
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



FORS: An Integration Framework for Design

by

Sarosh Talukdar

18-17-90 C.3



FORS: AN INTEGRATION FRAMEWORK FOR DESIGN

Sarosh Talukdar, Lily Hou and Pedro Sergio de Souza

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213

This work has been supported by the Engineering Design Research
Center, an NSF Engineering Research Center.



FORS: AN INTEGRATION FRAMEWORK FOR DESIGN

Sarosh Talukdar, Lily Hou and Pedro Sergio de Souza

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
This paper lists the different architectural and control alternatives that the
builders of design-tool-organizations should consider. The paper also describes
FORS, an environment for implementing these alternatives. FORS treats both
tools and sets of data as objects. A visual programming interface is provided
for the manipulation of these objects. The interface shields the user from the
low level details of distributed problem solving.

INTRODUCTION
The design of complex artifacts, such as micro-electronic chips, cars and high-
rise-buildings, is increasingly dependent on suites of computer-based tools.
These suites increase productivity by amounts that depend, in large part, on
their internal organizations (that is, on how their tools are interconnected and
controlled). Organizational factors grow in importance with increase in the
size of the suite and affect critical productivity issues such as the effort
required to expand and reconfigure suites of tools, the effort required to learn
and use the tools, and whether the tools will interact in beneficial or
destructive ways.

The importance of organizational factors raises the question: are there formal
techniques for optimizing them? Unfortunately, the answer is "no."
Organizational theory has developed largely through empirical studies of human
organizations. Though fairly mature and supported by a considerable body of
literature, it tends more to guidelines and case studies than formal synthesis.
optimization and analysis techniques (see, for example, [1] ). Therefore, the
person who wishes to design a good tool-organization must rely heavily on
analogy, intuition and judgment. The purpose of this paper is to aid such a
person in two ways. First, by listing the major categories of organizational



alternatives that he or she should consider. And second, by describing a
framework, called FORS, for implementing these alternatives.

ALTERNATIVES
Engineering design is a special case of information processing or decision
making. The main parts of an information processing organizations are shown in
Fig.1. Some useful terminology is defined below.

Terminology
• Agents and organizations. An agent is a person or program capable of
performing information processing tasks. An organization is a collection of
agents that collaborate in performing a complex task. Collaboration means the
exchange of raw or processed data.
• Architecture: the command and communication structure of an organization.
The architecture determines who reports to whom, who may communicate with
whom, and who has access to what resources.
• Hierarchy: an architecture with two or more levels in its command
structure. A simple hierarchy has just two levels.
• Hetrarchy: an architecture in which all the agents have equal status, as is
the case of a neural net.
• Control: the standards and policies that determine how an organization
goes about doing its work. For instance, control policies determine how tasks
are allocated to agents, how deadlines for the completion of tasks are set,
when agents must communicate with one another, and what is to be done when
things go wrong.
• Synchronous control: a collaboration scheme in which information
exchanges occur at predetermined staging points [2]. An agent must wait at
each of its staging points until all the prescribed information exchanges have
been completed.
• Asynchronous control: a collaboration scheme with no staging points.
Agents working in parallel exchange information spontaneously or whenever
they can, rather than at predetermined points [2].
• Decomposition-based-control: any approach that relies on breaking the
overall task into loosely coupled subtasks, i.e. a divide-and-conquer approach.
• Holistic control: any approach in which the overall task is left essentially
intact while it is worked on by a team of agents.



Engineering design is distinguished from other forms of information processing
by the use of specialized data sets we call aspects. Each of these aspects
constitutes a view, model or partial description of the function, structure or
behavior of the artifact being designed. Examples of aspects are sets of
specifications, circuit diagrams, blueprints and test results.

The process of design can be thought of as calculating desired or goal aspects
from given aspects. For example, in the design of a house the goals are often
to obtain construction drawings, a construction schedule and a set of cost
estimates, given the customer's specifications.

In designing complex artifacts, the computational paths that lead from the
given aspects to the goal aspects are often long and pass through many
intermediate aspects. To help visualize these paths we define three new terms:
aspect-spaces, operators and TAO graphs. An aspect-space is a class of
aspects, for instance, all resistive circuits with 20 or less nodes. An operator
is an agent whose purpose is to transform elements of one aspect-space into
those of another by processes of synthesis, optimization or analysis. (For a
more extensive taxonomy of operators see [3].) A TAO graph is a directed
and/or graph whose nodes represent aspect-spaces, whose arcs represent
operators, and whose cycles represent opportunities for the iterative
refinement of aspects [3], [4].

The TAO graph for a design organization with several departments contains a
sub-graph for each department. The absence of connections among such sub-
graphs indicates that the departments have no means of direct collaboration,
and therefore, are likely to produce conflicting results. Processes for
establishing collaborative arrangements among departments, such as
manufacturing, maintenance and marketing, are beginning to be called
"concurrent design" or "simultaneous engineering" [3]. In TAO graphs, such
arrangements are represented by arcs connecting the sub-graphs for the
different departments.

Good Design Organizations
Three desirable properties for design organizations are:



1. Easy addition of new operators and aspect-spaces so the organization can
grow and change painlessly;
2. Close coordination among sub-divisions of the organization so the principles
of concurrent design can be practiced. This means placing operators and
aspect-spaces to link the computational paths used by the sub-divisions.
3. Effective contingency handling. (By a contingency we mean an unexpected
disturbance that causes the existing plans for satisfactorily completing a task
to go awry.) Many techniques for contingency handling have been described in
the literature (see, for example, [1] and [5]). In essence, they involve
strengthening the lateral connections among computational paths, making
provisions for spontaneous exchanges of information (asynchronous control),
and providing alternate computational paths to take when failures in the
originally selected path occur.

Remarks
What architectures and control strategies should be employed to obtain good
tool-organizations? As pointed out earlier, there are no definitive answers.
Human organizations have been extremely effective in their use of complex
hierarchies [1], [5]. However, we suspect that getting the most out of a complex
hierarchy requires more intelligence than existing tools can provide.
Therefore, we favor hetrarchical architectures. With regard to control, we feel
that asynchronous and holistic approaches have great potential and need to be
explored. Very complex problems must, of course, be decomposed before they
can be tackled. But problems of medium complexity are often best tackled by
team based approaches that leave the problem intact [2].

FORS
FORS is a visual programming interface for DPSK, a facility for distributed
problem solving. Together, FORS and DPSK provide the means to assemble
architectures and implement control strategies for tool organizations. Since it
is not clear that any single type of architecture or control strategy will always
be best, FORS has been designed to allow for all the alternatives listed in the
previous section. In addition, facilities have been provided to shield users from
details that are of no interest to them. For instance, designers using
organizations built with FORS need know nothing about how tools are actually
invoked or in what computers they reside. Instead, tools and aspects are



represented by icons that the designer can interconnect on the screen to form
arbitrary computational paths.

There is a symmetry between design tools and aspects that has been
maintained in FORS. Both tools and aspects are treated as objects of equal
importance. This is in contrast to other organization building frameworks
which tend to be either tool-centered or data-centered.

In the following material, we will first describe DPSK and then FORS.

OPSK (Distributed Problem Solving Kernel) [5], [6]
DPSK provides the organization builder with a small set of primitives. These
primitives have been designed to be inserted in the instructions of an
expandable set of languages. Presently, the set includes C, Lisp, Fortran and
OPS5. With the primitives, organization builders can readily synthesize all the
alternatives from the preceding section and thereby, assemble arbitrary
organizations composed of agents written in a variety of dissimilar languages,
and distributed over a network of computers. Theoretically, the numbers of
programs and computers can be arbitrarily large.

DPSK itself is written in C for networks of computers running Unix. Internally,
DPSK employs a shared memory that is distributed over the participating
computers.

Primitives
DPSK contains 12 primitives that can be divided into four categories -
commands, synchronizers, signals, and transactions. The command primitives
are used to activate and control programs. An agent can "run," "suspend,"
"resume," or "kill" other agents in any of the processors in the network. This
also allows any number of program clones to be created and run in parallel.

The synchronization primitives are used to create and check for the occurrence
of "events" and thereby, implement synchronous control strategies. For
instance, to ensure that some activity in Agent A finishes before Agent B is
allowed to begin, one would insert primitives into Agent A at the appropriate
point to assert an event X, and in the beginning of B to wait for the assertion of



The signal primitives are used to signal the occurrence of a contingency or to
interrupt the execution of preselected groups of processes and cause them to
execute portions of their code designated to handle such exceptions.

Transaction primitives are used to structure and access the shared memory.

FORS (Flexible Organizations)
FORS is an object-oriented framework for integrating tools and data. FORS
comprises two major entities: data-objects and tool-objects. In addition, FORS
addresses the issue of control and has an icon-based interface suitable for both
novice and expert designers.

Data-Objects
Each data object can store one or more aspects. FORS allows an expandable
library of data objects. Data objects have facilities to handle functions such
as translation from one format to another, editing, browsing, and error
detection and correction.

Tool-Objects
FORS also allows an expandable library of tool objects. Tools may be written
in a number of languages. Currently, the list includes C, FORTRAN, LISP and
OPS5. Each tool object contains a template to describe the principal
characteristics of the tool, for example, specifications for input and output and
which machine it resides on. Tools may be run in parallel regardless
of where they are located.

Interface [7], [11]
FORS provides a multi-window graphical user interface, where the tool and
data objects are represented by icons. Each window and icon in turn, have
various menus and methods attached to them. This type of a visual interface
hides the lower level systems details concerning the tools and data, allowing
the designer to manipulate them easily.

Status



FORS is an experimental package that is still under development though it has
been used to build a number of design organizations for research projects.
These include ASE, a system for the design of automobile parts that is notable
for its use of autonomous programs called critics [8], [9]; CQR, a system for
handling contingencies in electric power systems [10]; and IBDE, a system for
designing high-rise buildings [12].

SUMMARY
Traditional tool-organizations rely heavily on simple hierarchical
architectures and synchronous, decomposition-based control schemes. This
paper has pointed out that complex hierarchies and hetrarchies may have
advantages as architectures, and asynchronous, holistic approaches may have
advantages as control schemes. The paper has also described a framework,
called FORS, for rapidly implementing arbitrary architectures and control
schemes.

REFERENCES

[1] Shafritz, J. M., Ott, J. S.r (editors), Classics of Organization Theory, Dorsey
Press, 1987.
[2] Talukdar, S. N., Pyo, S. S., Mehrotra, R., "Designing Algorithms and
Assignments for Distributed Processing," EPRI Report EL-3317, Nov. 1983.
[3] Talukdar, S. N., Westerberg, A. W., "A View of Next Generation Tools for
Design," presented at 1988 Spring National Meeting, AlChE, New Orleans, LA,
March 6-10, 1988.
[4] Talukdar, S. N., Fenves, S., "Towards a Framework for Concurrent Design,"
Proceedings of the ASME Winter Annual Meeting, San Francisco, CA, December
11-14, 1989.
[5] Talukdar, S. N., Cardozo, E., "Building Large-Scale Software Organizations"
in Expert Systems for Engineering Design, edited by M. D. Rychener, Academic
Press, 1988.
[6] Cardozo, E., "A Kernel for Distributed Problem Solving," Ph.D. Thesis.
Department of Electrical and Computer Engineering, Carnegie Mellon University.
January 1987.



[7] Papanikolopoulos, N.f "FORS: Flexible Organizations,", Masters Project
Report, Department of Electrical and Computer Engineering, Carnegie Mellon
University, November 1988. • •-*
[8] Sapossnek, MM Talukdar, S., Elfes, A., Sedas, S., Eisenberger, E., Hou, L.,
"Design' Critics in the Computer-Aided Simultaneous Engineering (CASE)
Project," presented at the ASME Winter Annual , Meeting, Symposium on
Concurrent Product and Process Design.San Francisco, CA , Dec. 1989.
[9] Talukdar S. N., Sapossnek, M., Hou, L, Woodbury, R., Sedas, S., Saigal, S.,
Jaeger, J., "Autonomous Critics," Proceedings of the Second National
Symposium on Concurrent Engineering, West Virginia University, Morgantown,
WV, February 7-9, 1990.
[10]. Stoa, P., Talukdar, S., Christie, R., Hou, L, Papanikolopoulos, N.,
"Environments for Security Assessment and Enhancement," Second Symposium
on Expert Systems Applications to Power Systems, Seattle, WA , July 1989. .
[11]. Vidovic, N., Siewiorek, D., and Newbery, F., "A Graph Based Environment,"
Technical Report CMU-CAD-87 , 1987.
[12] Fenves S. J., Hendrickson C, Maher M. I., Flemming U., Schmitt g., "An
Integrated Software Environment for Building Design and Construction,"
Computer Aided Design 22(1):27-36, 1990

8


