
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Integrating Demand and Supply Management --Some
Software Issues

by

Sarosh Talukdar

18-16-90 C§3

INTEGRATING DEMAND AND SUPPLY MANAGEMENT-SOME
SOFTWARE ISSUES

Sarosh Talukdar
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh,

PA 15213, USA

This work has been supported by the Engineering Design Research
Center, an NSF Engineering Research Center.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH PENNSYLVANIA 15713

INTEGRATING DEMAND AND SUPPLY MANAGEMENT-SOME SOFTWARE
ISSUES

Sarosh Talukdar
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh,

PA 15213, USA

ABSTRACT
This paper lists some of the architectural and
control alternatives that should be considered
in seeking to integrate software for demand and
supply management. The paper also describes
FORS, an environment for implementing these
alternatives. FORS treats both procedures and
data sets as objects. A visual programming
interface is provided for the manipulation of
these objects. The interface shields the user
from much of the drudgery of building and
using systems for distributed problem solving.

INTRODUCTION
Computer hardware grows in raw capability at
an average rate of several percent per month.
In contrast, energy management systems
(EMS's) change at much slower rates, often
taking decades for major upgrades and the
incorporation of new technologies. One of the
main reasons is that EMS software is not
organized for expansion. Adding now programs
and computers is difficult, especially if they
come from different vendors.

Besides expansion, organizational factors exert
large, often dominant effects on a system's
computational capabilit ies-what it can
compute and how fast-as well as the ease and
effectiveness with which humans can interact
with the system. Now that efforts to automate
distribution systems and demand management
have gained significant momentum, and ways to
integrate these schemes with supply
management (EMS's) must be considered, it is
time to revisit the issue of how all this
software ought to be organized.

Are there formal techniques for optimizing
organizations of software or, for that matter,
any other type of information processing
agents? Unfortunately, the answer is "no."
Most of the relevant knowledge has been
collected from the study of human

organizations. This body of knowledge tends
more to guidelines and case studies than formal
synthesis, optimization and analysis
techniques (see, for example, [1]).
Therefore, the person who wishes to design a
good software organization must rely heavily
on analogy, intuition and judgment. The
purpose of this paper is to aid such a person in
two ways. First, by listing the major
categories of organizational alternatives that he
or she should consider. And second, by
describing a framework, called FORS, for
implementing these alternatives.

ORGANIZATIONAL ALTERNATIVES
Human and software organizations for
information processing have a great deal in
common. For the time being, we will not
distinguish between them. The main parts of an
information processing organization are shown
in Fig.1 and its elements defined below.

Terminology
• Agents and organizations. An agent is a
person or program capable of performing
information processing tasks. An organization
is a collection of agents that collaborate in
performing a complex task. Collaboration
means the exchange of raw or processed data.
• A r c h i t e c t u r e : the command and
communication structure of an organization.
The architecture determines who reports to
whom, who may communicate with whom, and
who has access to what resources.
• Hierarchy: an architecture with two or
more levels in its command structure. A simple
hierarchy has just two levels. Blackboards, as
used in many artif icial intelligence
applications, are an example of a simple
hierarchy in which a planner or scheduler
determines which programs will have access to
the blackboard and when.
• Hetrarchy: an architecture in which all the
agents have equal status, as is the case in an

ORGANIZATION

COMPONENTS

• Agents
• Communication Links
• Databases

ARCHITECTURE

I

HIERARCHICAL
• Simple
• Complex

CONTROL

I

HETRARCHICAL
• Homogeneous
• Heterogeneous

SYNCHRONOUS
• Decomposition

Based
• Holistic

ASYNCHRONOUS
• Decomposition

Based
• Holistic

Fig. 1: An Information Processing Organization
artificial neural net and almost the case in
many insect societies.
• Control: the standards and policies that
determine how an organization goes about doing
its work. For instance, control policies
determine how tasks are allocated to agents,
how deadlines for the completion of tasks are
set, when agents must communicate with one
another, and what is to be done when things go
wrong.
• Synchronous control: a collaboration
scheme in which information exchanges occur
at predetermined staging points [2J. An agent
must wait at each of its staging points until all
the prescribed information exchanges have
been completed. Most existing software
organizations use strongly synchronous control
schemes. Human organizations, in contrast,
gain much of their power and especially their
ability to handle contingencies, from the use of
asynchronous approaches.
• Asynchronous control: a collaboration
scheme with no staging points. Agents working
in parallel exchange information spontaneously
or whenever they can, rather than at
predetermined points [2J.
• Decomposition-based-control: any
approach that relies on breaking the overall
task into loosely coupled subtasks, i.e. a
divide-and-conquer approach.
• Holistic control: any approach in which
the overall task is left essentially intact while
it is worked on by a team of agents.
• Contingency: an unplanned event, such as a
line-to-ground fault, whose occurrence could
have bad effects.

In power systems, as in other forms of
engineering, we use a wide variety of
specia l ized data structures and
representations, such as single line diagrams
and load flow equations. Each of these
structures will be called an "aspect** of a
power system. More specifically, an aspect
constitutes a view, model or partial description
of the function, structure or behavior of a
power system.

Any computational process can be thought of as
tracing a path from a set of given or initial
aspects, through a series of intermediate
aspects, to a goal aspect. For example, the
computational path of a load flow begins at
aspects capturing the topology of a network, the
impedances of its branches, certain given
values at its load and generator buses, and an
initial guess for the values of the network state
variables (essentially, bus voltages and line
flows). The path ends at an aspect containing
converged values of the state variables, in
between, it passes through aspects containing
progressively better approximations to the
state variables, obtained by Newton-Raphson
iterations. To represent and help visualize such
paths we define three new terms: aspect-
spaces, operators and TAO graphs (3). |4). An
aspect-space is a class of aspects, for
instance, the class of all possible load flow
results for networks with 2000 or less buses
(which happens to be the state space for these
networks). An operator is an agent whose
purpose is to transform points of one aspect-

space into those of another. (In the load flow
example the main operator is a Newton-
Raphson algorithm* At each iteration it maps a
point from the state space into another point in
the same state space.) A TAO graph is a
directed and/or grapfr whose nodes represent
aspect-spaces and whose arcs represent
operators. All the computations made possible
by a set of operators are represented by paths
in the associated TAO graph. Cycles represent
opportunities for iteration. Disconnected sub-
graphs represent isolated computational
processes with no means of communication.

Good Software Organizations
What are the properties of a good software
organization? Two are given below.
1. Flexibility, meaning the easy addition of
new operators and aspect-spaces so existing
functions can be readily upgraded and entirely
new functions can be seamlessly integrated
with existing functions. In TAO graph terms,
this integration problem is equivalent to
building paths to connect what would otherwise
be isolated sub-graphs. A good organization
would allow these paths to be easily built. For
example, think of an existing package of
programs written in Fortran and resident in
computers built by vendor-X. Suppose the
outputs of these programs are to drive a new
package of expert systems written in OPS-83
and resident in computers built by vendor-Y. A
good organization would make it possible to
easily produce software that would overcome
the hardware and language incompatibilities of
the two packages.
2. Effective contingency handling, meaning that
a good organization will recover from the
contingencies that plague computational
processes such as errors, missing data,
convergence* failures, and getting stuck in a
local optimum.

Remarks
What architectures and control strategies
should be employed to obtain good software
organizations? As pointed out earlier, there
are no definitive answers.

Human organizations are by far, the most
capable organizations known and therefore,
models after which software organizations
might be patterned. From an architectural
point of view, human organizations are notable
for their use of complex hierarchies and

powerful facilities for lateral relations
(collaborations among agents at the same level
[1J, [5J). From the viewpoint of control,
human organizations are notable for their use
of distributed problem solving for tasks of all
levels of complexity, and some of the most
productive human organizations [13] rely
heavily on asynchronous, holistic or team-
based approaches for tasks of medium to low
complexity.

I suspect that complex hierarchies can be
effective only if they are staffed with agents
far more intelligent than we can make
programs today. This leaves simple hierarchies
and hetrarchies as options for software
organizations. Both are good options but the
latter has been under exploited even though it
has great potential. Computational processes at
the level captured by a TAO graph are
heirarchical. It should be easier to implement
such processes in organizations or sub-
divisions of organizations that are also
hetrarchical.

Aside from complex hierarchies, all the
architectural and control features from which
human organizations draw their strength would
seem useful to organizations of less intelligent
agents, and therefore, should be included in the
techniques used by the designers of software
organizations.

Turning now to the two properties of a good
organization listed earlier, note that at
present, flexibility in software organizations
is limited by incompatibilities among the
programming languages, operating systems and
computers that are in use. Therefore, the first
step in increasing flexibility is to develop
environments that can overcome these
incompatibilities. A prototype of one such
environment is described in the next section.

Many techniques for contingency handling have
been described in the literature (see, for
example, [1], [2], [5], [13]). Four
recommendations constitute their essence:
• provide alternate computational paths so that
an obstacle along one path does not bring all
progress to a halt;
• strengthen the lateral relations among agents
so they can better collaborate;
• make provisions for spontaneous and
opportunistic collaborations (asynchronous
control) so that "mid-course corrections" can

be easily made;
• use team-based approaches to pool knowledge
and capabilities as well as to reduce the chances
of any one agent becoming indispensable.

FORS
FORS is an aid for building software
organizations. It provides the means for
assembling arbitrary architectures and
implementing arbitrary control strategies. The
rationale is that no single type of architecture
or control strategy can suit all situations, and
therefore, it is best to allow for the variety of
alternatives listed in the previous section. In
addition, FORS has the following features:
• facilities to easily interconnect programs
written in different languages and resident in
different types of computers.
• object oriented approaches to both operators
(tools) and aspects (data). There is a
symmetry between these entities in many, if
not most, engineering problems that is
maintained in FORS. In contrast, other
organization building aids tend to be biased
either in favor of tools or data.
• a visual programming interface that is
almost self explanatory, and shields users from
details in which they have no interest. In
particular, users can set up and run serial or
parallel processes without having to bother
with how programs are actually invoked or
where they reside.

FORS is built on top of an older set of aids
called DPSK. In the following material we will
first describe DPSK and then FORS.

DPSK (Distributed Problem
Solving Kernel) [5], [6]
DPSK provides the organization builder with a
small set of primitives. These primitives have
been designed to be inserted in the instructions
of an expandable set of languages. Presently,
the set includes C, Lisp, Fortran and OPS5.
With the primitives, organization builders can
readily synthesize all the alternatives from the
preceding section and thereby, assemble
arbitrary organizations composed of agents
written in a variety of dissimilar languages,
and distributed over a network of computers.
Theoretically, the numbers of programs and
computers can be arbitrarily large.

DPSK itself is written in C for networks of
computers running Unix. Internally, DPSK

employs a shared memory that is distributed
over the participating computers.

Primitives
DPSK contains 12 primitives that can be
divided into four categories -commands,
synchronizers, signals, and transactions. The
command primitives are used to activate and
control programs. An agent can "run,"
"suspend," "resume/ or "kill" other agents in
any of the processors in the network. This also
allows any number of program clones to be
created and run in parallel.

The synchronization primitives are used to
create and check for the occurrence of "events"
and thereby, implement synchronous control
strategies. For instance, to ensure that an
activity X in agent A finishes before agent B is
allowed to begin, one would insert primitives
in agent A to assert the event X, and in the
beginning of B, to wait for the assertion of X.

The signal primitives are used to signal the
occurrence of a contingency or to interrupt the
execution of preselected groups of processes
and cause them to execute portions of their code
designated for exception or contingency
handling.

Transaction primitives are used to structure
and access the shared memory.

FORS (Flexible Organizations)
FORS is an object-oriented framework for
integrating tools and data. FORS comprises two
major entities: data-objects and tool-objects.
In addition, FORS addresses the issue of control
and has an icon-based interface suitable for
both novice and expert designers.

Data-Objects
Each data object can store one or more aspects.
FORS allows an expandable library of data
objects. Data objects have facilities to handle
functions such as translation from one format
to another, editing, browsing, and error
detection and correction.

Tool-Objects
FORS allows for an expandable library of tool
objects. Tools may be written in a number of
languages. Currently, the list includes C,
FORTRAN, LISP and OPS5. Each tool object
contains a template to describe the principal

characteristics of the tool, for example,
specifications for input and output and which
machine it resides on. Tools may be run in
parallel regardless of where they are located.

Interface [7], [11]
FORS provides a multi-window graphical user
interface, where the tool and data objects are
represented by icons. Each window and icon in
turn, have various menus and methods attached
to them. This type of a visual interface hides
the lower level systems details concerning the
tools and data, allowing the user to manipulate
them easily.

Status
FORS is very much an experimental package
that undergoes frequent revisions.
Nevertheless, it is being used to build software
organizations for a number of research
projects including CQR, a system for handling
contingencies in electric power systems [10];
ASE, a system for the design of automobile
parts [8], [9]; and IBDE, a system for
designing high-rise buildings [12].

SUMMARY
The software organizations used in power
systems and other engineering domains tend to
be inflexible and poor at handling
contingencies. I suspect that these weaknesses
result from the use of simple hierarchical
architectures and strongly synchronous,
decomposition-based control schemes, to the
exclusion of all other options.

Any computational process is, at its core,
hetrarchical and can be represented by a TAO
graph. When a software organization
replicates this TAO graph in part of its
architecture, then there is a straightforward
and natural mapping between the process and
the organization. If the organization can easily
reconfigure this TAO graph, then its ability to
accommodate different computational
processes, that is, its flexibility, is greatly
increased.

Asynchronous and team based approaches to
control have advantages over strongly
synchronous and decomposition based
approaches. In particular, asynchronous
schemes allow for more opportunistic decision
making and are potentially more robust (better
at contingency handling). Team based schemes

are also more robust, especially for tasks of
medium to low complexity.

A package called FORS has been developed to aid
the builders of distributed software
organizations in implementing their
architectural and control choices. FORS can
accommodate both the traditional and the newer
options, but is especially well suited to
implementing the hetrarchical architectures
captured in TAO graphs. Changes can be made
fairly easily and a visual programming
interface eliminates much of the drudgery of
working with distributed computer systems
and programs written in different languages.

REFERENCES
[1] Shafritz, J. M., Ott, J. S., (editors),

Classics of Organization Theory, Dorsey Press,
1987.

[2] Talukdar, S. N., Pyo, S. S., Mehrotra,
R., "Designing Algorithms and Assignments for
Distributed Processing," EPRI Report EL-
3317, Nov. 1983.

[3] Talukdar, S. N., Westerberg, A. W.f "A
View of Next Generation Tools for Design,"
presented at 1988 Spring National Meeting,
AlChE, New Orleans, LA, March 6-10, 1988.

[4] Talukdar, S. N., Fenves, S., "Towards a
Framework for Concurrent Design,"
Proceedings of the ASME Winter Annual
Meeting, San Francisco, CA, December 11-14,
1989.

[5] Talukdar, S. N., Cardozo, E., "Building
Large-Scale Software Organizations1* in Expert
Systems for Engineering Design, edited by M.
D. Rychener, Academic Press, 1988.

[6] Cardozo, E., "A Kernel for Distributed
Problem Solving," Ph.D. Thesis, Department of
Electrical and Computer Engineering, Carnegie
Mellon University, January 1987.

[7] Papanikolopoulos, N., "FORS: Flexible
Organizations," Masters Project Report,
Department of Electrical and Computer
Engineering, Carnegie Mellon University.
November 1988.

[8] Sapossnek, M., Talukdar, S., Elfes. A.,
Sedas, S., Eisenberger, E., Hou, L, "Design
Critics in the Computer-Aided Simultaneous
Engineering (CASE) Project," presented at the
ASME Winter Annual Meeting, Symposium on
Concurrent Product and Process Design.San
Francisco, CA , Dec. 1989.

[9] Talukdar S. N., Sapossnek, M., Hou. L.
Woodbury, R., Sedas, S., Saigal, S., Jaeger, J.,
"Autonomous Critics," Proceedings of the

Second National Symposium on Concurrent
Engineering, West Virginia University,
Morgantown, WV, February 7-9, 1990.

[10]. Stoa, P., Talukdar, S. N., Christie,
R.f Hou, L., Papanikolopoulos, N.,
"Environments for Security Assessment and
Enhancement," Second Symposium on Expert
Systems Applications to Power Systems,
Seattle, WA , July 1989.

[11]. Vidovic, N., Siewiorek, D., and
Newbery, F., "A Graph Based Environment,"
Technical Report CMU-CAD-87 , 1987.

[12] Fenves S. J., Hendrickson C, Maher
M. I., Flemming U., Schmitt g., "An Integrated
Software Environment for Building Design and
Construction," Computer Aided Design
22(1):27-36, 1990

[13] Dertouzos, M. L, Lester, R. K., Solow,
R. M.f "Made in America," MIT Press, 1989.

