown that at most M^{1-R} of the Input-space f is classinable. A heavily loaded associator will have a low throughput and so require a high redundancy. As a result, it can classify only a small portion of the input-space.

Since the classiner of nigure 5 -3 is merely an assoclator followed by a classiner, one may wonder why we should bother with the first-stage assoclator at all. One reason is that the assoclator translates Inputvectors into output-vector "codes" that are more useful to subsequent processing stages. Another reason as we shall see, is the data-compression afforded by the associator. What data-compression is and its usefulness will be seen near the end of the chapter.

5.2.2. Generation of Input Vectors

An important aspect of associative memory is the abllity to respond to input-patterns that deviate from the stored input-prototypes. In particular, suppose each Input-prototype $\boldsymbol{F}_{\boldsymbol{k}}$ is divided up into subvectors called features (see ngure 5-4). That is, some subset of the n_{I} components of F_{k} represent a "fleld" In which a particular "plece" of Information is coded. If F_{k} ' has only this single plece of information in common with F_{k} and nothing (other than colncidental similaritles) in common with the other input-prototypes. then we call $\boldsymbol{F}_{\boldsymbol{k}}{ }^{\prime}$ a single-feature vector. It is desirable that an input-vector \mathbf{F}_{k} ' be classinable even if it is a single-feature vector. Call the number of components of $\mathbf{F}_{\boldsymbol{k}}$ that compose a particular feature the feature-size. We seek the minimal feature-size necessary for rellable classincation of a single-feature vector.

Several methods of incorporating a feature of $\mathbf{F}_{\boldsymbol{k}} \ln \mathbf{F}_{\boldsymbol{k}}$ or inserting information about $\mathbf{F}_{\boldsymbol{k}}$ Into \mathbf{F}_{k}^{\prime} are consldered here. The nrst is to copy r components of \boldsymbol{F}_{k} Into $\mathbf{F}_{k}{ }^{\prime}$ and set the rest of the components of \mathbf{F}_{k}^{\prime} to zero. This case can be reduced to analyzing the storage characteristics of an

Figure 5-4: Features Within Vectors
assoclator with r-dimensional input. This method therefore is not as Interesting as other methods which don't allow zeros as components of the input-vector. Zerolng the "unused" components however does have the advantage that no spurious information is incorporated Into the Input-vector. As far as the matrix is concerned, r bits of information are actually present at the input.

Another method is again to copy r of \boldsymbol{F}_{k} 's components to $\boldsymbol{F}_{k}^{\prime}$ and choose the rest of $\boldsymbol{F}_{k}^{\prime \prime} \mathrm{s}$ components as a random selection of ± 1 's. This case is more interesting because it corresponds to $\mathbf{F}_{\boldsymbol{k}}{ }^{\prime}$ contalning information other than that of the r-dimensional feature of $\mathbf{F}_{\boldsymbol{k}}$. This additional information however is not relevant to the prototypes of the assoclator. Rather, it is used by other assoclatorclassiners in a multi-classinfer system (see ngure 5-5). Each assoclator would sample the input-vector and only act on the features the input contalns that are relevant to the prototypes of the assoclator. The Input might represent the functional description of an object, each feature of the input-vector representing a different functional aspect of the object. Each assoclator would have Information about a specifc "feature-type" and assoclate features of thls type to relevant "concepts" or "goals" of the system.

This method of generating the input-vectors actually Incorporates r blts of information about $\boldsymbol{F}_{\boldsymbol{k}}$ Into \mathbf{F}_{k}^{\prime}. However, the network is probably not capable of using all r blts of information. In the nrst place, the assoclator has no way of knowing which of the r of $\boldsymbol{F}_{\boldsymbol{k}}^{\prime}$ are the coples. What's more, It never varies the way in which it "welghs" a given component of $\mathbf{F}_{\boldsymbol{k}}$ ' when determining its output $\mathbf{G}_{\boldsymbol{k}}$ '. Whether or not th happens to weigh the r components of the feature heavter than the other components of the input, is a matter of "happenstance". Another related problem is that generating the input-vector with inconslstent information is not well-accounted for by information theory. An input-vector $\mathbf{F}_{\boldsymbol{k}}{ }^{\prime}$

Figure 5-5: A Multi-Associator System
should be classified with the category-exemplar \boldsymbol{F}_{k} even when it contalns information in direct opposition to thls cholce of category. More precisely, copy r_{1} components of F_{k} to F_{k}^{\prime} and copy the negatlive of each of r_{2} other components to $\boldsymbol{F}_{k}{ }^{\prime}$. Choose the remalning components of $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ randomly. We assume $r_{1}-r_{2}>0$ so that the net feature-size is $r \geq r_{1}-r_{2}$. Agaln, if r is large enough, then the consistent information should "override' the inconsistent Information so that $\mathbf{F}_{\boldsymbol{k}}{ }^{\prime}$ is properly classined Into the $k^{\text {th }}$ category.

From an information-theory point-of-view however, the mutual information $I\left(\mathbf{F}_{\boldsymbol{k}}^{\prime} ; \mathbf{F}_{\boldsymbol{k}}\right)$ is no longer r blts but $r_{1}+r_{2}$ blts. An observer of $\boldsymbol{F}_{k}{ }^{\prime}$, knowing which components were copled directly and which were negated could infer the $r_{1}+r_{2}$ values of those components of F_{k}. Of course, the assoclator treats all the components of the input-vector the same. If r is large, the dot-product $\mathbf{F}_{k}{ }^{\prime} \cdot \mathbf{F}_{k}$ of equation (5.12). page 57, will be large and \mathbf{F}_{k}^{\prime} will be correctly classined. From the polnt-of-view of the assoclator-matrix. the useful information is r blts not $r_{1}+r_{2}$ blts. A more substantial argument for this
vlew will be given later. The arguement depends on the fact that the distribution of the matrix-output is a function of r only and does not otherwise depend on which of the above methods are used to generate the input-vector.

Another method of generating the input F_{k}^{\prime} is to choose it within a reglon surrounding the prototype \boldsymbol{F}_{k}. We denne the ball of radius ρ about \mathbf{F}_{k} to be the set

$$
\begin{equation*}
\mathbf{B}_{k}(\rho)=\left\{x \in \mathcal{F} \mid H D\left(F_{k}, x\right)<\rho\right\} \tag{5.5}
\end{equation*}
$$

where $H D(x, y)$ is the Hamming-distance between the vectors x and y. If $\rho>0$ has a value such that $B_{k}(\rho) \approx 1 / M$ then conceivably, each of the M balls $B_{m}(\rho) m=1,2, \ldots, M$ could occupy its own region of the input-space f with little overlap. That is, most vectors of f would lie in exactly one ball. The llkellhood of small overlap of all the balls is small but the Important notion is that the largest portion of space each can occupy is $1 / M$ without unavoidable overlap.

Now consider generating F_{k}^{\prime} by choosing it at random from $B_{k}(\rho)$. We will call thls method of Input-generation the neighborhood method. An observer of F_{k}^{\prime} knowing how it was generated, knows that the input-prototype F_{k} lles within ρ of F_{k}^{\prime}. Only $1 / M$ of the Input-space is this near F_{k}^{\prime} so this knowledge constitutes an M-fold decrease in the number of possible values of $\boldsymbol{F}_{\boldsymbol{k}}$. Therefore the vector F_{k}^{\prime} chosen at random from $B_{k}(\rho)$ provides $\log _{2} M$ blts of information about F_{k}. Observe that If ρ were decreased so that $B_{k}(\rho)$ encompassed only M^{-R} of the space, where $R \geq 1$, then the Input information $I\left(\mathbf{F}_{k^{\prime}} ; \mathbf{F}_{k}\right)$ would increase to $\operatorname{Rlog}_{2} M$. This observation will be useful later when comparing the methods of generating the associator-Input.

A Inal method of Input-vector generation is that of nipping a blased coln to determine for each component (blt) of the input-vector $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ whether it agrees with the corresponding component (blt) or $\mathbf{F}_{\boldsymbol{k}}$. This will be referred to as the coin method. If the coln lands "heads", we copy a component of F_{k} to $\boldsymbol{F}_{\boldsymbol{k}}^{\prime}$. If it lands 'talls', we copy its negative to $\boldsymbol{F}_{\boldsymbol{k}}$ '. Letting p_{F} be the probabllity of "heads", the probabillty that a component of $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ agrees with its counterpart $\ln \mathbf{F}_{\boldsymbol{k}}$ is $\boldsymbol{p}_{\boldsymbol{F}}$. In order that $\mathbf{F}_{\boldsymbol{k}}^{\prime}$ be a better-than-chance rendition of F_{k}, we assume that $p_{F}>1 / 2$. In thls case, the Information that $F_{k}{ }^{\prime}$ provides about \mathbf{F}_{k} is the sum over all n_{I} components of the information that each component of $\mathbf{F}_{\boldsymbol{k}}{ }^{\prime}$ provides about its counterpart $\ln \mathbf{F}_{\boldsymbol{k}}$. We can write

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)=\sum_{i=1}^{{ }^{n} I} I\left(F_{k i}^{\prime} ; F_{k i}\right) \tag{5.8}
\end{equation*}
$$

The information $I\left(F_{k i}{ }^{\prime} ; F_{k i}\right)$ is the function $1-\lambda\left(p_{F}\right)$ which is 1 bit minus the uncertalaty $\mu\left(p_{F}\right)$ that
$F_{k i}^{\prime}$ agrees with $F_{k i}$. When p_{F} is not too near 1 , (say $p_{F} \leq 0.88$) we can approximate $1-\lambda\left(p_{F}\right)$ by $2\left(\log _{2} e\right)\left(p_{F}-1 / 2\right)^{2}$ (see approximation (2.29) page 19). The result is

$$
\begin{align*}
I\left(F_{k}^{\prime} ; F_{k}\right) & =n_{f}\left(1-\nexists\left(p_{F}\right)\right) \\
& \approx 2 n_{\Gamma}\left(\log _{2} e\right)\left(p_{F}-1 / 2\right)^{2} \quad 1 / 2<p_{F}<0.88 \tag{5.7}
\end{align*}
$$

We can assess the simllarity of the input-vector F_{k}^{\prime} to the prototype F_{k} as measured by the dot-product. The average number of components of $\mathbf{F}_{\boldsymbol{h}}^{\prime}$ that agree with their counterparts in $\mathbf{F}_{\boldsymbol{k}}$ is $n_{I} p_{F}$. The average number that disagree is $n_{f}\left(1-p_{F}\right)$. The components that agree contribute a 1 to the value of the dot-product $\boldsymbol{F}_{k} \cdot \mathbf{F}_{k}^{\prime}$ and the components that disagree add a-1. Therefore the mean of the similarity is

$$
\begin{equation*}
E\left(F_{k} \cdot F_{k}^{\prime}\right)=n_{I} p_{F} \cdot(1)+n_{I}\left(1-p_{F}\right)(-1)=\left(2 p_{F}-1\right) n_{I} \tag{5.8}
\end{equation*}
$$

For the method of copying r components to generate $\boldsymbol{F}_{\boldsymbol{k}}^{\prime}$, the mean similarity is r. We therefore set $r=\left(2 p_{F}-1\right) n_{I}$ to obtain the same mean similarity as for the coln method. This glves the reciprocal relations

$$
\begin{equation*}
r=\left(2 p_{F}-1\right) n_{I} \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{F}=\frac{1}{2}+\frac{r}{2 n_{1}} \tag{5.10}
\end{equation*}
$$

It will be argued later that the various methods we described for generating the laput-vector are equivalent, from the polnt-of-view of the assoclator, to the coln method with p_{F} given in (5.10).

5.2.3. Throughput of the Associator

To ascertain the throughput of the first stage of the classifier in ngure 5-3 we must consider the probabllity distribution of the components of \mathbf{G}_{k}^{\prime}. For $j=1,2, \ldots, n_{O}$. we show that the probabllity that $G_{k j} \prime=G_{k j}$ is independent of j. Calling thls probabllity p_{G}, it is shown to be a function of the probabillty p_{F} denned earller. Consequently, the output information $I\left(\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime} ; \mathbf{G}_{k}\right)$, itself a function of P_{G}. is a function of the input-Information $I\left(\boldsymbol{F}_{k}^{\prime} ; \boldsymbol{F}_{k}\right)$.

To assess p_{G}, note that $\mathbf{G}_{k}^{\prime \prime}$ is produced from \mathbf{G}_{k}^{\prime} via the "Hopneld" $|\mathbf{2 4}, \mathbf{2 5}|$ non-linearlty

$$
G_{k j}^{\prime \prime}=\left\{\begin{align*}
1 & \text { if } G_{k j} \prime \geq 0 \tag{5.11}\\
-1 & \text { otherwise }
\end{align*}\right.
$$

The probabllity that $G_{k j}{ }^{\prime \prime}=G_{k j}$ is the probabllity that $G_{k j}{ }^{\prime} \cdot G_{k j} \geq 0$ since the two relations are equivalent. As a result, we can compute p_{G} once the probabillty distribution of $G_{k j}{ }^{\prime} \cdot G_{k j}$ is known. Using the fact that $\mathbf{G}_{k}^{\prime}=\mathbf{W F}_{k}^{\prime}$ where \mathbf{W} is glven by (2.19) we have

$$
\begin{align*}
G_{k j}^{\prime} \cdot G_{k j} & =\sum_{m=1}^{M}\left(\mathbf{F}_{m} \cdot \mathbf{F}_{k}^{\prime}\right) G_{m j} G_{k j} \\
& =\left(\mathbf{F}_{k} \cdot \mathbf{F}_{k}^{\prime}\right) G_{k j}^{2}+\sum_{m=1, m \neq k}^{M}\left(\mathbf{F}_{m} \cdot \mathbf{F}_{k}^{\prime}\right) G_{m j} G_{k j} \tag{5.12}
\end{align*}
$$

Using methods outlined in the chapter on notation, page 16, the probabllity function of the term $\left(\mathbf{F}_{k} \cdot \mathbf{F}_{k}{ }^{\prime}\right) G_{k j}{ }^{2}$ in (5.12), call the "nrst term", can be determined. The same can be done for the summation (call it the "second term") in (5.12). Both the first term and the second term are sums of l.I.d. r.v.'s so that the central llmit theorem Implles the two are both normally distributed. The sum of two Independent normal r.v's is normal so we conclude that $G_{k j}^{\prime} \cdot G_{k j}$ is normal. The mean of $G_{k j} \cdot G_{k j}$ is the sum of the means of the first and second terms of (5.12) and slmilarly for the variance. Recalling that F_{k}^{\prime} is generated by the coln method with $p_{F}=1 / 2+r /\left(2 n_{I}\right)$, the mean of the frst term is $n_{\Gamma}\left(2 p_{F}-1\right)$ and the variance is $4 p_{F}\left(1-p_{F}\right)$. The mean of the second term is zero and the variance is $(M-1) n_{I}$. Therefore the mean of $G_{k j} \cdot G_{k j}$ is $n_{I}\left(2 p_{F}-1\right)=r$ and the variance is $4 n_{I} p_{F}\left(1-p_{F}\right)+(M-1) n_{I}$. The latter is very nearly equal to $M n_{I}$ for any value of p_{F} provided $M \geq 10$.

Before calculating p_{G} in terms of p_{F}, we make some observations with regard to the effect of generating F_{k}^{\prime} on the distribution of $G_{k j}^{\prime} \cdot G_{k j}$. When $M \geq 10$, the varlance of $G_{k j}{ }^{\prime} \cdot G_{k j}$ is determined entirely by the second term of equation (5.12). The balanced-Bernoulll vectors, $\mathbf{F}_{m}, m \neq k$, appearing in the second term are independent of \mathbf{F}_{k}^{\prime} regardless of how $\boldsymbol{F}_{\boldsymbol{k}}^{\prime}$ depends on F_{k} (see chapter 2, page 16, concerning dot-product Independence). Thus the mean and varlance of $\mathbf{F}_{m} \mathbf{F}_{\boldsymbol{k}}^{\prime}$ will not not be affected by any of the methods of generating a ± 1-vector $\mathbf{F}_{\boldsymbol{k}}{ }^{\prime}$ from $\mathbf{F}_{\boldsymbol{k}}$. From thls we see that the varlance of the second term will always be $(M-1) n_{I}$ Irrespective of the method of generating F_{k}^{\prime}. Since F_{k} is a ± 1-vector, the varlance of the frst term of (5.12) can never exceed n_{I}. The nist term will therefore not contribute substantlally to the varlance of $G_{k j}{ }^{\prime} \cdot G_{k j}$ under any method of input-generation. Also $G_{k j}{ }^{\prime} G_{k j}$ is normally distributed since the second term is a large sum of l.l.d.
r.v.'s. The nature of the first term is Inconsequential due to its small variance. Further the mean of $G_{k j}^{\prime} \cdot G_{k j}$ is r for any of the methods given for generation of \mathbf{F}_{k}^{\prime}. We see then that the product $G_{k j}^{\prime} \cdot G_{k j}$ has virtually the same distribution for any method of input-generation. In particular, we have that $G_{k j}^{\prime} \cdot G_{k j} \sim N\left(r, M n_{I}\right)$. We conclude that the various methods of generating the input-vector are virtually equivalent from the viewpoint of the assoclator. From this point on, these methods will be discussed Interchangeably. ${ }^{7}$

From thls, we have also that the input-information provided by the coln method represents the maximum amount of information utilized by the assoclator for any mode of input-generation. Thls can be seen by replacing $p_{F}-1 / 2$ by the equivalent $r /\left(2 n_{I}\right)$ In equation (5.7) to get

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) \approx \frac{\left(\log _{2} e\right) r^{2}}{2 n_{I}} \tag{5.13}
\end{equation*}
$$

This information is less than r bits when $r<n_{I} / \log _{2} e$. This will be the case in the analysis to follow since (5.13) is necessary for (5.7) to hold. We conclude that the coln method provides the smallest InputInformation compared with the other methods (the nelghborhood method provides roughly the same amount of input-Information as the coln method). Because the associator sees no difference in these methods, the input-Information provided by the coln method must be the maximum amount useful to the assoclator when computing the output vector. The coin method of generation can therefore be used to ascertain the performance of the assoclator despite of the actual method of input-generation. This allows us to exploit the slmplicity of analysis afforded by the coin method while retaining the generallty to performance under the other Input-generation modes.

We now begin to calculate the probabillty p_{G} that $G_{k j}^{\prime \prime}=G_{k j}$ which is the same as the probabillty that $G_{k j}^{\prime} \cdot G_{k j} \geq 0$. Since the product $G_{k j}^{\prime} \cdot G_{k j}$ is normal with mean $\left(2 p_{F}-1\right) n_{I}$ and varlance $M n_{I}$, the probabllity p_{G} is easily determined

$$
\begin{aligned}
p_{G} & =P\left(G_{k j}^{\prime} \cdot G_{k j} \geq 0\right) \\
& =1-P\left(G_{k j} \cdot G_{k j} \leq 0\right)
\end{aligned}
$$

[^7]\[

$$
\begin{align*}
& =1-\operatorname{Pr}\left(G_{k j}^{\prime} G_{k j} \text { is }\left(2 p_{F}-1\right) n_{I} / \sqrt{M n_{I}} \text { standard dev's below the mean }\right) \\
& =1-\Phi \frac{-\left(2 p_{F}-1\right) n_{F}}{\sqrt{M n_{I}}} \\
& =\Phi\left(\left(2 p_{F}-1\right) \sqrt{n_{I} / M}\right) \quad \text { since } \Phi(x)=1-\Phi(-x) \tag{5.14}
\end{align*}
$$
\]

where Φ is the standard normal distribution function. Since $p_{G}<1$, and M will generally be larger than n_{I}, it follows that $\left(2 p_{F}-1\right) \sqrt{n_{I} / M}$ is typlcally less than 1 . This allows use of the Taylor approximation to Φ given In chapter 2 page 10 . We get

$$
\begin{equation*}
p_{G} \approx \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \sqrt{n_{I} / M}\left(2 p_{F}-1\right)=\frac{1}{2}+\sqrt{2 n_{I} / \pi M}\left(p_{F}-1 / 2\right) \tag{5.15}
\end{equation*}
$$

In a manner similar to the derivation of equation (5.7) we have

$$
\begin{align*}
I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right) & \geq n_{O}\left(1-\forall\left(p_{G}\right)\right) \\
& \approx 2 n_{O}\left(\log _{2} e\right)\left(p_{G}-\frac{1}{2}\right)^{2}, \quad 0.5 \leq p_{G} \leq 0.88 \tag{5.16}
\end{align*}
$$

Assuming p_{G} is in the stated range, we appeal to (5.15) and substitute $\sqrt{2 n_{I} / \pi M}\left(p_{F}-1 / 2\right)$ for $p_{G}-1 / 2 \ln (5.16)$

$$
\begin{align*}
I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right) & \geq 2 n_{O}\left(\log _{2} e\right) \frac{2 n_{I}}{\pi M}\left(p_{F}-1 / 2\right)^{2} \\
& \approx \frac{2 n_{O}}{\pi M} I\left(F_{k}^{\prime} ; \mathbf{F}_{k}\right) \tag{5.17}
\end{align*}
$$

where the second approximation is due to (5.7). Dividing by $I\left(\mathbf{F}_{k}{ }^{\prime} ; \mathbf{F}_{k}\right)$ (assumed larger than zero), we have a lower bound on the throughput of the assoclator

$$
\begin{equation*}
T(\mathbf{W}) \geq \frac{2 n_{O}}{\pi M} \tag{5.18}
\end{equation*}
$$

5.3. Classifiable Inputs

5.3.1. Lower Bounds on Input Information

As stated earller, the redundancy, R, must be larger than $1 / T(\mathbb{W})$ for rellable classification. Now that the throughput of the assoclator has been found, we have the lower bound

$$
\begin{equation*}
R \geq \frac{\pi M}{2 n_{0}} \tag{5.19}
\end{equation*}
$$

By definition (5.3), the input-Information is given by

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)=R \log _{2} M \tag{5.20}
\end{equation*}
$$

Together, (5.19) and (5.20) Imply a lower bound on the input-Information

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) \geq \frac{\pi \operatorname{Mog}_{2} M}{2 n_{O}} \tag{5.21}
\end{equation*}
$$

By our assumption, $\boldsymbol{F}_{k}^{\prime}$ is generated by the coln method. Thus the bitwise information $I\left(F_{k i}^{\prime} ; F_{k i}\right), i=1,2, \ldots, M$ is independent of $i=\{1,2, \ldots, M\}$. Also the input-Information $I\left(F_{k}^{\prime} ; F_{k}\right)$ is given by (5.6). We conclude that the input-information is n_{I} times the bitwise information. Dividing relation (5.21) by n_{I}, we get the lower bound

$$
\begin{equation*}
I\left(F_{k i}^{\prime} ; F_{k i}\right) \geq \frac{\pi \operatorname{Mog}_{2} M}{2 N} \tag{5.22}
\end{equation*}
$$

for the bit-wise Information.

5.3.2. Lower Bounds on Feature Slze

We can obtain minimal requirements on p_{F} and r by inverting the approximations of (5.7) and (5.13) to get each parameter in terms of $I\left(\boldsymbol{F}_{\boldsymbol{k}}^{\prime} ; \mathbf{F}_{\boldsymbol{k}}\right)$. From (5.7) and the assumption that $p_{F}>1 / 2$ we have

$$
\begin{align*}
p_{F} & =\frac{1}{2}+\sqrt{I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) /\left(2 n J \log _{2} e\right)} \\
& =\frac{1}{2}\left(1+\sqrt{2 I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) /\left(n_{l} \log _{2} e\right)}\right) \tag{5.23}
\end{align*}
$$

The relation for r is obtalned from (5.13), (5.23) and the fact that $r=\left(2 p_{F}-1\right) n_{I}$

$$
\begin{equation*}
r \approx \sqrt{2 n_{I} I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) / \log _{2} e} \tag{5.24}
\end{equation*}
$$

where $I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) / \log _{2} e$ is the input-Information in natural-logarithm units or "nats". Using equation (5.20) we get $p_{F} \ln$ terms of the redundancy

$$
\begin{equation*}
p_{F}=\frac{1}{2}+\sqrt{R \ln M /\left(2 n_{I}\right)} \tag{5.25}
\end{equation*}
$$

Similarly for r,

$$
\begin{equation*}
r \approx \sqrt{2 n_{\Gamma} R \ln M} \tag{5.28}
\end{equation*}
$$

The lower bound (5.19) for R gives a lower bound for each parameter

$$
\begin{equation*}
p_{F} \geq \frac{1}{2}(1+\sqrt{\pi M n M / N}) \tag{5.27}
\end{equation*}
$$

and

$$
\begin{equation*}
r \geq \sqrt{\left(n_{I} / n_{O}\right) \cdot \pi M n M} \tag{5.28}
\end{equation*}
$$

This means that if $\boldsymbol{F}_{k}^{\prime}$ is generated from \boldsymbol{F}_{k} by copying r of $\boldsymbol{F}_{\boldsymbol{k}}$'s components we need to copy at least $\left\lceil\sqrt{\left(n_{I} / n_{O}\right) \pi M n M}\right\rceil$ components for classincation to be possible. Rellable classincation requires that this number be the minimum reature-size allowable for the input-vector if it is a single-feature vector. The number of non-overlapping features (sub-vectors) an input-vector can have is obviously the dimenslonallty of the vector divided by the minimal reature-size $\left\lfloor n_{I} /\left\lceil\sqrt{\left(n_{I} / n_{O}\right) \pi M n M}\right\rceil\right\rfloor$. If we let $f_{\min }$ be the minimal reature size and $n_{\text {max }}$ be the maximal number of non-overlapping features allowable in an input-vector, then we have roughly

$$
\begin{equation*}
\rho_{\min } \approx \sqrt{\left(n_{\left.I^{\prime} n_{O}\right) \pi I n \mathrm{n} M}\right.} \tag{5.28}
\end{equation*}
$$

$$
\begin{equation*}
n_{m a x} \approx \sqrt{N /(\pi M \mathrm{Mn} M)} \tag{5.30}
\end{equation*}
$$

As shown later, the fraction under the radical in (5.30) cannot be less than one for rellable classification. We see then that if we are to have n non-overlapplag features in our vectors, then the number of welghts In the assoclator will have to exceed $\pi M n M$ by a factor of n^{2}. This is a rather heavy price to pay for the abllity to classify vectors on the basis of a slagle feature.

We make one important observation regarding the information content of an n-dimensional ± 1-vector. If X is the number of 1 's that occur in a balanced-Bernoulll vector, A, then X is a r.v. with mean $n / 2$ and standard deviation $\sqrt{n} / 2$. It stands to reason therefore, that a sub-vector of \mathbf{A} of length $\sqrt{n} / 2$ represents a unit of information of A. To verify this, let R be the redundancy (as defined by (5.3) for some $M>0$) of the information that \mathbf{A} is to provide about another vector, \mathbf{B}. If we are to copy components of B to A, then equation (5.26) gives the minimal number r of components that should be copled (the rest are chosen independently of the components of \mathbf{B}). Thls number can be expressed in terms of the number of standard-deviation-length sub-vectors needed

$$
\begin{equation*}
r=2 \sqrt{2 R 1 n M} \cdot(\sqrt{n} / 2) \tag{5.31}
\end{equation*}
$$

To provide $\mathrm{Rlog}_{2} M$ bits of Information, we must copy at least $2 \sqrt{2 R 1 n M}$ sub-vector "unlts of Information from \mathbf{B}. The "square-root" relationshlp between the number of blts of information and the number of sub-vector "units" Is due to the quadratic dependence of information on the probablitit that a component of one vector agrees with its counterpart in another vector (see relation (5.7)). The fact that information in balanced-Bernoulll vectors is closely related to $\sqrt{n_{I}} / 2$-length sub-vectors must play a part of any mode of representation that codes information into ± 1-vectors. If information coded into subreglons of the input-vector ts to provide the sole cue to an assoclator for classincation, the subregions must cover at least $2 \sqrt{2 R \ln M}$ sub-vector ${ }^{\text {undts }}$ of the input-vector, where R is the minimal inputredundancy required by the assoclator.

5.3.3. Fraction of the Input Space that is Clasainable

An analysis of minimal requirements for the neighborhood method of input-generation are derived in appendix B. Because thls method is roughly equivalent to the coln method and because it gives us an estimate of the number of vectors that can be classined, we relate the results here. First. for a ball centered about an input-prototype, if a randomly chosen vector from the ball is to provide Rlog $\mathrm{g}_{2} M$ bits of information about the prototype, then the ball must comprise M^{-R} of the input-space. From appendix B, the radius ρ is roughly

$$
\begin{equation*}
\rho \approx \frac{n_{I}}{2}-\frac{\sqrt{n_{I}}}{2} \cdot \sqrt{2 R \ln M-\ln (4 \pi R \ln M)} \tag{5.32}
\end{equation*}
$$

The lower bound on the redundancy in (5.19) gives an upper bound on the radlus

$$
\begin{equation*}
\rho \leq \frac{n_{I}}{2}-\frac{\sqrt{n_{I}}}{2} \cdot \sqrt{\pi M n M / n_{O}-\ln \left(2 \pi^{2} M n M\right) / n_{O}} \tag{5.33}
\end{equation*}
$$

In appendix B, geometrical consideratlons of the output space suggest that thls radius is too large. The excess redundancy required however should not be more than twice the minimum (see appendix B for a discussion of this point). This gives us a lower bound for ρ

$$
\begin{equation*}
\rho \geq \frac{n_{I}}{2}-\frac{\sqrt{n_{I}}}{2} \cdot \sqrt{2 \pi M n M / n_{O}-\ln \left(4 \pi^{2} M n M\right) / n_{O}} \tag{5.34}
\end{equation*}
$$

We now derive the upper bound on the fraction of the input-space that can be classined. This result Is obtalned from the lower bound on the Information required at the assoclator Input. Since the assoclator produces an output on the basls of the Hamming-distance between the Input-vector and the inputprototypes, input-vectors providing the assoclator a specined amount of information about an inputprototype should come from a set of vectors nearest to the prototype. Ir the set is a ball of radlus ρ about the prototype, then random selection of a vector from the ball (nelghborhood method of inputgeneration) is roughly equivalent to the coin method of input-generation when $\rho \approx n_{I}\left(1-p_{F}\right)$. When an Input-vector $\boldsymbol{F}_{k}^{\prime}$ is generated by the neighborhood method, and the information it provides about \mathbf{F}_{k} is $I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)$, the ball it comes from will encompass $\exp _{2}\left(-I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)\right)$ of the total Input-space. For our system, there are M balls surrounding M input-prototypes so the total fraction of the input space covered by the M balls is at most $M \cdot \exp _{2}\left(-I\left(\mathbf{F}_{k}{ }^{\prime} ; \mathbf{F}_{k}\right)\right)$. The reglons could overlap, though the overlap will be negilgible if the input-information is at least $2 \log _{2} M$. Now if R is the redundancy of the input, then the input information is $R \log _{2} M$ bits and the fraction C of the input-space that is classinable is

$$
\begin{equation*}
C \approx M^{1-R} \tag{5.35}
\end{equation*}
$$

U'sing the lower bound on R we have the upper bound on C In fact, as we shall see later, M will usually be greater than n_{O} by a large factor so that the fraction of the space that is classinable will be quite small.

$$
\begin{equation*}
C \leq M^{1-\pi M /\left(2 n^{\prime}\right)} \tag{5.36}
\end{equation*}
$$

where M is assumed to be larger than n_{O}.

5.3.4. Restrictions on Matrix Dimensions

The inequallty of (5.33) is required for rellable classincation, whereas inequallty (5.34) is merely a reasonable bound on how small the value of ρ need be made to Insure the system will work. Therefore Inequallty (5.33) must be larger than zero if the system is to classify its inputs. This constraint leads to a lower bound on N which will be derived by different means later (see equation (5.42)). The lower bound on N is the minimal number of vectors required merely for storing the prototypes when the Hopneld non-llnearity is present at the assoclator output.

An even tighter constraint on the required matrix size is obtained when we require that the system be capable of classifying "highly-degraded" input-vectors. A highly-degraded Input-vector is a vector that is nearly orthogonal to its category-exemplar (the nearest input-prototype). From (5.33), we see that classincation of such inputs is possible when n_{I} is large compared to $\sqrt{\pi M n M} \sqrt{n_{I} / n_{O}}$. In this case, if ρ is near the theoretical maximum given in (5.33), the input-vectors at the edge of the neighborhood of a prototype will be at a Hamming-distance nearly $n_{I} / 2$ from the prototype. A reasonable way to make n_{I} large enough is to require $n_{I} \geq 8 \sqrt{\pi M n M} \cdot \sqrt{n_{I} / n_{O}}$. Multiplying through by $\sqrt{n_{O} / n_{I}}$ and squaring both sides of this inequality gives us a lower bound on the number N of weights

$$
\begin{equation*}
N \geq 64 \pi M n M \tag{5.37}
\end{equation*}
$$

Comparing this to the requirement (5.42) for storage, we see that classification of "highly-degraded" input-vectors requires roughly $50-100$ times the number of weights required for merely storing the prototy pe vectors.

We note a few restrictions on the parameters inferred by the analysis in appendix B. First, if the Input-vector is to have a redundancy no greater than R (keeping R low, makes a larger portion of the Input-space classimable, see equation (5.35), then we must have $\rho>0$ in equation (B.6), page 109. This becomes the constraint

$$
\begin{equation*}
n_{I} \geq 2 R \ln M \tag{5.38}
\end{equation*}
$$

Thls constralnt applles equally well for the output dimenslonallty with R between 1 and 2 so that

$$
\begin{equation*}
n_{O} \geq 2 \ln M \tag{5.30}
\end{equation*}
$$

Is a minimal requirement for the output-dimensionallty (see equation (B.8)). In the "throughput" section. restrictions on the parameters n_{I}, n_{O} and M were also made to obtaln the approximations used to obtaln the assoclator throughput. The llnear approximation made in equation (5.14) assumed that M was at least as large as n_{I}. Thls assumption assures that the argument to Φ was no larger than 1 so that higher terms in the Taylor approximation to Φ can be dropped.

The assumption that the argument to Φ in equation (5.14) was less than 1 leads to a restriction on p_{G}. This assumption together with (5.15) gives the upper bound

$$
\begin{equation*}
p_{G} \leq \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \approx 0.9 \tag{5.40}
\end{equation*}
$$

These relations tllustrate the llmitations of the theory that has been developed. A designer of an assoclator on M associations must stay within the parameter-assumptions in order for the performance predictions of the theory to apply.

5.4. Performance Degradation Due to Non-Linear Output

The "Hopneld non-linearity" in ngure 5-3 was introduced for the sake of simplifying the analysis. The problem of determining the information $I\left(\mathbf{G}_{\boldsymbol{k}}{ }^{\prime} ; \mathbf{G}_{\boldsymbol{k}}\right)$ avallable directly from the associator-matrix is somewhat more difficult than finding the information $I\left(\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime} ; \mathbf{G}_{\boldsymbol{k}}\right)$ avallable from the non-linearity. Unfortunately, however, addition of the non-llnearity ellminates much of the Information avallable from $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime}$. That thls is so is evidenced by the degradation of storage capaclty due to the non-llnearity.

To estimate the storage capacity of the non-llnear assoclator in ngure 5-3, put $p_{F}=1$ to constraln the input vectors to belong to the set of Input-prototypes. The formula p_{G} that gives p_{G} in terms of p_{F} becomes

$$
\begin{equation*}
p_{G} \approx \frac{1}{2}\left(1+\sqrt{2 n_{I} / \pi M}\right) \tag{5.41}
\end{equation*}
$$

This approximation is good when p_{G} is near $1 / 2$, so in partlcular, M must be at least n_{I} an (5.41). The approximation was obtained from (5.15) which is a linearization of the normal distribution function $\Phi(x)$ about $x=0$. It overestimates p_{G} with the overestimate becoming large as p_{G} nears 1 . In fact one pays a high penalty in storage capacity when Insisting that each blt of $\mathbf{G}_{k}{ }^{\prime \prime}$ match its counterpart in
G_{k} with high probabllity. This is due seen from the fact that when n_{I} / M is increased p_{G} does not Increase as rapidly as (5.15) would Indicate. In any event, using equation (5.15) will glve an upper bound on the storage capacity.

As stated in the chapter on storage capacity, useful storage requires the output information to be at least $\log _{2} M$ bits. During retrieval, the number of blts present at the input is n_{I}. If we multiply n_{I} by the throughput $T(W)$ and require the result to be larger than $\log _{2} M$, a constralnt on the matrix size is obtalned. Unfortuneately $T(W)$ was obtalned by assuming p_{F} was not too near 1 . We will have to use equations (5.41) and (5.18) Instead to get the constraint. Remember however, (5.41) assumes p_{G} is not too near 1 , which will be the case if $M \geq 2 n_{I}$. From (5.41) and (5.16) we have

$$
I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right) \approx \frac{\log _{2} e}{\pi M}
$$

By the constraint (5.2), the right-hand-side must be larger than $\log _{2} M$. The resulting inequallty can then be rearranged to get

$$
\begin{equation*}
\frac{\pi M n \mathrm{n} M}{N} \leq 1 \tag{5.42}
\end{equation*}
$$

To put (5.42) another way, N must be at least $O(M n M)$. This is a stronger requirement than the one derived for storage in the previous chapter. This new bound implles that if n_{O} is $O\left(\ln M\right.$), then n_{I} must be $\mathrm{O}(M)$.

If errors are allowed at the output of the second stage of ngure $5-3$ then the storage can be increased. If P_{e} is the error probabillty, then for $0<P_{e} \leq 1 / 2, M$ large, we need ($1-P_{e}$) $\log _{2} M$ blts at the output. From this and (5.16) we have

$$
\begin{equation*}
2 n_{O}\left(\log _{2} e\right)\left(p_{G}-1 / 2\right)^{2} \geq\left(1-P_{e}\right) \log _{2} M \tag{5.43}
\end{equation*}
$$

and from (5.41)

$$
2 n_{O}\left(\log _{2} e\right) \frac{n_{1}}{2 \pi \cdot M} \geq\left(1-P_{e}\right) \log _{2} M
$$

which gives

$$
\begin{equation*}
\frac{\pi M n M}{N} \geq \frac{1}{1-P_{e}} \tag{5.44}
\end{equation*}
$$

As with the case with storage treated in the previous chapter, the number of required welghts is proportional to $1-P_{e}$. On the other hand, the maximal value of M no longer increases in proportion to $1 /\left(1-P_{e}\right)$.

The reason the non-llnearity decreases the information content of the output of the assoclator is that it forces the best-match process of ngure 5-3 to "count " the number of places that the output $\mathbf{G}_{\boldsymbol{k}}$ ' disagrees in sign with $\mathbf{G}_{\boldsymbol{k}}$ (recall the method of computing $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$). This can be seen from ngure $5-3$ with the non-linearity removed and from equation (5.12) whlch is the formula for one summand-term in the dot-product $\mathbf{G}_{k}^{\prime} \cdot \mathbf{G}_{k}$. If the best-match process in ngure $5-3$ uses the output of the assoclator-matrix directly, it can use the dot-product similarity-measure to compare $\mathbf{G}_{\boldsymbol{k}}^{\prime}$ with every one of the outputprototypes. Now, a single summand in the dot-product $\sum_{j} G_{k j}{ }^{\prime} \cdot G_{k j}$ is binomially distributed with positive mean $\left(2 p_{F}-1\right) n_{I}$. Such a term will tend to have larger magnitude when it is positive than when It is negative. This means that the dot-product can do more than "count" how many positlons $G_{k j}$ ' agree \ln sign with their counterparts $G_{k j}$. The dot-product also uses "magnitude" information to ascertain the "conndence" that a specinc component of \mathbf{G}_{k} ' is of the proper sign. On the other hand, whether the performance limits of the previous chapter can be achleved depends on whether retrieval In the llnear-associator is optimal. For this to be so, the full entropy of the matrix (per storage item) must be avallable at the memory output. What's more, the Information avallable must be useful to the bestmatch process.

The analysis of the llnear case should entall evaluation of the information content of $\mathbf{G}_{\boldsymbol{k}}^{\prime}$ by evaluating it as a rendition of the "signal" \mathbf{G}_{k} with added binomial "nolse". The "signal-to-nolse ratio" as a function of M would then be used to quantify the information content. The analysis is similar in concept with evaluation of information contained by a gaussian signal in the presence of gaussian nolse (see Gallager, [12, p. 32, Example 4|). The difference is that the "signal" components $G_{k j}$ are not gaussian but Bernoull r.v.'s and the "nolse" $\ln \mathbf{G}_{\boldsymbol{k}}{ }^{\prime}$ due to the assoclator-matrix is binomial rather than gaussian. These differences are responsible for the difficulty in determining the information $I\left(\mathbf{G}_{k}{ }^{\prime} ; \mathbf{G}_{k}\right)$. The difficulties are not insurmountable, but the analysls may be as Involved as that in Appendix A, since the problem of approximating a discrete entropy with a continuous one in the appendix seems related to the problem or approximating the information $\ln \mathbf{G}_{\boldsymbol{k}}{ }^{\prime}$.

5.5. Classifier Design Considerations

At this polnt, we are ready to lllustrate the design of an assoclator to meet specinc requirements. Two designs will be given to show how the relative sizes of parameters interact. Glven the number M of categorles, a fraction α of the space to be classined and the maximum classincation error-probabllity,
P_{e}, we wish to find the dimensions n_{I} and n_{O} that result ln a matrix of mialmal size N that meet the requirements. ${ }^{8}$ To begin, let $P_{e}=0$ for simpllcity. Notlce that a ball $B_{k}(\rho)$ about a prototype must contaln about α / M of the input space. Slace the fraction of input-vectors in the ball is $\exp _{2}\left(-I\left(F_{k}^{\prime} ; F_{k}\right)\right)$, we have

$$
\begin{equation*}
\frac{\alpha}{M}=\exp _{2}\left(-I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)\right) \tag{5.45}
\end{equation*}
$$

so that

$$
\begin{equation*}
I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)=\log _{2} M-\log _{2} \alpha \tag{5.46}
\end{equation*}
$$

Now $R=I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right) / \log _{2} M$ so by (5.46) we have $\log _{2} \alpha-\log _{2} M=-R \log _{2} M$. Rearranging and converting to natural logarithms gives a more convenlent form

$$
\begin{equation*}
R=1+\frac{-\ln \alpha}{\ln M} \tag{5.47}
\end{equation*}
$$

The two classilfers we produce will be called the large- α model and the small- α model. ${ }^{9}$ The large- α model will have $-\ln \alpha$ proportional to $\ln M$, so that for some positive $K \geq 10$ we write

$$
\begin{equation*}
-\ln \alpha=K \ln M \tag{5.48}
\end{equation*}
$$

The small- α model assumes that $-\ln \alpha$ is proportional to M. In this case we put

$$
\begin{equation*}
-\ln \alpha=\frac{M}{K} \tag{5.49}
\end{equation*}
$$

with $K \leq M_{/(101 n} M$. Calculating the redundancy from (5.47) for the large- α model we have

$$
\begin{equation*}
R=1+K \approx K \tag{5.50}
\end{equation*}
$$

and for the small- α model

[^8]\[

$$
\begin{equation*}
R=1+\frac{M}{K \ln M} \approx \frac{M}{K \ln M} \tag{5.51}
\end{equation*}
$$

\]

Recall that relation (5.18) must hold for rellable classincation. From this we get the lower bound on n_{O}

$$
\begin{equation*}
n_{0} \geq \frac{\pi M}{2 R} \tag{5.52}
\end{equation*}
$$

For the large- α model, this Implles

$$
\begin{equation*}
n_{O} \geq \pi M /(2 K) \tag{5.53}
\end{equation*}
$$

For the small- α model

$$
\begin{equation*}
n_{O}=\frac{\pi}{2} K \ln M \tag{5.54}
\end{equation*}
$$

To get a constralnt on n_{I}, we use the fact that the maximum Hamming-distance between an inputvector an its category-exemplar is roughly

$$
\begin{equation*}
\rho_{\max }=\frac{n_{I}}{2}-\frac{\sqrt{n_{I}}}{2} \cdot \sqrt{2 R \ln M} \tag{5.55}
\end{equation*}
$$

If we are to classify vectors that are nearly orthogonal to their category vectors, then $\rho_{\text {max }}$ should be nearly $n_{l} / 2$. For the large- α model, this is more important than for the small- α model since the former must classify more of its Input-space. The closer $\rho_{\text {max }}$ is to $n_{I} / 2$ however, the more welghts are required for elther model glven a nxed value of K. For the sake of comparison then, we will use the same value $\rho=(2 / 3) n_{I} / 2$ for both models. This isn't much of a constraint. A better one is $\rho_{\max }=(0 / 10) n_{/} / 2$ but the number of welghts required would be about 10 times as large. From equation (5.55) and our constralnt, we get

$$
\sqrt{n_{I}}=3 \sqrt{2 R \ln M}
$$

so that

$$
\begin{equation*}
n_{I}=18 R \ln M \approx 20 R \ln M \tag{5.56}
\end{equation*}
$$

For the large- α model $R \approx K$ so

$$
\begin{equation*}
n_{I}=20 K \ln M \tag{5.57}
\end{equation*}
$$

whereas the small- α model has $R=M /(K \ln M)$ so

$$
\begin{equation*}
n_{I}=\frac{20 M}{K} \tag{5.58}
\end{equation*}
$$

The number N of weights in both cases is $10 \pi M n M$ or 10 times the minimum required for storing M prototypes.

The thing to notice is that the large- α model has n_{I} of order $\ln M$ and n_{O} of order M. In other words. the input-dimensionality far exceeds the input-dimensionallty. In order to classify such a large portion of the input-space, the input-redundancy must not be large. This is seen from relation (5.47). When $\alpha \rightarrow 1$, we have $-\ln \alpha \rightarrow 0$ so that $R \rightarrow 1$. The throughput of the system must be large so many unlts are needed to produce the output.

For the small- α the situation is reversed. The Input-dimenslonallty is large and so can accomodate the large input-redundancy (The redundancy can never exceed $n_{I} / \log _{2} M$). The number of units can be small slnce the high redundancy Insures adequate output information even with low throughput.

As a numerical example, suppose that $M=50,000$ and to assure $M \geq n_{I} \ln$ (5.58), let $K=50$. For the large- α model, $R=50$ so by (5.57) $n_{I} \approx 10,800$, and by (5.53) $n_{0} \approx 1570$. For the small- α model $R=92$, equation (5.58) Implles $n_{I}=20,000$ and (5.54) gives $n_{O}=850$. Both models have roughly $1.7 \cdot 10^{7}$ welghts.

Now let S be the number of classinable vectors in each case. We want to estlmate the entropy $\log _{2} s$ of the classinable portion of the Input-space. By equation (5.35), this entropy is roughly $\log _{2}\left(M^{1-R_{e x p}^{2}}\left(n_{I}\right)\right)$, or approximately $s=n_{I}+(1-R) \log _{2} M$. By equation (5.47) we have

$$
\begin{equation*}
\varsigma=n_{I}+\log _{2} \alpha \tag{5.59}
\end{equation*}
$$

For the large- α model, $s=n_{I}-K \log _{2} M \approx 10,000$. For the small- α model. $\varsigma=n_{I}-\log _{2} e / K \approx 18,600$. The proportion of the space classined by the large- α model is 10^{-240} whereas the small- α model classinles roughly 10^{-440} of its input-space (computed from the respective values of α).

The moral however, is that the small- α does not classify fewer vectors than does the large- α model. The input-space for the small- α model is so much larger than that of the large- α model that the actual number of vectors classinable by the small- α is much larger. In fact, the number of vectors that can be classined by the small- α model dwarfs the number of vectors in the entire Input-space of the large- α model.

One way of viewing this numerical advantage of the small- α model is in terms of data compression. Whereas the number of Input-vectors to be classined is potentially very large, the number M of categories at the output is relatively miniscule (the number of categories should be less than the number of welghts or even smaller). The entropy of the output relative to that of the input is therefore quite small and this is what is meant by "data-compression". The fact that the matrix faces less Information at its output than at its input should be reflected by its architecture if high-performance is expected. For a classiner with N welghts that is to classify a large number of input-vectors, the outputdimensionality should be as small as possible (within the constralnts described In appendix B) compared with the input-dimensionallty. Such a system will classify a maximal number of input-vectors for a given number of associations (categorles) stored.

One should also notlce that the classiner classines only a very small portion of the input-space. This results in a "double-data-compression". Most Inputs are simply not considered to be valld Input "signals". Those that are will then be mapped to a relatively small number of categories. The ninal result is an output that has far less entropy than the total Input-space. We conclude that the assoclator-as-classiner assumes that most of the space of possible Inputs are Irrelevant to lts task. The portion of the space that Is considered relevant is specined by the collection of prototype-vectors. These in turn specify the pertinent informational-features of the input-space. All other information is ignored, resulting in an output that is a compact representation of the sallent features of the Input.

5.6. Maximal Performance and Figures of Merit

5.6.1. Merit Parameters and Figures of Merit

We deflne a merit-parameter to be some measure of system performance with regard to storage or classification. In the case that there is a maximal value for the merlt-parameter, we divide the meritparameter by the maximal value to get a figure-of-merit. The maximal value for the parameter is determined via information-theoretle constralnts on an arbltrary memory/classincation system and so is Independent of features specinc to a particular device. The ngure-of-merlt will generally take on a value between zero and one with the value " 1 " corresponding to optimal performance. Thus the merlt-ngure can be used for comparison of varlous systems whose merit-ngures are known.

5.6.2 Load, Effiency, Throughput and Retrievable Information

In the chapter on storage, we derived a ngure-of-merit L called the load. It was deflned as the ratlo of the number of ltems stored (a merlt-parameter) divided by the number of ltems storable. Another ngure-of-merlt we defned was called the emclency, η, that was the ratio of the number of bits stored in the memory divided by the number of bits required to represent the memory ltself. For classificatlon, it is also desirable to obtain relevant merit-parameters and ngures-of-merit.

An obvious merlt-parameter for classincation is the throughput $T(W)$ denned earller. The optimal value T_{0} can be be derlved for an arbitrary memory obeylng relation (3.13). The throughput-merlt, τ, of a system is then deflned as $T(\mathbf{W}) / T_{0}$. To obtain T_{0}, we divide the maximum-possible outputInformation by the minimum allowable input-Information. For systems obeylng equation (3.13), the maximum output-information per association is $H(W, M) / M$. The minimal input-information required is $\log _{2} M$ blts so we have

$$
\begin{equation*}
T_{0}=H(\mathbf{W}, M) /\left(M \log _{2} M\right) \tag{5.60}
\end{equation*}
$$

So the throughput-merit is given by

$$
\tau \equiv \frac{T(\mathbf{W})}{T_{0}}=\frac{T(\mathbf{W}) \operatorname{Mog}_{2} M}{H(\mathbf{W}, M)}
$$

where

$$
\begin{equation*}
\frac{\mathbf{M o g}_{2} M}{H(\mathbf{W}, M)} \leq \frac{M \cdot I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right)}{H(\mathbf{W}, M)} \leq 1 \tag{5.61}
\end{equation*}
$$

If we use the fact that $H(W, M) \approx(1 / 2) \operatorname{Mog}_{2} M$ then the ngure-or-merlt r for llnear-assoclator systems satisfies

$$
\begin{equation*}
\tau=\frac{T \mathbf{W}) M \log _{2} M}{(1 / 2) \cdot \log _{2} M}=T(\mathbf{W}) \frac{2 M}{N}=T(\mathbf{W}) \cdot L \tag{5.82}
\end{equation*}
$$

where L is the load. Thus the throughput-merlt for the outer-product assoclator is Just the product of the two merlt parameters derived earller. Thls product however has the additional property that it can never exceed 1. It would be of Interest as to whether the throughput-merit for the Inear-assoclator (without the Hopneld non-linearlty) Is roughly equal to 1 (or at least constant) for a large range of values of the load. If so, we'd have that the throughput trades directly with load as more assoctatlons are stored.

In any event, we have that

$$
\begin{equation*}
T(\mathbf{W}) \leq \frac{1}{L}=\frac{N}{2 M} \tag{5.83}
\end{equation*}
$$

for the llnear-assoclator. For the assoclator with no non-llnearlty then, the upper bound can be quite large when M is much smaller than N.

For the case that the Hopneld non-llnearity is present at the matrix-output, we can obtain the maximum τ achlevable by the associator (see ngure $5-3$). By (5.42), the number N in (5.62) is larger than $\pi M n M$. Replacing N by this value in (5.62) gives the upper bound

$$
\begin{equation*}
\tau \leq T(\mathbf{W}) \frac{2 M}{\pi M \ln M}=\frac{2 T(W)}{\pi \ln M} \tag{5.84}
\end{equation*}
$$

Since $T(\mathbf{W})=2 n_{O} /(\pi M)$, we have the bound

$$
\begin{equation*}
\tau \leq \frac{2 n_{o}}{\pi M} \frac{2}{\pi \ln M}=\frac{4 n_{O}}{\pi^{2} M n M} \tag{5.85}
\end{equation*}
$$

which is much smaller than 1 if the number of stored prototypes is larger than n_{O}. By way of comparison, the linear assoclator could concelvably have a τ as large as 1. However thls has not been establlshed since the throughput of the linear-assoclator has not been determined.

A figure-of-merit relevant to the memory is apparent from the results of chapter 2 . By relation (3.13), we have $I\left(\mathbf{G}_{k}{ }^{\prime \prime} ; \mathbf{G}_{k}\right) \leq H(\mathbf{W})$. Therefore the retrievable-fraction of stored information is

$$
\begin{equation*}
\mu \equiv \frac{M I\left(\mathbf{G}_{k}^{\prime \prime} ; \mathbf{G}_{k}\right)}{H(\mathbf{W})} \tag{5.86}
\end{equation*}
$$

The retrievable fraction, by relation (3.14), cannot exceed 1.

For the non-llnear associator, we can nind the maximal retrlevable-fraction from knowledge of the throughput. Remembering that the largest that the input-information can be is n_{I} blts, we use the defniltion of throughput to get

$$
\begin{equation*}
\mu=\frac{M T(\mathbf{W}) I\left(\mathbf{F}_{k}^{\prime} ; \mathbf{F}_{k}\right)}{(1 / 2) \operatorname{Mog} M} \leq \frac{M\left(2 n_{o} / \pi M\right) n_{I}}{(1 / 2) \operatorname{Mog}_{2} M}=\frac{4}{\pi \log _{2} M} \tag{5.67}
\end{equation*}
$$

This parameter is quite small for large systems that store many assoclations. For the Hopfeld-non-llnear assoclator, systems become extremely sub-optimal as the system-size gets large.

5.6.3. Search for an Overall Figure of Merit for Memory

It would be preferable if an overall ngure-of-merit for memory-performance could be found. This ngure, called the memory-merlt, \mathcal{M}, should reflect all aspects of memory operation and have the property that a memory could in princlple attaln a memory-merlt of one. An attempt to define M might Involve taking the product of τ, μ, and η to get

$$
\begin{equation*}
M=\tau \mu \eta \tag{5.68}
\end{equation*}
$$

For memory systems whose load L can be denned, one can restrict consideration to memories that are not overloaded (l.e. $L \leq 1$). The load could then be Incorporated into M

$$
\begin{equation*}
M=\tau \mu \eta L \tag{5.88}
\end{equation*}
$$

The effclency η is just related to the representation used for the welghts of the memory and is therefore Indicative of llmitations of the memory's implementation. This parameter should be dropped if only the memory's inherent propertles are to be considered

$$
\begin{equation*}
M=\tau \mu L \tag{5.70}
\end{equation*}
$$

If there is a general ngure-of-merit for memory, this last one may be close to the mark. On the other hand, we saw in relations (5.81), (5.82) and (5.86) that τ is related to both μ and L, so one may wonder If M in (5.70) may contain redundant information. Also, there may be tradeoffs that force the value of one of the factors in (5.70) to be low when the other is high. If this true even in principle, then it is possible that no memory can achleve a merlt of one and the memory-merlt would not satlsfy the defnition of a ngure-of-merit. Thls possibillty seems unlikely based on calculations done by the author. In fact. If the outer-product Innear-assoclator has an optimal throughput (r near one for large systems), it is possible that it could be have a memory-merlt approaching one as the assoclator slze gets large.

5.6.4. Classification Figures of Merit

For classincation, a merit parameter that can be "normalized" to produce a ngure-of-merit is hard to obtaln without imposing artinclal constralnts. One merlt measure worthy of consideration however is the ratlo of the blts needed to encode the classinable Input set to the number of bits needed to represent the categories at the output. Thls is called the fan-in. The parameter is of interest because it represents
the capabllity of the system to react to a very large input-space when it has stored a relatlvely small "representation-space". Indeed, this is the very essence of classincation. A classiner "nlters out" nonessential information allowing subsequent systems to provide for far fewer contingencles. Unfortunately, a classiner can achleve a high fan-in by classifying all possible input-vectors Into one category".

One remedy, is to multiply the fan-ln by the storage-load of the system. A system with a large load will have stored a maximal number of categories and so the product of the fan-ln and load will be maximized by systems that can classify a large portion of the input-space even when storing a large number M of categories. With this in mind, we consider the fan-ln alone when the number of categories is a nxed value M. We will derive the optimal of fan-in for this number of categories and use it to nind the "normallzed" fan-in merit.

To calculate the fan-in merit f_{m} for the llnear-assoclator, note that the logarithm of the classinable space is roughly $n_{I}+(1-R) \log _{2} M$ by equation (5.36), where R is the redundancy. The number of blts needed to label the M different categories is $\log _{2} M$ blts so the ran-in f is

$$
f=\frac{n_{I}+(1-R) \log _{2} M}{\log _{2} M}=\frac{n_{I}}{\log _{2} M}+1-R
$$

where R is the input redundancy. Note that $n_{I} / \log _{2} M$ is the maximum redundancy that can be facilltated by the input. To get a normalized ngure of merlt, we first make the constraint that the Inputspace has entropy n_{I} and the output-space belng composed of M categorles, has entropy $\log _{2} M$. Also note that $R \geq 1 / T(\mathbf{W}) \geq 1 / T_{0}$, so by (5.60)

$$
\begin{equation*}
R \geq \frac{\operatorname{Mog}_{2} M}{H(\mathbf{W})} \tag{5.71}
\end{equation*}
$$

and so the largest value f_{0} of f is deflned by

$$
\begin{equation*}
f_{0} \equiv \frac{n_{I}}{\log _{2} M}+1-\frac{\log _{2} M}{H(\mathbf{W})} \tag{5.72}
\end{equation*}
$$

The ran-in merit f_{m} is then

$$
\begin{equation*}
f_{m}=f_{i} f_{0} \tag{5.73}
\end{equation*}
$$

To get the merit for the non-llnear associator, recall from relation (5.42) that $N \geq \pi M n M$ so that

```
Mog}\mp@subsup{\mp@code{2}}{}{M/H(W)\leq2/(\pi\operatorname{ln}M)\mathrm{ and because }R\geq\piM/(2\mp@subsup{n}{I}{})\mathrm{ we have}
```

$$
\begin{equation*}
f_{m} \leq \frac{n_{I}}{\log _{2} M}+1-\frac{\pi M}{2 n_{0}} / \frac{n_{I}}{\log _{2} M}+1-\frac{2}{\pi \ln M} \tag{5.74}
\end{equation*}
$$

One inal consideration is a parameter that measures the ratlo of the size of the classincation space 6 to the size of the Input space \mathcal{F}. The higher the ratlo, the more of the input is classinable. The ratio will be called the inclusion I and is defined by

$$
\begin{equation*}
I=\frac{|C|}{|A|} \tag{5.75}
\end{equation*}
$$

The theoretical maximum for this ratlo is M^{1-R} where R equals the lower bound in (5.71), so

$$
\begin{equation*}
I \leq M^{1-M \log _{2} M / H(\mathbf{W})} \tag{5.78}
\end{equation*}
$$

So the inclusion-merit ι is I divided by this theoretical maximum. The result is

$$
\begin{equation*}
\iota=\frac{I}{M^{1-M \log _{2} M / H(\mathbf{W})}} \tag{5.77}
\end{equation*}
$$

From previous consideratlons, the ι for the non-llnear assoclator has the upper bound

$$
\begin{equation*}
\left.\iota \leq M^{1-\pi M /(2 n} O\right) / M^{1-2 / \pi \ln M}=M^{2 /(\pi \ln M)-\pi M /\left(2 n_{O}\right)} \tag{5.78}
\end{equation*}
$$

A good overall merit parameter for classincation might be the product of the load, the fan-In merit, and the inclusion merit. The issue of ninding an overall ngure-of-merit for memory and classincation might not be hard to address. The author has only recently denned these merit measures and has not yet fully explored the alternatives.

In passing, we might add that these ngures of merit can be quantined for the llnear-associator once the throughput of the llnear version of the classiner can be determined. We conjecture that the llnearassoclator may be very nearly optlmal in most respects when the matrix size ls large. As far as nonllnearitles are concerned, any non-llnearity will cause performance degradation. However, "sigmold" nonIInearitles used in so many connectionist systems (see [22, 24, 40|), will perform reasonably well if they are not too "steep". In particular, if the rising portion of the slgmold is broad enough to encompass most of the varlance of the components of the matrix-output-vector, most of the matrix-output information will
be retalned. Though the author has not made the attempt, a "maxlmal steepness" necessary for negllgible information loss should be easlly obtainable using something llke the talls-lemma of appendix A. Here, one would use the sigmold to llmit the range of values that the components can assume as was done for the matrix-welghts in the prevlous chapter to Improve emclency. In any event, the Hopfeld non-llnearlty represents a sigmold with "Innnite steepness" and so provides the lower-bound on performance for sigmold-non-linear outer-product associators.

Chapter 6
 Summary

6.1. Contributions and Accomplishments

The most important contribution of this work is the characterization of memory and storage in terms of information theory. For memory, the primary accompllshment was evaluation of the matrixentropy and the proof that it bounds the retrlevable Information. The bound was subsequently used to determine the amount of information stored as a function of matrix-size and number of assoclations stored. A criterion for minimal performance was obtalned through the deflnition of channel memory. This criterion was then used to bound the number of items storable. We also dealt with the notion of retrleving information via separate "accesses" to the memory, one for each ltem stored. Though Information obtalned this way is not the same as that actually stored in the matrix, we nind that the latter is an upper bound on the former.

Use of the concept of the matrix-channel allowed us to characterize and evaluate classification of the assoclator. For thls, the fundamental concept deffned was the matrix-throughput which is the ratio of the output information to the input information. The simple linear relation between the two for the assoclator with Hopfeld non-llnearity allowed us to quantify the fraction of the input-space that is classiflable and obtain minimal requirements on sub-features of incomplete-Input vectors needed for their proper classincation. We also noted requirements on the matrix-size as they relate to the task required. We found that an assoclator with Hopfleld non-llnearlty, expected to classify inputs that are nearly orthogonal to their category-exemplars, requires $50-100$ times as many welghts as does one that merely stores its prototypes. The latter system is a "degenerate" classiner. It can properly "categorize" an input vector if that vector is an input-prototype. Such a system would not be very robust in its classincation of Input-vectors that have a slgnincant number of "blts" In error. In any event, there is obvlously a tradeoff between the number of categorles over which the assoclator can divide the Input-space and the fraction of the input-space that can be classined. The more category discrimination required of the system, the fewer vectors can be classined given a nxed matrix-dimenslonallties.

We mention that in some sense, the assoclator is not really dolng classincation unless the outputdimensionallty is very nearly equal to the logarithm of the number of categorles stored. We were merely Interested in conditions under which the associator would pass through information useful to a subsequent stage that is to determine the category to which the lnput to the assoclator belongs (see second-stage of 5-3). An assoclator could be sald to classlfy lts inputs If the outputs lt produced were much nearer to the output-prototypes than the respectlve input-vectors were to thelr exemplar-prototypes. In the case of the Hopneld-non-linear associator, the average distance of the matrix-output from the correct output prototype $1 s n_{O}\left(1-p_{G}\right)$. We can decrease thls distance by forcing p_{G} to be near one or by keeplng n_{O} small. The nrst of these can only be done by storing less than n_{I} categorles where n_{I} is the dimension of the input-vectors (see equation (5.15), page 59). The second option is fortunately in keeping with optimal performance of the classifler. In fact, we found earller that a large input-dimensionality allows classincation of a very large number of vectors for a given matrix-size and storage-load. This is probably the most important $I n d i n g$ concerning assoclator-classincation. A matrlx that fans in so that its inputdimension is much larger than lts output dimension will give the best classincation performance for a nxed matrix-size and number of stored categories. Thus we have an architectural specincation based on Information theory. A classiner does data-compression so that the output-handles much less entropy than does the Input and the matrix dlmenslonallties should renect this fact for optlmal performance.

After evaluation of the performance of the system, we obtalned ngures of merit for both memory and classification performance. These were "normallzed" with respect to optlmal Information-theoretlc performance llmits and so serve as a basis of comparison of general memory/classiner systems. The assoclator with Hopfield non-llnearity was shown to perform suboptimally, in fact, disappolntingly so. On the "up side", the Hopfleld-non-llnear system provides a lower bound for performance of assoclators with "sigmold" type non-linearities.

6.2. Limitations of this Investigation and Future Directions

The maln llmitation of this work was that it did not address the information content of the actual matrix-output (labelled \mathbf{G}_{k}^{\prime} In ngure $5-3$). The problems with the analysls are mentloned on page 87. Once this issue is addressed, one may be able to determine the optimal performance of any assoclator with slgmold non-llnearlty on lts output. What's more, the storage bound was merely an upper bound to performance. Knowledge of the amount of Information present in the matrlx-output would determine Just how tight this bound $1 s$. We also assumed that the Information at the output of the matrix is all useful to a second-stage process that must classify the output-vectors. This is not necessarily true but is probably a good assumption due to the fact that the assoclator maps simllar Inputs to slmllar outputs and the fact that we characterized Information at both Input and output In terms of vector-similarity.

A rather serious shortcoming of the analysls was that it assumed that the prototype vectors were chosen randomly, that is they were balanced-Bernoulll vectors. In reallty, if a system acquires its prototypes by encoding representations of "stimull" or concepts" etc., it will most llkely bave correlated prototypes. So while we did not require orthogonallty of the prototypes, the requirement that they be uncorrelated (randomly selected) is too stringent. The problem is confounded by the fact that storage capaclty most probably degrades in the presence of inter-prototype correlation; the sensitlvity to correlation becomes more pronounced as the system-size gets large. ${ }^{10}$ This is a serious naw since it Indicates that the storage capacity may not be achlevable in practice. On the other hand, the relation of mutual Information to vector geometry outlined In appendix B may provide a means by which a set of prototypes can be strategically chosen so as to minlmize correlation or equivalently maximlze mutual Hamming-distance. If such a method could be easily Incorporated Into the encoding process, these systems could in fact achleve better-than-optimal performance since ${ }^{\circ}$ de-correlatlon ${ }^{\bullet}$ could produce prototypes more mutually distant than random selection can.

Another Issue not addressed was classincation performance when the number of stored categorles was less than the input-dimensionallty. The analysis in the classincation chapter would probably extend to this case if the llnear anproximation to Φ on page 59 was changed to a quadratic one for more accuracy. Even without this change however, the llnear approximation overestimates p_{G} so the performance bounds derlved In the classiffcation chapter apply to the case that the number of stored categories is small. The upper bound merely becomes looser. As the number of stored categories is diminished, p_{G} Increases but not as rapldly as the llnear approximation would Indicate. Note that even when the number of categories is less than the input-dimensionally, the analysis applles to randomly selected input-prototypes not orthogonallzed (forcefully-decorrelated) prototypes. This is an advantage since it represents a relaxation of the orthogonallty restriction needed for perfect retrleval (see [21, p. 18|).

Regarding future directions, there are 100 many possible avenues for continuing thls work to mention here. Two however are of primary concern to the author. First is the analysls of the auto assoclator as both memory and classiner. This extension ls not without obstacles however. With respect to memory, the welghts of an outer-product matrix are less independent when the output-prototypes are Identical to the input-prototypes. On the other hand, the Individual welghts (excluding those on the diagonal whlch are constant and so contribute nothing to the matrix-entropy) will have the same distribution as those of the hetero assoclator and should be nearly lndependent when many prototypes are stored. In any event, the matrix-entropy of the assoclator ls less than for a beteroassoclator so the storage will be llmited accordingly. Another problem regards classificatlon. An auto-assoclator requires

[^9]the output-dimensionallty to be the same as that of the Input. The present Investigation indicates this condition is suboptimal for classification performance.

One method for solving both problems is to use a hetero-assoclator (with output-dimension smaller than that of the input) but feed back the output Informatlon in some constructive fashlon. However, even If this can be done, the amount of output information must be sizable in comparison with the amount of Input information present at the start of the auto-assoclation process. If the amount of output Information is less than $1 / 2$ or $1 / 3$ of the amount of input information, the incremental increase in Information avallable at the output after several "Iterations" of the auto-assoclator will be only marginally better than that avallable to begln with. The author belleves that the auto-assoclator will therefore have greatly Improved classification performance for light storage loads but will not galn much storage capacity as a result of the auto-assoclative feedback.

We also mention that theorem 1, page 26, does not apply to the auto-assoclator since the "retrievaladdress" is not independent of the datum to be retrieved since the input is generally a partial rendition of the datum to be retrleved. The theorem could be modined to take this Into account, but the bound on retrlevable information will be different. The auto-associator has the advantage that the input partially specines the output, so the auto-assoclator needn't "work as hard" when the input specifes a substantial portion of the output. The result should be improved classincation-performance over the hetero-associator even though the auto-assoclator has a (perhaps marginally) smaller matrix-entropy. In any event, the author believes that the methods used to evaluate classincation of "slngle-feature" vectors might ald quantincation of the performance of the auto-assoclator.

The other direction of research to be mentioned is the storage of prototypes whose components are zero-mean gausslans. This is a more natural mode of storage for the outer-product assoclator since the output vector produced is best characterized as the proper output-prototype embedded In gaussian nolse. The author belleves that the analysis would begln with the nolsy-slgnal analysis of Gallager in (12, p. 32 , Example 4| and proceed with evaluation of the matrix throughput.

Lastly, we mention that assoclators bullt from other storage rules such as error correction have not been treated. Thls may be a much more difncult problem since evaluation of the matrix-entropy could problematic. In the event that it can be determined or approximated, the theory presented here would then be applicable for performance evaluation. The result could be a theory relevant to multi-layer errorcorrection systems such as the Parker/Rummelhart "backpropagation" networks.

6.3. Epilog

At this polnt, I'd like to let my editorial halr down and relate a couple Interesting observations. First, notice that the prototypes were treated as vectors that were to be distingulshed as exemplars of distinct categorles. As such, a premlum was put on thelr dissimilarity so that the system could tell them apart. Though thls may not be desirable in all assoclator tasks, it polnts up an lssue regarding the "symbol" view of Intelligence. If we Identify the stored prototypes as "symbols" one could view symbols as a means of performing large-scale data-compression on the environment. This not only enables a system to vastly simplify its representation of the environment, but the identincation of such symbols in a cognitive system could subsequently provide a parsimonious theory of cognition (Yes, I know, "traditional AI" already knows this). Not that the identincation would be easy, (If symbols can be sald to exist at all, they are probably too "plastlc" and malleable to be static entltles) but in the assoctator at least, the symbols are the prototype palrs. The input-prototype reflects the system's "Idea" of a most typlcal "object type" within a large class of objects, and the output-prototype reflects the system's representation of the object. The object at this level, is known only as it belongs to a generic class of objects. All other Information is "discarded" as Irrelevant. The analysis done here showed data-compression as a consequence of the presence of symbol/prototypes. However, the relation should go the other way as well, as evidenced by studies of "compressed", "hidden-unit" representations generated within backpropagation networks. The symbol is doubtfully an expllcit feature of the brain, but is probably an emergent property of data-compression.

While I'm making conjectures about how the brain works, I might as well take a stab at the amount of information it can store. The ngures obtalned here are doubtfully accurate for blologlcal brains but serves as a prediction made by the following simplistic assumptions

1. The whole brain participates in storing roughly N items where N is the number of connections In the braln.
2. The connection strengths are normally distributed with varlance roughly N .
3. The effect of all connections on a neuron ts the llnear sum of the individual effects.

How embarassing! Anyway, assuming 10,000 connections per neuron and 10^{10} to 10^{11} neurons per braln, we get 10^{14} to 10^{15} for the number of connections. The information storable is then roughly $\operatorname{Mog}_{2} N$ or 4.5×10^{15} to 5×10^{10} bits, or roughly a blllion megabytes.

The only thing that will rescue this estimation is its crudeness. The noteworthy thing though is that the theory does make a prediction. It would be interesting if in the future, a better understanding of
cognition/brain-dynamles would render better assumptions than the ones given here and if so, how these assumptions affect the estimate in relation to the one I've Just made. I leave it to the reader to estimate the maximum number of stimull the brain can possibly classify. If you come up with a number (boy, would it be blg!) let me know what it is over dinner and tell me what your assumptions were. Just don't publish it as a research ninding (did you know that we only use 10 -percent of our brains? . . .). Well, I've put in my ten-percent, thank-you!

Appendix A
 Entropy of a Binomial Random Variable

In this section, we show that the entropy of a blnomial r.v. Is approximated by the entropy of a corresponding normal r.v. In this development, a blnomial r.v. S_{n} is a sum of n l.l.d. Bernoulli trials, where a Bernoulll trlal is an r.v. with outcome 0 or 1 . We will only consider blnomlal sums of balanced Bernoulli-trials, that is, Bernoulll trials whose two outcomes are equiprobable. Such a blnomial r.v. has variance $n / 4$, and as we will show, has entropy that approaches that of a normal r.v. of the same variance. The entropy of a normal r.v. with variance $n / 4$ is $(1 / 2) \log _{2}(\pi e n / 2)$. Therefore the following theorem will be proven in this appendix:

Theorem 1: Let S_{n} be the blnomial r.v. assoclated with the sum of n l.l.d. balanced Bernoulli-trials. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(H\left(S_{n}\right)-(1 / 2) \log _{2}(\pi e n / 2)\right)=0 \tag{A.1}
\end{equation*}
$$

The rate of convergence is not treated, but numerical tests have Indicated to be falrly rapid. It would be of interest to study not only the rate of convergence, but whether or not the convergence is monotone In n. That is, one would expect that

$$
\begin{equation*}
\left.\mid H\left(S_{n+1}\right)-(1 / 2) \log _{2} e(n+1) / 2\right)\left|\leq\left|H\left(S_{n}\right)-(1 / 2) \log _{2}(\pi e n / 2)\right|\right. \tag{A.2}
\end{equation*}
$$

for all $n=1,2, \ldots$.

The rate and manner of convergence are not expllitly dealt with though they possibly could be inferred from the proof that follows.

A few lemmas are needed to obtaln the result. Each lemma specines that some sequence or class of sequences exists that ensure that a specinc inequallty be true. Constralats on the sequences sufficlent for the Inequallty to hold are specined by each lemma. After the proof of the lemmas, the proof of the maln theorem begins by showing that a sequence exists that obeys the constralnts of all the lemmas slmultaneously. All the respective inequallties will then hold and they can be llaked together with the
"trlangle-Inequallty" to glve the result of the theorem. Arguments used in the various proofs were motivated from developments in Feller |11| and Rudin |39].

The proofs to follow generally require that, given an arbitrarlly small real number $\boldsymbol{\epsilon} \boldsymbol{>}$, some positive quantly that is a function of the positive Integer n will be smaller than ϵ for all sumclently large values of n. No generallty is lost by assuming that ϵ is less than 1 . This assumption will be used throughout (except where otherwlse stated). Further, to slmply the arguments and notation, we consider only even values of n. The arguments for odd n would be the same but $n / 2$ would bave to be replaced by $(n-1) / 2$. Finally, the result of each lemma will hold when ϵ is replaced by $\epsilon / 4$ since ϵ is an arbitrary positive constant. This will be instrumental in the proof of the maln result.

Notatlonally, $\phi_{\sigma}(x)$ is the normal probabillty-density function, $1 /(\sqrt{2 \pi} \sigma) \cdot \exp \left(-x^{2} / 2 \sigma^{2}\right)$ for a normal r.v. X_{n} with a mean equal to zero and varlance σ^{2} where $\sigma>0$. We will be concerned with $\sigma=\sqrt{n} / 2$ and will use this value for σ throughout. The standard normal density function $1 / \sqrt{2 \pi} \cdot \exp \left(-x^{2} / 2\right)$ will be denoted $\phi(x)$.

A.1. Ignoring Tails of the Normal Entropy Integral

The entropy of the a normal r.v. with variance σ^{2} is given by the integral $\int_{-\infty}^{\infty}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x$. The first lemma allows approximation of the normal entropy by lgnoring the "talls" of this integral. We show that for $\sigma=\sigma(n) \equiv \sqrt{n} / 2$, a positive-Integer sequence $\left\{r_{n}\right\}$, of order $\mathrm{O}\left(\sqrt{n \log _{2}\left(\log _{2} n\right)}\right)$ exists that grows rapidly enough so that for any positive ϵ, the integral

$$
\int_{-r_{n}}^{\varphi_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x
$$

Is within ϵ of the true entropy for all sumciently large n. From this it follows that if $\left\{s_{n}\right\}$ is a sequence whose elements exceed those of $\left\{r_{n}\right\}$ for all sumclently large n then the lategral

$$
\int_{-\theta_{n}}^{n_{0}}-\phi_{0} \log _{2} \phi_{0} d x
$$

will be within ϵ of the true entropy. This property we will call asymptotic convergence. In particular, if $\left\{s_{n}\right\}$ is of higher order than $\left\{r_{n}\right\}$ then the Just mentioned integral has this asymptotic property. Our concern is to nind a lower estlmate of the order of $\left\{r_{n}\right\}$ that is sufficient to guarantee asymptotic convergence. The following lemma and its corallary state the result.

Lemma 2: For each $n=1,2, \ldots$, let X_{n} be a normal r.v. with variance σ^{2} where $\sigma=\sqrt{n} / 2$. Glven $\epsilon>0$ there exists a positive-integer sequence $\left\{r_{n}\right\}$ of order $\mathrm{O}\left(\sqrt{n \log _{2}\left(\log _{2} n\right)}\right)$ with the following properties:

1. First property: There exists a positive Integer N_{1} such that if $n \geq N_{1}$ then

$$
\begin{equation*}
\left|H\left(X_{n}\right)-\int_{-r_{n}}^{r_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right|<\epsilon \tag{A.3}
\end{equation*}
$$

2. Second property: If $\left\{s_{n}\right\}$ has the property that for some positive integer N_{2}, $n \geq N_{2}$ implles $s_{n} \geq r_{n}$ then $\left\{s_{n}\right\}$ has the nist property.

Proof: For any n the entropy of X_{n} is derined by

$$
\begin{align*}
H\left(X_{n}\right) & =\int_{-\infty}^{\infty}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x \\
& =\lim _{r \rightarrow \infty} \int_{-r}^{r}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x \tag{A.4}
\end{align*}
$$

Since X_{n} is normal with variance σ^{2} the entropy $H\left(X_{n}\right)$ is equal to $1 / 2 \log _{2} 2 \pi \sigma^{2}<\infty \mid 12$, p. 32|. Therefore the limit above is nilte and by dennition of - $\operatorname{llm}_{r \rightarrow \infty}$ ", a positive integer r_{n} exists so that $r \geq r_{n}$ implles equation (A.3) with r_{n} replaced by r. We now show that for nixed $\epsilon>0$, a positive-integer sequence $\left\{r_{n}\right\}$ can be chosen as an $\mathrm{O}\left(\sqrt{n \log _{2}\left(\log _{2} n\right)}\right)$ function of n so that property 1 holds.

Note that $\phi_{\sigma}(\sigma u)=1 / \sigma \cdot \phi(u)$. Substituting the variable $u=x / \sigma$ into the integral of (A.3) and letting $b_{n}=r_{n} / \sigma$, one obtains

$$
\begin{align*}
& \int_{-p_{n}}^{\varphi_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x=\sigma \int_{-b_{n}}^{b_{n}}-\phi_{\sigma}(\sigma u) \log _{2} \phi_{\sigma}(\sigma u) d u \\
&=\sigma \int_{-b_{n}}^{b_{n}}-\frac{\phi(u)}{\sigma} \log _{2}(\phi(u) / \sigma) d u \\
&=\int_{-b_{n}}^{b_{n}}-\phi(u) \log _{2} \phi(u) d u+\log _{2} \sigma \int_{-b_{n}}^{b_{n}} \phi(u) d u \tag{A.5}
\end{align*}
$$

We denote $\int_{-b}^{b}-\phi(u) \log _{2} \phi(u) d u$ by $I_{1}(b)$ and denote $\int_{-b}^{b} \phi(u) d u$ by $I_{2}(b)$.
If b is allowed to approach innnity, then $I_{1}(b)$ converges to the entropy $(1 / 2) \log _{2}(2 \pi e)$ of a standard normal r.v. We can therefore choose a constant b_{0} such that $b \geq b_{0}$ implles that $I_{1}(b)$ is within $\epsilon / 2$ of Its IImit. No harm is done if for conventence we take b_{0} to be larger than 1.

Since the lemma is concerned with the dependence of b_{n} on n as n gets large, no generality is lost by considering only $n \geq 132$ and $\epsilon<1 / 4$. For such n, let ${ }^{11}$

$$
r_{n}=\left\lceil(\sqrt{n / 2})\left|\sqrt{2 \log _{2}(4 / \epsilon)}\left(\log _{2}\left(\log _{2}(\sqrt{n} / 2)\right)\right)^{1 / 2}+b_{0}\right|\right\rceil
$$

Since $n \geq 132$ and $\epsilon<1$ the quantities under radicals are non-negative. Also b_{0} is Independent of σ, so that $b_{n}=O\left(\sqrt{\log _{2}\left(\log _{2} n\right)}\right)$. The lemma will follow if we can show for nxed $n \geq 132$ that $b \geq b_{n}$ implles

$$
\begin{equation*}
\left|H\left(X_{n}\right)-\left(I_{1}(b)+\left(\log _{2} \sigma\right) \cdot I_{2}(b)\right)\right|<\epsilon \tag{A.8}
\end{equation*}
$$

Denote $\operatorname{llm}_{b \rightarrow \infty} I_{i}(b)$ by $I_{i}(\infty), i=1,2$. From the derivation above one can see that $H\left(X_{n}\right)=I_{1}(\infty)+\log _{2} \sigma I_{2}(\infty)$ so that (A.6) Is equivalent to

$$
\begin{equation*}
\left|I_{1}(\infty)+\left(\log _{2} \sigma\right) I_{2}(\infty)-\left(I_{1}(b)+\left(\log _{2} \sigma\right) I_{2}(b)\right)\right|<\epsilon \tag{A.7}
\end{equation*}
$$

If we show that the conditions

1. $\left|I_{1}(\infty)-I_{1}(b)\right|<\frac{\epsilon}{2}$
2. $\left|I_{2}(\infty)-I_{2}(b)\right|<\frac{\epsilon}{2\left|\log _{2} \sigma\right|}$
hold for $b \geq b_{n}$, then the left-hand-side of (A.7) satlsnes the following

$$
\left|I_{1}(\infty)+\log _{2} \sigma I_{2}(\infty)-\left(I_{1}(b)+\log _{2} \sigma I_{2}(b)\right)\right|
$$

[^10]\[

$$
\begin{align*}
& =\left|I_{1}(\infty)-I_{1}(b)+\log _{2} \sigma\left(I_{2}(\infty)-I_{2}(b)\right)\right| \\
& \leq\left|I_{1}(\infty)-I_{1}(b)\right|+\left|\log _{2} \sigma\right| \cdot\left|I_{2}(\infty)-I_{2}(b)\right| \\
& <\frac{\epsilon}{2}+\left|\log _{2} \sigma\right| \cdot \frac{\epsilon}{2\left|\log _{2} \sigma\right|}=\epsilon \tag{A.8}
\end{align*}
$$
\]

and the conclusion will follow. Since $b_{n} \geq b_{0}$, condition 1 is satisfled by defliltion of b_{0}. We therefore need only consider condition 2.

To show condition 2 is satisfed, we observe that if $\Phi(x)$ is the standard normal distribution function then we have (11, vol. 1, p. 176]

$$
\begin{equation*}
1-\Phi(x) \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-x^{2} / 2\right) \quad \text { all } x>0 \tag{A.9}
\end{equation*}
$$

Also for $b \in \mathbf{R}, \Phi(-b)=1-\Phi(b)$ so that

$$
\begin{equation*}
I_{2}(b)=\int_{-b}^{b} \phi(u) d u=\Phi(b)-\Phi(-b)=2 \Phi(b)-1 \tag{A.10}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}(\infty)=\lim _{b \rightarrow \infty} \int_{-6}^{b} \phi(u) d u=1 \tag{A.11}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left|I_{2}(\infty)-I_{2}(b)\right|=|1-(2 \Phi(b)-1)|=2|1-\Phi(b)|=2(1-\Phi(b)) \tag{A.12}
\end{equation*}
$$

We make the observation that the equation $x+y<x \cdot y$ is satisfied for all $x \geq 4$ if $y>4 / 3$. Identifying x with $\log _{2}(4 / \epsilon)$ and y with $\log _{2}\left(\log _{2} \sigma\right)$, we see that under the assumptlons for n and ϵ that have been made on the previous page, we have $x \geq 4$ and $y>4 / 3$. For $b \geq b_{n}$, we have the following chaln of Inequalltles:

$$
\begin{aligned}
b & \geq b_{n} \\
& \geq \sqrt{2 \log _{2}(4 / \epsilon)} \sqrt{\log _{2}\left(\log _{2} \sigma\right)}+b_{0} \\
& >\sqrt{2 \log _{2}(4 / \epsilon)+2 \log _{2}\left(\log _{2} \sigma\right)}
\end{aligned}
$$

$$
=\sqrt{2 \log _{2}\left((4 / \epsilon) \log _{2} \sigma\right)}
$$

Therefore $-\frac{b^{2}}{2}<-\log _{2}\left((4 / \epsilon) \log _{2} \sigma\right.$) so that $\exp \left(-b^{2} / 2\right)<\frac{\epsilon}{4 \log _{2} \sigma}{ }^{12}$ Now $b \geq b_{n}>1$ (by cholce of $b_{0}>1$) and we have by (A.9)

$$
2(1-\Phi(b)) \leq \frac{2}{b \sqrt{2 \pi}} \exp \left(-b^{2} / 2\right)<2 \exp \left(-b^{2} / 2\right)<\frac{2}{4 \log _{2} \sigma}=\frac{\epsilon}{2 \log _{2} \sigma}
$$

Using (A.12) thls gives condltion 2.
To Inish the proof, we note that $\left\{r_{n}\right\}$ as denned is $O\left(\sqrt{n \log _{2}\left(\log _{2} n\right)}\right)$. We have nilshed showing that the first property of $\left\{r_{n}\right\}$ holds for $N_{1}=132$.

If $\left\{s_{n}\right\}$ is a sequence and N_{2} a positive integer such that $n \geq N_{2}$ implles $s_{n} \geq r_{n}$, then set $N=\max \left\{N_{1}, N_{2}\right\}$. Since $-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x)>0$ for all x, it follows that for $n \geq N$

$$
\begin{aligned}
H\left(X_{n}\right) & =\int_{-\infty}^{\infty}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x \\
& \geq \int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x \\
& \geq \int_{-r_{n}}^{r_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x
\end{aligned}
$$

so that

$$
\begin{aligned}
&\left|H\left(X_{n}\right)-\int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right| \\
& \leq\left|H\left(X_{n}\right)-\int_{-r_{n}}^{r_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right|<\epsilon
\end{aligned}
$$

From this we see that $\left\{s_{n}\right\}$ has property 1 mentioned in the statement of the lemma.

[^11]
The following result is Immediate

Corallary: if $\left\{s_{n}\right\}$ is a sequence of order larger than $O\left(\sqrt{n \log _{2}\left(\log _{2} n\right)}\right)$, then there is a positive integer N such that $n \geq N$ implles 13

$$
\left|H\left(X_{n}\right)-\int_{-0_{n}}^{0_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right|<\epsilon
$$

A.2. Discretization of the Normal Entropy Integral

The statement and proof of the next lemma use notation borrowed from Rudin $\ln |39, \mathrm{Cb}, 6| \ln$ hls development of the Relmann-Stelltjes Integral. The arguments he gives In theorem $6.8|39, p .125|$ for the Integrabillty of a continuous function on a closed Interval is extended to our situation. We desire to approximate an Integral with a Relmann-sum, however the limits of Integration are not fixed and the Integrand varles with the number of points on which we sum. Our notation, which is only slightly different from Rudin's, is as follows. If $b>0$ then a partition P of the closed interval $|-b, b|$ is a fnite set of polnts $\left\{x_{i}\right\}_{i=-r}^{p}$ such that $-b=x_{-p} \leq x_{-r+1} \leq \ldots \leq x_{p}=b$. If $f(x)$ is a continuous function defned over $(-b, b \mid$, its maximum and minimum are attained over any closed interval in the domaln of f so we put $M_{f i}=\max _{\{x i, x i+1 \mid} f(x), m_{f i}=\min _{[x i, x i+1]} f(x), i=-r,-r+1, \ldots, r-1$. The quantitles $U_{b}(P, \Omega)$, and $L_{b}(P, \Omega)$ will denote the sums

$$
U_{b}(P, \Omega)=\sum_{i=-r}^{r-1} M_{f_{i}}\left(x_{i+1}-x_{i}\right) \quad \text { and } \quad L_{b}(P, Л)=\sum_{i=-r}^{r-1} m_{f_{i}}\left(x_{i+1}-x_{i}\right)
$$

If $\operatorname{Inf}_{P} U_{b}(P, \cap)$ and $\sup _{P} L_{b}(P, \cap)$ are nilte and have the same value, their common value is called the Reimann-Steiltjes integral of f over $|-b, b|$ denoted by $\int_{-b}^{b} f(x) d x$. From the dennition of the Integral just given, it is apparent that for any nxed P

$$
\begin{aligned}
& \qquad L_{b}\left(P, \cap \leq \int_{-b}^{b} f(x) d x \leq U_{b}(P, \Omega\right. \\
& \text { Also the same bounds apply to the sum } \sum_{-r}^{r-1} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \text { slnce } m_{f i} \leq f\left(x_{i}\right) \leq M_{f i} \text { for } \\
& i=-r,-r+1, \ldots, r-1 .
\end{aligned}
$$

[^12]Before proceeding to the lemma we state the following propositions.

Proposition 3: For any $\sigma>0$ the functlons ϕ and $f(x) \equiv-\phi(x) \log _{2} \phi(x)$ have bounded Irst-derivatives over the domain \mathbf{R}.

One can show that both $\left|f^{\prime}(x)\right|$ and $\left|\phi^{\prime}(x)\right|$ are contlnuous over \mathbf{R} and approach zero as $x \rightarrow \pm \infty$. These together Imply boundedness over \mathbf{R}. The second proposition is

Proposition 4: Let g be a function differentlable over a connected domain $D \subseteq \mathbf{R}$ and let B be a positive constant so that the derivative g^{\prime} satisfles $\left|g^{\prime}(x)\right| \leq B$ over D. Then g is uniformly continuous on D with $|g(x)-g(y)| \leq B \cdot|x-y|$ for all $x, y \in \mathrm{D}$.

Proof: Because g is differentiable, it it continuous and so integrable over filte intervals. We have the following inequallites

$$
|g(x)-g(y)|=\left|\int_{y}^{x} g(u) d u\right| \leq \int_{y}^{x}|g(u)| d u \leq B \cdot|x-y|
$$

yielding the desired result.

We now state and prove

Lemma 5: Let $\sigma=\sqrt{n} / 2$ and let $\left\{r_{n}\right\}$ be a sequence of positive Integers such that $b(n) \equiv r_{n} / \sigma$ is $o\left(\sqrt{n} / \log _{2} n\right)$. Given $\epsilon>0$, there exists a positive integer N such that $n \geq N$ implles

$$
\begin{equation*}
\left|\int_{-r_{n}}^{r_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x-\sum_{i=-r_{n}}^{r_{n}}-\phi_{\sigma}(i) \log _{2} \phi_{\sigma}(i)\right|<\epsilon \tag{A.13}
\end{equation*}
$$

Proof: We continue to use $f(x) \equiv-\phi(x) \log _{2} \phi(x)$. As shown in the previous lemma, the integral in equation (A.13) is the sum of $I_{1}(b(n))$ and $\log _{2} \sigma \cdot I_{2}(b(n))$ where the functions I_{1} and I_{2} were deflned on page 86. In a slmllar fashlon, one has

$$
\begin{equation*}
\sum_{i=-r_{n}}^{r_{n}}-\phi_{\sigma}(i) \log _{2} \phi_{\sigma}(i)=\frac{1}{\sigma} \sum_{i=-r_{n}}^{\Gamma_{n}} f(i / \sigma)+\frac{1}{\sigma} \log _{2} \sigma \sum_{i=-r_{n}}^{r_{n}} \phi(i / \sigma) \tag{A.14}
\end{equation*}
$$

Let $S_{1}(n)$ and $S_{2}(n)$ denote the nrst and second sums on the right hand side respectively. The lemma will follow if we can nind an N so that $n \geq N$ implles

$$
\begin{array}{r}
\left|I_{1}(b)-\frac{1}{\sigma} S_{1}(n)\right|<\frac{\epsilon}{2} \\
\log _{2} \sigma\left|I_{2}(b)-\frac{1}{\sigma} S_{2}(n)\right|<\frac{\epsilon}{2} \tag{A.16}
\end{array}
$$

To obtaln, this we will require that N be large enough so that

$$
\begin{align*}
& \frac{1}{\sigma} f\left(r_{n} / \sigma\right)<\frac{\epsilon}{4} \tag{A.17}\\
& \frac{1}{\sigma} \cdot\left(\log _{2} \sigma\right) \phi\left(r_{n} / \sigma\right)<\frac{\epsilon}{4} \tag{A.18}
\end{align*}
$$

for all $n \geq N$. From proposition 3, we have the numbers $B_{1}=\max _{\mathbf{R}}\left|\rho^{\prime}(x)\right|$ and $B_{2}=\max _{\mathbf{R}}\left|\phi^{\prime}(x)\right|$. Let N_{1}, N_{2} be integers such that

1. $N_{1}>\frac{\left(16 B_{1} b\left(N_{1}\right)\right)^{2}}{\epsilon^{2}}$
2. $\quad N_{2}>\frac{\left(16 B_{2} b\left(N_{2}\right)\right)^{2}}{\epsilon^{2}} \cdot\left(\log _{2} \sqrt{N_{2}} / 2\right)^{2}$
and so that all $n \geq N_{i}$ satisfles each of these when substituted for $N_{i}, i=1,2$. We also require that N_{1} is large enough that $n \geq N_{1}$ implles relation (A.17) and N_{2} is large enough that $n \geq N_{2}$ implles relation (A.18). Such numbers N_{1}, N_{2} exist since ($\left.b(n)\right)^{2}$ and $\left(b(n) \log _{2}(\sqrt{n} / 2)\right)^{2}$ are $\alpha(n)$ and the left-hand-sides of (A.17). (A.18) are $O(1)$.

Fix $n \geq \max \left\{N_{1}, N_{2}\right\}$ and for notational conventence let $r \equiv r_{n}$ and $b \equiv b(n)$. Let $P=\left\{x_{i}\right\}_{-r}^{r}$, be the partition of $|-b, b|$ with $x_{i}=i / \sigma, i=-r,-(r-1) \ldots, r$ (remember $r=b \sigma$ by dennition of b). Notlce $x_{i+1}-x_{i}=1 / \sigma=2 / \sqrt{n}$. To show (A.15), we use the fact that $n \geq N_{1}$. Now $M_{f i}-m_{f i}=f(x)-f(y)$ for some $x, y \in\left|x_{i}, x_{i+1}\right|$ and we have $|x-y| \leq 2 / \sqrt{n}$. From thls one obtalns $M_{f i}-m_{f i} \leq B_{1} \cdot 2 / \sqrt{n}$ by proposition 4. Since $n \geq V_{1} . n$ satisnes item 1 above so that $1 / \sqrt{n}<\frac{\epsilon}{10 B_{1} b}$ and we can write

$$
M_{f i}-m_{f i} \leq B_{1} \frac{2}{\sqrt{n}}<\frac{\epsilon}{8 b}
$$

From this it follows that

$$
\begin{aligned}
U_{b}(P, \Omega)-L_{b}(P, \Omega & =\sum_{i=-\infty}^{r-1}\left(M_{f i}-m_{f i}\right)\left(x_{i+1}-x_{i}\right) \\
& <\frac{\epsilon}{8 b} \sum_{i=-\infty}^{r-1}\left(x_{i+1}-x_{i}\right)=\frac{\epsilon}{8 b} \cdot 2 b=\frac{\epsilon}{4}
\end{aligned}
$$

Also

$$
\begin{aligned}
\frac{1}{\sigma} S_{1}(n) & =\frac{1}{\sigma} \sum_{i=-r}^{r} f(i / \sigma)=\sum_{i=-r}^{r-1} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+\frac{1}{\sigma} f(r / \sigma) \\
& =Q_{1}(n)+\frac{1}{\sigma} f(r / \sigma)
\end{aligned}
$$

where $Q_{1}(n)$ is the sum $\sum_{i=-r}^{r-1} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)$. Note that $Q_{1}(n)$ is bounded above and below by $U_{b}(P, \Omega)$ and $L_{b}(P, \Omega$ respectively (by deflition of these two latter quantitles). By definition of the integral, $I_{1}(b)$ is bounded above and below by these same quantitles. It follows that $\left|I_{1}(b)-Q_{1}(n)\right|<\epsilon / 4$. From this and relation (A.17), we have that $(1 / \sigma) S_{1}(n)$ is within $\epsilon / 2$ of $I_{1}(b)$ so that (A.15) holds.

The arguement that equation (A.16) holds is similar. In this case, recall that $n \geq N_{2}$ so that Item 2 holds. Using the notation for the function ϕ analogous to that we used for f, we have

$$
M_{\phi i}-m_{\phi i} \leq \frac{2 B_{2}}{\sqrt{n}}<\frac{\epsilon}{8 b \log _{2}(\sqrt{n} / 2)}
$$

and

$$
\begin{aligned}
U_{b}(P . \phi)-L_{b}(P . \phi) & =\sum_{i=-r}^{r-1}\left(M_{\phi i}-m_{\phi i}\right)\left(x_{i+1}-x_{i}\right) \\
& <\frac{\epsilon}{8 b \log _{2}(\sqrt{n} / 2)} \cdot 2 b=\frac{\epsilon}{4 \log _{2}(\sqrt{n} / 2)}
\end{aligned}
$$

Finally, let $Q_{2}(n)=\sum_{-r}^{r-1} \phi\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)$ and notice that $Q_{2}(n)$ is bounded above and below by $L_{b}(P, \phi)$ and $L_{b}(P, \phi)$ respectively as is $I_{2}(b)$. Therefore we have that

$$
\left|I_{2}(b)-Q_{2}(n)\right|<\epsilon / 4 \log _{2} \sigma . \text { The identlty }(1 / \sigma) S_{2}(n)=Q_{2}(n)+(1 / \sigma) \cdot \phi(r / \sigma) \text { and relation }
$$ (A.18) then imply the inequallty (A.16). The lemma iollows with $N=\max \left\{N_{1}, N_{2}\right\}$.

A.3. Approximation of Binomial Entropy

A.3.1. Error Bounds for Logarithm Terms

Feller's development [11, vol. 1, p. 179-182] is expanded here for the sake of providing approximations to terms of the blnomial probabllity function and bounds on the error of approximation. First a few observations with respect to logarithm approximation. We start with the Taylor sefles for $\ln (1+t)$ which is known to be

$$
\begin{equation*}
\ln (1+t)=t \cdot \sum_{i=0}^{\infty} \frac{(-t)^{i}}{i+1} \quad 0<|t|<1 \tag{A.19}
\end{equation*}
$$

and for $\ln (1-t)$ it is

$$
\begin{equation*}
-\ln (1-t)=t \cdot \sum_{i=0}^{\infty} \frac{t^{i}}{i+1} \quad 0<|t|<1 \tag{A.20}
\end{equation*}
$$

so that

$$
\begin{equation*}
\ln \frac{1+t}{1-t}=\ln (1+t)-\ln (1-t)=2 t \cdot \sum_{i=0}^{\infty} \frac{t^{2 i}}{2 i+1} \quad 0<|t|<1 \tag{A.21}
\end{equation*}
$$

is obtained by adding the two serles $\ln (\mathrm{A} .19)$ and (A.20). See $[11$, vol. 1, D. $51 \mid$ for detalls of the derivation. Subtracting $2 t$ from both sides of (A.21) gives

$$
\begin{equation*}
\ln \frac{1+t}{1-t}-2 t=2 t^{3} \cdot \sum_{i=0}^{\infty} \frac{t^{2 i}}{2 i+3} \quad 0<|t|<1 \tag{A.22}
\end{equation*}
$$

We are Interested only in values of t between 0 and $1 / 3$ so that the series $\ln (\mathbf{A} .22)$ is positive. In other words $\ln \frac{1+t}{1-t}-2 t$ is positive. Comparing this with a geometric serles with $t=1 / 3$, we have the chain of Inequallties

$$
2 t^{3} \sum_{i=0}^{\infty} \frac{t^{2 i}}{2 i+3}<\frac{2 t^{3}}{3} \cdot \sum_{i=0}^{\infty} t^{2 i} \leq \frac{2 t^{3}}{3} \sum_{i=0}^{\infty}(1 / 3)^{2 i}=\frac{2 t^{3}}{3} \cdot \frac{1}{1-1 / 0}=\frac{3 t^{3}}{4}
$$

$\ln \frac{1+t}{1-t}-2 t>\frac{2 t^{3}}{3}$. Putting these inequallites together we have

$$
\begin{equation*}
\frac{2 t^{3}}{3}<\ln \frac{1+t}{1-t}-2 t<\frac{3 t^{3}}{4} \quad \text { when } 0<t<1 / 3 \tag{A.23}
\end{equation*}
$$

Similarly we can evaluate $\ln (1+t)-t$ for t In the stated range. Subtraction of t from the serles (A.19) ylelds

$$
\ln (1+t)-t=-t^{2} \sum_{i=0}^{\infty} \frac{(-t)^{i}}{i+2}
$$

The serles is absolutely convergent over the range of t considered. ${ }^{14}$ One can therefore consider the terms of the series in any order without altering the sum [39, p. 78]. We group the terms of the summation In pairs to get

$$
\ln (1+t)-t=-t^{2} \cdot \sum_{i=0}^{\infty} t^{i} \frac{1}{i+2}-\frac{t}{i+3}
$$

Since the terms of the sum are positive, $\ln (1+t)-t$ is negative. To assess its magnitude calculate

$$
\begin{aligned}
|\ln (1+t)-t| & =\left|-t^{2} \sum_{i=0}^{\infty} \frac{(-t)^{i}}{i+2}\right| \leq t^{2} \cdot \sum_{i=0}^{\infty} \frac{\left|(-t)^{i}\right|}{|i+2|} \\
& <t^{2} \cdot \sum_{i=0}^{\infty} t^{i}=\frac{t^{2}}{1-t}
\end{aligned}
$$

Since $0<t<1 / 3$, we have $\frac{1}{1-t}<3 / 2$ and so

$$
|\ln (1+t)-t|<\frac{3 t^{2}}{2}
$$

and therefore

$$
\begin{equation*}
\frac{-3 t^{2}}{2}<\ln (1+t)-t<0 \quad 0<t<1 / 3 \tag{A.24}
\end{equation*}
$$

[^13]
A.3.2. Expansion of Binomial Coefficients

These observations made, one can now follow the development of $\{11$, vol. 1, Ch. VIl. 2 , who derives an approximation to the "central" binomial coeffcients. We will take n to be even throughout and set ν to be $n / 2$ to simplify notation. The case for n odd would be treated similarly with $\nu=(n-1) / 2$. Let $a_{k}=2^{-n}\binom{n}{\nu+k}$ be the probabillty that the binomial sum S_{n} exceeds the mean, $n / 2$, by k. Since a_{-k} equals a_{k}, we will only consider non-negative integers k. Our goal is the analysis of the error incurred when a_{k} is approximated by the normal density of variance $n / 2$.

It is easy enough to verify that

$$
\begin{equation*}
a_{k}=a_{0} \cdot \frac{\nu(\nu-1) \ldots(\nu-(k-1))}{(\nu+1)(\nu+2) \ldots(\nu+k)} \tag{A.25}
\end{equation*}
$$

There are k terms in the numerator and in the denominator so we may divide each term by ν without changing the value of the fraction

$$
\begin{equation*}
a_{k}=a_{0} \cdot \prod_{j=0}^{k-1} 1-\frac{j}{v} / \prod_{j=1}^{k} 1+\frac{j}{\nu} \tag{A.28}
\end{equation*}
$$

For $k<\nu / 3$, and $|j| \leq k$ we use the approximation $1+j / \nu \approx \exp (j / \nu)$ to transform the product in (A.26) Into

$$
a_{k}=a_{0} \exp \sum_{j=1}^{k-1} \frac{-j}{\nu}-\sum_{j=1}^{k-1} \frac{j}{\nu}-\frac{k}{\nu}
$$

Using the fact that $\sum_{j=1}^{k-1} j=k(k-1) / 2$ one has

$$
\begin{equation*}
a_{k} \approx a_{0} \exp \left(-k^{2} / \nu\right) \tag{A.27}
\end{equation*}
$$

U'sing Stirling's formula to approximate factorials, the term $a_{0}=2^{-n}\binom{n}{\nu}$ is approximately $\sqrt{2 / \pi n}$ and we obtaln the normal-density approximation to the blnomial coemcient a_{k}

$$
\begin{equation*}
a_{k} \approx \sqrt{2 / \pi n} \cdot \exp \left(-k^{2} / \nu\right) \tag{A.28}
\end{equation*}
$$

Notice that the right-hand-side of this equation is the normal probability-density function of an r.v. X_{n} with variance $\sigma^{2}=n / 4$ evaluated at k / σ standard deviations from the mean. Allowing ϵ_{1} and ϵ_{2} to
represent the errors occurring in the approximation (A.27) and in that of a_{0} respectively put

$$
\begin{align*}
& a_{k}=a_{0} \exp \left(-k^{2} / \nu\right) \exp \left(-\epsilon_{1}\right) \tag{A.29}\\
& a_{0}=\sqrt{2 /(\pi n)} \cdot \exp \left(\epsilon_{2}\right) \tag{A.30}
\end{align*}
$$

so that ${ }^{15}$

$$
\begin{equation*}
a_{k}=\sqrt{2 / \pi n} \exp \left(-k^{2} / \nu\right) \exp \left(-\left(\epsilon_{1}-\epsilon_{2}\right)\right) \tag{A.31}
\end{equation*}
$$

This dennes ϵ_{1} and ϵ_{2} and the relation

$$
\begin{equation*}
\exp \left(-k^{2} / \nu\right) \exp \left(\epsilon_{1}\right)=\prod_{j=1}^{k-1}(1-j / \nu) /(1+k / \nu) \prod_{j=1}^{k-1}(1+j / \nu) \tag{A.32}
\end{equation*}
$$

is obtained from equations (A.26) and (A.29). Taking logarithms of both sides

$$
-k^{2} / \nu-\epsilon_{1}=\sum_{j=1}^{k-1} \ln \frac{1-j / \nu}{1+j / \nu}-\ln (1+k / \nu)
$$

Using the fact that $k^{2} / \nu=2 \sum_{j=1}^{k-1} j / \nu+k / \nu$ we solve for ϵ_{1}

$$
\begin{equation*}
\epsilon_{1}=\sum_{j=1}^{k-1} \ln \frac{1+j / \nu}{1-j / \nu}-\frac{2 j}{\nu}+\ln 1+\frac{k}{\nu}-\frac{k}{\nu} \tag{A.33}
\end{equation*}
$$

A.3.3. Upper Bound on Binomial Tall Coefncients

We are ready to state and prove

Proposition 6: For integers $\nu \equiv n / 2$ and k in the range $\lceil\sqrt{7 n}\rceil \leq k \leq n / 6$, the relation $a_{k} \leq a_{0} \exp \left(-k^{2} / \nu\right)$ holds.

[^14]Proof: The observations made in ihe previous section now come into play. By hypothesis, we have that $k<n / 6$ so $k / \nu<1 / 3$. We substitute $t=k / \nu$ into equation (A.22) and see that the terms of the sum in equation (A.33) are positive with the $j^{\text {th }}$ term less than $3(j / \nu)^{3} / 4$. Since $\sum_{j=1}^{k-1} j^{3}=(k(k-1))^{2} / 4$, thls sum is less than

$$
\frac{3}{4} \cdot \sum_{j=1}^{k-1}(j / \nu)^{3}=\frac{3}{16} \cdot \frac{k^{4}-k^{2}}{\nu^{3}}<\frac{k^{4}}{4 \nu^{3}}
$$

We can get a lower bound on the term to the right of the sum in equation (A.33) by putting $t=k / \nu$ into equation (A.24). The sum in (A.24) is negative and larger than $-3 / 2(k / \nu)^{2}$. From equation (A.33) and these bounds, we get an upper and lower bound on $\epsilon_{1}:^{16}$

$$
\begin{equation*}
-\frac{3}{2} \cdot(k / \nu)^{2}<\epsilon_{1}<\frac{k^{4}}{4 \nu^{3}} \tag{A.34}
\end{equation*}
$$

On the other hand, from equation (A.23) each term of the sum in equation (A.33) is larger than $2(j / \nu)^{3} / 3$ so that for k in the stated range the sum itself is larger than

$$
\frac{2}{3} \sum_{j=1}^{k-1}(j / \nu)^{3}=\frac{2}{3} \cdot \frac{k^{4}-k^{2}}{4 \nu^{3}}>\frac{k^{4}}{8 \nu^{3}}
$$

Therefore a tighter lower bound on ϵ_{1} is

$$
\begin{equation*}
\epsilon_{1}>\frac{k^{4}}{8 \nu^{3}}-\frac{3}{2} \cdot(k / \nu)^{2} \tag{A.35}
\end{equation*}
$$

For ϵ_{2}, Feller [11, vol. 1, p. 182| shows that

$$
\begin{equation*}
\frac{1}{4 n}-\frac{1}{20 n^{3}}<\epsilon_{2}<\frac{1}{4 n}+\frac{1}{360 n^{3}} \tag{A.38}
\end{equation*}
$$

so that $0<\epsilon_{2}<n / 3$ In any event. Combining thls with the lower bound for ϵ_{1} we get

$$
\epsilon_{1}-\epsilon_{2}>\frac{k^{4}}{8 \nu^{3}}-\frac{3}{2} \cdot \frac{k^{2}}{\nu^{2}}-\frac{1}{3 n}
$$

We set

$$
\frac{k^{4}}{8 \nu^{3}}-\frac{3}{2} \cdot \frac{k^{2}}{v^{2}}-\frac{1}{3 n}>0
$$

[^15]to get a sumcient condition for $\epsilon_{1}-\epsilon_{2}$ to be positive. This condition is met for all $k \geq \sqrt{7 n}$. Therefore for k in the range stated in the hypothesis, we have that the term $\exp \left(-\left(\epsilon_{1}-\epsilon_{2}\right)\right.$) of equation (A.31) is less than 1. Equation (A.31) then implies that $a_{k}<a_{0} \exp \left(-k^{2} / \nu\right)$ and the lemma is proved.

A.4. Ignoring tails of the Binomial Entropy Sum

In this section, we state and prove a lemma (called In thls section, the tails lemma) that shows one can approximate the binomial-entropy by summing relatively few terms of the entropy-sum. The approximation approaches the entropy of S_{n} as the total number n of terms gets large.

A.4.1. Relations Used in the Proof of the Tails Lemma

Before proving the last two lemmas, a few observations necessary. These relate to the errormagnitude to be encountered in the talls lemma.

Proposition 7: For t in the range $-1 / 3<t<1 / 3$, the relation

$$
\begin{equation*}
|1-\exp (-t)|<3 / 2 \cdot|t| \tag{A.37}
\end{equation*}
$$

Proof: This is easlly seen from the inequallities obtalned from the Taylor series for $\exp (-t)$

$$
\begin{aligned}
|1-\exp (-t)| & =\left|t \cdot \sum_{i=0}^{\infty} \frac{(-t)^{i}}{(i+1)!}\right| \leq|t| \cdot\left|\sum_{i=0}^{\infty} \frac{(-t)^{i}}{|i+1|!}\right| \leq|t| \sum_{i=0}^{\infty}|t|^{i} \\
& =\left|\frac{t}{1-t}\right| \leq \frac{1}{1-1 / 3} \cdot|t|=\frac{3}{2} \cdot|t|
\end{aligned}
$$

One more observation must be made before proceeding to the lemma. Slace $\operatorname{llm}_{x \rightarrow 0} x \log _{2} x=0$ the function $x \log _{2} x$ is continuous over the closed interval $\left\{0,1 \mid\right.$ provided we denne $\operatorname{Olog}_{2} 0 \equiv 0$ to be consistent with the mentloned limit. Taking derivatives, $\left(\log _{2} x=(\ln x) \log _{2} e\right)$ one can verify that the function $-x \log _{2} x$ is unlmodal with maximum value $e^{-1} \log _{2} e$ achleved at $x=e^{-1}$. The function is continuous on the closed interval $\{0,1 \mid$ and so is uniformly continuous in this range.

Given $\epsilon>0$, we seek conditions on x positive such that $\left|x \log _{2} x\right|<\epsilon$.

Proposition 8: Let $\epsilon>0$ be glven. Then $\operatorname{lf} x \in[0,1 \mid$ and α is any number in the range $0<\alpha<1$ the inequallty

$$
\begin{equation*}
x<\left(\alpha e \epsilon / \log _{2} e\right)^{1 /(1-\alpha)} \tag{A.38}
\end{equation*}
$$

implles that

$$
\begin{equation*}
\left|x \log _{2} x\right|<\epsilon \tag{A.30}
\end{equation*}
$$

Proof: Glven the hypothesis, (A.38), solve for ϵ to get

$$
\begin{equation*}
\epsilon>1 / \alpha \cdot x^{1-\alpha} \cdot e^{-1} \cdot \log _{2} e \tag{A.40}
\end{equation*}
$$

Since $x^{\alpha} \in\left\{0,1 \mid\right.$, it follows that $x^{\alpha} \log _{2} x^{\alpha} \leq e^{-1} \log _{2} e$. From thls we have

$$
\begin{aligned}
\left|x \log _{2} x\right| & =-x \log _{2} x=-x^{1-\alpha} x^{\alpha} \log _{2}\left|\left(x^{\alpha}\right)^{1 / \alpha}\right| \\
& =-\frac{1}{\alpha} \cdot x^{1-\alpha}\left(-x^{\alpha} \log _{2} x^{\alpha}\right) \leq \frac{1}{\alpha} \cdot x^{1-\alpha} \cdot e^{-1} \cdot \log _{2} e
\end{aligned}
$$

The last expression Is less than ϵ by relation (A.40) so that the proof is complete.

For our purposes $\alpha=1 / 2$ can be chosen to glve

$$
\begin{equation*}
x<\left(e \epsilon / 2 \log _{2} e\right)^{2} \Rightarrow\left|x \log _{2} x\right|<\epsilon \tag{A.41}
\end{equation*}
$$

A.4.2. Proof of the Binomial Talls Lemma

We are now ready to state and prove the talls lemma.

Lemma 9: Given $\epsilon>0$, there is a sequence $\left\{r_{n}\right\}$ of order $O\left(\sqrt{n \log _{2} n}\right)$ such that

$$
\begin{equation*}
\left|H\left(S_{n}\right)-\sum_{k=-r_{n}}^{r_{n}}-a_{k} \log _{2} a_{k}\right|<\epsilon \tag{A.42}
\end{equation*}
$$

Proof: For $n<10$, we can take $r_{n}=n$. For $n \geq 10$ choose $r_{n}=\left\lfloor\sqrt{2 n \log _{2} n}\right\rfloor$ and notice $r_{n}+1>\sqrt{7 n}$. Since r_{n} is $O\left(\sqrt{n \log _{2} n}\right)$, we can choose an N large enough that the following conditions hold for all $n \geq N:{ }^{17}$

1. $r_{n}<n / B-1$
2. $n \geq\left(2 \log _{2} e /(e \epsilon)\right)$

For nxed $n \geq N$, let $k=r_{n}+1$ and write the following inequallities

$$
k \geq \sqrt{2 n \log _{2} n}=\sqrt{n \log _{2} n+n \log _{2} n} \geq \sqrt{n \log _{2} n+n \log _{2}\left(2 \log _{2} e /(e \epsilon)\right)}
$$

so that

$$
k^{2} \geq n \log _{2}\left\{2 n \log _{2} e /(e \epsilon)\right\}
$$

and

$$
-2 k^{2} / n \leq 2 \log _{2}\left(e \epsilon /\left(2 n \log _{2} e\right)\right)
$$

This Implles

$$
\exp \left(-2 k^{2} / n\right)<\left(e \epsilon /\left(2 n \log _{2} e\right)\right)^{2}
$$

Since $\sqrt{7 n} \leq k \leq n / 6$, proposition 6 implles $a_{k} \leq a_{0} \exp \left(-2 k^{2} / n\right)$. Together with the fact that $a_{0}<1$ this implles for $l \geq k$:

$$
a_{l} \leq a_{k} \leq a_{0} \exp \left(-2 k^{2} / n\right) \leq \exp \left(-2 k^{2} / n\right)<\left(e \epsilon /\left(2 n \log _{2} e\right)\right)^{2}
$$

We see that $a_{!}$satlsfies the hypothesls of proposition 8 with ϵ replaced by ϵ / n and therefore

$$
\left|a_{l} \log _{2} a_{l}\right|<\frac{\epsilon}{n} \quad r_{n}+1 \leq l \leq n
$$

[^16]Is the desired upper bound on "tall" terms of the blnomlal-entropy sum. We can now verify the conclusion (remember, n ls even)

$$
\begin{aligned}
\left|H\left(S_{n}\right)-\sum_{k=-r_{n}}^{r_{n}}-a_{n} \log _{2} a_{n}\right| & =\left|\sum_{k=-n / 2}^{n / 2}-a_{k} \log _{2} a_{n}-\sum_{k=-r_{n}}^{r_{n}}-a_{k} \log _{2} a_{k}\right| \\
& =\left|2 \sum_{k=r_{n}+1}^{n / 2}-a_{k} \log _{2} a_{k}\right| \\
& \leq 2 \sum_{k=r_{n}+1}^{n / 2}\left|a_{k} \log _{2} a_{k}\right|<n \cdot \epsilon / n=\epsilon
\end{aligned}
$$

The lemma is proved. We also have the following corallary for sequences of higher order than the sequence $\left\{r_{n}\right\}$:

Corallary: For $\epsilon,\left\{r_{n}\right\}$ as in the lemma, let $\left\{s_{n}\right\}$ be a positive integer sequence such that $n \geq s_{n} \geq r_{n}$ for all n, then

$$
\left|H\left(S_{n}\right)-\sum_{k=-i_{n}}^{i_{n}}-a_{k} \log _{2} a_{k}\right|<\epsilon
$$

Proof: The terms in the sum above are all positive. Since $n \geq s_{n} \geq r_{n}$, we have

$$
\begin{aligned}
H\left(S_{n}\right) \equiv \sum_{k=-n}^{n}-a_{k} \log _{2} a_{k} & \geq \sum_{k=-a_{n}}^{n}-a_{k} \log _{2} a_{k} \\
& \geq \sum_{k=-r_{n}}^{p_{n}}-a_{k} \log _{2} a_{k}
\end{aligned}
$$

Because the leftmost quantity in this string of inequallities is within t of the rightmost quantity, the result of the corallary follows.

A.5. Similarity of Binomial and Normal Entropy Approximations

We have "chopped" the talls of the normal entropy lategral and then discretized it to obtaln a sum as a close approximation. The talls of the binomial entropy sum were also "chopped" to obtaln an approximation that is a sum of far fewer terms. We now need to show that the resulting approximations for the normal entropy and for the blnomlal entropy are good approximations of each other.

Lemma 10: For $n=1,2, \ldots$ let $\sigma=\sqrt{n} / 2$ and let $\left\{r_{n}\right\}$ be a positive-integer sequence in $O\left(\sqrt{n \log _{2} n}\right)$. Given $\epsilon>0$, there exists a positive integer N such that $n \geq N$ implles

$$
\begin{equation*}
\left|\sum_{k=-r_{n}}^{r_{n}}-a_{k} \log _{2} a_{k}-\sum_{k=-r_{n}}^{r_{n}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right|<\epsilon \tag{A.43}
\end{equation*}
$$

Proof: The sequence $\left\{r_{n}\right\}$ is in $O\left(\sqrt{n \log _{2} n}\right)$ so we consider the case that $r_{n} \geq \sqrt{3 n}$ for all sufficlently large $n .{ }^{18}$ Also there exists a $C>0$ such so that $r_{n}<C \cdot \sqrt{n \log _{2} n}$ for all n. It follows that a positive Integer N_{0} can be chosen so that $\sqrt{3 n}<r_{n}<n / 6$ for all $n \geq N_{0}$. Let n be in this range and put $t=\epsilon_{1}-\epsilon_{2}$ where $\epsilon_{1}, \epsilon_{2}$ are denned by equations (A.29) and (A.30) as functions of the positive Integer n and $k=1,2, \ldots, n$. From these two equations we have that $a_{k}=\phi_{\sigma}(k) \exp (-t)$ and for $k=1,2, \ldots, r_{n}$ we can bound the terms of the difference (A.43):

$$
\begin{align*}
&\left|-a_{k} \log _{2} a_{k}-\left(-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right)\right| \\
&=\left|-\phi_{\sigma}(k) \exp (-t) \log _{2}\left(\phi_{\sigma}(k) \exp (-t)\right)-\left(-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right)\right| \\
&=\left|\phi_{\sigma}(k)(1-\exp (-t)) \log _{2} \phi_{\sigma}(k)+\phi_{\sigma}(k) \cdot t \cdot \exp (-t) \cdot \log _{2} e\right| \\
& \leq\left|\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right| \cdot|1-\exp (-t)|+\left|\phi_{\sigma}(k)\right| \cdot|t| \cdot|\exp (-t)| \cdot\left|\log _{2} e\right| \tag{A.44}
\end{align*}
$$

We need upper bounds on the terms $|t|$, and $|1-\exp (-t)|$. To get an upper bound on $|t|$, consider the following.

Since $r_{n} \geq \sqrt{3 n}$, we have $r_{n}^{4} / 4 \nu^{3} \geq 3 r_{n}^{2} / 2 \nu^{2}$. For any $k \leq r_{n}$ we get

[^17]$$
\frac{3 k^{2}}{2 \nu^{2}} \leq \frac{3 r_{n}^{2}}{2 \nu^{2}} \leq \frac{r_{n}^{4}}{4 \nu^{3}}
$$
also $k^{4} /\left(4 \nu^{3}\right) \leq r_{n} /\left(4 \nu^{3}\right)$. By equation (A.34) then, we have that
$$
\left|\epsilon_{1}\right|<\frac{r_{n}^{4}}{4 \nu^{3}}
$$

Since $\left|\epsilon_{2}\right|<n / 3$ we also have $\epsilon_{2}<r_{n}^{4} /\left(4 \nu^{3}\right)$ and so

$$
|t|=\left|\epsilon_{1}-\epsilon_{2}\right|<\left|\epsilon_{1}\right|+\left|\epsilon_{2}\right|<r_{n}^{4} /\left(2 \nu^{3}\right)
$$

In turn, $r_{n}^{4} /\left(2 \nu^{3}\right)$ is less than $4 C^{4}\left(\log _{2} n\right)^{2} / n$ where C was deflned at the beginaing of the proof.

To get a bound on $|1-\exp (-t)|$ we take a positive Integer N_{1} so that $n \geq N$ Implles that $4 C^{A}\left(\log _{2} n\right)^{2} / n<1 / 3$. Therefore we have $|t|<1 / 3$ and so $|1-\exp (-t)|<3 / 2|t|$ by proposition 7 .

Finally, for $|t|<1 / 3, \exp (-t)$ is bounded. Let K be a constant so that $\exp (-t)<K$ for $|t|<1 / 3$. Continuling the chaln of Inequalltles \ln (A.44), noting that $\left|\phi_{\sigma}(k)\right|<1$, we have

$$
\begin{aligned}
&\left|\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right| \cdot|1-\exp (-t)|+\left|\phi_{\sigma}(k)\right| \cdot|t||\exp (-t)|\left|\log _{2} e\right| \\
& \leq e^{-1}\left(\log _{2} e\right) \cdot(3 / 2) \cdot|t|+K\left(\log _{2} e\right) \cdot|t| \\
&=\left((3 / 2) e^{-1}+K\right)\left(\log _{2} e\right)|t| \\
&<\left((3 / 2) e^{-1}+K\right)\left(\log _{2} e\right) C^{1}\left(\log _{2} n\right)^{2} / n \\
&=A\left(\log _{2} n\right)^{2} / n
\end{aligned}
$$

Where A is the positive constant $\left((3 / 2) \cdot e^{-1}+K\right)\left(\log _{2} e\right) C^{4}$. To nilsh the lemma consider again the left-hand-side of (A.43) which is seen to satisfy

$$
\begin{aligned}
\mid \sum_{k=-r_{n}}^{r_{n}}-a_{k} \log _{2} a_{k} & -\sum_{k=-r_{n}}^{r_{n}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k) \mid \\
& \leq \sum_{k=-r_{n}}^{r_{n}}\left|-a_{k} \log _{2} a_{k}-\left(-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right)\right|
\end{aligned}
$$

There are $2 r_{n}+1$ terms in this sum, each positive and less than $A\left(\log _{2} n\right)^{2} / n$. Since $r_{n} \leq C \cdot \sqrt{n \log _{2} n}$, the sum is less than

$$
\left\{2 C \sqrt{n \log _{2} n}+1 \mid \cdot A\left(\log _{2} n\right)^{2} / n\right.
$$

which is $\mathrm{O}\left(\left(\log _{2} n\right)^{5 / 2} / \sqrt{n}\right)$. It follows that there is a positive integer N_{2} such that if $n \geq N_{2}$ then

$$
\left[2 C \sqrt{n \log _{2} n}+1 \mid A\left(\log _{2} n\right)^{2} / n<\epsilon\right.
$$

From these Inequallites, the lemma follows with $N=\max \left\{N_{0}, N_{1}, N_{2}\right\}$.

A.b. Proof of the Main Theorem

We now restate and then prove the maln theorem.

Theorem 11: Let S_{n} be the binomial r.v. assoclated with the sum of n l.1.d. balanced bernoulll trials. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(H\left(S_{n}\right)-(1 / 2) \log _{2}(\pi e n / 2)\right)=0 \tag{A.45}
\end{equation*}
$$

Proof: We will show that for a given $\epsilon>0$, there exists a positive integer N such that $n \geq N$ implles

$$
\begin{equation*}
\left|H\left(S_{n}\right)-(1 / 2) \log _{2}(\pi e n / 2)\right|<\epsilon \tag{A.48}
\end{equation*}
$$

Lemmas 2. 5, 9, and 10 can each be restated with " ϵ " replaced by " $\epsilon / 4^{\prime}$ In their respective relatlons: (A.3); (A.13); (A.42); (A.43). These lemmas will stlll be true when modified in this way. Each lemma required a sequence that was constralned in some way to produce that particular lemma's result. Our plan is to exhlbit a sequence $\left\{s_{n}\right\}$ that simultaneously satisfles the constralnts of all four lemmas. The inequallty mentloned in the conclusion of each lemma will then be true. The triangle inequallty can then be used to show that the Inequallty (A.48) holds.

Let $\left\{s_{n}\right\}$ be the sequence

$$
s_{n}= \begin{cases}n & n \leq 10 \\ \left\lfloor\sqrt{2 n \log _{2} n}\right\rfloor & \text { otherwise }\end{cases}
$$

This is the sequence used in the proof of lemma 9 to render the inequally (A.42) (with ${ }^{\circ} \epsilon$ " replaced by $\epsilon \epsilon / 4^{\prime \prime}$). In particular, for some $N_{1} \geq 0$

$$
\left|H\left(S_{n}\right)-\sum_{k=-i_{n}}^{i_{n}}-a_{k} \log _{2} a_{k}\right|<\epsilon / 4
$$

for all $n \geq N_{1}$.

Since $\left\{s_{n}\right\}$ is $O\left(\sqrt{n \log _{2} n}\right)>O\left(\sqrt{n \log _{2} \cdot\left(\log _{2} n\right)}\right)$ the corallary to lemma 2 implies that there exists a positive integer N_{2} such that for $n \geq N_{2}$ we have

$$
\left|H\left(X_{n}\right)-\int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right|<\epsilon / 4
$$

Also $s_{n} / \sigma=O\left(\sqrt{\log _{2} n}\right)$, that is, $s_{n} / \sigma=\alpha\left(\sqrt{n} / \log _{2} n\right)$ and by lemma 5 there exists a positive integer N_{3} so that for $n \geq N_{3}$ we have

$$
\left|\int_{-\theta_{n}}^{\theta_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x-\sum_{k=-0_{n}}^{\theta_{n}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right|<\epsilon / 4
$$

Finally, from lemma 10 , we have that there is a positive integer N_{4} so that $n \geq N_{4}$ Implles ${ }^{10}$

$$
\left|\sum_{k=-i_{n}}^{n_{n}}-a_{k} \log _{2} a_{k}-\sum_{k=-i_{n}}^{n}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right|<\epsilon / 4
$$

Now let $N=\max \left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ and consider any n with $n \geq N$. Since the entropy of a normal r.v. with varlance $n / 4$ is $1 / 2 \log _{2}(\pi e n / 2)$, we can write
${ }^{10}$ The requirement that ${ }_{n} \geq \sqrt{7 n}$ in lemma θ is satisfied for $n \geq 12$. We take one of $N_{1}, N_{2}, N_{3}, N_{4}$ to be greater than 12 so that these requirements will be met for $n \geq \max \left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ in what follows.

$$
\begin{aligned}
& \left|\frac{1}{2} \log _{2} \frac{\pi e n}{2}-H\left(S_{n}\right)\right|=\left|H\left(X_{n}\right)-H\left(S_{n}\right)\right| \\
& =\mid \int_{-\infty}^{\infty}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x-\int_{-n_{n}}^{0_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x+\int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x \\
& -\sum_{k=-0_{n}}^{\rho_{n}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)+\sum_{k=-g_{n}}^{\rho_{0}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k) \\
& -\sum_{k=-0_{n}}^{D_{n}}-a_{k} \log _{2} a_{k}+\sum_{k=-0_{n}}^{D_{n}}-a_{k} \log _{2} a_{k}-H\left(S_{n}\right) \mid \\
& \leq\left|\int_{-\infty}^{\infty}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x-\int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x\right| \\
& +\left|\int_{-\theta_{n}}^{n_{n}}-\phi_{\sigma}(x) \log _{2} \phi_{\sigma}(x) d x-\sum_{k=-0_{n}}^{n_{\theta}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)\right| \\
& +\left|\sum_{k=-o_{n}}^{D_{n}}-\phi_{\sigma}(k) \log _{2} \phi_{\sigma}(k)-\sum_{k=-o_{n}}^{D_{n}}-a_{k} \log _{2} a_{k}\right| \\
& +\left|\sum_{k=-0_{n}}^{0_{n}}-a_{k} \log _{2} a_{k}-H\left(S_{n}\right)\right|
\end{aligned}
$$

Since each of the four absolute-value terms is less than $\epsilon / 4$ by the prevlous lemmas, their sum Is less than ϵ. The theorem is proved.

Appendix B

Mutual Information and Vector Geometry

In this appendix, we derive a relation between the mutual information shared by two ± 1-vectors, \mathbf{A} and \mathbf{B}, and thelr Hamming-dlstance. The vector \mathbf{A} will be a balanced-Bernoulll vector and the vector \mathbf{B} will be chosen at random from within a neighborhood of \mathbf{A} of a given radius ρ. Vector \mathbf{B} will therefore provide information about \mathbf{A}. We will determine the relation between the information \mathbf{B} provides and the nelghborhood radius.

B.1. Relation of Neighborhood-Size to Neighborhood-Radius

Let $\&$ be the set of n-dimensional ± 1-vectors, and for the moment, let \mathbf{A} and \mathbf{B} be chosen randomly from A. We wish to know the fraction of A lying withln a glven radlus ρ of \mathbf{A}. Toward this end, conslder the ball $B(\rho)$ of vectors of A that are withln a radius ρ of A. Slnce all vectors of A are equlprobable outcomes of B, we can determine the fraction of vectors lying in $B(\rho)$ by determining the probabllity that B will come from $B(\rho)$. Because these vectors are chosen at random from A, they are balanced-Bernoulll vectors. Let X be the number of components of \mathbf{B} that disagree with their counterparts in \mathbf{A}. The r.v. X is the Hamming-distance $H D(\mathbf{A}, \mathbf{B})$ between \mathbf{A} and \mathbf{B}. It Is binomlally distributed with mean $n / 2$ and varlance $n / 4$ [26|. By the central-llmit theorem, we can approximate the cumulative binomlal probabillties with a normal distribution having the same mean and varlance (see Lindgren [30, p. 158|).

From this we see that the probablilty that B will lle in $B(\rho)$ is $P(X \leq \rho)$ which can be determined by the normal distribution with mean $n / 2$ and variance $n / 4$. Half the vectors of $\&$ will lle within a distance of $n / 2$ of A, so so we consider the case that $\rho<n / 2$ so that $B(\rho)$ comprises less than $1 / 2$ of A. If we put $Z=(X-n / 2) /(\sqrt{n} / 2)$, then Z is a standard normal r.v. and we can write

$$
\begin{equation*}
P(X \leq \rho)=P(Z \leq(\rho-n / 2) /(\sqrt{n} / 2))=\Phi(-z) \tag{B.1}
\end{equation*}
$$

where z is the positive number $(n / 2-\rho) /(\sqrt{n} / 2)$. It is known that for z positive (say $z \geq 3$) the approximation

$$
\begin{equation*}
\Phi(-z) \approx \frac{\exp \left(-z^{2} / 2\right)}{\sqrt{2 \pi} z} \tag{B.2}
\end{equation*}
$$

Is quite accurate. [11, v. 1, p. 175)

Now suppose we want the ball $B(\rho)$ to comprise M^{-R} of A, where $R \geq 1$. We put $P(X \leq \rho)=M^{-R} \ln (B .1)$ and use the approximation (B.2) to get

$$
\begin{equation*}
M^{-R}=\frac{\exp \left(-z^{2}\right) / 2}{\sqrt{2 \pi z}} \tag{B.3}
\end{equation*}
$$

Thls can be rearranged to get the " z " in the exponent in terms of the other parameters

$$
\begin{equation*}
z=\sqrt{2 R \ln M-\ln \left(2 \pi z^{2}\right)} \tag{B.4}
\end{equation*}
$$

which is a recursive expression in z. As M grows, z should grow slowly. For large M then, the - $2 R \ln M$ term under the radical should dominate so that $z \approx \sqrt{2 R \ln M}$. We put this value in for the - z " under the radical in (B.4) to get

$$
\begin{equation*}
z \approx \sqrt{2 R \ln M-\ln (4 \pi R \ln M)} \tag{B.5}
\end{equation*}
$$

which is a good approximation to z when M is large (thls can be verined by plugging the right-handside of (B.5) in for z in equation (B.3)). The value of ρ is ascertained from the definition of z to be

$$
\begin{equation*}
\rho=\frac{n}{2}-\frac{\sqrt{n}}{2} z=\frac{n}{2}-\frac{\sqrt{n}}{2} \sqrt{2 R \ln M-\ln (4 \pi R \ln M)} \tag{B.6}
\end{equation*}
$$

So a ball encompassing roughly M^{-R} of A has the radius glven above.

B.2. Relation of Mutual Information to Neighborhood-Radius

Now suppose \mathbf{B} is chosen at random from $B(\rho)$ rather than from $\{$. An observer of \mathbf{B} can infer that \mathbf{A} lles in a radlus ρ of \mathbf{B}. This radlus is such that a nelghborbood (or ball) about \mathbf{B} comprises M^{-R} of A. Knowledge of \mathbf{B} therefore constitutes an M^{R}-fold decrease in the possible values of \mathbf{A}. Therefore the information \mathbf{B} provides about \mathbf{A} is $\log _{2} M^{R}=R \log _{2} M$ blts.

With regard to the n_{I}-dimensional input-vectors, of an assoclator, the vector A represents an input-prototype F_{k} and \mathbf{B} represents the assoclator-Input $\boldsymbol{F}_{k}^{\prime}$ chosen from $\boldsymbol{B}_{k}(\rho)$ (see the chapter on classincation, page 55). The minimum value of R allowed in this case is $\pi M /\left(2 n_{O}\right)$ where n_{O} is the dimension of the assoclator-output and M is the number of stored assoclations. Plugging thls in for R In (B.6) glves an upper bound for ρ

$$
\begin{equation*}
\rho \leq \frac{n_{I}}{2}-\frac{\sqrt{n_{I}}}{2} \sqrt{\pi M \mathrm{n} M / n_{O}-\ln \left(2 \pi^{2} M \mathrm{n} M / n_{O}\right)} \tag{B.7}
\end{equation*}
$$

If we examine the n_{0}-dimensional output-vectors on the other hand, the vector A represents the output-prototype \mathbf{G}_{k} and \mathbf{B} is the assoclator-output $\mathbf{G}_{\boldsymbol{k}}{ }^{\prime \prime}$. We want a classiner samplling \mathbf{B} to be able to categorize it with \mathbf{A} on the basis of \mathbf{B} 's distance from \mathbf{A} (see figure 5-3, page 51). It is the maximal distance ρ that \mathbf{B} can be from A that must be determined. To nind thls maximal distance, recall that the minimal information that B must provide about A in this case is $\log _{2} M$ bits. We can substitute the value 1 for R in equation ($B .6$) to get an upper bound for the distance that \mathbf{B} can befrom \mathbf{A}. The bound is

$$
\begin{equation*}
\rho \leq \frac{n_{O}}{2}-\frac{\sqrt{n_{O}}}{2} \sqrt{2 \ln M-\ln (4 \pi \ln M)} \tag{B.8}
\end{equation*}
$$

There is a problem however. In this case, each ball about an output-prototype, of the radlus on the right-hand-side of (B.8), encompasses $1 / M$ of the total number of possible n_{O}-dimensional outputvectors. This means that each prototype has a $1 / M$ chance of lying in the ball about A. Since there are $M-1$ output-prototypes aside from \mathbf{A} itself, we would expect one of them (on average) to lle in the ball about \mathbf{A}. We call thls a collision. In the case of a collsion of two output-prototypes, the ball about one prototype would largely overlap with the ball about the other. Many of the vectors within ρ of one of the prototypes would not get classined with that prototype. This problem exists for all the output-prototypes. That is, each prototype will have a collislon with an average of one other when ρ is given by the right-hand-side of (B.8)

To remedy the problem, we make the radlus, ρ, small enough so that each ball contalns only $1 / M^{2}$ of the output-space. Now any two output-prototypes have a $1 / M^{2}$ chance of colllsion with each other. Since there are roughly $M^{2} / 2$ possible palrs of output-prototypes, less than one such palr on average will suffer from collision. If the assoclator produces \mathbf{B} to lle within thls smaller nelghborhood of A, then \mathbf{A} will be rellably classinable. Since the ball constitutes M^{-2} of the output space, we put
$R=2 \ln (\mathrm{~B} .6)$ to get

$$
\begin{equation*}
\rho \geq \frac{n_{o}}{2}-\frac{\sqrt{n_{o}}}{2} \sqrt{4 \ln M-\ln (8 \pi \ln M)} \tag{B.8}
\end{equation*}
$$

This is shown as a lower bound on ρ slace it is sumcient but not necessary for proper performance. In other words, some values of ρ Intermedlate between that of relation (B.9) and relation (B.8) should be workable. In fact, using

$$
\begin{equation*}
\rho=\frac{n_{O}}{2}-\frac{\sqrt{n_{O}}}{2} \sqrt{3 \ln M} \tag{B.10}
\end{equation*}
$$

would result in $O(\sqrt{M})$ collisions among the M output-prototypes so that a vanishingly small fraction of the prototypes represent "degenerate" categories. We conclude then, that large systems having stored a correspondingly large number of prototypes should be able to operate nearly optlmally. That is, an output-vector, \mathbf{B}, will be constrained to lle within ρ_{M} of its output-prototype \mathbf{A}, where ρ_{M} nears the upper-bound in (B.8) as M gets large. On the other hand, for smaller M we may need a redundancy at the input that is $1-1 / 2$ to 2 times the minimal $\pi M /\left(2 n_{O}\right)$. This assures the output information is (3/2) $\log _{2} M$ to $2 \log _{2} M$ respectively as required by (the respective) relations (B.10) or (B.9).

References

1. Abu-Mostafa. Yaser S. Condectivity Versus Entropy. EEEE Conference on Neural Information Processing Systems - Natural and Synthetle, IEEE, November, 1087.
2. Abu-Mostafa, Yaser S. and St. Jaques, Jeanolde-Marle. "Informatlod Capacity of the Hopfild Model'. IEEE Transcctions on Information Theory IT-91, No. 4 (July 1085), 401-464.
3. Amit, Dantel J., Gutfreund, Hancoch, Sompllasty, H. "Spla-Glass Models of Neural Networks". Physical Review A 92. 2 (August 1985), 1007-1018.
4. Amit, Danlel J., Gutfreund, Hancoch, Somplinsky, H. 'Storing Infinite Numbers of Patterns in a SpinGlass Model of Neural Networks ${ }^{\circ}$. Physical Review Leters 55, 14 (September 1085), 1630-1633.
S. Anderson, James A., Silversteln, Jack W., Ritz, Stephen A., and Jones, Radall S. ©Distlactive Features, Categorical Perception, and Probabillty Learalng: Some Appllcations of a Neural Model'. Poycological Review 84. 5 (1077), 413-451.
5. Anderson, James A. "Cognltive and Psychological Computation with Neural Models". IEEE Transactions on Systems, Man, and Cybernetics SMC-19, 5 (September/October 1083).
6. Anderson, James A., Golden, Richard M., Murphy, Gregory L.. S.P.I.E. Institute on Hydrid and Optical Computing, Ed. 1.1 S.2.U. Volume :Concepts in Distributed Systems. S.P.I.E., Bellagtam. WA. 1086.
7. Ash. Robert B.. Inter-Science Tracts in Pure and Applied Mathematics. Volume 10:Information Theory. John Wlley and Sons, New York, New York, 1005.
8. Barto, A. G. "Learning by Statistical Cooperation of Self-Interested Computing Elements". Humen Neurobiology 4 (1085), 220-256.
9. Conte, Samuel D., and de Boor, Carl. International Series in Pure and Applied Mathematice. Volume :Elementary Numerical Analysis, An Algorithmic Approach, Ird Ed. McGraw-Hill Books, 1080.
10. Feller. Willam. An Introduction to Probability Theory and ito Applications Ird. Ed. John Wlley and Sons. New York. New York. 1968.
11. Gallagef, Robert G.. Information Theory and Reliable Communication. Jobn Wiley and Sons, New York. New York. 1088.
12. Golden. Rlchard M. Modelling Causal Schemata in Human Memory: A Connectionist Approach. Pb.D. Tb., Depl of Psycbology, Browa Ualversity, Providence Rbode Isladd, 1080.
13. Golden, Rlchard M. "The "Braln-State-1n-a-Box" Neural Model is a Gradient Descent Agorlthm". Journal of Mathmatical Paychology 90. 1 (March 1980), 73-80.
14. Golden, Richard M. "A Unined Framework for Connectlonist Systems". Biological Cybernetica 1-12 (January 1088), . Recently submitted for publleation, blbllograpble laformation on thls artlele ts incomplete.
15. Greene, Peter H. "Superimposed Random Coding of Stimulus Response Connectlons". Bulletin of Mathematical Biophysics 27 (Special Issue 1965), 191-201.
16. Gross, D.J., Mezard, M. "The SImplest Spln Glass". Nuclear Physics B240, |FS12| (1984), 431-452.
17. Grossberg, Steven. Boston Studies in the Philosophy of Science. Volume 70:Studies of Mind and Brain, Neural Principles of Learning, Perception, Development, Cognition and Motor Control. D. Reldel Publlshers, Boston, Mass., 1982.
18. Grossberg, Stephen. Competive Learning: From Interactive Activation to Adaptive Resonance. Article obtained in personal communication, blbllographic Information not complete.
19. Harris, Dale A. Information Theory in Neuropyslology. Dept. of Physlology, Harvard Medical School. Bibllographical Information Incomplete.
20. Hinton, Geoffrey E., and Anderson, James A.. Parallel Models of Associative Memory. Lawrence Erlbaum Associates, 365 Broadway, Hillsdale, New Jersey 07842, 1981.
21. Hinton, Geoffrey E. "Boltzmann Machines: Constraint Satisfaction Networks that Learn". Cognitive Science 9 (1985), 147-160.
22. Hopfeld, J. J. "Neural Networks and Physical Sysiems with Emergent Collective Computational Abllitles". National Academy of Sciences, U.S.A., Biophysics 79 (April 1982), 2554-2558.
23. Hopfleld, J. J. "Neurons with Graded Response have Collective Computational Propertles llke those of Two-State Neurons'. Proceedings of National Acadamy of Science, U.S.A., Biophysics 81 (May 1984), 3088-3092.
24. Hopmeld, J.J. and Tank, D.W. "Neural' Computation of Decisions In Optimization Problems". Biological Cybernetics $X X$ (1985).
25. Kanerva, Pentti. Self-Propagating Search: A Unified Theory of Memory. Ph.D. Th., Stanford Unlversity, 1983.
26. Keeler, James D. Capaclty for Patterns and Sequences In Kanerva's SDM as Compared to Other Assoclative Memory Models. Tech. Rept. 87.29, Research Instltute for Advanced Computer Science, NASA Ames Research Center, December, 1987.
27. Kohonen, Tuevo. Springer Series in Information Sciences. Volume 8:Self-Organization and Associative Memory. Springer-Verlag, New York, New York, 1984.
28. Lansner, Anders, and Ekeberg. Orjan. "Rellabillty and Speed of Recall In an Assoclative Network". IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7, No. 4 (July 1985), 490-498.
29. Lindgren, Bernard W.. Statistical Theory, Ird Ed. MacMllan Publlshing, New York, New York. 1976.
30. Little, W. A. "The Existence of Persistent States In the Braln". Mathematical Biosciences 19 (1074), 101-120.
31. Little, W. A., Shaw, Gordon L. Analytle Study of the Memory Storage Capacity of a Neural Network". Mathematical Biosciences 99 (1978), 281-290.
32. McEllece, Roberi J.. Encyclopedia of Mathematics and its Applications. Volume 3:The Theory of Information and Coding. Addison-Wesley, Reading, Mass., 1977.
33. McElicce, Robert J., Posner, Edward C., Rodemich, Eugene R., Venkatesh, Santosh S. The Capaclty of the Hopneld Associative Memory. Callfornla Instltute of Technology, January, 1988. Submitted to IEEE Transactions on Information Theory.
34. Minsky, Marvin and Papert, Seymour. Perceptrons, An Introduction to Computational Geometry. M.I.T. Press, Cambridge, Mass., 1969.
35. Parker, David B. Learning Logle. Tech. Rept. TR-47, Center for Computational Research In Economics and Management Sclence, M.I.T., April, 1985.
36. Pearlmutter, Barak A. and Hinton Geoffrey E. G-Maximization: An Unsupervised Learning Procedure for Discovering Regularitles. Neural Networks for Computing, American Institute of Physics, 1986.
37. Rosenblatt, Frank. Principles of Neurodynamics. Spartan Books, New York, New York, 1962.
38. Rudin, Wllllam. International Series in Pure and Applied Mathematics. Volume : Principles of Mathematical Analysis, Ird Ed. McGraw-HIII, New York, N.Y., 1976.
39. Rumelhart, David E., McClelland, James L., and the PDP Research Group. Parallel Distributed Processing, Explorations in the Microstructure of Cognition. M.I.T. Press, Cambridge, Mass., 1986.
40. Schneider, Walter and Mumme, Dean C. Attention, Automatle Processing and the Compling of Knowledge: A Two-Level Archltecture for Cognltion. To appear In Psychology Review.
41. Sejnowski, Terrance J. and Rosenberg, Charles R. NETtalk: A Parallel Network that Learns to Read Aloud. Tech. Rept. JHU/EECS-86/01, The Johns Hopkins University Electrical Engineering and Computer Sclence, 1988.
42. Shaw, Gordon L., and Roney, Kathleen J. "Analytic Solution of a Neural Network Theory Based on an Ising Spln System Analogy ${ }^{\prime \prime}$. Physics Letters 74A, 1,2 (October 1979), 146-150.
43. Shiffrin, Richard M. and Schnelder, Walter. "Controlled and Automatic Human Information Processing: II. Perceptual Learning, Automatlc Attending, and a General Theory ${ }^{\circ}$. Psychological Review 84. 2 (1977), 127-189.
44. Tanaka, F., Edwards, S. F. "Analytle Theory of the Ground State Propertles of a Spln Glass: I. Ising Spin Glass*. J. Physics F: Metal Physics 10 (1080), 2789-2778.
45. Tanaka, F., Edwards, S. F. 'Analytic Theory of the Ground State Properties of a Spln Glass: I. X Y Spln Glass". J. Physics F: Metal Physics 10 (1980), 2779-2792.
46. Viterbl, A. J. "On Coded Phase-Coherent Communlcatlons". IRE Transactions on Space Electronics and Telemetry (March 1081), 3-14.

Using Rules and Task Division to Augment Connectionist Learning

William L. Oliver
and
Walter Schneider

University of Pittsburgh
 Learning Research and Development Center 3939 O'Hara St.
 Pittsburgh, PA 15260
 (412) 624-7496

This paper has been submitted for publication in the Proceedings of the Tenth Annual Conference of the Cognitive Science Society.

Dedication

This work is dedicated to my parents who put up with my twelve-year college hablt.

STORAGE CAPACITY OF THE LINEAR ASSOCLATOR: BEGINNINGS OF A THEORY OF COMPUTATIONAL MEMORY

BY
DEAN C. MUMME
B.S., Massachusetts Instltute of Technology, 1979 M.S., Idaho State University, 1982

THESIS

Submitted in partial fulnilment of the requirements for the degree of Doctor of Philosophy In Computer Science In the Graduate College of the
University of Illinols at Urbana-Champaign, 1088
(c) Copyright Dean C. Mumme 1988

Vita

Dean C. Mumme was born on August 17, 1957 In Pocatello, Idaho. He recelved hls Bachelor of Sclence In Aeronautics and Astronautics in 1979 from the Massachusetts Institute of Technology. He then studled Mathematics for four years at Idaho State Unlversity, earning a Master of Sclence Degree in December, 1982. After studying gradute-level mathematics for an addltional year, he began working for his Ph.D. at the University of Illinols, at Urbana Champalgn In August 1983. During the summer of 1985, he moved with his thesis-advisor to Pittsburgh, Pennsylvania to complete his thesls research at the Learning Research and Development Center, University of Plttsburgh. He Jolned the University of Idaho as Assistant Professor in August 1987 where he is currently teaching and conducting research in connectionist systems.

[^0]: ${ }^{1}$ This research was sponsored by the Army Research Institute. under Contract No. MDA903-86-C-0149 and Personnel and Training Research Programs. Psychological Sciences Division, Office of Naval Research under Contract Nos. N-0014-86-K-0107 and N-0014-86-K-0678. Work submitted as Ph D. thesis to the University of Illinois.

[^1]: ${ }^{1}$ Good introductory articles to the subject include the books [21, 40]. For an introduction to the mathematica of "connectionist" or "neural-based" systems, see [7, 40, ch. 0].

[^2]: ${ }^{2}$ The symbol $|\cdot|$ bere refers to the "length" of a vector given by the euclidean norm.

[^3]: ${ }^{3}$ For real numbers $a \leq b$, the open interval (a, b) is the set of real numbers between a and b excluding the endpoints. The closed interval $[a, b]$ includes the endpoints.

[^4]: ${ }^{4}$ The memory trace $t(\cdot)$ and the retrieval $d^{\prime}(\cdot)$ functions treated as deterministic in this development, bence the use of lower case letters t, d '. A more general formulation would allow the use of stochastic functions. However the deterministic case is pertinent to our situation and we deal with it specifically for the sake of simplicity. Note that 2 deterministic function of random variables produces a random variable.

[^5]: ${ }^{5}$ The term, "super-summable", is coined in analogy to the term "sub-sumable" used by mathematicians to describe non-linear functions $p(x)$ that obey $p(x+y) \leq p(x)+p(y)$. For our purposes, a super-summable function would bave the inequality reversed.

[^6]: ${ }^{6}$ In fact, Hinton (personal communication) observed that an n by n identity matrix seems to have an exponential amount of "storage" since 2^{n} vector-pairs seem to be "stored". That is, using a-dimensional vectors of ± 1 's, one selects one from among the 2^{n} possible. This vector is placed at the input of the sygtem to retrieve the same vector at the output. More generally bowever, this ean be done with an arbitrary matrix. Simply select a vector (address) of ± 1 's, present it at the input, "digitize" the output into $\pm l^{\prime}$ ' and asy that the resulting vector (data) is the one astored" at that address. This would give all matrices exponential retrieval but there is no otorage process that allows one to specify which addresses are to be known by the matrix and what datum is stored at each address. This illustrates that storage and retrieval are not to be confused as being the same. On the other hand, they are not independent of each other either. Reliable retrieval of a stored association or "item" will require, for the associstor at least, th. iss than an exponential number of items be specified during the storage process.

[^7]: ${ }^{7}$ The equivalence of the neighborbood method to the coin method follows from the fact that the vast majority of vectors in the interior of the ball in (5.5) lie near the boundary provided the radius is less than $n / 2$ (see Kanerva [20]). The ball method and coin method will be consistent if the radius of the ball is roughly $n_{f}\left(1-p_{F}\right)$ (see appendix B). The distribution of vectors generated viz either method is that of 2 "ring" surrounding the central eategory-prototype. The "thickness" of the ring being determined by the variance of the coin metbod.

[^8]: ${ }^{8}$ Or course, a design problem may differ as to which parameters are initially specified. Most notably is the case when 2 designer is dealing with an inputspace whose vector-dimensionality n_{I} is already known.
 ${ }^{0}$ Since $0<\alpha<1$, the quantity $-\ln \alpha$ is positive and grows without bound as $\alpha \rightarrow 0$. The terms "large α " and "small- $\alpha^{\text {" }}$ are of course relative. A large- α model will only classify a small portion of the inputspace. A small- α model will classify a portion orders of magnitude smaller. Even in the case of the small-a model however, there are $\exp _{2}\left(n_{I}\right)$ possible input-vectors so that the actual number of vectors classifiable is still very large.

[^9]: ${ }^{10}$ The evidence for this was obtained by a cursory" investigation conducted by the author. Tbis analysis was not included since it depended upon erroneous independence assumptions of vector doh-products and so may bave been inaccurate.

[^10]: ${ }^{11}$ The restriction, $n \geq 132$ is used to diminish the chain of inequalities on the next page concerning the parameter b. It also allows use of a sequence $\left\{r_{n}\right\}$ whose terms are as small as possible, though this isn't necessary to obtain a suitable sequence.

[^11]: ${ }^{12}$ We get away with freely intermixing base-2 and natural-base logarithms due to the use of the inequality. That is, for $x<1$, we bave that $y<\log _{2} x$ implies $\exp (y)<\exp \left(\left(\log _{2} e\right) \ln x\right)=x^{\log _{2} e}<x$. In this case, $y=-b^{2} / 2$ and $x=\epsilon /\left(4 \log _{2} \sigma\right)$.

[^12]: ${ }^{13}$ By -larger than $O(\Omega(n))^{\text {" where }} \Omega(n)>0$, we mean a sequence $\left\{n_{n}\right\}$ such that for any constant $C>0$ there is an N so that $n \geq N$ implies ${ }_{n}>C \cdot f(n)$.

[^13]: 14 A series is said to be absolutely convergent if and only if converges when each of its terms is replaced by its absolute value.

[^14]: ${ }^{15}$ Here Feller omits the leading sign in the error-exponent by setting $a_{k}=\sqrt{2 / \pi n} \exp \left(-k^{2} / \nu\right) \exp \left(\epsilon_{1}-\epsilon_{2}\right)$.

[^15]: ${ }^{16}$ In this section, only the lower bound will be useful. The upper bound will be useful in a later section.

[^16]: ${ }^{17}$ Notice that the second condition stipulates that the left-band-side of (A.42) will be less than any e $\geq 2 \log _{2}$ e/(en). Therefore, $2 \log _{2}$ e/(en) is roughly the maximum entropy lost when S_{n} is "approximated" by a random variable $S_{n}{ }^{\prime}=\min \left\{S_{n}, r_{n}\right\}$. We say "roughly" because we have not accounted for the fact that S_{n}^{\prime} will equal $\pm r_{n}$ with a slightly bigher probability than the probability that S_{n} will assume these two values.

[^17]: 18 The case tbat $r_{n}<\sqrt{3 n}$ results in a smaller number of terms being summed in relation (A. 43). The upper bounds for the error derived in this section would still applicable to these terms. By summing less terms the tota discrepancy

