NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Systems of Polymorphic Type Assignment in LF

Robert Harper

June 1990
CMU-CS-90-144 >

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Several formulations of type assignment for the Damas-Milner language are studied, with
a view toward their formalization in the logical framework LF, and the suitability of these
encodings for direct execution by the logic programming language EIf.

This research was supported in part by the Office of Naval Research and in part by the Defense Advanced

Research Projects Agency (DOD), monitored by the Office of Naval Research under Contract N00014-84-K-
0415, ARPA Order No. 5404.

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of ONR, DARPA or the
U.S. government.

Keywords: Logical frameworks, type theory, functional programming.

1 Introduction

The logical framework LF is a languge for formally specifying deductive systems in a form
suitable for use by generic tools that support a variety of inferential activities. [HHP87,
HHP89, AHMS87] For the most part, LF has been considered as a vehicle for specifying
formal logical systems such as variations on propositional and predicate logic. However,
LF is also intended for use in specifying programming languages, in particular operational
semantics and type checkers. [BH88] (See also the work of Kahn and his co-workers and
of Miller and his students for related efforts. ICDD*85, CDDK86, FM88, HM88|) Here the
overall aims are similar, but the intended applications are quite different: rather than focus
on machine-assisted proof, one is interested in a direct “operationalization” of specifications
of programming languages, yielding, for example, a type checker and evaluator. The pro-
gramming language Elf [P{e89] provides just such a vehicle for “executing” LF specifications.

The purpose of this paper is to study the formalization of polymorphic type systems for
the fragment of ML introduced by Damas and Milner [DM82]. Our purpose will be two-fold.
On the one hand we are interested in the intrinsic difficulty of encoding various systems of
type assignment in LF. A number of problems arise along the way, not all of which have
an entirely satisfactory solution. On the other hand, we are interested in the operational
behavior of our specifications. This will lead us to consider several alternatives, and to study
their properties as Elf programs.

The paper is organized as follows. First, we introduce the basic calculus given by Damas
and Milner, reformulated to take careful account of the use of type variables, and to make
explicit the distinction between types and type schemes. This calculus admits a straightfor-
ward encoding in L¥, but is unsuitable for direct implementation because of the presence
of non-syntax-directed rules. Second, a “normal form” calculus is considered. This calculus
may be viewed as generating the derivations in the basic calculus that are in normal form,
i.e., for which polymorphic instantiation is applied only to variables, and polymorphic gen-
eralization only to let-bound variables at the point at which they are added to the context.
The encoding of this calculus in LF requires auxiliary judgements in order to ensure that
the normal form property is preserved, but otherwise proceeds along standard lines. This
formulation is syntax-directed, but is still insufficiently deterministic to be usable for type
checking. We therefore consider a third, “algorithmic” formulation of the calculus, similar
to that used in Centaur. This version is a restriction of the normal form calculus that en-
sures that when a let-bound variable is added to the context, the most general type scheme
possible 1s assigned to the variable.

2 The Damas-Milner Calculus UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
2.1 Syntax PITTSRURGH, PENNSYLVANIA 15213

Let TV be a denumerable set of type variables, ranged over by s and ¢. Let BT be a set of
base types, ranged over by b. The set of type expressions, ranged over by 7, is the least set
TEsuchthat TVCTE, BT CTE,andif n€TEand 1, € TE, theny — 1, € TE. The
set of type schemes, ranged over by o, is the least set 7§ containing {} 7 for each 7 € T¢

1

and Vi.o for each £ € 7V and 0 € TS. In expressions of the form Vt.o, the type variable
t is bound in o; type schemes differing only in the names of bound variables are identified.
Free variables and capture-avoiding substitution are defined as usual. The set of free type
variables in a type 7 or type scheme o is denoted by FTV(r) or FTV(c), respectively.

Let T C TV be a finite set of type variables. We write 7' b T to mean that FTV(r)CT.
Similarly, we write T' - o to mean that FTV (o) C T.

Let V be a denumerable set of ordinary variables, ranged over by z and y. Let C be a
set of ordinary constants, ranged over by ¢. The set of ordinary ezpressions, ranged over by
e, is the least set £ such that YV C £, C C £, and if e; € £ and e, € £, then so are ¢, e,
Az.ey, and let z=e; in e;. In expressions Az.e, the variable z is bound in e; in expressions
let z=e; in ey, the variable = is bound in e,. Free variables are defined as usual; expressions
differing only in the names of bound variables are identified.

Let X CV be a finite set of ordinary variables. We write X F e to indicate that € is an
expression such that FV(e) C X.

2.2 Sequent-style Presentation

The standard formulation of a type assignment system is in terms of typing sequents consist-.
ing of an environment, an expression, and a type. In this subsection we give a sequent-style
formulation of the Damas-Milner type assignment system. The presentation differs from
that of Damas and Milner in that we include a set of type variables as part of the typing
assertion.

A type environment is a partial function E : V — TS with finite domain. If E is a type
environment and z ¢ dom(E), then E,z:c denotes the extension of E by the given binding.
Let FTV(E) denote the set U,caome) FTV(E(z)).

We write T E to mean that E is a type environment such that for each z € dom(FE),
T+ E(z).

A typing sequent is a four-tuple T;E > e : o where T C TV, E is a type environment
such that T+ E, e is an expression such that dom(E) I ¢, and ¢ is a type scheme such that
Thoe.

The following rules define the derivability relation for typing sequents:

T;E>»e:Vio
T S-INST
T:;E>e:|r/tle (") ()
T.t,E>»e:o
1l t T $-GEN
T;E > e:Vto (tg7) ()
. = S-VAR
T"E>»z:0o (Blz) = o) ()
T:E.z:fmy >e: I (z & dom(E)) (s-ABSs)

T;E > dz.e: f(my~12)

-2

T:E > e; : f{my—72) T:E >e;:11t
T E>eep:fim

(s-APP)

T:E>e:0 T, E,zio0 > ey : 03
T:E > letxz=¢yine;: 02

(z & dom(F)) (s-LET)

The rules S-ABS and S-APP have a somewhat peculiar form due to the explicit inclusion
of types into type schemes. A more familiar-looking formulation may be obtained by con-
sidering two forms of typing assertion, T'; E 3> e : o as before, and T;E > e¢: 1, where 7 1s
a type. This variant is formalized as follows:

: 1 Vi,
T:E>e _v o (T + 1) (s-INST’-1)
T;E > e lT/t]G’
TiE>e:fir (s-INST'-2)
TE>»e:T
T:E>»e:r)
S (s-GEN’-1)
T:E>»e:0o
tg T -GEN’
T,E>»e:Vio (teT) (s-em)
T,E,z: >e:
z:frmy €: T2 (m ¢ dom(E)) (S-ABS’)

T:E > dz.e:m—1

T:E> e :m—7 TiE>e:m
TE>»ee:mn

(s-APP’)

T:E>» e :m T:E,z:00>> €5 : 04
T:E> letz=e;ine; : 02

(z € dom(E)) (s-LET’)

These two systems are, in an obvious sense, equivalent. We will regard the former as
the “official” definition, and write DM - T; E > e : ¢ to indicate that the typing sequent
T:E > e: o is derivable in accordance with those rules.

http://Vf.tr

2.3 Natural deduction-style Presentation

The Damas-Milner calculus admits a natural deduction-style formulation in which the basic

judgement form is the typing assertion e € . The usual notational conventions for discharge

of hypotheses are adopted here. (See {Mar82] for a related system of natural deduction.)
The natural deduction-style rules are as follows:

e € Yio
T (N-INST)
cEo
S () (N-GEN)
— (N-VAR)
(z €ftm)
eEtr
Py —" (1) (N-ABS)
e € ﬂ‘(Tl'—PTg) ey € ﬂ‘rl
e (N-APP)
(z € o)
€ € o e € 07 (1) (N-LET)

let z=e;tne; € oy
where the side conditions indicated above are as follows:
T The type variable t does not occur free in any typing hypothesis on which the
derivation of the premise depends.

{ The variable = does not occur free in any typing hypothesis, other than those
discharged by the rule instance, on which the derivation of the premise
depends.

Just as with the sequent-based formulation, there is a more natural-looking variant based
on two forms of typing judgement, e € ¢ and e € 7, related by the rules

c€fir (N-INST’)
ecT
c€r (N-GEN’)
eE€ftr

The uses of 1} in rules N-ABS and N-APP are then eliminated.
We write T; E Fpm e € o to indicate that e € o is derivable in the above system from
hypotheses E involving only type variables in T. It is worth noting that this definition is

formulated so as to rule out derivations in which a variable is governed by more than one
typing hypothesis. Other derivations do arise, but we reject them as “malformed” and do
not consider them any further. With this in mind, it is a simple matter to establish the
equivalence of the sequent- and natural deduction-style presentations.

Proposition 2.1 DM+ T;E > e:c iff T;Etpme€ o

2.4 Formalization in LF

The Damas-Milner calculus, as presented above, is readily formalizable in LF. The signature,
Ebwm, of this system is given as follows:

ty : Type
sty : Type
tm : Type
b : ty (b€ BT)
— ty — ty — iy
i ty — sty
Y (ty — sty) — sty
A (tm — tm) — tm

im— tm — tm

LET : tm — (tm — tm) — tm

€ : tm — sty — Type

INST : Ile:xtm Ity — sty llr:ty.e € V(@) — e € ¢(7)

GEN : He:itm.d¢:ty — sty (lt:ty.e € ¢(t)) — e € V()

ABS : Ifim — tmOr:ty Oty (Oz:tmazs €ty — fz €4 m) —
AMF) € f(m—m)

APP : Hep:tm. Iep:tm. rn:ty Oryity.e € fi(n—m) 2 e € ftmy —
e1-e €ty

LET : Ilep:tm.Ilfsitm — tm.Ioy:sty. loq:sty.ey € 0 —
(Iz:tm.z € 0y — f2(z) € 03) — LET(ey, f2) € 0

The adequacy of this signature is stated as follows:
Proposition 2.2 Let Tpy be given as above.

1. For every finite set T of type variables, there is a compositional bijection (—)* between
types T (resp., type schemes o) such that T+ r (resp., T t ¢) and canonical LF terms
of type ty (resp., sty) in contezt T'(T). Here I(T) is the context consisting of one
declaration t : ty for each t € T, writien in some standard order.

2. For every finite set X of ordinary variables, there is a compositional bijection (—)*
between terms e such that X b e and canonical LF terms of type tm in contezt I'(X).
The context T'(X) is defined similarly to T(T).

3. There is a compositional bijection between dertvations of T;E & e € o and canonical
LF terms of type €* € ¢* in contezt I'(T),I'(E), where T'(E) is the confezt consisting

5

of the pairs of declarations z : tm,z' : v where [(z) = 7 and z' is distinct from any
ordinary variable.

From an operational point of view, this signature is undesirable for direct execution in
Elf since the presence of the INST and GEN rules leads to undirected search. However, it is
clear that these rules need be used only in rather restricted contexts. To make this precise,
we turn to the question of normalization of derivations in the Damas-Milner calculus.

2.5 Proof Normalization

A normal form derivation in the natural deduction calculus are those for which no occurrence
of N-GEN is immediately followed by an occurrence of N-INST. When this is the case we may
collapse the adjacent occurrences, replacing the derivation

)

e
e € Yi.o
e € [t/t]e

from premises T',t; E, where ¢ € T, by the derivation

[7/t)é

e € [r/tlo

from premises T'; E. (This is essentially just type-S3-reduction of derivations.)
Taking this as the primitive notion of reduction on derivations, we may obtain the fol-
lowing Prawitz-style result:

Proposition 2.3 Every derivation has a unique normal form.

Normal forms can be further refined by considering “commuting conversions” whereby
rules N-INST and N-GEN commute with rule N-LET. By orienting these commutation condi-
tions to force occurrences of N-INST and N-GEN “upward”, we obtain an extended notion of
reduction for which we conjecture the existence of unique normal forms.

One reason for interest in normalization properties of derivations is that they provide
useful information for a type checking algorithm: such an algorithm may, without loss of
generality, attempt to construct only normal form derivations. It is easy to see that normal
form derivations (in the second, extended, sense} have the following important structural
properties:

1. The premise of any occurrence of rule N-INST is either the conclusion of an N-VAR
occurrence or of another N-INST occurrence.

2. The conclusion of any occurrence of rule N-GEN is either the last step of the deriva-
tion, or the premise of another N-GEN occurrence, or the first premise of an N-LET

OCCUrrence.

Thus all uses of N-INST and N-GEN occur in “maximal segments.” For N-INST, all such
segments begin with N-VAR and end with the application of some other rule, and for N-
GEN, all such segments begin with some other rule and end with an occurrence of N-LET (or
terminate the derivation.) By considering an n-ary form of quantification, all such segments
may be collapsed into a single use of the appropriate rule. {We will not pursue this refinement
any further.)

3 The Normal-Form Calculus

As remarked above, normal-form derivations in a type assighment calculus are particularly
relevant for type checking. It is therefore interesting to consider a direct presentation of
the normal form derivations, and to assess the completeness of an algorithm against this
formulation. The purpose of this section is to explore several possible formulations of a
normal form calculus, and to consider their formalization in LF.

3.1 Sequent-style Presentation

There are two sequent-style presentations. The simplest formulation makes use of one non-
trivial meta-level operation (polymorphic instantiation), and infinitely-many rule schemes
for LET. Alternatively, we may achieve a finitary formulation that makes use of two auxiliary
judgements.

The first sequent-style presentation uses typing sequents of the form T'; E >» e : 7, where
T and FE are as before, and the right-hand side is a type, rather than a type scheme. The
typing rules make use of the relation T+ o > 7 as defined by Damas and Milner, with the
restriction that the free type variables in & and r are limited to those occurring in T'. The
derivation rules are as follows:

— Fo> = - -
T E>:.r (TFo2>r1,E(z)=0) (S-VAR-NF)

T:E,z:ffmy > e:m
T,E > Az.e : ;—T2

(z € dom(E)) (S-ABS-NF)

T:E>e :14—T T:E>»e:mn
T:FE>e e3:7

{(s-APP-NF)

Tty,....t i E>e1:m T:E,xVty.. . lp1s > ey
T:E > leta=ejine; : 7p

(t1,..-,tn € T, = € dom(E))

($-LET-NF)

The relation T - ¢ > 7 is defined similarly to Damas-Milner, as follows: T - ftr >,
and T + Vt.o > [7/t]o, provided that T + .

Note that there is one rule scheme S-LET-NF for each choice of n € w, reflecting the
“degree of polymorphism” of the type scheme assigned to the let-bound expression. Note
that n is not required to be maximal: any degree of polymorphism sufficient to carry out a
typing derivation is legitimate. (This is in contrast to the “algorithmic” formulation studied
below in which we are required to choose the largest degree of polymorphism compatible
with the typing rules.)

There is also a finitary formulation that avoids the use of the type scheme instantiation
relation, and requires only one rule scheme for LET. However, it makes use of two auxiliary
typing sequents, T} E > e : o, and T;E >; e : 0. The intention is that the > rules
govern generalization, and the >»; rules govern instantiation of type schemes. The main
typing rules are as above, with the following two rules replacing S-VAR-NF and S-LET-NF:

—_— E(z) = “VAR-NF’
T ES 20 (E(z) = o) (8-VAR-NF’)

T FE>ce:0y T:E,z:01 > ey:7y
T;E>» letz=erine; : 79

(S-LET-NF’)-

The rules governing >>; are:

T, E>»rz:{tr
I'"E>z:r

(S-INST-NF-1)

T:E>»rz:Vto
T E>»rz:irt/tje

(T+) (s-INST-NF-2)

The rules governing >>¢ are:

TiE>e:r (S-GEN-NF-1)
T E>ce:fr
T.t;E>¢ce:0
tg T S$-GEN-NF-2
T;E >¢ Vit.o (t¢T) ()

Proposition 3.1 There ezists a compositional bijection between normal form derivations in
the DM calculus and derivations in the second “normal form” calculus.

The details of the equivalence are tedious to write down, but amount to proving the
structural properties of normal form derivations in the DM calculus discussed in the previous
section.

3.2 Natural deduction-style Presentation

A natural deduction-style presentation of the infinitary sequent-style formulation makes use
of two typing judgements, ¢ € T and e €x o. The latter judgement form 1s used in the
encoding to record the types of variables, reflecting the fact that in the normal form calculi,
variables are given polymorphic types, whereas phrases are given monotypes. The natural
deduction formulation is as follows:

rexy o

(o0 > 1) (N-INST-NF)
rTET
(z €x M(n))
__i_el_._ (j;) (N-ABS-NF)
Az.e E T Ty
€1 € 173 €3 €Ty
(N-APP-NF)
€12 £ T2
(z €x Vi1...tn.11)
€1 €7 ez € T2 '
_ (th) (N-LET-NF)
letz=eyine; € 1
where the (1) side condition is as before, and the (1) condition requires as well that £y,...,%,

be a sequence of type variables not occurring free in any typing hypothesis on which the
derivation of the first premise depends.

The finitary formulation also has a natural deduction analogue, employing three forms
of typing assertion, e € 7, € € 0, and e € 0, corresponding to each of the three forms of
typing sequent. The rules are as follows:

(N-VAR-NF’)
rTE;o
(z €1 (1))

e €Ty + 3
_— N-ABS-NF
Az.e E o7y (3) ()

e € Ty—T2 €2 ETy (N-APP NF’)
€ €2 € T2
(z €1 01)
“1 86 o1 SR (1) (N-LET-NF’)

letz=eyine; € 1y

where the (1) side condition is as before.
The rules governing £; are:

z €1 fi(7)

< (N-INST-NF-1)
I

9

T €7 Vie

—_— N-INST-NF-2
x €5 [r/t)o ()

The rules governing €¢ are:

ecT

—_ N-GEN-NF-1
Ceo 7 ()

eCg o

e €g Vt.o (1) (N-GEN-NF-2)

where the condition (1) is as before.

A correspondence between derivations in these calculi and normal-form derivations in the
basic natural deduction calculus of the previous section may also be obtained by proceeding
along the same lines as for the sequent presentations. The details are omitted here.

3.3 Formalization in LF

The infinitary natural deduction formulation may be encoded in LF using relatively standard
methods, provided that we are willing to admit a formalization that is not uniform in the
choice of parameter n € w to the lef rule. In other words, we present an infinitary signature
Lyrpym1 that contains one let rule for each choice of parameter n. Although the pattern
is entirely clear, the formulation is not uniform. To achieve a completely uniform encoding
appears to require methods similar to those used in Mason's encoding of Hoare logic. [Mas87,
AHMS7)

The signature ENFDMl is defined as follows. The syntax part 1s the same as for Tpy,
and is omitted. The remainder is as follows:

€ : tm— ty — Type
€x : tm — sty — Type
>t sty — ty — Type
INST1 : I7:iy.Il¢: ty — sty.V(d) > ¢(r)
INST2 : IIr:ty. 7> 71
INSTNF : He:tm.llo:styllr:tye€x o) = (c>1)— (e€7)
APPNF : Iley:im.He,: tm.Ir : ty.Ir : ty.
(a€m—m)— (e2€m) = (e1- 62 € 7)
ABSNF : IIf :tm — tm.n : ty.IIr; : ty.
(Oz : tm.(z €x 1) = (fz € 1)) = (M(f) € m—n)
LETNF1 : Ile; : tm.Ilf;: tm — tm.I¢: ty ~ sty.llr, : ty.
(0t : ty.e; € ¢(t)) — (L : tm(z €x V($)) — (fo(z) €) —
LET(ey, f2) € T2
LETNF2 : Ile;:tm.Ilf;:tm — tm.I¢: ty — ty — sty.Ilry : ty.
(IIty : ty 102, : ty.e; € @(t,)(3)) —
(Iz : tm.(z €x Y(Aty @ ty. V(A2 2 ty.¢(t1)(£2)))) — (folz) € 1)) —
LET(e3, f2) € 72

10

http://ty.fi

The adequacy theorem is similar to that of the encoding of the basic system, except that
it is stated once for each choice of parameter n € w. That 1s, we establish a compositional
bijection between derivations in the infinitary calculus with maximum “degree of polymor-
phism” n and canonical LF terms of appropriate type in the prefix of the above signature
including lef rules up to degree n.

The finitary natural deduction formulation of the normal form calculus may be directly
transcribed into LF by proceeding along standard lines, as follows: '

€ : tm — ty — Type
€7 : tm — sty — Type
Ec : tm — sty — Type
ABSNF : Iimy @ty : ty I0f : tm — tm.
(Iz : tmax €5 tmy — fz €12} — A(f) E m—rg
APPNF : Ile; : tm.Iey : tm.Im ¢ ty.Ilr; : ty.
(e1 € i—>7) — (e2 €1) — (€1-€2 € 73)
LETNF : Ile; : tm.Ilfy : tm — tm.Iloy : sty Ilm : ty.
e1 E¢ oy — (llz : tm.(z €1 07 — (fa(z) € 1)) —
LET(ey, f2) € 72
INSTNFL : Hle:tmIr:tye€;fir—e€r
INSTNF2 : Ie: tm.07: ty.Il¢: ty—sty.e €1 V(¢) — e €1 ¢(7)
GENNF1l : He:tmHOr:tye€r—e€eg 7
GENNF2 : Ile: tm.H¢: ty—sty.(Ilt: ty.e €Eg @(t)) — e €c V()

The adequacy of this signature may be stated as follows.

Proposition 3.2 For any contezt T’ representing a typing contezt T; E, there is a compo-
sttional bijection between proofs of € € T (resp., e € 0, € €c &) in the finitary, natural
deduction presentation of the normal form calculus and canonical LF terms of type e* € 7°
(resp., e* €; 0*, €* €¢ ¢*) in contezt T,

The use of multiple judgements in this encoding ensures that derivations have a restricted
form determined by the syntax of the expression. However, it still suffers from the deficiency
that the rules do not constrain the “degree of polymorphism” to choose for a lei-bound
expression. In particular, it is legitimate to choose an excessively precise type for the identity
function, and this can lead to failure of type checking. From an operational point of view, this
means that the Elf interpreter would be forced to backtrack until all choices are exhausted.
This leads us to consider a more restricted version of the normal form calculus that ensures
that principal types are chosen for let-bound expressions.

4 The Algorithmic Calculus

One application of normal-form calculi is in the proof of syntactic completeness of a type
checking algorithm: since the algorithm constructs only normal form derivations, it ought
to be relatively straightforward to prove that it is complete with respect to the normal form
calculi. However, this is not so since the algorithm constructs derivations of an even more

8!

restricted form than the normal forms of the last section. For example, in the lef rule there
is no requirement that the type of the let-bound expression be taken as general as possible,
whereas the algorithm will clearly do so. Thus, there is not a complete correspondence
between the normal form calculus and the derivations built by the algorithm. To achieve
this correspondence we consider a further refinement of the normal form calculus, called the
algorithmic calculus. Such algorithmic systems are employed in the definition of Standard
ML [MTH90]. They have the advantage that they specify quite precisely the compile-time
elaboration without getting involved in the details of a type checking algorithm.

4.1 Sequent-style Presentation

There are two sequent-style presentations, corresponding to the infinitary and finitary vari-
ants of the normal form sequent systems.
The first is obtained by replacing the rule s-LET-NF by the following rule:

T, t1,.. it E>e1tmy T, E,2:¥ty... b1 > ey 7y
T:E> letz=ejine;: 1y

(11) (s-LET-A)

where the side condition (1})is
t1y.. 3t €T, 2 € dom(E), T C FTV(E)

The condition ' € FTV(FE) ensures that the universal closure is maximal, since we know
in general that FTV(E) C T, and hence no type variable in T is dischargeabie.
It is easy to see that this rule is essentially equivalent to the more familiar

T:E>»e:mn T.E,z:Clp.p(m1) > ez : 7y
T E > letz=e,ine; : 73

(z € dom(E)) (S-LET-A’)

where Clr,z(1) is the usual polymorphic closure operation yielding the most general gen-
eralization of 7; compatible with T and E. (The only difference is in the handling of the
variable sets.)

There are two formulations based on the use of auxiliary typing judgements. The first is
a more-or-less direct expression of the side condition on T used above:

FTV(Ey;,E>»ce;:09y T;E,z:01> e3:73
T:;E > letz=eyine; : 1y

(s-LET-A’"")

The restriction of the available type variables in the first derivation to those occurring free

in E ensures that o, is most general, for otherwise ¢, would involve a free type variable
not bound in E, contradicting the property that all such type variables occur in the type
variable set.

This formulation leans heavily on the sequent-style presentation of the calculus in which
we regard the type set and the type environment to be an “input parameter” of the type
system. This approach does not lend itself to formalization in LF, and we therefore consider
an alternative approach employing a “post-hoc” auxiliary judgement, T'; E >> o witnessed:

12

T E>»ce o T, FE > oy witnessed T E,zi01 > €311y
T,E>» letz=eyiney : 7y

(s-LET-A")

The intention of the second premise is to ensure that every free type variable in sigma
is “witnessed” by some typing assumption in E (i.e., occurs in the type scheme assigned to
some variable by F). This judgement may be formalized as follows:?

T E>»yzr:o
T, FE > o witnessed

(S-VAR-WIT)

T,E > t r witnessed
T; E > 7 witnessed

(s-LIFT-wWIT)

T;E > Vi.c witnessed T;E > r witnessed
T E > [7/t)o witnessed

(S-ALL-WIT)

T, FE > my—7, witnessed
T; E > 1, witnessed

(S-ARR-WIT-L)

T; E > 1y—7; witnessed
T; E > 7 witnessed

(S-ARR-WIT-R)

-WIT-B
T; E > b witnessed (s-wir-B)

T; E > 7, witnessed T; F > 1y witnessed
T, E > 1,—7; witnessed

(S-WIT-ARR)

T;E > 7 witnessed
T; E > {17 witnessed

(S-WIT-LIFT)

T,t; E,z:t > o witnessed
T; E > Yt.o witnessed

(t€7T, z ¢ dom(E)) (8-WIT-ALL)

In the rule S-WIT-ALL the purpose of the “spurious” variable declaration z:t is to ensure
that ¢ is note regarded as “close-able” in the subderivation.

The rule s-VAR-WIT makes use of a sequent T; E > x z : ¢ which is axiomatized by the
single rule

T ESizsio (E(z) = o) (S-LOOKUP)

We may not replace 3>y with either > 1 or 2> since it is imperative that o be precisely the
type scheme bound to the variable z by E.

1Strictly speaking, there are two “witnessed” Judgements, one for types and the other for type schemes.

13

The purpose of rules 5-VAR-WIT through S-ARR-WIT-R is to allow for a type expression
assigned to a variable to be decomposed into component parts, which may then be re-
assembled using rules S-WIT-B through s-WIT-ALL. For example, if z is assigned the type
scheme fi(t—t) for some type variable ¢, then we should be able to determine, on this basis,
that ¢ is witnessed, and that t—t—t is witnessed as well. If we are willing to make use of a
meta-level operation FTV (o), then we may replace rules S-VAR-WIT through S-ARR-WIT-R
with the rule '

T:E>»yzx:o
T: E > t witnessed

(t € FTV (o) (s-VAR-WIT’)

The more detailed axiomatization is preferable since it avoids use of such a non-trvial oper-
ation.

4.2 Encoding in LF

The algorithmic formulation based on “witnessed” judgements may be readily adapted to a
natural deduction setting, and hence may be directly encoded in LF. We omit presentation
of the natural deduction calculus in favor of the LF encoding. The signature, Xpmarc is a
modification of the signature of the normal form calculus, and is defined as follows:

€ : tm — ty — Type
€7 : im - sty — Type
€g : tm — sty — Type
Ex 1 tm — sty — Type

witnessed, : sty — Type
witnessed; : ty — Type
APP : Hej, e :tmIn,m:itme €En—om —e €M o e-E€ET

ABS : If :tm—tmIn,n:ty.(Hz:tmz €x i1 — fz €m) — Mf) € n—mn
LET : Ie:itm.If: tm—tm.o : sty 7 : ty.
e €c o — o witnessed, = (Hz:tm.z €x ¢ = fx € 7) = LET(e, f) €T
LOOKUP : He:tmlloc:stye€xoc—e€10
INsT1 : He:tmIr:tye€;ftr—e€rT
INST2 : He:tm.I¢: ty—styIlr : ty.e €; V(¢) € e €1 ¢(7)
GEN1 : He:tmIr:tyecrt—e€ctr
GEN2 : Ie:tm.Il¢: ty—sty.(Ilt : ty.e Eg (1)) — € €¢ V($)
VAR — WIT : Ile:tm.lle: sty.e €x 0 — ¢ witnessed,
LIFT — WIT : I :ty.{| T witnessed, — T witnessed,
ALL — WIT : L¢: ty—sty.Ilr: ty.V($) witnessed, — T witnessed; — o(1) witnessed,

ARR — WIT — L : 17,7 : ty.1y— 7, witnessed, — 71 witnessed,
ARR — WIT — R : In, 7 : ty.1y—7; witnessed; — T2 witnessed,
WIT — B : b witnessed, (b€ BT)
WIT — ARR : IIm, 7 : ty.7y wilnessed; - T2 witnessed, — T —T; witnessed,

WIT — LIFT : II7: ty.7 wilnessed, — f} 7 witnessed,
Wi —ALL : I¢:ty — sty.(It : ty.t witnessed; — ¢(t) witnessed,) — V() witnessed,

14

The statement of the adequacy of this encoding is similar to those given above. We have
only to note that we consider canonical LF terms of judgement type in contexts of the form

tiity, ..., taity, x1itm, 2:2y €x 0F,. .., Thitm, Ty €x O}

in the above signature. Note that in the case of the let rule the typing context of the first two
premises is the same, ensuring that we have correctly captured the notion of “witnessed” ex-
pressed in the sequent formulation. In essence, the adequacy theorem is stated for a sequent
formulation of LF, and hence we can achieve the degree of hypothesis control required.

It is worth noting that canonical LF terms of judgement type in the above signature
and suitable context determine canonical LF terms of corresponding type in the signature
of the normal form calculus and corresponding context: we simply have to “forget” the
terms encoding proofs that certair type schemes are “witnessed.” Thus we may regard
the algorithmic calculus as a kind of “meta-calculus” for the normal form calculus, limiting
derivations to those that would be constructed by a type checking algorithm.

Unfortunately, this encoding does not itself determine a reasonable type checking algo-
rithm (in the sense of Elf), since search would be wildly undirected. For example, to type
check a let expression by a direct operationalization of the above rules would entail “guess-
ing” a type scheme for the let-bound expression, and checking both that it is a legal type
scheme for the expression, and that it is fully general. This is clearly unreasonable, and
may be taken as evidence that the overall approach is in doubt. For here we have a com-
pletely deterministic formulation of the calculus whose only known encoding in LF incurs
an excessive overhead from the point of view of an Elf-like interpreter.

One possible solution to this difficulty is to ignore the “declarative” formulation of the
algorithmic calculus in favor of a direct operational extension to EIf that allows us to control
the search for a normal-form derivation in such a way that only “algorithmic” derivations
may be constructed. Pfenning has considered such an extension, which may be summarized
as follows. The crucial idea is to recall that EIf employs higher-order unification to con-
struct derivations in the LF A-calculus. Since the unifier enumerates only maximally general
substitutions, we are guaranteed that if EIf constructs a derivation of e € 7, then r is not
over-committed: it will contain “logic variables” of type ty, corresponding to the generic
type variables of ML. These logic variables may then be discharged (by repeated use of II-
introduction) to achieve an LF type with all free variables of type ty bound by the outermost
sequence of II’s. Given this, we may then apply the rule GEN2 repeatedly to “convert” these
II’s to ¥’s, and achieve a most general typing (in the sense of ML). Finally, we may continue
typing the body of the let expression, taking the result of the foregoing process as a new
hypothesis. This sequence of operations is expressed in Elf using a special control construct,
called “resolve”, that allows for the specification of such generalization and forward-chaining
operations. Although this extension is sound (in that only correct derivations can be con-
structed) it appears to have no logical basis, much as the “cut” operator of Prolog has no
logical correlate.

4.3 A Modal Alternative

The encoding of the algorithmic formulation of the Damas-Milner calculus is based on re-
quiring a certain “maximality” criterion to be fulfilled, namely that the typing derivation

15

of a let-bound expression be “maximally discharged” with respect to type variables. This
pattern seems to come up in several different formal systems. For example, one reading of
the rule of necessitation in a Hilbert-style formulation of S4 modal logic is that the proof
of the premise is required to be “maximally discharged” with respect to non-logical axioms.
That is, if we have a proof of ¢ from the non-logical assumption ¥, we may not infer O¢. The
best that we can do is to “discharge” the assumption % (by an application of the deduction
theorem) to achieve a pure proof of ¥ D ¢, from which we may conclude O(% D ¢). Similar
maximality criteria arise in other settings as well. It therefore makes sense to consider to
what extent it might be possible to enrich the LF type theory so as to admit specification
of such conditions. We might also hope to provide a logical basis for the non-logical control
construct described at the end of the previous section. It should be made clear at the outset,
however, that the proposed extension is extremely speculative: we mention it here only as a
indication of a possible future extension to LF.

As a first approximation, we consider a “modal” type constructor Wr(4), where T is a
type. The rough idea is that Wr(A) is inhabited by wr(M) only if A is inhabited by M
and every free variable of type T in M is “witnessed” in the sense that it occurs free in
the context. Using this modality, we may express the algorithmic version of the let rule as
follows:

let : ey : tm.If;: tm—im.leo @ sty Iln : ty.
We (e €¢ oy) = (Hz : tm.z €1 01 — fz € 1) — let(er, f2) € 7

Bearing in mind the shape of the contexts considered in the adequacy theorems above, it
is easy to see that the modality correctly enforces the “maximality” condition on the typing
of e;.

Similarly, the rule of necessitation might be expressed as follows (using an extended form
of W in which the subscript is allowed to be an arbitrary family of types):

Nee : T : 0. Wirue (true(d)) — true(0(e))

The adequacy of this ecoding is proved by considering contexts containing assumptions
of the form z : true(¢), for non-logical axioms, and y : valid(4), for logical axioms. In such a
context, the modal operator correctly limits derivations to those in which all no use is made
of any non-logical axiom. The side condition on the necessitation rule is therefore met, and
the adequacy of the encoding follows.

Before pursuing the question of the status of the putative modal extension of LF, we cught
to consider reasons for considering it. After all, in both the polymorphic type assignment
system example and in the modal logic example, encodings into “straight” LF are known.
The most obvious answer is that the whole point of LF is to try to isolate the commonalities
of a variety of formal systems so that they may be implemented once and for all. Since there
are two examples, perhaps there are more In a slightly different direction, it might
be hoped that by considering such an extension to LF we might provide a logical basis for
constraining the search space associated with the signature so as to ensure that the type
checking algorithm is well-behaved. '

Unfortunately, this does not seem to be the case, as we now explain. The side condition
on the applicability of the introductory rule for the modality Wr(A) requires that we first

16

find a term of type A4, and then check that it satisfy the condition that every variable on
which it depends be witnessed. If implemented naively, this entails as much overhead as is
implied by the explicit formulation of the “witnessed” judgement of the previous section.
(In fact, we might hope for a reductive explanation of W in terms of pure LF by generating
suitable “witnessed” judgements that must be fulfilled whenever the W modality is used.) A
slightly more sophisticated implementation would proceed as follows. To find an element of
type Wr(A) in a context I, find an element of A in the context I'\T, the context obtained
from T by striking out all declarations of “unwitnessed” variables of type 7.2 Should the
subgoal succeed, the proof is guaranteed to satisfy the side condition on the introductory
rule for Wr(A4). Thus, the post-hoc verification of the condition is avoided, but we are
nonetheless left with an undirected search space since the interpreter would still have to
“guess” the degree of polymorphism appropriate for typing the first premise of the let rule.
In the end, the modal approach is no better than the encoding given in the previous section.

5 Conclusion

We have presented three main variations on the Damas-Milner type assignment system,
and considered their formulation in LF. Although each admits a relatively natural encoding
in LF, none of these encodings is suitable for direct execution as an Elf program. This
lends credence to the belief that even in such a restricted setting, meta-programming is
unavoidable. In Elf this takes the form of employing non-logical constructs to guide search.
In a tactic-based implementation such as Lego [LPT89], it is necessary to write ML programs
to specify both the search strategy and the algorithm for matching inference rules with terms.
Two rather different approaches are worth mentioning. One very natural approach is to
avoid altogether the formalization of type assignment, and instead consider a language with
explicit type information attached to programs, relying on general “argument synthesis”
mechanisms [Hue86, CH88, LPT89, ElI89, Pfe89] to help overcome the excessive verbosity
of explicitly-typed terms. Although it appears that one cannot completely recover the ML
type checking algorithm in this way, there is empirical evidence to suggest that this approach
suffices in practice. Moreover, this general strategy is much more widely applicable, since
most type systems do not appear to admit simple, complete inference algorithms. Another,
particularly clever, appoach was proposed by Miller and Hannan: rather than encode type
schemes and polymorphic generalization and instantiation, they suggest an encoding of the
typing rule for let that amounts to replacing let-bound variables with their definitions, but
without incurring the cost of performing the replacement. The idea is to type check the
body of a let expression under the assumption that the bound variable takes on whatever
types the expression bound to it may take. In LF notation this is expressed as follows:

LETMH : Ile; :im.If; i tm — tm.In : ty.Ilr, : ty.
er€En - (Oe:tm(Or:tye; €Er—z€7)> frLzen)—
LET(ey, f2) € 72

2The fact that I\T is well-formed is tantamount to the strengthening properiy of typing whose status in
this system is unclear.

17

http://im.II/2

Operationally, this amounts to re-type-checking the expression €; for each occurrence of z,,
allowing a distinct type to be chosen for each occurrence. In this way polymorphism is
retained, but without introducing type schemes and the associated problems. The typing
premise for e; is included only to ensure that e; is well-typed, even if the let-bound variable
is never used.

References

[AHMS87]

[BHSS)

[CDD*85)

[CDDK86)

[CHSS]

[DM82)

[El8Y]

[FM88]

[HHPS7)

[HHP89)

Arnon Avron, Furio Honsell, and Ian Mason. Using typed lambda calculus
to implement formal systems on a machine. Technical Report ECS-LFCS-87-
31, Laboratory for the Foundations of Computer Science, Edinburgh University,
June 1987.

Rod Burstall and Furic Honsell. A natural deduction treatment of operational
semantics. Technical Report ECS-LFCS-88-69, Laboratory for the Foundations
of Computer Science, Edinburgh University, November 1988.

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, Laurent Hascoet,
and Gilles Kahn. Natural semantics on the computer. Technical Report RR 416,
INRIA, Sophia-Antipolis, France, June 1983.

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, and Gilles Kahn.
A simple applicative language: Mini-ML. In 1986 Symposium on LISP and
Functional Programming, 1986.

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information
and Computation, 76(2/3):95-120, February/March 1988.

Luis Damas and Robin Milner. Principal type schemes for functional programs.
In Ninth ACM Symposium on Principles of Programming Languages, pages 207-
212, 1982.

Conal Elliott. Higher-order unification with dependent function types. In Pro-
ceedings of Rewrtting Techniques and Applications, Chapel Hill, NC, April 1989.
(To appear).

Amy Felty and Dale Miller. A metalanguage for type checking and inference.
Manuscript, November 1988.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Second Symposium on Logic in Computer Science, pages 194-204,
Ithaca, New York, June 1987.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. Technical Report CMU-CS-89-173, School of Computer Science, Carnegie
Mellon University, January 1989. Revised and expanded version of {HHP87],
submitted for publication.

18

'HM88)

[Hue86]

[LPT89]

[Mar82]

[Mas87]

[MTHO0]

[Pie89]

John Hannan and Dale Miller. Uses of higher-order unification for implementing
program transformers. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic Programming: Proceedings of the F ifth International Conference and Sym-
posium, Volume 2, pages 942-959, Cambridge, Massachusetis, August 1988. MIT

Press.

Gérard Huet. Formal structures for computation and deduction. Lecture notes
for a graduate course at Carnegie Mellon University, May 1986.

Zhaolui Luo, Robert Pollack, and Paul Taylor. How to use lego: A preliminary
user’s manual. Technical report, Laboratory for the Foundations of Computer
Science, Edinburgh University, April 1989.

Per Martin-Lof. Constructive mathematics and computer programming. In Sizth
International Congress for Logic, Methodology, and Philosophy of Science, pages
153-175. North-Holland, 1982.

Jan Mason. Hoare’s logic in the LF. Technical Report ECS-LFCS-87-32, Hcs,
June 1987.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

Frank Pfenning. Elf: A language for logic definition and verified metaprogram-
ming. In Fourth Symposium on Logic in Computer Science, June 1989.

19

