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This report describes how a speech application using a speaker-independent contin­
uous speech system is designed and implemented. The topics covered include task 
analysis, language design and interface design. An example of such an application, 
a voice spreadsheet, is described. Evaluation techniques are discussed. 

This research was supported by the Defense Advanced Research Projects Agency (DOD) and 
monitored by the Space and Naval Warfare Systems Command under Contract N00039-85-C-0163, 
ARPA Order No. 5167. 

The views and conclusions contained in this document are those of the author and should not 
be interpreted as representing the official policies, either expressed or implied, of DARPA or the 
U.S. government. 



Keywords : Human-Computer Interaction, Artificial Intelligence Applications, 
Spoken Language Understanding 



Contents 

1 Introduct ion 2 

2 Task Analys i s 3 

3 Language D e s i g n 4 

3.1 The "Wizard" Paradigm 5 

3.2 Protocol Transcription 6 

3.3 Language Analysis and Design 8 

3.4 Parser Design 11 

4 T h e Recogni t ion S y s t e m 11 

5 Interface Des ign 14 

5.1 The Structure of the Interaction Cycle 16 

6 S y s t e m Evaluat ion 18 

6.1 Task Completion Time 19 

6.2 Speech Recognition Performance 21 

7 S u m m a r y 24 

8 Acknowledgements 25 

UNIVERSITY LIBRARIES 
CARNEGIE-MELLON UNIVERSITY 

PITTSBURGH, PENNSYLVANIA 15213 



1 Introduction 

The ability to use speech enhances the quality of human communication, as reflected 
in shorter problem-solving times and in general user satisfaction [1]. Unfortunately, 
these benefits have not yet been realized for human-computer communication, due to 
the inherent limitations of existing speech recognition technology. Recent advances, 
e.g. [6], have made it possible to build "spoken language" systems whose capabilities 
allow for natural interaction with computers. Spoken language systems (SLSs) 
combine a number of desirable properties. Recognition of continuous speech allows 
users to use a natural speech style. Speaker independence allows casual users to 
easily use the system and eliminates training as well as its associated problems 
(such as drift). Large vocabularies make it possible to create habitable languages 
for complex applications. Finally, a natural language processing capability allows 
the user to express him or herself using familiar locutions. 

The availability of such features as speaker-independence and continuous speech 
removes a number of restrictions that formerly limited the use of speech interfaces 
(but for the same reasons simplified the development of such interfaces). Speaker-
independence makes a system accessible to casual users who do not need to commit 
to an enrollment procedure, as do users of speaker-dependent systems. Similarly, 
the ability to process continuous speech removes a major restriction on the user and 
allows relatively natural communication of complex information. 

Removing these restrictions complicates the interface design process. To pre­
serve the naturalness of communication, the designer must make an effort to define 
an expressive system language that allows the user the freedom to use fairly natural 
modes of expression. The system design must also minimize a system's attentional 
requirements, allowing the user to concentrate on the task at hand rather than on 
the operation of the speech system. This latter goal requires the system to handle 
a variety of phenomena related to spontaneous speech, such as pauses in the mid­
dle of an utterance and the intrusion of both environmental and talker-generated 
non-speech sounds. 

Our interest is in understanding the design of spoken language systems for com­
plex problem-solving environments in which the user can take advantage of speech 
to control a variety of applications. To develop an understanding of such environ­
ments, we implemented a voice-operated spreadsheet program and used it to study 
user interaction. The purpose of this report is to describe the techniques we used 
for developing and evaluating this system. We present a rather detailed description 
of each step in the process, as we believe that any implementation of a spoken lan­
guage system meant for working environments requires an approach similar to the 
one we describe. 

Since we were interested in examining a voice interface to basic spreadsheet func­
tions, we chose to work with sc, a UNIX-based spreadsheet originally implemented 
by James Gosling, for which source code was available. Sc is similar in functionality 
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to V I S I C A L C , an early spreadsheet program. To provide speaker-independent and 
continuous speech recognition, we made use of the SPHINX recognition system [6]. 
The resulting system is v s c , or "voice sc". 

2 Task Analysis 

Before designing and building a speech interface, it should be determined how, or 
even if, speech can be used for a particular application. Although speech is clearly 
a desirable input medium, it does not follow that it should be used in all cases. 
Moreover, potential interactions, both positive and negative, between different input 
modalities must be considered during the design process. 

A drawing program offers a good example of an application where the decisions 
on how to use speech are clear-cut. Some components of such a program are clearly 
unsuited for voice control. Due to the nature of the process, producing graphics is 
most efficiently done through direct manipulation, as afforded by a mouse or similar 
device. On the other hand, generating discrete inputs such as mode selection seems 
to be better suited for voice. While a primary argument for introducing voice 
remains the naturalness of speech input, a number of specific benefits can also 
be realized through the introduction of a voice channel. The drawing application 
illustrates two of these. Apart from the use of command keys (which have their 
own problems), conventional mode selection strategies require that the user either 
release the mouse in order to key in mode changes, or move the pointer to a menu 
panel. The availability of a parallel voice channel would eliminate the resulting 
disruption [9]. A related advantage is the ability to generate inputs without having 
to look away from the work area, often a costly operation in terms of time and effort 
[5]. 

In the case of the spreadsheet, we felt that all its functionality could be accessed 
by speech, including both command and function invocation as well as numeric data 
entry. The one exception was the input of arbitrary text information. This latter 
requirement highlights one of the shortcomings of current recognition technology, 
the difficulty of incorporating novel items into the recognition lexicon. The problem 
actually consists of a number of separate problems, some quite difficult: 

• Determining that the user has indeed produced a new word, which requires 
proper delimitation of that word (or words) in a continuously spoken ut­
terance, as well as some method for distinguishing new words from poorly 
recognized instances of known words. 

• Creating a representation suitable for subsequent recognition: In a system like 
ours this requires the derivation of a phonetic transcription for the new word. 
If a whole-word template approach is chosen, this might not be necessary. 
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• Establishing an orthographic version of the word suitable for display. A user 
could simply type in the string corresponding to each new word. It would, 
however, be preferable if the system could infer the proper written form, based 
on the rules of the language, or at least was able to present the user with a 
reasonable approximation that the user could modify to suit. 

• Establishing the syntactic and semantic role of the new word, so that subse­
quent uses of the word can be handled properly. Creating a cell label in a 
spreadsheet is a good example. The system needs not only to recognize the 
new word, but must understand that its occurrence constitutes a reference to 
a cell location or perhaps its contents. 

The system we have built does not allow for active entry of new words into the 
lexicon. In fact, all arbitrary string inputs are handled by keyboard input. 

7 

In our experiments with the system, we sfmulated the ability to define arbitrary 
words by including a vocabulary keyed to the tasks we asked our subjects to perform 
(personal finances). For situations where the area of application is well-defined, a 
suitable vocabulary can be incorporated into the system beforehand and would give 
the user the flexibility to use intuitively preferable modes of expression, i.e., keyed to 
the conceptual categories being worked with (such as meaningful cell labels) rather 
than the abstractions provided by the base system (row and column coordinates). 

3 Language Design 

Once the functionality suitable for speech has been identified, an exact specification 
for a language that invokes this functionality must be developed. A spoken language 
is unique and differs significantly from other classes of language. That this is so 
should be apparent if one considers the difference between expressing something 
verbally and writing it out. Written language affords the opportunity to choose 
expressions carefully and to revise the presentation until i t 's satisfactory. In the 
verbal case, particularly if production is spontaneous, the same presentation will 
be very different. It will make use of a different argument structure, grammatical 
constructs and word choice. The design of a recognition language must therefore 
capture the properties of spoken language. 

The manner in which a user might be disposed to address a computer application 
may differ significantly from the manner in which another human might be addressed 
[4, 7], a process known in linguistics as a change in register. Thus, it may not be 
sufficient to know how people express certain requests to each other, it may actually 
be necessary to understand how they would do so when knowingly addressing a 
computer application. 

A spoken language interface also needs to do more than provide a direct trans-
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lation of existing commands designed for another modality. Thus, one goal in the 
design of keyboard command languages is to minimize the number of keystrokes re­
quired to produce a result. Such a goal may not be relevant for a speech command 
language, where the effort of producing an individual entry is less. In fact, a rea­
sonable goal for spoken commands might be to provide more verbose (and natural) 
command expressions. 

The above observations are, however, complicated by a number of factors. For 
example, the verbosity of inputs may be linked to an individual's level of expertise. 
While the novice user may find it useful to be able to express requests in a voluble 
mode ("Please put twenty five dollars into cell A nine"), an expert might prefer to 
use a terser telegraphic style ("A nine, twenty five"). Depending on the goals of 
the design, the language would need to accommodate one or both of these styles. 
Another source of difficulty is the tendency of users, when speaking, to express 
themselves in terms of goals rather than component actions. It is more natural to 
say "Add the entries in column C ana place the result in A one" than to say "go to 
A one. enter the sum of C four through C twelve plus the sum of C fourteen through 
C eighteen". A natural language component that can handle such abstract forms, 
as well as a reasoning component, needs to be incorporated into an application if 
such requests are to be allowed. The use of such expressions does not necessarily 
reflect a simple tendency to speak "naturally". It might be better thought of as 
indicating the user's desire to avoid the effort needed to specify a detailed action 
sequence. Another practical consideration for the user is not having to remember 
the exact component actions needed to reach some goal. 

The properties of spoken language can also motivate the reorganization of an 
existing interface. For example, in menu-driven interfaces, limited real-estate (and 
other considerations) force the design of complex menu trees, and require a succes­
sion of interactions to produce a result. Spoken commands provide the user with a 
large virtual menu of choices, so that a succession of menu accesses can be replaced 
by a single voice command. If the system has the capability of interpreting requests 
in terms of goal states, then such a "voice menu" can be quite large, since the user 
does not need to remember the details of invocation for each command. 

The proper choice of language for an interface is not obvious from a simple survey 
of an application's functionality. We have found that the most useful approach has 
been to record the language of users while they perform tasks using the system and 
to use this as a basis for developing a spoken language suitable for the application. 
It is critical to observe a sufficient variety of users, since individuals may display 
idiosyncratic behavior that is not representative of a user population as a whole. 

3 . 1 T h e " W i z a r d " P a r a d i g m 

The design of a spoken language system presents somewhat of a chicken-and-egg 
problem. It is not possible to understand how best to design such a language without 
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knowing how people might wish to interact with a particular application. On the 
other hand, it is not possible to observe interaction with such a system without 
having the system already in place. 

The solution to this problem is to build a simulation of the target system and 
to observe users interacting with it. The speech data collected from such a study 
can then be analyzed and a speech language developed. The function of the speech 
recognizer and parser is carried out by a human operator, hidden from the user, 
who is unaware of the operator's intervention. This form of simulation has recently 
come to be called the "Wizard" paradigm. 1 

In our own work, we have used different forms of the Wizard paradigm, from 
fairly elaborate simulations that present the user with a complete illusion of a func­
tioning system (see e.g., [4]) to somewhat informal situations designed to elicit 
speech more characteristic of human-human speech (see [12]). 

To develop a speech language for the spreadsheet program, we conducted a 
series of simulations in which we asked participants to perform several well-specified 
tasks. To see whether the complexity of the task had any influence on language, 
we used two tasks, a financial data entry task and a planning task. In the former, 
people were asked to enter information characteristic of an individual's monthly 
finances into a pre-programmed spreadsheet. In the planning task, people were 
given a filled financial spreadsheet and were asked to perform modifications that 
would satisfy certain furnished constraints (e.g., decreasing expenses by a certain 
total amount) . Interestingly, subjects in both experiments produced very similar 
protocols, invoking the same facilities in both cases. The only difference noted 
was a small increase in "speculative" constructions for the planning task ( "What if 
rent were changed to $500?") that express requests in indirect form. Significantly, 
subjects on the whole used language appropriate to the known functionality of the 
system they were interacting with and did not, by virtue of using speech, expect 
expert-system-like properties of the spreadsheet. 

3 . 2 P r o t o c o l T r a n s c r i p t i o n 

All speech produced during these sessions was recorded on tape and later tran­
scribed. Table 1 shows an excerpt from a transcription. The system of annotation 
chosen provides fairly detailed information about the contents of subjects' utter­
ances. In addition to information about the lexical and syntactic choices made, 
the transcript allows for analyses of pause location, emphasis, and interjection. In­
formation about these phenomena is desirable since all have consequences for the 

J T h e term comes from a character in L. Frank Baum's book for children, "The Wizard of Oz" 
book. The wizard being someone who manipulated a large statue from behind a curtain, leaving 
observers with the impression that they were speaking to the statue itself. The "Wizard of Oz" 
story was also the source for the no longer favored term "pnambic experiment" (for "Pay No 
Attention to the Man Behind the Curtain"), another allusion to the Wizard of Oz.) 
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Table 1: An excerpt from a protocol transcription 

under c a b l e , e n t e r f i f t e e n d o l l a r s even [*] 
oka:y , go t o t h e next s c r e e n [*] 
oka:y unde:r . Movies . . i n t h e en ter ta inment , s e c t i o n , s u b s e c t i o n . 
e n t e r t ¥ e n t y - e i g h t f i f t y [*] 
oka:y . . u:h i n t h e . FOOD s u b s e c t i o n under HOSting [*] 
e n t e r .on the l i n e above t h a t , e n t e r a hundred s e v e n t y - f i v e d o l l a r s [*] 
okay, go down t o t h e oh wai t 
on t h e CLOthing . e n t r y [•] 
e n t e : r . SUM of . e i g h t y - f i v e , e i g h t y - n i n e , twenty - four [*] 
[ c l i c k ] okay 
and, under g a s o l i n e , e n t e r twenty-two f i f t y [•] 
okay . uh . next s c r e e n [*] 

N o t e s : The transcription, in addition to recording the speech produced, attempts to indicate 
additional phenomena of interest, primarily prosody and extraneous events. The [*] mark indicates 
the point in time at which the "system" is responding. A comma ( , ) indicates a boundary mark, 
either a short pause or an inflection. Capitalization (e.g., CLOthing) indicates emphatic stress. 
Items in square brackets (e.g., [ r u s t l e ] ) describe extraneous audible events. 

operation of a speech recognition system. 

Transcription, in the course of spoken language system development, actually 
has two uses. The first is for the initial language analysis being described in this 
section. The second is for evaluation purposes, where the goal is to match the 
output of a recognition system to what was actually spoken. The requirements for 
this second transcription style are more rigid than those for the first and require 
that certain additional distinctions be made, such as between words that are in the 
recognition lexicon and those that are not. The following guidelines were used for 
the evaluation portion of our work: 

1. An event is defined as audible acoustic energy delimited by silences or by other labeled 
events. When two events overlap, preference is given to the lexically meaningful 
element (e.g., word over noise), or to the element attributable to the nominal session 
talker. Otherwise, the most salient event (as judged by the transcriber) is given 
preference. No attempt is made to further code overlapping events. 

2. Transcribe all words. If a particular word is not recognizable, a guess is made, based 
on the transcriber's best understanding of the context of occurrence, both sentential 
and task, in which the word occurs. If a word or phrase cannot be identified with 
reasonable confidence, then the "++MUMBLE+" marker may be used. If a word is 
mispronounced but is nevertheless recognized correctly, it is transcribed as if it were 
spoken correctly. If it is misrecognized, it is transcribed as heard. 

3. Label all other audible events. At the least level of detail, these can be identified 
by a cover symbol ("++NOISE+"). We have found, however, that it is useful to label 
separately those events that occur frequently enough to be of interest in themselves, 
such as breath noises, or perhaps telephone rings. 

4. If the system recognizes an interrupted word correctly, then the word is transcribed 
as if it were spoken in its entirety. This convention is arbitrary and obviously hides 
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information about interrupted words that are nevertheless correctly recognized. It 
may need to be revised as we begin to explicitly study such phenomena. 

5. Utterances that produce no recognizer output are eliminated from the transcript In 
our system, this consisted of zero-length "utterances" that result from malfunctions 
in endpoint detection. A record of these utterances should of course be kept, so that 
relevant statistics can be calculated. 

6. By convention, any utterances at the beginning of the session that reflect the user's 
unawareness that the system just went live are eliminated. This speech consists of 
interactions with the experimenter and typically reflect the user's unawareness that 
the period of instruction has ended. Since the user is not "using" the system, this 
convention is justified. A record of such deletions is kept, however. 

7. Extraneous noises are always transcribed if they affect the recognition. Otherwise, 
noises are transcribed only if, in the opinion of the transcriber, they are sufficiently 
prominent ("loud enough"). Certain noises, in particular inhalations and exhalations 
at the start and end of an utterance, are not typically transcribed. 

The above guidelines could be equally applicable to transcriptions produced at 
the exploratory stage. These guidelines and related issues are discussed in greater 
detail in [13]. 

3 . 3 L a n g u a g e A n a l y s i s a n d D e s i g n 

On first examination, we found the transcripts to contain a wide variety of locutions, 
so wide in fact as to lead one to believe that very little consistency was present. 
Detailed analysis of the corpus, however, revealed that the language used was quite 
consistent and that utterances could be divided into a compact set of categories. 
These are shown in Table 2. Examples of utterances for one of the categories, DATA 
ENTRY, are shown in Table 3. A more detailed discussion of these categories can 
be found in [12]. 

Using the utterance categories as a guide, we can define a manageable language 
for the spreadsheet task. The proper design of a spoken language should not mean 
that every locution encountered in a simulation should be made part of the language. 
Rather, the goal should be to ensure that all major categories are represented. As 
long as the user has available the proper modes of expression, and as long these 
modes are derived from the actual experiences of users, users should be able to 
remain within the syntactic and lexical bounds imposed by the designer. 

Once this analysis is performed, it is possible to define a system lexicon and 
grammar. The lexicon specifies all words that the recognition system must be able 
to recognize. The choice of a lexicon is fairly critical, since it defines the composition 
of the training materials for the recognizer. Since training represents a major time 
and resource investment, it is important that it be done correctly. Grammar is 
somewhat more flexible, since it represents arrangement of lexical units and can 
therefore be modified at any point in the development process. 
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Table 2: Utterance categories in the spreadsheet task. 

D A T A E N T R Y 

N u m e r i c 
A b s o l u t e L o c a t e a n d E n t e r 
R e l a t i v e L o c a t e a n d E n t e r 
S y m b o l i c L o c a t e a n d E n t e r 
S y m b o l i c L o c a t e a n d E n t e r ( n o k e y w o r d ) 
A b s o l u t e L o c a t e a n d E n t e r ( reverse order ) 
R e l a t i v e L o c a t e a n d E n t e r ( reverse order ) 
S y m b o l i c L o c a t e a n d E n t e r ( r e v e r s e o r d e r ) 

M O V E M E N T 

A b s o l u t e s c r e e n m o v e m e n t 
R e l a t i v e s c r e e n m o v e m e n t 
E x p l i c i t s c r e e n m o v e m e n t 
S c r e e n p o s i t i o n i n g 
A b s o l u t e m o v e m e n t 
S y m b o l i c M o v e m e n t 
C o m p o u n d p o s i t i o n 

C O R R E C T I O N 

S i m p l e d e l e t i o n 
K e y w o r d a t h e a d 
M i d - u t t e r a n c e c o r r e c t i o n 
K e y w o r d at e n d 
R e p l a c e m e n t 
I m p l i c i t c o r r e c t i o n 
P r o s o d y 

M I S C E L L A N E O U S C O M M A N D S 

S c r e e n re fresh 
A d d i t i o n o f r o w / c o l u m n 
L a b e l i n g n e w r o w 
S t r i n g f o r m a t t i n g 

A task language has three components: control, task-specific, and generic sub-
grammars. This is useful distinction to maintain, particularly if multiple tasks are 
being implemented. The control component provides access to general system func­
tions, such as undoing a preceding recognition, putting the recognizer into standby 
mode, or quitting the system. The generic component represents language frag­
ments that could be used without modification in a variety of applications. The 
language of numbers is a good example of this. The task-specific language includes 
the non-transportable component of a language, incorporating task-specific lexical 
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Table 3: Examples of entries in the DATA ENTRY category. 

D A T A E N T R Y 

N u m e r i c 
sixty-five hundred dollars 

A b s o l u t e L o c a t e a n d E n t e r 
uh go down to line six and enter four thousand five hundred 

R e l a t i v e L o c a t e a n d E n t e r 
on the next line enter seventy-five ninety-four 

S y m b o l i c L o c a t e a n d E n t e r 
go to the cell for my salary and enter the amount six thousand five hundred 
under credit card enter the amount zero 

S y m b o l i c L o c a t e a n d E n t e r ( n o k e y w o r d ) 
food two seventeen and eighty-five cents plus two hundred forty-six dollars 

A b s o l u t e L o c a t e a n d E n t e r ( reverse order ) 
enter six thousand five hundred in column b row 6 

R e l a t i v e L o c a t e a n d E n t e r ( reverse order ) 
enter seven hundred and forty-eight fifty-seven there 

S y m b o l i c L o c a t e a n d E n t e r ( reverse order ) 
fifteen dollars under bank charges 

Table 4: Excerpt from the spreadsheet BNF grammar. 

<number_type> ::= <numberstr_act> I 
<numberstr_act> <decimal_act> <digitstr_act> I 

<begin_digitstr_act> <decimal_act> <digitstr.act> I 

<decimal_act> <digitstr_act> I 

<begin_digitstr_act> I 

<o> <decimal_act> <digitstr_act> 

items and grammatical forms. 

We have developed utilities that allow us to conveniently specify a language. 
For example, grammar is expressed in the form of a BNF, while lexical entries are 
specified in terms of phonetic pronunciations. Table 4 shows a fragment of the BNF 
grammar for the spreadsheet. Table 5 shows some lexical items. 

To produce a knowledge base for the recognizer requires creating suitable pho-
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netic models. Since we are working with a speaker-independent system, this implies 
the collection of a sufficient amount of recorded speech. Commonly this means en­
suring tha t at least 10-20 exemplars of each lexical item occur in the training set, in 
different contexts, spoken by different talkers. We accomplish this by using the BNF 
grammar to generate a corpus of training utterances that can then be used as scripts 
for recording. Since we have control over the generation process, we can assure (by 
differentially weighing production rules) that sufficient instances of each word occur 
in the corpus. To achieve speaker-independence, we have many different individuals 
read sets of utterances (say, as many as might fit into a 15 minute session). The 
recognition system is then trained using this material. For spreadsheet training, we 
combined several databases, including ones containing calculator sentences, spread­
sheet sentences, and ones specific to financial management (the domain used for the 
evaluation tasks). A total of 4012 utterances was available for training. 

3 . 4 P a r s e r D e s i g n 

The parser in our original system uses a rather simple context-free grammar, im­
plemented primarily by means of the U N I X lex and yacc packages. The parsing 
strategy incorporated into v s c uses a two-stage parsing process to interpret a sin­
gle string produced by the recognition system and to generate suitable spreadsheet 
commands. Figure 1 shows this process. 

The purpose of the first stage is to produce an initial analysis of the input string, 
to determine whether it is syntactically correct and to perform certain forms of pre­
processing, such as the conversion of spoken numbers into their digit equivalent 
(e.g., TWELVE HUNDRED AND THIRTY FOUR into 1234). The purpose of the second 
stage is to complete the parse and to perform the mapping into actual spreadsheet 
system commands. 

Our more recent parser designs have been based on case-frame representations, 
coupled with a finite-state phrase-based recognition grammar. Case-frame parsers 
offer comparable execution speeds, but with more powerful language processing, 
better suited for spoken language. 

4 The Recognition System 

The voice spreadsheet incorporates Hidden Markov Model (HMM) recognition tech­
nology, described more fully in [6]. The units of recognition are words, built from 
triphone models, which are phones taken together with their immediate context 
(preceding and following phones). The use of triphone models allows the represen­
tation to incorporate information about coarticulatory effects, thereby increasing 
recognition accuracy. The language designer specifies each word in the lexicon in 
terms of a pronunciation, as shown in Figure 5. Note that the pronunciation used 
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Figure 1: The parsing process in the voice spreadsheet system. 

Recognition System 

Str ing 

P r e Parser 

Processed Str ing 

Parser / Mapper 

SC C o m m a n d 

Spreadsheet 

Error 
Re tu r n 

is the most common form of the word rather than the (citation) form found in a 
dictionary. Determining the most common form of a word demands some investi­
gation, often made easier by the availability of the wizard experiment recordings. 
However, the effort is well worth it, since conversational forms of a word are often 
different from the citation form. Experience with several recognition systems that 
make use of phonetic representations [6, 2] has shown that using the most common 
pronunciation provides a significant increase in recognition accuracy. 

Phonetic pronunciations can be automatically transformed into triphone forms 
(as in Figure 6), the units actually used for training the recognition system. For a 
task such as v s c , the initial lexicon is defined in terms of 48 phonetic labels. The 
actual number of triphone models trained is 971. Techniques are also available for 
clustering similar models, to reduce the total number of of models needed. Since 
this clustering does not increase accuracy [6], we did not perform it for the current 
system. 

The recognizer makes use of grammatical constraints to reduce search and to 
increase recognition accuracy in the process. These constraints are expressed in 
the form of a word-pair grammar, derived from the BNF grammar. A word-pair 
grammar provides minimal constraint, since it only specifies which words may follow 
the current word, and does not incorporate more global constraints, such as would 
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Table 5: Some phonetic specifications for lexical items. 

BEGIN B IX G IX N 
BONDS B AA N D Z 
BOTTOM B AA DX AX M 
BREAK B R EY KD 
BY B AY 
C S IY 
CABLE K EY B AX L 

Table 6: Triphone expansion of monophone lexical items. 

BEGIN B(SIL,IX) IX(B,G) G(IX,IH) IH(G,N) N(IH,SIL) 
BONDS B(SIL,AA) AA(B,N) N(AA,D) D(N,Z) Z(D,SIL) 
BOTTOM B(SIL,AA) AA(B,DX) DX(AA,AX) AX(DX,M) M(AX,SIL) 
BREAK B(SIL,R) R(B,EY) EY(R,KD) KD(EY,SIL) 
BY B(SIL,AY) AY(B,SIL) 
C S(SIL,IY) IY(S,SIL) 
CABLE K(SIL,EY) EY(K,B) B(EY,AX) AX(B,L) L(AX,SIL) 

be provided by a finite-state grammar. For the v s c task, the typical perplexity of 
the tasks carried out by the user is approximately 52. A finite-state grammar would 
provide much lower perplexity and would make the recognition problem much more 
tractable. Other things being equal, it is desirable to construct languages that have 
low perplexity, since this insures higher recognition accuracy. 2 

An alternate method for increasing recognition accuracy would be to configure 
a speaker-dependent system. Our experience indicates that for a SPHINX-Iike sys­
tem, speaker-dependent training can reduce the utterance error rate by half for the 
spreadsheet task. This level of performance, however, requires about 1500 training 
utterances per talker to achieve. Figure 2 shows the effect on utterance accuracy of 
training a recognizer using different amounts of training data. The da ta are for a 
single user (jyk) from the voice spreadsheet evaluation study described below. Sets 
of 1, 2, 4, 8, and 15 scripts (each containing about 100 utterances) were used for 
training. A separate set of 5 scripts collected a month after the main experiment was 
used as the test set. Between 500 and 700 utterances, depending on how recently 
the speech was collected, are needed to match speaker-independent performance. 

2 Perplexity is defined as the geometric mean of the branching factors in an utterance. Perplexity 
is used as an estimator of the difficulty of recognition for a particular language. The perplexity 
of arbitrary English text is estimated to be about 200; the perplexity of a tightly-constrained task 
language can be as low as 5, a value characteristic of many commercial recognition systems. While 
perplexity gives an indication of how difficult the recognition process might be for a particular 
language, it is only one determinant of difficulty. The confusability of items in the vocabulary, as 
well as its size will also affect recognition difficulty. 
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Figure 2: Speaker-dependent training for the spreadsheet task. 
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5 Interface Design 

The proper design of a speech interface requires attention to a number of factors, 
including attention management, error correction, and interaction control. 

Spoken communication does not have a direct physical focus in the way that 
keyboard entry does. In keyboard interaction, there is little ambiguity about the 
user's intent to communicate—the keyboard is mechanically activated by direct 
contact. There is no such explicit link in the case of speech. When a user speaks, 
the utterance may indeed be directed at the currently active application, but it 
could just as easily have been directed to another human in the environment or 
have been the result of thinking aloud. The problem is that the system does not 
have the concept of attention; it does not know when it should be paying attention 
to a potential input. There are a number of solutions to this problem. 

The simplest is a "push to talk" system, where the user needs to perform some 
explicit mechanical act, such as depressing a button during the duration of the 
utterance or depressing a key just prior to the utterance. These solutions, while 
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dealing the problem at hand, are not satisfying, since they require the user to 
perform an incompatible or even disruptive act in order to signal an input to the 
system. We have experimented with the use of "attention" words that allow the user 
to activate the recognizer via a single keyword, such as LISTEN. If the recognizer 
is in the standby mode, it will not actively process speech until it encounters the 
attention word, subsequent to which it will transmit recognitions to the application. 
If we also provide a keyword for switching off attention, e.g. STANDBY, then the user 
has been given explicit control over the system's "attention" in a manner that is 
consonant with the modality. (We also have found it useful to have the system 
enter the standby mode if the quality of recognition falls below some level, on the 
assumption that the user has redirected his or her attention to another listener in 
the environment). 

A second aspect of attention control has to do with the tendency of intended 
utterances to map imperfectly onto acoustic utterances. An acoustic utterance is 
defined in terms of physical attributes and consists of a continuous region of acoustic 
energy delimited by some silence. Actual complete utterances (a logical utterance), 
as a human might understand them, may consist of one or more acoustic utter­
ances, particularly if the user pauses in the middle of an utterance while mentally 
formulating what he or she will say next. A related phenomenon occurs when the 
user runs together several logical utterances into a single acoustic utterance. If this 
is allowed, then the system gives up a valuable input constraint, somewhat like the 
one exploited by discrete-word recognition systems. A proper solution to the po­
tential lack of a one-to-one correspondence between acoustic and logical utterances 
is beyond the scope of a simple interface design and would require the use of a 
sophisticated parsing algorithm. 

A third component of speech interface design is some provision for error recovery. 
Speech recognition systems will, for the foreseeable future, produce errors. Even 
if perfect recognition is achieved, the user will occasionally utter unintended com­
mands and will need to restore the system to a previous state. We have investigated 
several approaches to the problem of providing error recovery facilities. 

In an early experiment, we compared time-to-completion for a voice spreadsheet 
task using two different forms of confirmation. In one mode, recognized inputs were 
acted upon immediately and the user had to recover from errors by re-entry of 
commands. In a second mode, users had the opportunity to edit an ASCII version 
of the utterance, presented in an editor buffer, before it was acted upon. 

Table 7 shows the times to completion for these two confirmation modes as well 
as a reference time-to-completion for keyboard entry, taken from [11]. There is a 
clear advantage for the explicit confirmation mode. The explicit confirmation mode, 
however, is more awkward to use, since the flow of the interaction is interrupted 
by the requirement for a (keyboard) confirmation. Because of this, and because of 
the desire to implement a "pure" speech system, we chose the implicit confirmation 
model for the system we implemented and therefore did not provide an explicit 
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Table 7 : Comparison of confirmation styles. 
Input Modality Task Completion Time (min) 
keyboard only 
voice and keyboard 
voice only 

1 2 : 3 9 
1 5 : 1 6 
1 9 : 2 1 

mechanism for error recovery. It is our belief that the implementation of error 
recovery should if possible keep the error correction protocol entirely within the 
speech modality. Failing tha t , it should be a multi-modal system that can function 
with minimal interruption in the flow of interaction, since such interruptions involve 
shifts of attention and increase the effort required to interact by speech. 

5.1 T h e S t r u c t u r e o f t h e I n t e r a c t i o n C y c l e 

Figure 3 shows a detailed flow diagram of the v s c interaction loop, showing recog­
nition, parsing, and execution components. 

The system can be in one of two major input modes: Listening and Execution. 
The system does all signal acquisition and recognition in the Listening mode and 
locks out speech input during the Execution phase. The structure of the Listening 
mode is shown in Figure 4 . Immediately upon entry into the input loop, the system 
displays the "Wait . . . " token in the information buffer (line 2 of the spreadsheet 
display) and initializes the signal processing module. This step takes an average 
of about 2 0 0 ms, though conditions will occasionally force a longer delay. Once 
the system is actually listening, the "LISTEN" token appears in the display buffer, 
indicating to the user that speech input is possible. The system waits until the onset 
of speech energy is detected and immediately begins the recognition search. The 
transition to this state is indicated by the appearance of the " R e c o g n i z i n g . . 
token. Termination of the recognition process is signalled by the appearance of the 
recognized string on the screen. Since recognition is not real-time, this change in 
state may occur some noticeable interval after the user has finished talking. Note 
that this protocol provides the user at all times with a clear indication of recognizer 
state. This is particularly desirable, if the temporal uncertainties associated with 
speech processing exceed certain limits. In a pilot study [14 ] , we found that users 
seem to cope well with delays of up to 1 5 0 - 3 0 0 msec. With longer delays (exceeding 
6 0 0 - 8 0 0 msec) users found it easier to pace their interactions by means of these 
external indicators. 

An utterance that successfully passes through the recognition and parsing stages 
will result in a spreadsheet action, indicated to the user by a harmonic beep (FQ 
2 5 0 Hz) of 1 0 0 ms duration. The various failure modes will generate a 1 0 0 ms buzz 
( JF 0 1 0 0 Hz). These two signals are distinctive and give the user initial information 
about the success or failure of the current input. A short pause, of 7 5 0 msec, follows 
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Figure 3: Interaction flow in v s c 
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parser failures, so tha t the user has the opportunity to glance at the display buffer 
and note the nature of the failure. 

We found that the inclusion of such detailed information about system state 
was useful to the user, given the operating characteristics of our system. A sys­
tem functioning without delays and capable of high-accuracy recognition might not 
need to rely on as many state indicators, since successful completion of an indi­
vidual command is highly probable. As a result, the cost of error interception and 
recovery can be amortized over a large number of interactions. Once systems with 
such characteristics are available, a systematic investigation of this issue can be 
undertaken. 
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Figure 4: Detail of the Listening Mode. 
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6 System Evaluation 

To be informative, the evaluation of a spoken language system needs to take into 
account a number of dimensions, some relevant to comparisons with other input 
modalities, others useful for understanding the performance of the speech system 
itself. The potential advantages of speech input resolve to ways that it can improve 
the performance of some complex task. Is the user capable of performing the task 
more rapidly when input is by voice? Are there fewer errors in the completed work? 
Does using a speech interface entail less effort for the user? 

Understanding the performance of a spoken language system requires the ex­
amination of a number of traditional measures, as well as some new ones, inasfar 
as they impact system performance. While word accuracy has been considered 
as a base measure of system performance, in a task situation utterance accuracy 
becomes more impor tant , 3 since it has a direct impact on task throughput—each 
erroneous utterance requires either re-entry of the information or correction followed 
by re-entry. The usability of a system is also affected by the degree to which the 
system language is appropriate for the task and the degree to which it manages to 
encompass the language that the user chooses to bring to the task. 

The following discussion draws on a user study of the spreadsheet system de­
scribed in this report. In this study [10], eight users completed a series of thirty 
spreadsheet tasks, alternating speech and keyboard input. Each task required the 
entry of about 40 items of personal financial information into a predefined work-

3 Word accuracy (w) is related to utterance accuracy (u) by u = wn where n is the average 
utterance length, in words. Systems for which interactions are limited to single words or short 
utterances are reasonably characterized by word accuracy. Systems that are characterized by long 
input sentences will exhibit much poorer utterance accuracy. The presence of extraneous sounds, 
as observed for the spreadsheet system, can significantly degrade system response, in comparison 
to evaluations performed on "clean" speech. 
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Figure 5: Task completion time. 
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sheet. Items could be numbers or expressions. The v s c program was instrumented 
to allow collection of timing and recognition data. 

6 .1 T a s k C o m p l e t i o n T i m e 

The effectiveness of a spoken language system as an interface can be evaluated 
by comparing the time it takes a user to carry out a set of standard tasks by 
voice with the time it takes to complete the same task using some other input 
modality, keyboard in our case. Figure 5, taken from [10], shows total task times 
for spreadsheet tasks performed by voice and by keyboard. Overall, these tasks take 
longer to carry out by voice. These data, however, confound a number of variables, 
in particular the performance of the speech system itself, with the effectiveness of 
spoken input. 

Two aspects of recognition system performance were poorer than desired: sys­
tem recognition time, and recognition error. Due to the nature of our hardware 
implementation, average system response was on the order of 1.9 times real-time, 
the excess over real-time being attributable to speed limitations in the search com­
ponent of the system (additional delays were introduced by the requirement tha t 
the end of utterance be delimited by approximately a 200 ms silence, and by a 
potential pipeline delay in the signal processing component of over 400 ms; inter-
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Figure 6: Distribution of system response delays. 
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mittent delays were also introduced by network communication software). While 
engineering solutions exist for many of these delays, they could not be avoided in 
our experimental system. Figure 6 shows the distribution of delays for a typical 
session. Most delays fall into the range of 400-600 ms, though some individual 
delays are quite long. Some understanding of such delay distributions can be of 
use in evaluating the usefulness of a speech system, particularly for applications 
that require a fairly tight interaction loop, as is the case for a spreadsheet. Users of 
systems that are characterized by a less coupled interaction style (database retrieval 
may be an instance) may tolerate significant delays in response [3]. 

The system under evaluation also exhibited a less than desirable error-rate, on 
the order of 25%, meaning that one out of every four utterances spoken by the user 
was misrecognized and required reentry or correction. This level of performance 
is not acceptable for a production system. We believe that for a task such as the 
spreadsheet, utterance accuracy rates of at least 90% are essential for usability and 
rates better than 95% are highly desirable. 

We can estimate the impact of real-time performance and high-accuracy recog­
nition by subtracting the time lost to non-real-time response and error recovery 
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from the voice task time-to-completion. If we do so, we find that the voice-operated 
spreadsheet can allow for more rapid work than keyboard input, indicating that on 
the simple criterion of time-to-completion, a voice-operated spreadsheet would rep­
resent a real improvement over keyboard input. The dotted lines in Figure 5 show 
the recalculated values. In the present case, we estimate that a system capable of 
operating in real-time and providing at least 85% utterance accuracy would produce 
equivalent times-to-completion for voice and keyboard. Whether this is actually the 
case, of course, would require implementing and evaluating such a system. 

The potential advantage of voice input is supported by an analysis of action 
times calculated separately for movement and entry instructions. In both cases, 
commands are entered more rapidly by voice. The median action time (including 
preparation and entry times) for numeric and formula entry is, for voice 1906 msec, 
and for keyboard, 3301 msec. The total time for movements (including all delays) is 
200.4 sec for voice and 202.6 sec for keyboard. The reason that total task completion 
times are excessive is the consequence of recognition errors and the resulting loss of 
time taken by reentry and correction. 

In addition to examining the consequences for task performance, we also need 
to evaluate how well the recognition system performs. 

6 .2 S p e e c h R e c o g n i t i o n P e r f o r m a n c e 

To analyze recognizer performance we captured and stored each utterance spoken, as 
well as the corresponding recognition string produced by the system. All utterances 
were listened to and an exact lexical transcription produced. The transcription con­
ventions are described more fully in [13], but suffice it to note that in addition to 
task-relevant speech, we coded a variety of spontaneous speech phenomena, includ­
ing speech and non-speech interjections, as well as interrupted words and similar 
phenomena. 

The analyses reported here are based on a total of 12507 recorded and tran­
scribed utterances, comprising 43901 tokens. We can use these data to answer a 
variety of questions about speech produced in a complex problem-solving environ­
ment. Recognition performance data are presented in Figure 7. The values plotted 
represent the error rate averaged across all eight subjects. 

The top line in Figure 7, taken from [10] shows exact utterance accuracy, calcu­
lated over all utterances in the corpus, including system firings for extraneous noise 
and abandoned (i.e., user interrupted) utterances. It does not include begin-end 
detector failures (which produce a zero-length utterance), of which there were on 
the average 10% per session. Exact accuracy corresponds to utterance accuracy as 
conventionally reported for speech recognition systems using the NBS scoring algo­
rithm [8]. The general trend of recognition performance over time is improvement, 
though the improvement appears to be fairly gradual. The improvement indicates 
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Figure 7: Mean utterance accuracy across tasks. 
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tha t users are sufficiently aware of what might improve system performance to mod­
ify their behavior accordingly. On the other hand, the amount of control they have 
over it appears to be very limited. 

The next line down shows semant ic accuracy, calculated by determining, for 
each utterance, no matter what its content, whether the correct action was taken 
by the system 4 . Semantic accuracy, relative to exact accuracy, represents the added 
performance tha t can be realized by the parsing and understanding components of 
a spoken language system. In the present case, the added performance results from 
the "silent" influence of the word-pair grammar which is part of the recognizer. 
Thus, grammatical constraints are enforced not through, say, explicit identification 
and reanalysis of out-of-language utterances, but implicitly, through the word-pair 
grammar. The spread between semantic and exact accuracy defines the contribution 
of higher-level process and is a parameter that can be used to track the performance 
of "higher-level" components of a spoken language system. 

4 For example, the user might say "LET'S GO DOVM FIVE", which lies outside the system lan­
guage. Nevertheless, because of grammatical constraints, the system might force this utterance 
into "DOWN FIVE", which happens to be grammatically acceptable and which also happens to carry 
out the desired action. From the task point of view, this recognition is correct; from the recognition 
point of view it is, of course, wrong. 
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The line at the bottom of the graph shows grammat ica l i ty error. Grammati­
ca l ly is determined by first eliminating all non-speech events from the transcribed 
corpus then passing these filtered utterances through the parsing component of 
the spreadsheet system. Grammaticality provides a dynamic measure of the cover­
age provided by the system task language (on the assumption tha t the user's task 
language evolves with experience) and is one indicator of whether the language is 
sufficient for carrying out the task in question. 

Grammaticality can be used to track a number of system attributes. For exam­
ple, its value over the period that covers the user's initial experience with a system 
indicate the degree to which the implemented language covers utterances produced 
by the inexperienced user and provides one measure of how successfully the system 
designers have anticipated the speech language that users intuitively select for the 
task. Examined over time, the grammaticality function indicates the speed with 
which users modify their speech language for the task to reflect the constraints 
imposed by the implementation and how well they manage to stay within it. Mea­
surement of grammaticality after some time away from the system indicates how 
well the task language can be retained and is an indication of its appropriateness for 
the task. We believe that grammaticality is an important component of a compos­
ite metric for the language habitability of a spoken language system (SLS) and can 
provide a meaningful basis for comparing different SLS interfaces to a particular 
application 5 . 

Examining the curves for the present system we find, unsurprisingly, that v s c 
is rather primitive in its ability to compensate for poor recognition performance, 
as evidenced by how close the semantic accuracy curve is to the exact accuracy 
curve. On the other hand, it appears to cover user language quite well, with only 
an average of 2.9% grammaticality error 6 . In all likelihood, this indicates that users 
found it quite easy to stay within the confines of the task, which in turn may not 
be surprising given its simplicity. 

When a spoken language system is exposed to speech generated in a natural 
setting a variety of acoustic events appear that contribute to performance degrada­
tion. Spontaneous speech events can be placed into one of three categories: lexical, 
extra-lexical , and non-lexical, depending on whether the item is part of the sys­
tem lexicon, a recognizable word that is not part of the lexicon, or some other 
event, such as a breath noise. These categories, as well as the procedure for their 
transcription, are described in greater detail in [13]. Table 8 lists the most common 
non-lexical events encountered in our corpus. The number of events is given, as 
well as their incidence in terms of words in the corpus. Given the nature of the 
task, it is not surprising to find, for example, that a large number of paper rustles 

5 System habitability, on the other hand, has to be based on a combination of language hab­
itability, robustness with respect to spontaneous speech phenomena, and system responsiveness. 

6 Bear in mind that this percentage includes intentional agrammaticality with respect to the 
task, such as expressions of annoyance or interaction with other humans. 
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Table 8: Incidence of (some) non-lexical spontaneous speech tokens. 

585 ++RUSTLE+ 4 
206 ++BREATH+ 4 
43 ++HUMBLE+ 4 
18 ++SNIFF+ 4 
13 ++BACKGR0UND-N0ISE+ 4 
11 ++M0UTH-N0ISE+ 2 
10 ++C0UGH+ 1 
6 ++YAWN+ 1 
5 ++GIGGLE+ 1 

N o t e : The first column given the percentage an< 

for the given non-lexical token. There are 43,901 

••PH0NE-RING+ 
•+N0ISE+ 
++D00R-SLAM+ 
++CLEARING-THROAT+ 
••BACKGROUND-VOICES* 
++SNEEZE+ 
++SIGH+ 
++PING+ 
•+BACKGR0UND-LAUGH+ 

[ the second column the actual number of tokens 

tokens in the corpus. 

intrudes into the speech stream. Non-lexical events were transcribed in 893 of the 
12507 utterances used for this analysis (7.14% of all utterances). 

The i l l-formed curve in Figure 7 shows the proportion of transcribed utterances 
that contain extraneous material (such as the items in Table 8). This function was 
generated by calculating grammaticality with both non-lexical and extra-lexical 
tokens included in the transcription. As is apparent, the incidence of extraneous 
events steadily decreases over sessions. Users apparently realize the harmful effects 
of such events and work to eliminate them (conversely, the user does not appear 
to have absolute control over such events, otherwise the decrease would have been 
much steeper). 

While existing statistical modeling techniques can be used to deal with the most 
common events (such as paper rustles) in a satisfactory manner, as shown by [15], 
more general techniques will need to be developed to account for low-frequency 
or otherwise unexpected events. A spoken language system should be capable of 
accurately identifying novel events and dispose of them in appropriate ways. 

7 Summary 

We have described in detail the design and evaluation of a spoken language system 
whose operating characteristics approach the minimal requirements for a natural 
and easy to use system, incorporating speaker independence and continuous speech 
capabilities. 

The design process is time-consuming and requires careful attention to the de­
velopment of a speech language and the training of of the speech recognition com­
ponent. The design of the speech interface must take into account characteristics 
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of the speech device, such as delay and recognition error, that may make it difficult 
for a user to work with. 

An informative evaluation of a spoken language system must provide information 
about the system's performance as an interface in comparison with other modalities, 
as well as a detailed characterization of its characteristics as a recognition system. 
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