
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Interval Approaches For Concurrent Evaluation of
Design Constraints

by

D. Navinchandra, J. R. Rinderle

EDRC 24-19-90 C , J

INTERVAL APPROACHES FOR CONCURRENT EVALUATION OF
DESIGN CONSTRAINTS

D. Navinchandra
Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania

J. R. Rfnderte
Mechanical Engineering Department

Carnegie Mellon University
Pittsburgh, Pennsylvania

Abstract
By concurrent design we mean, in pan, concurrent consideration
of a broad range of life-cycle constraints concerning, for example
manufacturing and maintenance. The multitude of constraints
arising from these considerations make it difficult to identify
satisfactory designs. An alternative to explicitly considering all
constraints is to determine which of the constraints are relevant,
redundant or inconsistent and to consider only those which
impact design decisions.

The proposed approach is based on two simple ideas: (1)
Constraints provide a uniform representation for a variety of life-
cycle* concerns, and (2) Interval methods applied to constraints
can be used to identify critical constraints, eliminate redundant
constraints and to narrow the space of design alternatives.

The application of the necessary and sufficient intervals of
constraints and constraint propagation techniques are used to
classify constraints in this way and to focus design activity.

Introduction: Concurrent Design
The practice of design is frequently sequential in nature. In the
design of a jet engine turbine disk, for example, the aerodynamic
shape of the blade might first be determined, later modified to
satisfy structural constraints, and then modified to satisfy
manufacturability and maintenance considerations.

1 Acknowledgments - This wort has been sponsored, in part, by Defense
Advanced Research Projects Agency (DARPA). under contract No.
MDA972-88-C-0047 as pan of the DARPA Initiative in Concurrent
Engineering (DICE). The authors also acknowledge the support of the
Engineering Design Research Center at Carnegie Mellon University (NSF
Grant CDR-85-22616).

It is not surprising that such a situation exists, since there are few
individuals capable of bringing this vast range of considerations
to bear during design. However, the fact that manufacturing and
maintenance considerations are introduced only on an ad hoc
basis during preliminary design gives rise to fundamental design
deficiencies. It is the purpose of concurrent engineering design
to include a broad range of functional and life-cycle concerns
during preliminary design phases. While it is possible to obtain
an appearance of concurrence by rapidly iterating through the
basic sequential design process, we seek a greater degree of
concurrency by attempting to identify critical life cycle concerns
early and to use those concerns to direct design decisions.

Representing Life-Cycle Concerns
Life-cycle concerns impose required relationships among features
of the design to effect functionality, manufacturability. reliability.
and servicibilty. In the context of engineering design, these
required relationships can be thought of as constraints among
design features. Constraints may embody a design objective (eg.
weight), a physical law (e.g. F » ma), geometric compatibility
(e.g. mating of pans), production requirements (e.g. no blind
holes), or any other design requirement We express constraints
as algebraic relations among feature parameters (eg. hole
diameter, wall thickness, stress level). Collectively, the
constraints define what will be an acceptable design. Constraint
based representations provide a uniform representation for a
variety of life-cycle design considerations including function.
geometry and production. As the designer makes decisions, the
originally acceptable intervals on the parameters are refined to
smaller intervals or to specific values. As changes occur, the
intervals are propagated through the constraints to other pans of
the design until quiescence is obtained or until violations are
encountered. Because there is a single, uniform representation
for all constraints there is no differentiation between functional.
geometrical, manufacturing, and other, so called, life-cycle

UNIVERSITY LIBRARIES
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213-3890

constraints. Methods used to refine the design by processing
constraints are applied uniformly to all life-cycle constraints.
Using this approach makes it equally likely that violations are
detected among functional constraints and those which have
traditionally been considered "down-stream" of the design
activity. It is for this very reason that our approach achieves
concurrency.

Although constraints are a general mechanism to represent design
considerations, it is not possible to identify all design constraints

. at the time the design problem is first proposed. This is because
the set of relevant constraints depends on the design context. If
the geometry of the designed artifact is such that casting is an
appropriate manufacturing method, then casting are required.
Alternatively a set of machining constraints is necessary if the
part is to be machined. Similarly, there are constraints that are
dependent on material, assembly methods, and a host of other
considerations. The relevant constraints depend on the current
design features. The features themselves may be completely
defined aspects of the design such as a fully dimensioned
ventilation hole or may be partially specified features. Because
constraints are required relationships among feature parameters
they may be retracted, augmented or refined as the design
evolves. The design can be thought of as being complete when
the set of constraints stabilize and when all the constraints have
been satisfied. If we assume for the remainder of this article that
constraints can be expressed as algebraic relationships among
feature parameters, then we can say that a design is complete
when all variables have been assigned values and when all the
constraints have been satisfied simultaneously.

Automation in Constraint Based Design
The design of certain small mechanical components can often be
effectively accomplished by executing some design procedure.
Automating such procedures is a common approach to
automating the design, however, as the complexity of the
component itself, or the scope of considerations increase, it is
difficult to identify practical design procedures.

An alternative to coding comprehensive design procedures is to
identify isolated procedures and to determine sequences for
executing the procedures until all design variables are
established. Certain rule based design systems and some
constraint propagation systems follow this paradigm. Each rule
or constraint can be thought of as a procedure indicating how
some specific design decision or variable can be determined once
other design parameters are known. The rules, or constraints, can
then be executed, in sequence, until the design is complete. This
is an effective method for certain classes of designs, most notably
when the degree of component interaction is small and when die
design is fundamentally serial in nature. It is not effective when
the description is fundamentally what needs to be achieved rather
than means for achieving it. Such a descriptive (rather than
prescriptive) approach to design specification is advantageous
because the designer does not need to consider how a specific
constraint will be satisfied, thereby facilitating the inclusion of

constraints which cannot readily be interpreted as procedures.
Furthermore, descriptive specification does not impose a
causality to the constraints. For example, if a simple disk was
constrained to weigh a specific amount, the constraint itself could
be interpreted as a procedure to determine diameter, or thickness,
or density given the other two. In this way the constraints
imposed on a design serve as both a specification of the design
and as a set of procedures for determining design parameters. The
design task, in affect, is reduced to that of satisfying the given
constraints.

Constraint satisfaction, however, is not easy. Design constraints
are usually numerous, complex and highly non-linear. Satisfying
a large set of arbitrarily complex equality and inequality
constraints is, in essence, the non-linear programming problem
and, in general, is not solvable. Although the general problem
cannot be solved, much can be done to assist the designer. It is
possible to provide the designer with insights about critical
interactions among features, redundant requirements and
inconsistencies. Such information is useful to the designer even if
the constraints are ultimately solved numerically'because a purely
numerical solution does not facilitate understanding of the design
task.

A large body of research exists on solving constraint problems.
The SKETCHPAD [Sutherland 83] system was an early effort on
solving constraints by propagation and relaxation. Mack worth
[Mackworth 77] introduced algorithms for maintaining

consistency in a network of constraint relations. The ThingLab
research effort [Borning 79] lead to ideas on propagating
constraints across part-whole hierarchies of objects. A constraint
representation formalism was introduced by Sussman and Steeie
[Sussman 80]. Recently, Gosling [Gosling 83] presented a

planning technique which, coupled with propagation, helps solve
algebraic constraints. Other relevant work on solving sets of
algebraic equations has come from Popplestone [Popplestone
80] and Serrano [Serrano 87]. These research efforts provide a
core of solution techniques for handling and propagacng
variables with exact values. Unfortunately, many if not most of
the engineering design constraints are expressed as incquaiiacs.
The very nature of constraints is such that they often do not
prescribe specific values for design parameters but rather
prescribe ranges for the values. The ideas presented in this paper
are based on treating design parameters as intervals. The nouon
of interval arithmetic was developed by Moore (Moore
66, Moore 79]. The value of interval based methods for design
has also been recognized by Ward [Ward 89]. By adopting this
approach we are, in essence, treating equalities as inequalities.
Instead of equating a variable to a number we assign a range of
values (an interval) to the variable. This generalizes the notion of
equality assignment and adds flexibility to the representation of
parameters, making it possible to capture incompleteness and
uncertainty in a design.

A design which is not yet complete may have some parameters
which have not been assigned exact values and there may be

tome uncertainty about the final design characteristics. Intervals
may be used to express upper and lower bounds on parameter
values, making it possible to assess some properties of the artifact
before exact values are assigned. For example* in a motor design
problem one might not know the exact shaft size, but might be
able to estimate the general range of values based on prior
experience. This information can sometimes be used to guide the
designer early in the design process. This is similar to the
engineers' back of the envelope calculations. There are several
levels of specificity which may be used to represent a parameter
value: exact assignments, ranges, defaults, orders of magnitude,
and unbounded intervals. Each of these levels of specificity may
be expressed as intervals. At any point during a designing
process the parameters may have values at any of the above
levels of specificity. By representing all levels of specificity as
intervals and using a uniform technique for propagating the
intervals through the constraints, we are able to evaluate the
constraints on the design and provide the designer valuable
feedback about potential constraint violations.

Constraint Propagation in Design
By propagating design decisions through constraints it is possible
to determine how the various design parameters affect one
another. In the process, redundant constraints are identified and
eliminated.

Consider, for example, a DC motor. The torque (T in-oz) is
related to speed (co rad/sec) as shown in Figure 1 and as given by
the constraint:

T » 100 - Ao)
18

Assume that the torque must be at least 30 in-oz (.21 N-ra) and
must not exceed 75 in-oz (.53 N-m) and that the speed may
assume any value between 150 and 300 rad/sec. The given
interval, [30, 75 in-oz],2 in conjunction with the motor
characteristics imposes upper and lower bounds on speed of 90
and 252 rad/sec as shown in Figure 1. Intersecting this interval
with the original interval we obtain a refined interval on speed,
[150, 252 rad/sec]. This new interval is propagated through the
constraint, once again, to find upper and lower bounds on torque,
[30,58.3 rad/sec]. This interval on torque and the corresponding
interval on speed indicate that the original specifications
requiring torque to be less than 75 in-oz and speed to be less than
300 rad/sec were not necessary. By propagating intervals it was
possible to identify redundancies and therefore simplify the
design task without making specific commitments about any of
the design parameters.

The process of propagating intervals through constraints can be
continued through long chains of constraints. The process
provides a means for determining bounds on design variables

T-75

T.58.3

T.30

T . 16

8 S a 1
I •

Figure 1: Torque - Speed characteristics of DC motor.

thereby delimiting a feasible space for the final design.
Propagation can be done through chains of constraints resulting
in a successive narrowing of parameter intervals. Continuing our
example, assume the power of the motor (given by Power »co7)
is required to be less than or equal to 8500 in-oz/second (60 W),
that is, in the interval [0, 8500]. Holding the interval on Power
and propagating T and co through the two constraints yields the
interval [222, 252] for the speed and the interval [30, 38.2] for
torque. This narrowing requires about 20 iterations. By
propagating intervals successively, any variable can affect any
other variable as long as there is a chain of constraints connecting
them. Propagation can occur in any direction; it is not the case
that one variable in a constraint must be selected, a priori, as
being dependent while all others are regarded as independent. As
constraints are propagated and as intervals narrow, specifications
may be found to be inconsistent with other constraints thereby
identifying violations3 and redundancies before specific design
decisions are made. Interval propagation makes it possible to
gain insight about a design without having to choose specific
values for the design parameters.

Working with intervals, in this way, allows one to simultaneously
consider a wide range of alternatives and to examine interactions
among design parameters before the design is completed. The
example also shows how it is possible to narrow design choices
without actually committing to any single operating point We
believe that the ability to draw important inferences about a
design problem, early in the process is important in concurrent
engineering. Later in the paper, we show how interval based
propagation methods can be used to provide a designer feedback
about the likely violation of life-cycle constraints, even when the
design is incomplete. We believe this is a viable way of achieving
concurrency in design.

2Thc SJ. units are not generally repealed in the interval notation to'avoid
confusion.

'That is, when an interval is reduced to a null set.

Interval Approaches
Because intervals are a convenient mechanism to describe aspects
of incomplete designs and because intervals can be used to draw
inferences about other aspects of the design it is valuable to
consider the mathematics of intervals. In the DC motor example,
discussed previously, it was possible to determine an interval on
torque given an interval on speed simply by evaluating the
torque-speed function at the end points of intervals. This was a
direct result of the fact that the torque speed function used was
strictly monotonic. Indeed this is the case for all functions
y »/(xj,X2,...) which are strictly monotonic in each of the
arguments, i.e. dfldxt > 0 or df/dxt < 0 for all xt. When
monotonicides are known it is possible to determine, a priori, at
which point over the intervals of the arguments that the functions
will be maximal and minimal and therefore, the interval on y can
be determined simply by evaluating the function at the two
critical "comers" of the space defined by the intervals on the xt.
When the function is known to be monotonic in all of its
variables, but the monotoniciry (i.e. increasing or decreasing) is
not known a priori, it is possible to determine the interval of the
function by evaluating the function at all combinations of
argument interval end points, i.e. at all corners of the space.
Therefore, if the function has n arguments then 2n function
evaluations are required. It is this characteristic of the four
principal arithmetic operators that make it possible to define an
interval arithmetic.

Interval Arithmetic. Interval arithmetic is used as the basis for
evaluating algebraic relations containing interval variables. An
interval number is an ordered pair of real numbers, [a, b], with
a £ b. Intervals may be treated as sets and can be operated on by
set theoretic operators such as intersection, union and subset

Interval arithmetic operators are defined on the upper and lower
bounds of the operands. For example, the expression (x2 +>>) for
the intervals x »[1 ,4] and y «[5, 10] is bounded by the interval
[6,26]. This is determined by expanding the square operator and
applying the following interval arithmetic formulae [Moore 66]:

[a,b] + [c,d] = [a + c, b + d) (1)
[atb] - [ctd] = [a - d, b - c] (2)
[a9b] x lc9d] =

[min(ac,adtbctbd)9 max(ac, ad, be bd)) (3)
[a9b] I lc9d] = [a,b]xll/d,l/c)4 (4)

The four basic arithmetic operators are monotonic with respect to
each of their arguments. Furthermore, the sum and difference
operators have known monotonicides and therefore it is possible
to determine a priori which combinations of arguments must be
evaluated to determine the maximum and minimum interval of
the function. The multiplication operator however, may have a
strictly increasing or decreasing monotonicity depending on
whether or not the arguments are positive or negative. In this

case we must evaluate the multiplication function at each
combination of interval end points and select the minimum and
maximum to determine the interval. Nevertheless, these basic
operators compute intervals which are precisely the inteival that
occurs.

Although the four basic arithmetic operators produce exact
intervals, the representation of higher level functions in terms of
these basic arithmetic operators introduces some difficulty.
Consider the function of y «(x-2) 2 over the interval x »[0,10].
The function itself is not monotonic over that interval. Since
subdivision into monotonic intervals would require in the general
case difficult solution procedures we prefer to express the
function in terms of the monotonic arithmetic operators, i.e.,
y » (r - 2) (x - 2) . In this case the square operator has been
replaced with multiplication, however, implicit in the definition
of interval multiplication is that the two arguments may vary
independently. This is clearly not the case for the square function
which we are discussing, however, since the independence of the
arguments is less restrictive, the result of applying the
conventional interval arithmetic will result in an1 interval on y
which is conservative in the sense that the actual interval on the
function will lie within the computed interval. In this case the
interval computed using interval arithmetic is [-16, 64] which
includes the actual interval of [0,64]. The conservative interval
calculation destroys the one to one correspondence between
intervals on arguments and intervals on functions. This is
important in the context of design because it is often necessary to
determine what range of arguments will satisfy a range on the
function itself. The extent to which the computed interval
deviates from the actual interval is critical to the degree to which
strong inferences can be made regarding intervals on variables.

There are some specific techniques intended to mediate against
the expansion of intervals. One such approach is the centered
form of functions based on a fourier expansion of the intervals
and is described in [Moore 79]. Other heuristics, for example, to
deal with even exponents are also useful. There are several ad-
hoc methods to obtain less conservative intervals, often exact
intervals. Since the computation of intervals is not the focus of
this paper, it will not be discussed at greater length here.

Interval Propagation
In this section we re-examine constraint propagation in terms of
interval algebra. Intervals may be propagated in a network of
constraints. Propagation refines the intervals on variables in the
constraints.

Constraints are evaluated using the basic interval an throe ac
operations. For example, let Vj be an interval calculated from the
equation V, op V2 * V3 . Where, op is one of the four basic
interval arithmetic operators. This operation guarantees that for
any value in the intervals V, and V2 the result of applying op will
be in Vy In other words, the result is necessarily in the interval

'The division operator is not valid when the interval of the divisor includes
zero.

After a constraint expression is evaluated the new interval is
propagated Fdr example, when t new interval is determined for a
variable, that variable's current interval is updated by intersecting
it with the calculated necessary interval If the intersection is
null, then the original interval or die constraint is said to be
inconsistent This kind of propagation can be carried through
complex equations using the interval arithmetic operators. The
process guarantees the result will necessarily be in the calculated
interval

In the DC-motor example, we have the equation Power m a>7\
Assume we know the interval on Power [8000, 25000] (inch-
oz/scc) and Torque [30, 75] (inch-oz). We seek an interval on co
such that, for any values of power and torque (within their
intervals) the speed, co, falls within the interval. In other words,
we seek an interval in which CD has to necessarily be in. As
shown in Figure 2, the speed must fall between a and b. The
interval may be computed using the basic interval arithmetic to
evaluate the constraint, expressed terms of the variable in
question: o « ^ « ^ t t T " [1 0 6 ' 8 3 3 1 •

T-7S

T-30

Figure 2: Calculating the necessary interval

Necessary and Sufficient Intervals
The faa that a variable falls within a necessary interval does not
guarantee that all constraints can be satisfied, i.e. necessary doe*
not imply sufficient. Consider for example the situation depicted
in Figure 2. Although o>[106, 833 rad/sec] is necessary, an
arbitrary value in this interval is not sufficient to satisfy the
power requirement for arbitrary values of allowable torque since
the rectangle of valid torques and speeds extends beyond the
bounding power curves. Even when we know that both torque
and speed fall within the necessary intervals it is still necessary to
check that the power constraint is satisfied. There may, however,
be an interval on speed which guarantees that the power
requirement will be satisfied whenever torque requirements are
met. We say that such an interval is sufficient to satisfy the
constraint For example, the interval on speed sufficient to satisfy
the power requirement is shown in Figure 3. For any value of
torque and speed in their respective intervals, the power will
always be between 8000 and 25000 in-oz/sec.

Power • 25000

Figure 3: Sufficiency based propagation.

The concept of necessary and sufficient intervals can be very
useful to the designer. If two constraints each have associated
with them a necessary interval on the same argument and those
necessary intervals do not overlap it is not possible to
simultaneously satisfy both constraints. The ability to identify a
constraint contradiction of this son early in the design cycle
makes it possible for the designer to determine appropriate
relaxations of these constraints. ' '

The interval of some variable, sufficient to satisfy a constraint
insures that a constraint will be satisfied whenever all of the other
variables fall within their necessary intervals. Therefore, if the
necessary interval of one constraint falls completely within the
sufficient interval of a second constraint, then that second
constraint will be unconditionally satisfied whenever the first is
and therefore the second constraint does not need to be
considered explicitly. Identifying a redundant constraint of this
sort is similarly useful to the design since only those constraints
which are truly binding need be considered.

The relation between the necessary and sufficient intervals can be
made more clear with a simple example. Consider the torque-
speed characteristics shown in Figure 4 which is typical of an AC
induction motor. We are interested in determining at what speed
the motor will run given that the operating torque is in the nnge
[Tmin> Tmax). From the figure we can see that when the speed
falls in the interval [co,, coj or [0)3,©4] then the torque will fall
within the required interval. Either one of the intervals is
sufficient to guarantee that the torque requirements will be met
However, because this is indeed two intervals rather than one it
may be more convenient to deal with an interval representing
what is necessary to satisfy that constraint rather than what is
sufficient Reading directly from the graph, the necessary
interval is [CO], 0)4].

The necessary and sufficient intervals are of course not unique.
• Any sub-interval of a sufficient interval is also a

sufficient interval.

• A super-interval of any necessary interval is also a
necessary interval.

• The union of all sufficient intervals are contained in
any necessary interval.

T *

Tmin

i

/

1

.—x

w
Figure 4: AC-Motor Characteristic

Calculation using the Sufficiency Condition
In this section we present a method to evaluate the intervals on a
variable based on a sufficient condition.

Our goal is as follows: Given the constraint Vx op V2 » Vy to
determine V2 such that for any value in given Vx and V3,the
application of op yields a result in V3. In other words, what
should V2 be so that for any value in Vx , Vx op V2 lies in the
interval Vv

To obtain the unknown interval V2, we express the relation
Vx op V2 » V3 in terms of the interval we want to be within : in
this case Vy Assume V2 » [v2/t v2u], where v2/ and v2n are
the values we seek. Now consider the relation Vx op V2 » V3.
The left hand side can be evaluated in terms of the unknowns v2/
and v2u by applying the interval operators. These two unknowns
can be found by solving the interval equation, as demonstrated by
the following example : Consider the O.C motor case in which

.Power is desired to be in the interval [8000, 25000] and the
"interval on Torque is given to be [30, 75]. We are to find an
interval on co such that Power m co T is satisfied for all G> and 7*.
Following the above procedure: Let co = [co/, COM]. Applying the
equation Power »(oT; substitute the intervals for Power, Torque
and co we get [8000, 25000] ^ [col, cou] [30, 75] from which it
follows that [8000, 25000] =« [30 col,75 cou], since torque and
speed are known to be positive definite. Equating the upper and
lower limits of the interval equation, 8000- col 30 gives cols 266
and 25000 - cou 75 gives cou* 333 . These limits on speed give
the sufficient interval.

Now consider the dual case, that of finding an interval on speed
sufficient to satisfy the torque requirement of [30,75] given that
power falls within the stated interval of [8000, 25000]. Now, V3

is Torque and Vx is Power. Expressing the equation in terms of
Torque, Torque = Power/co; we get [30, 75] = [8000, 25000]/ [col,
cou], from where it follows that 30 » 8000/couand 75 = 25000/col.
The limits on speed are hence: cou = 266 and col * 333 , which is
a nonsense interval and so for the given intervals on Torque and
Power we cannot find an interval for w such that for all values of
Power, we are within the interval of Torque. There is no interval

on speed sufficient to guarantee that there is some valid torque
for any power in the stated interval.

This example not only demonstrates the simple methodology to
evaluate sufficient intervals but also illustates the asymmetric
nature of sufficiency intervals and their conditional existence.
Conditions for existence of sufficient intervals and refinements,
resolutions and retractions needed for their existence are topics of
current research.

Sufficiency on Ranges. We now introduce a new kind oi
variable called a range variable. If a constraint has a range*
variable, it means that the constraint has to satisfiablc over ail
values in the interval of the range variable. For example, if we*
are designing a clutch for the motor, we might set up constraints
which include friction as one of the variables. Assume it is
desired that the clutch operate under both wet and dry conditions.
This means that the coefficient of friction is liable to change. It
follows that the design should be such that it satisfies the
constraints for all values of friction between its wet and dry
limits. In this context, friction is a range variable which has
upper and lower bounds [Gagne 53, Hindhede, Etal. 83]. A
constraint containing a range variable should be satisfied for all
values of the range variable between its upper and lower bounds,
as opposed to just any value as in the case for interval variables.
The notion of range was identified by Ward [Ward 89], which he
calls the Sufficient-points criterion. Range variables can be
handled by using the Sufficiency criterion. For example, in
Figure 3 the interval on co satisfies the constraints on Power for
all values of Torque in the range <30,75>.

The propagation techniques presented in this section showed how
it is possible to evaluate constraints even if many variables are
underspecified and the corresponding design is incomplete or
preliminary. The design example presented in the next sccuon of
the paper shows how constraints relating to life-cycle concerns
such as manufacturing can be considered early in the design
process.

Design Example: Two Bar Truss
Consider the design of a simple two bar truss designed to carry a
vertical load as shown in Figure 5. The truss is to be nude by
pinning together two solid round bars of aluminum at the base
and at the apex. The truss must span 20 f t (6.1 m) at the base
and must hold the load at least 8 ft. (2.4 m) above the base.
Stresses in the truss must not exceed the yield point of the
aluminum, 35,000 psi (240 MPa), nor may they exceed the
critical buckling stress. Furthermore, the truss must not deflect
more than one-quarter of an inch under the 25.000 pound
(111,000 N) load.

Also consider some life-cycle constraints on delivery and
assembly. To accommodate delivery on a truck assume that the
round bars should not exceed 26 ft. (7.9 m) in length and to allow
for assembly by an individual the pieces must noc *e:gh more
than 50 pounds (23 kg.) each.

Figure 5: Two Bar Truss Configuration

It is possible to express all design considerations in terms of a set
of constraints involving intervals. Intervals on stress, deflection,
critical buckling stress, ate, height, / / , length, I, and weight, W,
are all given explicitly as:

a
5

W
H
L

I
[
[

I
I
[

0, o^jj
0. 5]̂

a. H
0, 50 Ib.]
W- - I
0, 2#rJ

[
[
[

0.
2.4
0,

23
m.

7.9
H

(5)
(6)
(7)
(8)
(9)

(10)

We also have geometric compatibility constraints:

B2 + H2 - L2 (11)
sinO • HIL (12)
cosO » BIL (13)
tan6 « H/B (14)

Constraints which relate stress, deflection and critical buckling
stress to the geometric parameters are:

(15)

(16)

(17)

p
24 sin (6)

PB
24£sin29cos9

nEA cos2(9)

Yielding

Deflection

Rucldinff

The intervals on height and tube length are updated by
propagating the given intervals through the geometric constraints.
The Pythagorean relationship (Equation 11) between half-span,
height and length allows us to conclude that the necessary
interval on length is LJ12.8 ft, H as a result of the given interval
on height, H[8 ft, —). The intersection of this new interval on
length with the initially acceptable length interval narrows the
length interval to U12.8 ft, 26 ft]. Propagating this new length
interval back through the very same constraint allows us to infer
that height must fall in the interval H[8 ft, 24 ft]. Now applying
the geometric constraints which relate //, B, L and 6 allows us to
conclude that 0 must necessarily fall in the interval 8[38.7°,

Let us now examine how the buckling constraint may be used to
find an interval for the cross-sectional area of the bar. The
critical budding stress must be greater than the actual stress.
Because we don't have the actual value of or, we find, by direct
substitution that the interval on o^ is [P/QA ^in(9)), • •] .
Using the interval on 6 it is then possible* to compute the
necessary interval on tube cross section. A, [5.5 in2, H from
the buckling constraint This interval is further propagated
through the weight constraint to identify an interval on weight,
W[84 Ib., ••]. We note immediately that the computed necessary
interval on weight does not intersect the allowable interval which
is W[0, 50 Ib.]. We have therefore determined that it is not
possible to satisfy all of the given constraints. The design
problem as posed has no valid solution. We have identified a
violation of a life cycle constraint before selecting actual
dimensions of the structure. The designer may, at this stage, elect
to ignore one or more of the constraints, for example the weight
constraint, or may consider some alternative configuration, for
example a more complex truss arrangement or a two bar truss
formed from tubes rather than from solid bars.

Let us consider a tubular truss and defer consideration of the
buckling constraint The stress and deflection constraints can
now be used to determine both what is necessary and sufficient
on cross-sectional area. A, to satisfy those constraints given the
known interval on 6. We find that to satisfy the deflection
constraint it is necessary that A[1.58 in2, -] and sufficient that A
[4.62 in2, H 5 - Further, using basic interval arithmetic the
necessary interval on A to satisfy the stress constraint given the
interval on 6 is A[.39 in2, H and the sufficient interval is A(57
in2, H- Since the interval on A necessary by virtue of the
deflection constraint is contained in the interval on A sufficient in
light of the yielding constraint we know, a priori, that sansfying
the deflection requirement will result in the satisfaction of the
yielding requirement In that sense the yielding requirement is
redundant and need not be considered explicitly. It is now

W « Weight (18)

9Because the tenn {Sin2 8 CosQ] m the deflectioo constrain a not
roonotonic in the interval 0 (38.7°, 67A% the intervals are calculated usng
special case operators.

possible to select a truss angle, 0, and tube cross sectional area,
A, to satisfy the deflection requirement in light of some objective
criteria, perhaps weight Having taken that last step we simply
determine the diameter and tube thickness necessary to satisfy the
area requirement and the buckling constraint

In this example we have shown how it is possible to consider
simultaneously both equality and inequality constraints arising

• from transportation, assembly, performance, geometry, and solid
mechanics in an integrated, homogeneous representational
framework based on intervals. We have also seen how
successive application of the constraints - even the same
constraint more than once - can significantly refine the intervals,
narrowing the range of alternatives. We have shown that by the
simple propagation of intervals it is possible to identify a priori
inconsistencies among the constraints, alerting the designer to the
need to reformulate the problem specifications or the candidate
design configurations. We have also shown how the computation
of necessary and sufficient intervals on design parameters can
simplify design decision making by identifying certain
constraints which are redundant and in so doing simplify both
computation and enhance the designer's understanding of the
design scenario. In a particular case the elimination of the stress
constraint made it possible to identify a noniterative design
problem solving strategy.

Planning Constraint Evaluations
In the above example, we saw how constraint propagation can be
used to help the designer gain insight into a design problem. The
example did not address the issue of planning. We know how to
propagate intervals but how do we know which constraint to
propagate intervals through? One cannot try to propagate values
through all constraints, every time a change occurs. Value and
interval propagation in constraint networks has to be properly
planned.

We currently rely principally on dependence ordering constraint
propagation techniques such as those used by [Wang 73] and
[Serrano 87]. These methods rely on bi-partite graph matching

techniques to determine which constraint is used to evaluate each
of the design parameters. We also use a combination of strong
component and topological sort algorithms to identify a solution
strategy. These methods are being extended to accommodate the
particular characteristics of interval approaches where, a
parameter interval may be computed by more than one constraint
and that each constraint may be used more than once.

Conclusions
Designers can be assisted in determining the relevancy of design
constraints by the determination of design parameter intervals
which are sufficient to guarantee constraint satisfaction or axe
necessary to make possible constraint satisfaction. Redundant
constraints can be removed from current consideration and
relevant constraints can be used to propagate design information.
As a result, the computational complexity of the concurrent

design problem is diminished and understanding of critical design
constraints is enhanced.

Technical Acknowledgments
The authors would like to thank Mr. V. Krishnan (Graduate
Research Assistant) for his valuable comments and ideas about
interval methods.

References
[Boming 79]
Boming, A., ThingLab- A Constraint Oriented Simulation
Laboratory." Technical report, Xerox Palo Alto Research Center, 1979.

[Gagne53]
Gagne Jr., AJF., Torque Capacity and Design of Cone and Disk
Clutches ,N Product Engineering, December 1953.

[Gosling 83]
Gosling, J., Algebraic Constraints, PhD dissertation. Department of
Computer Science, Carnegie-Mellon University, 1983.

[Hindhede.Et.aL 83] : ,
Hindhede, U., J.R. Zimmerman, R.B. Hopkins, R.J. Erisxnaa,
W. C. Hull, J.D. Lang, Machine Design Fundamentals: A practical
approach. John Wiley & Sons, 1983.

[Mackworth 77]
Mackworm A.K., "Consistency in Networks of Relations," Artificial
Intelligence, VoL 8.1977, pp. 99-118.

[Moore 66]
Moore, RJS., Interval Analysis. Prentice-Hall, Inc. 1966.

[Moore 79]
Moore, RJE.. Methods and Applications of Interval Analysis. Si am.
Philadelphia, 1979.

[Popplestone 80]
Popplestone, R. J., Ambler, A. P. and Bellos, L, "An Interpreter for a
Language for Describing Assemblies," Artificial Intelligence. VoL
14, No. 1,1980, pp. 79-107.

[Serrano 87]
Serrano, D., Constraint Management in Conceptual Design. PhD
dissertation, Dept of Mechanical Engineering, M.I.T.. 1987.

[Sussman 80]
Sussman, G. J. and Steele Jr. G. L.. "CONSTRAINTS • A Language
for Expressing Almost-Hierarchical Descriptions," Artificial
Intelligence. Vol. 14,1980. pp. 1-39.

[Sutherland 83]
Sutherland, I.E., "Sketchpad - A Man-Machine Graphical
Communication System," Technical report TechRepon #296. MIT
Lincoln Lab. Cambridge, Massachusetts, 1983.

[Wang 73]
Wang, R.T.R., Bandwidth Minimization. Reducibility Decomposition,
and Triangularization of Sparse Matrices. PhD dissertation. Computer
and Info. Science Research Center, Ohio State Universtiy. 1973.

[Ward 89]
Ward, A.C.. A Theory of Quantitative Inference Applied to a
Mechanical Design Compiler. PhD dissertation, M.LT., 1989.

