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Abstract

The CMU Planetary Rover project is developing a six-legged walking robot capable of au-
tonomously navigating, exploring, and acquiring samples in rugged, unknown environments. This
report describes an integrated software system capable of navigating a single leg of the robot over
rugged terrain. The leg, based on an early design of the Ambler Planetary Rover, is suspended
below a carriage that slides along rails. To walk, the system creates an elevation map of the
terrain from laser scanner images, plans an appropriate foothold based on terrain and geometric
constraints, weaves the leg through the terrain to position it above the foothold, contacts the terrain
with the foot, and applies force enough to advance the carriage along the rails. Walking both
forward and backward, the system has traversed hundreds of meters of rugged terrain including
obstacles too tall to step over, trendies too deep to step in, closely spaced obstacles, and sand
hills. The implemented system consists of a number of task-specific processes (two for planning,
two for perception, one for real-time control) and a central control process that directs the flow of
communication between processes.



1 Introduction
The CMU Planetary Rover project is constructing the Ambler, an autonomous walking robot
designed for planetary exploration [1]. The configuration is a six-legged vehicle with orthogonal
legs and an overlapping gait [3,17]. The Ambler is designed to meet particular mission objectives,
including the ability to negotiate one meter boulders and to traverse one meter wide ditches, while
on a 30° slope [25]. Power consumption is minimized by decoupling the motion of the horizontal
axes from that of the vertical axis. In addition, the Ambler is designed to provide a stable platform
for sensory instruments and scientific equipment.

To gain experience with legged robots, we built a single leg of the Ambler, and used it to
experiment with both real-time control of the mechanism and walking over rough terrain. The
rationale was that ideas would be easier to develop using just a single leg, and that many of the
concepts would transfer to the full six-legged walker.

The leg, based on an early design of the Ambler, has three degrees of freedom, decoupled into
vertical motion (a prismatic joint) and horizontal motion (two rotary joints). The leg can extend
vertically about 4.5 meters, and can extend horizontally about 2.5 meters. To provide support, it is
attached to a carriage that is free to roll along rails. Sensors include a potentiometer to measure the
position and velocity of the carriage along the rails, incremental and absolute encoders to measure
leg positions, and two inclinometers to measure the rotation of the carriage. A six-axis force/torque
sensor is attached to the bottom of the leg to measure the forces experienced by the mechanism as
it moves. In addition, a scanning laser rangefinder is attached to the carriage to provide perception
of the terrain.

Below the rails is an 11 x 6 meter obstacle course. The obstacle course consists of a bed of
sand, sculpted to form trenches, hills, and gently rolling terrain, and various obstacles, such as
styrofoam rocks, pylons, and boxes.

We have developed an integrated system that can autonomously navigate the single leg through
obstacle courses of rough terrain. This report describes the integrated system and its various
components: perception, planning, and real-time control. The purpose of the report is to document
the design decisions and rationale for the components and the methods used to integrate them. The
report also describes the walking experiments performed, highlighting our progress in single-leg
walking.

The walking system consists of five task-specific processes (called modules) that communicate
with one another using the Task Control Architecture (TCA) [21, 26]. TCA routes messages
through a centralized control module, which manages and synchronizes the sending and receiving
of messages over the Ethernet. TCA is basically a high-level robot operating system that provides
utilities for building and coordinating mobile robot systems. The utilities are meant to bridge the
gap between task-level planners and real-time control systems. In particular, TCA supports 1)
distributed processing, 2) resource management, 3) hierarchical task decomposition, 4) temporal
synchronization of tasks, 5) execution monitoring, and 6) exception handling.

Of the five modules, one handles real-time control, two handle perception, and two do planning.
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The Controller module, which runs under a real-time, multi-tasking operating system, handles all
robot motions and responds to queries from other modules regarding leg position, carriage position
and orientation, and force sensor readings. The Image Sensing Manager (ISM) acquires laser
scanner images and determines the transformation from scanner.to world coordinates. The Local
Terrain Map (LTM) Manager processes scanner images to construct elevation maps of the terrain.
The Gait Planner plans where to place the foot and how far to move the carriage in order to advance
with minimal risk to the mechanism. The Leg Recovery Planner (LRP) determines a trajectory to
the planned footfall location that is energy and time efficient and that avoids terrain collisions.

To walk the leg down the obstacle course, the user specifies a goal location for the carriage to
reach along the rails. The walking system is totally autonomous from that point on. It uses terrain
elevation maps and constraints imposed by the geometry of the leg to plan a series of moves that
attempts to maximize advance while minimizing the possibility of collision with terrain features.

To take a step, the Gait Planner requests a footfall evaluation map from the LTM Manager.
The LTM Manager requests an image from the ISM, which acquires one from the scanning laser
rangefinder. The LTM Manager uses the Locus Method to construct an elevation map that indicates
the height of the terrain at each grid point [11]. The elevation map is then processed to estimate the
flatness of the terrain. The Gait Planner determines where to place the foot using the elevation and
footfall-evaluation maps, and geometric constraints of the leg. The planner computes a weighted
sum of the terrain and geometric constraints in an effort to find a spot that will avoid obstacles
while allowing for reasonable progress.

The LRP uses this planned footfall, the current leg position, and the elevation map to plan a
collision-free trajectory for the leg. Using the novel Envelope Trajectory Finding Algorithm, the
planner is able to find paths through 3D space that are nearly optimal in terms of time and energy,
while searching only a 2D grid.

The planned trajectory, consisting of a sequence of way-points, is sent to the Controller, which
interpolates the way-points to get smooth motion in joint space. The Controller executes the
trajectory, monitoring the force sensor in the leg to detect when contact with the terrain occurs.
The Controller exerts enough force to compress the terrain, then relaxes to a force sufficient to
provide traction. The horizontal (shoulder and elbow) joints are then actuated to drive the carriage
forward. Finally, tension built up in the leg as a result of the body move is relieved, so that the leg
does not slip when it is next lifted. TTiis sense-plan-execute cycle is repeated until the commanded
position on the rails is met.

To date, the single-leg integrated walking system has traversed several hundred meters of
rough terrain. The system is able to walk both forwards and backwards: the LTM Manager caches
elevation maps, so in walking backwards the planners can use the maps generated during the
forward walking phase.

The effort has taught us much about legged robots in particular and mobile robot systems in
general. Our experience with the single leg led to some significant changes in the configuration
of the Ambler, especially with regard to compliance. The single leg was too flexible to permit the
type of accurate control needed to negotiate very rough terrain. In addition, we found thai the laser



scanner did not have sufficient resolution and accuracy for our purposes. While this did not prevent
us from successfully walking, it did limit the roughness of the terrains that we could traverse. For
the six-legged Ambler we have procured another scanner that overcomes some of these problems.

The software components proved to be effective for single-leg walking, and seem to be trans-
ferable, with minor modifications, to the six-legged system. In particular, the perception subsystem
and the Task Control Architecture can be ported almost as is. One surprise in the endeavor was
the fine balance between geometric and terrain constraints for gait planning. Much of our effort
in getting the leg to negotiate the obstacle courses was in fine-tuning the weighting function that
combined constraints. Gait and footfall planning for the Ambler are areas of on-going research
and will undoubtably consume much of our effort in getting the Ambler to walk on rough terrain
[29,31].

The level of detail in this report is appropriate for system designers and implementors. Users
and programmers may find the description to be too abstract: users should consult the on-line
manual pages, and programmers should see the on-line documentation in the code and in the
doc directories reserved for documentation. We refer readers interested in the objectives and
organization of the overall project to references [14,15].

The next section describes the setup of the single-leg testbed, including the mechanism, sensors,
obstacle course, and computing environment. Section 3 presents the Task Control Architecture,
addressing both its principles and use in integrating robot systems. The next three sections describe
the real-time control system, the perception system, and the planning software, respectively. Section
7 discusses single-leg walking experiments conducted during 1989, and presents their results. The
report concludes with some general remarks about single-leg walking and system integration.



2 Single-Leg Testbed

The single-leg testbed is comprised of: (1) the mechanism itself (the leg and carriage), (2) sensors,
(3) the control room, including the controller hardware and computing facilities, and (4) the obstacle
course. The leg and carriage are described in Section 2.1 and the various sensors used are detailed
in Section 2.2. The control room facilities are described in Section 2.3, and the obstacle course is
described below.

To provide for a variety of "Mars-like" terrains, we constructed an experimental test pit mea-
suring approximately 1 1 x 6 meters (Figure 1). It is made from steel I-beams clamped together at
the corners. The test pit is filled with more than 40 tons of sand. Terrain features are introduced
by resculpting the surface to form hills and trenches, and by placing objects on the sand. We have
used styrofoam boulders, traffic cones, and large boxes to test the ability of the system to navigate
over and around obstacles.

2.1 Mechanism

A single leg of the Ambler (based on an early design [1]) was built to test several concepts, including
rough-terrain walking and the design of the leg itself, before committing to the fabrication of a
six-legged vehicle.

The horizontal range of the leg is approximately 2.5 meters, and the vertical extension ranges
from approximately 3 to 4.5 meters. This configuration enables the leg to meet its design objectives
of crossing one meter wide ditches and stepping over one meter high obstacles on a 30° slope.

The shoulder and elbow axes contain brushless DC servo motors coupled to the joint axes by
an 80:1 harmonic drive speed reducer and a 3:1 bevel gear. The vertical axis consists of a brushless
DC servo motor connected to a 12:1 speed reducer and a lead screw. A drawback to this design is
the slow speed of the vertical axis, approximately 3.6cm/sec maximum.

Walking requires the foot to rotate 360 degrees with respect to the leg. The foot is coupled to
the leg by a system of bearings which allow this rotation. The force/torque sensor (see Section 2.2)
is attached to the leg above the foot bearings to prevent the problem of cable wrap-up.

An area of continuing study is the design of the ankle. The existing leg uses a rigid ankle
design (Figure 2). Since the normal force exerted on an object is independent of its surface area,
this design allows the foot to dig in on slopes, perhaps getting better traction than if it conformed
to the surface.

The leg is supported by a carriage mechanism that is mounted on a pair of rails. The central
column of the leg is attached to the carriage, allowing the leg to rotate freely. The carriage is
equipped with rollers, which provide for one degree of translational freedom. We desired a support
system that would allow the leg to walk over the ground in a manner sufficiently similar to the
Ambler, so that the knowledge gained from the single-leg test program could be used for the
six-legged machine. Although the Ambler has a full six degrees of freedom, this approximation is
sufficient to allow testing and algorithm production.
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Figure 1: Leg and Obstacle Course



Figure 2: Ankle and Foot



The rails, although constructed of heavy duty steel I-beams, have a considerable amount of
deflection due to their length, the applied loads, and the method by which they are attached to the
building. This deflection is good in that it provides compliance for the system. The deflection
changes as a function of the leg position, however, which makes accurate leg placement and
planning difficult to achieve.

2.2 Sensors

Both imaging and non-imaging sensors are used at the testbed. The imaging sensor is a scanning
laser rangefinder. Its physical characteristics are described below, and its usage in the integrated
system is presented in Section 5. Non-imaging sensors include linear position measuring devices,
force measuring devices, angle encoders, inclinometers, and limit switches. The non-imaging
sensors are managed by the real-time controller (Section 4).

Imaging Sensor

We use a scanning laser rangefinder because it operates more rapidly and reliably than passive
vision techniques (see Section 5). To date, we have been using a scanner manufactured by Erim.
We have recently acquired, and will soon be using, a more accurate scanner manufactured by
Perception. In this section, we summarize the operation of the laser scanners.

Both scanners are optical-wavelength radar systems that transmit laser signals generated by a
laser diode operating in the near-infrared region (Erim 820 nm, Perceptron 810 nm). The devices
modulate the amplitude of the output of the laser diode by varying its drive current. They scan
the signal across the field of view using a nodding mirror and a rotating polygon mirror. The
nodding mirror changes (tilts) the elevation and the polygon mirror changes (pans) the azimuth of
the emitted signal.

The devices digitize two images: a range image, with pixel values proportional to phase
difference, and a reflectance image, with pixel values proportional to reflected energy. To produce
a range measurement, the infrared light is reflected off the target surface, gathered by the receiver
optics, and focused onto a detector (a silicon avalanche photodiode). The scanners filter the optical
signal to pass only the transmitted optical frequency, and filter the electronic detector signal to
pass only the amplitude modulating frequency /AM = C/\AM- An electronic phase detector then
measures the phase difference between the transmitted and received signals, which is proportional
to the transit time, and therefore the range. Since relative phase differences can be determined
only modulo 2TT, the range of a point is determined only to within a range ambiguity interval ramhig

where
c

Although the two scanners follow a common principle of operation, they exhibit significant
differences in implementation and performance.



The Erim acquires data in 64 x 256 pixel images at a rate of 2 frames per second [11, 33].
The scanner digitizes to 8 bits with a range ambiguity interval of approximately 20 meters. This
provides a range resolution of approximately 7.62cm. The measurements cover 80° in the horizontal
direction (azimuth) and 30° in the vertical direction (elevation).

The Perceptron acquires data in 256 x 256 pixel images, also at a rate of 2 frames per second.
The scanner digitizes the range channel to 12 bits with an ambiguity interval of approximately
40 meters, which provides a range resolution of approximately 0.98cm. The scanner digitizes the
reflectance channel to 12 bits. The measurements cover 60° in the horizontal direction (azimuth)
and 60° in the vertical direction (elevation).

Non-Imaging Sensors

The sensors described in this section include linear position measuring devices, force measuring
devices, angle encoders, inclinometers, and limit switches.

We have tried using two different sensors to measure the position of the carriage from a given
reference point. This linear "body position" information is needed by our planning algorithms and
by the perception subsystem to merge elevation maps. The two sensors that have been used are an
optical ranging sensor similar to those used by land surveyors, and a position/velocity transducer
connected to a take-up reel.

The optical ranging sensor is manufactured by Geodimeter. It was chosen because of its
accuracy, ability to output data to an RS-232 line, and its relatively low cost. The device, however,
was not successfully integrated into the system for two reasons. First, the serial line transmission
of data was highly unreliable. Second, the rate at which the data could be queried was slow, about
1-2 Hz. In particular, it is too slow for closed loop positioning control of the carriage.

The position/velocity transducer is a potentiometer attached to a take-up reel. A cable is pulled
from the housing, and the device effectively measures the length of the cable. As the tension on
the cable relaxes, excess cable is drawn back into the housing. The device also incorporates a
self-generating tachometer, which permits better control laws to be implemented (see Section 4).
Analog data is transmitted from the device directly to an A/D card, therefore the reliability of the
device is ensured. Furthermore, since the device is a potentiometer, the output can be read as
quickly as an A/D card can sample it.

Attached to the bottom of each leg is a six-axis force/torque sensor that is used to measure the
forces experienced by the leg as the vehicle moves. The sensor, which is manufactured by JR3
Inc., has the following load limits: 400 pounds force X and Y axes, 800 pounds force Z axis, and
3000 inch-pounds about all three axes. In addition, four to six times the rated load may be applied
to a single axis without damaging the sensor. To achieve the necessary high speed data acquisition
for closed loop control of the vertical actuator, the force/torque information is transmitted to the
controller as an analog signal.

The leg uses two distinct types of angle encoders: incremental encoders and absolute encoders.
The incremental encoders are coupled directly to the motor shafts, and are used by the motion
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control hardware for servo-control of the motors. The signals from the encoders are fed directly to
the motion control cards; the controller software can access the signal values by issuing commands
to the control cards. The incremental encoders have a resolution of 1000 counts per revolution
of the motor, resulting in an accuracy of approximately 5 seconds of arc. Although the accuracy
of the system is high, the inertia of the moving leg prevents the repeatability from being equally
precise.

The absolute encoders, manufactured by Durapot, output an analog signal which varies from
minimum to maximum output value with each complete revolution of the leg. The resolution of
the sensor is about 5 minutes (0.087°). The absolute encoders are used to provide the position of
the leg at system power-up. This is necessary because the incremental encoders attached to the
motor shafts cannot be used to determine the absolute leg position.

Two inclinometers are being used to measure the rotation of the carriage about the worldZ and
Y axes. The inclinometers are attached to the carriage at right angles to one another. The carriage
rotation is needed to help transform the images acquired from the scanning laser rangefinder into
the world reference frame.

Limit switches are installed on the leg to prevent over rotation of the shoulder and elbow joints
as well as over travel of the vertical axis. The limit switches are Hall effect switches, which do
not require physical contact to operate them. They are not very rugged, and several have ceased
functioning for a variety of reasons.

2.3 Control Room and Computing Environment
The control room houses the requisite computer workstations and real-time controller hardware
needed to operate the integrated system (Figure 3). Included are three Sun workstations connected
by Ethernet, a VME cage containing a real-time control system and its associated hardware,
specialized hardware for controlling the laser scanner, and specialized hardware for the leg control.
The signal cables from the leg are routed to the control room by means of a tether. Although each
cable in the tether is single source grounded, eliminating noise from the system has proven quite
difficult. This is primarily due to the fact that a local radio station uses the steam pipes as a ground
plane, thereby causing high-frequency noise to appear on all signal lines and ground.

The real-time controller hardware consists of a Motorola 68020 CPU single board computer
(Motorola MV133XT), an Ethernet controller (Motorola MVME 330-1), an Analog to Digital
(A/D) converter card (Datel 611), two Intel 80186 based motion control cards (Creonics MCC-
VME), and an interface card to connect the Creonics cards to the motor amplifiers. Device drivers
were developed that enable interrupts generated by the Datel and Creonics cards to be properly
handled by the control software.

We have also designed a safety circuit card. This card is connected to numerous signal lines,
such as the limit switches, the motor amplifier fault lines, manual "kill" switches, etc. Should a
hardware error condition occur, the safety circuit is activated, shutting down the motion control
cards and reporting an error to the control software.



Figure 3: Control Room
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The Erim scanning laser rangefinder is interfaced to one of the Sun workstations through
a custom-built buffer board and an Ironies IV-1602 single board computer. A simple program
running on the Ironies board reads images from the scanner and stores them into its onboard dual-
ported memory. To the Sun, the Ironies board appears to be standard memory, so the images can
be accessed via direct memory reads. A Matrox VIP-1024 display board in the Sun workstation is
used to display the images on a Sony monitor.

Code development for the project is done in C under the UNIX operating system. This provides
a level of commonality which enables different modules to commumcate easily and allows common
subroutine libraries to be used by all subsystems. In addition, system wide parameters, such as
the dimensions of the leg, are accessed from a single common directory to ensure project wide
uniformity.

While the code for the real-time controller is written in C5 it uses the vxWorks operating
system. Code development is done on a host Sun workstation, with the code being down-loaded
to the real-time CPUs over the Ethernet. This provides a familiar development environment with
all of the developer's accustomed tools, a high-speed kernel for real-time operation, and the ability
to communicate with the non real-time systems over the Ethernet.
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3 Task Control Architecture

The Task Control Architecture (TCA) is used to integrate the software components of the walking
system: real-time control, perception, and planning. TCA provides a number of useful facilities
for building and operating complex robot systems. In particular, it provides mechanisms to support
message passing between distributed processes, hierarchical planning, plan execution, monitoring,
and exception handling.

A system built using TCA consists of a number of task-specific processes, called modules, and
a general central control module that directs the flow of communication between modules. The
single-leg system consists of six modules plus the central control, which we typically run on three
separate machines (Figure 4). The individual modules will be described in detail in subsequent
sections. This section describes how TCA is used to integrate the pieces.

3.1 Rationale

TCA was designed with two major goals in mind: to provide facilities for integrating software and
hardware components into a complete robotic system, and to provide mechanisms for coordinating
and executing robot tasks [21,26].

To facilitate integration, TCA was designed to support coarse-grained message passing between
arbitrary numbers of modules. The idea was that a message passing protocol would encourage
the development of clean, well-defined interfaces between modules. In practice, this methodology
has been quite successful: by the time the components are ready to be combined, the interfaces
between modules are well worked out and compatible.

Another integration concern is to provide tools to aid in debugging a distributed system. To
this end, the central control module can log all message traffic between modules. This log is
valuable in localizing the cause of bugs, particularly those due to timing interactions between
the distributed, asynchronous modules. Another debugging feature of TCA is that modules can
connect and disconnect from the central control at will. Thus, if one module crashes it can be
debugged and restarted while the others are still running. This has proven to be a great time saver,
since initializing the controller and perception modules is fairly time-consuming.

Besides providing facilities for integrating components, TCA is designed to coordinate and
execute tasks. In effect, TCA is a high-level robot operating system, providing utilities for building
task-specific systems. Capabilities supported include building complex behaviors hierarchically
out of more primitive ones, resource management, concurrent planning, perception and execution,
execution monitoring and error recovery, and handling of multiple, conflicting goals. While not all
of these capabilities are being used in the single-leg system, they are being investigated using an.
indoor mobile robot [20,21].

A prominent aspect of TCA is its use of centralized control. Although decentralized control
has recently been advocated for mobile robots [5], we believe thai centralized control has many
advantages for supporting the above capabilities. First, it can more easily control multiple tasks

12



AMBLER LEG

Controller
Actuator
Commands

Internal Sensing
Queries

Gait
Planner

Leg Recovery
Planner

M

Central
Control

Message |
Routing

^ Table J

Resource

M"ask Trees J \

Gait
Exceptions Human

Local
Terrain Map

Manager

Image Sensing
Manager

ERIM
SCANNER

Figure 4: Modules Used in the Single-Leg Integrated System

13



by synchronizing them, allocating resources, and determining which tasks have priority. Second,
centralized control makes the system more understandable and hence easier to modify. Since there
is a single point through which all communication flows, one can easily monitor and analyze the
communication. Finally, we have not found centralized control, to be a system bottleneck. TCA
can process a message in approximately 80msec, and for a typical walking cycle the central control
module is idle about 97% of the time.

3.2 Description

The Task Control Architecture consists of a general-purpose central control module and utilities
for enabling user-defined modules to send messages to other modules and to the central control.
Messages sent to other modules are typically used for data flow, such as for querying the state of
the environment, or for describing what tasks need to be achieved. Messages sent to the central
module are used for specifying control flow, such as detailing the hierarchical structure of plans,
temporal constraints between actions, and exceptions.

Modules can connect with the central control module in any order, and at any time. In fact,
if a module crashes it can be restarted and reconnected to TCA without bringing down the rest of
the system. When modules connect, they indicate which messages they can handle by registering
with TCA the message name, a handler procedure, and the data format of the message. The data
format is a string that describes a C or lisp data structure. TCA contains routines for parsing fairly
arbitrary data structures, passing them as byte streams over the Ethernet, and re-assembling them
to be passed to a message handler. Thus, all aspects of low-level communication are transparent
to a user module. TCA also contains facilities for displaying arbitrary data structures, used for
logging message traffic.

All messages, even those meant for user-defined modules, are routed through the central control.
A module sends a message name and message data using TCA-defined utility functions, passing
as arguments standard C or lisp data structures [9]. The central control determines which module
can handle the message, and when it is appropriate to forward the message. This gives developers
the flexibility of substituting one module for another (e.g., replacing the real-time controller with
a graphical simulator) without changing the code in other modules.

In TCA, planning and executing a task occurs by having modules said a series of messages to
one another (via the central module). For the single-leg walking system, after all modules have
connected to the central control (Figure 4) and registered their messages and handlers, a message
is sent to the Gait Planner instructing it to begin planning. To plan and execute a complete step
involves sending about 25 messages.

TCA supports several message classes, 'each with a different semantics and different effects.
Query messages are used to obtain information about the external or internal environment. Query
messages are blocking pending the receipt of a reply. The single-leg system uses query messages
to obtain elevation and footfall evaluation maps from the Local Terrain Map Manager, to obtain
images from the Image Sensing Manager, and to obtain leg and body positions from the Controller.
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The goal message class provides a mechanism for hierarchical planning. Each time a goal
message is issued, TCA creates a reference to the message and adds it as a child of the handler
that issued the message. These message references form a hierarchical task tree that TCA uses
to schedule planning and execution of tasks (Figure 5), The task trees can also be examined and
manipulated by other modules, a utility that is useful in handling exceptions.

Command messages are requests for some action to be performed, l ike goal messages, they
are added to the task tree, typically as the leaf nodes of the tree.

In addition to maintaining parent/children relationships between messages, TCA provides
mechanisms for temporally constraining the relationships between nodes in a task tree. Essentially,
the task trees plus the temporal constraints form TCA's representation of plans. For example,
one can specify that a legMove command must be executed before the next hodyMove command
is started, or that a planGait goal cannot be planned until the previous bodyMove command has
finished (see Figure 5). TCA maintains separate constraints for the planning and achievement of
tasks. Thus, one could specify that the robot should go to a sample site and then acquire a sample,
but that it should plan how (and if) it can acquire the sample before planning how to navigate to
the site.

Unlike query messages, goal and command messages are non-blocking. That is, a goal or
command message has not necessarily been handled by the time control returns to the module
issuing the message. Although this asynchronous control is sometimes difficult for implementors
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to get used to, it makes the overall system much more reactive since TCA has control over when
to schedule tasks and when to preempt them. The non-blocking nature of goal and command
messages also makes it easy to do planning in advance of execution: the planning modules merely
send messages that create task trees, and TCA ensures that the tasks will be executed at the
appropriate times [27].

TCA also provides mechanisms for exception handling. Goal and command messages, when
they detect plan-time and execution-time failures, respectively, issue exception messages. The
central control suspends the current task and routes the exception to the appropriate user-defined
handler. There, the exception handler can decide how to recover from the error, for instance, by
killing part of the current task tree, or by adding new nodes to the tree to patch the plan. Currently,
the single-leg system makes only rudimentary use of the TCA exception-handling facilities.

33 Discussion

TCA has proven very useful in building and debugging the single-leg system. First, the message
passing conventions forced us to design and enforce clean interfaces between modules. Second, the
ability to start and stop modules independently meant that the system did not need to be completely
re-initialized in order to debug a single module. Third, the ability to log all message traffic has
proven invaluable in detecting timing problems and interface errors.

In addition, TCA has proven quite useful in controlling and coordinating a complex system.
The exception handling mechanism enables us to build reliability into the system incrementally,
by first specifying the normal behavior of the system, and then adding new modules to handle the
exceptional behaviors. The task tree and temporal constraint mechanisms provide for sophisticated
planning and execution strategies. For example, we have recently extended the walking system
to concurrently execute one step while planning the next step. TCA enables us to switch between
sequential and concurrent mode by changing only a few of the temporal constraints. This has
enabled us to achieve a significant increase in performance with minimal modifications to the
existing system [27].
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4 Real-Time Control
This section describes the software that actually controls the leg and the non-imaging sensors. The
Controller module performs several tasks: (1) it communicates with people via a terminal and the
TCA central control module, (2) it moves the leg and carriage as commanded and reports their
positions as requested, and (3) it handles asynchronous interrupts that are generated by the motion
control cards. In addition, when a motion request is made, the Controller responds (to the terminal
or TCA) whether the command succeeds or fails.

The control software runs on the real-time system under the vxWorks operating system. It
communicates with the rest of the walking system over the Ethernet via TCA. Although to the rest
of the system the Controller appears to be a single module, it is best thought of as four separate,
but tightly coupled tasks running concurrently. In addition to the four main tasks, there are several
others that handle asynchronous interrupts generated by the motion control cards, shut down the
leg in case of an abnormal abort, etc.

4.1 Rationale

The Controller module was designed with three major objectives: speed, reliability, and exten-
sibility. The Controller obviously has to perform at levels capable of closed loop control of the
leg. This involved using both specialized hardware (e.g., the Creonics motion control cards) and a
real-time operating system (vxWorks).

To maintain reliability, the Controller was designed to monitor sensors and the motion control
cards for possible failures (mainly using interrupts and special device drivers). The Controller was
designed to gracefully shut down the leg and inform TCA when errors are detected. Such errors
include passing limit switches, amplifier faults, servo errors, excessive force readings, and "kill"
messages from users. In addition, the control software is written to permit recovery from hardware
errors without restarting the Controller module.

Finally, the Controller was designed to be extensible. The user and TCA interfaces can easily
be modified. New sensors, and interrupt handlers for them, are readily incorporated into the
Controller. All this has made the single-leg testbed a useful experimental tool for conducting our
research.

4.2 Description

The four main tasks that make up the Controller module are the Host Interface Task, the User
Interface Task, the Position Sensing Manager Task* and the Walk Motion Manager Task.

The Host Interface Task (HIF) handles the TCA interface to the rest of the system. This task
registers all of the necessary TCA messages, and awaits incoming requests for the Controller.
When a request is received, the HIF forwards the message to the appropriate task, after adding
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some information for local usage. The messages handled by the Controller through the HIF are the
following:

bodyMove This command causes the carriage to be propelled along the rails until the requested
position is reached. The requested position is given in world (global Cartesian) coordinates,
as determined by the linear position transducer (Section 2.2).

legMove This command moves the leg through a variable number of way-points. In addition,
there is an option to monitor the force/torque sensor during the last way-point, and to stop if
a specified force is reached. This transition mode is used to contact the terrain.

setTransForce This command sets the value, in pounds, of the force to servo to during transition
moves.

bodyPosition This query returns the position and orientation of the carriage in world coordi-
nates. The carriage location is determined using the linear position transducer and the two
inclinometers.

jointLeg Posit ion This query returns the current position of the leg in joint coordinates. It is
determined by reading the leg encoders through the Creonics motion control cards.

cartLegPosition This query returns the current position of the leg in Cartesian coordinates, local
to the frame of the carriage. It is determined by computing the inverse kinematics of the
joint positions.

globalLegPosition This query returns the current position of the leg in world coordinates. It is
determined by adding the body position to the local Cartesian leg position.

readForce This query returns the current force and moments as indicated by the force/torque
sensor.

The User Interface Task (UIF) is analogous to the HIF in that it waits for requests from a
user, then issues the command to the other tasks. The UIF interacts with the user through a
text-based terminal interface. The UIF accepts the same requests as the HIF, as well as numerous
other commands and queries for monitoring the health of the real-time system, changing dynamic
tuning parameters, etc. The user can also issue emergency stop commands through the UIF if a
commanded action is not behaving as expected.

The Position Sensing Manager Task (PSM) is responsible for reporting sensor data (joint angles,
body position, and leg forces). The joint angle can be reported in three ways: as joint angles in
radians, as local Cartesian coordinates in meters, or as global Cartesian coordinates in meters*
Body position is reported as a Cartesian vector giving the displacement from the world origin in
meters and the rotations about the world axes in radians. Since the carriage is confined to move
along the rails, the only meaningful values are the displacement along the Y axis and the rotations
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about the X and Y axes. Forces are returned as a three-vector of forces along the foot Cartesian
axes and a three-vector of the moments about these axes.

The Walk Motion Manager Task (WMM) is responsible for handling all actuator motions.
This task handles leg move and body move commands. The leg is moved through a series of
user-supplied way-points, which are given in joint space. The WMM calculates the amount of time
required for the slowest joint to move between successive way-points and then scales the speeds
of the other joints such that all joints will arrive at each way-point simultaneously. To smooth the
motion, the way-points are linked with constant velocity segments connected together by constant
acceleration segments [7]. The user has the option of specifying whether the last path segment is
made in transition mode. In transition mode, the force/torque sensor is monitored and the motion is
stopped if a specified force is achieved before the way-point is reached. If the way-point is reached
first, an exception is raised to TCA.

To move the body, the force on the leg is first increased to 800 pounds, to compress the
underlying terrain. The force is then relieved to 500 pounds, which is usually sufficient to provide
good traction. The shoulder and elbow joints are then actuated, thereby propelling the carriage.
Although superficially similar, the body move procedure is actually significantly different from the
leg move procedure. First, since the carriage is constrained to move only in a single direction, a
Cartesian control scheme is needed to properly move it. Second, to minimize the possibility of the
leg's breaking free, the motions of the two joints need to be tightly coordinated.

The desired Cartesian velocity of the carriage is calculated using a clipped, linear function of
the error between the present carriage position (as read from the transducer) and the commanded
goal position. This velocity is converted into joint velocities using an inverse Jacobian function.
The joints are commanded to move at a given velocity, not to a given position. Compliance in
the mechanisms causes overshoot of the joints from the positions they would be expected to have
given a rigid kinematic description of the leg. This overshoot takes the form of stored strain energy
and must be relieved before the leg is lifted from the ground, otherwise the foot will drag across
the terrain, possibly hitting an obstacle.

The body move control loop is operated at a frequency of about 60 Hz. This differs sufficiently
from the natural frequency of the mechanism so that resonance does not occur. During the control
loop, the Controller also monitors the forces exerted on the foot, and an emergency stop is issued
if the force rapidly drops off, indicating that the foot may have broken free.

43 Discussion

The major difficulty in controlling the single leg is the compEance in the mechanism. This proved
to be a problem with the body move procedures, and to a lesser extent with specifying leg moves.

For the leg moves, the problem stemmed from our initial assumption that the leg was fairly rigid,
and from the incorporation of that assumption into our kinematic and inverse kinematic procedures.
This caused problems with the planning modules, which planned moves in Cartesian coordinates
(the coordinate space of the terrain elevation maps provided by the perception subsystem) and then
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had to convert to joint space in order to issue leg move commands. • The actual compliance of the
leg meant that it often collided with terrain features.

We partially solved this problem by measuring the deflections in the leg and updating the
kinematic routines using a simple deflection model fit to the data. This improved the accuracy of
the leg moves, as measured in Cartesian space, from about 20cm down to about 5cm.

More troublesome was the body move procedure. Our initial implementation commanded
the position of the horizontal joints to follow a linear trajectory. Due to the compliance of the
mechanism and the friction between the carriage and rails, this procedure proved to be very
inaccurate. We often witnessed errors of more than 40cm over a (commanded) one meter body
move.

The remedy was to use the velocity control procedure described above. With this method, the
error was reduced to less than 5cm. The new body move algorithm was subjected to extensive
testing to gain confidence in its performance. Over 1000 moves were performed with the leg
starting at various X, Y locations relative to the carriage. The resultant data revealed the accuracy
of body moves for each point on a 25cm grid. This data not only confirmed the general accuracy of
the body move procedure, but also provided a "map" for the Gait Planner to indicate the goodness
of footfalls with respect to body advance (see Section 6.2.1).

Fortunately, these compliance-related issues are only an artifact of the single-leg design, and do
not carry over to the full six-legged vehicle. Those legs, based on a different design, are extremely
rigid [3]. Our experience to date with that mechanism indicates that we can do leg and body moves
to within a centimeter of commanded positions. Nevertheless, even with these problems, we have
found the single-leg testbed to have been a valuable tool for testing the component subsystems and
their integration.
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5 Perception

This section describes the perception subsystem that we developed for the Planetary Rover project.
We present the design rationale, describe the major software modules, and discuss future improve-
ments and extensions. Readers interested in a higher level account of the perception subsystem
should consult references [1] and [12].

5.1 Rationale

The purpose of the perception subsystem is to build and maintain representations of the environment.
Without these representations, the Ambler would be "blind,*' and thus could safely negotiate only
the simplest terrain. At a minimum, the perception subsystem must be capable of performing two
tasks: it must acquire information about the environment by sensing, and it must interpret the
sensor signals in terms that are meaningful for different behaviors (e.g., locomotion, navigation,
manipulation).

In designing and implementing the perception subsystem, we have separated these tasks into
two major modules: one that senses the environment with a scanning laser rangefinder, and another
that constructs elevation maps from the rangefinder data. A third module is concerned with
interactively displaying terrain data.

We use a laser scanner, which measures both reflectance and range, because it directly recovers
the environment's three-dimensional structure. Therefore, it supplies 3D data more rapidly and
reliably than passive vision techniques such as binocular stereo and motion.

We use an elevation map as the primary terrain representation because 1) it provides a repre-
sentation that is appropriate for a wide variety of tasks, 2) it is simple to manipulate, 3) it can be
accessed in a simple way (by the boundary of the region of interest), and 4) it can be hierarchical and
so accommodate high-level information as well as high resolution elevation data. An alternative
terrain representation might consist of 3D patches that either are approximations of the measured
surface or are built directly upon the set of data points. Another possibility is to represent only
a higher level description of the terrain, such as a segmentation of the surface. Future work may
explore these alternative representations.

5.2 Description

This section describes the major software modules of the perception subsystem: the Imaging Sensor
Manager (ISM), the Local Terrain Map (LTM) Manager, and the Perception Display Manager
(PDM),
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5.2-1 Imaging Sensor Manager

The ISM operates the system's imaging sensors. The ISM's functions include initialization, status
determination, data acquisition, calibration, and aiming. The ISM has been implemented and
tested for the Erim and Perceptron scanning laser rangefinders (see Section 2.2). These sensors
may be real (i.e., they acquire data in real-time from the physical sensor) or virtual (i.e., they access
previously acquired images from storage). We have found virtual sensors and images to be very
useful for developing and testing code.

The ISM initializes a real sensor by downloading interface code from a host to special-purpose
boards, and initializes a virtual sensor by opening sequences of image files stored on disk. The
ISM tests the status of a sensor by checking that it has been properly initialized.

The calibration procedure identifies the relationship between two reference frames: the body
frame 5, and the scanner frame S (Figure 6). Commands to the Controller module are issued with
reference to £>, while the perception subsystem makes measurements of the terrain with reference
to S. Thus, knowledge of the relationship between these two frames is essential for connecting
perception to action (walking).

The calibration procedure collects data by moving a reflective calibration target attached to
the leg to a number of different poses (positions and orientations). At each pose, it queries the
Controller for the position of the target referred to B9 and acquires a range/reflectance image pair.
After collecting this data, the calibration procedure uses image processing techniques to identify the
target position in the images, and refers it to <S. Then it computes the homogeneous transformation
sTs from the scanner frame to the body frame (Figure 7). For details, see reference [16].

The ISM acquires data by reading from the memory-mapped sensor, and tags the acquired data
with the pose of the sensor at the time of acquisition. Specifically, it computes the homogeneous
transformation referring the locus frame C (which is closely related to S) to the global frame Q:

£rp ^ jCnrr Snn Srrt

where

• cTs is fixed,

• sTs is determined by the calibration procedure, and

• BTg, which represents the pose of the body frame at the time of image acquisition, is
maintained by the Controller:

SJL2 Local Terrain Map Manager

The LTM Manager constructs and maintains a local terrain map (LTM). Modules external to the
perception subsystem can use the terrain map for locomotion guidance, short-range navigation,
and sampling operations. An LTM describes the environment in the immediate vicinity of the

22



frameB
(shoulder joint)

body
(mockup)

frame S
laser scanner)

elbow

calibration
target

Figure 6: Reference Frames Used by the Calibration Procedure

23



Figure 7: Transformation to be Estimated by Calibration Procedure

vehicle, and may extend up to tens of meters on a side. Strictly speaking, however, an LTM is not a
single map, but a collection of maps whose descriptions of the environment may include geometric
characteristics as well as material properties of the terrain.

The LTM Manager has been implemented and tested for the Erim and Perceptron scanners. We
have organized the software into three major submodules: one that builds an LTM, one that merges
LTMs, and one that focuses attention on parts of the LTM that are close to the vehicle.

The LTM Builder constructs an LTM from a single frame of sensor data by transforming the raw
sensor observations into a structured description of the terrain in the local vicinity of the vehicle.
The implementation uses the Locus Method to transform the raw range images into an elevation
map [11, 18]- In addition, the LTM Builder computes the uncertainty of the estimated elevations
[18], analyzes elevation map patches for their potential goodness as footfall locations [6], and
estimates the mean slope over elevation map patches.

The LTM Merger maintains the LTM to reflect the information contained in a sequence of
maps constructed by the LTM Builder. The merging operation is necessary because maps created
from a single frame of data do not, in general, contain enough information about the local terrain
to accomplish even simple tasks. For example, consider the task of planning the trajectory of a
recovering leg. Because the scanner looks forward, the map constructed from a single forward-
looking range image cannot possibly see obstacles either below or behind the vehicle. This
may pose threats to the recovering leg, which must follow a trajectory that avoids collision with
obstacles. Thus, a merging operation is necessary to create an LTM that provides a wider coverage
of the terrain than is possible with a single frame of data.

Conceptually, the implementation of the LTM Merger accepts the following input,

1. the LTM L\ constructed from range images IQJI 4 ,

2. the LTM L!j*\ constructed from range image /*+i,

and generates as output the LTM Lj!+1 by replacing overlapping elevation measurements with the
maximum likelihood estimate of the elevation [18].

The LTM Scroller matches the size of the LTM to the size of available local memory. TMs
is necessary because as the vehicle advances, the merged LTM becomes larger and laiger, but tic
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perception subsystem runs on machines that have a fixed memory size. To accommodate this fixed
memory size, the LTM Scroller maintains a window around the LTM, outside of which LTM values
are paged out, or clipped. Currently, the size of the window is 20 x 20 meters.

The rest of the single-leg system interfaces with the LTM Manager through TCA queries that
request various maps of specified regions (elevation, elevation and uncertainty, footfall evaluation,
and slope maps). A region of interest is specified by giving a map resolution and a set of points that
defines a 2D polygon. The LTM Manager returns a rectangular grid that is big enough to contain
the polygon. Grid cells outside the polygon (or outside the scanner field of view) are labeled
unknown. Cells occluded by other objects are labeled as such, along with the maximum known
elevation of the cell, given the available information. All other grid cells are given real values
corresponding to the value (elevation, uncertainty, etc.) of a representative point within the cell
(our current implementation uses the mid-point of the cell).

The requested maps are computed on demand, but are cached so that future queries that request
the same (or overlapping) regions do not have to recalculate the values. While this is relatively
efficient, we are looking at pre-cbmputing some maps concurrently with the planning and execution
of walking commands.

5.2.3 Perception Display Manager

The PDM displays the maps constructed by the LTM Manager. The user specifies a particular
rectangular region to display and a type of map (or maps). The PDM queries the LTM Manager
for the data and displays them as elevation maps (Figure 8).

Displaying maps is an important function, because graphics display provides information vital
to validating and debugging both perception and planning software. There are a number of reasons
for creating an independent module to manage map display. First, the user interface can be more
flexible, because map display is not coupled temporally with map construction. Thus, the user can
display maps when it is convenient or desirable, not only when they are being constructed. This can
also increase the performance of the overall system, since the LTM Manager can be concurrently
processing maps while the PDM is displaying information needed for debugging. Since graphics
display takes a significant amount of time, the savings are considerable. Another advantage is that
it is easier to extend the graphics interface if it is well modularized. For example, in addition to
merely displaying map data, the PDM has been extended to indicate requested 3D positions on the
map. This has proven useful in debugging the correlations between planned and sensed footfall
locations.

53 Discussion

This section discusses improvements and extensions to the existing perception subsystem that are
needed or desired for use on the six-legged Ambler. By ''improvements*' we mean increasing the
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Figure 8: Display Produced by the Perception Display Manager
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performance of current tasks, and by "extensions" we mean increasing functionality to perform
new tasks.

Improvements

The desired improvements for the ISM are relatively minor. They consist of improving the
readability of the code, and producing more comprehensive documentation.

Most of the improvements desired for the LTM Manager involve processing speed. In particular,
the algorithms for, and implementations of, the Locus Method and uncertainty map computations
must be enhanced. In addition, the LTM Scroller should store clipped LTM values in secondary
memory (e.g., on disk) instead of deleting them.

Processing perception data concurrently with planning and executing of commands has the
potential for significantly increasing the overall performance of the walking system. In one design,
the LTM Manager would have a subtask that would compute elevation maps in regions and at
resolutions that are likely to be subsequently useful to the planners. With the current system, the
decision about what regions to preprocess does not have to be very sophisticated. The LTM Manager
is usually idle enough to compute the complete map in front of the current foot location. Although
nearly continuous walking can be achieved without concurrent perception [27], experience with
the Ambler will indicate the utility of concurrent perception to enhance performance.

Extensions

We plan to extend significantly the functionality of the ISM and LTM Manager, and to include a
new module, the Global Terrain Map (GTM) Manager.

We plan to extend the ISM so that it makes decisions about aiming the sensors (by controlling
panning or tilting mechanisms), and about when to take images. We may implement the ISM so
that it runs on a processor coupled to the real-time system, so that if images are acquired while
the Ambler is moving the scanner pose at the time of image acquisition can be determined more
accurately.

We plan to extend the LTM Manager to identify the displacement of the sensor between images.
In the current implementation, the Controller computes the sensor displacement between images.
For the single-leg testbed, this is satisfactory due to the stability of the sensor platform (the carriage)
and the accuracy of the position/velocity transducer. However, the Ambler may be less stable and
the position and orientation measurements may be less accurate. Therefore, it is desirable for
the perception subsystem to augment the dead-reckoning of the vehicle by identifying the sensor
displacement. To accomplish this, we will implement the LTM Matcher, which will accept the
following input,

1. the LTM L® constructed from a sequence of range images IQJ%, . /*,

2. the most recent range image 4+i»
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3. an estimate of the displacement kfM between viewing stations k and k + 1,

and compute as output the best displacement kTk+i in the least-squares sense. References [10,19]
describe in more detail our proposed approach to matching.

We plan several other extensions to the LTM Manager:

• To represent discrete objects, such as boulders.

• To represent material properties of terrain as well as geometric properties. In particular, we
plan to produce maps that represent ground compliance, coefficients of static surface friction,
and object density.

• To analyze the traversability of elevation map patches on the basis of the estimated roughness
of the surface [13].

The GTM Manager will manage the construction and maintenance of a global terrain map
(GTM). A GTM differs from an LTM in scope of information and in scale, extending hundreds
or thousands of meters on a side. The GTM is to be used for long-range navigation and route
planning. It can be constructed by piecing together a number of LTMs [10, 19], or by utilizing
information not acquired by the Ambler (for example, telemetry from Earth or an orbiting satellite).
Important issues include managing large amounts of data, multiple sources of data (including off-
board sources), and multiple resolution data (e.g., low resolution satellite data and high resolution
scanner data).
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6 Planning

As described previously, the single leg walks by moving the leg, planting it firmly on the ground,
and then pulling the carriage along using the horizontal actuators.- This sequence is continued until
the carriage reaches a given goal position along the rails.

The planning problems (for both single-leg and six-leg walking) include deciding where to
plant the leg, how to move it through three-dimensional space to that spot, and how far to move
the body at each step. Our approach utilizes features of the robot's design to plan movements that
are time and power efficient, while at the same time maintaining the stability and integrity of the
mechanism. This combination of using design constraints to choose efficient and reliable moves,
while trying to maximize progress, has led to a planning system that performs well in rough terrain.

6.1 Rationale

One guiding factor in developing the single-leg planning was that the results should be applicable
to the Ambler. To this end, some of the algorithms are more complex than are justified by the
problem of moving the single leg, but we are gaining insights (and code) that we believe will
transfer to the complete walker.

Other factors influencing the planning algorithms were related to constraints imposed on an
autonomous planetary explorer. In particular, a planetary explorer would need to be both power
efficient and reliable, while trying to maintain good progress towards its goals. For example, [24]
estimates that a complete rover would operate on 500 watts. To this end, the planning modules
attempt to find leg movements that minimize both the power usage of the mechanism and the time
spent in movement

Above all, a planetary explorer needs to ensure its own survival. It needs to avoid movements
that could result in damage to the machine, such as excessive force being applied to a leg, crashing
into terrain features, and (in the case of six legs) crashing into other legs and tipover. The planning
algorithms developed are sensitive to the applicable geometric and terrain constraints of the rover,
attempting to maximize forward progress while choosing footfalls that are conservative with respect
to the constraints.

6*2 Description

The planning subsystem consists of two modules: the Gait Planner chooses footfall locations and
body advances, and the Leg Recovery Planner chooses trajectories from the current leg position to
the planned footfall location.
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621 Gait Planner

The Gait Planner plans footfalls by combining various geometric and terrain constraints for each
possible footfall location. The constraints are computed on a 10cm grid for all points reachable
by the leg (actually, the reachable space forward of the carriage). For each constraint, a cost map
is created that indicates the goodness of the constraint within each grid cell. The cost maps are
combined into a composite map using a weighted sum, and the grid cell with the lowest cost is
chosen as the footfall location. The Gait Planner then chooses a body move that is the minimum of
1) the best possible advance from the chosen location, and 2) a user-defined threshold (we typically
constrain the body advance to 1.5m to g&t a reasonable number of footfalls over the length of oar
llm obstacle course).

Advantages of this constraint-based approach are that 1) the planner does not have to commit
a priori to which constraint is most important, 2) and it is easy to add new constraints as relevant
ones are identified [28]. Although this approach evaluates a large number of grid cells, in practice
the gait planning is fast relative to other computations.



Relevant constraints used by the Gait Planner were derived from both analysis and experimental
evidence. They include (Figure 9):

Footfall Relatively flat terrain is preferable both for stability and for providing traction in moving
the body. The LTM Manager computes a statistic that indicates the flatness of the terrain
around the foot (see Section 5). To account for the limited resolution of the scanner and
inaccuracies in the mechanism control, the Gait Planner also produces a filtered footfall cost
map. This map indicates the maximum footfall value in some neighborhood of the grid cell,
weighted inversely by the distance from the cell. The filtered footfall cost map has the effect
of steering the vehicle away from locations that are adjacent to obstacles.

Body Advance The body advance cost map indicates how far the carriage can travel from a given
footfall location until the leg is extended to its maximum. Originally, this map was computed
using the kinematics of the leg, but this proved to be too optimistic, given the compliance in
the leg and the friction in the overhead rails. The body advance cost map is now based on
empirical values derived from our testing program of the Controller's body move procedure
(Section A2\

Scanner Visibility The leg should not be in the field of view of the laser scanner, since it can
occlude large areas of the terrain. The visibility cost map indicates whether the horizontal
links intersect the scanner field of view after the body move is done, assuming that the body
moves by its maximum from each leg position. Currently, the cost map is just binary (in view
or not), but we intend to extend it to compute the percentage of the field of view obstructed.

Leg Reachability An area might contain good footfalls, but not be acceptable if it is unreachable:
either beyond the mechanical limits of the leg, or surrounded by very high obstacles (including
other legs, for the six-leg case). The Leg Recovery Planner calculates a binary reachability
map that takes feasible leg movements into account.

Terrain Elevation Simply, the leg cannot reach areas that are too high or too low (because the
body height is fixed).

Other constraints that we have identified as relevant, but not yet incorporated into the Gait
Planner are the average slope of the terrain (useful for determining the traction available for body
moves), and the lateral forces exerted on the foot during body moves. These can combine with
previous studies made on the pullout forces of the leg at various slopes [23] to gain a more accurate
picture of the reliability of potential footfalls. The forces also give an indication of the efficiency
of the body moves, enabling us to plan power-efficient moves.

In combining the above cost maps, the footfall and filtered footfall maps are given high weights,
and the scanner viability and body advance maps axe given lower and approximately equal weights*
The leg reachability and terrain maps are used as binary constraints: if the location is not reachable,
it is eliminated from consideration, regardless of the other values.
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6*2.2 Leg Recovery Planner

While the Gait Planner decides where to put the foot, it is the responsibility of the Leg Recovery
Planner (LRP) to determine the trajectory that will get the leg to that position without hitting any
obstacles.

The LRP uses a novel algorithm that finds time and power efficient moves through three-
dimensional space, while searching only a 2D grid, thus increasing the planning efficiency con-
siderably. The planner starts by creating a configuration search space for the elbow and shoulder
joints [22]. It divides the space into a discrete grid approximately 0.1 radian wide, and fills the grid
with obstacles by growing terrain features and other legs (for the six leg case) by the radius of the
foot plus an uncertainty factor.

The LRP searches this space using the Envelope Trajectory Finding Algorithm (ETFA) to find
the least-cost path to the goal location. The ETFA may choose to move the leg either over or
around an obstacle (or some of both), depending on the overall cost (a weighted sum of power
and time). Estimating power usage is fairly simple: the power needed to reach a grid cell from
an adjacent cell is the sum of the power needed to move the elbow and shoulder joints to the
cell, plus the power needed to raise the leg above the elevation associated with that cell. This, of
course, assumes that the power consumption in each joint is independent of the others, which is a
reasonable approximation given the slow speeds of our machine.

It is more difficult to estimate the time needed to get to a cell. To see this, consider the case
in Figure 10a, If we add up the times to get to each individual cell, path A is the quickest way to
get to point X. To get to point 7, however, path B is actually better, since in path A the horizontal
joints must stop and wait for the vertical lift, while in path B the leg is lifting while it is moving
horizontally.

In essence, we need to keep track of all possible paths that the leg can take in reaching a
particular grid cell. This is the "envelope" part of the ETFA- The algorithm keeps trade of the
maximum and minimum heights that the leg can reach in any particular cell, assuming that the leg
lifts/lowers at full speed while moving horizontally (Figure 10b). Thus, the leg can reach anywhere
within the envelope in the same amount of time. Only if the terrain is above the top of the envelope
(e.g., point Z) does the leg have to stop moving horizontally and lift.

The LRP uses the ETFA and A* search to find the minimum cost path (weighting power and
time by a user-specified ratio). At the end of the search, the planner determines an actual trajectory
through the envelope space by choosing vertical moves that minimize the risk to the machine virile
maintaining the optimality of the path found. In particular, this means performing all purely vertical
lifts at the start and delaying all purely vertical lowers until the end of the move (Figure 10c).

63 Discussion

While the Gait Planner and LRP have proven themselves in actually moving the angle
rough terrain, there are several areas for improvement.
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Figure 10: The Envelope Trajectory Finding Algorithm
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First, a difficulty with the constraint-based Gait Planner is in choosing the weights for combining
the cost maps. Our current methodology is empirical: trying the system on a variety of terrains and
tweaking the weights to reflect the results of the experiments. While we have tuned the parameters
to walk over a wide variety of terrain (see Section 7), it is still a matter of guesswork. To make
the process of choosing weights less ad hoc, we are considering the use of adaptive algorithms that
autonomously adjust the constraint weights based on the difference between the planned moves
and actual outcomes.

As with the perception subsystem, substantial increases in performance can be obtained by
taking advantage of the concurrency inherent in the TCA. In particular, moving the leg and
body takes substantially longer than the planning and perception times combined. Thus, nearly
continuous motion can be achieved by planning the next step while executing the current one. We
have recently modified the planners to operate concurrently, and the results are very encouraging
[27]. We achieved an average performance increase of about 30%, with only minor modifications
to the existing code.

Exception handling is another important planning issue that we are beginning to address. TCA
provides mechanisms for detecting and handling plan-time and execution-time failures. Some of
these techniques have already been incorporated into the system. In particular, if the Controller
cannot perform a leg or body move, the current step is terminated and the Gait Planner is re-invoked
to plan from the current position. If a hardware failure is detected, an exception handler kills the
task entirely, bringing the system to a graceful halt.

Several aspects of the LRP are worth noting. First, there is the problem of grid bias in the
search: moves in the shoulder/elbow space must be along grid lines, so the planner either moves
the shoulder alone, the elbow alone, or both the same distance. This often results in plans with
many turns (Figure lla). Executing the resultant path produces undesirable vibrations in the leg
due to the frequent changes in direction. We have addressed this problem by including a factor
in the search evaluation function that adds a time cost for each turn in the path. Essentially, this
turn penalty "encourages" the planner to pursue straight paths (Figure lib), with the degree of
encouragement dependent on the size of the turn penalty (currently we operate with a penalty of
05 seconds per turn).

Another problem with grid bias (which is exacerbated by the turn penalty, in fact) is that it
sometimes leads to non-optimal paths. While the grid forces the shoulder and elbow to move the
same distance each time, often the optimalpath involves moving the joints non-unifoimly. Although
some researchers have used relaxation algorithms to eliminate grid bias [30], the techniques
developed so far are not applicable to 3D paths. In any case, the maximum deviation from optimal
caused by the grid bias is only about 8% [32], and in practice the degradation in performance is
not noticeable.

Finally, it should be pointed out that there are pathological cases (which we have not yet seen in
practice) that could cause the algorithm to choose a sub-optimal path. Currently, we are attempting
to categorize this phenomenon. We believe, however, that the plan-time efficiency of the ETFA
more than outweighs the occasional sub-optimal plans that it may produce.
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7 Experiments

After the single-leg testbed became operational in May 1989, we performed two series of au-
tonomous walking tests. One series took place during the Summer of 1989, the other during the
Autumn. The overall purpose of the experiments was to validate the integrated system under
realistic conditions. This section describes the testing program and some of its results.

7.1 Summer Tests

We performed the Summer walking tests in two stages. For the first stage, we fixed the terrain and
gradually increased the number of software modules. For the second stage, we fixed the number
of software modules and varied the terrain.

Fixed, Level Terrain

For the first stage of testing, we leveled the terrain and did not alter it between runs. We began with
a minimal set of modules (the TCA central control and real-time Controller), and incrementally
added modules, as follows (see also Figure 4).

1. A User Interface module is added. This module enables us to interactively issue legMove
and hodyMove commands to advance the carriage from one end of the testbed to the other.

2. The LTM Manager, ISM, and LRP modules are added. In the User Interface module, in
addition to issuing legMove and bodyMove commands, we also issue queries that exercise
the LTM Manager, ISM, and LRP.

3. We replace the User Interface module with the Gait Planner module, which issues the
appropriate sequence of queries and commands to autonomously move the leg and carriage
the length of the testbed.

By the end of the first stage of testing, the integrated system was able to walk reliably on
level terrain. This is not a dramatic accomplishment, but neither is it trivial. More precisely, the
main challenge in level terrain walking involved the compatibility of the software modules. We
encountered two types of problems during this stage of testing.

The first type of problem involved misunderstandings in interfaces, as illustrated by the fol-
lowing examples. Some of the modules used units of radians to describe angles, others used units
of degrees; this caused conflict between the different modules resulting in untimely tenninaticn.
Some of the modules used underscores in message names, others used hyphens; this caused TCA
to route messages incorrectly. Some of the modules interpreted the roll angle as a rotation abort
the Z-axis, others as a rotation about the X-axis; this caused the elevation maps to rotate. Beacies
trial and error, this type of problem was alleviated by carefully documenting the interfaces and
making all interface data structures globally accessible to all groups.
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The second type of compatibility problem concerned inconsistent software environments. For
example, some modules did not assign values to required environment variables (UNIX shell
variables that users can alter dynamically) or set them incorrectly; this caused programs to termi-
nate abnormally. Similarly, different programmers and users run incompatible window managers
(namely, X and Suntools); this caused difficulties in operating and debugging the system. We found
that documentation and experience in a heterogeneous environment ameliorated this problem.

Varied, Non-Level Terrain

In the second stage of Summer testing, we used the same six modules as above, but walked over
increasingly difficult terrain. Beginning with level ground, we graduated to gently rolling hills,
trenches, a few small obstacles, a dense field of small obstacles, and large obstacles. By the end
of this stage of testing, the integrated system was able to traverse reasonably challenging terrain.
Obstacle Course 1 (Figure 12) is an example of terrain successfully negotiated by the system.

Although the system demonstrated competence, it performed unreliably. In some cases, it could
walk once but not twice over the same terrain. In the unsuccessful cases, the leg collided with and
stepped on obstacles, and the foot pulled out when walking up slopes.

We found that these problems were not easy to solve. For example, it was often difficult
to decide what went wrong when the leg struck an obstacle. The fault could be in any of the
subsystems. The LTM Manager might have computed an inaccurate map, incorrectly determining
the obstacle location. The Gait Planner might have chosen a poor footfall location, or the LRP
might have chosen an erroneous leg trajectory. The Controller may have executed poorly a perfect
plan. Or the fault could be due to a combination of these factors.

After analyzing the results of the experiments, we identified several key areas requiring im-
provement.

1. Body moves were inaccurate: the difference between commanded and achieved propulsion
could be as large as 40 on. We adopted a different body move procedure, and reduced the
error to under 5 cm (see Section 43) .

2. Leg moves were inaccurate: the error in the position of the foot could be as laige as 20 am.
We calibrated the leg and implemented an inverse kinematics function that takes into account
rotations caused by torsional deflections of the rails* This reduced the arror to around 5 an .

3. The Gait Planner chose questionable footfalls at times: it appeared to select locations that
either were uncomfortably close to obstacles or did not permit significant body advances.
We rewrote the Gait Planner module to use a constraint-based approach (Section 62A) and
developed debugging aids, including visual display of cost maps.

4. The foot sometimes slid into obstacles whan lifted. This occurs due to strain in the leg after
body moves. Our solution is to relieve the tension by moving the leg so that the final joint
angles correspond with the expected (i.e., planned) Cartesian position of the leg.
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Figure 12: Diagram of Obstacle Course 1
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7.2 Autumn Tests
In the Autumn of 1989, once the above changes were developed and tested, we repeated the second
stage of Summer experiments on a variety of obstacle courses. Obstacle Course 2 (Figures 13 and
14) is representative of the terrain we successfully negotiated during this round of experiments. As
the figures indicate, these obstacle courses were significantly more complex in terms of the number
and arrangement of obstacles than the ones used in the Summer tests.

Again, we experimented incrementally, starting with the steeplechase arrangement of pylons.
For several weeks, the integrated system succeeded only sporadically in stepping through the
pylons. It would negotiate the terrain once or twice, and fail on the next trial by striking or
stepping on one of the obstacles. After some modifications to the Gait Planner and LRP, the
integrated system walked repeatedly through the pylons. We then made the terrain rougher by
placing obstacles at footfall locations selected during previous trials. The system selected new
footholds, and successfully negotiated each of the new configurations.

Another challenge was Obstacle Course 3 (Figure 15) which differs from Obstacle Course 2
by the large obstacle (the box labeled "Sun") at the beginning of the course. Figure 16 illustrates
an elevation map of Obstacle Course 3 constructed by the LTM Manager. This new obstacle is tall
enough so that the leg can not reach over it. Thus, the LRP must plan a trajectory that skirts the
obstacle.

The integrated system traversed Obstacle Course 3 more than 30 times. During one afternoon,
the system successfully negotiated the obstacle course (with minor variations) seven consecutive
times. While it rarely performed exactly the same footfalls or leg trajectories, it did negotiate the
terrain in a predictable and repeatable manner.

Obstacle Course 4 (Figure 17) is the same as Obstacle Course 3 on the right-hand side of the
testbed (as seen by the scanner), but has a new constellation of obstacles on the left-hand side. The
new obstacles include pylons so closely spaced that there is no room for the foot among them, a
hill of sand, and a trench deep enough so that the leg can not reach the bottom.

The system traversed Obstacle Course 4 by walking forward up one side of the course and then
walking backward down the other side (typically we walked forward on the right-hand side, but in
some experiments we switched directions). The system cannot use the laser scanner to guide itself
in walking backward because the scanner is fixed to point forward. Instead, the system uses the
local terrain map built by the LTM Manager while walking forward. We found walking backwards
to be surprisingly easy: we could usually follow a successful forward traverse by a successful
backward traverse.

A typical time breakdown for traversing Obstacle Course 3 is presented in Figure 18. The
darkly shaded areas of the chart represent times when a module is computing; lightly shaded areas
are times when a module is awaiting a reply from another module. The system takes six steps in
13.5 minutes, while traveling about 8 meters (60on/min). Figure 18 indicates that about 60% of
the time is spent by the Controller in moving the leg and carriage. Conversely the ISM, which
spends only one half second for each of the seven images it acquires, is nearly always idle.
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Figure 14: Photograph of Obstacle Coarse 2
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15: Photograph of Obstacle Course 3
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Figure 17: Photograph of Obstacle Course 4
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To reduce the complexity of the chart, the 71 leg and body position queries handled by the
Controller are not illustrated. In any event, they have negligible effects on the timings, since they
are handled in less than 50msec each. Also not shown is the time spent by the TCA central control
module. This time, which is included in the times presented in Figure 18, account for about 3% of
the total operating time of the integrated system.

Note that the times for the Gait Planner and LRP are somewhat deceiving since they include the
time spent waiting for the LTM Manager to compute requested terrain maps. Exclusive of those
wait times, the Gait Planner averages about 2 seconds per step and the LRP about 12 seconds. Note
also that the first footfall takes significantly longer to plan than subsequent ones. This is mainly
due to the fact that the LTM Manager must calculate the first terrain map from scratch, but for
subsequent steps it can use some of the cached maps to save computation.

As mentioned, we have done some experiments with concurrent planning and execution of
steps, with the aim of achieving nearly continuous walking. The use of concurrency has reduced
the typical traversal time to about 8.75 minutes for six steps, a 35% performance improvement
[27]. At this speed, the mechanism itself is the system bottleneck, except for a one minute period
at the beginning when the first step is being planned.



8 Discussion

8.1 Integration Issues

Knowing that integration could prove difficult, given the number of people and amount of software
involved (over 50,000 lines of C code), we decided early on to try to standardize the integration
effort. In part, this was facilitated by the message-passing conventions of TCA, which forced us to
detail our interfaces. However, there were many interface problems that could not be solved just by
agreeing on data structures. We needed to decide on the semantics of those structures: whether we
would use radians or degrees, body-centered or world-centered coordinates, etc. Although these
issues may seem trivial, they in fact are responsible for much of the difficulty in integrating large
systems.

We adopted several approaches to facilitate the integration effort (some of them, admittedly,
post facto). First, we instituted regular weekly meetings of the principals in each of the component
areas. It was the responsibility of this group to decide on the semantics for all interfaces between
modules. Although the interfaces evolved over the course of the research, the integration group
functioned fairly well as a clearing-house for any changes. In retrospect, relatively few of our
failures were attributable to misunderstood interfaces, and many of the misunderstandings that did
occur were by people who had not been attending the integration meetings.

A second approach to integration was rigorous documentation. In the early part of the project,
efforts were made to record the design decisions for each of the modules. This proved less
than successful, mainly due to the tension between getting the code to work and keeping the
documentation up-to-date. A more successful documentation effort has been to create UNIX
manual pages for each module and for each message in the system. Typically, these describe the
I/O behavior of a module or message. Since the document is relatively short (typically one page),
keeping it current is less difficult In addition to being available on-line, the manual pages are
bound and kept at the testbed control room for reference.

Finally, we have attempted to standardize our software structure. This includes consistent
naming conventions for variables, message names, data types, etc. [8], and consistent directory/sub-
directory structures. Both are efforts to make common code more accessible to developers.
Unfortunately, this change was made rather late in the project, causing a fair amount of added work
during the conversion process, but since then the standardization has worked to our advantage.

One of the practical difficulties was getting all of the experimenters at the testbed at the same
time. There are many reasons for this, including other obligations, and frustration with slow
progress. Pagers supplied to key members of the project proved to be useful in communicating
quickly with absent personnel.
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8̂ 2 Surprises

When the project began, we all had assumptions about what parts would be easy and hard. To a
certain extent, these assumptions were valid, but in addition a number of unforeseen difficulties
arose. In addition to describing the difficulties, this section tries to anticipate how we can overcome
them in the full six-legged walker.

Calibration Probably the most problematic issue was (and continues to be) the calibration of the
leg and scanner frames. In order to get reliable footfalls, if perception finds a clear spot in
the terrain, we want the Controller to put the foot there. Inaccuracies in the calibration may
cause the leg to step on obstacles.

Our current approach is to reference both to a common world frame, and do all our calculations
in that frame. The problem is that due to inaccuracies in the laser scanner and leg mechanism
and due to inaccuracies in our models of how they work, the calibration to the world frame
is never exact. We have spent much effort in calibrating the Erim scanner and in devising
better kinematic models for the leg, but residual errors still exist. For the Ambler, it might be
useful to augment these model-based calibrations with an empirical method that calibrates
the scanner and the legs directly. One promising method would be to find the leg in many
images and use a connectionist approach that essentially builds an inverse kinematics table
I^-

Coordinate Frame The choice here was threefold: we could do our calculations in a body-centered
Cartesian frame, in a body-centered joint space reference frame, or in world coordinates.
Unfortunately, after much thought and discussion, no one clear reference frame seemed
prefei^ble. A Cartesian frame was better for the elevation maps, since they could be easily
scrolled and merged with other images; a joint-centered frame was better for geometrical
planning problems (especially the Leg Recovery Planner).

Finally, a global frame was chosen for most interfaces because of the possibility that the
body could slip along the rails between the time that planning was done and the time thai
execution began. The major exception is the legMove command, which is given in joint
space coordinates. This problem, which will be even more acute in the six-legged case, is
not yet settled. In particular, by choosing a world reference frame we can more easily control
the robot to avoid terrain obstacles, but a body-centered frame has advantages in controlling
the robot as it moves between and around its own legs. Our current thinking is to provide
both modes, and let the planners use the most relevant mode for each individual movement.

Compliance The angle leg has a large amount of compliance, primarily due to its long vertical
axis. This problem manifests itself in the problem of leg calibration, described above, but
it is most problematic in the control of body moves. Our original body move software
amply computed the joint angles necessary to move the body to1 the deared spot, and then
controlled the joints to produce a linear motion. Unfortunately, the compliance of the leg
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often produced position errors as much as half a meter for a commanded one meter move.
While the current software, which servos to the body position, is much more reliable, it will
still occasionally fail to move the body adequately.

The compliance of the system was noted fairly early, and has led to a major redesign of
the six-legged mechanism. While preliminary testing of the Ambler indicates that it is
sufficiently rigid, we believe we have the experience from the single-leg testbed to handle
any residual compliance.

Planning Footfall Locations When the six-legged walker was first proposed, it was suggested
that the range of the machine made terrain considerations secondary to geometry in planning
footfall locations. That is, the planner could choose a small region that was optimal for leg
trajectories and body moves, and then search that area in the elevation map to find the flattest
point. In practice, that strategy has not worked. In particular, the inaccuracies in the leg and
scanner (see above) has led us to the conservative strategy of trying to find at least a 70cm
diameter region in which to put the 30cm foot. This has led to a reversal of our planning
strategy, in which now the terrain considerations are paramount. Although we are uncertain
as to which constraint will dominate in the six-legged case, the constraint-based structure
of the Gait Planner should enable us to experiment with various constraints and weightings
without much alteration to the basic planner.

83 Conclusion

This report describes a successful integration effort that has led to fairly reliable single-leg walking
on rough terrain. The research involved major efforts in the component areas of perception,
real-time control, and planning. In addition, much time and effort was spent in integrating the
components into a complete system, and testing the walking system over a wide range of terrains.

The major impetus for the single-leg walking program was to gain experience for six-legged
walking. To that extent, the project was quite successful. We have gained much insight into con-
trolling the legged mechanism, calibrating the leg and scanner, planning in the face of uncertainties
and conflicting constraints, and coordinating a distributed software system. The task ahead is to
apply our experiences and successes to an integrated system for die six-legged Ambler.
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