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ABSTRACT

A large number of planning and scheduling problems can be formulated as multiperiod

MILP models which often require substantial computational expense for their sohition. This

paper presents and demonstrates the value of nonstandard formulations of such problems.

Based on a variable disaggregation technique which exploits lot sizing substructures, we

propose a strategy for the reformulation of conventional multiperiod MILP models. The

suggested formulations involve more constraints and variables but they exhibit tighter linear

programming relaxations than standard approaches. The proposed reformulation strategy is

applied to a model for batch scheduling and a model for long range planning. Numerical

results are presented for these problems to demonstrate that - due to their tighter linear

programming relaxations - the reformulations can lead to up to an order of magnitude faster

computational results and make possible the solution of larger problems.
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faster computational results for large problems. This happens because the resulting models

exhibit tighter linear programming relaxation which results in the enumeration of a smaller

number of nodes during a branch and bound search.

The paper is organized as follows. The following section provides the necessary

background by describing the lot sizing problem. This not only serves as an example to

illustrate the variable disaggregation ideas, but it also plays an essential role in the development

of the reformulated planning and scheduling models. In Section 3, we describe the general

structure of a multiperiod planning or scheduling model with fixed and variable costs and we

develop the reformulation strategy based on the observation that lot sizing substructures are

embedded into these models. Sections 4 and 5 present the application of the suggested

technique to the scheduling and the planning problem described above. Theoretical properties

of the reformulations are also given in these sections. Computational results with the new

models are presented in Section 6 where the practical significance of the reformulation becomes

apparent. Conclusions from this work are drawn in Section 7.

2. Reformulation and Lot Sizing

Consider a batch reactor which produces a single product with time varying demand.

Set-up costs are incurred each time the reactor is utilized. Large amounts of product may be

produced at early points in time in order to satisfy future demand. In this case, however,

inventory holding costs have to be paid. The situation leads to a production planning problem

— the lot sizing problem - where the objective is to minimize the sum of the costs of

production, storage, and set-up, given that demand must be satisfied in each of NT time

periods and backlogging is not allowed. For t = 1, NT, let dt be the demand in period r, and

let ct, pr, and hj be the set-up, unit production, and unit storage cost, respectively, in period /.

A common formulation for this problem is obtained (see Nemhauser and Wolsey,

1988) by defining xt and st as the production and storage amounts in period / and by defining a

binary variable yt, indicating whether xt > 0 or not This leads to the model:
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Model LS;

tin 2rf ( Pr xr + nr s/ + ct y* )mm 2 , ( Pr x / + hr s/ + cf Yt ) " (2.1)

st.

s r _ ! + x r = d r +s r r = l , N T (2.2)

xf < co yr r = l , N T (2.3)

s o = O (2.4)

s r , x r > 0 , y r e { 0 , 1} r = l , N T (2.5)

v^NT
where co = ^V_i dr is an upper bound on xt for all t.

Theorem 1 (Wagner and Whitin, 1958). For the lot sizing problem, there always exists a

minimal cost policy with the property that x^ has one of the following values:

0, dr, dt

Based on this result, Wagner and Whitin (1958) developed an efficient dynamic

programming algorithm to search over the above discrete set of solutions to find the optimum

solution of the lot sizing problem. Another alternative is to directly solve the integer program

(LS). In order to efficiently solve this problem, Krarup and Bilde (1977) presented the

formulation which we describe next

By defining q/T as the quantity produced in period t to satisfy the demand in period

x > t, we have:

NT
X qrT r=l,NT (2.6)
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Problem (LS) can then be reformulated in terms of %T and yt as follows:

Model RLS1:

NT NT NT

St.

T r d r r=l ,NT (2.8)

T = l

q r T<d ry r r=l,NT r=r,NT (2.9)

NT(NT+l)/2 x ^

q€ <R+ , y e {0, l } m (2-10)

As mentioned, the variables %T introduced in this reformulation of model (LS) can be

seen as amounts produced in period t in order to satisfy demand for period T> t. This is

depicted in Fig. 1, where we show the problem representation (a) before, and (b) after the

reformulation. It is clear that in (a) we have a fixed charge network. Therefore, the

reformulation in (b) can be derived from the suggestions of Rardin and Choe (1979) for

obtaining tighter relaxations of network flow problems with fixed charges: each variable xr of

the original formulation is now disaggregated into NT-t+1 new variables q/T (r = r, AT). The

variable disaggregation in this case gives not just a tighter formulation but the absolute tightest

one:

Theorem 2 (see Nemhauser and Wolsey, 1988). The solution to the linear programming

relaxation of (RLS1) yields 0-1 values for the y-variables. In addition, the image in the

(x, s, y)-space under the transformation (2.6) of all the points (q, y) feasible in the linear

programming relaxation of model (RLS1) produces the convex hull of model (LS).

It follows from this theorem that, one only needs to solve (RLS1) as a linear program

where the y-variables are relaxed to take values in the interval [0, 1] and obtain the solution to
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the integer program (LS). It is interesting to note that model (RLS1) is not the only possible

formulation exhibiting this property. Based on the work of Barany, Van Roy and Wolsey

(1984), Martin (1987b) used separation algorithms and derived for the lot sizing problem

another alternative formulation for which Theorem 2 holds. In this reformulation, the

disaggregated variable Xtr represents the amount produced in period t in order to satisfy

demand up to period t>t. Martin's reformulation is the following:

Model RLS2:

min 2* ( Vt x / + n / s/ + ct Yt ) (2 1)
r = l

st.

s r - l + x / = d f + s r f = l , N T (2.2)

(2.11)

A-tT /=1 ,NT t=t, NT (2.12)

: CfT yr f = l , N T T=r,NT (2.13)

Xw > C l r /= 1,NT (2.14)
T=l

SO = ° (2.4)

sr, xr > 0 , y, € {0,1} r= l ,NT (2.5)

^rr^O r= l ,NT r=r,NT " (2.15)

where Cn = ^_ dT are upper bounds for the disaggregated production variables Xtr.
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In the above formulation - in contrast to the reformulation of Krarup and Bilde - the

original variables x^ and st are not eliminated; instead the variables x^ are related to the

disaggregated variables ^ th rough the inequalities (2.12).

In addition to models (RLS1) and (RLS2), based on the work of Barany, Van Roy and

Wolsey (1984), Pochet and Wolsey (1988) used the theory of strong cutting planes to derive

yet another formulation for which Theorem 2 is valid. These three, slightly different

representations, differ in the number of constraints and variables they include, and therefore in

their computational efficiency. Of course, efficient dynamic programming techniques are

available to solve the lot sizing problem (Wagner and Whitin, 1958; Zangwill, 1969).

However, the above reformulations are very important when the lot sizing problem is part of a

more complex planning model. The importance of reformulations (RLS1) and (RLS2) will be

shown in the development of Models (Rl) and (R2) of this paper. This development is based

on the observations described in the next section.

3. Strategy for the Reformulation of Multiperiod

MILP Models for Planning and Scheduling

The following is a general multiperiod MILP model:

Model P:

$Y + yj Z + 5?min

s.t.

+ $Yt + yj Zr + 5? Vr) (3.1)

Ar

Er

X,,

Xr

xr

<

z,

+ B, Y, +

AY,

t, v, > o,

Cr

+

Y,

zr

Gr

^ =

+

0

r +

or

Vr

Hr

1

<a,

Vr^b,

Vr

Vr

Vr

Vr

(3.2)

(3.3)

(3.4)

(3.5)

where Ap Bp Cr, Dr, Er, ¥p Gr, Hr, and ap p r, yp 5p ar and br are matrices and vectors of

conformable dimensions, and A is a diagonal matrix of upper bounds. The vector-variables X(
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and Vt represent activities for each time period f, with the former being activated by the vector

Yt of 0-1 variables. The vector variables Zt represent coupling variables between successive

time periods.

Assume that the set of constraints (3.3) is of the form, or can be recast as:

I, = W + xt - dr v ' (3.6)

I, = M, Z, + N, V, + O, Vr (3.7)

d, = f,(X,Z,V) Vr (3.8)

where Mr, Nt are matrices, O^ are vectors and ft are possibly nonlinear functions. In the lot

sizing terminology, equation (3.6) is a mass balance for the inventory (1̂ ) in time period r;

equation (3.7) can be used to express storage constraints; and equation (3.8) defines the

demand (dp.

Observe the similarity of (3.6) and (3.4) to (2.2) and (2.3) respectively. Also observe

the similarity of the objective functions of problems (LS) and (P). Obviously, lot sizing

substructures are embedded in the multiperiod MILP model (P). This suggests the following

strategy for the reformulation of multiperiod MILP models:

Step 1: Identify the presence of constraints similar to (3.6). If necessary,

recast the given problem into that form by constraint manipulations.

Step 2: Disaggregate the variables Xt by introducing new variables Qtt (r > r).

Step 3: Reformulate the problem in terms of the new variables Qtr and the

corresponding lot sizing constraints.

The form of the constraints to be introduced in Step 3 depends on which one of the

different reformulations of the lot sizing problem we choose to use in the second step of the

reformulation strategy. Use of the Krarup-Bilde reformulation will introduce the following

constraints which are similar to (2.6), (2.8) and (2.9):

X, = X 9/T v ' (3.9)
x>t
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Z err = dr Vr (3.10)
r<r
0 r r < dT Yt Vr Vr>r - (3.11)

If one uses Martin's reformulation for the lot sizing problem, the new constraints

should have the following form (similar to (2.12) to (2.14)):

Xr > Qn Vr Vr^r (3.12)

Qn < Cn Yt Vr Vr>r (3.13)

Vr (3.14)
t<t

At a first look, it may seem advantageous to use the Krarup-Bilde reformulation since it

involves fewer constraints. However, if ft in (3.8) are not constants, the demands dt will have

to be treated as variables in the new model. In that case, (3.11) is a nonlinear constraint and

the reformulation would introduce nonconvexities. This difficulty can be overcome as follows:

Case I: If the functions ft are linear, an overestimation of the d-variables can be used in

(3.11) with the Krarup-Bilde reformulation.

Case II: If the functions ft are nonlinear (possibly the result of recasting the problem as a lot

sizing problem), then constraints (3.8) can be ignored by using valid upper bounds in the place

of the dj's in Martin's reformulation. The Krarup-Bilde reformulation cannot be used in this

case since it would yield erroneous results due to the presence of (3.10).

In either of the above cases, the reformulation leads to the following multiperiod MILP

model:

Model R:

min Z (<x?X + p j \ + Y? Zr + 5? Vr) (3.1)
r

s.t.
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At X, + B, Y, + Ct Zt + D, V, < a,

Xt < A Y,

Ir = It.j + Xr - d,

I, = M, Z, + N, V, + O,

Vr

Vr

Vr

Vr

Vr>r

Vr

Vr>r

(3.2)

(3.4)

" (3-6)

(3.7)

(3.15)

(3.5)

(3.8)

(3.16)

>rT,dr) < 0 Vr

Xr, Z,, V, > 0, Yt = 0 or 1

I, > 0

Qn > 0 Vr

dr = fr(X, Z, V) Vr (3.8)

where gt is a linear constraint set which denotes either the Krarup-Bilde constraints in (3.9) -

(3.11), or Martin's constraints in (3.12) to (3.14), depending on which of the available

reformulations of the lot sizing part of the problem is used. No matter what the form of gt is,

the following theorem can be established for the tightness of the LP relaxation of model (R):

Theorem 3. The optimal cost of the linear programming relaxation of model (R) is not lower

than the optimal cost of the linear programming relaxation of model (P).

Proof: Consider any point (X, Y, V, Z, 9) which is feasible in the linear programming

relaxation of model (R). It follows that the point (X, Y, V, Z) satisfies the constraints (3.2) to

(3.5) which define the feasible region of the linear programming relaxation of model (P). In

that case, the feasible space for the linear programming relaxation of model (R) is contained

within the feasible space of the linear programming relaxation of model (P) and the theorem

holds. •

4. Multiperiod MILP Models for Scheduling Process Operations

Consider a general batch processing system where a set of products is to be produced

from a set of feedstocks according to a prespecified sequence of elementary operations (tasks).

The problem has been addressed by Kondili et al. (1990) on the basis of a state-task network
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(STN) representation. Fig. 2 represents a conventional process flowsheet. The corresponding

STN, as given by the above authors, is shown in Fig. 3. An STN has two types of nodes;

namely, the state nodes (s = 1, NS), representing the feeds, intermediate and final products,

and the task (operation) nodes (/ = 1, NO), representing the operations. Each task is described

by a recipe: type and percentage of input and output states, and duration of the processing.

Finally, each of a number of units (/ = 1, NU) is able to perform a number of operations (ze L).

Given are the costs for purchasing feedstocks, processing intermediates, storing

material, and the prices of the products. Also given are bounds for the availabilities of the raw

materials and demands of products for each time period. Constraints on the availability of

intermediate storage may also be specified. The goal is to optimize a given economic objective

function over a short range horizon consisting of NT time periods of the same duration h. This

requires to determine the following items:

(i) the timing of the operations for each unit (i.e. which task, if any, each unit performs at

each time),

(ii) the flow of material through the network (purchases, intermediate storage, sales).

The following notation will be used to describe the model:

Parameters:

a,Yf is the variable part of the production cost of operation i in unity during time

period r,

PJYJ is the fixed part o f the production cost (set-up cost) o f operation / in unit j

during time period r,

y s t is the storage cost for the product in state s and time period r,

bst is the purchase price for the product in state s and time period r,

Xst is the sales price for the product in state s and time period r,

pjTy the proportion of input of task i from state s when task i is executed in unit /;

Pijs ^e proportion of output of task i in state s when task i is executed in unit j\

ICyr maximum storage capacity for state s during time period r,

IT; set of tasks which can be performed by unity;

JU; set of units which can process task i;

Pjy is the duration of operation i in unity;
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lower bound for the purchase of raw material in state s at the beginning of

time period r,

upper bound for the purchase of raw material in state s at the beginning of

time period r,

Sst demand for product in state s at the beginning of time period r,

Ty set of tasks (operations) receiving material from state s;

Ty set of tasks producing material in state s;

Vj-; capacity of unity when performing task i.

Variables:

Ist amount of raw material in storage in state s during time period r,

Pst amount of raw material in state s which is purchased at the beginning of

time period r,

Wzyr is the amount of material which starts undergoing task / in unity at the

beginning of time period r,

Yjjt is 1 if unity starts processing task i at the beginning of time period r, and 0

else.

When the demands for the products are given, the following MILP model can be used

to describe the problem:

Model PI:

I-**** M 7 y ^ ( ct • * WI" -X- R • • \^«« ^ f A i \
nun / A / * ^^ \***ijt ** ijt • rijt * lit) \^» ij

(1st hi + $st Pst - 1st Sst)

J = l ' = 1

s.t.

2, *
/6ly

Yijt *

ijt

1 -

< 1

vy

vy

v w - e n

Vr

y ' ' = ..., t-pfj+i

(4.2)

(4.3)
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0 < Wijt < V,y Yijt Vi Vy Vr (4.4)

0 * *st * lCst v * Vr (4.5)

V5 Vr " (4.6)

X Z Pijs

w( /r V* Vr (4.7)
ieTs j

W /yr, lst, Pst > 0 , Yzyr = Oor 1 (4.8)

The objective in the above model is to minimize the total cost which consists of four

terms: variable and fixed production cost, inventory cost, and the cost for purchasing raw

materials. The last term in (4.1) denotes the sales revenue which is a constant since the

demands Sst are given. Equation (4.2) enforces the condition that at most one operation may

be started at any unit in the beginning of a time period. According to (4.3) no preemption is

allowed: once operation V begins, it may not be interrupted in order to execute any other

operation /. The variable upper bounds (4.4) are used to ensure that an operation may start

only when the corresponding binary variable is assigned a value of one. Zero, finite or

unlimited intermediate storage conditions are imposed through (4.5) while constraints (4.6)

express lower and upper bounds on the availability of the raw materials. Finally, (4.7) is a

mass balance equation between time periods for each state.

Kondili et al. (1990) address a slightly more general problem with the demands being

variables. We have assumed that there are prespecified, time varying demands. This is indeed

the case for a scheduling problem with a short time horizon; the plant has to produce material

according to the decisions of a higher level planning model. Simultaneous planning and

scheduling here would require looking at a long range horizon and therefore introducing a

prohibitively large number of time periods. Also, our model differs to the model of Kondili et

al. in the way the logical constraints are imposed in (4.2) and (4.3). An advantage of this
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formulation is that by using (4.2) the special structure of special ordered sets of type 1 can be

exploited (see Beale, 1979).

For illustration purposes, consider the small example of the batch process described by

the state task network of Fig. 4. There is one feed, one intermediate and two final products

which are involved in three processing tasks (all mass balance coefficients Pijs = pyS = 1 ).

There are three available units and each one is suitable for a different task. Demand is specified

over a short range horizon consisting of 12 time units. The problem data are given in Table 1.

The MILP corresponding to this problem involves 36 binary variables, 97 continuous variables

and 90 constraints. The solution was obtained in 8.6 seconds on an IBM-3090 by solving

model (PI) using MPSX-MIP/370 (IBM, 1988). The optimal schedule with a profit of 3,230

is shown in Fig. 5. The number above each line segment identifies the processing task,

whereas the number below it is the amount of material which undergoes the corresponding

task.

In order to expedite the solution of large problems, Kondili etal. (1990) developed

dominance criteria which reduce the number of nodes to be examined during a branch and

bound enumeration procedure. Here, we present a non-standard formulation in order to tighten

the linear programming relaxation bounds.

Observation

In equation (4.7), the term Sst for the sales is nonzero when (4.7) is applied to those

states which correspond to final products only. Then, for any final product s, (4.7) is:

ht = W-l " s*r + X X Pijs w//>p//5 Vr (4.9).

There is some similarity between (4.9) to (3.6); the only difference is the presence of

more than one production terms in (4.9). Furthermore, (4.9) can be equivalently rewritten as:

Mjst = hjsM - sijst + w / / > p / y , V' /eT 5 /eJU/ (4.10a)

sst = X X Pijs sijst Vr (4.10b).
ieTs jeJJJi
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Now, (4.10a) is identical to (3.6) which suggests that we should disaggregate each one
of the production terms appearing in (4.9). Let us then define ^hx ^ the amount which starts

undergoing operation j in unity at the beginning of time period r in order to satisfy demand for a

subsequent period x>t. The new variables must satisfy constraints analogous to (3.9) to

(3.11):

X * V/ Vr (4.11)

Vr (4.12)

V/,;, t V T > r+p^ (4.13)

where S* is the subset of states in the network corresponding to final products and I* is the set

of operations producing final products. Then the model after the disaggregation of variables

becomes:

II
I j

I «i
r>r

X
V^t-Pijs

Pijs toijn ^ rr^n

Pijs {

\ SsT

®iJTt = $St

> vy 1 Yijt

Vie I*

V^eS*

Model Rl :

min X (MjtVfijt + tojtYijt) (4.1)

s.t.

Yijt * l Vy Vr (4.2)

Yijt < 1 - Y^' V/ VZ/e lTy t' = M , ..., f-p/y+1 (4.3)

0 < W,yf < V,y Y,yr Vi V/ Vr (4.4)

0 < Î r < ICy, V5 Vr (4.5)

PL5f < Pst < PU,r V5 Vr (4.6)
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+ 1 X Pijs ™ij,t-pijs
ieTs je

X Pijs W(/Y V5 Vr (4.7)

= / J (\\::+~ \—/ • _ T *V/eF Vy Vr (4.11)

*V^eS* Vr (4.12)

*Pijs <*ijtT * mi" ( S*T> v y ) % VseS* V/,y, f V T > r + p ^ (4.13)

Wjy,, I 5 / , P 5 , > 0 , Yjyr = Oor 1. (4.8)

• 0 (4.14)

In the above model, one can use (4.11) to eliminate some of the variables and

constraints of the problem. Even when this is done, the new model contains more variables

and constraints. However, this increase in variables and constraints is polynomial in the

number of final products, tasks, and time periods, while at the same time the new model

satisfies the following theorem:

Theorem 4. The optimal cost of the linear programming relaxation of model (Rl) is not

lower than the optimal cost of the linear programming relaxation of model (PI), and it may be

strictly larger.

The first part of the theorem follows as a consequence of Theorem 3, while the second

part will be proved in the section describing the computational results which indeed indicate

that the new relaxation is tighter for all the examples solved. Notice that there is no guarantee

that the reformulation will always yield a tighter linear programming relaxation. In fact, for the

special case where the demand for the products is specified at the final time period t = NT {i.e.
Sst = 0 Vse S* and for t = 1, 2,. . . , NT-1), the disaggregated variables co/;rT take a value of
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zero (from (4.13)) for r = 1, 2,..., NT-1, and t < T. In this case, model (Rl) reduces to the

original model (PI) and the reformulation has no effect.

5. Multiperiod MILP Models for Long Range Planning

A network consisting of a set of NP chemical processes which can be interconnected in

a finite number of ways is assumed to be given. The network also involves a set of NC

chemicals which include raw materials, intermediates and products. The processes will be

interconnected by a total of NS streams to represent the different alternatives which are possible

for the processing and the purchases and sales from NM different markets. It will be assumed

that the material balances in each process can be expressed linearly in terms of the production

rate of a main product, which in turn defines the capacity of the plant

The objective function to be maximized is the net present value of the project over a

long range horizon consisting of a finite number of NT time periods during which prices and

demands of chemicals, and investment and operating costs of the processes can vary. The

operating cost of a plant will be assumed to be proportional to the flow of its main product. As

for the investment costs of the processes and their expansions, it will be considered that they

can be expressed linearly in terms of the capacities with a fixed charge cost to account for the

economies of scale.

In the description of the model, the following notation will be used:

Indices:

i process (/= 1, NP);

t time period {t = 1, NT);

j chemical (jr = 1, NC);

k stream in the network (k = 1, NS);

/ market (/=1,NM).

Parameters:

NP number of processes in the network;

NT number of time periods considered;

NM number of markets;

NC number of chemicals in the network;
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NS number of streams in the network;

I(j) the index set of streams of chemical j which are produced in the complex;

O(j) the index set of streams of chemical j which are consumed in thecomplex;

L} the index set of streams corresponding to inputs and outputs of process /;

m i stream corresponding to the main product of process i (m i e L z-);

Q/Q existing capacity of process i at time t = 0;

^ lower bounds for the capacity expansions;

upper bounds for the capacity expansions;

material balance coefficients characteristic of each process / and stream /r,

(XJY variable term of investment cost [$ / unit of capacity installed];

PJY fixed term for the investment cost [$ ] ;

dm -t unit operating cost[$ / unit of production amount of the main product];

/
Jjt prices of sales of the chemical j in market / during time period t

[$ / unit sold];

/
r^ prices of purchases of the chemical j in market / during time period t

[$ / unit purchased];

NEXP(z) the maximum allowable number of expansions for process i;

CI(r) the capital investment limitation corresponding to period L

Variables:

yit decision variable which is 1 whenever there is an expansion for process / at

the beginning of time period r, and 0 otherwise;

total capacity of the plant of process / which is available in period r,

capacity expansion of the plant of process / which is installed in period r,

Pjt amount of producty purchased from market / at the beginning of period r;

Sjt amount of product j sold to market / at the beginning of period r,

W^r amount of flow of stream k during time period t.

A multiperiod MILP model for the long range planning problem is as follows Sahinidis et al.

(1989):
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Modcl P2:

max NPV = - 2, 2, «*&QEfc + Pay*) - L LSmitWmit _ (5.1)
1 = 11=\ 1 = 1 /=1

/ = 1 7 = 1 ' = 1

S.t.

yl7 Qpf, < QEfc < QE,? y/, ' = LNP ' = LNT (5.2)

Qif = Qi,r-/ + QE/r ' = LNP f = 1.NT (5.3)

z=l ,NP r=l ,NT (5.4)

fMm,-} i = 1.NP r = 1.NT (5.5)

NM . NM

X P+ Z Sy y Wfa y=l,NC r=l,NT (5.6)
1=1 kel(j) /=i keOU)

ayr - ^ - V I ; = 1 N C r = i f N T (5.7)

NT
Yit * NEXP(/) i € r C {1,2, ... NP} (5.8)

NP
2 (<xl7 QBl7+Pft y//) ^ CI(r) re Tc {1,2, ... NT} (5.9)

1 = 1

yit = 0 or 1 i = 1,NP r = 1,NT (5.10)

Py(, Sj, > 0 ( 5 1 D

In equation (5.1), the net present value is defined as the sum of the investment cost, the

operating cost, the sales revenue and the cost for purchasing the raw materials. All the

coefficients are discounted at a specified interest rate and include the effect of taxes in the net
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present value. Constraint (5.2) is a variable lower and upper bounding constraint for the

capacity expansions. A zero-value of the binary variables y^ forces the capacity expansion of

process i at period t to zero, i.e. QE/r = 0. If the binary variable is equal to oner a capacity

expansion between the specified bounds is performed. Equation (5.3) simply defines the total

capacity, Qzr, which is available for process i at each time period t, while Q/Q *S the initial

capacity (zero for nonexisting processes). Constraint (5.4) expresses the condition that the

operating level of a process - expressed in terms of the flow of its main product - cannot

exceed the installed capacity. The material balances in each plant are given by the linear

relations (5.5): the flow of each product is proportional to the flow of the main product of the

process, where ji^ are positive constants characteristic of each process. The material balances

for each chemical in the entire network are given in (5.6) according to which the total amount

of a chemical's purchases from the various markets plus the amounts produced within the

network must be equal to the sum of sales and the total consumption within the network.

Constraints (5.7) express the lower and upper bounds for the availability of raw materials and

the demand of the products. Finally, constraints (5.8) and (5.9) express limits on the number

of expansions of some processes and on the capital available for investment during some time

periods, respectively.

Consider, as an example, a chemical complex involving 10 processes and 6 chemicals.

None of these processes is assumed to have an existing capacity. The network showing all the

alternatives for this complex is shown in Fig. 6. Chemical 6 is to be produced in 4 periods,

each having a length of 2 years and various constraints on the chemical demands and prices.

The corresponding MILP model involves 40 binary variables, 174 continuous variables and

198 rows. The optimum configuration for an instance of this problem considered by Sahinidis

et al. (1989) is shown in Fig. 7 and was obtained by solving model (P2) using MPSX-

MIP/370 (IBM, 1988). The computational requirements were only 2 seconds on an IBM-

3090.

For large process networks, however, the computational expense can be high. For

example, a network with 40 processes, 50 chemicals, 2 markets and 5 time periods would

involve 200 binary variables, and approximately 1000 continuous variables and 1200

constraints. Since most of the alternatives embedded in such a model are feasible, a large
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number of nodes must usually be examined in a branch and bound search. Therefore, there is

a clear incentive to develop efficient computational strategies since this allows the examination

of a greater variety of scenarios with the planning model. Sahinidis et al. (1989) have

compared the performance of several computational strategies including branch and bound,

strong cutting planes followed by branch and bound, Benders decomposition and strong

cutting planes followed by Benders decomposition. For the test problems which were

considered, the combination of integer cuts, strong cutting plane generation and branch and

bound was found to be the most efficient strategy for solving large-scale problems to

optimality.

In order to obtain further significant reductions in the computational effort, we take a

different approach in this paper by developing an alternative formulation for the problem.

Notice that equation (5.3) has the form of constraint (3.3), with Q^ playing the role of the

variables Zr and QEZf taking the role of the variables Xt. Also note the analogy between

equations (5.2) and (3.4). Although inventory variables are not explicitly involved as in

equation (3.6), we propose to disaggregate the capacity expansion variables based on the

following observations.

The Main Observations

Let us assume that, for the long range planning problem, there are zero lower bounds

and infinite upper bounds for the capacity expansions (5.2), no limits on the number of

expansions (5.8) and no constraints on the investment (5.9) - these assumptions will be

removed later in the paper. Refer now to Fig. 6 and imagine for a moment that all flows of

chemicals (Wfo, Pyj, SJt) in the network have been fixed in such a way that material balances

(constraints (5.5) to (5.7)) are satisfied for all time periods. Then every process can be isolated

from the rest of the network and the design problem for each process / becomes: "Find the

cheapest capacity expansion sequence (QE/r, t = 1,NT) that will allow production of the

prespecified flows of chemicals (Wfo, Pyr, Syr)". Mathematically the problem reduces to:
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Mnriel P3-i:

NT

min
NT

s.t.

r=l,NT (5.13)

= Q/r ' = ^ m (514)

r=l,NT (5.15)

QE/r , Q / r > 0, yj7 = 0 or 1 t = 1.NT (5.16)

where U is a large positive quantity.

The objective in (5.12) is to minimize the investment cost of process / for the given

flows of the main product in the right hand side of (5.15). Assume, for a moment only, that

these flows are such that:

Q/0 * W m / 1 < W m . 2 < ... < W m . ) N T (5.17)

By letting:

SQJV = Qit - Wm/f t= 1,NT (5.18)

dit = Wm/f " Wm .> M r= l ,NT (5.19)

and using the convention that Wmjo = Q i 0 , then SQ/r > 0 implies (5.15) and (P3-i) can be

transformed into the following equivalent lot sizing problem:

Model P4-i:

NT

min Z ("//QE/z+^y//) (5-12)

s.t.

< U y / , r= l ,NT (5.13)

= dit + sQit '= LNT (520)
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SQ/O = 0 (5.21)

QE/r , SQ/r > 0, yit = 0 or 1 r= 1,NT (5.16)

In the lot sizing terminology, we can view SQ,-r as the "inventory" of capacity, i.e.

excess of capacity installed at early times in order to serve demand during subsequent time

periods. At the same time, the QE/f's can be regarded as "production" of capacity in order to

satisfy some "demand" for capacity as determined by the flows of the main products (W m ^)

in (5.19). For example, if there is no capacity initially installed and if W m j = (10, 15, 18,

20), then the demand for capacity is: dz/ = (10,5, 3,2). In the general case - when (5.17) may

not hold - this demand for capacity can be obtained as follows:

1) Subtract any existing capacity (Q/Q) fr°m W^r« If positive, let this difference be called

additional required capacity, m /r. Then:

mit = max (0, V/m.t - Qz 0) t = 1.NT (5.22)

2) For each time period f, find the maximum additional cquired capacity during all previous

time periods; this maximum is:

Mit = T ™ « 1
 m*T = max ( M z > 1 , m z > 1 ) t = 1 > N T (5>23)

where mzQ = MZQ =0.

3) The demand, dz-r, for capacity during time period t is the difference between the current

additional capacity requirements (mz-r) and the maximum additional capacity requirements

up to the previous time period (Mẑ ), provided this difference is positive:

dit = max (0, m/r - Mit) t = 1,NT (5.24)

As an example, consider the case where the installed capacity is 3 units and W^^ =

(10, 8, 9, 12). Then it follows from the above equations that the demand for capacity is d/r =

(7, 0, 0, 2). The equivalence of problems (P3-i) and (P4-i) - with the demands d/r obtained

through (5.22) to (5.24) - for values of the flows not necessarily satisfying (5.17) is

established by the following theorem (the proof is given in Appendix A):
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Theorem 5, Problems (P3-i) and (P4-i) have the same optimal solution.

Based on the above theorem, Sahinidis and Grossmann (1989) used the Krarup-Bilde

reformulation (RLS1) of the lot sizing substructures of the model. However, since'in this case

the demands in (5.22) to (5.24) involve nonlinear functions, this gave rise to a nonconvex

NLP reformulation of model (P2). Here, we will make use of Martin's reformulation (model

(RLS 2)) in order to present an MILP reformulation of the problem. As indicated in the

description of problem (P4-i), the variables QE^ denote "capacity production" and therefore

correspond to the production variables xt of model (LS). Then, in order to apply the

reformulation, let us disaggregate the capacity expansions by defining the variable cp/rr
 as

capacity expansion of plant i made in period t in order to serve production requirements up to
period x (x > i). These variables correspond to the variables *ktTof model (RLS2) and therefore

they have to satisfy the following constraints:

QE/r > 9/JX i = 1.NP t = 1,NT x > t (5.25)

^ Qrc Yit l ^

which are completely analogous to (2.12) and (2.13), respectively. Furthermore, from the

definition: Cj r = X f - 1 ^T anc^ *n conjunction to equation (A-8) of Appendix A, it follows

that a valid relaxation of (2.14) is the following constraint:

t

Z <Pm - W/nzr " QiO / = 1.NP t = 1,NT (5.27)
T = l

Finally, the new variables must be nonnegative:

(p/rr ^ 0 i = 1,NP t = 1,NT x > t (5.28)

By including constraints (5.25) to (5.28) in model (P2), the reformulation of the long

range planning model is then the following multiperiod MILP model:
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Reformulated Model R2:

max NPV = - 2 , 2 , («//QE/, + P*7yu) ~ L I S^rW^., (5.1)
i = l t=l z = l / = 1

NT
2 , («//QE/, + P*7yu) ~

I (Yy!sy;-r>yi)
/ = I y =

s.t.

NM . NM

Z P+ S

yit QEj ̂  QE,-, < QEf? y / t / = 1.NP, f = 1.NT (5.2)

wkt = V-ikWmtt teLfMm,-} i = 1,NP r = 1.NT (5.5)

r=l ,NT (5.6)

it ~ Jt- ajt I y=l,NC t = 1,NT / = 1,NM (5.7)

NT
X y,-/ <NEXP(/) i 6 r e {1,2, ... NP} (5.8)

NP
X (a,., QE/r+ pi7 yit) < CI(r) r e Vc {1,2, ... NT} (5.9)

r=l,^^^ x>r (5.25)

<Pirt ^ Qrc yif /=1,NP r=l ,NT x>r (5.26)

t

X <P/tr ^ W w . , - Q /o « = 1,NP t= 1,NT (5.27)
x=l

yit = 0 or 1 i = l.NP f= 1,NT (5.10)

Qit, QEit, WJH, PyJ, Sj, > 0 ( 5 . n )

0 i = l , N P f= l ,NT x>t (5.28)
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The model contains the definition of the net present value (equation (5.1)), the variable

lower and upper bounds on the capacity expansions (constraints (5.2)) and the material

balances (constraints (5.5) to (5.7)). The constraints on the number of expansions (5.8) and

the budget constraints (5.9) are also included. Constraint (5.25) expresses the obvious fact

that the capacity expansion (p/rr in period t to satisfy demand up to period T cannot exceed the

capacity expansion QE/j during period t. Constraint (5.27) is now used instead of constraint

(5.4) and it implies that capacity cannot be devoted to production during time period / unless it

was previously acquired for this purpose.

The upper bounds C/^ for the capacity expansions in (5.26) must be postulated a

priori and they are not known. However, valid upper bounds for the capacity expansions can

be evaluated by maximizing the individual production rate of each process i (/ = 1, NP) for

each time period t (t = 1, NT) by solving the following linear program:

co/r = max Wm/r (5.29)

St.

(5.5)

NM NM

I Py{+ I Wfa = £ s j , + £ WA, y=l,NC (5.6)
1=1 kel(j) /=1 keO(j)

/. L pl IJU ^
j< ~ J* ~ J* I y= 1,NC / = 1,NM (5.7)

AUL l iju f

\y, p. 5. > o /c 11 \

In this LP model the flow of the main product of a process is maximized subject to

mass balances around the entire network. If finite bounds are specified for the inequalities

(5.7), the solution will always be bounded. In addition, this LP has special structure. It is a

processing network for which special solution algorithms are available (Koene, 1983;

McBride, 1985; Chen and Enguist, 1988).

Then the upper bounds for the capacity expansions are:
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Cin = max { 0, min { QE^, max co/r } - Q i0 }
A. — » , . . . X

(5.30)

In summary, the algorithm to solve the reformulated planning modeL(R2) is as

follows:

Step 1: Solve (NP)(NT) processing network problems of the form (5.29).

Step 2: Calculate capacity expansion upper bounds through (5.30).

Step 3: Solve the reformulated MILP model (R2).

The following theorem can be established for the tightness of the LP relaxation

in Step 3:

Theorem 6. The optimal NPV of the linear programming relaxation of model (R2) is not

greater than the optimal NPV of the linear programming relaxation of model (P2), and it may

be strictly less.

The proof of the theorem, although in the same spirit, is slightly more complicated than

that for Theorems 3 and 4 and is given in Appendix B. The theorem indicates that the new

formulation of model (R2) is at least as accurate as that of model (P2), but nothing is said about

the degree of its accuracy. However, if the overestimated capacity expansion upper bounds

(the ones from (5.30)) are equal to the optimal values of the capacity expansions, the relaxation

will yield an integral solution since the formulation of the lot sizing substructures which has

been used satisfies Theorem 2. We can then expect that the closer the overestimated values are

to the optimal solutions, the more accurate the relaxation will be. Moreover, we anticipate that,

for those processes which are profitable, the optimum will be to run them at the highest

possible operating level, and therefore the upper bounds from (5.30) will be equal to the

optimal values for the capacity expansions in which case the relaxation of model (R2) will be

close to an integer solution.

As in the case of model (Rl), due to the reformulation, the relaxation becomes more

accurate but the number of continuous variables and constraints of the model is at the same time

increased. This increase is polynomial in the number of time periods (NT) and the number of

processes (NP) since we have added (NP)(NT)2(NT+l)/2 new variables and

(NP)(NT)2(NT-i-l)-(NP)(NT) new constraints to the original model (P2).
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6. Computational Results

Eight scheduling example problems will be considered as shown in Table 2. Examples

BATCH5, 6, 7 and 8 were derived from examples BATCH 1, 2, 3 and 4, respectively, by

increasing the demands by 50%. The state task networks for examples BATCH 1 to 4 are

shown in Figures 4, 8, 9 and 10 and they are taken from Kondili (1987). The data used are

given in Tables 1, and 3 to 5. The mass balance coefficients which are different than 1 are

shown on the state task networks. Also, ten planning examples will be considered as shown in

Table 6. These examples are taken from Sahinidis and Grossmann (1989). All the 18 test

problems were solved through the modelling system GAMS (Brooke et al.y 1988). The

procedure was executed on an IBM-3090 and MPSX-MIP/370 (IBM, 1988) was used to solve

the MILPs.

Computational results using branch and bound to solve the MILP models (PI), (P2),

(Rl) and (R2) for our 18 test problems are shown in Tables 7 through 11. The effect of the

reformulation on the problem size is shown in Table 7. The number of continuous variables

and constraints is increased, but as pointed out in previous sections this increase is polynomial

in size.

Table 8 shows the effect of the reformulation on the linear programming relaxation of

the problems. Total profit (sales revenue minus total cost) is shown for the scheduling

problems while the net present value is shown for the planning problems. After the

reformulation, the relaxation becomes tighter in the sense that the gap between the integer

solution and the relaxation is considerably reduced (between 3% and 100%).

Table 9 shows the effect of the reformulation on the computational requirements of the

solution. For all the test problems, branch and bound has now to examine a much smaller

number of nodes.

For the scheduling problem, the CPU times are reduced in all cases (the reductions are

between 10% and 80%). By comparing examples BATCH 1, 2, 3, and 4 to examples

BATCH5, 6, 7 and 8, respectively, we observe that as the demand increases the effect of the

reformulation becomes less important since the LP relaxation gap of the standard formulation
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becomes fairly small (the problem becomes easier). Actually, computational results have

indicated that for sufficient large demands the standard formulation can be solved so effectively

(almost as an LP) that the reformulation requires larger CPU times since it involves more

variables and constraints.

Although there is no effect on the CPU requirements for the small planning problems,

note that the CPU times for the larger examples are up to one order of magnitude lower than

those with the conventional model. For instance, in problem PLAN9 the reduction is from 35

minutes to only 3 minutes. Similarly, problems PLAN6, 7, and 10 exhibit significant

reductions. Moreover, the reformulation makes possible the solution to optimality of problem

PLAN8 in less than 4 minutes; this is an example which could not be solved after 92 minutes

with the original formulation. The CPU times in Table 9 include the time needed to solve the

linear programs to evaluate the upper bounds for the reformulation variables of the planning

model (R2). However, this time is small when compared to the total. For example, for the

largest problem this is less than 10 seconds for all the 156 LPs (using MINOS and not any

specialized algorithm). For the rest of the problems, this time is almost zero. Some statistics

for these LPs are shown in Table 10.

By comparing the CPU time reductions in Table 9 we observe that for the more

computationally intensive examples (BATCH2, 4, 6, 8 and PLAN8, 9, 10) the effect of the

reformulation on the planning problems is more substantial. This is due to the fact that the

reduction of the LP relaxation gap is larger for the planning problems (Table 8).

Finally, the entries of Table 11 have been calculated from the number of iterations and

the number of nodes presented in Table 9. As seen in Table 11, the average number of

iterations per node of the branch and bound tree is larger in the case of the reformulated

models. This apparently happens because the reformulation introduces extra variables and

constraints. This observation, coupled with the fact that the increase in the number of variables

and constraints is, respectively, O(NT2) and O(NT3), points out that the reformulation is

expected to be more effective in problems which involve a small rather than a large number of

time periods.



- 3 1 -

7. Conclusions

The results of this paper have been based on the observation that multiperiod planning

and scheduling problems reduce to lot sizing problems when a subset of the variables are fixed

(eg. production, purchases, sales). To take advantage of this property, a variable

disaggregation technique has been proposed for reformulating conventional MILP models for

these problems. The reformulation strategy was applied to a batch scheduling problem and to

the problem of long range planning for capacity expansion of chemical complexes. In both

cases, the reformulation led to MILPs with tighter linear programming relaxation which for

large problems gave solution time reductions of up to one order of magnitude, when compared

to the solution requirements of the conventional formulations of these problems. We anticipate

that the reformulation strategy proposed in this paper can be applied to a large class of

multiperiod and multistage production planning and scheduling problems in the chemical

industries.
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APPENDTX A: Proof of Theorem 5

Theorem 5. Problems (P3-i) and (P4-i) have the same optimal solution.

Proof: We shall show that (P3-i) and (P4-i) have the same set of feasible solutions. Note

first of all, that by summing the equality constraints in (5.14), one can solve for Q^. Then the

result can be substituted into (5.15) therefore eliminating the variables Q;t and the equality

constraints (5,14) from model (P3-i). In this case, (5.15) becomes:

t

Q/0 + Z ^ i T ^ wmzr '= 1^T <A-D
T=l

Similarly, in model (P4-i), one can solve (5.20) for SQ^ and substitute the result into

the nonnegativity constraint SQzr (5.16). Then (5.20) and SQ^ can be eliminated by rewriting

the nonnegativity constraint as follows:

t t

T=l T=l

We need to prove that feasibility in (A-l) implies feasibility in (A-2) and vice versa. In

the following, we drop the indices i and ntj for simplicity; so consider any process /. The case

where none of the flows Wf (r=l, NT) exceeds the installed capacity is trivial, since no

expansions are required for both problems. Consider the case of arbitrary flows where
expansions are required and let p« be the earliest time period for which Wp > QQ. Also let

p 2 > Pi be the earliest time period for which Wp > Wp . Continue in this way to define the

set of time periods Np = {pi, P2» Po> —> Pn) for which p, < pj < p-j < ...< p and

Q0 < WP i < Wp2 < ... < WPn x < WPn (A-3a)

Because of the way Np is constructed, we also have:

Wp <, Wpx if PX < P < PT+1> with pT, p x + 1 e Np , p « Np (A-3b)

From the definitions (5.22) to (5.24):

dP l = WP l - Q 0 , dp2 = Wp2 - WP l . dp3 = Wp3 - Wp2,
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dPn = WPn " WPn-r w h i l e ^ = ° f o r P* NP

For any time period p (1 < p < NT), we have:

d , = d p i + d p 2 + . - + d p k (A-5)

where k is the largest element of Np not exceeding p. Substituting (A-4) into (A-5) yields:

Then for any point feasible in (P3-i) we have

where the inequality follows from (5.25) and the equality from (A-6). Since constraint (A-7)

implies (A-2), it follows that for any capacity expansion sequence which is feasible in problem

(P3-i), the demand of problem (P4-i) will be satisfied for any period p (p=l, NT).

Inversely, for any capacity expansion sequence satisfying the demand of problem (P4-

i) and for any time period p (p=l, NT), we have:

QE, > £ d , = Wpk - Q0 > Wp - Q0 (A-8)

where the first inequality follows from the feasibility of problem (P4-i) (constraint (3-15)), the

equality from (A-6), and the second inequality from (A-3) and the definition of k in (A-5).

Since (A-8) implies (5.25), it follows that any feasible point in (P4-i) corresponds to a feasible

point in (P3-i).

Since the problems (P3-i) and (P4-i) have the same set of feasible solutions and they

have the same objective function, they also have the same optimal solution. •
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APPENDIX B: Proof of Theorem 6

Theorem 6. The optimal cost of the linear programming relaxation of model (R2) is not

greater than the optimal cost of the linear programming relaxation of model (P2), and it may be

strictly less.

Proof: First we observe that constraints (53) can be used to solve for the variables Qr of

model (P2) and then both these variables and constraints can be eliminated with the provision

that (5.4) is changed to:

Q/0+ I QE/t * W m . , (5.40
x = l

Now with the exception of (5.4*) the rest of the constraints of model (P2) also appear in model

(R2). But from (5.25):

t t

Q/o + I OP* * Q;o + X 9 t o
x = l x = l

This means that (5.40 is implied by (5.27). It follows that every solution to the linear

programming relaxation of model (R2) gives rise to a feasible solution of the linear

programming relaxation of model (P2). This shows that the optimal net present value of the

linear programming relaxation of (R2) cannot be greater than that of the linear programming

relaxation of (P2). The examples of Section 6 show that the linear programming relaxation of

(R2) can yield a strictly smaller upper bound, thus completing the proof. •
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Table 1: Data used for example BATCH 1.

Units - Tasks

Units Size Units Suitability Processing times

Unitl

Unit 2

Unit 3

1500

1000

1000

Taskl

Task 2

Task 3

States

State 1 (Feed)

State 2 (Intermediate)

State 3 (Product 1)

State 4 (Product 2)

States

Capacity Limits

unlimited

5000

unlimited

unlimited

Prices

10

8

Demands (Sgt)

Product 1

Product 2

4

200

50

6

150

7

300

10

400

200

11

100

12

100

Cost Data

«.ijt = 200 ; P,y, = 0.6 ; 1SI = 0.18



Table 2: The scheduling example problems.

Example

BATCH 1, 5

BATCH2, 6

BATCH3,7

BATCH4, 8

States

4

9

9

13

Tasks

3

5

6

8

Units

3

4

4

6

Time Periods

12

10

8

8



Table 3: Data used for example BATCH2.

Units

Heater

Reactor 1

Reactor 2

Still

States

Feeds A, B, C

Hot A

Intermediate AB

Intermediate BC

Intermediate E

Product 1

Product 2

^ \

Product 1

Product 2

a.. = 20 ;
22t

Size

100

50

80

200

5

20

= 0.1 ;

= 0.16

Units - Tasks

Units Suitability

Heating

Reactions 1,2,3

Reactions 1,2, 3

Separation

States

Capacity Limits

unlimited

100

200

150

200

unlimited

unlimited

Demands (Ssj)

6 8

10 20

Cost Data

; h2t = °'35 ' *42i

-

Processing times

1

2,2,1

2,2,1

1 for Product 2,

2 for Intermediate AB

Prices

0

60

45

9 10

12

32.5 32.5

= 0.25 ; p = 0.15 ;

= 0.1 ; lst = 2.1 ;



Table 4: Data used for example BATCH3.

Units

Unitl

Unit 2

Unit 3

Unit 4

Size

2029

1690

720

929

Units - Tasks

Units Suitability

Task A1

Tasks A2.C1

Tasks B1,C2

Task B2

Processing times

2

1,1

1,2

1

States

Feeds A, B, C

Intermediate A

Intermediate B

Intermediate C

Product A

Product B

Product C

States

Capacity Limits

unlimited

2500

unlimited

unlimited

unlimited

unlimited

unlimited

Prices

0

80

90

100

Demands (S sj)

Product A

ProductB

ProductC

3

92.9

4

169

92.9

5

33.9

92.9

6

92.9

7

169

92.9

8

169

92.9

144

Cost Data

= 200 ; V = 0-25 =0-1



Table 5: Data used for example B ATCH4.

Units

Unitl

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

States

Feeds 1,2, 3

Intermediate 4

Intermediate 5

Intermediate 6

Intermediate 7

Intermediate 8

Intermediate 9

Products 1,2,3

^s\L
Product 1

Product 2

Product 3

Product 4

Size

1000

2500

3500

1500

1000

4000

,4

3

110

20 ;

Units - Tasks

Units Suitability

Taskl

Tasks 3,7

Task 4

Task 2

Task 6

Tasks 5, 8

States

Capacity Limits

unlimited

1000

1000

1500

2000

0

3000

unlimited

Demands (Ssj)

4 5

110 133.3

233.1 260

116.6

Cost Data

p..f = 0.55 ;

Processing times

1

1

1

1

1

1

Prices

0

18,19,20,

6 7

100 33.3

360

56.6

333.3 333.3

Y = 0.1

-

21

8

33.3

360

116.6

685.8



Table 6: The planning example problems.

Example

PLAN1, 2, 3, 4

PLAN5, 6, 7

PLAN8, 9, 10

Processes

3

10

38

Time Periods

3

4

4

Chemicals

3

6

25



Table 7: Effect of the reformulation on the problem size.

Example

BATCH 1, 5

BATCH2, 6

BATCH3,7

BATCH4, 8

PLAN1, 2, 3

PLAN4

PLAN5

PLAN6

PLAN7

PLAN8

PLAN9

PLAN10

Constraints

90

298

152

183

49

46

195

185

199

785

823

827

Initial Model

Variables
Total

133

281

193

257

55

55

225

225

225

961

961

961

Integer

36

80

48

64

9

9

40

40

40

152

152

152

Nonzeroes

421

1113

601

809

160

142

639

599

719

2,551

' 2,703

3,007

Constraints

154

366

211

271

76

73

355

345

359

1,431

1,469

1,473

Reformulation

Variables

Total

211

326

282

322

64

64

285

285

285

1,189

1,189

1,189

Integer

36

80

48

64

9

9

40

40

40

152

152

152

Nonzeroes

721

1518

895

1337

217

199

989

949

1,069

4,033

4,185

4,489



Table 8: Effect of the reformulation on the linear programming relaxation.

Example

BATCH1

BATCH2

BATCH3

BATCH4

BATCH5

BATCH6

BATCH7

BATCH8

PLAN1

PLAN2

PLAN3

PLAN4

PLAN5

PLAN6

PLAN7

PLAN8

PLAN9

PLAN 10

Integer optimum

Zip

3,230

5,593

105,756

60,533

5,445

8,239

158,971

91,041

1,697

1,775

1,063

2,235

51,031

51,450

45,248

529.8

529.8

529.8

Initial

Relaxation optimum

ZR

4,200

5,976

106,768

60,933

6,300

8,921

160,163

91,441

1,898

1,932

1,246

2,540

51,207

51,837

46,540

648.6

648.6

631

Model

Gap

l^-xlOO
ZTP

130.0

106.9

101.0

100.7

115.7

108.3

100.8

100.5

111.8

108.8

117.3

113.7

100.3

100.8

102.9

122.5

122.5

119.1

Relaxation optimum

ZR

3,880

5,943

106,238

60,859

6,086

8,898

159,725

91,382

1,744

1,775

1,099

2,305

51,117

51,481

46,370

621
621
598

Reformulation

Gap

7R

iB-xlOO
ZTP

120.1

106.3

100.5

100.5

111.8

108.0

100.5

100.4

102.8

100.0

103.4

103.1

100.2

100.1

102.5

117.2

117.2

112.9

Gap reduction

ZR - ZR 1 0 0

ZP - ZIP •

33
9
52
19
25
3
37
15

77
100
80
77
51
92
13
23
23
33



Table 9: Effect of the reformulation on the solution of the MILP(a\

Example
BATCH1
BATCH2

BATCH3

BATCH4

BATCH5

BATCH6

BATCH7

BATCH8
PLAN1
PLAN2

PLAN3

PLAN4

PLAN5

PLAN6

PLAN7

PLAN8

PLAN9

PLAN10

#nodes
1,140
3,899

287
10,098

321
6,405

1,268

3,382
10
14
11
11
37

1,064

1,272

NA(C )

28,696

4,530

Initial Model
iterations

2,848
22,352

1,289

35,467

1,126

35,112

5,825

13,354
93
93
85
86

439
2,862

6,305

>356,609(c>

134,440

32,713

time (sec)
8.6

112
4.7

175
3.1

197.4

20.3

57.4
0.6
0.6
0.6
0.6
1.7

10.7

21.8

>5,520<c)

2,100

540

#nodes
180

2635

20
4004

125
4,528

20
1,750

3
1
3
5

14
17
23

1,516

1,037

1,164

#iterations
1,008

16,276

370
15,096

828
25,913

1,781

7,808
113
96

104
120
590
544
916

14,323

12,329

20,503

Reformulation
time(b) (sec)

3.5
97
0.9

107
2.6

177.7

7.7
49.4
0.6
0.6
0.6
0.6
1.9
2
2.7

222
192
324

CPU time reduction (%)
59
13
81
39
16
10
62
14
0
0
0
0

-12
81
88

>96
91
40

MPSX-MIP/370 computer code used on IBM-3090.

Includes LP computations for upper bounds for the planning problems using MINOS 5.1.

Procedure terminated with a lower bound of 529.8 and an upper bound of 561.



Table 10: Size and number of linear programs solved

to obtain upper bounds for model (R2).

Example

PLAN1, 2, 3, 4

PLAN5, 6, 7

PLAN8, 9, 10

Rows

7

17

83

Variables

9

40

127

Nonzeroes

17

48

236

# problems solved

9

40

152



Table 11: Average number of linear programming iterations per node.

Example

BATCH1

BATCH2

BATCH3

BATCH4

BATCH5

BATCH6

BATCH7

BATCH8

PLAN1

PLAN2

PLAN3

PLAN4

PLAN5

PLAN6

PLAN7

PLAN8

PLAN9

PLAN10

Initial Model

2.5

5.7

4.5

3.5

3.5

5.5

4.6

3.9

9.3

6.6

7.7

7.8

11.9

2.7

5 •

NA

4.7

7.2

Reformulation

5.6

6.2

18.5

3.8

6.6

89

8.9

4.5

37.7

96

34.7

24

42

32

39.8

9.5

11.9

17.6
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Fig-1' Lot Sizing Model Representation:

(a) prior to reformulation

(b) after reformulation
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Fig. 3: State Task Network Example
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Fig. 5: Equipment (Product) Schedule for example BATCH1.
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Fig. 8: State Task Network for Problem BATCH2



Feed A Task A1 IntA Task A2 Product A

Feed B Task B1 IntB Task B2 Product B

Feed C Task C1 IntC Task C2 Product C

Fig. 9: State Task Network for Problem BATCH3
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