
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Description of Acoustic Variations 
by Hidden Markov Models with Tree Structure 

Satoru Hayamizu a , Kai-Fu Lee 
Hsiao-Wuen Hon 

March 1990 
CMU-CS-90-116 2 

aVisiting Scholar from Electrotechnical Laboratory, Tsukuba Science City, 
305 Japan. 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

A b s t r a c t 

This paper provides a description of the acoustic variations of speech and its application to a 
speech recognition system using hidden Markov models. There are many sources of variabilities 
that affect the realization of a phoneme: phonetic contexts, speakers, stress, speaking rates and 
so on. Explicit modeling with these sources of variabilities will give more accurate and more 
detailed phone models, but even with a large amount of speech data, it is necessary to put some 
structure to the description for robustness. Tree-based HMMs are discussed as one of such 
structures. Three case studies are presented : HMMs with large VQ codebook sizes, decision 
tree clustering and speaker-clustering. They are tested on speaker-independent continuous 
speech recognition experiments with a 1,000 word vocabulary. Trainability and generalizability 
are discussed based on the experimental results. 
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1 Introduction 
The purpose of this paper is to study description of acoustic variations using HMMs with tree 
structure and to test it in speaker independent continuous speech recognition experiments. 

There are many sources of variabilities in the acoustic realization of speech, such as, pho­
netic contexts, speakers, stress, speaking rates and so on. One way to solve these problems 
is to model these acoustic variations as accurately as possible. And it will provide a more 
accurate and more detailed description of those variations. Context-dependent phone modeling 
is one example of this approach. Researchers have found that it produces very good results 
[Schwartz 85],[Hayamizu 88],[Lee 89a],[Bahl 89a] and clustering of context-dependent phones is 
successfully used to find good compromise between generability and trainability. 

An allophone, which is more general than a context-dependent phone, can be defined as a 
phone in a particular environment. Variations for context, speaker, stress, speaking rate, etc. 
can be modeled as an acoustic realization in the environment [Sagayama 89], [Hayamizu 89],[Lee 
90]. However, the combination of all the sources of variabilities as the environments requires 
astronomical amount of speech database to be able to train all the allophones sufficiently. As 
more sources of variabilities are taken into account, more elaborate learning is needed. 

There are some hierarchies from well trained but less accurate HMMs to less trained but 
more accurate ones. Three case studies of the hierarchies are discussed in the following sections. 
First, HMMs with different VQ codebook sizes have one example of such a hierarchy. Second, 
there is a similar hierarchy of HMMs in the context-independent and context-dependent phones 
and decision tree clustering will provide a tree structure for bet ter smoothing and prediction. 
And third, there is another hierarchy in the speaker-independent and speaker-dependent phones. 
To put a tree strucutre in the hierarchy will give better learning and smoothing. In each case, 
a tree structure in those hierarchies seems to give us a better description of acoustic variations. 

In Section 2, general framework of description of acoustic variations and smoothing of 
HMMs with tree structure are discussed. In the next three sections, three case studies of this 
framework are described. Finally, conclusions are given in Section 6. 

2 Description of Acoustic Variations 

2.1 General Framework 
This section provides a general framework of description of acoustic variations in speech. 

Acoustic variations in speech are very complicated. One way to solve these problems is to 
find some invariant features from acoustic characteristics. The other way, on the contrary, is 
to describe those acoustic variations as accurately as possible. In general, an allophone can be 
defined as a phone in a particular environment [Sagayama 89], [Hayamizu 89], [Lee 90a]. The 
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sources of variabilities which give influence on acoustic characteristics are normally phonetic 
contexts, speakers, stress, speaking rates, etc. 

Lets's define our symbols as: 

P = {p} : a set of phones, 

E = {e} : a set of environments, 

X = {x} : models of acoustic realization. 

For the moment, we will consider two sources of variabilities, contexts and speakers to simplify 
the explanation. For example, a phone jpj in the context of /P1PP2/ of speaker s is written as 
a phone in an environment of e = ( /P1PP2/, «s). 

Description of acoustic variations is to find a mapping Fp from a set of environments E to 
models of acoustic realization X for each phone p, 

Fp : E X 

Note that contexts and speakers are categorical variables. They take values in a finite set and 
do not have any natural ordering (even the number of speakers in the world is not infinite, 
anyway). The most general phone model is a speaker-independent and context-independent 
one. The most specific phone model is a speaker-dependent and context-dependent one. 

If we have enough speech database to train all the speaker-dependent and context-dependent 
phone models, we could have a much more accurate and detailed description of acoustic varia­
tions. But it requires a very large amount of speech data to sufficiently train all the phones in 
different environments. 

Researchers have found clustering plays an important role to solve the trainability problem 
of context-dependent phones and it has led to very good results [Schwartz 85], [Hayamizu 88], 
[Lee 89a], [Bahl 89a]. This clustering can be written as splitting a set of environments E into 
the sub-sets Ei,E2,...jEn so as to optimize some criterion. Where: 

E = Ex U E2 U E3 U ... U En9 E{ C E, E{ n E, = 4> 

Taking E as the triphones, E{ becomes the generalized triphones. There is a hierarchy 
which descends from well trained but less accurate context-independent phones to less trained 
but more accurate generalized triphones. The clustering technique gives a good compromise of 
generability and trainability. 

In view of this success with clustering technique, a natural question might be "what about 
putt ing a more general struture in description ?" We will see other types of hierarchy and tree 
structures in the next three sections. In common, the hierarchy is utilized in two ways. 
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• train rough models first and then train the detailed models starting from the rough ones. 

• smooth detailed models with rough ones to get robustness. 

The first one is rather easy to implement. We will discuss the second aspect in greater 
detail, i.e., smoothing HMMs with tree structures. 

2.2 Smoothing HMMs with Tree Structure 
Suppose the description of acoustic variations have a tree structure like Figure 2.1, where 
E0 = E, E1UE2 = E0, E1DE2 = <j>, E3UE4 = EU E3f)E4 = <f>, E5UEe = E2, EsDEe = <f>. 

Figure 2 .1 . A sample tree s tructure for 
descr ipt ion of acoust ic variat ions 

This tree can be generated by either top-down splitting or bottom-up merging. The root 
node is the most well-trained but least accurate and the leaf nodes are not as well-trained but 
more accurate. The internal nodes are intermediates between the root node and the leaf nodes. 
The internal nodes are not as well-trained but more accurate than the root node. And they are 
better-trained but still less accurate than the leaf nodes. There might be any number of levels 
in the tree sturcture. 

The idea here is to use all the ancestors of each node for smoothing HMM. It is expected 
that a bet ter smoothing will be obtained using these internal nodes than just using only the 
root and leaf nodes. One node is smoothed using a linear combination of all the nodes in the 
path from the node smoothed to the root node. Also a special node of uniform distribution is 
added on the top of root node in order to avoid a zero probability. In the example of Figure 
2.1, node X3 (HMMs in the environment E3 ) is smoothed using a linear combination of X 3 , 
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X\, Xq and £/, 

X$ = A1-X3 + ^2X1 + X3X0 + A4?7 

where Ai + A2 + A3 + A4 = 1. Estimation of At is done by deleted interpolation [Jelinek 80]. 
It is to divide the training data into several blocks, use all the blocks except a deleted block 
to estimate At- on that block, and average the A results. For the experiments in this paper, 
we divided the training data into two blocks during the last iteration and maintained separate 
output and transition counts for each block. Then, deleted interpolation was run phone by 
phone to estimate A, for all the nodes. For the example of Figure 2.1, there are seven nodes 
and seven paths (E3 - Ex- EQ-U, EA- Ex- E0 - U, E5-E2-E0- U, E6-E2-E0- U, 
Ei — Eo — £/, E2 — Eo —17, Eo — U ) to be smoothed. Also, we estimated At- for three distributions 
(begin, middle and end) of each phone along all the paths independently. 

2.3 Three Case Studies 
Three case studies with SPHINX system will be presented; 

1. HMMs with large VQ codebook sizes 

2. Decision Tree Clustering 

3. Speaker Clustering 

A common feature in all three case studies is to use a tree structure to describe the variations 
and to smooth the HMMs with tree structures. Also, all of them are then tested on speaker-
independent continuous speech recognition experiments. 

3 H M M s with Large VQ Codebook Size 

3.1 Smoothing HMMs with Different VQ-Sizes 
In dicsrete HMMs, the distortion of vector quantization is highly related to the accuracy of its 
acoustic property. As less the distortion is, more accurate of modeling is possible. Table 3.1 
shows the distortions of cepstral coefficients for codebook sizes 2 to 256. 

Table 3.1 Distortion and codebook size of cepstral coefficients 
codebook size 2 4 8 16 32 64 128 256 

distortion 0.89 0.61 0.48 0.36 0.29 0.24 0.19 0.16 

A natural question to ask is what happens when the codebook size is increased from 256 to 
more. The problem is that if we increase the codebook size of the HMMs, we will need more 
data to train them to the same level as before. HMMs with different VQ sizes will provide 
better smoothing for that purpose. But this means the codewords of different codebook sizes 
must be related. Binary tree searched vector quantization makes it possible to make codewords 
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in different codebooks related. This is explained later in Section 3.2. For example, HMMs of 
codebook size 4096, X 4 0 9 6 can be smoothed with HMMs of codebook-size 1024, X1024, those of 
codebook size 256, X2SG and uniform distribution U as: 

^ 4 0 9 6 = ^1-^4096 + ^ 2 ^ 1 0 2 4 + A 3 A 2 5 6 + 

where Ai + A2 + A3 + A4 = 1. In HMMs of codebook size 4,096, four codewords are tied to those 
for codebook size 1,024 and sixteen codewords are tied to those for codebook size 256. 

If we use generalized triphones for the description of contexts, there is another hierarchy of 
context-independent to context-dependent phones in addition to the hierarchy of VQ codebook 
sizes (Figure 3.1). Then the smoothing equation becomes: 

, 0 2 4 - C D — ^ 1 ^ 1 , 0 2 4 - C D + ^2^2S6-CD + A 3 Ai ,024-CJ + A 4 A 2 5 6 - C J + 

where Ai + A2 + A3 + A4 + A5 = 1. We smooth all the nodes along the path independently. 

Context 
Independent] 

Phones 

Context 
Dependent 

Phones 

-^256 -CDl 

X"l,024-C£>l 

-^256 -CDl 

^1,024-C£>2 

-^256 -CDS 

^1 ,024-CD3 

Figure 3 .1 . T w o hierarchies of context independent -
dependent and V Q c o d e b o o k sizes 
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3.2 Binary Tree Searched Vector Quantization 
Binary tree searched vector quantization [Gray 82] makes it possible to make the codewords in 
different codebooks related. We can therefore make a large size of VQ codebooks starting from 
a smaller size and then limiting them within the cluster. All the codewords in the large size of 
VQ codebooks can then have their correspondent codewords in a smaller size of VQ codebooks. 

For example, let the cepstrum coefficients be clustered into 256 clusters by assigning them 
to the nearest of 256 codewords c(z), i = 1 ~ 256. Then each cluster is splitted into two clusters 
(total 512 clusters) and let centroids of 512 clusters form 512 new codewords c'(i),i = 1 ~ 512. 
If one new vector is quantized as one of these 512 codewords (say, c /(15)) in the codebook of 
512, it could also be quantized as the correspondent codeword of 256 codewords (say, c(8)) in 
the codebook size of 256. This means that HMMs with smaller codebook size can be easily 
calculated from HMMs with larger codebook size if codebooks are made by this method. 

Currently, vector quantization is not as costly as the training of HMMs or recognition. But 
designing codebooks takes long t ime for the large codebook size. Binary tree searched vector 
quantization is known to be a fast algorithm. For designing a codebook, it has a computational 
cost which is only linear with the number of bits for the codebook size. For example, a fully 
searched VQ, with a size of 4,096, is 16 times more costly than that of 256. For binary tree 
searched VQ, with a size of 4,096, only 1.5 times the computational t ime is required. That is 
another reason to use this algorithm here. Table 3.2 shows the distortions for codebook sizes 
of 512 to 4,096 generated by this algorithm. 

Table 3.2 Distortion and codebook size of cepstral coefficients 
codebook size 512 1,024 2,048 4,096 

distortion 0.14 0.12 0.11 0.09 

3.3 Experiments and Results 
The database used here is the speaker-independent DARPA Resource Management database 
[Price 88]. The task is a 991-word continuous speech task. The word pair grammar (perplexity 
60) was used with no corrective training. The test set consists of 320 sentences from 32 speakers 
randomly selected from the 1988 and 1989 test sets. The training set consists of 4,358 sentences 
from 109 speakers. 

A cepstrum analysis of order 14 is done and 32 LPC cepstral coefficients are calculated by 
a recursive equation. Then bilinear transformation is done resulting in 12 mel-scaled cepstral 
coefficients. Frame shift is 10 msec and sampling frequency is 16 kHz. Three codebooks of 
cepstrum, delta-cepstrum, power-and-delta-power are used. The recognition system is identical 
to the SPHINX of [Lee 89a] unless otherwise specified. 

The recognition results using the 48 context independent phones are shown in Table 3.3. 
Codebook sizes of 256 (standard SPHINX), 512, 1,024, 2,048, 4,096 are used. HMMs were 
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smoothed with smaller codebooks of HMMs. Deleted interpolation was done based on the 
count ranges in these experiments. Note, a codebook size of 2,048 actually gave a 1.0% im­
provement in word accuracy (about 5% error reduction). 

Table 3.3 Recognition results for codebook size of 
256, 512, 1024, 2048, 4096 (HMMs are smoothed 

using those with different codebook sizes). 
size percent correct (word accuracy) smoothing 
256 83.0% (80.8%) baseline 
512 83.5% (81.0%) with 256 and uniform 

1,024 83.8% (81.3%) with 256 and uniform 
2,048 84.2% (81.7%) with 256 and uniform 
4,096 84.2% (81.6%) with 256 and uniform 
2,048 84.1% (81.8%) with 256,512,1024,uniform 
4,096 84.2% (81.7%) with 256,1024,uniform 

Table 3.4 shows the results where HMMs were smoothed with a uniform distribution. As 
the codebook size increases, more differences become apparent between HMMs with and those 
without internal nodes in the smoothing. 

Table 3.4 Recognition results for codebook size of 
512, 1024, 2048, 4096 (smooth HMMs with uniform). 
size percent correct (word accuracy) smoothing 
512 83.9% (81.4%) with uniform 

1,024 83.8% (81.2%) with uniform 
2,048 83.3% (80.8%) with uniform 
4,096 83.4% (80.6%) with uniform 

Table 3.5 shows the recognition results using between-word modeling for allophones (total 
1100 general triphones) [Lee 89b] for codebook sizes of 256 and 1024. The results of a codebook 
size 1024 are shown in Table 3.5. In this case, the HMMs were smoothed (1) with codebooks 
of 256 and uniform distribution (2) with only uniform distribution. The word accuracies are 
almost same for both codebook sizes and there is a 0.7% difference between word accuracies 
with and without internal nodes in the smoothing. 

Table 3.5 Recognition results for codebook size of 
256 and 1024 using 1,100 generalized triphones. 

size percent correct(word accuracy) smoothing 
256 94.2% (93.0%) baseline 

1,024 94.2% (93.1%) with 256 and uniform 
1,024 93.6% (92.4%) with uniform 
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3.4 Discussion 
Binary tree searched vector quantization is used to make different size of codebooks being 
related to each other, Codebook size of 2,048 gave a 1.0 % improvement in word accuracy 
(about 5% error reduction) using context independent phones. The word accuracies are almost 
the same for the codebook sizes of 256 and 1,024 by using 1,100 generalized triphones. For 
both cases, there are some differences between HMMs with and those without internal nodes 
in smoothing. 

After all, increasing the VQ codebook size does not help very much, though smoothing with 
internal nodes does offer significant results. Seeing that distortions get smaller as increase of 
codebook sizes, there still remains some rooms of being more accurate modeling of acoustic 
realizations. However, we think a larger database is still necesssary in order to get enough 
training for larger VQ codebook sizes. 

4 Decision Tree Clustering 

4.1 Decision-Tree-based Context Clustering 
The agglomerative clustering used in [Lee 89a] is excellent from the point of view of minimizing 
entropy. However, it has two drawbacks : smoothing must be done with context-independent 
phones alone and it cannot predict about the unknown contexts. This suggests the necessity 
of imposing some structure in the context-independent and context-dependent hierarchy. 

Decision-tree-based context-clustering will provide a tree structure for better smoothing and 
prediction. The idea is to use the features of neighbouring phones to guide context clustering 
so that the acoustic realization of unknown contexts can be analogically predicted using these 
features. Also, having internal nodes will provide better smoothing. 

Decision trees [Breiman 84] have been used to get statistical language models [Bahl 89b] and 
to cluster phones into broad classes. Here the technique is applied to context clustering [Bahl 
89a], [Lee 90a]. In the agglomerative clustering, description of variations has a simple hierarchy 
of context-independent and generalized-triphones. In the decision tree clustering, description 
of variations has this more general tree structure. 
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Right = back vowel ? 

Right = Liquid ? Right = Front vowel ? 

Left = vowel ? Left = Vowel ? Right = Schwa ? Right = Pric ? 

Figure 4 .1 . A n e x a m p l e of a decis ion tree t h a t 
c lusters t h e contex t s of t h e phone / k / 

Figure 4.1 shows an example of decision tree that clusters the contexts of the phone /k/. 
Each node has a binary "question" about contexts of the allophones, for example, "is the pre­
vious phone a front vowel ?". Each node represents a sub-set of contexts according to the 
questions in the path from the root node to itself. 

The distance metric used for this clustering is identical to that for agglomerative clustering 
[Lee 89a], 

D(a,b) = P(m)H(m) - P(a)H(a) - P(b)H(b) 

H(x) = -"£P(c\x) IogP(c\x) 

where D(a,b) is the distance between two models of a and 6, H(x) is the entropy of the 
distribution in model x, P(x) is the frequency (or count) of a model, and P(c\x) is the output 
probability of the codeword c in model x. In measuring the distance between two models, 
we only consider the output probabilities, and ignore the transition probabilities, which are 
of secondary importance. This information-theoretic distance measure has been shown to be 
equivalent to a maximun likelihood metric [Lee 89a]. Other details about decision tree clustering 
are found in [Lee 90a]. 

4.2 Smoothing CART-HMMs 
For robustness, every node in the decision tree (CART-HMMs) needs some smoothing. All the 
nodes in the tree are smoothed along all the paths from the root node to the node which is to 
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be smoothed. Also, the special node of uniform distribution is added on the top of the root 
node in order to avoid a zero probability. The node smoothed is then represented by a linear 
combination of all the nodes along the path. For the example of Figure 4.1, smoothing is done 
as: 

^ 3 = ^1-^3 + A2-X1 + + X4U 

where Xi + A2 + A3 + A4 = 1. Estimation of At- is done by deleted interpolation. All the leaf 
nodes of the tree are trained and the internal nodes are calculated by summing up those child 
nodes. The training data is divided into two blocks during the last iteration. Separate output 
and transition counts are maintained for each block. Then, deleted interpolation is run phone 
by phone to estimate At for all the nodes. We estimate A, for three distributions (begin, middle 
and end) of each phone along all the paths independently. 

4.3 Experiments and Results 
The task tested here is still the speaker independent 991-word vocabulary continuous speech 
recognition of DARPA Resource Management database. The word pair grammar (perplexity 
60) was used. Acoustic analysis was the same as Section 3.3. A total of 1,800 leaf nodes 
(HMMs) were generated by the decision tree clustering and agglomerative clustering and used 
for the recognition experiments. Between-word modeling for allophones and corrective training 
were not used, thus the error rates are 30-50% higher than the current best version of the 
SPHINX system. 

We tested the decision tree clustering on vocabulary independent recognitions [Hon 89], 
[Hon 90]. The General English training set consists of 3,000 TIMIT sentences, 2,000 Harvard 
sentences, and 10,000 General English sentences which are collected at Carnegie Mellon. The 
total 15,000 training sentences cover about 90% of the triphones in the test set. 

The test set consists of a Tl-test and a CMU-test. The Tl-test set consists of 320 sentences 
from 32 speakers (a random selection from the 1988 and 1989 test sets). The CMU-test set 
consists of 320 sentences (same sentences as above ones) from 32 speakers (different speakers) 
recorded at Carnegie Mellon. 

Table 4.1 Recognition results for the CMU-test set using 
the General English training sentences 

agglomerative clustering 
decistion-tree clustering 

percent correct (word accuracy) 
90.4% (88.9%) 
90.4% (89.2%) 

Table 4.1 shows the preliminary recognition results for the CMU-test set using the General 
English training sentences. The error rate of decision-tree clustering is comparable for that of 
agglomerative clustering [Lee 89a]. 

11 



The current triphone coverage of 90% may become larger if it is weighted by frequency 
and the missing 10% contexts may not be important. So, we tested less covered vocabulary 
by using the TIMIT training sentences alone. Table 4.2 shows the recognition results for the 
Tl-test set using the TIMIT training sentences. The word accuracy of decision-tree clustering is 
0.9% better than that of agglomerative clustering (5% error reduction). These results indicate 
decision tree clustering is powerful, particularly for vocabulary independent situations. 

Table 4.2 Recognition results for the Tl-test set using 
the TIMIT training sentences  

percent correct (word accuracy) 
agglomerative clustering 84.8% (82.0%) 
decistion-tree clustering 85.4% (82.9%) 

4.4 Discussion 
The recognition results show that decision-tree-based context-clustering works well to describe 
acoustic variations about contexts. We believe that it also predicts well about unknown con­
texts. 

However, there is a gap between the error rates for vocabulary dependent and vocabulary 
independent training sets in the case of the test set recorded at TI [Lee 90a]. The gap is 
probably due to the difference in recording conditions between the training and test materials. 
It indicates that some kind of noise reduction or adaptation to the recording environment [Acero 
90] is necessary to fill the gap between two training sentences. 
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5 Speaker Clustering 
5.1 Top-Down Speaker Clustering 
This section discusses some aspects of description of acoustic variations for the speakers. 
Speaker variability has been studied in the speaker recognition and speaker adaptation. In 
the speaker independent speech recognition, dynamic programming based system using whole 
word multiple templates had been studied in the 1970's. Recently there are some studies on 
speaker clustering in a dicrete HMM-based sytem [Lee 89a] (agglomerative clustering) and in 
a continuous HMM-based system [Rabiner 89]. In this section, we discuss three aspects of 
speaker clustering: top-down splitting, cross validation and smoothing speaker clusters with 
tree structures. 

First we discuss speaker clustering by top-down splitting. The algorithm used here is a vari­
ant of Linde-Buzo-Gray algorithm [Linde 80] for vector quantizer design and given as follows. 

1. Merge all the speakers into one cluster 5 i , m = 1. 

2. Split one speaker cluster S% = { s i ( j ) , j = l,ra,-} into two clusters (m = m + l ) 

(a) Find the farthest speaker j from the centroid of speaker cluster 
A A 

(b) Order all the speakers in the cluster according to the distance from j . Let j be 
o( l ) , nearest to j be o(2) and farthest to j be o(n»), {o( j ) , j = l , n t } . 

(c) Find minimum lost information for all the splits along the order. 
Ex = { 3 ( o ( l ) ) , 3 ( o ( 2 ) ) , . . . , « ( o ( f c ) ) } and E2 ={s(o(k + 1)), . . . , s (o(n t ) )} , 1 < k < 

3. Merge all the speakers in each cluster (centroid). 

4. Assign all the speakers to the nearest speaker clusters. 

5. Till convergence repeat 3-4. 

6. If m = M (number of clusters to be splitted) then stop 

7. Find a speaker cluster to be splitted next which has maximum lost information and 
go to 2. 
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The distance metric of two models is the same as that used in the decision tree clustering. 
Here, HMMs for each speaker are trained using sentences spoken by the speaker. Only output 
probabilities were considered in the clustering and each HMM had three distributions (begin, 
middle, end) of three codebooks (ceps, 5ceps, power-£power). 

Figure 5.1 shows the relationship between the number of speaker clusters and the average 
lost information for the context independent phones of "AE" and "K" of 109 speakers in the 
Resource Management training sentences. 

1 2 3 4 5 6 7 8 9 10 
Number of Speaker Clusters 

Figure 5 .1 . Lost information at speaker c luster ing 
of contex t independent phones 
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bits 
3.0 n 

Generalized Triphones 

"1 1 1 1 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 
Number of Speaker Clusters 

Figure 5.2. Lost information at speaker c lustering 
of general ized tr iphones 

Figure 5.2 shows the same results for two samples of generalized triphones " K ( l ) " and 
"AE(1)". It is observed that lost information decreases constantly as the number of speaker 
clusters increases. It seems we can get more detailed models as we increase the number of 
speaker clusters. 

However, these results do not stand up if we test them by cross validation [Breiman 84]. 
Figure 5.3 shows the relationship between the number of speaker clusters and the probabilities 
that a speaker cluster produces each speaker model with and without cross validation. Prob­
abilities for the generalized triphone of "AE(1)" out of 1,100 generalized triphones are shown. 
They are approximated by simply using counts and averaged for all the speakers. Without cross 
validation, speaker cluster contains the speaker to be tested. With cross validation, the speaker 
is eliminated when merging speakers into the speaker cluster. For generalized triphones, prob­
abilities increase constantly without cross validation. But those with cross validation decrease 
after three speaker clusters. 
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Probabilities 
0.08 

0.06 

0.04 A 

0.02 A 

0.00 

CV: Cross Validation 

AE(1) without-CV 

— I 1 1 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 
Number of Speaker Clusters 

Figure 5 .3 . Probabi l i t i es at Speaker Cluster ing 
of General ized Triphones [ A E ( l ) j . 

These figures suggest that we can expect some improvement using two or three speaker 
clusters. They also suggest if we use more than four speaker clusters it may not be trained well 
enough. For less trained models like generalized triphones, the difference between having and 
not having cross validation is larger than for context independent phones. These results show 
the importance of cross validation in the clustering of less trained models. 

5.2 Smoothing of Speaker-Cluster HMMs 
With the combination of contexts and speakers as two sources of variabilites, there are two 
hierarchies, one is context-independent (CI) and generalized-triphone (CD) hierachy and the 
other is speaker-independent (SI) and speaker-cluster-dependent (SD) hierarchy. In that case, 
a description of the variations has the tree structure shown in Figure 5.4. 
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combination of all the nodes from the root node to the node to be smoothed. 

X'CD,SD = ^lXcD,SD + ^XcD.SI + A 3Xc/,S/ + A4£/ 

where SI is Speaker-Independent, SD is Speaker-Cluster-Dependent, CI is Context-Independent, 
CD is Context-Dependent (Generalized Triphones), and Ai + A2 + A3 + A4 = 1. Estimation of 
A, is done by deleted interpolation. All the leaf nodes of the tree are trained and the internal 
nodes are calculated by summing up those child nodes. The training data is divided into two 
blocks during the last iteration. Separate output and transition counts are maintained for each 
block. Then, deleted interpolation is run phone by phone to estimate A,- for all the nodes. We 
estimate At- for three distributions (begin, middle and end) of each phone along all the paths 
independently. 

5.3 Experiments and Results 
To test the speaker clustering algorithm and the smoothing method above, speaker independent 
continuous speech recognition experiments were conducted. These consist of speaker clustering, 
training of each speaker cluster, smoothing and recognition. 

First, we conducted a top-down clustering of speakers. We used 4,358 sentences from 109 
speakers (about 40 sentences per speaker) to train HMMs for each speaker. For the speaker 
clustering, we used only 47 context-independent phones (silence is excluded) of 109 speak­
ers. We splitted the 109 speakers into two and three speaker clusters. Table 5.1 shows the 
male/female composition of two and three clusters. Most clusters are dominated by male or 
female as the bottom-up speaker clustering [Lee 89a]. 

Table 5.1 Male/female composition of two and three speaker clusters 

Two Clusters 
Male Female 

Cluster No.l 78 0 
Cluster No.2 C

O
 

28 
Three Clusters 

Male Female 
Cluster No.l 42 0 
Cluster No.2 36 0 
Cluster No.3 3 28 

Using these clusters, all speaker clusters were trained using same database of 4,358 sentences 
from 109 speakers. A total of 1,100 generalized triphones using between-word modeling was 
used to represent variations for contexts. We used speaker independent models as the initial 
models for the training and one iteration of forward backward training was run. We used the 
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Figure 5.4 Descr ipt ion of acoust ic variations for 
contex t s (CI — CD) and speakers (SI — SD). 

Acoustic vaxiabilities for speakers are described by multiple speaker clusters. To use these 
multiple speaker clusters for the recognition, smoothing is necesary to get more robust models. 
Out of the two sources of variabilities, the variations for the contexts are supposed to be greater 
than those for the speakers. So, we simplify the tree of Figure 5.4 to the following tree (Figure 
5.5). 

CI, SI 

CDl,SD\ CD1,SD2 C£>3, SD1 CDZ, SD2 

Figure 5.5 A simplified tree of descript ion of variat ions 
for contex t s (CI - CD) and speakers (SI - SD). 

Also, a special node of uniform probabilities is added to the top of root node. Then, we 
can smooth all the nodes in the tree as in Section 3.3. Smoothing is conducted by the linear 
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same VQ codebooks for all the speaker clusters. For the deleted interpolation, each speaker 
cluster was divided into two sets and both were trained separately. Then, smoothing was con­
ducted as explained in Section 5.2. We estimated A, for the three distributions of each phone 
along all the paths independ ently. 

The ta.sk tested here is a speaker independent 991-word vocabulary continuous speech recog­
nition of DARPA Resource Management database. Both cases were tested with word pair 
grammar (perplexity 60) and without grammar. Acoustic analysis was same as Section 3.3. 
Corrective training was not used. The test set consits of 320 sentences from 32 speakers ran­
domly selected from the 1988 and 1989 test sets. To select an appropriate speaker cluster for 
each speaker, we simply selected a speaker cluster which produced the best recognition score 
from all the speaker clusters. Table 5.2 shows the recognition results using two and three 
speaker clusters. 

Table 5.2 Recognition results using two and three speaker clusters. 
Results shown are percent-correct (word-accuracy). 

Word Pair Grammar 
Speaker Independent 94.2% (93.0%) 

2 speaker clusters 94.7% (93.4%) 
3 speaker clusters 94.6% (93.4%) 

No Grammar 
Speaker Independent 75.3% (72.2%) 

2 speaker clusters 77.4% (74.6%) 
3 speaker clusters 76.8% (73.8%) 

Using two speaker clusters, we obtained about 6% (word pair grammar) and 9% (no gram­
mar) error reduction. These results show the potential of speaker clustering. 

5.4 Discussion 
Both clustering results and recognition results indicate that we can expect to have better de­
scription of acoustic variations using only two or three speaker clusters. But why is it that 
increasing the number of speaker clusters does not give a better description ? It may be due 
to several reasons. First, we need a larger database to train each speaker cluster sufficiently. 
In smoothing, many At- for the speaker-cluster-dependent phones were very small and this indi­
cates that those context-dependent and speaker-cluster-dependent phones were not trained well 
enough. Secondly, we may need to use speaker cluster dependent VQ codebooks, even though 
HMMs with a universal VQ codebook seem to represent most of the speaker variabilities. 

Huang had obtained almost the same results as two speaker cluster case by training male 
and female separately and by testing them for known gender [Huang 90]. This result also sup­
ports the potential of speaker clustering. 
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Another important issue derived from this study is the importance of cross validations. It is 
observed that lost information decreases constantly as the number of speaker clusters increases 
and it seems we can have more detailed models as we increase the number of speaker clusters. 
But it does not hold up if we check it by cross validation as we saw in Section 5.1. 

6 Conclusion 
In this paper, we have presented a description of the acoustic variations using HMMs with tree 
structure. The general framework of this was given and discussed in three case studies. 

First, HMMs with different VQ codebook sizes were studied. Binary tree searched vec­
tor quantization was used to make different size of codebooks being related to each other. A 
codebook size of 2,048 gave about a 5 % error reduction for the case of context independent 
phones. Smoothing HMMs with different size of codebooks also gave us more robust modelings. 

Second, decision tree clustering was presented to provide a tree structure for bet ter smooth­
ing and prediction about unknown contexts. The recognition results were comparable for the 
General English training set and about a 5% error reduction for the TIMIT database. Decision 
tree clustering is shown to be powerful, particularly for vocabulary independent situations. 

Finally, speaker clustering was studied. An algorithm for top-down clustering of speakers 
was given. Also, the importance of cross validations for speaker clustering was shown. Using two 
speaker clusters with 1,100 generalized triphones, we obtained about 6% (word pair grammar) 
and 9% (no grammar) error reduction and these results show the potential of speaker clustering. 

The point which all three cases shaxe is that a tree structure in several hierarchies will give 
us a bet ter description of acoustic variations. We believe a larger database is still necesssary 
to get enough training for more detailed description of acoustic variations. 

Acknowledgments 
The authors would like to thank Professor Raj Reddy for his encouragement and support and 
would like to thank Dr. Robert Weide for providing the speech database and phonological 
knowledge for the decision tree clustering. The authors would like to thank Mr. Cecil Huang 
and Mr. Jonathan Swartz for providing software for decision tree clustering. The authors would 
also like to thank Miss Jeanet te Dravk for reading this paper. 

References 
[Acero 90] Acero, A., Stern, R.M., "Environmental Robustness in Automatic Speech Recog­

nition", IEEE International Conference on Acoustics, Speech and Signal Processing, April 

20 



1990. 

[Bahl 89a] Bahl, L.R., et. al., "Large Vocabulary Natural Language Continuous Speech 
Recognition", IEEE International Conference on Acoustics, Speech and Signal Processing, 
May 1989. 

[Bahl 89b] Bahl, L.R., Brown, P.F., de Souza, P.V., Mercer, R.L., "A Tree-Based Statisti­
cal Language Model for Natural Language Speech Recognition", IEEE Transactions on 
Acoustics, Speech and Signal Processing, ASSP-37, No. 7, pp. 1001-1008, July 1989. 

[Breiman 84] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.j., Classification and Re­
gression Trees, Wadsworth, Inc., Belmont, CA., 1984. 

[Gray 82] Gray, R.M., Linde, Y., "Vector Quantizers and Predictive Quantizers for Gauss-
Markov Sources", IEEE Transactions on Communications, Vol. COM-30, No.2, pp.381-
389, February 1982. 

[Hayamizu 88] Hayamizu, S., Tanaka, K., Ohta, K., "A Large Vocabulary Word Recognition 
System Using Rule-Based Network Representation of Acoustic Characteristic Variations", 
IEEE International Conference on Acoustics Speech and Signal Processing, pp.211-214, 
April 1988. 

[Hayamizu 89] Hayamizu, S., Tanaka, K., Ohta, K., "On generalized description of acoustic 
characteristic variations of speech", The Institute of Electronics, Information and Com­
munication Engineers of Japan, Trans. D, V61.J72-D-II, No.8 [special issue on speech], 
pp.1215-1220, August, 1989. 

[Hon 89] Hon, H.W., Lee, K.F. , Weide, R., "Towards Speech Recognition Without Vocabulary-
Specific Training", Proceedings of Eurospeech, September 1989. 

[Hon 90] Hon, H.W., Lee, K.F. , "On Vocabulary-Independent Speech Modeling", IEEE In­
ternational Conference on Acoustics, Speech and Signal Processing, April, 1990. 

[Huang 90] Huang, X.D., Personal Communication, unpublished, 1990. 

[Jelinek 80] Jelinek, F. , Mercer, R.L., "Interpolated Estimation of Markov Source Parameters 
from Sparse Data", in Pattern Recognition in Practice, E.S. Gelsema and L.N.Kanal ed., 
North-Holland Publishing Company, Amsterdam, the Netherlands, pp,381-397, 1980. 

[Lee 89a] Lee, K.F. , Automatic Speech Recognition: The Development of the SPHINX System, 
Kluwer Academic Publishers, Boston, 1989. 

[Lee 89b] Lee, K.F. , Hon, H.W., Huang, M.Y., Mahajan, S., Reddy, R., "The SPHINX Speech 
Recognition System", IEEE International Conference on Acoustics, Speech and Signal 
Processing, April, 1989. 

21 



[Lee 90a] Lee, K.F. , Hayamizu, S., Hon, H.W., Huang, C , Swartz, J., Weide, R., "Allo-
phone Clustering for Continuous Speech Recognition", IEEE International Conference 
on Acoustics, Speech and Signal Processing, April, 1990. 

[Lee 90b] Lee, K.F. , "Context-Dependent Phonetic Hidden Markov Models for Continuous 
Speech Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, 
April 1990. 

[Linde 80] Linde, Y., Buzo, A., Gray, R.M., "An Algorithm for Vector Quantizer Design", 
IEEE Transactions on Communication COM-28, No. l , pp.84-95, January, 1980. 

[Price 88] Price, P.J., Fisher, W., Bernstein, J., Pallett, D., "A Database for Continuous 
Speech Recognition in a 1000-Word Domain", IEEE International Conference on Acous­
tics, Speech and Signal Processing, April, 1988. 

[Rabiner 89] Rabiner, L.R., Lee, C.H., Juang, B.H., Wilpon, J.G., "HMM Clustering for 
Connected Word Recognition", IEEE International Conference on Acoustics, Speech and 
Signal Processing, pp.405-408, May, 1989. 

[Sagayama 89] Sagayama, S., "Phoneme Environment Clustering for Speech Recognition", 
IEEE International Conference on Acoustics, Speech and Signal Processing, May, 1989. 

[Schwartz 85] Schwartz, R., Chow, Y., Kimball, 0 . , Roucos, S., Krasner, M., Makhoul, J., 
"Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech", 
IEEE International Conference on Acoustics, Speech and Signal Processing, April 1985. 

22 


